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Abstract

Threshold Fully Homomorphic Encryption (ThFHE) enables arbitrary computation
over encrypted data while keeping the decryption key to be distributed across multiple
parties at all time. ThFHE is a key enabler for threshold cryptography and, more
generally, secure distributed computing. Existing ThFHE schemes inherently require
highly inefficient parameters and are unsuitable for practical deployment. In this paper,
we take the first step towards to make ThFHE practically usable by (i) proposing a novel
ThFHE scheme with a new analysis resulting in significantly improved parameters; (ii)
and providing the first ThFHE implementation benchmark based on Torus FHE.

• We propose the first ThFHE scheme with a polynomial modulus-to-noise ratio
that supports practically efficient parameters while retaining provable security
based on standard quantum-safe assumptions. We achieve this via a novel Rényi
divergence-based security analysis of our proposed threshold decryption mecha-
nism.

• We present a highly optimized software implementation of our proposed ThFHE
scheme that builds upon the existing Torus FHE library and supports (dis-
tributed) decryption on highly resource-constrained ARM-based handheld de-
vices. To the best of our knowledge, this is the first practically efficient imple-
mentation of any ThFHE scheme. Along the way, we implement several extensions
to the Torus FHE library, including a Torus-based linear integer secret sharing
subroutine to support ThFHE key sharing and distributed decryption for any
threshold access structure.

We illustrate the efficacy of our proposal via an end-to-end use case involving en-
crypted computations over a real medical database, and distributed decryptions of the
computed result on resource-constrained handheld devices.
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1 Introduction

Outsourced Computation. The recent advent of cloud computing technologies [Hay08,
WVLY+10] enables individuals and organizations to outsource heavy computations over
large databases to potentially untrusted third-party servers. However, this poses new chal-
lenges for the security and privacy of the data, particularly when the data contains sensitive
information such as individual medical records, etc. For compliance, regulation, and other
essential privacy requirements, the data must be kept secure at rest, in transit, and during
computation.

Fully Homomorphic Encryption (FHE). While traditional encryption procedures are
useful for securing data at rest and in transit, they often fail to achieve any security during
computation. Fully Homomorphic Encryption (FHE) [Gen09, BGV14, BGG+18] resolves
this problem by enabling computation on encrypted data. This motivates a significant body
of research work [SS10,CNT12,DM15,CGGI20,CGBH+18,FSK+21] to focus onto building
practically efficient fully homomorphic encryption systems.

Threshold Cryptography. While FHE resolves the crucial problem of computation on
encrypted data, one must carefully store the decryption key securely to get any real benefit
out of it. Typical enterprise solutions of key management involve using secure hardware
solutions such as HSMs, SGXs etc. While they provide reasonable security in practice,
they often suffer from a lack of programmability, cumbersome setup procedures, scalabil-
ity, high cost, side-channel attacks etc [KHF+19, LSG+18]. An alternative approach, that
uses threshold cryptography [Sha79,DF90,DDFY94] is offered by enterprises like Hashicorp
Vault1. In that approach, the key is shared among multiple servers (say T ) to avoid a “single
point of failure” and a threshold number of them (say t) can collaborate to recompute the
decryption key. However, this defies the purpose as a single compromise at the decryption
server, during a key-reconstruction, would reveal the key entirely. An ideal solution must
have the decryption key distributed at all time. In particular, this is achieved by a ThFHE
(Threshold-FHE) scheme [AJL+12,MW16a,BGG+18], where the decryption is performed
jointly by any threshold number of parties without reconstructing the key at any one place.
In particular, parties compute partial decryption with their shares of the key and send them
over to the decryptor, who, once obtains t such partial decryptions in total (may include
her partial decryption), combines them to get the message.

Practical ThFHE. While there are several ThFHE schemes in the literature [AJL+12,
MW16a, BGG+18,MS+11, JRS17], the state-of-art is far from being practical. This is in
contrast to the literature in FHE, in that many practical proposals and prototypes exist2.

1https://www.vaultproject.io/
2https://homenc.github.io/HElib/,

https://www.microsoft.com/en-us/research/project/microsoft-seal/, https://tfhe.github.io/tfhe/,
https://palisade-crypto.org/
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Perhaps the most crucial bottleneck of the existing schemes comes from the security re-
quirement imposed by the threshold decryption procedure, which might involve up to t− 1
corrupted servers (we only consider passive/semi-malicious corruption here). In slightly
more detail, the modulus to noise ratio used in the existing threshold schemes must be set
super-polynomial (in the security parameter) compared to the non-threshold FHE schemes
that require only a polynomial modulus to noise ratio. The use of super-polynomial modulus-
noise ratio stems from a technique called smudging (alternatively noise flooding), which is
used to achieve security when the parties are corrupt during the distributed decryption.
In this work, we propose the first ThFHE scheme, which uses polynomial modulus to noise
ratio – we achieve this by adapting a Rényi divergence based technique for distinguishing
problems with public sampleability property as discussed in [BLRL+18,TT15]. This dra-
matically improves the system’s efficiency, as shown by our prototype implementation in
software – this is the first benchmark for a ThFHE scheme.

1.1 Our Contribution

In this work we significantly improve the state-of-art for practical ThFHE scheme by both
new theoretical analysis and first prototype implementations. Finally, we complement this
by providing a use case for a real-world, end-to-end system that securely outsources med-
ical data while avoiding the single point of failure by distributing the key among different
lightweight devices that medical personnel hold.

The First Practical Threshold FHE Scheme. Our construction is based on the prior
constructions [AJL+12,MW16a, CM15a]. In particular, we plug-in the threshold decryp-
tion technique from Asharov et al. [AJL+12] into the FHE scheme by Gentry, Sahai and
Water [GSW13] (GSW) – as a result, we get a single-key ThFHE version of the scheme
by Mukherjee and Wichs [MW16a] with two crucial differences: (i) the smudging noise is
sampled from a Gaussian distribution; (ii) a polynomial modulus is used. In our analysis,
which is inspired by the works such as [BLRL+18,TT15,AKSY21], we use Rényi Divergence
instead of statistical distance, which essentially made those changes possible keeping the se-
curity intact. As a result, we obtain the first ThFHE scheme with polynomial modulus to
noise ratio.1

First Software Prototype for Threshold FHE. We provide the first prototype imple-
mentation of a ThFHE system with a benchmark in software. We expand further below.

• In our software implementation, we provide an extension of the existing library for
Torus-FHE2. We also provide the first software implementation of a linear integer secret
sharing scheme extended from [DT06] to support Torus Ring-LWE secret key sharing,
which may be of independent interest. Our extended Torus-FHE library supports
arbitrary t out of T threshold decryption. Furthermore, we implement a switching

1Remarkably, polynomial modulus to noise ratio not only improves the efficiency significantly, but also
makes the scheme potentially more secure – this is because such a ratio for the underlying Learning with
Errors problem [Reg09] implies reduction to the corresponding worst-case lattice problem with polynomial
approximation factor, which are believed to be significantly harder than the same problem with super-
polynomial approximation factor, which is obtained if a super-polynomial ratio is used. For more details,
we refer to, for example, [BV14].

2https://tfhe.github.io/tfhe/
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mechanism to convert the bootstrapped Torus LWE ciphertext into Torus Ring-LWE
ciphertext – this is done for an efficiency improvement, in that more plaintext data
can be packed into a Ring-LWE ciphertext without increasing the parameters.

• To emulate our intended use-case of decryption in handheld devices, we develop a
portable implementation of the threshold decryption routines. We provide the results
from its experimentation on a Raspberry Pi 3b board that uses a 64 bit ARM CPU.

A Practical Use-case. Finally, as a use-case, we provide a detailed description of an
end-to-end secure computation system over outsourced encrypted medical data. The goal
is to have encrypted medical data stored in the cloud, such that any heavy computation
may be performed on that encrypted data. At the same time, the decryption key must be
stored in an easily accessible but secure way. In particular, a medical personnel who owns
many lightweight devices should be able to access the result of the computation by using
t devices, but if any t − 1 device are compromised,1 then the decryption key must not be
revealed, even if the compromised device participates in several decryption sessions. For
example, in a (5,8)-threshold decryption system, any five devices should be able to perform
the distributed decryption, and the decryption key should remain secure until the number
of compromised parties is less than five. Furthermore, the system should be such that the
encryption or the computation on the encrypted data should be oblivious to the values of t
or T . In particular, one may think about changing those values later. Our system satisfies
all of the above mentioned aspects.

2 Related Work

Threshold FHE. The concept of ThFHE, introduced by Asharov et al. [AJL+12], has
been majorly studied in two related but slightly different contexts: (i) to build low-round
multiparty computation protocols [AJL+12, MW16a, GLS15, BJMS20]; (ii) and as a key
enabler for threshold cryptography [BGG+18, JRS17]. At a technical level these two cate-
gories of schemes follow slightly different definitions because of different application require-
ments. The MPC-motivated works (category (i) above) consider mainly (T, T )-threshold
settings (Badrinarayan et al. [BJMS20] is an exception), whereas the later works are fo-
cused towards achieving (t, T ) (t ≤ T ) setting (which is standard in the threshold cryp-
tography literature). Furthermore, the former works (necessarily, due to requirement of
MPC) considered distributed key-generation for single-key schemes,2 unless, of course, a
specialized public-key infrastructure was assumed. The only distributed step considered by
the threshold-inspired works (category-(ii) above) was distributed decryption, in that every
party has a common ciphertext and their own share of secret decryption key; and then
each party broadcasts a partially decrypted ciphertext generated locally, which are then

1In this work we consider a semi-malicious model of corruption a la [AJL+12,MW16a] which assumes
that corrupt parties behave as per the protocol description except they can choose arbitrary values for
randomness – this is stronger than the passive security model where parties choose good randomness but
weaker than fully malicious setting where parties behave in completely arbitrarily manner.

2The multi-key schemes are the exceptions. For multi-key schemes such as Mukherjee andWichs [MW16a]
the key-generation step was naturally dispensed with, which was the key-step to achieve round-optimal MPC
in the common random string model.
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combined together to obtain the decrypted value – this is similar to threshold public-key
encryption [BBH06, Fra90, DF90, SG02]. The distributed decryption step is modular and
essentially agnostic of how the ciphertext is generated. In particular, such decryption pro-
tocol can be plugged-in to schemes with appropriate distributed key-generation protocol or
can be used in a multi-key scheme a la [MW16a,BJMS20] (or even with a symmetric-key
scheme).1 Therefore, distributed decryption step appear in both categories of the above
work. Our focus here is more aligned with the threshold cryptography literature, and hence
we follow the second approach.

One common aspect of all of the above distributed decryption constructions is the use of
the so-called noise smudging technique to achieve a simulation-based security guarantee
when up to (t − 1) parties are (semi-maliciously) corrupt. The main idea is to sample
noise from a uniform distribution and then use it to “smudge” (alternatively “flood”) the
“sensitive LWE noise” contained in the partially decrypted ciphertext. The analysis (based
on simple statistical distance measurements) crucially relies on the smudging noise being
super-polynomially larger than the LWE noise; then to ensure correctness one must use a
super-polynomial modulus-to-noise ratio – this results in impractical parameters. In this
paper, we instead use a novel Rényi divergence-based analysis inspired by [BLRL+18,TT15]
– this allows us to use a polynomially large smudging noise and subsequently a polynomial
modulus-to-noise ratio, thereby putting ThFHE in the practical regime for the first time to
the best of our knowledge.

In a recent work, Lee et al. [LMK+22] showed improved bootstrapping methods for FHEW/
TFHE and used their techniques to realize threshold FHE. Our goal in this paper is orthog-
onal since we focus purely on the threshold decryption procedure with the aim of achieving
a polynomial modulus-to-noise ratio. Our techniques are therefore agnostic of the boot-
strapping procedure used during homomorphic evaluations.

