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Abstract. In this work, we introduce the random fault model - a more
advanced fault model inspired by the random probing model, where the
adversary can fault all values in the algorithm but the probability for each
fault to occur is limited. The new adversary model is used to evaluate
the security of side-channel and fault countermeasures such as Boolean
masking, error detection techniques, error correction techniques, multi-
plicative tags, and shuffling methods. The results of the security analysis
reveal new insights both in the novel random fault model as well as in
the established random probing model including: shuffling masked im-
plementations does not significantly improve the random probing secu-
rity over regular masking; error correction providing little security when
faults target more bits (versus the significant improvement when using
error detection); and the order in which masking and duplication are ap-
plied providing a trade-off between random probing and fault security.
Moreover, the results also explain the experimental results from CHES
2022 and find weaknesses in the shuffling method from SAMOS 2021.
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1 Introduction

The field of side-channel analysis, following Differential Power Analysis (DPA)
by Kocher et al. [18], has made significant progress over the years. Currently, we
are capable of practically protecting hardware applications against side-channel
attacks using masking. However, such progress did not come without difficulty.
Often masking schemes were proposed, broken, and patched. This trial-and-error
approach caused the need for theoretical proofs to guarantee the security of new
masking methods. The main adversary in the academic literature is considered in
the probing model proposed by Ishai et al. [17]. While this probing model already
captures basic attacks and allows for easy proofs, it does not cover more advanced
attacks in practice. Instead, the model proposed by Chari et al. [7], called the
noisy leakage model, is much closer to practice but requires a complicated security
analysis for countermeasures making the model less used in papers. In 2014, Duc
et al. [13] made a reduction between the probing and noisy leakage models. This
reduction introduced a new intermediate model called the random probing model
which allows to capture attacks such as horizontal attacks introduced by Clavier
et al. [9] and which has an easier security analysis compared to the noisy leakage



model. A security analysis in the random probing model allows for better insight
in the security provided by different countermeasures, such as Boolean masking
or shuffling, versus those provided in the standard probing model.

Compared to side-channel analysis, the field of fault attacks, following differ-
ential fault analysis by Biham and Shamir [5], is less studied and has not seen
the same progress as side-channel analysis. As a result, standard fault security
models are not yet accepted. The current most used academic model is an active
variant of the probing model where the adversary can inject faults in a circuit
up to a threshold number of wires or gates. However, experimental works such
as the results by Bartkewitz et al. [3] note that a threshold fault model does not
properly capture the practice where a single laser fault typically affects multiple
values. Other adversary models from this threshold model have not been used
to investigate and compare countermeasures. As such, the question remains how
effective certain countermeasures are in a more realistic security model. Some
popular countermeasures include: Boolean masking introduced by Patarin [15]
and Chari et al. [7]; error detection methods such as in ParTI [21] and Impecca-
ble Circuits [1]; error correction methods such as in Impeccable Circuits II [22];
multiplicative tags such as in CAPA [20] and M&M [10]; and shuffling such as
Rocky [19]. However, none of the above countermeasures have been properly
analyzed or compared to one another in a similar adversary model.

Contributions. The work essentially provides contributions in two fields: on ran-
dom probing security, and on random fault security.

Considering random probing security, we investigate the security of the fol-
lowing countermeasures: Boolean masking, duplication, masked duplication, and
shuffling. From the analysis, we made the following interesting observations.

– There is a security difference between masking-then-duplicating a variable
versus duplicating-then-masking it.

– Both shuffling and shuffling with masking provides little improvement in
random probing security no matter how the shuffling is performed.

Considering fault security, inspired by the random probing model, we propose
a new fault adversary, the random fault model, which is allowed to fault all values
in an algorithm but where each fault has a limited probability to apply. We
then use the random fault model to analyze countermeasures in two security
models: correctness, where the adversary’s goal is to have an incorrect output,
and privacy, where the adversary’s goal is to retrieve secret information from
the abort state of the algorithm. We analyze Boolean masking, error detection
methods, error correction methods, multiplicative tags, and shuffling. From the
analysis, we made the following interesting observations.

– There is a security difference between masking-then-duplicating a variable
versus duplicating-then-masking it.

– We give a theoretical foundation to the experiments of Bartkewitz et al. [3]
on faulting encoded variables with a different number of parity bits.
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– Triplication provides significantly less security than duplication methods
when the fault targets many bits.

– We observe that the random fault model can explain the success rate of
statistical ineffective faults targeting multiple values similar to the random
probing model explaining horizontal attacks.

– Multiplicative tags provide an exponential security gain in the field size in
the correctness model.

– Shuffling exhibits several weaknesses when used to secure against fault at-
tacks. As a result, we show that the work by Miteloudi et al. [19] has vul-
nerabilities.

2 Background

2.1 Notation

We consider stochastic variables, denoted as capital letters, over a finite field
F2. We denote the probability of a stochastic variable attaining a value x as
Pr[X = x] and the probability of X conditioned on Y as Pr[X = x|Y = y].

We define random functions as stochastic variables over a set of functions.
For example, a function uniform randomly drawn from a set of functions.

2.2 Algorithmic Representation

We represent algorithms as a string of elements or elementary operations over a
finite field F. In this work, we consider only the field F2 for which the elementary
operations are the field addition (XOR) and multiplication (AND). We assume
that algorithms can sample uniform random field elements. Moreover, an algo-
rithm is also able to abort the computation providing ⊥ as the output. We give
an example of a binary algorithm

(x, y, r ← $, z ← x+ y, w ← zy, v ← y + r) .

