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Abstract

Threshold Fully Homomorphic Encryption (ThFHE) enables arbitrary computation
over encrypted data while keeping the decryption key distributed across multiple parties
at all times. ThFHE is a key enabler for threshold cryptography and, more generally,
secure distributed computing. Existing ThFHE schemes inherently require highly in-
efficient parameters and are unsuitable for practical deployment. In this paper, we
take the first step towards making ThFHE practically usable by (i) proposing a novel
ThFHE scheme with a new analysis resulting in significantly improved parameters; (ii)
and providing the first practical ThFHE implementation benchmark based on Torus
FHE.

• We propose the first practical ThFHE scheme with a polynomial modulus-to-noise
ratio that supports practically efficient parameters while retaining provable secu-
rity based on standard quantum-safe assumptions. We achieve this via a novel
Rényi divergence-based security analysis of our proposed threshold decryption
mechanism.

• We present an optimized software implementation of a Torus-FHE based instanti-
ation of our proposed ThFHE scheme that builds upon the existing Torus FHE li-
brary and supports (distributed) decryption on highly resource-constrained ARM-
based handheld devices. Along the way, we implement several extensions to the
Torus FHE library, including a Torus-based linear integer secret sharing subrou-
tine to support ThFHE key sharing and distributed decryption for any threshold
access structure.

We illustrate the efficacy of our proposal via an end-to-end use case involving en-
crypted computations over a real medical database, and distributed decryptions of the
computed result on resource-constrained ARM-based handheld devices.
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1 Introduction

Outsourced Computation. The recent advent of cloud computing technologies [Hay08,
WVLY+10] enables individuals and organizations to outsource heavy computations over
large databases to potentially untrusted third-party servers. However, this poses new chal-
lenges for the security and privacy of the data, particularly when the data contains sensitive
information such as individual medical records, etc. For compliance, regulation, and other
essential privacy requirements, the data must be kept secure at rest, in transit, and during
computation.

Fully Homomorphic Encryption (FHE). While traditional encryption procedures are
useful for securing data at rest and in transit, they often fail to achieve any security during
computation. Fully Homomorphic Encryption (FHE) [Gen09, BGV14, BGG+18] resolves
this problem by enabling computation on encrypted data. This motivates a significant body
of research work [SS10,CNT12,DM15a,CGGI20,CGBH+18,FSK+21] to focus onto building
practically efficient fully homomorphic encryption systems.

Threshold Cryptography. While FHE resolves the crucial problem of computation on
encrypted data, one must carefully store the decryption key securely to get any real benefit
out of it. Typical enterprise solutions of key management involve using secure hardware
solutions such as HSMs, SGXs etc. While they provide reasonable security in practice,
they often suffer from a lack of programmability, cumbersome setup procedures, scalabil-
ity, high cost, side-channel attacks etc [KHF+19, LSG+18]. An alternative approach, that
uses threshold cryptography [Sha79,DF90,DDFY94] is offered by enterprises like Hashicorp
Vault1. In that approach, the key is shared among multiple servers (say T ) to avoid a “single
point of failure” and a threshold number of them (say t) can collaborate to recompute the
decryption key. However, this defies the purpose as a single compromise at the decryption
server, during a key-reconstruction, would reveal the key entirely. An ideal solution must
have the decryption key distributed at all time. In particular, this is achieved by a ThFHE
(Threshold-FHE) scheme [AJL+12,MW16,BGG+18,CCK23], where the decryption is per-
formed jointly by any threshold number of parties without reconstructing the key at any
one place. In particular, parties compute partial decryption with their shares of the key and
send them over to the decryptor, who, once obtains t such partial decryptions in total (may
include her partial decryption), combines them to get the message.

Practical ThFHE. While there are several ThFHE schemes in the literature [AJL+12,
MW16,BGG+18,MS+11, JRS17,CCK23], the state-of-art is far from being practical. This
is in contrast to the literature in FHE, in that many practical proposals and prototypes
exist2. Perhaps the most crucial bottleneck of the existing schemes comes from the secu-
rity requirement imposed by the threshold decryption procedure, which might involve up to
t−1 corrupted servers (we only consider passive/semi-malicious corruption here). In slightly
more detail, the modulus to noise ratio used in the existing threshold schemes must be set
super-polynomial (in the security parameter) compared to the non-threshold FHE schemes
that require only a polynomial modulus to noise ratio. The use of super-polynomial modulus-

1https://www.vaultproject.io/
2https://homenc.github.io/HElib/,

https://www.microsoft.com/en-us/research/project/microsoft-seal/, https://tfhe.github.io/tfhe/,
https://palisade-crypto.org/
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noise ratio stems from a technique called smudging (alternatively noise flooding), which is
used to achieve security when the parties are corrupt during the distributed decryption. In
this work, we propose the first practical ThFHE scheme, which uses polynomial modulus
to noise ratio – we achieve this by adapting a Rényi divergence-based technique for dis-
tinguishing problems with public sampleability property as discussed in [BLRL+18,TT15].
This dramatically improves the system’s efficiency, as shown by our prototype implementa-
tion in software – this is the first benchmark for a ThFHE scheme.

1.1 Our Contribution

In this work we significantly improve the state-of-art for practical ThFHE scheme by both
new theoretical analysis and first prototype implementations. Finally, we complement this
by providing a use case for a real-world, end-to-end system that securely computes on
outsourced medical data and distributed decryption of the computed result is performed by
distributing the key among different lightweight devices that medical personnel hold while
avoiding the single-point of failure.

First Practical Threshold FHE Scheme with Polynomial Modulus to Noise Ra-
tio. Our construction is based on the prior constructions [AJL+12,MW16,CM15]. In par-
ticular, we plug-in the threshold decryption technique from Asharov et al. [AJL+12] into the
FHE scheme by Gentry, Sahai and Water [GSW13] (GSW) – as a result, we get a single-key
ThFHE version of the scheme by Mukherjee and Wichs [MW16] with two crucial differences:
(i) the smudging noise is sampled from a Gaussian distribution; (ii) a polynomial modulus is
used. In our analysis, which is inspired by the works such as [BLRL+18,TT15,ASY22], we
use Rényi Divergence instead of statistical distance, which essentially made those changes
possible and achieves indistinguishability-based notion of security [JRS17]. As a result, we
obtain the first practical ThFHE scheme with polynomial modulus to noise ratio.1

First Software Prototype for Threshold FHE. We provide the first prototype imple-
mentation of a ThFHE system with a benchmark in software. We expand further below.

• In our software implementation, we provide an extension of the existing library for
Torus-FHE2. We also provide the first software implementation of a linear integer secret
sharing scheme extended from [DT06] to support Torus Ring-LWE secret key sharing,
which may be of independent interest. Our extended Torus-FHE library supports
arbitrary t out of T threshold decryption while maintaining polynomial modulus-to-
noise ratio.

• To emulate our intended use-case of decryption in handheld devices, we develop a
portable implementation of the threshold decryption routines. We provide the results
from its experimentation on a Raspberry Pi 3b board that uses a 64 bit ARM CPU.

1Remarkably, polynomial modulus to noise ratio not only improves the efficiency significantly, but also
makes the scheme potentially more secure – this is because such a ratio for the underlying Learning with
Errors problem [Reg09] implies reduction to the corresponding worst-case lattice problem with polynomial
approximation factor, which are believed to be significantly harder than the same problem with super-
polynomial approximation factor, which is obtained if a super-polynomial ratio is used. For more details,
we refer to, for example, [BV14].

2https://tfhe.github.io/tfhe/
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A Practical Use-case. Finally, as a use-case, we provide a detailed description of an
end-to-end secure computation system over outsourced encrypted medical data. The goal
is to have encrypted medical data stored in the cloud, such that any heavy computation
may be performed on that encrypted data. At the same time, the decryption key must be
stored in an easily accessible but secure way. In particular, a medical personnel who owns
many lightweight devices should be able to access the result of the computation by using
t devices, but if any t − 1 device are compromised,1 then the decryption key must not be
revealed, even if the compromised device participates in several decryption sessions. For
example, in a (5,8)-threshold decryption system, any five devices should be able to perform
the distributed decryption, and the decryption key should remain secure until the number
of compromised parties is less than five. Furthermore, the system should be such that the
encryption or the computation on the encrypted data should be oblivious to the values of t
or T . In particular, one may think about changing those values later. Our system satisfies
all of the above mentioned aspects.

2 Related Work

Threshold FHE. The concept of ThFHE, introduced by Asharov et al. [AJL+12], has been
majorly studied in two related but slightly different contexts: (i) to build low-round mul-
tiparty computation protocols [AJL+12,MW16,GLS15,BJMS20]; (ii) and as a key enabler
for threshold cryptography [BGG+18, JRS17,CCK23]. At a technical level these two cate-
gories of schemes follow slightly different definitions because of different application require-
ments. The MPC-motivated works (category (i) above) consider mainly (T, T )-threshold
settings (Badrinarayan et al. [BJMS20] is an exception), whereas the later works are fo-
cused towards achieving (t, T ) (t ≤ T ) setting (which is standard in the threshold cryp-
tography literature). Furthermore, the former works (necessarily, due to requirement of
MPC) considered distributed key-generation for single-key schemes,2 unless, of course, a
specialized public-key infrastructure was assumed. The only distributed step considered by
the threshold-inspired works (category-(ii) above) was distributed decryption, in that every
party has a common ciphertext and their own share of secret decryption key; and then
each party broadcasts a partially decrypted ciphertext generated locally, which are then
combined together to obtain the decrypted value – this is similar to threshold public-key
encryption [BBH06, Fra90, DF90, SG02]. The distributed decryption step is modular and
essentially agnostic of how the ciphertext is generated. In particular, such decryption pro-
tocol can be plugged-in to schemes with appropriate distributed key-generation protocol or
can be used in a multi-key scheme a la [MW16, BJMS20] (or even with a symmetric-key
scheme).3 Therefore, distributed decryption step appears in both categories of the above

1In this work we consider a semi-malicious model of corruption a la [AJL+12,MW16] which assumes
that corrupt parties behave as per the protocol description except they can choose arbitrary values for
randomness – this is stronger than the passive security model where parties choose good randomness but
weaker than fully malicious setting where parties behave in completely arbitrarily manner.

2The multi-key schemes are the exceptions. For multi-key schemes such as Mukherjee and Wichs [MW16]
the key-generation step was naturally dispensed with, which was the key-step to achieve round-optimal MPC
in the common random string model.

3In a (T, T ) setting the distributed key-generation is trivial [AJL+12]. In the (t, T ) setting the key shares
must be consistent with the secret (t − 1) degree polynomial, and hence a non-trivial protocol is required.
One may just think about using a generic MPC protocol for this a la [BJMS20]. More efficient protocols
have been considered recently [GHL22]. This is not the focus of our work.
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work. Our focus here is more aligned with the threshold cryptography literature, and hence
we follow the second approach.

One common aspect of all of the above distributed decryption constructions is the use of the
so-called noise smudging technique to achieve a simulation-based security guarantee when
up to (t− 1) parties are (semi-maliciously) corrupt. The main idea is to sample noise from
a Gaussian distribution and then use it to “smudge” (alternatively “flood”) the “sensitive
LWE noise” in the partially decrypted ciphertext. The analysis (based on simple statistical
distance measurements) crucially relies on the smudging noise being super-polynomially
larger than the LWE noise; then to ensure correctness one must use a super-polynomial
modulus-to-noise ratio – this results in impractical parameters. In this paper, we instead
use a novel Rényi divergence-based analysis inspired by [BLRL+18,TT15] – this allows us to
use a polynomially large smudging noise and subsequently a polynomial modulus-to-noise
ratio, thereby putting ThFHE in the practical regime.

Next, we compare our work with two concurrent and independent works [BS23, DWF22]
that also aim to design ThFHE schemes with polynomial modulus-to-noise ratio while re-
lying on Renýi divergence-based arguments. In particular, we highlight the key technical
differences between our approach and the approaches used in these works, and the resulting
differences in terms of security, practical efficiency, and reliance on assumptions (such as
random oracles).

