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Abstract. In this work, we introduce a more advanced fault adversary
inspired from the random probing model, called the random fault model,
where the adversary can fault all values in the algorithm but where the
probability for each fault to occur is limited. The new adversary model
is used to evaluate the security of side-channel and fault countermea-
sures such as Boolean masking, inner product masking, error detection
techniques, error correction techniques, multiplicative tags, and shuffling
methods. The results of the security analysis reveal novel insights includ-
ing: error correction providing little security when faults target more
bits; the order between masking and duplication providing a trade-off
between side-channel and fault security; and inner product masking and
multiplicative masking providing exponential protection in the field size.
Moreover, the results also explain the experimental results from CHES
2022 and find weaknesses in the shuffling method from SAMOS 2021.
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1 Introduction

The field of side-channel analysis, following differential power analysis by Kocher
et al. [19], has made significant progress over the years. Currently, we are capable
of practically protecting hardware applications against a significant number of
traces using masking. However, such progress did not come without difficulty.
Often masking schemes were proposed, broken, and patched. This trail-and-error
approach caused for a need for theoretical proofs to guarantee the security of new
masking methods. The main adversary in the academic literature is the probing
model proposed by Ishai et al. [18]. While this probing model already captures
basic attacks and allows for easy proofs, it does not cover more advanced attacks
in practice. Instead, the model proposed by Chari et al. [8], called the noisy
leakage model, is much closer to practice but requires a complicated security
analysis for countermeasures making the model less used in papers. In 2014,
Duc et al. [14] made a reduction between the probing and noisy leakage models.
This reduction introduced a new intermediate model called the random probing
model which allows to capture attacks such as horizontal attacks introduced by
Clavier et al. [10] and which has an easier security analysis compared to the
noisy leakage model. A security analysis in the random probing model allows
for better insight in the security provided by different countermeasures, such



as Boolean or inner product masking or shuffling, versus those provided in the
standard probing model.

Compared to side-channel analysis, the field of fault attacks, following differ-
ential fault analysis by Biham and Shamir [7], is less studied and has not seen
the same progress as side-channel analysis. As a result, standard fault security
models are not yet accepted. The current most used academic model is an active
variant of the probing model where the adversary can inject faults in a circuit
up to a threshold number of wires or gates. However, experimental works such
as the results by Bartkewitz et al. [5] note that a threshold fault model does not
properly capture the practice where a single laser fault typically affects multiple
values. Other adversary models from this threshold model have not been sug-
gested in the literature, let alone used to investigate countermeasures. As such,
the question remains how effective certain countermeasures are in practice. Some
popular countermeasures include: Boolean masking introduced by Patarin [16]
and Chari et al. [8]; inner product masking introduced by Balasch et al. [3];
error detection methods such as in ParTI [23] and Impeccable Circuits [1]; error
correction methods such as in Impeccable Circuits II [24]; multiplicative tags
such as in CAPA [22] and M&M [11]; and shuffling such as Rocky [20]. However,
none of the above methods for encoding or masking variables have been properly
analyzed or compared to one another in a similar adversary model.

Contributions. The work essentially provides contributions in two fields: on ran-
dom probing security, and on random fault security.

Considering random probing security, we investigate the security of the fol-
lowing masking or encoding techniques: Boolean masking, inner product mask-
ing, duplication, masked duplication, and shuffling. While the random probing
security of duplication and masking are not novel, they serve as a baseline to
compare to other methods. From the analysis, we found the following interesting
observations.

– There is a security difference between masking-then-duplicating a variable
versus duplicating-then-masking it.

– There is a beneficial trade-off in security between Boolean masking and inner
product masking when the field size is larger.

– There are weak inputs for shuffling methods which are avoided when com-
bined with masking.

Considering fault security, inspired by the random probing model, we pro-
pose a new fault adversary, the random fault model, which is allowed to fault
all values in an algorithm but where each fault has a limited probability to suc-
ceed. We then use the random fault model to analyze masking and encoding
techniques in two security models: correctness and privacy. We analyze Boolean
masking, inner product masking, error detection methods, error correction meth-
ods, multiplicative tags, and shuffling. From the analysis, we found the following
interesting observations.

– There is a security difference between masking-then-duplicating a variable
versus duplicating-then-masking it.
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– We are able to theoretically explain the experimental results of Bartkewitz
et al. [5] on faulting encoded variables with a different number of parity bits.

– In the correctness model, error correction provides significantly less security
than error detection methods when the fault targets many bits.

– We observe that the random fault model can explain the success rate of
statistical ineffective faults targeting multiple values similar to the random
probing model explaining horizontal attacks.

– Multiplicative tags provide an exponential security gain in the field size in
the correctness model and inner product masking provides an exponential
gain in the privacy model.

– Shuffling exhibits several weaknesses when used to secure against fault at-
tacks. As a result, we show that the work by Miteloudi et al. [20] has vul-
nerabilities.

2 Notation

We consider stochastic variables, denoted as capital letters, over a finite field
F2. We denote the probability of a stochastic variable attaining a value x as
Pr[X = x] and the probability of X conditioned on Y as Pr[X = x|Y = y].

We define random functions as stochastic variables over a set of functions.
For example, a function uniform randomly drawn from a set of functions.

3 Algorithmic Representation

We represent algorithms as a string of elements or elementary operations over a
finite field F. In this work, we consider only the field F2 for which the elementary
operations are the field addition (XOR) and multiplication (AND). We assume
that algorithms can sample uniform random field elements. Moreover, an algo-
rithm is also able to abort the computation providing ⊥ as the output. We give
an example of a binary algorithm

(x, y, r ← $, x+ y = z, zy = w, y + r = v) .