An algorithm can have an encoding phase, where its input is, for example,
masked or encoded. Oppositely, an algorithm can have a decoding phase where,
for example, masked variables can be revealed and encoded variables can be
checked for errors. For clarity, an error check in a duplication countermeasure is
not part of the decoding phase, only the verification of the final output is. These
phases are important in the security models of Sect. 2.3 and Sect. 3 since the
adversaries cannot target these parts of the algorithm.

2.3 Random Probing Model

In this section, we introduce the random probing model as originally introduced
by Duc et al. [13]. More specifically, its adversary and its security model. Later
in Sect. 3, we study the main contribution of the work, namely the random fault
model, which can be seen as the fault counterpart of the random probing model.
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Random Probing Adversary. Consider the set of two functions N = {f0, f1}
with f0 : F2 → F2 ∪ {⊥} : x 7→ x and f1 : F2 → F2 ∪ {⊥} : x 7→⊥. Namely, the
function which maps a bit to itself and the function which returns nothing (⊥).
We consider a Bernoulli distribution over N with mean 0 ≤ ε ≤ 1. Thus, from
the set N we draw the function f0 with probability ε and the function f1 with
probability 1 − ε. In words, when drawing a random function and evaluating a
variable, the adversary has an ε probability to view that variable.

We note for clarity that the adversary can precisely target the location of
the probes, but the probability for each probe to provide a value is random.

In this paper, we only consider random probes over bits. The model is easily
generalized to work over larger fields. However, we note that in practice, the
adversary never views the leakage of a large field element but, rather, a function
of the bit vector (such as its Hamming weight) which was processed. As a result,
the link with practice is weaker when a direct generalization of the random
probing model is made.

Security Model. Consider an algorithm and denote the set of all its variables
(excluding the encoding and decoding phases) by V, the set of ε-random probes

on V is the set {F (v)|v ∈ V, F
Bern(ε)← N} with V the values the variables V in

the algorithm attained with its input and internal randomness, and where for
each value an independent random probe is chosen.

The random probing security model is the bounded query, left-right security
game represented in Fig. 1. The game consists of a challenger picking a random
bit b, the challenger then creates an oracle Ob from the algorithm C and provides
this to the adversary A. This adversary is computationally unbounded, but it
is bounded in the number of queries to the oracle. The adversary provides two
secrets k0, k1 (for a cipher, a secret is the plaintext and the key) and the set
of variables V which it wants to probe. The oracle then picks the secret kb,
generates its internal randomness, computes the values V on V, and provides
the random probing leakage to the adversary. After q queries (for ease, in this
work q = 1), the adversary guesses the bit b which was chosen by the challenger.

AC

Ob

Ob

b

k0, k1,V

{F (v)|v ∈ V, F
Bern(ϵ)← N}

b← $

Fig. 1. The random probing leakage model.

The advantage of A is defined as

Adv(A) = | Pr[AO0

= 1]− Pr[AO1

= 1] | .
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3 Random Fault Model

We propose a novel adversary model inspired by the previous explained random
probing model where the adversary can fault the entire state but there is a
limited probability for each fault to occur (following the mechanisms of statistical
fault analysis [14]). This random fault security model is novel and is meant to
improve over the standard threshold fault model where an adversary can fault
a fixed number of values.

We provide a combined adversary model from the random probing and ran-
dom fault adversary in Appendix A. However, we leave the security evaluation
of the combined model of countermeasures for future work.

3.1 Random Fault Adversary

Consider a function g : F2 → F2 which is the fault the adversary wants to inject.
Denote the set of functions Fg = {g, id}, with id : F2 → F2 : x 7→ x, and consider
a Bernoulli distribution Bern(κ) on the set to take a random function F . For
this random function F , we have that

F (x) =

{
g(x) with probability κ ,

x with probability 1− κ .

Considering the possible fault injections g an adversary can make over bits,
there are three possibilities.

– bitflip: F2 → F2 : x 7→ x+ 1 .
– set to zero: F2 → F2 : x 7→ 0 .
– set to one: F2 → F2 : x 7→ 1 .

In Sect. 5 and Sect. 6, we use the above function names to indicate which fault is
injected. We note for clarity that the adversary can precisely target the faults
(over bits), but the probability for the fault to occur is random.

We only consider fault over bits and not over larger fields. Since our hardware
and software works over bits and not over abstract algebraic structures, faults
would hit separate gates or wires causing them to affect bit-by-bit. We leave the
generalization of using realistic distributions of fault attacks in the random fault
model over words (larger sets of bits) as an open problem.

Similar to the reduction from the random probing adversary to a threshold
probing adversary proven by Duc et al. [13], the random fault adversary reduces
to a threshold fault adversary which we prove in Appendix B.

3.2 Security Model: Correctness

The random fault model has two security models, namely a correctness and a
privacy model (after the models by Ishai et al. [17]). The goal of the adversary
in the correctness game is for the algorithm to output a wrong value (different
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than the value in case no faults were injected). In case the algorithm detected a
fault and aborts, the adversary does not win the game. A fault attack covered
by this model is for example differential fault analysis by Biham and Shamir [5].
However, the correctness model is more general as it does not look whether secret
information can be gathered from an incorrect output.

Consider an algorithm and denote the set of the variables the adversary
targets (excluding the encoding and decoding phases) by V. Denote the set of
κ-random faults by a set of functions G = {gi | i ∈ V}.