Comparison with [BS23]. A concurrent and independent work by Boudgoust and Scholl [BS23]
proposes a poly-modulus threshold FHE scheme that achieves full-fledged IND-CPA secu-
rity with partial decryption query simulatability. They follow a two-step proof strategy:
(a) argue one-way CPA security based on Rényi divergence (which, unlike our approach,
does not require a public sampleability argument), and (b) use an additional transforma-
tion to achieve full-fledged security, which either uses a random oracle (RO) or Goldreich-
Levin (GL) hard-core predicates [GL89]. As mentioned in [BS23], the RO-based construction
incurs significant limitations in terms of homomorphic computation capabilities (in partic-
ular, since the RO itself does not have an efficient circuit description), while the hardcore
predicate-based construction incurs additional overheads, particularly due to larger cipher-
text size. On the other hand, we prove the indistinguishability-based security of ThFHE us-
ing a Rényi divergence-based public sampleability argument in the standard model, thereby
avoiding random oracles and preserving the fully homomorphic computation capabilities of
the underlying scheme without any additional overheads.

Comparison with [DWF22]. Another concurrent and independent work by Dai et
al. [DWF22] proposed ThFHE schemes while relying on Rényi divergence-based arguments.
The work proposes two approaches – the first based on leakage-resilient Dual-GSW (DGSW) [BHP17],
and the other based on RO. The first approach relies on a security argument that seems to
hold only for a single (or at most a constant number of) partial decryption query (queries),
and it is unclear how the analysis would extend to polynomially many partial decryption
queries (and what the corresponding effect on the scheme’s noise parameters would be). On
the other hand, our security model allows polynomially many partial decryption queries and
we prove the security of our proposed ThFHE scheme in this model, while also formalizing
the effect of the number of queries on the noise parameters for our scheme. We believe that
for real-world applications, it is reasonable to assume that the adversary is allowed to see
polynomially many decryption queries, and any restriction thereof is perhaps undesirable.
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Finally, as mentioned earlier, our approach avoids the use of RO (and any restrictions to
the homomorphic computation capabilities resulting from such an approach).

In the rest of this section, we mention some additional related work with different goals
and/or different security models as compared to our work.

Efficient FHE Bootstrapping. In a recent work, Lee et al. [LMK+22] proposed im-
proved bootstrapping methods for FHEW/Torus FHE [DM15b,CGGI20] and their threshold
versions. They do not focus on achieving ThFHE with polynomial modulus-to-noise ratio,
which is the main focus of our work. Our techniques are agnostic of the bootstrapping
procedure used during homomorphic evaluations (and can be potentially combined with the
bootstrapping techniques of [LMK+22] to achieve more efficient ThFHE schemes; we leave
this as an interesting open question).

Approximate and Circuit-Private FHE. Some other recent works [LMSS22,KS23] focus
on achieving stronger security notions (namely IND-CPAD security) and circuit-privacy for
approximate FHE schemes (e.g., CKKS [CKKS17]) using differential privacy tools. Again,
their goals and security models are orthogonal to ours, as we focus on designing efficient
threshold decryption mechanisms for exact FHE schemes (such as Torus FHE) under a
different (and incomparable) security definition as compared to IND-CPAD. Consequently,
the security analysis and lower bounds on parameter choices described in [LMSS22,KS23]
are seemingly inapplicable to our scheme and differ conceptually from our Rényi divergence-
based security analysis of ThFHE.

Multi-Key FHE. In a multi-key FHE scheme, the parties encrypt their input with individ-
ual keys (generated locally) and then broadcast them; subsequently, an extended ciphertext
is constructed using all the encryptions from the involved parties, and any arbitrary homo-
morphic operation can be performed on the extended ciphertext [LATV12,CM15,MW16,
BP16, PS16, CZW17, CO17, CCS19, AJJM20]. We do not focus on multi-key FHE in this
work; however, as mentioned earlier, our distributed/threshold decryption approach and the
corresponding security analyses can be adapted to the multi-key setting. We leave this as
an interesting direction of future research.

Multiparty HE. Mouchet et al. [MTBH21] recently considered a new notion of multi-
party homomorphic encryption scheme (MPHE), which is very similar to the Asharov’s et
al. [AJL+12]’s threshold FHE notion, that has both distributed key-generation plus dis-
tributed decryption, albeit for a (T, T ) access structure. They also included an implementa-
tion benchmark [MBTPH20]. A subsequent construction secure against malicious adversary
has been proposed [CMS+23] recently. However, a major shortcoming of their definition is
the absence of a simulation-based definition for their partial decryption protocol – so it does
not capture a realistic threat model where adversary can corrupt parties while participat-
ing in the decryption procedure. Therefore, they did not need to use any noise smudging.
Therefore, their implementation can not be counted as a predecessor of ours. Another work
by Ananth et al. [AJJM20] defines another primitive, which they also call multiparty ho-
momorphic encryption – this is a slightly weaker variant of multi-key FHE, in that the
decryption computation complexity grows with the circuit being evaluated. Padron and
Vargas [PV21] define an even weaker primitive (where the evaluator holds part of the se-
cret key) and calls it multiparty homomorphic encryption. Our notion of ThFHE and the
corresponding security definition differ significantly from all of the above mentioned notions.
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Software Frameworks. Recent works have accelerated FHE (non-threshold) implemen-
tations via GPU based parallelizations. Based on [CGGI20], a Python library NuFHE
1 has been developed. In [CDS15], the Cingulata (formerly, Armadillo) C++ toolchain
and run-time environment were introduced for running programs over FHE ciphertexts,
which now supports Torus FHE. Lattigo2 [MBTPH20] on the other hand is a Go based
module that builds secure protocols based on Multiparty-Homomorphic-Encryption and
Ring-Learning-With-Errors-based Homomorphic Encryption Primitives. Some recent exten-
sions proposed in [MBH22,MTBH21] do support threshold decryption; however, all of these
implementations fundamentally require a superpolynomial modulus-to-noise ratio. Addi-
tionally, they only support leveled homomorphic versions (i.e., without bootstrapping) of
the BGV [BGV14], BFV [Bra12, FV12] and CKKS [CKKS17] FHE schemes. Our ThFHE
implementation builds upon and extends the Torus FHE library in a natural way (includ-
ing the bootstrapping procedure), and is cross-compatible with all of these computation
frameworks.

3 Preliminaries and Background

In this section, we introduce the notations used throughout this paper. We also present
some preliminary background material on cryptographic primitives used in this paper.

3.1 Notations and Mathematical Background

Notations. We use T to denote the Torus (i.e., the set of all real numbers modulo 1).
We write x ← χ to represent that an element x is sampled uniformly at random from a
set/distribution X . For a, b ∈ Z such that a, b ≥ 0, we denote by [a] and [a, b] the set
of integers lying between 1 and a (both inclusive), and the set of integers lying between
a and b (both inclusive). We refer to λ ∈ N as the security parameter, and denote by
poly(λ) and negl(λ) any generic (unspecified) polynomial function and negligible function
in λ, respectively.3

LWE Assumption and its Variants. Here, we recall the Learning with Errors (LWE)
assumption and some of its variants, including the Ring LWE (RLWE) assumption and the
Binary RLWE assumption.

LWE Assumption. Let λ ∈ N be a security parameter, and let q, n,m = poly(λ). For each
i ∈ [m], let

ai ← Zn
q , bi = ai · s+ ei, ui ← Zq,

where s ← Zn
q is a uniformly sampled secret vector, ei ← ψ where ψ is a Gaussian noise

distribution over Zq, and ai · s denotes the vector dot-product between the vectors ai and
s. The LWE hardness assumption states that, for any probabilistic polynomial-time (PPT)
adversary A, the following holds:

|Pr[A({ai, bi}i∈[m]) = 0]− Pr[A({ai, ui}i∈[m]) = 0]| < negl(λ).

1https://nufhe.readthedocs.io/en/latest/
2https://github.com/tuneinsight/lattigo
3Note that a function f : N → N is said to be negligible in λ if for every positive polynomial p, f(λ) <

1/p(λ) when λ is sufficiently large.
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RLWE Assumption. Let λ ∈ N be a security parameter, and let q,N,m = poly(λ). For each
i ∈ [m], let

Ai(X)← Zq[X]/(XN + 1), Bi(X) = Ai(X) · S(x) + Ei(X),

Ui(X)← Zq[X]/(XN + 1),

where S(X) ← Zq[X]/(XN + 1) is a uniformly sampled secret polynomial, Ei(X) ←
ψ[X]/(XN + 1) where ψ is a Gaussian noise distribution over Zq, and Ai(X) · S(X) de-
notes the polynomial multiplication modulo (XN +1) between Ai(X) and S(X). The Ring
LWE (RLWE) hardness assumption states that, for any PPT adversary A, we have:∣∣Pr [A (

{Ai(X), Bi(X)}i∈[m]

)
= 0

]
− Pr

[
A
(
{Ai(X), Ui(X)}i∈[m]

)
= 0

] ∣∣ < negl(λ).

Binary RLWE. The Binary RLWE (BRLWE) hardness assumption is a variant of the RLWE
hardness assumption described above where, the secret key polynomial S(X) is sampled
from B[X]/(XN +1) as opposed to Zq[X]/(XN +1), where B = {0, 1}. Note that although
an equivalence between the LWE with binary secrets assumption and the standard LWE
assumption is known [Mic18], a similar result for BRLWE and RLWE is not known to the
best of our knowledge. However, the BRLWE hardness assumption is widely believed to
hold [BBPS19,BD20].

Threshold Access Structure. For any T, t ∈ N such that t ≤ T , a (t, T )-threshold access
structure over any set P = {P1, . . . , PT } is defined as a collection of qualified subsets of the
form

A(t,T ) = {P ⊆ P :
∣∣P∣∣ ≥ t},

which (informally) states that any subset with t or more parties is a qualified subset. If
A(t,T ) is a minimal (t, T )-threshold access structure, then it only consists of subsets of size

exactly t; in other words, we have |A(t,T )| =
(
T
t

)
. Observe that this access structure can

be represented efficiently [BGG+18]. In particular, there exists a polynomial-size circuit
that takes as input T -length vectors and outputs a bit, such that for every valid subset
S ∈ A(t,T ), on input the T -sized binary vector V = {Vi}i∈[T ] with Vi = 1 if and only if
Pi ∈ S, the circuit outputs 1 (see [BGG+18] for details).

Rényi Divergence. Let Supp(P ) and Supp(Q) denote the supports of distributions P and
Q respectively, such that Supp(P ) ⊆ Supp(Q). For a ∈ (1,+∞), the Rényi divergence of
order a is

Ra(P ||Q) =

 ∑
x∈Supp(P )

P (x)a

Q(x)a−1

 1
a−1

.

This definition extends naturally to continuous distributions (see [BLRL+18] for details).

3.2 Fully Homomorphic Encryption (FHE)

Fully Homomorphic Encryption (FHE) is a form of encryption that permits computa-
tions directly over encrypted data without decrypting it first. The result of this compu-
tation is also encrypted. Below, we recall the definition of fully homomorphic encryp-
tion (FHE) [Gen09,GHS12] for any message spaceM.
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Definition 1 (Fully Homomorphic Encryption). A fully homomorphic encryption (FHE)
scheme is a tuple of four algorithms (Gen,Enc,Dec,Eval) with respect to a class of Boolean
functions F = {Fℓ}ℓ∈N (represented as Boolean circuits with ℓ-bit inputs) such that the tuple
(Gen,Enc,Dec) is an IND-CPA-secure public-key encryption (PKE) scheme as defined below,
and the evaluation algorithm Eval satisfies the homomorphism and compactness properties
as defined below:

IND-CPA security: For any (pk, sk) ← Gen(1λ), for any messages m0,m1 ∈ M, and
for any probabilistic polynomial-time (PPT) adversary A, letting ct0 ← Enc(pk,m0) and
ct1 ← Enc(pk,m1),

|Pr[A(pk,m0,m1, ct0) = 1]− Pr[A(pk,m0,m1, ct1)] = 1| ≤ negl(λ).

Correctnesss: The homomorphism of the FHE scheme ensures correctness. For any
(Boolean) function f : {0, 1}ℓ → {0, 1} ∈ F and any sequence of ℓ messages m1, . . . ,mℓ,
letting (pk, sk)← Gen(1λ), and cti ← Enc(pk,mi) for each i ∈ [ℓ], we have the following:

Pr[Dec(sk,Eval(pk, f, ct1, . . . ctℓ)) ̸= f(m1, . . . ,mℓ)] ≤ negl(λ).