An algorithm can have an encoding phase, where its input is, for example,
masked or encoded. Oppositely, an algorithm can have a decoding phase where,
for example, masked variables can be revealed and encoded variables can be
checked for errors. These phases are important in the security models of Sect. 4
and Sect. 6 since the adversaries can not target these parts of the algorithm.

4 Random Probing Model

In this section, we introduce the random probing model as originally introduced
by Duc et al. [14]. More specifically, its adversary and its security model.
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4.1 Random Probing Adversary

Consider the set of two functions N = {f0, f1} with f0 : F2 → F2∪{⊥} : X 7→ X
and f1 : F2 → F2∪{⊥} : X 7→⊥. Namely, the function which maps a bit to itself
and the function which returns nothing (⊥). We consider a Bernoulli distribution
over N with mean 0 ≤ ε ≤ 1. Thus, from the set N we draw the function f0
with probability ε and the function f1 with probability 1 − ε. In words, when
drawing a random function and evaluating a variable, the adversary has an ε
probability to view that variable. In symbols, consider a uniform random secret
value X over F2. An adversary which observes F (X) with F the Bernoulli drawn
function over N . Since Pr[X = x|F (X) = x] = ε, the adversary has gained an
ε advantage of guessing X correctly over guessing it randomly. As a result, the
function F has given the adversary some information on the variable X.

We note for clarity that the adversary can precisely target the location of
the probes, but the probability for each probe to provide a value is random.

In this paper, we only consider random probes over bits. The model is easily
generalized to work over larger fields. However, we note that in practice, the
adversary never views the leakage of a large field element but, rather, a function
(such as the Hamming weight) of the bit vector which was processed. As a result,
the link with practice is weaker when a direct generalization of the random
probing model is made.

4.2 Security Model

Consider an algorithm and denote the set of all its variables (excluding the
encoding and decoding phases) by V , the set of ε-random probes on V is the set

{F (v)|v ∈ V, F
Bern(ε)← N} where for each value an independent random probe

is chosen.
The random probing security model is the bounded query, left-right security

game represented in Fig. 1. The game consists of a challenger picking a random
bit b, the challenger then creates an oracle Ob from the algorithm C and provides
this to the adversary A. This adversary is computationally unbounded, but it
is bounded in the number of queries to the oracle. The adversary provides two
secrets k0, k1 (for a cipher, a secret is the plaintext and the key). The oracle then
picks the secret kb, generates its internal randomness, computes the values V ,
and provides the random probing leakage to the adversary. After q queries (for
ease, in this work q = 1), the adversary guesses the bit b which was chosen by
the challenger.

The advantage of A is defined as

Adv(A) = | Pr[AO0

= 1]− Pr[AO1

= 1] | .

5 Case Studies: Random Probing Model

We apply the security model introduced in Sect. 4 to several popular counter-
measures including duplication, Boolean masking, inner product masking, and
shuffling.
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Fig. 1. The random probing leakage model.

5.1 Influence of Duplication

We investigate what happens if you view the same variable m times (for example
if the value is duplicated to defend against fault attacks) or when the variable is
an element of F2m .

Consider a uniform random variable X ∈ F2 (Pr[X = x] = 1/2) and m inde-
pendent random probes F0, ..., Fm−1 taken from the set N following a Bern(ε)
distribution. Then, the probability that at least one probe views a value is
1− (1− ε)m. Thus, the advantage of a random probing adversary is

Adv(A) = | Pr[AO0

= 1]− Pr[AO1

= 1] |
= 1− (1− ε)m ≤ mε ,

where the last inequality is Bernoulli’s inequality.
It is the above observed gain in advantage when viewing the same variable

multiple times which causes the horizontal attack [10] to be effective.

5.2 Influence of Masking

Masking was independently introduced by Goubin and Patarin [16] and Chari
et al. [8] in 1999. The definition for Boolean masking is given as follows.

Definition 1 (Boolean masking). The n-shared Boolean masking of a vari-

able x ∈ F2 consists of a vector (x0, . . . , xn−1) ∈ (F2)
n such that x =

∑n−1
i=0 xi.

In a countermeasure, a share vector is made using random bits. For example,
to mask a secret x in two shares one can use a random bit r and create the
vector (x+ r, r) = (x0, x1). That way, each share x0 or x1 is uniform random.

We start by showing that masking indeed improves the protection against
a random probing adversary. Given two independent random variables X0 and
X1 and two independent random probing functions F0 and F1 with probability
ε to observe the value, then

Pr[X0 ⊕X1 = x |F0(X
0) = y0, F1(X

1) = y1] = 1/2(1− ε2) + ε2

= 1/2 + ε2/2 .

Namely, the probability that X0 ⊕ X1 = x is 1/2 (guessing randomly) unless
both random probes return a value which happens with probability ε2. Similarly,
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for n shares, the probability is 1/2 unless all random probes return a value which
happens with probability εn.

With the above observation, we can consider an algorithm which stores a
single n-shared bit x0 + ... + xn−1 = x. The oracle Ox randomly shares x into
x0 + ...+ xn−1 every query and simply stores the shares. The advantage of the
adversary making one query is then

Adv(A) = | Pr[AO0

= 1]− Pr[AO1

= 1] | = εn .

That means the advantage is exponential in the number of shares.

5.3 Influence of Masked Duplication

Consider the case where a variable is both masked and duplicated. In practice,
this happens when we require both fault protection and side-channel security.
We distinguish two cases.