The correctness game of the random fault model consists of an adversary
querying the oracle implementing the algorithm providing it with the input se-
cret k and the set of faults G. The oracle then implements the algorithm with
the secret k faulting its values with random functions FG following a Bern(κ)
distribution. The oracle outputs 1 if the output was correct or abort ⊥, and 0 if
the output was incorrect. This is depicted in Fig. 2. We require, for the algorithm
to be useful, that it outputs a correct result in case no faults were present.

A O
k,FG

b

Apply {Gi
Bern(κ)← Fgi |gi ∈ G}

Fig. 2. The correctness game of the random fault model.

The advantage is the probability the oracle outputs zero after a single query.

Adv(A) = Pr[O(k,FG) = 0]

3.3 Security Model: Privacy

The goal of the adversary in the privacy game is to uncover internal information
(the input) of the algorithm from the algorithm’s abort state after faulting it. In
case the algorithm does not have an abort signal (such as with masking or error
correction), the countermeasure is automatically secure in the privacy model and
its protection is solely determined by the correctness model. Examples of fault
attacks in the privacy model include Clavier’s ineffective faults [8] and statistical
ineffective faults by Dobraunig et al. [12].

The privacy game of the random fault model is the bounded query, left-right
security game represented in Fig. 3. The game consists of a challenger picking a
random bit b, the challenger then creates an oracle Ob from the algorithm and
provides this to the adversary A. This adversary is computationally unbounded,
but it is bounded in the number of queries to the oracle. The adversary provides
two secrets k0, k1 together with a set of functions on the values (excluding en-
coding and decoding phases) G = {gi | i ∈ V}. The oracle then picks the secret
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kb, generates its internal randomness, computes the algorithm, and applies the
random fault functions FG on the targeted variables V (following a Bern(κ)
distribution). The oracle returns the state of the abort signal of the algorithm.
After q queries (for ease, in this work q = 1), the adversary returns the bit b
which was chosen by the challenger.

AC

Ob

Ob

b

k0, k1,FG

⊥

b← $

Apply {Gi
Bern(κ)← Fgi |gi ∈ G}

Fig. 3. The privacy game of the random fault model.

The advantage of A is defined as

Adv(A) = | Pr[AO0

= 1]− Pr[AO1

= 1] | .

4 Case Studies: Random Probing Model

In order to showcase the random fault model, we apply it to several popular
countermeasures with the goal to find general bounds over the parameters of
the countermeasure. However, in order to properly provide the security of each
countermeasure, we also evaluate them over the established random probing
model (as introduced in Sect. 2.3). For example, to show that masking might
not improve the bound over the random fault model, but that it does increase
the security in the random probing model.

Although the random probing model has already been established for some
time, some of the results in this section are novel. For example, as far as we
are aware, no concrete random probing bounds have been given for duplicate-
and-mask countermeasures. In addition, we show that shuffling methods do not
significantly improve the security over the random probing model.

4.1 Influence of Duplication

We investigate what happens if you view the same variable m times (for example
if the value is duplicated to defend against fault attacks) or when the variable is
an element of F2m .

Consider a uniform random variable X ∈ F2 (Pr[X = x] = 1/2) and m inde-
pendent random probes F0, ..., Fm−1 taken from the set N following a Bern(ε)
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distribution. Then, the probability that at least one probe views a value is
1− (1− ε)m. Thus, the advantage of a random probing adversary is

Adv(A) = | Pr[AO0

= 1]− Pr[AO1

= 1] |
= 1− (1− ε)m ≤ mε ,

where the last inequality is Bernoulli’s inequality.
It is the above observed gain in advantage when viewing the same variable

multiple times which causes horizontal attacks [9] to be effective.

4.2 Influence of Masking

Masking was introduced by Goubin and Patarin [15] and Chari et al. [7] in 1999.
The definition for Boolean masking is given as follows.

Definition 1 (Boolean masking). The n-shared Boolean masking of a vari-

able x ∈ F2 consists of a vector (x0, . . . , xn−1) ∈ (F2)
n such that x =

∑n−1
i=0 xi.

In a countermeasure, a share vector is made using random bits. For example,
to mask a secret x in two shares one can use a random bit r and create the
vector (x+ r, r) = (x0, x1). That way, each share x0 or x1 is uniform random.

We start by showing that masking indeed improves the protection against
a random probing adversary. Given a uniform value X0 and X1 such that
X0 + X1 = 0 and two independent random probing functions F0 and F1 with
probability ε to observe the value, then

Pr[F0 = fid, F1 = fid] Pr[X
0 ⊕X1 = 0|F0(X

0), F1(X
1)] = ε2

Pr[F0 = f⊥, F1 = fid] Pr[X
0 ⊕X1 = 0|F0(X

0), F1(X
1)] = ε(1− ε)/2

Pr[F0 = f⊥, F1 = f⊥] Pr[X
0 ⊕X1 = 0|F0(X

0), F1(X
1)] = (1− ε)2/2 ,

with fid : x 7→ x and f⊥ : x 7→⊥. Similarly,

Pr[F0 = fid, F1 = fid] Pr[X
0 ⊕X1 = 1|F0(X

0), F1(X
1)] = 0

Pr[F0 = f⊥, F1 = fid] Pr[X
0 ⊕X1 = 1|F0(X

0), F1(X
1)] = ε(1− ε)/2

Pr[F0 = f⊥, F1 = f⊥] Pr[X
0 ⊕X1 = 1|F0(X

0), F1(X
1)] = (1− ε)2/2 ,

As a result, the advantage of the adversary is ε2 (the absolute subtraction of
the three corresponding equations). Similarly, for n shares, the adversary only
guesses correctly when all random probes return a value which happens with
probability εn (which is then the advantage).