Compactness: There exists a polynomial p(λ) such that, for any (Boolean) function f :
{0, 1}ℓ → {0, 1} ∈ F and any sequence of ℓ messages m1, . . . ,mℓ, letting (pk, sk)← Gen(1λ),
and cti ← Enc(pk,mi) for each i ∈ [ℓ], we have

|ct∗ ← Eval(pk, f, ct1, . . . ctℓ))| ≤ p(λ),

where p(λ) is independent of size of f and the number ℓ of inputs.

In the definition mentioned above, we assumed that the evaluation key is included as part
of the public key.

3.3 Threshold FHE

In this section, we define Threshold FHE (or ThFHE in short), which is aligned with ThFHE
definition of [BGG+18].

Definition 2 (Threshold Fully Homomorphic Encryption (ThFHE)). Let S be a class of
efficient access structures on a set of parties P = {P1, . . . , PT }. A ThFHE scheme for S
over a message spaceM is a tuple of probabilistic polynomial-time algorithms

ThFHE = (ThFHE.Gen,ThFHE.Enc,ThFHE.Eval,ThFHE.PartialDec,ThFHE.Combine),

defined as follows:

• ThFHE.Gen(1λ, 1d,A): On input the security parameter λ, a depth bound d, and an
access structure A ∈ S, the setup algorithm outputs an encryption (public) key pk, a
decryption (secret) key sk, and a set of secret key shares sk1, . . . , skT .

• ThFHE.Enc(pk, µ): On input pk and a plaintext µ, the encryption algorithm outputs a
ciphertext ct.
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• ThFHE.Eval(pk,C, ct1, . . . , ctℓ): On input a public key pk, a (Boolean) circuit C of
depth at most d1, and a set of ciphertexts ct1, . . . , ctℓ, the evaluation algorithm outputs
a ciphertext ct∗.

• ThFHE.PartialDec(ski, ct): On input a secret key share ski and a ciphertext ct, the
partial decryption algorithm outputs a partial decryption pi.

• ThFHE.Combine({pi}i∈S): On input a set of partial decryptions {pi}i∈S for some sub-
set S ⊆ {P1, . . . , PT }, the combination algorithm either outputs a plaintext µ or the
symbol ⊥.

Correctness and Compactness. We require that a ThFHE scheme satisfies compact-
ness and correctness. These properties are very similar in flavor to those for traditional
FHE 3.2. In case of correctness, while FHE requires that any honestly generated ciphertext
should be decrypted to the correct plaintext, ThFHE requires that given an honestly gen-
erated ciphertext from homomorphic evaluation of some circuit on some encrypted inputs,
recombining its partial decryptions by a threshold number of parties should result in correct
circuit output. See [BGG+18] for formal definitions.

IND-secure ThFHE [JRS17]. In this paper, we adopt the definition of IND-secure ThFHE
from [JRS17]. We subsequently present a discussion on this notion of security.

Consider a ThFHE scheme over a message spaceM for a threshold access structure At,T for
a set of T parties P = {P1, . . . , PT }. Let λ be the security parameter and d be the depth
bound for the ThFHE scheme. We define below a game GThFHE,A,At,T

(1λ, 1d) between a PPT
challenger C and a PPT adversary A.

GThFHE,A,At,T
(1λ, 1d):

Initialization phase.

1. The challenger C runs ThFHE.Gen(1λ, 1d,At,T ) to obtain (pk, sk, sk1, . . . , skT ), such
that ski is the secret share corresponding to Pi, and provides the public key pk to the
adversary A.

2. The adversary A outputs a set S ⊂ {P1, . . . , PT } such that S /∈ At,T , and receives the
set of secret key shares {ski}Pi∈S from C.

Challenge phase.

1. The adversaryA outputs two set of messagesm0 = (m0
1, . . . ,m

0
ℓ),m1 = (m1

1, . . . ,m
1
ℓ) ∈

M.

2. The challenger C randomly samples a bit b ← {0, 1} and provides A with ct⋆ =
{ct⋆i }i∈[ℓ] = {ThFHE.Enc(pk,mb

i )}i∈[ℓ].

Partial decryption query phase.

1As we deal with FHE with bootstrapping in Torus-FHE, any circuit with arbitrary depth can be evalu-
ated.
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1. The adversary A issues Q (= poly(λ)) circuits {Ci : Mℓ → M}i∈[Q], such that
Ci(m

0
1, . . . ,m

0
ℓ) = Ci(m

1
1, . . . ,m

1
ℓ) ∀i ∈ [Q].

2. In response, A receives
(
ĉti, {pi,j}

)
for each i ∈ [Q] and Pj /∈ S, where

ĉti = ThFHE.Eval(pk, Ci, {ct⋆j}j∈[ℓ]), pi,j = ThFHE.PartialDec(skj , ĉti).

Output phase.

1. The adversary A eventually outputs a bit b′ ∈ {0, 1}.

2. if b′ = b, the game outputs 1, otherwise it outputs 0.

Note that during the “partial decryption query phase” we do not allow evaluation of such
circuits, whose output differs upon whether its input is m0 or m1; otherwise, the adver-
sary can trivially win by observing the decrypted output of such circuits. Note that the
adversary would know the (threshold)-decrypted value of evaluated ciphertext, as it is able
to compute the partial decryptions of the corrupted parties on its own and it can get the
partial decryptions of the honest parties from partial decryption query, and then combine
them to get the final decryption.

We say that a threshold FHE scheme ThFHE is IND-secure if, for any security parameter
λ ∈ N, for any depth d = poly(λ), for any threshold access structure At,T , and for any
PPT adversary A, letting γβ = Pr[GThFHE,A,At,T

(1λ, 1d) = β], for β ∈ {0, 1} (where the
probability is over the random coins used by ThFHE.Gen, ThFHE.Enc, ThFHE.Eval and the
adversary A), we have

∣∣γ0 − γ1∣∣ ≤ negl(λ).

Discussion on IND-Security of ThFHE. The IND-security definition of ThFHE from [JRS17]
effectively combines in sequence the definitions of simulation and semantic security for
ThFHE from prior works [MW16,BGG+18,CCK23]. Informally, a ThFHE scheme is said to
provide semantic security if a PPT adversary cannot efficiently distinguish between encryp-
tions of arbitrarily chosen plaintext messages m0 and m1 [BGG+18,CCK23]. Additionally,
a ThFHE scheme is said to provide simulation security if there exists an efficient algorithm to
simulate partial decryptions of honest parties on ciphertexts that are produced by evaluating
one or more circuits on (honestly generated) ciphertexts, without any knowledge of secret
shares of honest parties [MW16,BGG+18,CCK23]. The IND-security definition of [JRS17]
can be viewed as an indistinguishability-based security notion where we essentially require
these two notions of security to hold simultaneously against a PPT adversary that is given
the secret key shares of a set of corrupt parties belonging to an invalid access structure set
S.
As noted in [JRS17], IND-security is a natural notion of security for ThFHE, and is
implied by the simulation security definitions in prior works [MW16, BGG+18]. As is
the case for many other cryptographic primitives (e.g., functional encryption [BSW11]),
indistinguishability-based security suffices for real-world applications (e.g., it suffices for the
application presented subsequently as part of our case study in Section 6). Hence, we adopt
this definition from [JRS17] for our work, and prove the security of our proposed ThFHE
scheme under this definition.

Notably, the IND-security definition allows us to port existing technical machinery for
Rényi divergence-based analysis of other lattice-based cryptosystems [BLRL+18] to the
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context of threshold FHE (unfortunately, the original simulation security definition from
prior works [MW16, BGG+18, CCK23] is not amenable to such techniques). Rényi diver-
gence has previously been applied to achieve better parameter choices, particularly in case
of search problems, for e.g., [ASY22,BLRL+18,BGM+16]. Applying Rényi divergence in
the context of distinguishing problems is not straightforward. However, in this work, we
can use techniques from [BLRL+18] to argue that for any ThFHE scheme, as long as the
adversary’s views of the real and simulated partial decryptions in our security game are
publicly sampleable and have a bounded Rényi divergence, it cannot distinguish between
encryptions of m0 and m1 with non-negligible probability without breaking the original
semantic security guarantees of underlying FHE scheme. Looking ahead, for our proposed
ThFHE scheme, we can achieve the desired bounds on the Rényi divergence while only using
a polynomial modulus-to-noise ratio, which is the technical crux of our contribution. On the
contrary, it is seemingly hard to achieve the original notion of simulation security proposed
in [MW16,BGG+18,CCK23] without a superpolynomial modulus-to-noise ratio.

Relation with IND-CPAD Security of Approximate FHE. A (seemingly) related
notion of IND-CPAD security emerged in order to make approximate homomorphic encryp-
tion schemes secure against a specific key-recovery attack [LM21], which exploits the fact
that a decryption oracle access to the adversary for the honestly generated ciphertexts helps
it to retrieve the ciphertext noise in this scenario. However, the notion of IND-CPAD se-
curity reduces to IND-CPA security for the exact homomorphic schemes [LM21]. And as
we deal with exact fully homomorphic encryption schemes (albeit in the threshold setting),
we do not provide exactly that decryption oracle access (for honestly generated cipher-
texts) to the adversary. Instead, we allow the adversary to query for honest parties’ partial
decryption on honestly generated ciphertexts with proper constraints as described in the
game GThFHE,A,At,T

(1λ, 1d). Therefore, though both definitions are augmented from stan-
dard IND-CPA security, there are crucial differences in the settings that seemingly make
them orthogonal. For IND-CPAD, the entire secret key is in one place and the decryption
oracle performs the entire decryption and then returns an erroneous plaintext, whereas, in
the IND-secure security definition, a partial decryption oracle just returns a (possibly noisy)
partial ciphertext computed using a share of the key. One may notice that a special case
of IND-secure security, where there is only one party (essentially a centralized FHE) coin-
cides with the standard IND-CPA, as we are in the exact setting. However, as long as the
secret key is shared between more than one party, IND-secure security appears to become
orthogonal to IND-CPAD, despite high-level similarities in terms of allowing decryption.1

3.4 Linear Integer Secret Sharing Scheme (LISSS)

In this work, we base our constructions and software implementation of Threshold FHE on a
special class of secret sharing schemes called Linear Integer Secret Sharing Scheme (LISSS)
defined below.

Definition 3 (LISSS). Let P = {P1, . . . , PT } be a set of parties, and let S be a class of
efficient access structures on P. A secret sharing scheme SS with secret space K = Zp

for some prime p is called a linear integer secret sharing scheme (LISSS) if there exist the
following algorithms:

1Though we do not provide formal proof of orthogonality, one can observe that, as long as the secret key
is shared, it is not clear how a reduction can work.
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• SS.Share(k ∈ K,A): There exists a matrix M ∈ Zd×e
p with dimensions determined

by the access structure A ∈ S called the distribution matrix, and each party Pi is
associated with a partition Ti ⊆ [d]. To create the shares on a secret k ∈ K, the sharing
algorithm uniformly samples ρ2, . . . , ρe ← Zp, defines a vector s = (s1, . . . , sd)

T = M ·
(k, ρ2, . . . , ρe)

T, and outputs to each party Pi the corresponding set of shares sharei =
{sj}j∈Ti .

• SS.Combine({sharei}Pi∈P): For any qualified subset of parties P ∈ A, there exists a
set of efficiently computable “recovery coefficients” {cj}j∈∪Pi∈PTi

, such that∑
j∈∪Pi∈PTi

cj ·M[j] = (1, 0, . . . , 0),

where M[j] denotes the j-th row of the matrix M described earlier. Then, the final
secret k can be re-computed using these recovery coefficients as

k =
∑

j∈∪Pi∈PTi

cj · sj .

Definition 4 ({−1, 0, 1}-LISSS). Let P = {P1, . . . , PT } be a set of parties, and let S be a
class of efficient access structures on P. Any LISSS scheme SS = (SS.Share,SS.Combine)
as defined above is a {−1, 0, 1}-LISSS if it is guaranteed that for any set of “recovery coeffi-
cients” {cj} generated by SS.Combine (on input the set of shares corresponding to a qualified
subset of parties P ∈ A for an access structure A ∈ S), we must have cj ∈ {−1, 0, 1}.

