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Abstract
We present a candidate sequential function for a VDF protocol to be used within the Ethereum
ecosystem. The new function, called MinRoot, is an optimized iterative algebraic transformation
and is a strict improvement over competitors VeeDo and Sloth+4. We analyze various attacks
on sequentiality and suggest weakened versions for public scrutiny. We also announce bounties on
certain research directions in cryptanalysis.

1 Introduction

Distributed consensus protocols often require not only fast computations for efficiency, but also guar-
anteed slow computations for security. When we say guaranteed slow computations we mean that there
is a lower bound on the time the computation takes even if one has access to an unlimited number
of cores; i.e., the computation cannot be parallelized. Slow computations are required when a party
is supposed to produce an output that will eventually benefit some other participants, so that the
slowness of computation would guarantee unpredictability and thus fairness.

VDF usage in Ethereum. An example of this requirement in Ethereum is the following. A group
of 32 validators progressively builds a chain of collective randomness, with one value O generated per
epoch €. This randomness is used to select, for example, which validator can add a block onto the
blockchain and reap the rewards of doing so. If the randomness is unbiased then the frequency with
which a validator is selected depends on their stake in the system. However, if a malicious actor were
to bias the randomness, then they can sample many different strings of randomness and select the
one which benefits them most. Currently the randomness O is given by the reveals from a RANDAO
commit-reveal scheme used to generate a random number where the commits are inputs produced by
the validators during £. However this commit-reveal scheme is biasable: a malicious validator that
plays last can choose whether or not to reveal and the result will be different based on their choice.
To transform O into a form of unbiasable randomness, one solution is to pass O through a verifiable
delay function (VDF) which is guaranteed to be slow to compute, such that all validators must choose
whether to reveal or not before they know the output of the VDF. Note that O can be evaluated by
any VDF evaluator for each epoch £. It is expected that the lowest execution time will be achieved
on specialized hardware, and such hardware should be available to the participants. To summarize, a
VDF protocol should have the following features

e Tight latency bounds: the minimal time needed to compute the VDF with arbitrary paral-
lelism on modern hardware should be close to the best known algorithm to date.

e Minimum hardware: as a benign VDF computation brings no benefit to the executor, it
should as cheap as possible so that parties could afford it.



e Succinct proofs: the VDF outputs should be widely available to all Ethereum nodes, and their
verification should not expose a DoS attack vector.

e Quantum upgrade: when/if the quantum computers become powerful enough it should be
possible to switch to a post-quantum version of the protocol while retaining the deployed hard-
ware.

e Delay granularity: it should be possible to select the VDF expected running time with sufficient
precision in seconds.

VDF informal definition A VDF is a tuple (F,II) of function F' and non-interactive protocol II
which works as follows:

1. Prover runs F' on challenge I and produces output O;
2. Prover engages in II and produces a proof « that F(I) = O;
3. Verifier obtains (I, 0, ) and verifies 7.

To qualify for a VDF, the proof protocol should be complete and sound, the proof should be succinct,

non-malleable (to prevent manipulation with the VDF output) and allow fast verification. A number

of VDF constructions has been proposed in the recent past | , , , , ,
, , ] with their own advantages and limitations.

VDF based on an iterative sequential function . An important class of VDFs is built as follows:
F is an iteration of so called iterative sequential function [ ] and II is a proof of computation,
for example a recursive SNARK [ , ]. Here the SNARK part provides soundness and
succinctness, whereas the iterative sequential function guarantees that the computation time can not
be reduced on parallel machines.

Our contributions This document describes a candidate iterative sequential function called Min-
Root. As of November 2022, Ethereum plans to use the Nova proof system [ | as a recursive
SNARK for a VDF. While this is not am immediate requirement, we expect that the resulting protocol
would suit a large number of applications as well as other blockchains currently united as the VDF
Alliance.