– Mask-then-duplicate: A variable is first masked and then duplicated. For
two shares and two duplicates, this means a bit x ∈ F2 is encoded to
(x0

0, x
1
0), (x

0
1, x

1
1) where x0

0 + x1
0 = x and x0

0 = x0
1, x

1
0 = x1

1. Examples of
countermeasures which use this technique include [12,17].

– Duplicate-then-mask: A variable is first duplicated and then masked. For
two shares and two duplicates, this means a bit x ∈ F2 is encoded to
(x0

0, x
1
1, x

0
2, x

1
3) where x0

0 + x1
1 = x0

2 + x1
3 = x. Examples of countermeasures

which use this technique include [11,22,23].

Mask-then-duplicate. For the first case with two shares (n = 2) and two
duplicates (k = 2), we have that

Adv(A) = | Pr[AO0

= 1]− Pr[AO1

= 1] | = (1− (1− ε)2)2 .

Namely, the adversary only gets an advantage if it observes both shares, but
since each share is duplicated, observing a single share happens with probability
1− (1− ε)2. By combining the advantages for duplication and for masking, for
n shares and k duplicates, we have an advantage of

Adv(A) = (1− (1− ε)k)n ≤ (kε)n .

Duplicate-then-mask. For the second case with n, k = 2, we have that

Adv(A) = | Pr[AO0

= 1]− Pr[AO1

= 1] | = 1− (1− ε2)2 .

Namely, the adversary has a ε2 advantage to when observing a masking and the
adversary has two chances to break it. For n shares and k duplicates, we have a
random probing advantage of

Adv(A) = 1− (1− εn)k ≤ kεn .

We observe that the duplicate-then-mask method protects better against a
random probing adversary compared to the mask-then-duplicate method. We
depict the differences between the advantages in Fig. 2.
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Fig. 2. The random probing advantage of the mask-then-duplicate method (in green)
and the duplicate-then-mask method (in red). The full lines depict (n, k) = (2, 2), the
dashed lines depict (n, k) = (2, 3), and the dotted lines depict (n, k) = (3, 2).

5.4 Influence of Inner Product Masking

We consider inner product masking from Balasch et al. [3] as defined in Defi-
nition 2. We note that we allow the multiplicative mask (ℓ) to be zero and we
consider it secret. In case ℓ is public, such as in the work by Balasch et al. [4],
the security of the countermeasure comes back to using linear codes as noted by
Pousier et al. [21]. In that case, the security analysis of inner product masking
is similar to using Boolean masking from Sect. 5.2.

Definition 2 (Inner product masking [3]). The n-shared inner product
masking of a variable x ∈ F2m consists of a vector (x0, . . . , xn−1) ∈ (F2m)n

such that x = x0 +
∑n−1

i=1 ℓix
i. The variables (x1, . . . , xn−1) and ℓi are chosen

uniformly randomly from F2m with each query.

We consider the two-shared case where a variable x ∈ F2m is masked to x0, x1

such that x0 + ℓx1 = x with ℓ ∈ F2m randomly chosen for each query. Recall
from Sect. 4 that we assume random probes over F2, thus they can only view
one bit at a time. By random probing ℓ using the random probes F0, ..., Fm−1,
the adversary has the following probability to guess the value ℓ,

Pr[L = ℓ|F0(L[0]), ..., Fm−1(L[m− 1])] =

m∑
i=0

εi
(
1− ε

2

)m−i

≤
(
1 + ε

2

)m

,

where, for the inequality, we added binomial coefficients to the sum and used
the binomial expansion theorem.

Given that the adversary can correctly guess ℓ, we consider the worst-case
scenario where ℓ = 0 reducing the security of the countermeasure to an m-bit
value for which the advantage is upper bounded by mε. This gives us the total
advantage

Adv(A) = | Pr[AO0

= 1]− Pr[AO1

= 1] | ≤ mε

(
1 + ε

2

)m

.
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It is possible to further refine the above bound by further splitting ℓ into
different cases for which the resulting advantage differs.

For n-shared inner product masking, the probability to guess all values ℓi is(
1+ε
2

)m(n−1)
. After guessing the ℓi, we assume the worst case scenario for the

adversary which is that it needs to attack an m-bit value (when all ℓi = 0) with
advantage mε. This gives the advantage

Adv(A) = | Pr[AO0

= 1]− Pr[AO1

= 1] | ≤ mε

(
1 + ε

2

)m(n−1)

.

Again, the above bound can be improved by splitting the ℓi into separate cases.
If we exclude ℓi = 0, the above advantage becomes upper bounded by

mεn
(
1+ε
2

)(n−1)(m−1)
which, compared to the advantage from Boolean masking

mεn, gives a significant improvement.

5.5 Influence of Shuffling

We take a look at shuffling as a countermeasure and assess its security in the
random probing model. We then move to the shuffling of masked values.

Consider two values x, y ∈ F2. With shuffling, the encoding phase of the
algorithm randomly shifts the two values from place. Consider the security model
from Sect. 4. Since the adversary can choose the two secret inputs, we can take
x = y (meaning, x = y = 0 or x = y = 1 for the two cases of inputs). The
advantage of the adversary using random probes (denoted F0 and F1 and calling
the first operation O0 and the second O1) is

Adv(A) = | Pr[F0(O0) = 1 ∨ F1(O1) = 1|X = 1] |
= 1− (1− ε)2 ≤ 2ε .

The above adversary randomly guesses the secret when both random probes
return ⊥ and provides the answer to the probes when a value is returned.

We observe that the bound of the shuffling method is the same as the bound
of a two-bit two-shared masking. As a result, shuffling provides no additional
security when the adversary chooses weak inputs.