Multiparty Homomorphic Encryption. Mouchet et al. [MTBH21] recently considered
a new notion of multiparty homomorphic encryption scheme (MPHE), which is very sim-
ilar to the Asharov’s et al. [AJL+12]’s threshold FHE notion, that has both distributed
key-generation plus distributed decryption, albeit for a (T, T ) access structure. They also
included an implementation benchmark. However, a major shortcoming of their definition
is the absence of a simulation-based definition for their partial decryption protocol – so it
does not capture a realistic threat model where adversary can corrupt parties while partici-
pating in the decryption procedure. Therefore, they did not need to use any noise smudging.
Therefore, their implementation can not be counted as a predecessor of ours. In another
work by Ananth et al. [AJJM20a] defines a another primitive, which they also call multi-
party homomorphic encryption – this is a slightly weaker variant of multi-key FHE, in that
the decryption computation complexity grows with the circuit being evaluated. Another
work by Padron and Vargas [PV21] defines an even weaker primitive (where the evaluator
holds part of the secret-key) and calls it multiparty homomorphic encryption. Our notion
of ThFHE is different from all these notions.

Multi-Key FHE. In a multi-key FHE scheme [LATV12, CM15b, MW16b, BP16, PS16,
CZW17,CO17,CCS19,AJJM20b] parties encrypt their input with individual keys (generated

1In a (T, T ) setting the distributed key-generation is trivial [AJL+12]. In the (t, T ) setting the key-shares
must be consistent with the secret (t − 1) degree polynomial, and hence a non-trivial protocol is required.
One may just think about using a generic MPC protocol for this a la [BJMS20]. More efficient protocols
are considered recently [GHL22]. This is not the focus of our work.
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locally) and then broadcast them; subsequently an extended ciphertext is constructed using
all the encryptions from the involved parties and any arbitrary homomorphic operation can
be performed on the extended ciphertext. As mentioned earlier, our distributed/threshold
decryption can be adapted to this setting. For example, our implementation may possibly
be combined with the multi-key implementation of Chen et al. [CCS19] to obtain the first
practical multi-key FHE scheme with distributed decryption. We note that, Chen et al.’s
implementation does not focus on distributed decryption and hence does not encounter
smudging noise issues. Instead we focus only on distributed/threshold decryption (with the
necessary notion of simulatability) in the (t, T ) setting.

Software Frameworks. Recent works have accelerated (non-threshold) FHE implemen-
tations via GPU based parallelizations. Based on [CGGI20], a Python library NuFHE 1

has been developed. In [CDS15], the Cingulata (formerly, Armadillo) C++ toolchain and
run-time environment were introduced for running programs over FHE ciphertexts, which
now supports Torus FHE. Lattigo2 [MBTPH20] on the other hand is a Go based mod-
ule that builds secure protocols based on Multiparty-Homomorphic-Encryption and Ring-
Learning-With-Errors-based Homomorphic Encryption Primitives. The library features an
implementation of the full-RNS BFV and CKKS schemes. Our ThFHE implementation
builds upon and extends the Torus FHE library in a natural way, and is cross-compatible
with all of these computation frameworks.

3 Preliminaries and Background

In this section, we introduce the notations used throughout this paper. We also present
some preliminary background material on cryptographic primitives used in this paper.

3.1 Notations and Mathematical Background

Notations. We write x← χ to represent that an element x is sampled uniformly at random
from a set/distribution X . For a, b ∈ Z such that a, b ≥ 0, we denote by [a] and [a, b] the
set of integers lying between 1 and a (both inclusive), and the set of integers lying between
a and b (both inclusive). We refer to λ ∈ N as the security parameter, and denote by
poly(λ) and negl(λ) any generic (unspecified) polynomial function and negligible function
in λ, respectively.3

Threshold Access Structure. For any T, t ∈ N such that t ≤ T , a (t, T )-threshold access
structure over any set P = {P1, . . . , PT } is defined as a collection of qualified subsets of the
form

A(t,T ) = {P ⊆ P :
∣∣P∣∣ ≥ t},

which (informally) states that any subset with t or more parties is a qualified subset. Finally,
if A(t,T ) is a minimal (t, T )-threshold access structure, then it only consists of subsets of

size exactly t; in other words, we have |A(t,T )| =
(
T
t

)
.

1https://nufhe.readthedocs.io/en/latest/
2https://github.com/tuneinsight/lattigo
3Note that a function f : N → N is said to be negligible in λ if for every positive polynomial p, f(λ) <

1/p(λ) when λ is sufficiently large.
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Rényi Divergence. Let Supp(P ) and Supp(Q) denote the supports of distributions P and
Q respectively, such that Supp(P ) ⊆ Supp(Q). For a ∈ (1,+∞), the Rényi divergence of
order a is defined by

Ra(P ||Q) =

 ∑
x∈Supp(P )

P (x)a

Q(x)a−1

 1
a−1

.

The above definition extends naturally to continuous distributions (see [BLRL+18] for de-
tails).

3.2 Fully Homomorphic Encryption (FHE)

Fully Homomorphic Encryption (FHE) is a form of encryption that permits computa-
tions directly over encrypted data without decrypting it first. The result of this compu-
tation is also encrypted. Below, we recall the definition of fully homomorphic encryp-
tion (FHE) [Gen09,GHS12] for any message spaceM.

Definition 1 (Fully Homomorphic Encryption). A fully homomorphic encryption (FHE)
scheme is a tuple of four algorithms (Gen,Enc,Dec,Eval) with respect to a class of Boolean
functions F = {Fℓ}ℓ∈N (represented as Boolean circuits with ℓ-bit inputs) such that the tuple
(Gen,Enc,Dec) is an IND-CPA-secure public-key encryption (PKE) scheme as defined below,
and the evaluation algorithm Eval satisfies the homomorphism and compactness properties
as defined below:

• IND-CPA security: For any (pk, sk) ← Gen(1λ), for any messages m0,m1 ∈ M,
and for any probabilistic polynomial-time (PPT) adversary A, letting

ct0 ← Enc(pk,m0), ct1 ← Enc(pk,m1),

we have

|Pr[A(pk,m0,m1, ct0) = 1]− Pr[A(pk,m0,m1, ct1)] = 1| ≤ negl(λ).

• Homomorphism: For any (Boolean) function f : {0, 1}ℓ → {0, 1} ∈ F and any
sequence of ℓ messages m1, . . . ,mℓ, letting (pk, sk) ← Gen(1λ), and cti ← Enc(pk,mi)
for each i ∈ [ℓ], we have

Dec(sk,Eval(pk, f, ct1, . . . ctℓ)) = f(m1, . . . ,mℓ).

• Compactness: There exists a polynomial p(λ) such that, for any (Boolean) function
f : {0, 1}ℓ → {0, 1} ∈ F and any sequence of ℓ messages m1, . . . ,mℓ, letting (pk, sk)←
Gen(1λ), and cti ← Enc(pk,mi) for each i ∈ [ℓ],

|ct∗ ← Eval(pk, f, ct1, . . . ctℓ))| ≤ p(λ),

where p(λ) is independent of size of f and the number ℓ of inputs to f .

In the definition mentioned above, we assumed that the evaluation key is included as part
of the public key.
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3.3 Threshold FHE

In this section, we define Threshold FHE (or ThFHE in short), which is essentially an
abbreviation for FHE with threshold decryption and is the primary focus of this paper.

Definition 2 (Threshold Fully Homomorphic Encryption (ThFHE)). Let S be a class of
efficient access structures on a set of parties P = {P1, . . . , PT }. A ThFHE scheme for S
over a message spaceM is a tuple of probabilistic polynomial-time algorithms

ThFHE = (ThFHE.Gen,ThFHE.Enc,ThFHE.Eval,ThFHE.PartialDec,ThFHE.Combine),

defined as follows:

• ThFHE.Gen(1λ, 1d,A): On input the security parameter λ, a depth bound d, and an
access structure A ∈ S, the setup algorithm outputs an encryption (public) key pk, a
decryption (secret) key sk, and a set of secret key shares sk1, . . . , skT .

• ThFHE.Enc(pk, µ): On input pk and a plaintext µ, the encryption algorithm outputs a
ciphertext ct.

• ThFHE.Eval(pk,C, ct1, . . . , ctℓ): On input an public key pk, a (Boolean) circuit C of
depth at most d, and a set of ciphertexts ct1, . . . , ctℓ, the evaluation algorithm outputs
a ciphertext ct∗.

• ThFHE.PartialDec(ski, ct): On input a secret key share ski and a ciphertext ct, the
partial decryption algorithm outputs a partial decryption µi.

• ThFHE.Combine({µi}i∈S): On input a set of partial decryptions {µi}i∈S for some
subset S ⊆ {P1, . . . , PT }, the combination algorithm either outputs a plaintext µ or
the symbol ⊥.

We require that a ThFHE scheme satisfies compactness, correctness, and security. We discuss
these properties informally below, and refer to [BGG+18] for formal definitions.

Compactness. Informally, a ThFHE scheme is said to be compact if the bit-length of a
ciphertext output by the evaluation algorithm and the bit-length of any partial decryption of
such a ciphertext is a priori upper bounded by some fixed polynomial, which is independent
of the size of the circuit evaluated.

Correctness. Informally, a ThFHE scheme is said to be correct if recombining partial
decryptions of a ciphertext output by the evaluation algorithm returns the correct evaluation
of the corresponding circuit on the underlying plaintexts.

Semantic Security. Informally, a ThFHE scheme is said to provide semantic security if
a PPT adversary cannot efficiently distinguish between encryptions of arbitrarily chosen
plaintext messages µ0 and µ1, even given the secret key shares corresponding to a subset S
of the parties, so long as S is an invalid access structure set.

Simulation Security. Informally, a ThFHE scheme is said to provide simulation security
if there exists an efficient simulator that takes as input a circuit C of depth at most d, a

9



set of ciphertexts ct1, . . . , ctℓ, and the output of C on the corresponding plaintexts, and
outputs a set of partial decryptions corresponding to some subset of parties, such that
its output is computationally indistinguishable from the output of a real algorithm that
homomorphically evaluates the circuit C on the ciphertexts ct1, . . . , ctℓ and outputs partial
decryptions using the corresponding secret key shares for the same subset of parties. In
particular, the computational indistinguishability holds even when a PPT adversary is given
the secret key shares corresponding to a subset S of the parties, so long as S is an invalid
access structure set.

3.4 Threshold FHE: Public-key vs. Symmetric-key Setting

Any ThFHE scheme aims to ensure that the decryption key is distributed across multiple
entities, and is not reconstructed at or stored by a single entity during ciphertext decryption.
This is motivated by the fundamental goal of decentralizing the root of trust for the FHE
scheme by avoiding a single point of failure/security vulnerability. We note here that such a
threshold decryption protocol can be designed for both public-key and symmetric-key FHE
schemes, thereby yielding public-key and symmetric-key ThFHE schemes, respectively.

Public-Key ThFHE. In the public-key setting, we assume that the (trusted) setup func-
tion generates a public key-secret key pair, publishes the public key and distributes the
secret key among multiple entities1. This setting is well-motivated, because the secret key is
no longer stored by a single entity once key generation is done. Encryption can be done using
the public key, and any decryption operation must be executed in a distributed manner.

Symmetric-Key ThFHE. It turns out, however, that symmetric-key ThFHE is also useful
for certain applications. For example, consider a setting involving a client (who owns the
data and wishes to outsource it) and T -many users that intend to perform function compu-
tations on the outsourced data. The client generates a secret key and a public evaluation
key, uses it to encrypt his/her data before outsourcing it to the cloud server, publishes the
evaluation key, and distributes the secret key shares among the T users. The users can
perform homomorphic function evaluations directly on the encrypted data (using the eval-
uation key) and then threshold decrypt among themselves to recover the final output. The
client need not retain the secret key at its end, and can discard it post outsourcing and
threshold distribution. This also avoids any single points of failure once the data has been
outsourced in encrypted form. For such an application, a symmetric-key ThFHE suffices,
since the client can always re-generate a fresh key for encrypting various datasets.