4.3 Influence of Masked Duplication

Consider the case where a variable is both masked and duplicated. In practice,
this happens when we require both fault protection and side-channel security.
We distinguish two cases.
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– Mask-then-duplicate: A variable is first masked and then duplicated. For
two shares and two duplicates, this means a bit x ∈ F2 is encoded to
(x0

0, x
1
0), (x

0
1, x

1
1) where x0

0 + x1
0 = x and x0

0 = x0
1, x

1
0 = x1

1. Examples of
countermeasures which use this technique include [11,16].

– Duplicate-then-mask: A variable is first duplicated and then masked. For
two shares and two duplicates, this means a bit x ∈ F2 is encoded to
(x0

0, x
1
1, x

0
2, x

1
3) where x0

0 + x1
1 = x0

2 + x1
3 = x. Examples of countermeasures

which use this technique include [10,20,21].

Mask-then-duplicate. For the first case with two shares (n = 2) and two
duplicates (k = 2), we have that

Adv(A) = | Pr[AO0

= 1]− Pr[AO1

= 1] | = (1− (1− ε)2)2 .

Namely, the adversary only gets an advantage if it observes both shares, but
since each share is duplicated, observing a single share happens with probability
1− (1− ε)2. By combining the advantages for duplication and for masking, for
n shares and k duplicates, we have an advantage of

Adv(A) = (1− (1− ε)k)n ≤ (kε)n .

Duplicate-then-mask. For the second case with n, k = 2, we have that

Adv(A) = | Pr[AO0

= 1]− Pr[AO1

= 1] | = 1− (1− ε2)2 .

Namely, the adversary has a ε2 advantage to when observing a masking and the
adversary has two chances to break it. For n shares and k duplicates, we have a
random probing advantage of

Adv(A) = 1− (1− εn)k ≤ kεn .

We observe that the duplicate-then-mask method protects better against a
random probing adversary compared to the mask-then-duplicate method. We
depict the differences between the advantages in Fig. 4.

4.4 Influence of Shuffling

We take a look at shuffling as a countermeasure and assess its security in the
random probing model. We then move to the shuffling of masked values.

Consider two values x, y ∈ F2. With shuffling, the encoding phase of the
algorithm randomly shifts the two values from place. Consider the security model
from Sect. 2.3. Since the adversary can choose the two secret inputs, we can take
x = y (meaning, x = y = 0 or x = y = 1 for the two cases of inputs). The
advantage of the adversary using random probes (denoted F0 and F1 and calling
the first operation O0 and the second O1) is

Adv(A) = | Pr[F0(O0) = 1 ∨ F1(O1) = 1|X = 1] |
= 1− (1− ε)2 ≤ 2ε .

9



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ε

A
d
va
n
ta
g
e

Fig. 4. The random probing advantage of the mask-then-duplicate method (in green)
and the duplicate-then-mask method (in red). The full lines depict (n, k) = (2, 2), the
dashed lines depict (n, k) = (2, 3), and the dotted lines depict (n, k) = (3, 2).

The above adversary randomly guesses the secret when both random probes
return ⊥ and provides the answer to the probes when a value is returned. The
above bound generalizes to nε for shuffling n bits.

We observe that the bound of the shuffling method is the same as the bound
of an unshuffled n-bit state. As a result, shuffling provides no additional security
when the adversary chooses weak inputs.

Shuffled Masking. We consider a state of k-bit n-shared values. For example,
for k = 3 and n = 2, we have a state (x0, x1), (y0, y1), (z0, z1) such that x =
x0 + x1, y = y0 + y1, z = z0 + z1 for three bits x, y, z ∈ F2. Consider then
that the total of nk bits are randomly permuted, meaning that a permutation
is uniform randomly drawn for the set of all Fnk

2 → Fnk
2 permutations and is

applied to the nk bits. We note that practical implementations of shuffling often
consider a weaker case where the permutation is drawn from a smaller set, such
as cyclical shifts of the shares. The security mentioned in related works such
as [2, Section 2.4] is that shuffling these masked values at least improves the
side-channel security by a factor k. We will show that in the random probing
model, shuffling does not significantly improve the security.

We consider the advantage of random probing all the nk shares in the state.
Since the order of the shares is shuffled (from the countermeasure), the values
returned to the adversary are also randomized. As a result, the adversary does
not know which value belongs to which variable. For example, the adversary can
receive the transcript (1, 0, 0) for n = 2 and k = 3, meaning that the adversary
receives three values out of six but does not know which three it received.

We consider an adversary which takes, for the security model, the all-zero
secret versus the all-one secret. Meaning that all k sharings are of either the
secret zero (in the first case) or the secret all-one (in the second case). The
adversary then considers all possible n-sums of the received values. In case the
majority of the sums are zero, the adversary decides it is in the first case (with
the secrets all equal to zero), otherwise it decides it is in the second case. We
calculate the advantage of this adversary.
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The probability that the adversary receives exactly i bits from the random
probes is

(
nk
i

)
εi(1−ε)nk−i. Given that the adversary has i values, it can calculate

a total of
(
i
n

)
n-sums out of the total of

(
nk
n

)
n-sums. Finally, there are a total of

k sums which sum to the secret (we call these “correct sums”). The advantage
is thus given as follows.