Shuffled Masking. We remove the weak input scenario’s for shuffling by ap-
plying masking on top of the shuffling. Note that, when naively shuffling masked
values (for example shuffling the order of masked S-boxes), shuffling is still vul-
nerable to weak inputs. Instead, we consider shuffling only one share of each
masking. For example, consider the case of masked values (x0, x1) and (y0, y1)
where we shuffle the values x1 and y1 randomly following a cyclical shift z ∈ F2.
We refer to the work by Azouaoui et al. [2] on methods to compute on masked
and shuffled data.

We consider the case where the adversary randomly guesses z and then at-
tacks the masking. Half of the time, the adversary guesses wrong leading to a
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zero advantage. In case the adversary guesses z correctly, the advantage is that
of a two-bit two-shared masking (1−(1−ε2)2). Thus, the advantage of a random
probing adversary against shuffling two-bit two-shared value is

Adv(A) = 1

2
(1− (1− ε2)2) .

Thus, shuffling masked values has twice the security over a non-shuffled method.
Consider that the adversary also probes the value z, the advantage of the

adversary becomes (1/2 + ε)(1 − (1 − ε2)2). However, this addition in the ad-
vantage is reduced in the number shuffled values. For example, when shuffling
m n-shared values, the advantage becomes

Adv(A) = 1

m
(1− (1− εn)m) +O(εlog2(m)+n) .

Shuffling could achieve better bounds when shuffling all-but-one of the shares
randomly (when n > 2) or by using more general permutations instead of only
cyclical shifts such as explained in the work by Azouaoui et al. [2]. We leave the
random probing analysis of these cases as future work.

6 Random Fault Model

We propose a novel adversary model inspired by the random probing model
where the adversary can fault the entire state but there is a limited probability
for the fault to occur (following the mechanisms of statistical fault analysis [15]).

We note for clarity that the adversary can precisely target the faults (over
bits), but the probability for the fault to occur is random.

Consider a function g : F2 → F2 which is the fault the adversary wants to
inject. Denote the set of functions Fg = {g, id}, with id : F2 → F2 : x 7→ x, and
consider a Bernoulli distribution Bern(κ) on the set to take a random function
F . For this random function F , we have that

F (x) =

{
g(x) with probability κ ,

x with probability 1− κ .

Considering the possible fault injections an adversary can make over bits, we
consider three different functions.

– bitflip: F2 → F2 : x 7→ x+ 1 .
– set to zero: F2 → F2 : x 7→ 0 .
– set to one: F2 → F2 : x 7→ 1 .

In Sect. 7 and Sect. 8, we use the above function names to indicate which fault
is injected.

We only consider fault over bits and not over larger fields (though the gener-
alization is easily made). Similar to the random probing model, when considering
random faults over larger fields, the distribution of the applied faults in practice
might significantly differ from an all-or-nothing metric causing a weaker link to
practice when the random fault model is naively generalized over larger fields.
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6.1 Correctness

Consider an algorithm and denote the set of all its variables (excluding the
encoding and decoding phases) by V . Denote the set of κ-random faults by a set
of functions G = {gi | i ∈ V }.

The correctness game of the random fault model consists of an adversary
querying the oracle implementing the algorithm providing it with the input se-
cret k and the set of faults G. The oracle then implements the algorithm with
the secret k faulting its values with random functions FG following a Bern(κ)
distribution. The oracle outputs 1 if the output was correct or abort ⊥, and 0 if
the output was incorrect. This is depicted in Fig. 3. We require, for the algorithm
to be useful, that it outputs a correct result in case no faults were present.

A O
k,FG

b

Fig. 3. The correctness game of the random fault model.

The advantage of the adversary is the probability of the oracle outputting
zero after a single query.

Adv(A) = Pr[O(k,G) = 0]

6.2 Privacy

The privacy game of the random fault model is the bounded query, left-right
security game represented in Fig. 4. The game consists of a challenger picking a
random bit b, the challenger then creates an oracle Ob from the algorithm and
provides this to the adversary A. This adversary is computationally unbounded,
but it is bounded in the number of queries to the oracle. The adversary pro-
vides two secrets k0, k1 together with a set of functions on the values (excluding
encoding and decoding phases) G = {gi | i ∈ V }. The oracle then picks the
secret kb, generates its internal randomness, computes the algorithm, and ap-
plies the random fault functions FG on the targeted variables V (following a
Bern(κ) distribution). The oracle returns the state of the abort signal of the
algorithm. After q queries (for ease, in this work q = 1), the adversary returns
the bit b which was chosen by the challenger. Examples of fault attacks in this
model include Clavier’s ineffective faults [9] and statistical ineffective faults by
Dobraunig et al. [13].

The advantage of A is defined as

Adv(A) = | Pr[AO0

= 1]− Pr[AO1

= 1] | .
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Fig. 4. The random fault model.

In case the algorithm does not have an abort signal (such as with mask-
ing or error correction), the privacy model does not apply to the method. The
protection of these cases is solely determined by the correctness model.

7 Case Studies: Correctness

We go over several countermeasures and evaluate their security in the correctness
model from Sect. 6.1.

We first establish a baseline. When storing a single bit, the advantage of a
random fault adversary changing this value is κ. In case there are m variables
(or m queries), then the advantage is 1− (1− κ)m ≤ mκ.

7.1 Influence of Masking

Consider masking from Sect. 5.2 where a variable x ∈ F2 is split in two parts
x0, x1 such that x0+x1 = x. Then using a random bitflip fault F with probability
κ only on x0, the advantage of the adversary against an n-masking is still

Adv(A) = Pr[F (X0) +X1 ̸= X0 +X1] = κ .