In this paper, we propose and analyze a novel threshold decryption mechanism (based on
Renýi divergence-based analysis) that is flexible and agnostic of whether the encryption
mechanism used is public-key or symmetric-key. This is because we target a family of FHE
schemes where the underlying mathematical structure used to distribute the secret key and
to thresholdize the decryption process remains the same across both the public-key and
symmetric-key settings. The choice of public-key vs symmetric-key would only affect the
parameters of the scheme (e.g., key and ciphertext sizes) but our main contribution, i.e.,
achieving a practically realizable polynomial modulus-to-noise ratio for ThFHE, is appli-
cable in both settings. Finally, using [Rot11], one can easily extend any symmetric-key

1An alternative is to realize this whole process in a distributed manner as well, but we do not focus on
that setting in this paper.
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ThFHE scheme obtained by using our approach into a public-key ThFHE scheme, provided
that the underlying FHE scheme is homomorphic with respect to addition modulo 2 (XOR
operation).

3.5 Linear Integer Secret Sharing Scheme (LISSS)

In this work, we base our constructions and software implementation of Threshold FHE on a
special class of secret sharing schemes called Linear Integer Secret Sharing Scheme (LISSS)
defined below.

Definition 3 (LISSS). Let P = {P1, . . . , PT } be a set of parties, and let S be a class of
efficient access structures on P. A secret sharing scheme SS with secret space K = Zp

for some prime p is called a linear integer secret sharing scheme (LISSS) if there exist the
following algorithms:

• SS.Share(k ∈ K,A): There exists a matrix M ∈ Zd×e
p with dimensions determined

by the access structure A ∈ S called the distribution matrix, and each party Pi is
associated with a partition Ti ⊆ [d]. To create the shares on a secret k ∈ K, the sharing
algorithm uniformly samples ρ2, . . . , ρe ← Zp, defines a vector s = (s1, . . . , sd)

T = M ·
(k, ρ2, . . . , ρe)

T, and outputs to each party Pi the corresponding set of shares sharei =
{sj}j∈Ti

.

• SS.Combine({sharei}Pi∈P): For any qualified subset of parties P ∈ A, there exists a
set of efficiently computable “recovery coefficients” {cj}j∈∪Pi∈PTi

, such that∑
j∈∪Pi∈PTi

cj ·M[j] = (1, 0, . . . , 0),

where M[j] denotes the j-th row of the matrix M described earlier. Then, the final
secret k can be re-computed using these recovery coefficients as

k =
∑

j∈∪Pi∈PTi

cj · sj .

Definition 4 ({−1, 0, 1}-LISSS). Let P = {P1, . . . , PT } be a set of parties, and let S be a
class of efficient access structures on P. Any LISSS scheme SS = (SS.Share,SS.Combine)
as defined above is a {−1, 0, 1}-LISSS if it is guaranteed that for any set of “recovery coeffi-
cients” {cj} generated by SS.Combine (on input the set of shares corresponding to a qualified
subset of parties P ∈ A for an access structure A ∈ S), we must have cj ∈ {−1, 0, 1}.

In this paper, we focus primarily on the class of access structures S for which there exists a
{−1, 0, 1}-LISSS. We use a special instance of {−1, 0, 1}-LISSS, called the Benaloh-Leichter
LISSS [DT06]. We choose {−1, 0, 1}-LISSS over other conventional secret sharing schemes
as an underlying protocol of our threshold FHE, because the smudging noises present inside
the partial decryptions do not get blown up during final combination and thus ensure correct
decryption, owing to the fact that the recovery coefficients belong to {−1, 0, 1} only.
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3.6 Torus-FHE

As our implementation of ThFHE is built upon Torus-FHE library, we provide a brief intro-
duction to this library here. The Torus-FHE scheme and the corresponding software library
were proposed in [CGGI20, CGGI16]. It builds upon the GSW-FHE scheme and Regev’s
encryption scheme from LWE, albeit over the Torus (i.e., the set of real numbers modulo 1,
also denoted by T) as opposed to over Zp. At a high level, the Torus-FHE scheme consists of
three sub-components: (a) Torus-LWE - a realization of Regev’s encryption scheme [Reg10]
over the Torus with binary secret vector, (b) Torus-Ring-LWE(Torus-RLWE) - a realiza-
tion of Regev’s encryption based on Binary Ring LWE problem over the Torus, and (c)
Torus-GSW - an extension of the GSW encryption scheme over the Torus. For notational
convenience, henceforth, we will use “LWE” and “RLWE” or “Ring-LWE” to refer to their
variant with binary secrets in the paper. It turns out that in the original Torus-FHE library,
the encryption and decryption of data is done entirely using Torus-LWE or Torus-RLWE. In
contrast, Torus-GSW is primarily used for homomorphic computations and bootstrapping.
We refer the reader to [CGGI20] for more details on Torus-GSW, and to Appendix A for
background material on the LWE problem and its extension to the ring setting (the RLWE
problem) as well as binary secret setting (the Binary RLWE problem).

4 Our Proposal: Torus-FHE with Threshold Decryp-
tion

In this section, we present our construction of first practical threshold FHE. We introduce
two protocols - threshold secret sharing of the decryption key and threshold decryption,
to realize our final ThFHE. Along the way, we describe our two main theoretical contri-
butions - an extension of the standard LISSS secret sharing scheme due to Benaloh and
Leichter [DT06] to support the secret key structure which consists of binary polynomials,
and the usage of Rényi Divergence based analysis to achieve only a small polynomial blowup
in the noise level for our proposed threshold ThFHE built upon Torus-FHE scheme. We first
describe the generic decryption algorithm of any Ring-LWE based FHE scheme and then
build its thresholdized construction.

4.1 Decryption in Torus-FHE

For ease of exposition, we start with describing the generic decryption algorithm of a Ring-
LWE based Torus-FHE scheme over a message space M = T[X]/(XN + 1). We assume
TRLWE to be an instantiation of such a scheme, represented by a tuple of PPT algorithms
as follows,

TRLWE = (TRLWE.Gen,TRLWE.Enc,TRLWE.Eval,TRLWE.Dec).

The scheme has two fixed parameters N and k to denote size of polynomials and number of
polynomials respectively. The secret key (say, SK) in TRLWE has the following structure.

SK =

 N∑
j=1

SK1,jx
j−1, . . . ,

N∑
j=1

SKk,jx
j−1

 ,
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with SKi,j ∈ {0, 1} ∀1 ≤ i ≤ k, ∀1 ≤ j ≤ N .

And the ciphertext in TRLWE can be written as CT = (A,B), where B =
∑k

i=1A[i] ·SK[i]+
m+ e. Here A can be represented as

A =

 N∑
j=1

A1,jx
j−1, . . . ,

N∑
j=1

Ak,jx
j−1

 ,

with each Ai,j ∈ T. Also, A[i]·SK[i] is the polynomial multiplication between ith polynomial

of A and ith polynomial of SK modulo (xN + 1). And, e =
∑N

j=1 ejx
j−1 is RLWE noise

polynomial with each ej ← G, where G is a Gaussian distribution.

As our contribution focuses on distributed decryption of a Ring-LWE ciphertext and we
rely on the underlying FHE scheme to perform the encryption and evaluation operations
without any modification, we do not discuss these algorithms (TRLWE.Enc, TRLWE.Eval)
here. But TRLWE.Dec needs to be modified in order to support threshold decryption. We
discuss original decryption algorithm here.
TRLWE.Dec(SK,CT): Given the secret key SK and a ciphertext CT = (A,B), the decryp-
tion algorithm proceeds in two steps as follows:

• TRLWE.Decode0(SK,CT): On input ciphertext CT and secret key SK, this step of

the decryption calculates Φ = B−
∑k

i=1A[i] ·SK[i], which is equal to m+ e. Here, m
is the underlying plaintext and e is a Torus ring-LWE noise polynomial.

• TRLWE.Decode1(Φ): This final step rounds up each of the N coefficients of Φ to return
the coefficients of the plaintext message m.

The security of TRLWE follows from the hardness of the Binary Ring Learning with Errors
(BRLWE) problem (see Appendix A for the definitions of LWE, Ring-LWE (RLWE) and
Binary Ring-LWE (BRLWE) problems). Note that although a reduction from binary LWE
to LWE exists [Mic18], a reduction for its ring-variant is not yet known, but binary RLWE
is widely [BBPS19,BD20] believed to be computationally hard.

Our main contribution is a proposal for thresholdizing the decryption of the aforementioned
TRLWE scheme, which immediately yields a threshold version of the Torus-FHE scheme.
We observe the specific case of (T, T ) distributed decryption and its security analysis based
on Rényi Divergence in subsequent sections. We generalize the concept for (t, T )-threshold
decryption in Appendix B.

4.2 Achieving (T, T )-Distributed Decryption

Let us assume P = {P1, . . . , PT } is the set of T parties and they are willing to perform
TRLWE.Dec on a Torus Ring-LWE ciphertext CT = (A,B) in a distributed way. We are
in the dealer-based model, i.e., we assume that a trusted dealer uses some secret sharing
algorithm to distribute the Torus Ring-LWE secret SK to each Pi as SHi, such that SK =∑T

i=1 SHi. In this context, each Pi ∈ P individually performs the following steps:
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• TRLWE.PartialDec(SHi,CT): On input of the secret share SHi and the ciphertext
CT = (A,B), this algorithm generates partially decrypted ciphertext part decrypti,
where

part decrypti =

k∑
j=1

A[j] · SHi[j] + eism.

Here, eism is the smudging noise polynomial added by Pi, where each coefficient of
eism is sampled from the Gaussian smudging noise distribution Gsm (we expand on the
smudging noise subsequently in Section 4.4). The partial decryption part decrypti is
then broadcast to the rest of the (T − 1) parties.

• TRLWE.Combine({part decrypti}i∈[T ],CT): This algorithm takes as input of all the
partially decrypted ciphertexts part decrypti (where i ∈ [T ]) and the ciphertext CT =
(A,B), and combines them as

Φ = B −
T∑

i=1

part decrypti.

Note that ϕ is essentially
(
m+ e−

∑T
i=1 e

i
sm

)
.

• TRLWE.Decode1(Φ): On input of the phase Φ, each of its N coefficients are rounded
up to retrieve N coefficients of the message m.

Clearly, this (T, T ) distributed decryption is very specific, as participation of each party is
mandatory to perform a distributed decryption. Next, we generalize this to (t, T ) threshold
decryption for any 0 < t < T . Our proposal relies on a (t, T ) threshold secret sharing, which
is an extended version of the original Benaloh-Leichter LISSS [DT06] and is elaborated in
Section 4.3. Due to page limitation we describe our proposed (t, T ) threshold decryption
algorithm in Appendix B.

4.3 Extending Benaloh-Leichter LISSS

We next aim to generalize the aforementioned threshold decryption protocol to support
(t, T )-threshold decryption for any t ≤ T , which requires an appropriate LISSS (see Sec-
tion 3.5) to support (t, T )-threshold secret sharing. For this purpose, we resort to using
Benaloh-Leichter LISSS [DT06], which shares a scalar secret. However the secret of TRLWE
is composed of k number of N -sized binary polynomials as described in Section 4.1. Hence,
we describe an extended version of Benaloh-Leichter (t, T )-threshold secret sharing scheme
to support Torus-RLWE secret key sharing. Let us assume SK is the Torus-RLWE secret
key, which is to be shared among T parties belonging to the set P = {P1, . . . , PT }. We first
describe some pre-processing steps required for (t, T )-threshold secret sharing.

Formation of Distribution Matrix M. Formation of distribution matrix M depends
upon the monotone Boolean formula (MBF1), representing a (t, T )-threshold access struc-
ture. Also, any MBF, being a combination of AND and OR of Boolean variables, we are

1By MBF, we refer to Boolean formulae having a single output and consisting of only AND and OR
combination of variables.
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able to construct distribution matrix of any monotone Boolean formula by taking care of
the following three cases:

1. A single Boolean variable. Distribution matrix of each Boolean variable xi is
represented by Ik, the identity matrix of dimension k.