In this paper, we use a special instance of {−1, 0, 1}-LISSS, called the Benaloh-Leichter
LISSS [DT06]. We expand more on Benaloh-Leichter LISSS in Section 4.3.

4 Our Proposal: Torus-FHE with Threshold Decryption

In this section, we present our construction of first practical threshold FHE. We introduce
two protocols - threshold secret sharing of the decryption key and threshold decryption,
to realize our final ThFHE. Along the way, we describe our two main theoretical contri-
butions - an extension of the standard LISSS secret sharing scheme due to Benaloh and
Leichter [DT06] to support the secret key structure which consists of binary polynomials,
and the usage of Rényi Divergence based analysis to achieve only a small polynomial blowup
in the noise level for our proposed threshold ThFHE built upon Torus-FHE scheme. We first
describe the generic decryption algorithm of any Ring-LWE based FHE scheme and then
build its thresholdized construction. Our security proofs rely on the hardness of the LWE
problem in the ring setting with binary secrets.

Remark. We remark here that our threshold decryption technique can, in fact, be gen-
eralized to any lattice-based encryption scheme where the decryption procedure involves
computing a linear function of the secret key (in particular, Regev-style decryption based
on computing an inner-product of the ciphertext vector and the secret key vector). How-
ever, since our concrete goal is to realize a threshold version of the Torus-FHE scheme
from [CGGI20], we keep our theoretical discussion aligned with the Torus-FHE scheme (and
the Torus-FHE library) for ease of exposition.
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4.1 Decryption in Torus-FHE

For ease of exposition, we start with describing the generic decryption algorithm of a Ring-
LWE based Torus-FHE scheme over a message space M = T[X]/(XN + 1). We assume
TRLWE to be an instantiation of such a scheme, represented by a tuple of PPT algorithms
as follows,

TRLWE = (TRLWE.Gen,TRLWE.Enc,TRLWE.Eval,TRLWE.Dec).

The scheme has two fixed parameters N and k to denote size of polynomials and number of
polynomials respectively. The secret key (say, SK) in TRLWE has the following structure
with SKi,j ∈ {0, 1} ∀1 ≤ i ≤ k, ∀1 ≤ j ≤ N ,

SK =

 N∑
j=1

SK1,jx
j−1, . . . ,

N∑
j=1

SKk,jx
j−1

 .

The ciphertext in TRLWE can be written as CT = (A,B), where B =
∑k

i=1A[i]·SK[i]+m+e.
Here m is the underlying plaintext and A can be represented as the following with each
Ai,j ∈ T,

A =

 N∑
j=1

A1,jx
j−1, . . . ,

N∑
j=1

Ak,jx
j−1

 .

Also, A[i] ·SK[i] is the polynomial multiplication between ith polynomial of A and ith poly-
nomial of SK modulo (xN +1). In order to avoid notational complexity, we will henceforth

use A · SK to denote
∑k

i=1A[i] · SK[i] in the paper. And, e =
∑N

j=1 ejx
j−1 is RLWE noise

polynomial with each ej ← G, where G is a Gaussian distribution.

We focus on distributed decryption of a Ring-LWE ciphertext and rely on a public key
adaptation [Rot11] of underlying FHE scheme to perform the encryption and evaluation
operations. Hence we do not discuss those algorithms (TRLWE.Enc, TRLWE.Eval) here. We
discuss the original decryption algorithm TRLWE.Dec first, we modify it later in order to
support threshold decryption.
TRLWE.Dec(SK,CT): Given the secret key SK and a ciphertext CT = (A,B), the decryp-
tion algorithm proceeds in two steps as follows:

• TRLWE.Decode0(SK,CT): On input ciphertext CT and secret key SK, this step of
the decryption calculates Φ = B − A · SK, which is equal to m + e. Here, m is the
underlying plaintext and e is a Torus ring-LWE noise polynomial.

• TRLWE.Decode1(Φ): This final step rounds up each of the N coefficients of Φ to return
the “exact” coefficients of the plaintext message m.

The security of TRLWE follows from the hardness of the Binary Ring Learning with Errors
(BRLWE) problem (see Section 3 for the formal definition). Note that although a reduction
from binary LWE to LWE exists [Mic18], a reduction for its ring-variant is not yet known;
nonetheless, binary RLWE is widely [BBPS19,BD20] believed to be computationally hard.

Our main contribution is a proposal for thresholdizing the decryption of the aforementioned
TRLWE scheme. We discuss the specific case of (T, T )-threshold decryption and its security
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analysis based on Rényi Divergence in subsequent sections. We provide the generalized
(t, T )-threshold decryption construction in Section 4.4, and related the security analysis in
Section 4.6.

4.2 Achieving (T, T )-Distributed Decryption

Let us assume P = {P1, . . . , PT } is the set of T parties and they are willing to perform
TRLWE.Dec on a Torus Ring-LWE ciphertext CT = (A,B) in a distributed way. We are
in the dealer-based model, i.e., we assume that a trusted dealer uses some secret sharing
algorithm to distribute the Torus Ring-LWE secret SK to each Pi as SHi, such that SK =∑T

i=1 SHi. In this context, each Pi ∈ P individually performs the following steps:

• TRLWE.PartialDec(SHi,CT): On input of the secret share SHi and the ciphertext
CT = (A,B), this algorithm generates partially decrypted ciphertext part decrypti =
A · SHi + eism. Here, eism is the smudging noise polynomial added by Pi, where each
coefficient of eism is sampled from the Gaussian smudging noise distribution Gsm (we
expand on the smudging noise subsequently in Section 4.5). The partial decryption
part decrypti is then broadcast to the rest of the (T − 1) parties.

• TRLWE.Combine({part decrypti}i∈[T ],CT): This algorithm takes as input of all the
partially decrypted ciphertexts part decrypti (where i ∈ [T ]) and the ciphertext CT =

(A,B), and combines them as Φ = B−
∑T

i=1 part decrypti. Note that Φ is essentially(
m+ e−

∑T
i=1 e

i
sm

)
.

• TRLWE.Decode1(Φ): On input of the phase Φ, each of its N coefficients are rounded
up to retrieve N coefficients of the message m.

Clearly, this (T, T ) distributed decryption is very specific, as participation of each party is
mandatory to perform a distributed decryption. Next, we generalize this to (t, T ) threshold
decryption for any 0 < t < T . Our proposal relies on a (t, T ) threshold secret sharing, which
is an extended version of the original Benaloh-Leichter LISSS [DT06] and is elaborated in
Section 4.3.

4.3 Extending Benaloh-Leichter LISSS

We next aim to generalize the aforementioned threshold decryption protocol to support
(t, T )-threshold decryption for any t ≤ T , which requires an appropriate LISSS (see Sec-
tion 3.4) to support (t, T )-threshold secret sharing. For this purpose, we resort to using
Benaloh-Leichter LISSS [DT06], as it supports efficient final combination of partial decryp-
tions, in contrast to multiplying partial decryptions with large Lagrange coefficients while
using Shamir’s secret sharing [Sha79], that leads to noise-blowup in the ciphertext and
incorrect decryption. Original scheme shares a scalar secret, but the secret of TRLWE is
composed of k number of N -sized binary polynomials as described in Section 4.1. Hence,
we propose an extended Benaloh-Leichter (t, T )-threshold secret sharing scheme to support
Torus-RLWE secret key sharing. Let SK be the Torus-RLWE secret key, which is to be
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shared among T parties belonging to the set P = {P1, . . . , PT }. We first describe some
pre-processing steps required for (t, T )-threshold secret sharing.

Formation of Distribution Matrix M. Formation of distribution matrix M depends
upon the monotone Boolean formula (MBF1), representing a (t, T )-threshold access struc-
ture. Also, any MBF, being a combination of AND and OR of Boolean variables, we are
able to construct distribution matrix of any monotone Boolean formula by taking care of
the following three cases:
A Boolean variable. Ik, the identity matrix of dimension k, represents the distribution
matrix of each Boolean variable xi.

AND-ing of two MBFs. Let us suppose, matrix Mfa and Mfb are the distribution
matrices for MBFs fa and fb respectively and have dimension da×ea and db×eb respectively.
Then we form Mfa∧fb to represent fa ∧ fb as follows:

cka cka Ca 0
0 ckb 0 Cb

Here, cka and ckb denote first k columns and Ca and Cb denote the rest of the columns of
Mfa and Mfb respectively. Resulting Mfa∧fb has dimension (da + db)× (ea + eb).

OR-ing of two MBFs. Assuming matricesMfa andMfb of dimension da×ea and db×eb
respectively to be the distribution matrices for Boolean formula fa and fb respectively. Then
we form Mfa∨fb of dimension (da + db)× (ea + eb − k) to represent fa ∨ fb as following:

cka Ca 0
ckb 0 Cb

Here, cka and ckb denote first k columns of Mfa and Mfb respectively. Ca and Cb denote the
rest of the columns of Mfa and Mfb respectively.
It can be easily verified that, the distribution matrix M for (t, T )-threshold secret sharing
has dimension d× e, where d =

(
T
t

)
kt and e = (

(
T
t

)
kt− (

(
T
t

)
− 1)k).

Formation of Share Matrix ρ. Though ρ is a vector in the original scheme [DT06], in
our extended version, ρ is a matrix with dimension e × N . Its first k rows are populated
from the coefficients of k binary polynomials in SK. The rest of the rows of the matrix are
filled uniformly randomly from {0, 1}.
Sharing. We provide the secret sharing algorithm in Algorithm 1. The number of t-
sized subsets of P is

(
T
t

)
. We enumerate over all these subsets and tag each of them with

corresponding enumerating serial number and call it the group id. Once the sharing process
is complete, each party Pi gets

(
T−1
t−1

)
number of key shares to store, for each possible t-sized

group, that Pi can belong to. To differentiate among these key shares, we tag each key share
with following two attributes:

• party id: refers to which party the key share belongs to.

• group id: refers to the t-sized group for the key share.

1By MBF, we refer to Boolean formulae having a single output and consisting of only AND and OR
combination of variables.
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Algorithm 1 t-out-of-T Secret Sharing

1: function ShareSecret(t, T,M, ρ, d, k)
2: shares←M · ρ
3: row ← 1
4: while row ≤ d do
5: gid← ⌈row/kt⌉
6: pt← findParties(gid, t, T )
7: for i = 1 to t do
8: rowcount← row + (i− 1)k
9: curr share← TRLweKey() ▷ New TRLWE Key

10: for j = 0 to k − 1 do
11: curr share[j]← shares[rowcount+ j]

12: cur share.party id← pt[i− 1]
13: cur share.group id← gid

14: row ← row + kt

Total d =
(
T
t

)
kt rows of shares matrix, produces

(
T
t

)
t number of key shares, each tagged

with specific group id and party id. The findParties(gid, t, T) procedure in Algorithm 1,
returns a list of party ids present in gidth t-sized group(subset) of P.

Reconstruction. Any t-sized group of parties should be able to reconstruct SK, with the
help of the key shares, they have. Given a t-sized group P ′ = {P ′

1, P
′
2, . . . , P

′
t} ⊂ P, each

of the t parties will have one key share with group id corresponding to P ′. Let us denote
these t key shares as {SH1, SH2, . . . , SHt}. We observe (Appendix A) that exactly one
share among them will have non-binary coefficients in its k polynomials. We call the party,
having non-binary key share, the group leader of the t-sized group. In any t-sized group, the
party with minimum value of party id is the group leader.
Now, without loss of generality, let us assume P ′

1 is the group leader of P ′ and its non-binary
key share is SH1. Then the secret S can be reconstructed as: SK = SH1 −

∑t
i=2 SHi.

Hence, recovery coefficient c1 is 1 for the group leader and ci is −1 for each of other (t− 1)
parties. We exploit this reconstruction property in final combination stage of (t, T )-threshold
decryption technique.

Size of Secret Shares. After applying (t, T )-threshold secret sharing on SK, each party
gets

(
T−1
t−1

)
key shares to store. For any t-sized group, the group leader’s share size (in number

of bits) is upper bounded by ⌈log2 t⌉ ·N · k, and each of the other (t− 1) parties has share
of size exactly N · k bits. This can be proved by close observation of the secret shares (See
Appendix A).