Adv(A) =
nk∑
i=0

(
nk

i

)
εi(1− ε)nk−i

k∑
j=0

C(i, j)K(i, j) ,

with C(i, j) the probability to have j correct sums over the total of
(
i
n

)
sums,

and K(i, j) the probability to win the game minus the probability to lose the
game given j correct sums over a total of

(
i
n

)
sums.

In more detail,

C(i, j) =

(
a
j

)(
b−a
k−j

)(
b
k

) ,

with a =
(
i
n

)
and b =

(
nk
n

)
since C(i, j) is the probability of j successes in the

hypergeometric distribution. The value

K(i, j) =

a−j∑
ℓ=⌈ a+1

2 ⌉−j

1

2a−j

(
a− j

ℓ

)
−

⌊ a
2 ⌋−j∑
ℓ=0

1

2a−j

(
a− j

ℓ

)
,

with a =
(
i
n

)
is the probability that the majority of the n-sums are equal to the

secret (given that j sums are correct) minus the probability that the majority
of the sums equal zero.

It is clear that an upper bound for the above advantage is equal to the
advantage of an k times n-sharing without shuffling, which is equal to 1− (1−
εn)k. For n, k = 2, we also find that the above advantage is equal to 2ε2− 2ε3 +
3
8ε

4, which is lower than the 2ε2−ε4 advantage without shuffling. This shows that
shuffling indeed increases the security of an implementation. However, we see
that both advantages have a leading coefficient 2ε2. Meaning that the advantage
of shuffling equals the advantage without shuffling plus terms in ε3 or higher. In
words, shuffling only achieves a very insignificant (i.e. less than linear) increase
in random probing security.

We prove this ”less than linear” security gain more formally. First, since
C(i, j) = 0 for i < n, we can write Adv(A) = cεn + O(εn+1). Second, we find
that c = k since c =

(
nk
n

)
C(n, 1)K(n, 1) with C(n, 1) = k

(nk
n )

and K(n, 1) = 1.

As a result, we find that Adv(A) = kεn+O(εn+1) which can be compared to the
advantage of the state without shuffling 1 − (1 − εn)k = kεn + O(εn+1). Thus,
we have proven that shuffling can only improve the random probing security by
a less-than-linear amount when the adversary chooses weak inputs.

We mention that similar results were found by Bogdanov et al. [6] on using
higher-order differential computational analysis on white-box implementations
using masking and shuffling.
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5 Case Studies: Random Fault Correctness

We investigate the random fault security of several popular countermeasures
including duplication, error correcting codes, masking, multiplicative tags, and
shuffling. Recall from Sect. 3.2 that the random fault model has two security
models, namely the correctness and the privacy model. In this section, we eval-
uate the countermeasures in the correctness model.

To better understand the bounds given in this section, we establish a base-
line. Namely, we investigate the correctness security of storing a single bit. The
advantage of a random fault adversary changing this single bit value is κ. In case
there are m variables (or m queries), then the advantage is 1− (1− κ)m ≤ mκ.

5.1 Influence of Masking

Consider masking from Sect. 4.2 where a variable x ∈ F2 is split in two parts
x0, x1 such that x0+x1 = x. Then using a random bitflip fault F with probability
κ only on x0, the advantage of the adversary against an n-masking is still

Adv(A) = Pr[F (X0) +X1 ̸= X0 +X1] = κ .

However, the adversary can bitflip both shares (denoted F0 and F1) to attain
the advantage 2κ(1− κ). For n shares, this advantage becomes

Adv(A) =
⌊n

2 ⌋∑
i=0

(
n

2i+ 1

)
κ2i+1(1− κ)n−2i−1 =

1

2
(1− (1− 2κ)n) ≤ nκ .

We observe that, if κ ≤ 1/2, masking increases the advantage of a faulting
adversary in the correctness model over a non-masked alternative.

5.2 Influence of Duplication

We then investigate the effect of duplicating the variable and error checking the
duplicates at the end of the computation.

Definition 2 (Duplication). The n-duplication of a variable x ∈ F2 consists
of a vector (x0, . . . , xn−1) ∈ (F2)

n such that x0 = ... = xn−1.

The above is combined with an error check which verifies if xi = xj with
i ̸= j and aborts the computation if they are not equal.

We calculate the advantage of a random fault adversary injecting a bitflip
(see Sect. 3) in both duplicates for a two-duplication using random faults (F0, F1)
with probability κ to occur. We find the following advantage

Adv(A) = Pr[F0(X0) = F1(X1), F0(X0) ̸= X0] = κ2 .

This is extended to k-duplication with an advantage of κk. As a result, dupli-
cation (or any linear code with nontrivial distance) exponentially decreases the
advantage of the adversary in the correctness game.
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For m-bit k-duplicated variables, the advantage of the adversary is still κk if
the adversary attacks only one pair of duplicates. In case the adversary attacks
all duplicates, the advantage becomes

Adv(A) =
m∑
i=1

(
m

i

)
κik(1− κ)k(m−i) = (κk + (1− κ)k)m − (1− κ)km ,

where the equality comes from the binomial theorem. The above advantage is
higher compared to attacking one pair of duplicates in case κ is small.

Specific Codes. We consider the advantage for encodings using different linear
codes from the repetition (duplication) code. Consider a value x ∈ F2m encoded
as a codeword c ∈ C with C and [n,m, d] code. It is clear that if the adversary
faults c to the nearest other codeword, the advantage is κd.