2. AND-ing of two MBFs. Let us suppose, matrix Mfa and Mfb are the distribution
matrices for MBFs fa and fb respectively and have dimension da × ea and db × eb
respectively. Then we form Mfa∧fb to represent fa ∧ fb as follows:

cka cka Ca 0
0 ckb 0 Cb

Here, cka and ckb denote first k columns and Ca and Cb denote the rest of the columns
of Mfa and Mfb respectively. Resulting Mfa∧fb has dimension (da + db)× (ea + eb).

3. OR-ing of two MBFs. Assuming matrices Mfa and Mfb of dimension da × ea and
db × eb respectively to be the distribution matrices for Boolean formula fa and fb
respectively. Then we form Mfa∨fb of dimension (da + db)× (ea + eb− k) to represent
fa ∨ fb as following:

cka Ca 0
ckb 0 Cb

Here, cka and ckb denote first k columns ofMfa andMfb respectively. Ca and Cb denote
the rest of the columns of Mfa and Mfb respectively.
It can be easily verified that, the distribution matrix M for (t, T )-threshold secret
sharing has dimension d× e, where d =

(
T
t

)
kt and e = (

(
T
t

)
kt− (

(
T
t

)
− 1)k).

Formation of Share Matrix ρ. Though ρ is a vector in the original scheme [DT06], in
our extended version, ρ is a matrix with dimension e × N . Its first k rows are populated
from the coefficients of k binary polynomials in SK. The rest of the rows of the matrix are
filled uniformly randomly from {0, 1}.

Sharing. The number of t-sized subsets of P is
(
T
t

)
. We enumerate over all these subsets

and tag each of them with corresponding enumerating serial number and call it the group id.
Once the sharing process is complete, each party Pi gets

(
T−1
t−1

)
number of key shares to

store, for each possible t-sized group, that Pi can belong to. To differentiate among these
key shares, we tag each key share with following two attributes:

• party id: refers to which party the key share belongs to.

• group id: refers which t-sized group the key share is used for.

We provide the secret sharing algorithm in Algorithm 1.

At the end of this sharing procedure, total d =
(
T
t

)
kt rows of shares matrix, produces

(
T
t

)
t

number of key shares, each tagged with specific group id and party id. The findParties(gid, t,
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Algorithm 1 t-out-of-T Secret Sharing

1: function ShareSecret(t, T )
2: shares←M · ρ
3: row ← 1
4: while row ≤ d do
5: gid← ⌈row/kt⌉
6: pt← findParties(gid, t, T )
7: for i = 1 to t do
8: rowcount← row + (i− 1)k
9: curr share← TRLweKey() ▷ New TRLWE Key

10: for j = 0 to k − 1 do
11: curr share[j]← shares[rowcount+ j]

12: cur share.party id← pt[i− 1]
13: cur share.group id← gid

14: row ← row + kt

T) procedure, mentioned in Algorithm 1, returns a list of party ids present in gidth t-sized
group(subset) of P.

Reconstruction. Any t-sized group of parties should be able to reconstruct SK, with the
help of the key shares, they have. Given a t-sized group P ′ = {P ′

1, P
′
2, . . . , P

′
t} ⊂ P, each

of the t parties will have one key share with group id corresponding to P ′. Let us denote
these t key shares as {SH1, SH2, . . . , SHt}. We observe (Appendix D) that exactly one
share among them will have non-binary coefficients in its k polynomials. We call the party,
having non-binary key share, the group leader of the t-sized group. In any t-sized group, the
party with minimum value of party id is the group leader.
Now, without loss of generality, let us assume P ′

1 is the group leader of P ′ and its non-binary
key share is SH1. Then the secret S can be reconstructed as: SK = SH1 −

∑t
i=2 SHi.

Hence, recovery coefficient c1 is 1 for the group leader and ci is −1 for each of other (t− 1)
parties. We exploit this reconstruction property in final combination stage of (t, T )-threshold
decryption technique.

Size of Secret Shares. After applying (t, T )-threshold secret sharing on SK, each party
gets

(
T−1
t−1

)
key shares to store. For any t-sized group, the group leader’s share size (in number

of bits) is upper bounded by ⌈log2 t⌉ ·N · k, and each of the other (t− 1) parties has share
of size exactly N · k bits. This can be proved by close observation of the secret shares.

Using the aforementioned extension of the Benaloh-Leichter LISSS scheme, we generalize
the distributed decryption protocol for Torus-FHE described in Section 4.2 to work for any
general (t, T ) for t ≤ T . Due to lack of space in the body, the detailed description is deferred
to Appendix B.

4.4 Polynomial Modulus-to-Noise Ratio via Rényi Divergence

We now elaborate on our main theoretical contribution, namely, achieving a polynomial
modulus-to-noise ratio (i.e. a polynomial ratio between the modulus q and the Ring LWE
noise e) for our proposed threshold version of Torus-FHE (abbreviated as ThFHE henceforth)
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via: (a) a novel usage of Gaussian smudging noise during partial decryption (as described
earlier in Section 4.2 and Appendix B, and (b) application of Rényi Divergence for distin-
guishing problems with public sampleability property to prove IND-CPA security of our
proposed Threshold FHE scheme as well as to get efficient choice of parameters for the
scheme. At a high level, the smudging noise is added to each partial decryption in order to
“smudge” out any sensitive information that the partially decrypted ciphertext might con-
tain beyond the plaintext message (e.g., information about the secret key shares). It turns
out that all existing ThFHE schemes in the literature (e.g., [MW16a,BGG+18]) use uniform
smudging noise, which needs to be super-polynomially larger than the LWE (or RLWE)
noise in order to achieve the desired effect of smudging out any sensitive information in the
partially decrypted ciphertext. This in turn imposes a super-polynomial modulus to noise
ratio and makes the aforementioned schemes practically inefficient.

Our Approach: Rényi Divergence-based Analysis of Smudging Noise. In this
paper, due to our novel approach of using Gaussian smudging noise and then using a Rényi
Divergence based analysis akin to that of [BLRL+18, TT15] as opposed to the statistical
distance based analysis used in prior works [MW16a, BGG+18], it suffices to sample the
smudging noise from a Gaussian distribution with standard deviation only polynomially
larger than the standard deviation of the Gaussian distribution pertaining to the RLWE
noise. As a result, from a theoretical point of view, we obtain the first ThFHE scheme
with polynomial modulus to noise ratio. From an implementation point of view, it leads
to a massive improvement in practical performance of our prototype implementation in
software (presented in Section 5). We expand on our approach below.

Analyzing (T, T )-Distributed Decryption. For the ease of exposition, we now describe
the Rényi Divergence-based analysis of our proposed distributed decryption protocol for
TRLWE for the special case of (T, T )-distributed decryption (described originally in Sec-
tion 4.2). Due to lack of space in the body, we defer the analysis of the more general case
to Appendix C, but the main technical ideas are already captured here.

The Adversarial Model. Recall from Section 4.2 that for the case of (T, T )-distributed
decryption, the Torus Ring-LWE secret SK is linearly secret-shared across {P1, . . . , PT } as
SK =

∑T
i=1 SHi, where party Pi holds the secret key share SHi. Now consider a scenario

where an adversary A corrupts all but one party (say party P1 without loss of generality),
and gains access to the secret key shares of all of the corrupted parties (i.e., SH2, . . . , SHT ).
Now, suppose that the adversary A has got access to a partial decryption oracle, which
means it can see the partial decryption by honest party P1 for any polynomially many
number of known ciphertexts. Computation of partial decryption is as follows:

part decrypt1 =

k∑
j=1

A[j] · SH1[j] + e1sm,

where e1sm is the smudging noise polynomial added by party P1 (each coefficient of this
polynomial is sampled from a Gaussian distribution Gsm with standard deviation σ).
Our ThFHE scheme can be claimed to be IND-CPA secure, only if A can not distinguish
CT0 (encryption of m0) from CT1 (encryption of m1) for pair of plaintexts m0 and m1 of
its choice, even with an access to the partial decryption oracle.

“Simulating” an Honest Partial Decryption. We now construct a simulator S that
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“simulates” a partial decryption on behalf of the honest party P1, albeit without the knowl-
edge of the partial decryption key SH1, but simply from the knowledge of the underlying
plaintext m and the knowledge of the corrupted partial decryption keys {SHj}j∈[2,T ]. Be-
fore delving into the description of the simulator S, we briefly motivate the construction of
such a simulator S. Observe that S has no additional information beyond what A already
knows. So, A is not able to distinguish CT0 from CT1, i.e., the encryption of two plaintexts
m0 and m1 of its choice, due to hardness of Binary Ring-LWE assumption, on which the
original Torus-FHE scheme relies.

We now construct the simulator S as follows. Given the ciphertext CT = (A,B), the
underlying plaintext message m, and the corrupted partial decryption keys {SHj}j∈[2,T ],
the simulator S outputs a “simulated” partial decryption

part decryptSim1 = B −m−

 T∑
i=2

k∑
j=1

A[j] · SHi[j]

+ e1sm,

where e1sm is the smudging noise polynomial (again, each coefficient of this polynomial is
sampled from a Gaussian distribution Gsm with standard deviation σ). Now, observe that,

letting γ = B −m−
(∑T

i=2

∑k
j=1A[j] · SHi[j]

)
, we have

part decrypt1 = γ − e+ esm,

part decryptSim1 = γ + esm,

where e is the RLWE noise polynomial embedded in CT.

Rényi Divergence-based Analysis. Let Ψ and Ψ′ denote the distributions of esm − e
and esm, respectively, and let δ and δ′ denote the advantages with which A distinguishes
between the challenge ciphertexts CT0 from CT1 given access to the real and simulated
partial decryption oracles, respectively. Assuming that the aforementioned distinguishing
problems are “publicly sampleable” [BLRL+18], the relation below follows from known
results in [BLRL+18]:

δ′ ≥ δ

4Ra(Ψ||Ψ′)
·
(
δ

2

) a
a−1

,

where Ra(Ψ||Ψ′) is the Rényi divergence of order a between the distributions Ψ and Ψ′

order a.

Arguing Public Sampleability. In order to invoke the aforementioned relation, we first
need to argue that the aforementioned distinguishing problems satisfy the notion of public
sampleability as defined in [BLRL+18]. For the ease of exposition, we provide an informal
argument here. At a high level, we can rely on the fully homomorphic property of TRLWE
to argue that the aforementioned distinguishing problems are indeed publicly sampleable.
More concretely, given a ciphertext CTb with unknown b sampled uniformly at random from
the space of all possible encryptions of mb, where b ∈ {0, 1} and an input bit b′, we can
efficiently output a ciphertext CTb′ which belongs to the distribution of ciphertexts of mb′

as follows : (a) perform homomorphic XOR of CTb with itself to get an encryption of zero,
denoted as CT0 = (A0, B0), and (b) compute B′ by adding encoding of mb′ to B0 and return
CTb′ = (A0, B

′), which is an encryption of mb′ .

18



It remains to argue that CTb′ is distributed exactly as a fresh uniformly random encryption
of mb′ . To argue this, we rely on a particular feature of the Ring-LWE based Torus-FHE
scheme from [CGGI20]: their scheme performs bootstrapping during each homomorphic
evaluation to prevent noise blow-up in the resulting ciphertext. Now, since the evaluated
ciphertext CT0 is the output of a homomorphic XOR operation followed by bootstrapping,
it distributed exactly as a fresh encryption of 0. We can now rely on the homomorphic
properties of the TRLWE scheme to argue that, upon addition of the encoding of mb′ to
the second component of CT0, the resulting ciphertext CTb′ is distributed exactly as a fresh
uniformly random encryption ofmb′ , as desired. In other words, given a challenge ciphertext
sample from any one of the two distributions D0(r) and D1(r), we can publicly transform it
into a challenge ciphertext sampled from Db′(r) according to our choice of b′, i.e., without
any knowledge of the secret key or the randomness used to sample the original ciphertext.

Since the distribution of the partial decryptions is agnostic to the challenge bit b (i.e., they
are identically distributed irrespective of which message was used to create the challenge ci-
phertext), this transformation allows us to argue public sampleability of the aforementioned
distinguishing problems as per the notions of public sampleability proposed in [BLRL+18].
We present a more rigorously formal argument for public sampleability in Appendix C.