Paper structure. In this report we first recall VDF and sequentiality definitions and then extend
them in Section 2. We propose MinRoot in Section 3. We describe our own cryptanalytic attacks on
MinRoot in classical (Section 4) and quantum (Section 5) scenarios. We describe cryptanalytic targets
and research bounties in Section 6.

2 Definitions

2.1 Generic definitions

A VDF is defined by Boneh et al. | | as follows.

Definition 1 (Verifiable Delay Functions). A wverifiable delay function (VDF) consists of the following
algorithms:

e Setup(\,t) — pp: The puzzle generation algorithm takes as input a security parameter X\ and a
difficulty parameter t and outputs public parameters pp which fiz the domain X and range Y of
the puzzle and other information required to compute a puzzle or verify a puzzle solution


https://www.vdfalliance.org/
https://www.vdfalliance.org/

e Eval(pp,x) — (y,m): The puzzle evaluation algorithm takes as input the public parameters pp,
an input from the domain x. It outputs a puzzle solution y and a proof w.

o Verify(pp,z,y,m) — 0/1: The puzzle verification algorithm takes as input the public parameters
pp, an input from the domain x, an input from the range y and a proof w. It outputs either 0 or
1.

Additionally, VDFs must satisfy the correctness, soundness and sequentiality definitions as defined
below.

Definition 2 (Correctness). A wverifiable delay function is correct if YA t, pp < Setup(\,t), and
Vo € X if (y,m) < Eval(pp, z) then Verify(pp,z,y,7) = 1.

Definition 3 (Soundness). For soundness it is required that an adversary can not get a verifier to
accept an incorrect VDE solution.

Verify(pp, x,y,m) =1 pp « Setup(\,t)
y # Eval(pp, z) (z,y,m) < A(At,pp)

Definition 4 (Sequentiality). For functions o(t) and p(t), the VDF is (p,o)-sequential if no pair of
randomized algorithms Ag, which runs in total time O(poly(A,t)), and Ay, which runs in parallel time

o(t) on at most p(t) processors, can win the following sequentiality game with probability greater than
negl(A):

P < negl

e pp < Setup(A, t);
o L < Ao(A,pp;t); (preprocessing of pp)

oz & X; (choosing random input)
o yy +— Ai(L,pp,x); (computing an output)
o Win if ya =y where (y,w) = Eval(pp, z).

Function o(t) is a lower bound on how fast an adversary can compute a VDF. For the Ethereum
application we need o(t) to significantly exceed the time that is given to a party to craft their input,
i.e. minutes, whereas the VDF computation time can be a few hours or days. Thus o(¢) must be set
to at least /100, and for the security margin we set it to be t/2. See more discussion on this topic in

[ J

2.2 Multiple targets

We would like to cover additionally the case when the adversary is able to choose an input from a
fairly big set. This corresponds to the real world use case when it is possible to grind a number of
possible inputs by, for instance, hashing a nonce.

Definition 5 (Multiple Target Sequentiality). For functions o(t) and p(t), the VDF is (p, o )-multitarget-
sequential if no pair of randomized algorithms Ay, which runs in total time O(poly(\,t)), and Ay, which
runs in parallel time o(t) on at most p(t) processors, can win the following sequentiality game with
probability greater than negl(\):

e pp < Setup(\,t);

L < Ao(A, pp,t); (preprocessing of pp)

x & X, |X| <p(t); (choosing random input set)

ya < A1 (L,pp,x), x € X, (computing an output)

Win if ya =y where (y,m) = Eval(pp, x).



2.3 VDF from IVC

As indicated in | ], one can build a sequential VDF by proving an incrementally verifiable
computation (IVC) of a so called sequential function.