4.4 Generalized (t, T )-Threshold Decryption Protocol

In this section, we describe the generalized (t, T )-threshold decryption algorithm for our pro-
posed threshold Torus-FHE. Here, we use the extended version of Benaloh-Leichter LISSS,
proposed in Section 4.3 to share the secret key across the various parties (as opposed to a
simple additive sharing in the (T, T )-case in Section 4.2). Consequently, we need to mod-
ify the TRLWE.PartialDec and TRLWE.Combine algorithms to enable correct and efficient
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decryption by any t′-sized subset of the T parties for t′ ≥ t.
Let P = {P1, . . . , PT } be any set of T parties and let P ′ = {Pid1

, . . . , Pidt
} ⊂ P be a t-sized

subset of P with group id j, authorized to threshold-decrypt a ciphertext CT = (A,B). Also,
without loss of generality, let us assume id1 < · · · < idt, so that Pid1

is the group leader of
P ′.

We begin by assuming that all of the T parties in P have already received their key shares
after successful execution of the (t, T )-threshold secret sharing scheme on SK (Section 4.3).
Hence, each Pidi

∈ P ′ has exactly one key share corresponding to group id j. We denote
these t key shares as {SHid1,j , . . . , SHidt,j}. Let us recall from Section 4.3 that,

SK = SHid1,j −
t∑

i=2

SHidi,j .

The threshold decryption of CT consists of the following steps, performed by each Pidi
∈ P ′

individually:

• TRLWE.PartialDec(SHidi,j ,CT): On input Torus Ring-LWE ciphertext CT and a key
share SHidi,j , Pidi

calculates the following:

part decryptidi
= A · SHidi,j + eidi

sm,

where eidi
sm is a smudging noise polynomial and each coefficient of eidi

sm is sampled from
a Gaussian smudging noise distribution Gsm. Then, Pidi

broadcast part decryptidi
to

rest of the (t− 1) parties.

• TRLWE.Combine({part decryptidi
}i∈[t],CT): On input all t partial decryptions, each

party calculates the phase

ϕ = B − (part decryptid1
−

t∑
i=2

part decryptidi
),

where ϕ equals m+ e− eid1
sm +

∑t
i=2 e

idi
sm.

• TRLWE.Decode1(ϕ): Each of the N coefficients of ϕ is rounded up to extract the
coefficients of the message m.

Properties. The correctness and compactness of the proposed (t, T )-threshold decryption
scheme directly follows from the proofs of threshold-FHE scheme mentioned in Section 3.3.
Its proof of security is presented in Section 4.6.

4.5 Polynomial Modulus-to-Noise Ratio via Rényi Divergence

We now elaborate on our main theoretical contribution, namely, achieving a polynomial
modulus-to-noise ratio (i.e. a polynomial ratio between the modulus q and the Ring LWE
noise e) for our proposed threshold version of Torus-FHE (abbreviated as TRLWE henceforth)
via: (a) a novel usage of Gaussian smudging noise during partial decryption (as described
earlier in Section 4.2 and Section 4.4), and (b) application of Rényi Divergence for distin-
guishing problems with public sampleability property to prove the security of our proposed
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Threshold FHE scheme TRLWE (under our proposed security definition in Section 3.3) as
well as to get efficient choice of parameters for the scheme.

Our Approach: Rényi Divergence-based Analysis of Smudging Noise. In this
paper, due to our novel approach of using Gaussian smudging noise and then using a Rényi
Divergence based analysis akin to that of [BLRL+18, TT15] as opposed to the statistical
distance based analysis used in prior works [MW16,BGG+18,CCK23], it suffices to sample
the smudging noise from a Gaussian distribution with standard deviation only polynomially
larger than the standard deviation of the Gaussian distribution pertaining to the RLWE
noise. As a result, from a theoretical point of view, we obtain the first practical ThFHE
scheme with polynomial modulus to noise ratio. From an implementation point of view, it
leads to a massive improvement in the practical performance of our prototype implementa-
tion in software (presented in Section 5). We expand on our approach below.

Analyzing (T, T )-Distributed Decryption. For the ease of exposition, we now describe
the Rényi Divergence-based analysis of our proposed distributed decryption protocol for
TRLWE for the special case of (T, T )-distributed decryption (described originally in Sec-
tion 4.2). We defer the analysis of the more general case of (t, T )-threshold decryption to
Section 4.6.

The Adversarial Model. Recall from Section 4.2 that for the case of (T, T )-distributed
decryption, the Torus Ring-LWE secret SK is linearly secret-shared across {P1, . . . , PT }
as SK =

∑T
i=1 SHi, where party Pi holds the secret key share SHi. Now consider a

scenario where, as per our security definition in Section 3.3, an adversary A corrupts all
but one party (say party P1 without loss of generality), and gains access to the secret key
shares of all of the corrupted parties (i.e., SH2, . . . , SHT ). Keeping analogy to our security
definition, assume that A chooses two set of plaintexts M0 = {M0

i }i∈[ℓ] and M1 = {M1
i }i∈[ℓ]

and receives a challenge set of honest encryptions CT⋆ = {CT⋆
i }, which is component-wise

encryption of either M0 or M1.

Now suppose that A issues Q-many partial decryption queries. In each query, it provides
a new circuit C of bounded depth to a challenger with a constraint that C({M0

i }i∈[ℓ]) =

C({M1
i }i∈[ℓ]). The challenger computes a resultant ciphertext ĈT = (A,B) by homomor-

phically evaluating C on the set CT⋆. The adversary A is then allowed to see the par-

tial decryption of ĈT by the honest party P1, computed (in the “real” security game) as
part decrypt1 = A ·SH1+esm, where esm is the smudging noise polynomial added by party
P1 (each coefficient is sampled from a Gaussian distribution Gsm with standard deviation
σ).

“Simulating” an Honest Partial Decryption. We now construct a simulator S that

“simulates” a partial decryption of ĈT on behalf of the honest party P1 without the knowl-
edge of the partial decryption key SH1, but simply from the knowledge of the underlying
plaintext m and the knowledge of the corrupted partial decryption keys {SHj}j∈[2,T ]. Be-
fore delving into the description of the simulator S, we briefly motivate the construction of
such a simulator S. Observe that S has no additional information beyond what A already
knows. So, A is not able to distinguish CT0 from CT1, i.e., the component-wise encryption
of two set of plaintexts M0 and M1 of its choice, due to the hardness of Binary Ring-LWE
assumption, on which the original Torus-FHE scheme relies.

We now construct the simulator S as follows. Given the ciphertext ĈT = (A,B), its un-
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derlying plaintext message m, and the corrupted partial decryption keys {SHj}j∈[2,T ], the
simulator S outputs a “simulated” partial decryption

part decryptSim1 = B −m−
T∑

i=2

A · SHi + esm,

where esm is a smudging noise polynomial (again, each coefficient of this polynomial is
sampled from a Gaussian distribution Gsm with standard deviation σ). Now, observe that,

letting γ = B −m−
∑T

i=2A · SHi, we have

part decrypt1 = γ − e+ esm, part decryptSim1 = γ + esm,

where e is the RLWE noise polynomial embedded in ĈT.

Rényi Divergence-based Analysis. Let η be the set of fixed parameters instantiating
the security game described in Section 3.3 as follows.

η = (PK,SK, {SKi}i∈[T ],M0,M1, {Ci}i∈[Q]).

Let a distribution

Dη
b (r) = (PK, {SKi}i∈[2,T ],M0,M1,CTb, {ĈT

b

i}i∈[Q], {pbi}i∈[Q])

represent the view of the adversary, when the challenger C samples bit b in the challenge
phase. The set of noise values r = {ri}i∈[Q] is used in the computation of honest party P1’s
partial decryption pi = γ + ri and each ri is sampled either from distribution of (esm − e)
or from distribution of esm, depending on whether C provides real or simulated partial
decryptions to A. Let δ and δ′ denote the advantages with which A distinguishes Dη

0(r)
from Dη

1(r) in the presence of real or simulated partial decryptions respectively. Assuming
that the aforementioned distinguishing problems are “publicly sampleable” [BLRL+18], the

relation below follows from known results in [BLRL+18]: δ′ ≥ δ
4Ra(Ψ||Ψ′) ·

(
δ
2

) a
a−1 , where

Ψ and Ψ′ denote the distribution of (esm − e) and the distribution of esm respectively and
Ra(Ψ||Ψ′) is the Rényi divergence of order a between the distributions Ψ and Ψ′.

Arguing Public Sampleability. In order to invoke the aforementioned relation, we
first need to argue that the aforementioned distinguishing problems satisfy the notion
of public sampleability as defined in [BLRL+18]. Given a bit b′ ∈ {0, 1} and a sam-
ple x from Dη

b (r), we can publicly sample a fresh element x′ of Dη
b′(r) by (i) replac-

ing CTb of x with CTb′ = {TRLWE.Enc(PK,M b′

j )}j∈[ℓ], (ii) replacing {ĈT
b

i}i∈[Q] with

{ĈT
b′

i }i∈[Q] = {TRLWE.Eval(PK, Ci,Mb′)}i∈[Q] and, (iii) replacing the last component

{pbi}i∈[Q] with {pb
′

i }i∈[Q] such that pb
′

i = γ + ri. Here, computation of γ requires the knowl-

edge of ĈT
b′

i . Thus we can publicly generate a new sample x′ from distribution Dη
b′(r).

Hence Dη
b (r) is indeed publicly sampleable.

Completing the Proof. We can now invoke known results from [TT15] and the multi-
plicative property of Rényi Divergence to argue that for any a ∈ (1,∞), we have,

Ra(Ψ||Ψ′) ≤ exp

(
a · π ·N · ∥e∥2∞

σ2

)
,
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where ∥e∥∞ denotes the infinity norm of the degree (N − 1)-RLWE noise polynomial e.
Assuming that ∥e∥∞ ≤ cα, where c is some constant and α is the standard deviation of

Gaussian RLWE noise distribution G, we have, Ra(Ψ||Ψ′) ≤ exp
(

a·π·N ·c2·α2

σ2

)
.

Finally, for the scenario where the adversary A sees a maximum of Q = poly(λ) such partial
decryption samples, we invoke the multiplicative properties of Rényi Divergence to state the
following:

Ra(Ψ||Ψ′) ≤ exp

(
a · π ·Q ·N · c2 · α2

σ2

)
.

Parameter Choices (Lower Bounds). At this point, we are ready to propose the asymp-
totic parameter choices for our ThFHE scheme TRLWE supporting (T, T )-threshold decryp-
tion. Assume that the adversary A sees at most Q = poly(λ) partial decryption samples,
let σ and α be the standard deviation parameters for the Gaussian distributions pertaining
to the smudging noise and RLWE noise, respectively, and let c be a constant such that
|e| ≤ cα (e being the RLWE noise polynomial). It suffices for us to choose σ such that

σ ≥ c · α ·
√
Q ·N,

since this yields Ra(Ψ||Ψ′) ≤ exp (a · π), and hence

δ′ ≥ δ

4
·
(
δ

2

) a
a−1

· exp(−a · π).

Taking any value of a > 1 yields the desired condition on δ and δ′, i.e., non-negligible δ
would result in non-negligible δ′. Note that it suffices for σ to be only polynomially larger
than α. Hence, our scheme is secure whenever σ ≥ c · α ·

√
Q ·N .

Parameter Choices (Upper Bounds). It remains to answer the question of upper bound-
ing the amount of smudging noise that each party can add, and here we allow the maximum
possible smudging noise that does not affect the correctness of the distributed decryption
protocol. Formally, let q = 2λ1 be the TRLWE modulus (or equivalently, suppose that the
Torus-FHE scheme supports a maximum precision of λ1 bits) and let p = 2λ2 be the size of
the space of message-polynomial coefficients (or equivalently, suppose that the Torus-FHE
scheme supports message-polynomial coefficients with a precision of λ2 bits) such that p ≤ q.
At a high level, to ensure the correctness of (T, T )-distributed decryption, we need the total
noise to be upper bounded by ∆/2, where ∆ = q/p = 2λ1−λ2 . More formally, for correctness
of (T, T )-distributed decryption to hold, we must have ∥e∥∞ + T · ∥esm∥∞ < ∆/2, where
∥ · ∥∞ denotes the infinity norm of some polynomial. Since ∥esm∥∞ > ∥e∥∞ (by the lower
bound argument presented above), we choose

∥esm∥∞ < ∆/2(T + 1).