Completing the Proof. We can now invoke known results from [TT15] and the multi-
plicative property of Rényi Divergence to argue that for any a ∈ (1,∞), we have

Ra(Ψ||Ψ′) ≤ exp

(
a · π ·N · ∥e∥2∞

σ2

)
,

where ∥e∥∞ denotes the infinity norm of the degree (N − 1)-RLWE noise polynomial e.
Assuming that ∥e∥∞ ≤ cα, where c is some constant and α is the standard deviation of
RLWE noise distribution G, we have

Ra(Ψ||Ψ′) ≤ exp

(
a · π ·N · c2 · α2

σ2

)
.

Finally, for the scenario where the adversary A sees a maximum of Q = poly(λ) such partial
decryption samples, we invoke the multiplicative properties of Rényi Divergence to state the
following:

Ra(Ψ||Ψ′) ≤ exp

(
a · π ·Q ·N · c2 · α2

σ2

)
.

Parameter Choices (Lower Bounds). At this point, we are ready to propose the asymp-
totic parameter choices for our ThFHE scheme supporting (T, T )-threshold decryption. As-
sume that the adversary A sees at most Q = poly(λ) partial decryption samples, let σ and
α be the standard deviation parameters for the Gaussian distributions pertaining to the
smudging noise and RLWE noise, respectively, and let c be a constant such that |e| ≤ cα (e
being the RLWE noise polynomial). It suffices for us to choose σ such that

σ ≥ c · α ·
√
Q ·N,

since this yields Ra(Ψ||Ψ′) ≤ exp (a · π), and hence

δ′ ≥ δ

4
·
(
δ

2

) a
a−1

· exp(−a · π).
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Taking any value of a > 1 yields the desired condition on δ and δ′, i.e., non-negligible δ
would result in non-negligible δ′. Note that it suffices for σ to be only polynomially larger
than α. Hence, we prove the IND-CPA security of our (T, T )-distributed FHE scheme with
condition for security as σ ≥ c · α ·

√
Q ·N .

Parameter Choices (Upper Bounds). It remains to answer the question of upper bound-
ing the amount of smudging noise that each party can add, and here we allow the maximum
possible smudging noise that does not affect the correctness of the distributed decryption
protocol. Formally, let q = 2λ1 be the ThFHE modulus (or equivalently, suppose that the
Torus-FHE scheme supports a maximum precision of λ1 bits) and let p = 2λ2 be the size of
the space of message-polynomial coefficients (or equivalently, suppose that the Torus-FHE
scheme supports message-polynomial coefficients with a precision of λ2 bits) such that p ≤ q.
At a high level, to ensure the correctness of (T, T )-distributed decryption, we need the total
noise to be upper bounded by ∆/2, where ∆ = q/p = 2λ1−λ2 . More formally, for correctness
of (T, T )-distributed decryption to hold, we must have

∥e∥∞ + T · ∥esm∥∞ < ∆/2.

Since ∥esm∥∞ > ∥e∥∞ (by the lower bound argument presented above), we choose ∥esm∥∞ <
∆/2(T + 1). Here ∥ · ∥∞ denotes infinity norm of some polynomial. Hence, the afore-
mentioned analysis allows us to avoid the super-polynomial modulus-to-noise ratio (ratio
between modulus q and any coefficient of RLWE noise polynomial e) incurred by all prior
works on ThFHE, thereby yielding the first ThFHE scheme with polynomial modulus-to-noise
ratio.

The above Rényi Divergence-based analysis immediately generalizes to ThFHE supporting
(t, T )-threshold decryption for any t ≤ T . We defer the detailed analysis for the general
case to Appendix C.

5 Software Implementation and Experimental Evalua-
tion

We now describe a prototype implementations of our (t, T )-threshold decryption scheme over
Torus-FHE on two extreme varieties of computing platforms - a high-end x86-based server,
and a low-end resource-constrained ARM-based platform. We report the implementation
and performance of a symmetric-key ThFHE scheme equipped with our proposed threshold
decryption mechanism. This is primarily because we build on top of the existing Torus-
FHE library, which also implements a symmetric-key version of the Torus-FHE scheme.
However, our implementation of the threshold decryption mechanism is flexible (since the
mathematical structure underlying our proposed threshold decryption mechanism and its
analysis remains the same in the symmetric and public-key settings) and can be naturally
extended to the public-key setting for appropriate choices of parameters. We stress that this
is, to the best of our knowledge, the first practical implementation of any ThFHE scheme.

In our setting, the threshold secret sharing is done by a trusted cloud server with sufficient
computational resources. Subsequently, homomorphic evaluations also happen on encrypted
data stored at the cloud server. The key focus of our implementation is in realizing the
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proposed threshold decryption algorithm on resource-constrained handheld devices; hence
our experiments and evaluation focus purely on the performance of our threshold decryption
implementation.

For the sake of completeness, we implement our threshold decryption algorithm on two kinds
of platforms, lying at two extreme ends of the spectrum of computational capabilities:

• A high-end workstation with an Intel(R) Xeon(R) CPU E5-2690 v4 CPU (2.60GHz clock-
frequency), 28 physical cores, and 128GB RAM.

• A low-end Raspberry Pi 3b board with a Quad Core 1.2GHz Broadcom BCM2837 64bit
CPU and 1 GB RAM running Raspberry Pi OS Lite (Linux kernel version: 5.10.63-
v7+).

Our first implementation is optimized for high performance and, as verified by our exper-
iments, yields extremely fast threshold decryption times. Our second implementation is
optimized for extracting maximum performance out of a low-end resource-constrained plat-
form, and yields reasonably practical threshold decryption times. Before describing our
evaluation, we present some more details of our implementation.

5.1 Implementation Details

The encryption and the homomorphic evaluation processes have been kept intact from the
original implementation in the Torus-FHE library. This is done to keep our implementation
cross-compatible with other libraries (e.g., NuFHE) that depend directly on Torus-FHE.

We extend the Torus-FHE library to support threshold key generation and threshold de-
cryption. We use the Torus-RLWE secret key generation routine to generate the secret key
with a set of parameters that is chosen by relying on our proposed Rényi divergence-based
security argument (see Appendix C.2 for the detailed analysis). In particular, this analysis
enables a polynomial modulus-to-noise ratio, which crucially allows our implementation to
be practically deployable on a resource-constrained platform.

Once the key has been generated, we build the distribution matrix M and share matrix
ρ (see Section 4.3). The steps to create the distribution matrix as described in Section 4.3,
when implemented directly in software, results in a recursive implementation, which poten-
tially results in high memory access overheads, and is unsuitable for resource-constrained
platforms. However we can avoid these excess function call overheads and generate the dis-
tribution matrix iteratively in one go by exploiting a regular pattern, which is there in the
distribution matrix inductively for any (t, T )-threshold access structure. For a fast matrix
multiplication during the calculation of M · ρ, we use the OpenBLAS1 library.

For the partial and threshold decryption functions, we have two implementations. The
first implementation targets a high-end processor, and directly leverages Torus-FHE APIs
for fast polynomial multiplication using Fast Fourier Transform (FFT), as is required in
the partial decryption phase. The other is a portable implementation suited for low-end
resource-constrained handheld devices. In particular, the latter replaces the FFT polynomial
multiplication, which depends on x86 AVX instructions for efficiency, with a näıve school-
book multiplication. This is done to keep the implementation as architecture-agnostic and

1https://github.com/xianyi/OpenBLAS
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lightweight as possible. In the porting process, we have removed multiple dynamic memory
allocation steps to achieve better memory efficiency. Also, our observation that each of the
participating parties except one receives a binary key share through (t, T )-threshold secret
sharing significantly contributes to reduce the cycle counts in polynomial multiplication in
both implementation.

5.2 Experimental Evaluation

In this section, we experimentally evaluate the performance of our prototype ThFHE imple-
mentation on a high-end server and a resource-constrained handheld device. Algorithm 2
summarizes the various steps that we experimentally evaluate using our software implemen-
tation. We take two 32 bit integers inp1 and inp2 as inputs, encrypt them with LweKey
using bootsSymEncrypt function of Torus-FHE library to produce ciph1 and ciph2 respec-
tively. Then we use bootsOR function of the library to perform OR-ing between them
homomorphically and produce encrypted ciphertext result cipher. It is a Torus-LWE ci-
phertext and we convert it to a Torus-RLWE ciphertext ring cipher, because a Torus-RLWE
ciphertext can pack multiple plaintext message bits together, instead of just one as in the
case of Torus-LWE. Then we perform (t, T )-threshold decryption on ring cipher according to
Algorithm 2.

Algorithm 2 Software implementation of cryptosystem with (t, T )-threshold decryption

Input: inp1, inp2, t, T , P ⊂ [1, T ] s.t |P| = t
Output: outp← inp1 ∨ inp2
1: ciph1 ← BootstrappedEncrypt(LweKey, inp1)
2: ciph2 ← BootstrappedEncrypt(LweKey, inp2)
3: result cipher ← BootstrappedOR(ciph1, ciph2)
4: ConvertLWEtoRLWE(result cipher, LweKey,
ring cipher,RLweKey)

5: ShareSecret(RLweKey, t, T ) ▷ Now all parties get their key shares. Each party
i ∈ P calculates outp on its own.

6: outp← ThresholdDecrypt(ring cipher,P, t, T, i)
7: return outp

In accordance with our intended use-case, we experimentally evaluate steps 1 through 5 of
Algorithm 2 on a high-end server, and step 6 of Algorithm 2 on both the high-end server and
a low-end resource-constrained handheld device. In particular, we have measured the time
taken by steps 5 and 6 of the algorithm in our experiments. Note that step 6 includes both
partial decryption and final combination. The concrete parameters used in our experiments
are listed in Table 1.

The choices for n, N and standard deviation of Torus-RLWE noise are compatible with the
Torus-FHE library. For smooth conversion in step 4 of Algorithm 2, we fix k = 1. We choose
the last parameter based on a lower-bound given by our Rényi divergence based analysis
and an upper-bound imposed by correctness.

Figures 1 and 2 show the secret sharing time, partial decryption time, final decryption
time and plain decryption time on high-end workstation in terms of milliseconds and clock
cycles respectively, while Figures 3 and 4 show the partial and final decryption time in
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Table 1: Parameters used in experimental setting

Parameter Value
k (Number of polynomials in Torus-LWE ciphertext) 1

n (Torus-LWE dimension) 1024
N (Degree of Torus-RLWE polynomial is (N − 1)) 1024
α (Standard deviation of Torus-RLWE noise) 2−25

σ (Standard deviation of smudging noise) 2−6

milliseconds and clock cycle counts respectively on low-end Raspberry Pi 3b platform. The
partial decryption time in all the figures follow a constant trend as in our use case, it is done
parallelly in individual devices and the vector or polynomial sizes do not change with the
number of parties. We emphasize that, as a direct consequence of the efficient parameter
choices for threshold FHE enabled by our Rényi Divergence-based analysis, the threshold
decryption timing is practical even on a highly resource-constrained platform.

Finally, Figure 5 shows that the time required for threshold decryption1 is only slightly
higher than that of plain decryption using the Torus-FHE library, for both the high-end
workstation and the resource constrained device. In other words, our proposed threshold
decryption procedure incurs only minimal overhead over the plain decryption algorithm
specified in the original Torus-FHE library. To the best of our knowledge, this is the
first prototype of threshold FHE with the capability of executing the threshold decryption
algorithm practically on resource-constrained platforms.

Comparison with Prior Work. We point out here that our proposed scheme is, to the
best of our knowledge, the first practical ThFHE with polynomial modulus-to-noise ratio;
consequently, it is not directly comparable to prior works on ThFHE from the point of view
of practical performance. In fact, no prior work on ThFHE reports concrete performance
numbers since their schemes require using super-polynomial modulus-to-noise ratios (with
no clear guidelines on the choice of modulus in practice) and are not likely to be practical.