Definition 6 (Sequential function). Function f : X — Y is a (t,e€)-sequential function if for A =
O(log |X|) the following conditions hold:

1. There exists an algorithm that for all x € X evaluates f in parallel time t using poly(logt, \)
Processors.

2. For all A that run in parallel time strictly less than (1 — €)t with poly(t, \) processors:
P [ya = f(=z) | Yo — AN ), x & X} < negl(\)

Definition 7. Let g : X — X be a (t,€)-sequential function. A function f: N x X — X defined as

flk,2) =g"(z) =gogo---og
—_—

k times

is said to be an iterated sequential function (with round function g) if for all k = 2°X) the function
h:X — X defined as h(x) = f(k,x) is (kt, €)-sequential.

A straightforward SNARK prover computes a proof for a circuit of size m in time superlinear of
m [ ]. However, it turns out that with a reasonable amount of parallel processors a prover can
run in time only logarithmic of m. One can carefully split an iterated sequential function into chunks
and apply such a prover as soon as each chunk is ready, in order to obtain a sequential VDF.

Theorem 1 (] |,informal). Let § be a SNARK system such that a parallel prover using
O(mlogm) processors computes a SNARK for a circuit of size m in time am. Let f be an iter-
ated sequential function with (s, €)-sequential round function g. Then there exists a o(t)-sequential
VDF with o(t) = (1 — €)t that is evaluated on Oq(log L -logt) processors.

2.4 Concrete security

The sequentiality Definition 6 deals with adversaries whose computational power is upper bounded
only asymptotically as a function of security parameter A. It thus makes sense to investigate how
concretely powerful an adversary should be to violate the sequentiality property. For this we also have
to specify the number of processors run by a regular evaluator.

Definition 8 (Concrete sequentiality). We say that the VDF function F is (o, «, Ty, T1, ng)-parallel
if there exist two adversaries Ay and A; that win the multitarget sequentiality game with probability o
against an evaluator with ng processors, so that Ay runs in total time Ty, counted in calls to F, and
A1 runs in parallel time ot and total time T;.

This definition implies that 4; uses at least T1 processors.

Definition 9. We say that the function has A bits of VDF security if it is not (¢ = 0.5, «, Ty, T1,ng =
216)_parallel for any o < 1 such that maz(To /o, Ty Ja) < 2.

3 MinRoot candidate sequential function

3.1 Related work and design rationale

We build MinRoot candidate sequential function g to be used for an iterated round function f. There
exist several candidates for g in the literature with VeeDo and Sloth-++ | | being the most
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Figure 1: Round functions of candidate iterated sequential functions (assuming the field where the
cubic root is well defined).

prominent. In the core, both transform the state S to S’ so that the pair satisfies a low-degree
polynomial relation G(S,S5’) = 0. In more details, the forward direction is some inverse to a power
function, where the exponent is selected to be an injective mapping. When p Z 1 (mod 3) we have:

Sloth—H- :($i+1; yi+1) — ((Ei, yi)(p2+1)/4 + (01, Cg)
N————

over ]Fpg

VeeDo :(Zit1,Yit1) < A- ($(2p71)/3, y(2p71)/3) + (1,6, €2,4)

% i

both over F,

Here (x;,y;) is the state at i-th step. We have found a better alternative to both, with only one
exponentiation per round, which we call MinRoot (Figure 1):

Domain : X = Fz; (1)
MinRoot round function : garr(Zit1, yis1,1) « (25 4+ y:) P73 25) + (0,4) (2)

If we have p =1 (mod 3) but p # 1 (mod 5), which is the case for the primes which are prime group
orders of popular BLS12-381 and BN254 curves, we use the fifth root as (z; + yi)(4p73)/5.

MinRoot VDF. We suggest using MinRoot round function within an IVC-based VDF as described
in | ]. Ethereum plans to use Nova | ] as an underlying SNARK. Given that we can run
up to 239 iterations of gasr per second, we have the following parameter range:

o ¢t~ 236 for 1 minute;
o t ~ 22 for 1 hour;
o t = 2% for 1 day.

We denote the resulting VDF as F}, .