For a different attack, the adversary bitflips each bit of c where the advantage
is the probability they form a codeword. In particular, if κ = 0.5, one gets a
random m-bit fault for which the advantage is 2m−1

2n . This result is, for example,
given by Schneider et al. [21] where it is called the “fault coverage” of the code.
For more accurate results when κ ̸= 0.5, the specific advantage of the adversary
depends on the actual code that is used. We provide some examples.

Consider the [m + 1,m, 2] parity code (i.e. (x[0], ..., x[m − 1], c) with c =∑m−1
i=0 x[i]). The advantage of a random fault adversary is

Adv(A) =
⌊m+1

2 ⌋∑
i=1

(
m+ 1

2i

)
κ2i(1− κ)m−2i+1

=
1

2
(1 + (1− 2κ)m+1)− (1− κ)m+1 .

For other examples, we need the weight distribution of the codes we are
investigating.

– For the [7, 4, 3] Hamming code, the weight distribution, ranging from zero
to seven ,of the codewords is [1, 0, 0, 7, 7, 0, 0, 1]. As a result, the advantage
is 7κ3(1− κ)4 + 7κ4(1− κ)3 + κ7.

– Similarly, the weight distribution of the [8, 4, 4] extended Hamming code,
ranging from zero to eight, is [1, 0, 0, 0, 14, 0, 0, 0, 1]. Thus, the advantage is
14κ4(1− κ)4 + κ8.

The difference in advantages between the codes is shown in the first graph
of Fig. 5. From this figure, we find that the number of parity bits have a sig-
nificant effect on the advantage of a random fault adversary and that not only
the minimal distance of the code matters. Note that the “kink” in the graphs is
given by the difference of advantages of different attacks.

In the work by Bartkewitz et al. [3], experiments were performed by faulting
only the message bits in an implementation (leaving the parity bits unaltered).
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Fig. 5. The advantage of a random fault adversary against encoded values on the left
and on the right when only the message bits are attacked. Blue depicts the [5, 4, 2]
code, green [8, 4, 2], yellow [7, 4, 3], and red [8, 4, 4]. For the right figure, the [8, 4, 2] and
[8, 4, 4] codes have advantage zero.

Assuming that a κ-random fault in the message bits was injected (and that in-
deed the parity bits were unaffected), the result of the advantage for the different
codes investigated by Bartkewitz et al. is given in the second graph of Fig. 5.
The difference between the codes becomes more significant when faulting only
the message bits versus faulting all bits in the codeword.

5.3 Influence of Triplication

Consider the duplication method from before, but with a minimum of three
duplicates (x0, x1, x2). Instead of using error detection where the algorithm can
abort, we correct the errors using a majority voting.

We consider an adversary which bitflips two out of three duplicates of a single
bit. This adversary has the following advantage

Adv(A) = Pr[F0(X0) = F1(X1), F0(X0) ̸= X0] = κ2 .

For k duplicates, the advantage would be κ⌈k/2⌉.
We extend the above analysis by considering m bits. When each variable is

duplicated and an error detection method is used, the advantage of the adversary
is (κ2+(1−κ)2)m−(1−κ)2m when attacking all variables, and κ2 when attacking
one pair of duplicates. However, with error correction, the advantage against an
m-bit three-duplicate correction method becomes

Adv(A) = 1− (1− κ2)m ,

as the adversary can re-try the attack with each variable and win when one of the
m variables is error-corrected to the wrong output. The advantage is depicted
in Fig. 6. We find that triplication performs significantly worse when faults can
target a large state size compared to duplication. We note that the combination
of Boolean masking with triplication would not improve the advantage.

5.4 Influence of Masked Duplication

Recall the two methods of both masking and duplicating variables from Sect. 4.3.
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Fig. 6. The advantage against error correction (with three duplicates) is shown in red
(for m = 2) and yellow (m = 16). The advantage against error detection (with two
duplicates) is shown in green (for m = 2) and blue (m = 16).

Mask-then-duplicate. We consider the first case where each share is dupli-
cated. If the adversary only bitflips one pair of duplicates, the advantage is κ2

(or κk for k duplicates). In case the adversary bitflips all values (denoting the
random faults F0, F1, F2, F3), the advantage for n, k = 2 is

Adv(A) = Pr[F0(X
0
0 ) = F1(X

0
1 ), F2(X

1
0 ) = F3(X

1
1 ), F0(X

0
0 ) + F2(X

1
0 ) ̸= X]

= 2κ2(1− κ)2 .

Given that the probability to break the correctness of a k-duplication is κk

and the probability to leave each duplicate unchanged is (1−κ)k, the advantage
with n shares and k duplicates becomes

Adv(A) =
⌊n−1

2 ⌋∑
i=0

(
n

2i+ 1

)
κk(2i+1)(1− κ)k(n−2i−1)

=
1

2
((1− κ)k + κk)n − ((1− κ)k − κk)n .

Duplicate-then-mask. Recall that for the second case, the variable is first
duplicated and then each duplicate is shared separately. When attacking only one
share per duplicate, the advantage is κk. When attacking all variables (denoting
the random faults F0, F1, F2, F3), for n, k = 2, the advantage becomes

Adv(A) = Pr[F0(X
0
0 ) + F1(X

1
0 ) = F2(X

0
2 ) + F3(X

1
3 ), F0(X

0
0 ) + F1(X

1
0 ) ̸= X]

= 4κ2(1− κ)2 .

For n shares and k duplicates, the probability to change the correctness of an
n-sharing is 1

2 (1− (1− 2κ)n), so we have

Adv(A) = 2−k(1− (1− 2κ)n)k .