However, the adversary can bitflip both shares (denoted F0 and F1) to attain
the advantage 2κ(1− κ). For n shares, this advantage becomes

Adv(A) =
⌊n

2 ⌋∑
i=0

(
n

2i+ 1

)
κ2i+1(1− κ)n−2i−1 =

1

2
(1− (1− 2κ)n) ≤ nκ .

We observe that, if κ ≤ 1/2, masking increases the advantage of a faulting
adversary in the correctness model over a non-masked alternative.

7.2 Influence of Duplication

We then investigate the effect of duplicating the variable and error checking the
duplicates at the end of the computation (aborting if they are not equal).

Definition 3 (Duplication). The n-duplication of a variable x ∈ F2 consists
of a vector (x0, . . . , xn−1) ∈ (F2)

n such that x0 = ... = xn−1.
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We calculate the advantage of a random fault adversary injecting a bitflip
(see Sect. 6) in both duplicates for a two-duplication using random faults (F0, F1)
with probability κ to occur. We find the following advantage

Adv(A) = Pr[F0(X0) = F1(X1), F0(X0) ̸= X0] = κ2 .

This is extended to k-duplication with an advantage of κk. As a result, dupli-
cation (or any linear code with nontrivial distance) exponentially decreases the
advantage of the adversary in the correctness game.

For m-bit k-duplicated variables, the advantage of the adversary is still κk if
the adversary attacks only one pair of duplicates. In case the adversary attacks
all duplicates, the advantage becomes

Adv(A) =
m∑
i=1

(
m

i

)
κik(1− κ)k(m−i) = (κk + (1− κ)k)m − (1− κ)km ,

where the equality comes from the binomial theorem. The above advantage is
better in case κ is small.

Specific Codes. We consider the advantage for encodings using different linear
codes from the repetition (duplication) code. Consider a value x ∈ F2m encoded
as a codeword c ∈ C with C and [n,m, d] code. It is clear that if the adversary
faults c to the nearest other codeword, the advantage is κd.

For a different attack, the adversary bitflips each bit of c. The advantage
is the probability that the n bitflips form one of the 2m codewords of C. In
particular, if κ = 0.5, you get a random m-bit fault for which the advantage is
2m−1
2n . This result is, for example, given by Schneider et al. [23] where it is called

the “fault coverage” of the code. For more accurate results when κ ̸= 0.5, the
specific advantage of the adversary depends on the actual code that is used. We
provide some examples.

Consider the [m + 1,m, 2] parity code (i.e. (x[0], ..., x[m − 1], c) with c =∑m−1
i=0 x[i]). The advantage of a random fault adversary is

Adv(A) =
⌊m+1

2 ⌋∑
i=1

(
m+ 1

2i

)
κ2i(1− κ)m−2i+1

=
1

2
(1 + (1− 2κ)m+1)− (1− κ)m+1 .

For other examples, we need the weight distribution of the codes we are
investigating.

– For the [7, 4, 3] Hamming code, the weight distribution of the codewords is
[1, 0, 0, 7, 7, 0, 0, 1]. As a result, the advantage is 7κ3(1−κ)4+7κ4(1−κ)3+κ7.

– Similarly, the weight distribution of the [8, 4, 4] extended Hamming code is
[1, 0, 0, 0, 14, 0, 0, 0, 1]. Thus, the advantage is 14κ4(1− κ)4 + κ8.
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The difference in advantages between the codes is shown in the first graph
of Fig. 5. From this figure, we find that the number of parity bits have a sig-
nificant effect on the advantage of a random fault adversary and that not only
the minimal distance of the code matters. Note that the “kink” in the graphs is
given by the difference of advantages of different attacks.
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Fig. 5. The advantage of a random fault adversary against encoded values on the left
and on the right when only the message bits are attacked. Blue depicts the [5, 4, 2]
code, green [8, 4, 2], yellow [7, 4, 3], and red [8, 4, 4]. For the right figure, the [8, 4, 2] and
[8, 4, 4] codes have advantage zero.

In the work by Bartkewitz et al. [5], experiments were performed by faulting
only the message bits in an implementation (leaving the parity bits unaltered).
Assuming that a κ-random fault in the message bits was injected (and that in-
deed the parity bits were unaffected), the result of the advantage for the different
codes investigated by Bartkewitz et al. is given in the second graph of Fig. 5.
The difference between the codes becomes more significant when faulting only
the message bits versus faulting all bits in the codeword.

7.3 Influence of Error Correction

Consider the duplication method from before, but with a minimum of three
duplicates (x0, x1, x2). Instead of using error detection where the algorithm can
abort, we correct the errors using a majority voting.

We consider an adversary which bitflips two out of three duplicates. This
adversary has the following advantage

Adv(A) = Pr[F0(X0) = F1(X1), F0(X0) ̸= X0] = κ2 .

For n duplicates, the advantage would be κ⌈n/2⌉.
We extend the above analysis by considering m variables. When each vari-

able is duplicated and an error detection method is used, the advantage of the
adversary is (κ2+(1−κ)2)m−(1−κ)2m when attacking all variables and κ2 when
attacking one pair of duplicates. However, with error correction, the advantage
against an m-bit three-duplicate correction method becomes

Adv(A) = 1− (1− κ2)m

13



as the adversary can re-try the attack with each variable and wins in case one
of the m variables is error-corrected to the wrong output. The advantage for
parameters m is given in Fig. 6. From this graph, we find that error correction
performs significantly worse when faults can target a large state size compared
to duplication. We also note that the combination of Boolean masking or inner
product masking with error correction would not improve the advantage.
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Fig. 6. The advantage against error correction (with three duplicates) is shown in red
(for m = 2) and yellow (m = 16). The advantage against error detection (with two
duplicates) is shown in green (for m = 2) and blue (m = 16).