3.2 Security claims



We claim 128 bits of multitarget VDF security (Definition 9) for MinRoot over 256-bit field F,,
against both classical and quantum adversaries.

3.3 Performance comparison

We first observe that VeeDo uses two parallelizable exponentiations per round, whereas MinRoot does
only one. Thus for the same delay time and same state size VeeDo requires twice the hardware,
whereas the smaller state would reduce the security against precomputation attacks. Note also that
VeeDo needs additional storage for constants (or hardware that computes those).

A comparison to Sloth++ is less straightforward. Assuming that both state elements in all designs
are [-bit primes, we get that MinRoot uses one exponentiation to an [-bit exponent, VeeDo uses two,
whereas Sloth++ computes a single 2/-bit exponentiation of a 2I-bit field element, which should yield
twice longer step at CPU or an ASIC circuit twice as large. On the other hand, a hardware of the
same size would imply twice smaller state, which succumbs to precomputation attacks. We conclude
that MinRoot is more efficient in terms of hardware.

Concrete performance of MinRoot We assume that to compute a root function one uses a
window-based square-and-multiply algorithm, which boils down to a sequence of modular multipli-
cations. Our CPU benchmarks demonstrate that a naive 256-bit exponentiation takes about 10000
ns. An optimized ASIC implementation will be faster but given that at least 40 gates are needed
for squaring | ]. The ASIC estimate for this design is 1ns per square/multiply. This means
that the ASIC can takes 300ns per MinRoot iteration which gives us 3.3 million iterations/second.
For the prover, each iteration is 3 constraints. To create a proof, a prover performs 2 multi-scalar
multiplication/multi-exponentiation (MSMs) the size of the number of constraints. At 3.3 million it-
erations per second this is 2 MSMs of size 107 per second for 2 x 107 bases/second. We currently have
GPU code that does 2 x 107 bases/second on a 384 bit curve and this should go up to about 4 x 107
bases/second when we move t0256-bit curves. This means that a single GPU should be able to create
SNARK proofs for 2 ASIC VDF evaluators.

4 Classical Cryptanalysis

In this section we consider attacks on sequentiality against both the MinRoot round function gy;r and
the full VDF function F}, .

Multitarget parallel adversary In our attacks we consider multitarget adversaries as the most
powerful ones. The online adversaries get their set of VDF inputs as follows. We allow each adversary’s
processor sampling a VDF input at the rate of one per time equal to the single call of gyr. We
assume a common memory of size M shared by adversary’s processors. Further simplifying towards
the adversary, we assume that lookups in the memory can be made in parallel from S processors in
constant time, even though more realistic algorithms require \/max (S, M) time [ ]

4.1 Precomputation attacks

Here we consider attacks based on precomputing certain calls to F},p, shortly denoted by F. Note
that for the security level of 128 bits we allow an adversary to make up to 2'?® precomputation calls
to F. Recall that the VDF function F},, maps X of size N = 2°12 to itself. Let the inverse of gap
be computable with advantage v over the forward iteration (it is approximately 276).



4.1.1 Attack 1

The simplest attack works as follows:

1. Precomputation adversary Ay applies F'~! (i.e. invert F) to M/v elements of X and create a
proof for every inversion.

2. Stores results as X = {(I,0,7)}.

3. Online adversary A; samples input set X of size S on S processors and checks if there is an
overlap.

This costs at most M precomputation time and max(M/~, S) space, but the chance to find a matching

input is at most J,\f—]\f Therefore the function is at best (0, %\‘?, M, S, ng)-parallel.

4.1.2 Attack 2
We make the following improvements to Attack 1:
e Offline adversary computes only half-chains.
e Online adversary computes half-chains starting from all points of X but in the forward direction.

At the same cost this attack doubles the size of both matching sets chains and thus increases the
matching probability by the factor of 4. The sequentiality advantage is ¢ = 1/2. Therefore the

function is at best (0.5, g\/f—NS, M, S, ng)-parallel.