We observe that for small parameters κ, the mask-then-duplicate method
provides more security as opposed to the duplicate-then-mask method. This is
depicted for small variables n, k in Fig. 7.
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Fig. 7. The random fault advantage in the correctness model of the mask-then-
duplicate method (in green) and the duplicate-then-mask method (in red). The full
lines depict (n, k) = (2, 2), the dashed lines depict (n, k) = (2, 3), and the dotted lines
depict (n, k) = (3, 2).

5.5 Influence of Multiplicative Tags

We can encode variables against fault attacks by multiplying the duplicate with
a random value. We call this a multiplicative tag.

Definition 3 (Multiplicative Tag). A multiplicative tag of x ∈ F2m is a
value αx ∈ F2m with α ∈ F2m chosen uniformly random with each query.

Consider the encoding of x ∈ F2m with a multiplicative tag (x, αx) ∈ (F2m)2

and α ∈ F2m chosen randomly with every query. Error detection is performed
by taking the message x, multiplying it with the tag α, and verifying it against
the duplicate αx. We investigate the security of this method in the correctness
game with a random fault adversary.

We consider a first adversary which changes a single bit of x assuming α = 0.
Consider F a random fault flipping the first bit of x. Then, the advantage is

Adv(A) = Pr[F (X0) ̸= X0, α = 0] = 2−mκ .

For a second adversary, we take x = 1 and fault both x and αx with set-to-
zero faults. We number the bits of x by (x[0], ..., x[m − 1]) and the bits of αx
by (αx[0], ..., αx[m−1]). Then, the advantage of the adversary applying random
faults F0, ..., Fm against an m-bit multiplicative tag is given as follows

Adv(A) = Pr[F0(X[0]) = 0, F1(αX[0]) = 0, ..., Fm(αX[m− 1]) = 0]

= κ

(
1 + κ

2

)m

.

While, in this work, we are not able to provide bounds for general adversaries,
we observe that multiplicative tags provide a promising countermeasure against
faults compared to using linear codes from Sect. 5.2.

5.6 Influence of Shuffling

Consider the shuffling countermeasure from Sect. 4.4. Without duplication, the
adversary can bitflip each value for the same advantage as in the non-shuffled
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case. Since there is no detection step, as long as one fault hits, the adversary
wins.

In case duplication is used on top of the shuffling, similar to the weak input
attack in Sect. 4.4, there are weak inputs in the correctness model. Namely,
for two two-duplicated bits (x0, y0), (x1, y1), pick the secret (0, 1). By applying a
set-to-zero fault on all values, only one variable can change in its value providing
the same advantage as in the non-shuffled case where the adversary only targets
one pair of duplicates. Moreover, recall from Sect. 5.2 that when k is small,
the best attack of the adversary is to fault all duplicates. Such an attack has
the same probability to break correctness when shuffling the duplicates. As a
result, for small κ, shuffling does not improve security in the random fault model
(independent of how the shuffling is done). Together with the weak inputs when
attacking only one pair of duplicates, we conclude that we cannot find a non-
trivial upper bound on the security of shuffling in the correctness model.

6 Case Studies: Random Fault Privacy

In Sect. 5, we investigated the correctness security of several countermeasures.
In this section, we investigate the privacy security (from Sect. 3.3). Recall that
the privacy model is only relevant to countermeasures which can abort the com-
putation. Therefore, we do not investigate countermeasures such as masking.

6.1 Influence of Duplication

Consider the duplication method from Sect. 5.2 (the advantage is similar when
using multiplicative tags from Sect. 5.5). A privacy adversary (taking x = 0 and
x = 1) faulting one variable to zero with probability κ has an advantage

Adv(A) = | Pr[AO0

=⊥]− Pr[AO1

=⊥] | = κ .

This is because, when x = 0, the countermeasure can never abort or, when
x = 1, it aborts with probability κ. The bound for m-bit variables (or viewing
the variable m times) is 1 − (1 − κ)m ≤ mκ. Similar to probing the same vari-
able multiple times, it is advantageous to fault the same variable multiple times
causing a “horizontal”-like attack to be possible. We provide examples of such
attacks on a mask-then-duplicated multiplier in Appendix C.

In case the adversary faults all k duplicates to zero, the advantage becomes

Adv(A) =
k−1∑
i=1

(
k

i

)
κi(1− κ)k−i = 1− κk − (1− κ)k .

6.2 Influence of Masked Duplication

Similar to Sect. 5.4, we consider a variable which is both masked and duplicated.
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Mask-then-duplicate. Consider a masked and encoded value (x0
0, x

1
0, x

0
1, x

1
1)

where the shares are duplicated. When faulting both x0
0 and x1

0 to zero, we get

Adv(A) = | Pr[AO0

=⊥]− Pr[AO1

=⊥] | = κ− (1− (1− κ)2)/2 = κ2/2 .

When considering n shares, the probability to change at least one share out of
n (due to a set fault) when the sharing has secret zero κ0 or secret one κ1 is

κ0 =

⌊n
2 ⌋∑

i=0

21−n

(
n

2i

)
(1− (1− κ)2i), κ1 =

⌊n−1
2 ⌋∑

i=0

21−n

(
n

2i+ 1

)
(1− (1− κ)2i+1) .

The advantage of the above attack is |κ0 − κ1 | = 21−nκn.
When faulting (x0

0, x
1
0, x

0
1, x

1
1) all to zero, the advantage becomes 2κ2(1−κ)2.