7.4 Influence of Masked Duplication

Recall the two methods of both masking and duplicating variables from Sect. 5.3.

Mask-then-duplicate. We consider the first case where each share is dupli-
cated. If the adversary only bitflips one pair of duplicates, the advantage is κ2

(or κk for k duplicates). In case the adversary bitflips all values (denoting the
random faults F0, F1, F2, F3), the advantage for n, k = 2 is

Adv(A) = Pr[F0(X
0
0 ) = F1(X

0
1 ), F2(X

1
0 ) = F3(X

1
1 ), F0(X

0
0 ) + F2(X

1
0 ) ̸= X]

= 2κ2(1− κ)2 .

Given that the probability to break the correctness of a k-duplication is
κk and the probability to leave each duplicate unchanged is (1 − κ)k, we can
generalize for n shares and k duplicates. Namely, the advantage with n shares
and k duplicates becomes

Adv(A) =
⌊n−1

2 ⌋∑
i=0

(
n

2i+ 1

)
κk(2i+1)(1− κ)k(n−2i−1)

=
1

2
((1− κ)k + κk)n − ((1− κ)k − κk)n .

The above bound is derived from the masking and duplication advantages.
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Duplicate-then-mask. Recall that for the second case, the variable is first
duplicated and then each duplicate is shared separately. When attacking only one
share per duplicate, the advantage is κk. When attacking all variables (denoting
the random faults F0, F1, F2, F3), for n, k = 2, the advantage becomes

Adv(A) = Pr[F0(X
0
0 ) + F1(X

1
0 ) = F2(X

0
2 ) + F3(X

1
3 ), F0(X

0
0 ) + F1(X

1
0 ) ̸= X]

= 4κ2(1− κ)2 .

For n shares and k duplicates, the probability to change the correctness of an n-
sharing is 1

2 (1−(1−2κ)
n). As a result, breaking the correctness of a k-duplicated

n-sharing is
Adv(A) = 2−k(1− (1− 2κ)n)k .

We observe that for small parameters κ, the mask-then-duplicate method
provides more security as opposed to the duplicate-then-mask method. This is
depicted for small variables n, k in Fig. 7.
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Fig. 7. The random fault advantage in the correctness model of the mask-then-
duplicate method (in green) and the duplicate-then-mask method (in red). The full
lines depict (n, k) = (2, 2), the dashed lines depict (n, k) = (2, 3), and the dotted lines
depict (n, k) = (3, 2).

7.5 Influence of Multiplicative Tags

We can encode variables against fault attacks by multiplying the duplicate with
a random value. We call this a multiplicative tag.

Definition 4 (Multiplicative Tag). A multiplicative tag of x ∈ F2m is a
value αx ∈ F2m with α ∈ F2m chosen uniformly random with each query.

Consider the encoding of x ∈ F2m with a multiplicative tag (x, αx) ∈ (F2m)2

and α ∈ F2m chosen randomly with every query. Error detection is performed
by taking the message x, multiplying it with the tag α, and verifying it against
the duplicate αx. We investigate the security of this method in the correctness
game with a random fault adversary.
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We consider a first adversary which changes a single bit of x with the hope
that α = 0. Consider F a random fault flipping the first bit of the value. Then,
the advantage is

Adv(A) = Pr[F (X0) ̸= X0, α = 0] = 2−mκ .

For a second adversary, we take x = 1 and fault both x and αx with set-to-
zero faults. We number the bits of x by (x[0], ..., x[m − 1]) and the bits of αx
by (αx[0], ..., αx[m−1]). Then, the advantage of the adversary applying random
faults F0, ..., Fm against an m-bit multiplicative tag is given as follows

Adv(A) = Pr[F0(X[0]) = 0, F1(αX[0]) = 0, ..., Fm(αX[m− 1]) = 0]

= 2−mκ(1 + κ)m .

7.6 Influence of Shuffling

Consider the shuffling countermeasure from Sect. 5.5. Similar to the weak input
attack in Sect. 5.5, there are weak inputs in the correctness model. Namely,
for two bits (x, y) ∈ F2

2, the adversary can still bitflip each value for the same
advantage as in the non-shuffled case.

In case duplication is used on top of the shuffling, there are still weak inputs.
Namely, for two two-duplicated bits (x0, y0), (x1, y1), pick the secret (0, 1). By
applying a set-to-zero fault on all values, only one variable can change in its value
providing the same advantage as in the non-shuffled case where the adversary
only targets one pair of duplicates. Moreover, recall from Sect. 7.2 that when
k is small, the best attack of the adversary is to fault all duplicates. However,
when shuffling the duplicates, such an attack has the same probability to break
correctness. As a result, for small κ, shuffling does not improve security in the
random fault model (independent of how the shuffling is done). Together with
the weak inputs when attacking only one pair of duplicates, we conclude that
we can not find a non-trivial upper bound on the security of shuffling in the
correctness model.

8 Case Studies: Privacy

We go over several countermeasures and evaluate their security in the privacy
model from Sect. 6.2. Recall that the privacy model only applies to countermea-
sures which can abort the computation.

8.1 Influence of Duplication

Consider the duplication method from Sect. 7.2 (the advantage is similar when
using multiplicative tags from Sect. 7.5). A privacy adversary (taking x = 0 and
x = 1) faulting one variable to zero with probability κ has an advantage

Adv(A) = | Pr[AO0

=⊥]− Pr[AO1

=⊥] | = κ .
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This is because, when x = 0, the countermeasure can never abort or, when
x = 1, it aborts with probability κ. The bound for m-bit variables (or viewing
the variable m times) is 1 − (1 − κ)m ≤ mκ. Similar to probing the same vari-
able multiple times, it is advantageous to fault the same variable multiple times
causing a “horizontal”-like attack to be possible. We provide examples of such
attacks on a mask-then-duplicated multiplier in Appendix A.