6 Case-Study: Computing over Encrypted Medical Data

In this section, we use our proposed ThFHE scheme over the Torus to realize an end-to-
end usecase of outsourced computations over encrypted medical datasets, where the final
outcome is computed in a distributed manner by multiple entities (e.g. doctors, research
laboratories, or other medical practitioners). Concretely, we illustrate the efficacy of our
proposal via experiments evaluating encrypted computations over a real medical database,
as well as distributed decryptions of the computed result on resource-constrained handheld
devices, where both the encryption and distributed decryption operations are performed
using our proposed ThFHE scheme. The encrypted computation that we perform is a K-
Nearest Neighbours (KNN) classification [SCK14] that outputs an encrypted prediction bit

1We report the end-to-end threshold decryption time, wherein we add up the time for a single partial
decryption (since the partial decryption phase is meant to be done in parallel by each participating party)
and the time for the final re-combination of partial decryptions. Also, the overall threshold decryption time
is dominated by the former component, which is independent of (t, T ), and hence, the overall threshold
decryption time in Figure 5 grows only minimally with increasing (t, T ) values.
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Figure 1: Secret Sharing and Threshold Decryption Time in High-End Server. Note that the y-axis
is in logarithmic scale.
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Figure 2: Secret Sharing and Threshold Decryption Clock Cycles in High-End Server

indicating the possibility of cardiovascular disease (where the classification is done based on
a patient’s encrypted medical records and some pre-computed encrypted training data).

6.1 Encrypted KNN Computation

The encrypted KNN algorithm (given in Algorithm 3) takes as input: (a) a ThFHE-encrypted
set of testing data (which is to be predicted), (b) a ThFHE-encrypted set of training data
(to train the KNN algorithm), (c) a ThFHE bootstrapping key, and (d) a KNN parameter K
to output an encrypted single prediction bit. Following the approach outlined in [RC19], we
sub-divide the encrypted KNN computation algorithm into three parts as described below.

Encrypted Manhattan Distance Computation. First, the encrypted Manhattan dis-
tances between the testing data and all the training data are (homomorphically) computed
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Algorithm 3 KNN over encrypted medical data

Input: test data = Encrypt(k, test patient),
train data = {Encrypt(k, patient1), . . . ,Encrypt(k, patientn)},
bk = bootstrapping key, K = KNN parameter.

Output: decisional bit = Encrypt(k, predicted bit)
1: Initialize a Torus-LWE ciphertext array distant of size n
2: for i = 1 to n do
3: distant[i] ← Manhattan(test data, train data[i], bk)

4: sorted train data← BubbleSort(distant, train data, bk)
5: Initialize a counter ciphertext count = Encrypt(k, zero) to count the decision of K-

Nearest Neighbours
6: for i = 1 to K do
7: count← count+ Decision(sorted train data[i]))

8: Initialize a Torus-LWE variable threshold = Encrypt(k,K/2)
9: decisional bit← Difference(threshold, count, bk)

10: return decisional bit

and stored in the distant variable. The Manhattan distance is preferred over other distances
to avoid the “curse of dimensionality” problem in machine learning [AHK01]. To com-
pute ThFHEDIFF between Encrypt(k, P lain1) and Encrypt(k, P lain2), we utilize a simple
technique of computing 2’s complement over encrypted data to obtain Encrypt(k, P lain1 −
Plain2).

Sorting over Encrypted Data. In this step, the neighbours are sorted in ascending order
based on the calculated distances. The encrypted-bubble-sort implementation directly uses
encrypted-comparison and sorting techniques from prior-works, including [RC19, CSS20,
CS20, ÇDSS15]. Our encrypted bubble sort implementation intakes the bootstrapping key,
the patient’s encrypted data and their corresponding encrypted Manhattan distances, and
outputs the sorted patient data based on these encrypted distances.

Prediction over Encrypted Data. The (encrypted) decisions output by the KNN com-
putation are added to get Encrypt(k, count) (line 7, Algorithm 3), which is then compared
homomorphically with the threshold value (Encrypt(k,K/2)) to arrive at the (encrypted)
decision. The final plaintext decision is recovered via threshold decryption.

6.2 Experimental results

We now present experimental results illustrating the practical performance of the encrypted
KNN algorithm and the associated threshold decryption computation over a real-world
medical dataset. The experiments were performed on an Intel(R) Xeon(R) E5-2690 v4
processor with 2.60GHz clock, 132GB of RAM and 56 cores.

Dataset Used. For our experiments, we use a publicly available cardiovascular disease
related dataset1. The dataset contains 70000 data instances and 12 features. For our

1https://www.kaggle.com/sulianova/cardiovascular-disease-dataset
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Table 2: Encrypted KNN execution time

K
Neighbour

size

Prediction
time without
OpenMP (in

minutes)

Prediction
time with

OpenMP (in
minutes)

Prediction
time with
OpenMP

(cycle count
in 1012)

5
10 154.88 15.96 2.49
20 369.90 29.71 4.64
30 558.36 49.96 7.79
40 850.70 60.11 9.38
50 1062.86 72.90 11.37

7
10 194.81 18.50 2.89
20 431.41 33.66 5.25
30 726.13 50.08 7.81
40 975.01 63.83 9.96
50 1282.08 79.78 12.45

9
10 235.30 24.23 3.78
20 527.98 46.66 7.28
30 844.36 60.55 9.45
40 1146.26 80.81 12.61
50 1498.43 99.31 15.49

experiments, we fix one of these features as target feature to be predicted based upon the
data of the remaining 11 features.

Performance. Table 2 shows the execution time of KNN algorithm in two variants, with
(using OpenMP) and without any parallel processing techniques. The OpenMP version has
big advantage of parallelizing multiple loops to facilitate smaller execution time as shown
in Table 2 for K = 5, 7, and 9. The number of OpenMP threads used during each execution
is equal to the neighbour size listed in Table 2.

7 Conclusion and Future Work

We presented the design, analysis and practical implementation for a novel threshold FHE
scheme from the hardness of Binary Ring-LWE with polynomial modulus-to-noise ratio. We
showed, for the first time, that threshold FHE can actually be deployed in a fast, scalable
and reasonably resource-efficient manner for real-time applications via benchmarking exper-
iments on two extreme varieties of computing platforms - a high-end x86-based server and
a low-end resource-constrained ARM-based platform. We showcased an end-to-end imple-
mentation of our proposed system and used it for fast, scalable yet secure k-nearest-neighbor
computations over encrypted medical data outsourced to a cloud service provider.

Our work gives rise to many interesting directions of future research. In particular, we leave
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it as an open question to extend our Rényi divergence-based security analysis techniques to
the setting of multi-key FHE with threshold decryption, for which all known realizations
still require super-polynomial modulus-to-noise ratio.
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A The LWE Assumption and its Variants

In this section we recall the Learning with Errors (LWE) assumption and some of its variants,
including the Ring LWE (RLWE) assumption and the Binary RLWE assumption.

The LWE Assumption. Let λ ∈ N be a security parameter, and let q, n,m = poly(λ).
For each i ∈ [m], let

ai ← Zn
q , bi = ai · s+ ei, ui ← Zq,

where s ← Zn
q is a uniformly sampled secret vector, ei ← ψ where ψ is a Gaussian noise

distribution over Zq, and ai · s denotes the vector dot-product between the vectors ai and
s. The LWE hardness assumption states that, for any probabilistic polynomial-time (PPT)
adversary A, the following holds:

|Pr[A({ai, bi}i∈[m]) = 0]− Pr[A({ai, ui}i∈[m]) = 0]| < negl(λ).

The RLWE Assumption. Let λ ∈ N be a security parameter, and let q,N,m = poly(λ).
For each i ∈ [m], let

Ai(X)← Zq[X]/(XN + 1), Bi(X) = Ai(X) · S(x) + Ei(X),

Ui(X)← Zq[X]/(XN + 1),

where S(X) ← Zq[X]/(XN + 1) is a uniformly sampled secret polynomial, Ei(X) ←
ψ[X]/(XN + 1) where ψ is a Gaussian noise distribution over Zq, and Ai(X) · S(X) de-
notes the polynomial multiplication modulo (XN +1) between Ai(X) and S(X). The Ring
LWE (RLWE) hardness assumption states that, for any PPT adversary A, we have:∣∣Pr [A (

{Ai(X), Bi(X)}i∈[m]

)
= 0

]
− Pr

[
A
(
{Ai(X), Ui(X)}i∈[m]

)
= 0

] ∣∣ < negl(λ).

Binary RLWE. The Binary RLWE (BRLWE) hardness assumption is a variant of the
RLWE hardness assumption described above where, the secret key polynomial S(X) is
sampled from B[X]/(XN + 1) as opposed to Zq[X]/(XN + 1), where B = {0, 1}. Note that
although an equivalence between the LWE with binary secrets assumption and the standard
LWE assumption is known [Mic18], a similar result for BRLWE and RLWE is not known to
the best of our knowledge. However, the BRLWE hardness assumption is widely believed
to hold [BBPS19,BD20].

B Generalized Threshold Decryption Protocol

In this section, we describe the generalized (t, T )-threshold decryption algorithm for our pro-
posed threshold Torus-FHE. Here, we use the extended version of Benaloh-Leichter LISSS,
proposed in Section 4.3 to share the secret key across the various parties (as opposed to a
simple additive sharing in the (T, T )-case in Section 4.2). Consequently, we need to mod-
ify the TRLWE.PartialDec and TRLWE.Combine algorithms to enable correct and efficient
decryption by any t′-sized subset of the T parties for t′ ≥ t.
Let P = {P1, . . . , PT } be any set of T parties and let P ′ = {Pid1 , . . . , Pidt} ⊂ P be a t-sized
subset of P with group id j, authorized to threshold-decrypt a ciphertext CT = (A,B). Also,
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without loss of generality, let us assume id1 < · · · < idt, so that Pid1 is the group leader
of P ′. We begin by assuming that all of the T parties in P have already received their
key shares after successful execution of the (t, T )-threshold secret sharing scheme on SK
(Section 4.3). Hence, each Pidi

∈ P ′ has exactly one key share corresponding to group id j.
We denote these t key shares as {SHid1j , . . . , SHidtj}. Let us recall from Section 4.3 that,

SK = SHid1j −
t∑

l=2

SHidlj .

The threshold decryption of CT consists of the following steps, performed by each Pidi
∈ P ′

individually:

• TRLWE.PartialDec(SHidij ,CT): On input Torus Ring-LWE ciphertext CT and a key
share SHidij , Pidi

calculates part decryptidi
as follows:

part decryptidi =

k∑
l=1

A[l] · SHidij [l] + eidi
sm,

where eidi
sm is a smudging noise polynomial and each coefficient of eidi

sm is sampled from
a Gaussian smudging noise distribution Gsm. Then, Pidi

broadcast part decryptidi
to

rest of the (t− 1) parties.

• TRLWE.Combine({part decryptidl
}l∈[t],CT): On input all t partial decryptions, each

party calculates the phase

ϕ = B − (part decryptid1 −
t∑

l=2

part decryptidl
),

where ϕ equals m+ e− eid1
sm +

∑t
l=2 e

idl
sm.

• TRLWE.Decode1(ϕ): Each of the N coefficients of ϕ is rounded up to extract the
coefficients of the message m.

Properties. The correctness and compactness of the proposed (t, T )-threshold decryption
scheme directly follows from the proofs of threshold-FHE scheme mentioned in Section 3.3.
Its proof of security is presented in Appendix C.

C Simulation Security and Parameter Choices for Gen-
eralized Threshold Decryption

In this section, we generalize our Rényi Divergence-based analysis of security to the (t, T )-
threshold decryption scheme in our TRLWE construction (see Section 3.6), proposed in
Appendix B. For the sake of completeness, we provide a simulation-based proof of security
for the proposed (t, T )-threshold decryption scheme, where we show that probability of
breaking the IND-CPA security in real world is related to the probability of breaking IND-
CPA security in simulated world. Subsequently, we also provide a detailed discussion on the
asymptotic choice of noise parameters for the (t, T )-threshold decryption scheme.
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C.1 Simulation Security of (t, T )-threshold decryption

Throughout the proof of security, we assume P = {P1, . . . , PT } to be the set of parties
andM = TN [X]/(XN + 1) to be the message space. A denotes the (t, T )-threshold access
structure. We also define

TRLWE.PartialDec(SHij ,CT) =
k∑

l=1

A[l] · SHij [l],

where SHij is the secret key share of party Pi corresponding to t-sized group with group id
j and CT is any TRLWE ciphertext. The proof proceeds via a sequence of hybrids described
below.