Remark 1. Note that since all round functions are different, a precomputed segment is valid for only
specific rounds. If the round function was the same, the winning probability would increase by the
difficulty factor t.

4.1.3 Attack 3

This attack modifies Attack 1 in the following way:
e Offline adversary is the same.

e Online adversary samples a new VDF input on each processor throughout 1/2 of time required
to compute F.

The adversary samples ¢/2 as many inputs, so F is (1/2, gjxf—]\?, M, St/2,ng)-parallel. The attack is in

fact as powerful as Attack 1, since those two have the same success rate for the same online cost.

4.1.4 Mitigation and parameter selection

Looking at the attacks from the security level perspective, we obtain that the most powerful is Attack
2 where we set M = S and the value maz(Ty/c, Ty /o) is minimized for M = +/N. In this scenario we
have

A < 0.5log(yN)

Therefore, if we select N = 2512, the real security level approaches 250 bits, and we can safely claim
that MinRoot has 128 bits of multitarget security.



4.2 Algebraic attacks

Algebraic attacks aim to find a shortcut in computing F' by exploiting its algebraic properties. In
order to speed up t rounds, i.e. computing f! one should be able to solve equations of form

fin=o0 (3)

for given 1.
If (3) is multivariate, then the problem is NP-complete. The the best methods that tackle practical-
size systems of relatively low degree are Groebner basis algorithms | , ]. These algorithms

find a generating set for the ideal generated by (3) so that they can be solved as univariate equations.
Little is known about the actual complexity of Groebner basis algorithms, but the available heuristic
analysis suggests that it is exponential in d, thus quickly become impractical. Even in the unlucky
case when a Groebner basis can be found for the system of equations that describe a VDF, we still
face the problem of solving univariate equations for it.

Univariate equations over finite fields can be solved using Berlekamp or Cantor-Zassenhaus algo-
rithms. It is known [ ] that an equation of degree r can be solved using O(rlogp) operations
over elements of F,. This should be compared with O(dlogp) operations needed to compute f¢. We
conclude that, unless f¢ has some structure that makes the univariate equations of its Groebner basis
of very low degree (at most v/d), generic algebraic methods are not applicable even if f or f has
univariate representation.

We note that univariate algorithms can be parallelized to have logarithmic depth. The following
theorem is an improvement of a classical result by Valiant.

Theorem|| ] Th. 12.1] The GCD and resultant of two univariate polynomials of degree d

can be computed in parallel time O(log3 d) using lo‘gi—zd DPrOCessors.

However, to be a threat to the 128-bit security the degree should not exceed 270, which is reached
in less than 30 rounds of degree-5 round function (the inverse of g,,.). We conjecture that existing
parallel GCD algorithms can not compute a GCD of polynomials degree 26 faster than a sequential
evaluation of 30 MinRoot rounds.

There exist algorithms to invert a bijective transformation of degree d in O(d“) time for certain

transformations [ ] but to the best of our knowledge they have never been implemented.

4.3 Latency bounds for the round function

Currently the fastest exponentiation z¥ algorithm that works with variable base is the windowing-
ladder algorithm [ ]. In the nutshell it splits the exponent y into windows of bitlength k, precom-
putes powers of x, and then applies the square-and-multiply method. For the 256-bit exponent the
optimal k£ equals 5, which yields 256 squares and 66 multiplications. We are aware of no substantial
improvement to this bound.

Going further down, the modulo squaring itself has been the subject of latency analysis in various

models. For the gate depth model, the best available lower bounds | | indicate that a squaring
modulo ¢-bit prime circuit has depth at least 2logy(¢ — 1) — 2logs(log,(¢ — 1) — 1) — 4, whereas the
concrete upper bounds yield circuits of depth smaller than 5log, £ | ]. We consider this gap to

be small enough to prevent breakthroughs in circuit construction.