In case the adversary faults both duplicates to zero, for k duplicates, the
advantage becomes

Adv(A) =
k−1∑
i=1

(
k

i

)
κi(1− κ)k−i = 1− κk − (1− κ)k .

8.2 Influence of Masked Duplication

Similar to Sect. 7.4, we consider a variable which is both masked and duplicated.

Mask-then-duplicate. Consider a masked and encoded value (x0
0, x

1
0, x

0
1, x

1
1)

where the shares are duplicated. When faulting both x0
0 and x1

0 to zero, we get

Adv(A) = | Pr[AO0

=⊥]− Pr[AO1

=⊥] | = κ− (1− (1− κ)2)/2 = κ2/2 .

When considering n shares, the probability to change at least one share out of
n (due to a set fault) when the sharing has secret zero κ0 or secret one κ1 is

κ0 =

⌊n
2 ⌋∑

i=0

21−n

(
n

2i

)
(1− (1− κ)2i), κ1 =

⌊n−1
2 ⌋∑

i=0

21−n

(
n

2i+ 1

)
(1− (1− κ)2i+1) .

The advantage of the above attack is |κ0 − κ1 | = 21−nκn.
When faulting (x0

0, x
1
0, x

0
1, x

1
1) all to zero, the advantage becomes 2κ2(1 −

κ)2. Similar to the bounds in Sect. 7.2, for small values κ, the advantage is
higher when faulting all duplicates and shares. For the bound when faulting all
k duplicates and n shares is

Adv(A) = 21−n(1− (1− κ)k − κk)n,

since the advantage when faulting a k-duplication is 1− (1− κ)k − κk.

Duplicate-then-mask. Consider the masking (x0
0, x

1
1, x

0
2, x

1
3) such that x0

2 +
x1
3 = x0

0 + x1
1. When faulting x0

0 and x1
1 both to zero, we have an advantage

Adv(A) = | Pr[AO0

=⊥]− Pr[AO1

=⊥] | = κ2 .

For n shares, this attack generalizes to the advantage κn. When faulting all bits
(x0

0, x
1
1, x

0
2, x

1
3) to zero, the advantage is 2κ2(1 − κ)2. When investigating the
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advantage for n shares and k duplicates, when faulting all shares to zero, the
probability to change the value of the secret when it is equal to zero is

κ0 =

⌊n
2 ⌋∑

i=1

21−n

(
n

2i

)i−1∑
j=0

(
2i

2j + 1

)
κ2j+1(1− κ)2i−2j−1


=

⌊n
2 ⌋∑

i=1

2−n

(
n

2i

)
(1− (1− 2κ)2i) = 1/2(1− (1− κ)n − κn) ,

where the equalities are derived from the binomial expansion theorem. Similarly,
the probability to change the secret of a sharing of one is

κ1 =

⌊n−1
2 ⌋∑

i=0

21−n

(
n

2i+ 1

) i∑
j=0

(
2i+ 1

2j + 1

)
κ2j+1(1− κ)2i−2j


= 1/2(1− (1− κ)n + κn) .

Then, when faulting all shares in the duplication, the probability to abort for
secret zero is 1 − κk

0 − (1 − κ0)
k . Similarly, for secret one the probability is

1− κk
1 − (1− κ1)

k . Thus, the advantage against n shares and k duplicates is

Adv(A) = |κk
0 − κk

1 + (1− κ0)
k − (1− κ1)

k | .

We observe that the mask-then-duplicate method scales better for higher
parameters n and the duplicate-then-mask method scales better for higher pa-
rameters k (with the mask-then-duplicate method performing better for equal
parameters n, k) as depicted in Fig. 8.
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Fig. 8. The privacy advantage of the mask-then-duplicate method (in green) and the
duplicate-then-mask method (in red). The full lines depict (n, k) = (2, 2), the dashed
lines depict (n, k) = (2, 3), and the dotted lines depict (n, k) = (3, 2).
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8.3 Influence of Inner Product Masking

To have the field size m take an exponential role in the advantage in the privacy
game, we use inner product masking from Sect. 5.4.

We consider the mask-then-duplicate approach with inner product masking
which shares a value x ∈ F2m to (x0

0, x
1
0, x

0
1, x

1
1) with x = x0

0+ℓx1
0 ∈ F2m and with

x0
0 = x0

1 and x1
0 = x1

1. Since the privacy analysis of this case is more complicated,
we provide an upper bound on the advantage.

Similar to the analysis in Sect. 5.4, we make the assumption that the adver-
sary can fault ℓ and be provided information whether the m-bit value changed
or not. Consider an adversary placing m (set-to-zero) random faults on ℓ, in case
the adversary receives the information whether ℓ changed, then the adversary
learns at most one bit of ℓ. As a result, the probability of the random fault
adversary guessing ℓ is upper bounded by 21−m.

Given that the adversary can guess ℓ, we assume the worst-case where ℓ = 0
in which case the adversary has an advantage upper bounded by 2mκ (since
there are two m-bit duplicates) to break the privacy of the scheme. In total,
the advantage of a random fault adversary against a two-share inner product
masking with m bits in the privacy model is

Adv(A) = | Pr[AO0

=⊥]− Pr[AO1

=⊥] | ≤ 22−mmκ .