Hybrid0. This game is between challenger (Ch) and adversary (Ad) in the real world.
Three phases of the game are described below.

Initialization Phase.

• Ch runs TRLWE.Gen(1λ, N, k) to generate the public key PK and secret key SK. Then
it applies (t, T )-threshold secret sharing on SK to generate secret shares {SKi}Pi∈P .
Recall that each SKi will have

(
T−1
t−1

)
shares in it for each possible t-sized subset, that

Pi can belong to. We denote by SHij a secret share with party id i and group id j (see
Section 4.3 for detailed concept of party id and group id). Ch sends PK to Ad.

• Ad sends a maximal invalid set S⋆ ⊆ P such that S⋆ /∈ A i.e. |S⋆| = (t − 1). In
response, Ch sends {SKi}Pi∈S⋆ to Ad.

Query Phase. In the query phase Ad may generate polynomially many queries. Each of
the query consists of following two steps:

• Ad sends plaintexts mi, . . . ,mℓ ∈ M to Ch. Ch encrypts each mi to generate cipher-
texts

CTi = TRLWE.Enc(PK,mi).

Ad is handed over {CTi}i∈[ℓ].

• Ad sends query of the form (S,C) to Ch, where S ⊆ P \ S⋆ is a subset of honest

parties. Ch computes the evaluated ciphertext ĈT as follows:

ĈT = TRLWE.Eval(PK, C, {CTi}i∈[ℓ]).

Let µij denotes the partial decryption of ĈT by a party Pi ∈ S corresponding to the
t-sized group S⋆

⋃
{Pi} having group id j, calculated as

µij = TRLWE.PartialDec(SHij , ĈT).

Now Ch provides {µij}Pi∈S to Ad.

Challenge Phase. In the challenge phase, Ad sends m0,m1 ∈ M of its choice to Ch. In
response, Ch computes CT0 = TRLWE.Enc(PK,m0) and sends it to Ad.
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Hybrid1. This game is between simulator Sim and adversary (Ad) in the simulated world.
The phases of this game is similar to Hybrid0 game except the query phase.

Query Phase. Among the polynomially many queries by Ad, each query is as follows:

• Ad sends plaintexts mi, . . . ,mℓ ∈ M = T[X]/(XN + 1) to Sim. Sim encrypts each
mi to generate ciphertexts

CTi = TRLWE.Enc(PK,mi).

Ad is handed over {CTi}i∈[ℓ].

• Ad sends a query of the form (S,C) to Sim. Sim computes the evaluated ciphertext

ĈT as before:
ĈT = TRLWE.Eval(PK, C, {CTi}i∈[ℓ]).

Let µ′
ij denote the simulated partial decryption of ĈT = (Â, B̂) by party Pi ∈ S for

the t-sized group S⋆
⋃
{Pi} having group id j, and it is calculated using the secret

shares of the corrupted parties, thus avoiding use of any information regarding real
secret share SHij as follows,

µ′
ij = B̂ −m−

∑
Pi′∈S⋆

TRLWE.PartialDec(SHi′j , ĈT) + esm.

Here m is the plaintext output of C for inputs {m1, . . . ,mℓ} and esm =
∑N

i=1 e
i
smX

i−1

is the smudging noise polynomial and each eism ← Gsm (Gaussian distribution of
smudging noise). Now Sim provides the simulated partial decryption {µ′

ij}Pi∈S to
Ad.

Hybrid2. This is also a game between simulator Sim and adversary Ad in simulated world.
This hybrid game is same as Hybrid1 except the challenge phase.

Challenge Phase. Here, Ad sends m0,m1 ∈ M to Sim as before, but in response, Sim
computes CT1 = TRLWE.Enc(PK,m1) instead of CT0 and sends to Ad.

Hybrid3. This hybrid game is between challenger Ch and adversary Ad in real world. It is
same as Hybrid2, except the query phase.

Query Phase. For each query (S,C) from Ad, partial decryptions {µij}Pi∈S are computed
using real secret shares SHij ’s similar to Hybrid0.

Real and Simulated Partial Decryptions. The real partial decryption of a ciphertext
CT = (A,B) by honest party Pi for t-sized group S⋆

⋃
{Pi} having group id j is computed

using its real secret share SHij as follows (assuming Pi is group leader of jth group):

µij = TRLWE.PartialDec(SHij ,CT) + esm

= B −m− e+ esm +
∑

Pi′∈S⋆

TRLWE.PartialDec(SHi′j ,CT).
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Simulated partial decryption of a ciphertext CT = (A,B) for honest party Pi corresponding
to jth t-sized group S⋆

⋃
{Pi} is computed from secret shares of the corrupt parties as follows

(assuming Pi is group leader of jth group):

µ′
ij = B −m+

∑
Pi′∈S⋆

TRLWE.PartialDec(SHi′j ,CT) + esm.

For ease of exposition, let us denote,

γ = B −m−
∑

Pi′∈S⋆

TRLWE.PartialDec(SHi′j ,CT).

Now we have,
µij = γ − e+ esm, µ′

ij = γ + esm.

Defining Some Distributions. Let us first define Db(r) as

Db(r = {rij}) = (CTb, {part decryptij = γij + rij}Pi∈S).

It is the view of the adversary, during the hybrid games, where part decryptij denotes the
partial decryption of the evaluated ciphertext CT by the honest party Pi during query phase
and CTb is the encryption of mb in the challenge phase, such that b ∈ {0, 1}. part decryptij
is a partial decryption in real or simulated world depending on whether rij is of the form
(esm − e) or esm respectively.

We now define Ψ to be the distribution over the set r = {rij}, when each rij is of the form
esm− e, and Ψ′ denotes the distribution over the set r = {rij}, when each rij is of the form
esm. We define:

Zb = {z : r ← Ψ, z ← Db(r)},
for b ∈ {0, 1},which denotes the distribution

(CTb, {part decryptij = γij + rij}),

with rij sampled from Ψ. We also define

Z ′
b = {z : r ← Ψ′, z ← Db(r)},

for b ∈ {0, 1}, which denotes the distribution

(CTb, {part decryptij = γij + rij}),

with rij sampled from Ψ′.

IND-CPA Security. Let us now define two problems called Problem P and Problem P’.

Problem P: Distinguish if z is sampled from Z0 (i.e. the distribution in Hybrid0) and Z1

(i.e. the distribution in Hybrid3), where for each b ∈ {0, 1},

Zb = {z : r ← Ψ, z ← Db(r)}.

Problem P’: Distinguish if z is sampled from Z ′
0 (i.e. the distribution in Hybrid1) and Z

′
1

(i.e. the distribution in Hybrid2), where for each b ∈ {0, 1},

Z ′
b = {z : r ← Ψ′, z ← Db(r)}.
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Algorithm 4 Public Sampling Algorithm S

Input: b′, x.
Output: x′

1: Perform homomorphic XOR of CTb with itself to get C0 = (A0, B0), an encryption of
zero using (public) evaluation key.

2: Generate fresh ciphertext CTb′ = (A0, B
′), which is an encryption of mb′ by adding

encoding of message mb′ to “B0” part of ciphertext C0, i.e., B
′ = B0 + [mb′ ]enc.

3: Return fresh sample x′ = ⟨CTb′ , {part decryptij}⟩.

Let us assume δ to be the probability of distinguishing Z0 from Z1 in Problem P, and δ′ to
be the probability of distinguishing Z ′

0 from Z ′
1 in Problem P’. As the adversary sees only

simulated partial decryptions in the query phase of both Hybrid1 and Hybrid2, it gains no
real information about the secret share of the honest parties. Therefore breaking IND-CPA
security in the simulated world is as hard as Binary Ring-LWE problem, i.e., distinguishing
Hybrid1 from Hybrid2 only with negligible probability. So, δ′ is negligible. Our objective
is to show that if δ is non-negligible then δ′ must be non-negligible, i.e. if a polynomial-
time distinguisher D exists for Problem P then we can construct an another polynomial-time
distinguisher D′ for Problem P’. But we know that the distinguishing probability for Problem
P’ i.e. δ′ is negligible. Hence, by contradiction, δ must be negligible. We will show the
detailed analysis in the subsequent subsections based on the public sampleability property
of Rényi divergence [5].

Public Sampleability of Db(r). We now start our analysis by showing that Db(r) satisfies
the public sampleability property. We provide a public sampling algorithm S in Algorithm 4,
which, given any sample x = ⟨CTb, {part decryptij}⟩ from Db(r) with unknown bit b and a
bit b′, generates fresh sample of Db′(r) efficiently.

Claim 1. The output x′ from sampling algorithm S is indeed a fresh sample of Db′(r).

Proof. We prove the claim through following steps.

• First we prove that the first component of x′, i.e., CTb′ = (A0, B
′), is a valid ciphertext

of mb′ as desired. As bootstrapping is performed during every homomorphic computa-
tion in TRLWE to prevent noise blow-up, C0 is a valid encryption of zero with its noise
low enough to ensure correct decryption. So, adding encoding of mb′ to its “B0” part
makes CTb′ a valid ciphertext of mb′ . Additionally, as A0 is a uniformly random ma-
trix of Tk[X]/(XN +1) and B′ =

∑k
i=1A[i] ·SK[i]+ [mb′ ]enc+e, being sum of sample

from uniform distribution and sample from Gaussian noise distribution, is uniformly
distributed, CTb′ = (A0, B

′) is uniformly distributed over all possible ciphertexts of
mb′ .

• The second component of x′ is same as of x. As partial decryption values in the set
{part decrypt}ij do not depend on the underlying message, the set is a valid second
component of x′ irrespective of input bit b′.

Hence, x′ is a fresh sample of Db′(r), and thus Db(r) satisfies public sampleability property.
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Rényi Divergence based Analysis. Recall from Theorem 4.2 of [5], due to public sam-
pleability property of D0 and D1, if there exists a τ -time distinguisher D for problem P with
distinguishing probability δ, then there must exists a distinguisher D′ for Problem P’ with
distinguishing probability δ′ with run-time τ ′, such that,

δ′ ≥ δ

4Ra(Ψ||Ψ′)
·
(
δ

2

) a
a−1

,

τ ′ ≤ 64

δ2
log(

8Ra(Ψ||Ψ′)

δa/(a−1)+1
)(τS + τ).

Here, τS is the run-time of public sampling algorithm for Db(r). Now, with the results
from Lemma 5 in [45] and multiplicative property of Rényi Divergence we argue that for any
a ∈ (1,∞):

Ra(Ψ||Ψ′) ≤ exp

(
a · π ·N · ∥e∥2∞

σ2

)
,

where ∥e∥∞ denotes the infinity norm of the degree (N − 1)-RLWE noise polynomial e.
Assuming that ∥e∥∞ ≤ cα, where c is some constant and α is the standard deviation of
RLWE noise distribution G, we have

Ra(Ψ||Ψ′) ≤ exp

(
a · π ·N · c2 · α2

σ2

)
.

Finally, for the scenario where the adversary A sees Q = poly(λ) such partial decryption
samples, we invoke the multiplicative properties of Rényi Divergence from [45] to state the
following:

Ra(Ψ||Ψ′) ≤ exp

(
a · π ·Q ·N · c2 · α2

σ2

)
.

Observe that it suffices for us to choose σ such that

σ ≥ c · α ·
√
Q ·N,

since this yields Ra(Ψ||Ψ′) ≤ exp (a · π), and hence:

δ′ ≥ δ

4
·
(
δ

2

) a
a−1

· exp(−a · π) = 1

2
·
(
δ

2

) 2a−1
a−1

· exp(−a · π).

and for the run-time we have,

τ ′ ≤ 64

δ2
log(

8 · exp(a · π)
δa/(a−1)+1

)(τS + τ).