5 Quantum Cryptanalysis

Quantum algorithms are considered in more details in Appendix. Here we apply Grover algorithm to
precomputation attacks from Section 4.1



5.1 Grover+Precomputation Attack

The main advantage of Grover algorithm compared to classical counterparts is the ability to search in
a larger candidate space. However, the Grover algorithm itself is sequential, i.e. a parallel algorithm
can only increase the detection probability but can not decrease the Grover running time.

Thus we modify the classical Attack 1 as follows:

1. Precomputation adversary Ag applies F~1 (i.e. invert F') to M /v elements of X and create a
proof for every inversion.

2. Stores results as X = {(I,0, )} in quantum memory (QRAM) [ ]

3. Online adversary A; runs S copies of multitarget Grover algorithms (Appendix A.1.2) that check
if X overlaps with X. Each copy runs for 1/2 of time needed to compute F'.

This costs M precomputation time and max(M,S) space. Assume for the sake of simplicity that a
quantum predicate check runs in time equal to a single round of F', so that each Grover processor
makes t/2 iterations. The probability to find a match of M stored proofs among S inputs over t/2

iterations is ]\fﬁ/s]f; (4). Therefore the function is (1/2, Afysjf , M, St/2,ng)-parallel.

The maximum probability and the number of security level bits to beat is achieved for M = St/2 =
\/27N/t. For the maximum reasonable length of 1 year we get ¢ ~ 2°% with the maximum possible
security level of 0.5log N — 30 bits, i.e. around 225 bits for 512-bit N. Thus we can safely claim 128-bit

security against quantum adversaries too.

Attacks that do not work

Interestingly, Grover algorithm does not seem to improve if use chain-based approach (Section 4.1.2).
The reason is that the latter requires to compute several iterations of f which can not be iterated in
Grover. Thus we conclude that the attack above is the best we can hope with Grover.

For the same reason we can not effectively run a quantum meet-in-the-middle attack [ ] on
F' by splitting in two parts, as Grover would need to compute many iterations of F' sequentially.

5.2 Practicality of Quantum Search

Grover’s search is usually discussed for some oracle function f(-). However, several practical issues
need to be considered when a specific construction of f(-) is being considered. The work of Viamontes,
Markov and Hayes | | focuses on these issues. The first issue is that in order to query f(-)
in superposition, we need a quantum hardware implementation of f(-). While a quantum circuit is
usually similar in size to its classical counterpart, if the the circuit’s maximum depth exceeds v/N then
the evaluation of f(-) is the more cost consuming part of searching a size N database. This would
diminish the quantum speedup by a considerable amount. Hence, to come up with resource estimates
for quantum attacks we first come up with the quantum circuits for the VDF candidates.

5.3 Quantum Grobner

We note that quite little is known about the quantum complexity of Groebner basis algorithms nor of
the equation solving. There exist several results showing that Gaussian elimination of sparse matrices
can be sped up greatly on a quantum computerhttps://arxiv.org/abs/0811.3171, which in turns
would shorten the elimination step in the Groebner basis algorithms. However, it is the subject of the
future research if an algorithm like F4 or F5 | ] can be improved as a whole. We expect that
if it can be done, running a quantum algorithm every few steps would induce high latency, and the
high value of D would rule out such strategies. To the best of our knowledge there is no quantum
improvement to solving univariate equations either.


https://arxiv.org/abs/0811.3171

6 Cryptanalysis targets and research bounties

In order to facilitate third-party cryptanalysis of MinRoot candidate function, we suggest the following
weakened versions:

MinRoot over 16-bit prime 65537. We expect practical attacks here.