Combined with the lower bounds imposed by the Rényi divergence-based security analysis
presented earlier, we thus avoid the super-polynomial modulus-to-noise ratio (ratio between
modulus q and any coefficient of RLWE noise polynomial e) incurred by all prior works on
ThFHE, thereby yielding the first practical ThFHE scheme with polynomial modulus-to-noise
ratio.
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4.6 Analysis of Generalized (t, T )-threshold FHE

In this section, we prove the correctness and security of our proposed (t, T )-threshold FHE
scheme. Concretely, we prove that our proposed (t, T )-threshold decryption mechanism
satisfies the notion of IND-security described in Section 3.3 (adopted from [JRS17]). Our
security analysis uses a generalized version of our Rényi divergence-based proof argument
outlined earlier in Section 4.5. This section also presents a detailed discussion on the asymp-
totic choice of noise parameters for our proposed scheme, with upper bounds on the smudging
noise imposed by our correctness analysis, and (more crucially) polynomial lower bounds
on the smudging noise derived from our Rényi divergence-based security proof.

4.6.1 Correctness of (t, T )-Threshold Decryption

In this section, we discuss the upper bounds for the different noise parameters in order to
ensure the correctness of our proposed (t, T )-threshold decryption procedure.

Some Notations. Let us assume q = 2λ1 to be the modulus in TRLWE and |M| = p = 2λ2

to be size of the space of coefficients of message-polynomial such that p ≤ q. Now, let
∆ = q

p = 2λ1−λ2 denote the distance between two consecutive value of a message coefficient
in M. Note that we assume ∆ = 1 throughout the paper, as in Torus-FHE library λ1 =
λ2 = 32 have been considered.

TRLWE noise. When applying TRLWE.Decode0 on a TRLWE ciphertext CT = (A,B),
we effectively compute Φ = B − A · SK, which essentially equals ∆ ·m+ e. Now, ∆ being
a constant we can rewrite Φ as

∑N−1
i=0 (∆ ·mi + ei)x

i. Next, we round up and approximate

each coefficient of Φ during TRLWE.Decode1 as ∆ · mi + ei
round−−−−→ ∆ · mi

approximate−−−−−−−−→ mi.
For correctness, we need |ei| < ∆/2.

Smudging noise. The parties eventually combine their own partial decryptions in order
to compute an unmasking component part decryptf . Without loss of generality, for party
P1, part decryptf is computed as:(

A · SH1 −
t∑

j=2

A · SHj + e1sm −
t∑

j=2

ejsm

)
.

The final message recovery step proceeds as:

B − part decryptf = ∆ ·m+ e−
(
e1sm −

t∑
l=2

elsm

)
.

Here, e = e0 + e1x + · · · + eN−1x
N−1 is the RLWE noise polynomial and eism = eism,0 +

eism,1x + · · · + eism,N−1x
N−1 is the smudging noise polynomial added by party Pi. Hence,

for correct decryption, the following condition should hold for each z ∈ [0, N − 1]:

|ez − e1sm,z +

t∑
l=2

elsm,z)| <
∆

2
.
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Let ∥e∥∞ and ∥esm∥∞ denote the infinity norms of the RLWE noise polynomial e and the
smudging noise polynomial esm, respectively. Then, we must have:

∥e∥∞ + t · ∥esm∥∞ < ∆/2.

Since ∥esm∥∞ > ∥e∥∞ (by the lower bound argument presented above), it suffices to choose
∥esm∥∞ < ∆/2(t+ 1).

4.6.2 IND-Security of (t, T )-Threshold Decryption

Let us recall the (t, T )-threshold decryption technique of Section 4.4 for TRLWE, a Torus-
FHE instantiation introduced in Section 4.1. Also, recall the notion of security in the form of
a game between adversary A and challenger C from Section 3.3 with respect to our proposed
threshold FHE scheme TRLWE.

A Close Look at Partial Decryptions. First, we take a close look at the partial de-
cryption component returned by the challenger C in the partial decryption query phase of
the security game. We allow the corrupted subset S in the security game to be of maximal

size, i.e., |S| = (t− 1). Let us assume ĈTi to be the ith evaluated ciphertext during partial

decryption query phase, i.e., ĈTi is obtained by homomorphically evaluating Ci on the set
of inputs CT⋆ = {CT⋆

j}j∈[ℓ] for some i ∈ [Q]. Here, CT⋆ = {CT⋆
j}j∈[ℓ] is the challenge set

returned to the adversary in the challenge phase of the security game. A partial decryption

of ĈTi = (Âi, B̂i) by some honest party Pj /∈ S corresponds to a t-sized group Pj

⋃
S with

group id g and we denote it with pi,j . Challenger C computes pi,j as follows,

pi,j = Âi · SHj,g + esm,

where SHj,g is Pj ’s secret share corresponding to group id g and esm is a smudging noise
polynomial with each coefficient sampled from Gsm. However using the linear reconstruction
property of Benaloh-Leichter {0, 1}-LISSS (Section 4.3), we can alternatively express pi,j as
following,

pi,j = B̂i −mi − e−
∑
Pk∈S

Âi · SHk,g + esm,

where e is the RLWE noise polynomial of ciphertext ĈTi with each of its coefficients sampled
from G, and mi is the expected output of the circuit Ci in plaintext, i.e., Ci(m

0
1, . . . ,m

0
ℓ) =

Ci(m
1
1, . . . ,m

1
ℓ) = mi. Letting γi = B̂i −mi −

∑
Pk∈S Âi · SHk,g, we get

pi,j = γi + ri,j ,

such that ri,j is sampled from distribution of (esm − e).
We can publicly simulate the partial decryption by some honest party Pj /∈ S as follows,

p′i,j = γi + r′i,j ,

where r′i,j is sampled from distribution of esm.

Defining Some Distributions. Recall the security game between the challenger C and
the adversary A in Section 3.3 with respect to our proposed scheme TRLWE. Let η is the
set of some fixed parameters in a particular instance of the game as follows,

η = (PK,SK, {SKi}i∈[T ],S,M0,M1, {Ci}i∈[Q]).
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Algorithm 2 Public Sampling Algorithm PS

Input:

x = (PK, {SKi}Pi∈S ,M0,M1,CTb, {ĈT
b

i}i∈[Q], {pbi,j}i∈[Q],Pj /∈S), b
′ ∈ {0, 1}.

Output: x′ ∈ Dη
b′(r).

1: Compute a new challenge set CTb′ , which is component-wise fresh encryption of Mb′ .

2: For each i ∈ [Q], generate an evaluated ciphertext ĈT
b′

i = (Âb′

i , B̂
b′

i ) =
TRLWE.Eval(PK, Ci,CTb′).

3: For each i ∈ [Q], first compute γi = B̂b′

i −mi −
∑

Pk∈S(Â
b′

i · SHk,g) and then for each

honest party Pj /∈ S, compute partial decryption pb
′

i,j = γi + ri,j . Here g is group id of
Pj

⋃
S.

4: Return a fresh sample x′ as,

x′ = (PK, {SKi}Pi∈S ,M0,M1,CTb′ , {ĈT
b′

i }i∈[Q], {pb
′

i,j}i∈[Q],Pj /∈S).

Let r = {ri,j}i∈[Q],Pj /∈S be a set of noise parameters. We define the distribution Dη
b (r)

parameterized by η as follows,

Dη
b (r) = (PK, {SKi}Pi∈S ,M0,M1,CTb, {ĈT

b

i}i∈[Q], {pbi,j}i∈[Q],Pj /∈S).

Here each component is analogous to the components described in GThFHE,A,At,T
(1λ, 1d) of

Section 3.3. Component CTb of Dη
b (r) denotes the scenario when the challenge set CT⋆ in

the game is component-wise encryption of Mb, i.e., CT
⋆
j = TRLWE.Enc(PK,M b

j ) for each
j ∈ [ℓ].

Public Sampleability of Dη
b (r). We argue the public sampleability [BLRL+18] of Dη

b (r)
by providing a public sampling algorithm PS in Algorithm 2. Given any sample

x = (PK, {SKi}Pi∈S ,M0,M1,CTb, {ĈT
b

i}i∈[Q], {pbi,j}i∈[Q],Pj /∈S),

from Dη
b (r) with unknown bit b and a bit b′, it generates fresh sample

x′ = (PK, {SKi}Pi∈S ,M0,M1,CTb′ , {ĈT
b′

i }i∈[Q], {pb
′

i,j}i∈[Q],Pj /∈S),

of Dη
b′(r) efficiently.

Note that the algorithm requires the knowledge of PK, the circuits {Ci}i∈[Q], the output
of the circuit evaluations in plaintext (i.e., {mi}i∈[Q], which is independent of bit b), the
noise samples {ri,j}i∈[Q],Pj /∈S and the secret shares of the corrupted parties in S. All these
information are publicly available and hence we can indeed publicly generate a valid sample
x′ ofDη

b′(r) efficiently. Hence we conclude that the distributionDη
b (r) is publicly sampleable.

Proof Outline. Notice that Dη
b (r) captures the view of the adversary in the security game

when the challenger C samples the bit b in the challenge phase and r = {ri,j} is the set
of noise values sampled from the distribution of esm − e and used in computing partial
decryptions {pi,j} for all i ∈ [Q] and Pj /∈ S. However in simulated world, we can simulate
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partial decryptions p′i,j = γi + r′i,j , by just sampling each r′i,j from the distribution of esm.
Let us denote a problem P as distinguishing a sample of Dη

0(r) from a sample of Dη
1(r)

and the problem P′ as distinguishing a sample of Dη
0(r

′) from a sample of Dη
1(r

′). Using a
novel Rényi divergence based analysis, we show that non-negligible distinguishing advantage
of problem P leads to non-negligible distinguishing advantage of problem P′. But due to
hardness of binary ring-LWE problem, no PPT adversary can distinguish CT0 from CT1

in the simulated world, as it gains no effective information about the actual secret shares of
honest parties by seeing the simulated partial decryptions. Thus distinguishing advantage
of problem P′ is already known to be negligible due to binary ring-LWE assumption. Now
by contradiction we conclude that the distinguishing advantage in P is negligible, making
our TRLWE a secure ThFHE scheme.

Rényi Divergence based Analysis. Recall from Theorem 4.2 of [BLRL+18], due to
public sampleability property of Dη

b (r), if there exists a τ -time distinguisher D for problem
P with distinguishing probability δ, then there must exists a distinguisher D′ for Problem
P’ with distinguishing probability δ′ with run-time τ ′, such that,

δ′ ≥ δ

4Ra(Ψ||Ψ′)
·
(
δ

2

) a
a−1

,

τ ′ ≤ 64

δ2
log(

8Ra(Ψ||Ψ′)

δa/(a−1)+1
)(τS + τ).

Here, τS is the run-time of public sampling algorithm for Dη
b (r). Also Ψ is the distribution

of (esm−e) and Ψ′ is the distribution of esm. Now, with the results from Lemma 5 in [TT15]
and multiplicative property of Rényi Divergence we argue that for any a ∈ (1,∞):

Ra(Ψ||Ψ′) ≤ exp

(
a · π ·N · ∥e∥2∞

σ2

)
,

where ∥e∥∞ denotes the infinity norm of the (N − 1)-degree RLWE noise polynomial e.
Assuming that ∥e∥∞ ≤ cα, where c is some constant and α is the standard deviation of
RLWE noise distribution G, we have

Ra(Ψ||Ψ′) ≤ exp

(
a · π ·N · c2 · α2

σ2

)
.

Finally, considering the scenario that the adversary A does Q = poly(λ) number of queries,
and thus is able to see a total of Q · (T − t+1) number of partial decryptions corresponding
to (T − t + 1) number of honest parties, we invoke the multiplicative properties of Rényi
Divergence from [TT15] to state the following:

Ra(Ψ||Ψ′) ≤ exp

(
a · π ·Q · (T − t+ 1) ·N · c2 · α2

σ2

)
.

Observe that it suffices for us to choose σ such that

σ ≥ c · α ·
√
Q · (T − t+ 1) ·N,

since this yields Ra(Ψ||Ψ′) ≤ exp (a · π), and hence:

δ′ ≥ δ

4
·
(
δ

2

) a
a−1

· exp(−a · π) = 1

2
·
(
δ

2

) 2a−1
a−1

· exp(−a · π).
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and for the run-time we have,

τ ′ ≤ 64

δ2
log(

8 · exp(a · π)
δa/(a−1)+1

)(τS + τ).