Hence the condition σ ≥ c ·α ·
√
Q ·N (i.e., smudging noise is only polynomially larger than

RLWE noise) implies that, for any a > 1, non-negligible δ would result in non-negligible
δ′. This completes the proof of security for our proposed TRLWE scheme supporting (t, T )-
threshold decryption.
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C.2 Correctness of (t, T )-Threshold Decryption

In this section, we discuss the upper bounds for the different noise parameters in order to
ensure correctness of our proposed (t, T )-threshold decryption procedure.

Some Notations. Let us assume q = 2λ1 to be the modulus in TRLWE and |M| = p = 2λ2

to be size of the space of coefficients of message-polynomial such that p ≤ q. Now, let
∆ = q

p = 2λ1−λ2 denote the distance between two consecutive value of a message coefficient
in M. Note that we assume ∆ = 1 throughout the paper, as in Torus-FHE library λ1 =
λ2 = 32 have been considered.

TRLWE noise. When applying TRLWE.Decode0 on a TRLWE ciphertext CT = (A,B),
we effectively compute Φ = B − A · SK, which essentially equals ∆ ·m+ e. Now, ∆ being
a constant we can rewrite Φ as

∑N−1
i=0 (∆ ·mi + ei)x

i. Next, we round up and approximate

each coefficient of Φ during TRLWE.Decode1 as ∆ · mi + ei
round−−−−→ ∆ · mi

approximate−−−−−−−−→ mi.
For correctness, we need |ei| < ∆/2.

Smudging noise. The parties eventually combine their own partial decryptions in order
to compute an unmasking component part decryptf . Without loss of generality, for party
P1, part decryptf is computed as:

(
k∑

j=1

A[j] · SH1[j]−
t∑

l=2

k∑
j=1

A[j] · SHl[j] + e1sm −
t∑

l=2

elsm

)
.

The final message recovery step proceeds as:

B − part decryptf = ∆ ·m+ e−
(
e1sm −

t∑
l=2

elsm

)
.

Here, e = e0 + e1x + · · · + eN−1x
N−1 is the RLWE noise polynomial and eism = eism,0 +

eism,1x + · · · + eism,N−1x
N−1 is the smudging noise polynomial added by party Pi. Hence,

for correct decryption the following condition should hold for each z ∈ [0, N − 1]:

|ez − e1sm,z +

t∑
l=2

elsm,z)| <
∆

2
.

Let ∥e∥∞ and ∥esm∥∞ denote the infinity norms of the RLWE noise polynomial e and the
smudging noise polynomial esm, respectively. Then, we must have:

∥e∥∞ + t · ∥esm∥∞ < ∆/2.

Since ∥esm∥∞ > ∥e∥∞ (by the lower bound argument presented above), it suffices to choose
∥esm∥∞ < ∆/2(t+ 1).
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D Observing the Pattern of Secret Shares

We state our observation on the pattern of the secret shares, generated by the (t, T )-
threshold secret sharing using Benaloh-Leichter LISSS (Section IV-C of our main paper), in
the form of a theorem and provide the corresponding proof here.

Theorem 1. P ′ = {Pid1
, Pid2

, . . . , Pidt
} ⊂ P = {P1, P2, . . . , PT } is a t-sized group with

group id value of gid, where id1 < id2 < · · · < idt. ∀1 ≤ i ≤ t, Pidi
has a key share

SHi, tagged with group id value of gid. Then all key shares except SH1, have only binary
coefficients in their k polynomials, while SH1 will have coefficient value upper-bounded by t
in its k polynomials.

In order to prove Theorem 1, we will first state two lemmas related to the structure of the
distribution matrix M for (t, T ) threshold secret sharing of a TRLWE secret key S. We
consider the number of polynomials in S is k and Ik denotes the identity matrix of dimension
k.
The first lemma is about the pattern of the distribution matrix for Boolean formula of the
form x1 ∧ x2 ∧ · · · ∧ xt for any t.

Lemma 1. We consider 0 to be a notation of zero matrix of dimension k × k. Then,
distribution matrix Mf for Boolean formula f = x1 ∧ x2 ∧ · · · ∧ xt follows the following
structure.



Ik Ik Ik . . . Ik Ik
0 0 0 . . . 0 Ik
0 0 . . . 0 Ik 0
...
0 0 Ik 0 . . . 0
0 Ik 0 0 . . . 0


kt×kt

Proof of Lemma 1. We prove the lemma by induction on the value of t.
For t = 1, f = x1 and Mf = Ik. Hence, the stated matrix structure is satisfied by default.
For t = 2, f = x1 ∧ x2. We follow the ANDing procedure (see Section IV-C in the paper)

of Mx1
= Ik and Mx2

= Ik and get Mx1∧x2
=

[
Ik Ik
0 Ik

]
, which clearly satisfies the claimed

structure.
Let us assume that the claimed structure of the distribution matrix holds for t = i, i.e.,
for f = x1 ∧ x2 ∧ · · · ∧ xi, Mf is as shown below. Also, xi+1 being a Boolean variable,
Mxi+1

= Ik. ANDing Mf and Mxi+1
produces Mf1 = Mf∧xi+1

as shown below. Mf has a
dimension of ki× ki and Mf1 has a dimension of k(i+ 1)× k(i+ 1).

Mf =



Ik Ik Ik . . . Ik Ik
0 0 0 . . . 0 Ik
0 0 . . . 0 Ik 0
...
0 0 Ik 0 . . . 0
0 Ik 0 0 . . . 0


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Mf1 =



Ik Ik Ik Ik . . . Ik Ik
0 0 0 0 . . . 0 Ik
0 0 0 . . . 0 Ik 0
...
0 0 0 Ik 0 . . . 0
0 0 Ik 0 0 . . . 0
0 Ik 0 0 0 . . . 0


Clearly, the structure is maintained for t = i + 1. Hence, by induction, the lemma is true
for any t ≥ 1.

And the second lemma is about the pattern of distribution matrix for Boolean formula
consisting of disjunction of l number of such t-sized conjunctive terms, i.e., (x1,1 ∧ x1,2 ∧
· · · ∧ x1,t) ∨ · · · ∨ (xl,1 ∧ xl,2 ∧ · · · ∧ xl,t).

Lemma 2. Let us assume that f ′ = (x1,1 ∧ x1,2 ∧ · · · ∧ x1,t) ∨ · · · ∨ (xl,1 ∧ xl,2 ∧ · · · ∧ xl,t)
is a Boolean formula, where ∀1 ≤ i ≤ l, 1 ≤ j ≤ t, xi,j is a binary variable and each of the
(xi,1∧xi,2∧· · ·∧xi,t) terms is represented by distribution matrix Mf , as stated in Lemma 1.
We denote first k columns of Mf by F of dimension kt × k and the rest of the columns of
Mf by R of dimension kt×k(t−1). 0 denotes zero matrix of dimension kt×k(t−1). Then
distribution matrix Mf ′ has the following structure:


F R 0 0 . . . 0
F 0 R 0 . . . 0
...
F 0 . . . 0 R 0
F 0 0 . . . 0 R


lkt×(lkt−(l−1)k)

Proof of Lemma 2. We prove the lemma by induction on the value of l.
For l = 1, f ′ = f = (x1,1 ∧ x1,2 ∧ · · · ∧ x1,t) and Mf ′ = Mf =

[
F R

]
, which satisfies the

claimed structure by default.
For, l = 2, f ′ = (x1,1 ∧ x1,2 ∧ · · · ∧ x1,t) ∨ (x2,1 ∧ x2,2 ∧ · · · ∧ x2,t). We perform ORing on
Mx1,1∧x1,2∧···∧x1,t

= Mf and Mx2,1∧x2,2∧···∧x2,t
= Mf (see Section IV-C in the paper) and

get

Mf ′ =

[
F R 0
F 0 R

]
2kt×(2kt−k)

This structure follows the lemma.
Let us assume that the structure is maintained ∀l ≤ j. So, with f ′ = (x1,1∧x1,2∧· · ·∧x1,t)∨
· · · ∨ (xj,1 ∧ xj,2 ∧ · · · ∧ xj,t) and f ′′ = (xj+1,1 ∧ xj+1,2 ∧ · · · ∧ xj+1,t), Mf ′ has a dimension
of jkt × jkt − (j − 1)k and Mf ′′ has a dimension of kt × kt. Mf ′ follows the structure as
shown below. Mf ′′ =

[
F R

]
. Now, ORing Mf ′ and Mf ′′ produces Mf2 = Mf ′∨f ′′ with
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dimension (j + 1)kt× ((j + 1)kt− jk) as shown below.

Mf ′ =


F R 0 0 . . . 0
F 0 R 0 . . . 0
...
F 0 . . . 0 R 0
F 0 0 . . . 0 R



Mf2 =



F R 0 0 . . . 0 0
F 0 R 0 0 . . . 0
...
F 0 . . . 0 R 0 0
F 0 0 . . . 0 R 0
F 0 0 . . . 0 0 R


So, the lemma is true for l = (j + 1).
Hence, by induction the lemma is true for any l ≥ 1.

Now we use Lemma 1 and Lemma 2 to provide here the proof of Theorem 1.

Proof of Theorem 1. Let us recall from Section IV-C of the paper that the monotone Boolean
formula for (t, T )-threshold secret sharing can be written as f = (x1,1∧x1,2∧· · ·∧x1,t)∨· · ·∨
(xl,1 ∧ xl,2 ∧ · · · ∧ xl,t), where l =

(
T
t

)
. If 0 denotes zero matrix of dimension kt× (kt− k),

from Lemma 1 and Lemma 2, we know that structure of the corresponding distribution
matrix M with dimension

(
T
t

)
kt× (

(
T
t

)
kt− (

(
T
t

)
− 1)k) is as follows:

M =


F R 0 0 . . . 0
F 0 R 0 . . . 0
...
F 0 . . . 0 R 0
F 0 0 . . . 0 R



F =


Ik
0
0
...
0

 R =


Ik Ik Ik . . . Ik
0 0 . . . 0 Ik
...
0 Ik 0 . . . 0
Ik 0 0 . . . 0


A detailed look into the above matrix M reveals that F has a structure of dimension kt× k
and R has a structure with dimension kt × (kt − k) as shown in above matrix structure.
In F and R, 0 denotes a zero matrix of dimension k × k. It is obvious from the structure
of M that each of its

(
T
t

)
horizontal sections contain exactly one F and one R along with

(
(
T
t

)
− 1) zero matrices 0kt×(kt−k). Now, the structure of F shows that each of its first k

rows contains one ‘1’ entry. No other row below has any ‘1’ in it and the structure of R
reveals that each of its first k rows contains exactly (t− 1) number of ‘1’ in it. Each of the
other rows below contains exactly one ‘1’ in it. Hence, each of the first k rows of any one
horizontal section (out of total

(
T
t

)
sections) of M has exactly t number of ‘1’ in it. Each of
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the rest of the rows below in that section contains exactly one ‘1’ in it.
Let us recall that, each section of M corresponds to one section of shares (shares =M · ρ
from Section IV-C in the paper, i.e, the key shares of any t-sized subset of collaborating
parties.
ρ is a binary matrix. During matrix multiplication, dot product between one row of M and
one column of ρ produces an entry in shares. Dot product between two binary vectors is
always upper bounded by the number of ‘1’ in any of the two vectors. As, each of first k
rows of any section of M contains exactly t number of ‘1’, the entries of first k rows of any
section in shares are always upper bounded by t. First k rows of any section of shares form
one key-share. Clearly, that key share will have non-binary entries in it. Similarly, each of
the other (kt − k) rows below in any section of M contains exactly one ‘1’, so the entries
of the (kt− k) number of rows below in any section of shares are upper bounded by 1. In
other words, those entries can be either 0 or 1. Hence, rest of the (t− 1) key shares of any
t-sized subset of parties, have only binary entries in it.
Hence we conclude that, in our proposed (t, T ) threshold LISSS for a t-sized subset of parties
PT ′ = {Pid1

, Pid2
, . . . , Pidt

}, where id1 < id2 < · · · < idt, all the parties except Pid1
will

have binary key shares.
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