MinRoot over 24-bit prime. We expect theoretical attacks faster than 264,

204,

MinRoot over 32-bit prime. We expect theoretical attacks faster than

MinRoot over 64-bit prime. We expect theoretical attacks faster than 2128,

We also plan to announce bounties for the most interesting research and fastest implementations
of:

e Parallel GCD algorithms;
e Inversion of several MinRoot rounds using algebraic tools.

e Evaluation of MinRoot round function on one CPU core, on GPU, and on multiple processors.
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A Quantum algorithms

Quantum algorithms are the algortihms specially designed for quantum computers. A unique property
of a quantum computer is able to perform operations not on a single state but on a superposition of
states, so that certain classical algorithms can be amortized. The most famous examples are Shor’s
algorithm for factorization [ ] and its derivative for discrete logarithm search, as well as the
Grover search algorithm | ]. The latter is our main interest as we have excluded factoring- and
DLP-based schemes from consideration.

A.1 Grover’s algorithm

The Grover algorithm was originally formulated as a database search, however, it can be equivalently
written as a preimage search algorithm for some hard-to-invert function. Concretely, given O € Zy
(or any other domain efficiently mappable to Zy) and function H, Grover algorithm finds I such that
H(I) = O in time equivalent to VN calls to H on a quantum computer. Note that the algorithm is
inherently sequential and so far no one knows how to parallelize it so that the computing time can be
reduced. The probability to find the preimage in ¢ time grows as t?/N | ].

A.1.1 Single-target Grover’s

Grover’s algorithm makes a particular sequence of operations multiple times. At a high-level, after
each iteration the probability amplitude of the marked index state is increased. Once enough iterations
are performed, this amplitude is high enough that when a measurement is performed, with high
probability the resulting index corresponds to the special marked state. Each iteration is made of 2
simple operations. The following description assumes that we are using Grover’s algorithm to perform
unstructured search on a boolean function f : {0,1}" — {0, 1} where there is only one unique element
a’ such that f(z') =1 and N = 2". The input to Grover’s algorithm is an equal superposition of all
inputs:

1 Nl
= — x
The 2 operations performed at each iteration of Grover’s algorithm are as follows:

e Amplitude flip |2') — — [2’): The amplitude of the unique element =’ is negated. This opera-
tion is implemented using the following gate logic:

rm- (Y 1

0
1
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Post this operation, the state of the input qubits is:

1, R
—ﬁ\xﬂ-;/\/ﬁH

e Diffusion operator: The goal of the diffusion operator is to increase the amplitude of z’.
The diffusion operator flips the amplitude of each € {0,1}" around the average amplitude
w= % Y. Az where A represents the amplitude of z. This operation is implemented using the
following gate logic:

Yo oalwy s Y (2p—A) )

z€{0,1} ze{0,1}m

The mean amplitude before the diffusion operator is roughly Tlﬁ Therefore, after the diffusion

operator all entries remain roughly the same as they go from, \/% to % — \/—% However, the

amplitude of 2’ , A,/, goes from *ﬁ to \/iﬁ

The above two operations are then repeatedly applied, increasing the amplitude of x’ after each
round by \/Lﬁ After O(v/N) rounds, the amplitude of &’ is up to a desirable constant and at this point

a measurement is performed which collapses the state to 2’ with constant probability.

A.1.2 Multi-target Grover

For us the main interest is the multi-target version of the Grover algorithm, which we hope to use in
the pre-computation attacks. The same algorithm works in the multi-target case but now instead of

requiring O(v/ N) iterations, the number of iterations required is O( %) as there are k targets whose

amplitude gets amplified after each iteration. Hence, the multi-target Grover’s finds a pre-image to
one of k targets in time y/N/k. The probability to find the pre-image in ¢ time grows as

f]\/[G(kat7N):kt2/N (4)

according to [ -

A.1.3 Quantum Parallelism

Achieving speed-ups via parallelism is an important line of work for most search algorithms. However,
in the case of Grover’s algorithm, the work of Zalka | | proves that quantum searching can not be
parallelized better than the naive case. The naive case assigns different parts of the search space to
separate quantum computers. And hence, you get a linear improvement in search time with multiple
quantum computers corresponding to increased computational cost.
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