Hence the condition σ ≥ c·α ·
√
Q · (T − t+ 1) ·N (i.e., smudging noise is only polynomially

larger than RLWE noise) implies that, for any a > 1, non-negligible δ would result in
non-negligible δ′. This completes the proof of security for our proposed TRLWE scheme
supporting (t, T )-threshold decryption.

5 Software Implementation and Experimental Evalua-
tion

We now describe a prototype implementations of our (t, T )-threshold decryption scheme over
Torus-FHE on two extreme varieties of computing platforms - a high-end x86-based server,
and a low-end resource-constrained ARM-based platform1. We report the implementation
and performance of TRLWE, a public-key adaptation of the ThFHE scheme built upon Torus-
FHE library equipped with our proposed threshold decryption mechanism. Although Torus-
FHE library implements a symmetric-key version of the underlying FHE scheme, we use
the idea of [Rot11] to implement its public-key version and extend it to support threshold
decryption in order to get the desired implementation of TRLWE. We stress that this is,
to the best of our knowledge, the first practical implementation of any ThFHE scheme. In
particular, a concurrent work [BS23] that theoretically proposes a threshold FHE scheme
with polynomial modulus-to-noise ratio, do not report any implementation or performance
results to the best of our knowledge.

In our setting, the threshold secret sharing is done by a trusted cloud server with sufficient
computational resources. Subsequently, homomorphic evaluations also happen on encrypted
data stored at the cloud server. The key focus of our implementation is in realizing the
proposed threshold decryption algorithm on resource-constrained handheld devices; hence
our experiments and evaluation focus purely on the performance of our threshold decryption
implementation.

For the sake of completeness, we implement our threshold decryption algorithm on two
kinds of platforms, lying at two extreme ends of the spectrum of computational capabilities:
(a) a high-end workstation with an Intel(R) Xeon(R) CPU E5-2690 v4 CPU (2.60GHz clock-
frequency), 28 physical cores, and 128GB RAM, and (b) a low-end Raspberry Pi 3b board
with a Quad Core 1.2GHz Broadcom BCM2837 64bit CPU and 1 GB RAM running Raspberry
Pi OS Lite (Linux kernel version: 5.10.63-v7+).

Our first implementation is optimized for high performance and, as verified by our exper-
iments, yields extremely fast threshold decryption times. Our second implementation is
optimized for extracting maximum performance out of a low-end resource-constrained plat-
form, and yields reasonably practical threshold decryption times. Before describing our
evaluation, we present some more details of our implementation.

1Our implementation code and additional (low-level) implementation details are available at: https:

//anonymous.4open.science/r/ThFHE_artifacts-2FD3
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5.1 Implementation Details

We implement the natural public-key analogue of the Torus-FHE library which originally
implements a secret-key version, while leaving implementation of the homomorphic evalua-
tion unchanged. This makes our implementation cross-compatible with other libraries (e.g.,
NuFHE) that build directly upon Torus-FHE. Since our core contribution lies in thresh-
oldizing the decryption process, which only requires the secret key, we keep our discussion
limited to generating and sharing the secret key.

We extend the Torus-FHE library to support threshold key generation and threshold de-
cryption. We use the Torus-RLWE secret key generation routine to generate the secret key
with a set of parameters that is chosen by relying on our proposed Rényi divergence-based
security argument (see Section 4.6.1 for the detailed analysis). In particular, this analysis
enables a polynomial modulus-to-noise ratio, which crucially allows our implementation to
be practically deployable on a resource-constrained platform.

Once the key has been generated, we build the distribution matrix M and share matrix
ρ (see Section 4.3). The distribution matrix generation, when implemented directly in
software, results in a recursive implementation, which potentially results in high memory
access overheads, and is unsuitable for resource-constrained platforms. However we can
avoid these excess function call overheads and generate it iteratively in one go by exploiting
a regular pattern, as discussed in Appendix A.

For the partial and threshold decryption functions, we have two implementations. The
first implementation targets a high-end processor, and directly leverages Torus-FHE APIs
for fast polynomial multiplication using Fast Fourier Transform (FFT), as is required in
the partial decryption phase. The other is a portable implementation suited for low-end
resource-constrained handheld devices. In particular, the latter replaces the FFT polynomial
multiplication, which depends on x86 AVX instructions for efficiency, with a näıve school-
book multiplication. This is done to keep the implementation as architecture-agnostic and
lightweight as possible. In the porting process, we have removed multiple dynamic memory
allocation steps to achieve better memory efficiency. Also, our observation that each of the
participating parties except one receives a binary key share through (t, T )-threshold secret
sharing significantly contributes to reduce the cycle counts in polynomial multiplication in
both implementations.

5.2 Experimental Evaluation

In this section we validate our proposed threshold decryption technique by an implemen-
tation over Torus-FHE library and the steps involved are summarized in Algorithm 3. The
output of BootstrappedOR in step 3 here is a Torus-LWE ciphertext and we convert it to
a Torus-RLWE ciphertext in step 4, in order to support packing of multiple plaintext bits
together.

In accordance with our intended use-case, we experimentally evaluate steps 1 through 5 of
Algorithm 3 on a high-end server, and step 6 on both the high-end server and a low-end
resource-constrained handheld device. In particular, in our experiments we measure the
time taken by steps 5 and 6. Note that step 6 includes both partial decryption and final
combination. Table 1 lists the concrete parameters used in our experiments.
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Algorithm 3 Software implementation of cryptosystem with (t, T )-threshold decryption

Input: inp1 ∈ N, inp2 ∈ N, t ∈ N, T ∈ N, P ⊂ [1, T ] s.t |P| = t
Output: outp← inp1 ∨ inp2
1: (LweSK,LwePK)←LweKeyGen
2: cipher1 ←Encrypt(LwePK, inp1), cipher2 ←Encrypt(LwePK, inp2)
3: eval res← BootstrappedOR(cipher1, cipher2, LwePK)
4: (ring cipher,RLweSK)←ConvertLWEtoRLWE(eval res, LweSK)
5: ShareSecret(RLweSK, t, T ) ▷ Now all parties get their key shares. Each party
i ∈ P calculates outp on its own.

6: outp← ThresholdDecrypt(ring cipher,P, t, T, i)
7: return outp

Table 1: Parameters used in experimental setting

Parameter Value
k (Number of polynomials in Torus-LWE ciphertext) 1

n (Torus-LWE dimension) 1024
N (Degree of Torus-RLWE polynomial is (N − 1)) 1024
α (Standard deviation of Torus-RLWE noise) 2−25

σ (Standard deviation of smudging noise) 2−6

The choices for n, N and α are compatible with the Torus-FHE library. For smooth con-
version in step 4 of Algorithm 3, we fix k = 1. We choose the last parameter based on a
lower-bound given by our Rényi divergence based analysis and an upper-bound imposed by
correctness.

Figures 1 and 2 show the secret key sharing time, the partial decryption time, the final
decryption time, and the plain decryption time on a high-end workstation in terms of mil-
liseconds and clock cycles respectively, while Figures 3 and 4 show the partial and final
decryption times in milliseconds and clock cycle counts respectively on the low-end Rasp-
berry Pi 3b platform.

The partial decryption time in all the figures follow a constant trend as in our use case, it is
done parallelly in individual devices and the vector or polynomial sizes do not change with
the number of parties. We emphasize that, as a direct consequence of the efficient parameter
choices for threshold FHE enabled by our Rényi Divergence-based analysis, the threshold
decryption timing is practical even on a highly resource-constrained ARM-based platform.

Finally, Figure 5 shows that the time required for threshold decryption1 is only slightly
higher than that of plain decryption using the Torus-FHE library, for both the high-end
workstation and the resource constrained device. In other words, our proposed threshold
decryption procedure incurs only minimal overhead over the plain decryption algorithm
specified in the original Torus-FHE library. To the best of our knowledge, this is the

1We report the end-to-end threshold decryption time, wherein we add up the time for a single partial
decryption (since the partial decryption phase is meant to be done in parallel by each participating party)
and the time for the final re-combination of partial decryptions. Also, the overall threshold decryption time
is dominated by the former component, which is independent of (t, T ), and hence, the overall threshold
decryption time in Figure 5 grows only minimally with increasing (t, T ) values.
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Figure 1: Secret Sharing and Threshold Decryption Time in High-End Server. Note that the y-axis
is in logarithmic scale.
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Figure 2: Secret Sharing and Threshold Decryption Clock Cycles in High-End Server
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Figure 3: Threshold Decryption Time in Handheld device

first prototype of threshold FHE with the capability of executing the threshold decryption
algorithm practically on resource-constrained platforms.
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Figure 5: Time comparison between Plain Decryption and Threshold Decryption

6 Case-Study: Computing over Encrypted Medical Data

In this section, we use our proposed ThFHE scheme over the Torus to realize an end-to-
end usecase of outsourced computations over encrypted medical datasets, where the final
outcome is computed in a distributed manner by multiple entities (e.g. doctors, research
laboratories, or other medical practitioners). Concretely, we illustrate the efficacy of our
proposal via experiments evaluating encrypted computations over a real medical database,
as well as distributed decryptions of the computed result on resource-constrained handheld
devices, where both the encryption and distributed decryption operations are performed
using our proposed ThFHE scheme. We perform an encrypted K-Nearest Neighbours (KNN)
classification [SCK14] that outputs an encrypted prediction bit indicating the possibility of
cardiovascular disease. The classification is done based on a patient’s encrypted medical
records and pre-computed encrypted training data.

6.1 Encrypted KNN Computation

The encrypted KNN algorithm (Algorithm 4) takes as input: (a) an encrypted set of test
data, which is to be predicted, (b) an encrypted set of training data to train the KNN algo-
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Algorithm 4 KNN over encrypted medical data

Input: test data = Encrypt(k, test patient),
train data = {Encrypt(k, patient1), . . . ,Encrypt(k, patientn)},
bk = bootstrapping key, K = KNN parameter.

Output: decisional bit = Encrypt(k, predicted bit)
1: Initialize a Torus-LWE ciphertext array distant of size n
2: for i = 1 to n do
3: distant[i] ←Manhattan(test data, train data[i], bk)

4: sorted train data←BubbleSort(distant, train data, bk)
5: Initialize a counter ciphertext count = Encrypt(k, zero) to count the decision of K-

Nearest Neighbours
6: for i = 1 to K do
7: count← count+ Decision(sorted train data[i]))

8: Initialize a Torus-LWE variable threshold = Encrypt(k, ⌊K/2⌋)
9: decisional bit← Difference(threshold, count, bk)

10: return decisional bit

rithm, (c) the bootstrapping key bk, which is a part of public key and (d) KNN parameterK
to output an encrypted single prediction bit. Following the approach outlined in [RC19], we
sub-divide the encrypted KNN computation algorithm into three parts as described below.

Encrypted Manhattan Distance Computation. First, the encrypted Manhattan dis-
tances between the testing data and all the training data are homomorphically computed
and stored in the distant variable. The Manhattan distance is preferred over other dis-
tances to avoid the “curse of dimensionality” problem in machine learning [AHK01]. To
compute the difference between two ciphertexts (ThFHEDIFF between Encrypt(k, P lain1)
and Encrypt(k, P lain2)), we use the 2’s complement form representation.

Sorting over Encrypted Data. In this step, the neighbours are sorted in ascending or-
der based on the calculated distances. The encrypted-bubble-sort implementation directly
uses encrypted-comparison and sorting techniques from prior-works [RC19, CSS20, CS20,
ÇDSS15]. Our encrypted bubble sort implementation takes the bootstrapping key, the pa-
tient’s encrypted data and their corresponding encrypted Manhattan distances, and outputs
the sorted patient data based on these encrypted distances.

Prediction over Encrypted Data. The encrypted decision bits of KNN computation
are added to get Encrypt(k, count) (line 7, Algorithm 4), which is then compared homomor-
phically with the threshold value (Encrypt(k, ⌊K/2⌋)) to arrive at the (encrypted) decision.
The final plaintext decision is recovered via threshold decryption.

6.2 Experimental results

We consider a cardiovascular disease related dataset1 that comprises of 70000 data instances
and 12 features like age days, height, weight, ap lo (Diastolic Blood Pressure), ap hi (Sys-
tolic Blood Pressure), gender, cholesterol, glucose, smoke, alcohol, active, id, and cardio.