Similar to the analysis of Sect. 5.4, the above upper bound can be improved
by splitting the security of the scheme after guessing ℓ in separate cases. For k
duplicates and n shares, the advantage becomes 2(n−1)(1−m)kmκ.

Combining inner product masking and multiplicative tags allows us to bound
the advantage in both the correctness and privacy models exponentially by the
field size compared to regular duplication and Boolean masking.

8.4 Influence of Shuffling

Consider the shuffling method from Sect. 5.5 but with duplicated values. Similar
to Sect. 5.5 and Sect. 7.6, there are weak inputs in the privacy model. Namely,
when shuffling (x, y) ∈ F2

2 and taking the two secrets x = y, shuffling becomes
obsolete as the same values are shuffled. Moreover, the same attack described in
Sect. 8.1 still applies. Namely, to attack all duplicates with a set-to-zero fault
between the all-zero and all-one secrets. As a result, shuffling with duplication
does not improve the random fault security in the privacy model. Moreover,
when also using masking for small parameters κ, the best attack is to fault all
shares and duplicates with the same fault. The advantage of this attack would
not change when shuffling the values.

Together with the weaknesses found in the correctness model in Sect. 7.6, we
conclude that shuffling against fault attacks exhibits several weaknesses. The vul-
nerabilities found in this work directly apply to the Rocky countermeasure [20]
which we show is weak in both the correctness and privacy models for certain
parameters κ and for certain weak inputs. We believe the addition of mask-
ing could circumvent the weak inputs (similar to Sect. 5.5). However, a more
in-depth analysis is required to clarify the efficiency-security trade-off.
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9 Conclusion

In this work, we investigated the random probing security of masking, dupli-
cation, masked duplication, inner product masking, and shuffling. We find the
following novel observations.

– There is a security difference between first masking and then duplicating a
variable versus first duplicating and then masking it.

– We find that inner product masking provides an exponential random probing
security in terms of the field size.

– We find weak inputs for shuffling methods and find a mitigation when com-
bined with masking.

We then propose a new fault adversary called the random fault model where
the adversary can fault all variables in the algorithm but each fault only has a
limited probability to occur. We propose the correctness and privacy security
models. These models are used to analyze the security of masking, error detection
methods, error correction methods, multiplicative tags, inner product masking,
and shuffling methods. We find the following novel observations.

– There is a difference in security between codes with a different minimal
distance and a different number of parity bits as experimentally noted by
Bartkewitz et al. [5].

– There is a security difference between first masking and then duplicating a
variable versus first duplicating and then masking it.

– Error correction provides little security when a fault targets several bits.
– Similar to horizontal attacks which are captured by the random probing

model, the random fault model captures statistical ineffective faults (security
in the privacy model) targeting multiple values.

– Inner product masking is able to provide strong security when working over
a large field size in the correctness model. Similarly, inner product masking
provides strong security in the privacy model over large field sizes.

– Shuffling methods exhibit several weaknesses as a countermeasure against
faults. As a result, we observe that the work by Miteloudi et al. [20] provides
no additional security in the random fault model.

We leave several open problems for future work.

– We investigated the random probing and random fault security of counter-
measures, but we leave the combined security as future work.

– We observed that shuffling methods exhibit weaknesses against random fault
attacks and we leave its fix for future work.

– The application of the random fault model to masked or encoded operations
such as multipliers.
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23. Schneider, T., Moradi, A., Güneysu, T.: Parti - towards combined hardware coun-
termeasures against side-channel and fault-injection attacks. In: CRYPTO (2).
Lecture Notes in Computer Science, vol. 9815, pp. 302–332. Springer (2016)

24. Shahmirzadi, A.R., Rasoolzadeh, S., Moradi, A.: Impeccable circuits
II. In: 57th ACM/IEEE Design Automation Conference, DAC 2020,
San Francisco, CA, USA, July 20-24, 2020. pp. 1–6. IEEE (2020).
https://doi.org/10.1109/DAC18072.2020.9218615, https://doi.org/10.1109/

DAC18072.2020.9218615

A “Horizontal” Statistical Ineffective Fault Attacks

In this appendix, we analyze the security of a masked and duplicated multiplier.
We observe that we can enhance the advantage of a random fault adversary by
attacking multiple inputs.

Consider a masked-then-duplicated AND where the shares (a0, a1, b0, b1) of
the bits a, b are multiplied to form the cross products (a0b0, a0b1, a1b0, a1b1).
This operation is performed twice with the second time over the duplicates such
that the cross products can be verified for error detection. This example of a
multiplier is not uncommon, for example it follows the design by Dhooghe and
Nikova [12].

We provide some advantages in the privacy model considering different attack
vectors. These attacks are all examples of statistical ineffective fault attacks by
Dobraunig et al. [13].

– When attacking only one share (e.g. a0) with a bitflip, the advantage of the
adversary between the secrets (a, b) = (0, 0) and (1, 1) is κ/2.

– A bitflip of both shares of a single secret (e.g. both a0, a1) gives the adversary

a κ(2−κ)
2 advantage.

– Set-to-zero faults of both shares of a single secret (e.g. both a0, a1) provides

an advantage κ(2+κ)
4 .

– A bitflip to all input shares provides an advantage 2κ− 5κ2 + 5κ3 − 3/2κ4.

From the above attacks’ success rates, we observe that it is beneficial to attack
multiple bits (for example, by widening the spot of a laser). These improved
attacks can be compared to the fault variant of the horizontal attacks on the
ISW multiplier as observed by Battistello et al. [6]. Instead of probing several
cross products for an improved advantage, we fault the inputs to trip several
abort signals on the cross products.
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