1https://www.kaggle.com/sulianova/cardiovascular-disease-dataset
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Table 2: Encrypted KNN execution time

K
Neighbour

size

Prediction
time

without
OpenMP

(in minutes)

Prediction
time with
OpenMP

(in minutes)

Prediction
time with
OpenMP

(cycle count
in 1012)

5

10 154.88 15.96 2.49
20 369.90 29.71 4.64
30 558.36 49.96 7.79
40 850.70 60.11 9.38
50 1062.86 72.90 11.37

7

10 194.81 18.50 2.89
20 431.41 33.66 5.25
30 726.13 50.08 7.81
40 975.01 63.83 9.96
50 1282.08 79.78 12.45

9

10 235.30 24.23 3.78
20 527.98 46.66 7.28
30 844.36 60.55 9.45
40 1146.26 80.81 12.61
50 1498.43 99.31 15.49

Out of 12 features, cardio is the target feature which need to be predicted based upon the
rest 11 features. An accuracy of 70% has been achieved with 60 (training=40, testing =20)
data-rows and that can be improved further by performing more hyperparameter tuning and
by incorporating more data-rows into account. Out of 70000 data instances, we randomly
select 60 data instance and divided it into different training is to testing ratio. Table 2 shows
the execution time of KNN algorithm in two variants, with (using OpenMP) and without
any parallel processing techniques. The OpenMP version has big advantage of parallelizing
multiple loops to facilitate smaller execution time as shown in Table 2 for K = 5, 7, and
9. Note that the number of OpenMP threads used during each execution is equal to the
neighbour size listed in Table 2. The execution platform is equipped with Intel(R) Xeon(R)
CPU E5-2690 v4 with 2.60GHz clock. The system has 132GB of RAM and 56 available
physical core.

7 Conclusion and Future Work

We presented the design, analysis and practical implementation for a novel threshold FHE
scheme from the hardness of Binary Ring-LWE with polynomial modulus-to-noise ratio. We
showed, for the first time, that threshold FHE can actually be deployed in a fast, scalable
and reasonably resource-efficient manner for real-time applications via benchmarking exper-
iments on two extreme varieties of computing platforms - a high-end x86-based server and
a low-end resource-constrained ARM-based platform. We showcased an end-to-end imple-
mentation of our proposed system and used it for fast, scalable yet secure k-nearest-neighbor
computations over encrypted medical data outsourced to a cloud service provider.

Our work gives rise to many interesting directions of future research. In particular, we leave
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it as an open question to extend our Rényi divergence-based security analysis techniques to
the setting of multi-key FHE with threshold decryption, for which all known realizations still
require super-polynomial modulus-to-noise ratio. Such an extension would enable efficient
realizations of richer applications such as round-optimal multi-party computation.
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[SS10] Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption. In
Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 377–
394. Springer, Heidelberg, December 2010.

[TT15] Katsuyuki Takashima and Atsushi Takayasu. Tighter security for efficient lat-
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A Observing the Pattern of Secret Shares

We state our observation on the pattern of the secret shares, generated by the (t, T )-
threshold secret sharing using Benaloh-Leichter LISSS (Section 4.3), in the form of a theorem
and provide the corresponding proof here.

Theorem 1. P ′ = {Pid1 , Pid2 , . . . , Pidt} ⊂ P = {P1, P2, . . . , PT } is a t-sized group with
group id value of gid, where id1 < id2 < · · · < idt. ∀1 ≤ i ≤ t, Pidi

has a key share
SHi, tagged with group id value of gid. Then all key shares except SH1, have only binary
coefficients in their k polynomials, while SH1 will have coefficient value upper-bounded by t
in its k polynomials.

In order to prove Theorem 1, we will first state two lemmas related to the structure of the
distribution matrix M for (t, T ) threshold secret sharing of a TRLWE secret key S. We
consider the number of polynomials in S is k and Ik denotes the identity matrix of dimension
k.
The first lemma is about the pattern of the distribution matrix for Boolean formula of the
form x1 ∧ x2 ∧ · · · ∧ xt for any t.

Lemma 1. We consider 0 to be a notation of zero matrix of dimension k × k. Then,
distribution matrix Mf for Boolean formula f = x1 ∧ x2 ∧ · · · ∧ xt follows the following
structure.



Ik Ik Ik . . . Ik Ik
0 0 0 . . . 0 Ik
0 0 . . . 0 Ik 0
...
0 0 Ik 0 . . . 0
0 Ik 0 0 . . . 0


kt×kt

Proof of Lemma 1. We prove the lemma by induction on the value of t.
For t = 1, f = x1 and Mf = Ik. Hence, the stated matrix structure is satisfied by default.
For t = 2, f = x1 ∧ x2. We follow the ANDing procedure (see Section 4.3) of Mx1

= Ik and

Mx2 = Ik and get Mx1∧x2 =

[
Ik Ik
0 Ik

]
, which clearly satisfies the claimed structure.

Let us assume that the claimed structure of the distribution matrix holds for t = i, i.e.,
for f = x1 ∧ x2 ∧ · · · ∧ xi, Mf is as shown below. Also, xi+1 being a Boolean variable,
Mxi+1

= Ik. ANDing Mf and Mxi+1
produces Mf1 = Mf∧xi+1

as shown below. Mf has a
dimension of ki× ki and Mf1 has a dimension of k(i+ 1)× k(i+ 1).

Mf =



Ik Ik Ik . . . Ik Ik
0 0 0 . . . 0 Ik
0 0 . . . 0 Ik 0
...
0 0 Ik 0 . . . 0
0 Ik 0 0 . . . 0
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Mf1 =



Ik Ik Ik Ik . . . Ik Ik
0 0 0 0 . . . 0 Ik
0 0 0 . . . 0 Ik 0
...
0 0 0 Ik 0 . . . 0
0 0 Ik 0 0 . . . 0
0 Ik 0 0 0 . . . 0


Clearly, the structure is maintained for t = i + 1. Hence, by induction, the lemma is true
for any t ≥ 1.

And the second lemma is about the pattern of distribution matrix for Boolean formula
consisting of disjunction of l number of such t-sized conjunctive terms, i.e., (x1,1 ∧ x1,2 ∧
· · · ∧ x1,t) ∨ · · · ∨ (xl,1 ∧ xl,2 ∧ · · · ∧ xl,t).
Lemma 2. Let us assume that f ′ = (x1,1 ∧ x1,2 ∧ · · · ∧ x1,t) ∨ · · · ∨ (xl,1 ∧ xl,2 ∧ · · · ∧ xl,t)
is a Boolean formula, where ∀1 ≤ i ≤ l, 1 ≤ j ≤ t, xi,j is a binary variable and each of the
(xi,1∧xi,2∧· · ·∧xi,t) terms is represented by distribution matrix Mf , as stated in Lemma 1.
We denote first k columns of Mf by F of dimension kt × k and the rest of the columns of
Mf by R of dimension kt×k(t−1). 0 denotes zero matrix of dimension kt×k(t−1). Then
distribution matrix Mf ′ has the following structure:


F R 0 0 . . . 0
F 0 R 0 . . . 0
...
F 0 . . . 0 R 0
F 0 0 . . . 0 R


lkt×(lkt−(l−1)k)

Proof of Lemma 2. We prove the lemma by induction on the value of l.
For l = 1, f ′ = f = (x1,1 ∧ x1,2 ∧ · · · ∧ x1,t) and Mf ′ = Mf =

[
F R

]
, which satisfies the

claimed structure by default.
For, l = 2, f ′ = (x1,1 ∧ x1,2 ∧ · · · ∧ x1,t) ∨ (x2,1 ∧ x2,2 ∧ · · · ∧ x2,t). We perform ORing on
Mx1,1∧x1,2∧···∧x1,t

=Mf and Mx2,1∧x2,2∧···∧x2,t
=Mf (see Section 4.3) and get

Mf ′ =

[
F R 0
F 0 R

]
2kt×(2kt−k)

This structure follows the lemma.
Let us assume that the structure is maintained ∀l ≤ j. So, with f ′ = (x1,1∧x1,2∧· · ·∧x1,t)∨
· · · ∨ (xj,1 ∧ xj,2 ∧ · · · ∧ xj,t) and f ′′ = (xj+1,1 ∧ xj+1,2 ∧ · · · ∧ xj+1,t), Mf ′ has a dimension
of jkt × jkt − (j − 1)k and Mf ′′ has a dimension of kt × kt. Mf ′ follows the structure as
shown below. Mf ′′ =

[
F R

]
. Now, ORing Mf ′ and Mf ′′ produces Mf2 = Mf ′∨f ′′ with

dimension (j + 1)kt× ((j + 1)kt− jk) as shown below.

Mf ′ =


F R 0 0 . . . 0
F 0 R 0 . . . 0
...
F 0 . . . 0 R 0
F 0 0 . . . 0 R
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Mf2 =



F R 0 0 . . . 0 0
F 0 R 0 0 . . . 0
...
F 0 . . . 0 R 0 0
F 0 0 . . . 0 R 0
F 0 0 . . . 0 0 R


So, the lemma is true for l = (j + 1).
Hence, by induction the lemma is true for any l ≥ 1.

Now we use Lemma 1 and Lemma 2 to provide here the proof of Theorem 1.

Proof of Theorem 1. Let us recall from Section 4.3 that the monotone Boolean formula for
(t, T )-threshold secret sharing can be written as f = (x1,1 ∧ x1,2 ∧ · · · ∧ x1,t) ∨ · · · ∨ (xl,1 ∧
xl,2 ∧ · · · ∧ xl,t), where l =

(
T
t

)
. If 0 denotes zero matrix of dimension kt × (kt − k), from

Lemma 1 and Lemma 2, we know that structure of the corresponding distribution matrix
M with dimension

(
T
t

)
kt× (

(
T
t

)
kt− (

(
T
t

)
− 1)k) is as follows:

M =


F R 0 0 . . . 0
F 0 R 0 . . . 0
...
F 0 . . . 0 R 0
F 0 0 . . . 0 R



F =


Ik
0
0
...
0

 R =


Ik Ik Ik . . . Ik
0 0 . . . 0 Ik
...
0 Ik 0 . . . 0
Ik 0 0 . . . 0


A detailed look into the above matrix M reveals that F has a structure of dimension kt× k
and R has a structure with dimension kt × (kt − k) as shown in above matrix structure.
In F and R, 0 denotes a zero matrix of dimension k × k. It is obvious from the structure
of M that each of its

(
T
t

)
horizontal sections contain exactly one F and one R along with

(
(
T
t

)
− 1) zero matrices 0kt×(kt−k). Now, the structure of F shows that each of its first k

rows contains one ‘1’ entry. No other row below has any ‘1’ in it and the structure of R
reveals that each of its first k rows contains exactly (t− 1) number of ‘1’ in it. Each of the
other rows below contains exactly one ‘1’ in it. Hence, each of the first k rows of any one
horizontal section (out of total

(
T
t

)
sections) of M has exactly t number of ‘1’ in it. Each of

the rest of the rows below in that section contains exactly one ‘1’ in it.
Let us recall that, each section of M corresponds to one section of shares (shares =M · ρ)
from Section 4.3 in the paper, i.e, the key shares of any t-sized subset of collaborating
parties.
ρ is a binary matrix. During matrix multiplication, dot product between one row of M and
one column of ρ produces an entry in shares. Dot product between two binary vectors is
always upper bounded by the number of ‘1’ in any of the two vectors. As, each of first k
rows of any section of M contains exactly t number of ‘1’, the entries of first k rows of any

43



section in shares are always upper bounded by t. First k rows of any section of shares form
one key-share. Clearly, that key share will have non-binary entries in it. Similarly, each of
the other (kt − k) rows below in any section of M contains exactly one ‘1’, so the entries
of the (kt− k) number of rows below in any section of shares are upper bounded by 1. In
other words, those entries can be either 0 or 1. Hence, rest of the (t− 1) key shares of any
t-sized subset of parties, have only binary entries in it.
Hence we conclude that, in our proposed (t, T ) threshold LISSS for a t-sized subset of parties
PT ′ = {Pid1

, Pid2
, . . . , Pidt

}, where id1 < id2 < · · · < idt, all the parties except Pid1
will

have binary key shares.
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