For small κ, the advantage is higher when faulting all duplicates and shares. For
the bound when faulting all k duplicates and n shares is

Adv(A) = 21−n(1− (1− κ)k − κk)n,

since the advantage when faulting a k-duplication is 1− (1− κ)k − κk.

Duplicate-then-mask. Consider the masking (x0
0, x

1
1, x

0
2, x

1
3) such that x0

2 +
x1
3 = x0

0 + x1
1. When faulting x0

0 and x1
1 both to zero, we have an advantage

Adv(A) = | Pr[AO0

=⊥]− Pr[AO1

=⊥] | = κ2 .

For n shares, this attack generalizes to the advantage κn. When faulting all bits
(x0

0, x
1
1, x

0
2, x

1
3) to zero, the advantage is 2κ2(1 − κ)2. When investigating the

advantage for n shares and k duplicates, when faulting all shares to zero, the
probability to change the value of the secret when it is equal to zero is

κ0 =

⌊n
2 ⌋∑

i=1

21−n

(
n

2i

)i−1∑
j=0

(
2i

2j + 1

)
κ2j+1(1− κ)2i−2j−1


=

⌊n
2 ⌋∑

i=1

2−n

(
n

2i

)
(1− (1− 2κ)2i) = 1/2(1− (1− κ)n − κn) ,

where the equalities are derived from the binomial expansion theorem. Similarly,
the probability to change the secret of a sharing of one is

κ1 =

⌊n−1
2 ⌋∑

i=0

21−n

(
n

2i+ 1

) i∑
j=0

(
2i+ 1

2j + 1

)
κ2j+1(1− κ)2i−2j


= 1/2(1− (1− κ)n + κn) .
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Then, when faulting all shares in the duplication, the probability to abort for
secret zero is 1 − κk

0 − (1 − κ0)
k . Similarly, for secret one the probability is

1− κk
1 − (1− κ1)

k . Thus, the advantage against n shares and k duplicates is

Adv(A) = |κk
0 − κk

1 + (1− κ0)
k − (1− κ1)

k | .

We observe that the mask-then-duplicate method scales better for higher
parameters n and the duplicate-then-mask method scales better for higher pa-
rameters k (with the mask-then-duplicate method performing better for equal
parameters n, k) as depicted in Fig. 8.
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Fig. 8. The privacy advantage of the mask-then-duplicate method (in green) and the
duplicate-then-mask method (in red). The full lines depict (n, k) = (2, 2), the dashed
lines depict (n, k) = (2, 3), and the dotted lines depict (n, k) = (3, 2).

6.3 Influence of Shuffling

Consider the shuffling method from Sect. 4.4 but with duplicated values. Similar
to Sect. 4.4 and Sect. 5.6, there are weak inputs in the privacy model. Namely,
when shuffling (x, y) ∈ F2

2 and taking the two secrets x = y, shuffling becomes
obsolete as the same values are shuffled. Moreover, the same attack described in
Sect. 6.1 still applies. Namely, to attack all duplicates with a set-to-zero fault
between the all-zero and all-one secrets. As a result, shuffling with duplication
does not improve the random fault security in the privacy model. Moreover,
when using a masking countermeasure, for small parameters κ the best attack
is to fault all shares and duplicates with the same fault. The advantage of this
attack would not change when shuffling the values.

Together with the weaknesses found in the correctness model in Sect. 5.6, we
conclude that shuffling against fault attacks exhibits several weaknesses. The vul-
nerabilities found in this work directly apply to the Rocky countermeasure [19]
which we show is weak in both the correctness and privacy models of the random
fault model for certain parameters κ and for certain weak inputs. In addition with
the weaknesses found for shuffling in the random probing model from Sect. 4.4,
we do not believe shuffling can provide a significant improvement for security
against either random probing or random fault adversaries.
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7 Conclusion

In this work, we proposed a new fault adversary model called the random fault
model which is a model inspired from the known random probing model. The
goal of the work was to investigate and compare different countermeasures and
observe which can promise good security against fault attacks. To make this
comparison properly, we also investigated the countermeasures in the random
probing model.

Most results in the random probing model are intuitive. Masking provides
exponential protection in the number of shares and duplication linearly decreases
security in the number of duplicates. However, we did observe a difference be-
tween the security of first duplicating a variable and masking each duplicate
versus masking a variable and duplicating each share which, to the best of our
knowledge, had not been investigated before. One surprising result was that both
shuffling or shuffling masked algorithms does not significantly increase the secu-
rity in the random probing model. This result is quite significant since it holds
no matter how the shuffling is performed.

In the random fault model, we found that encoding techniques such as dupli-
cation exponentially improves the security in the minimal distance of the code.
But we also observed that the number of parity bits has an influence to the coun-
termeasure’s security which provides a theoretical explanation for the practical
results by Bartkewitz et al. [3]. Interestingly enough, we also find that tripli-
cation methods (error correction) are significantly less secure than duplication
methods (error detection) when the adversary faults several bits. Since there is
a lot of work on error correction methods, it remains a question whether these
works can provide any good security in a formal security model and we are
left with the open question of investigating their security in practice. Moving
to masking, we showed that masking reduces the security of a countermeasure
against fault attacks and, similar to results in the random probing model, that
there is a trade-off in security between duplicate-then-masking a variable versus
masking-then-duplicating one. Finally, similar to the results in the random prob-
ing model, we show that shuffling does not improve a countermeasure’s security
against fault attacks which implies that the countermeasure Rocky [19] does not
currently provide a theoretical foundation for its security.

While we investigated several countermeasures in both the random probing
and random fault model, we leave some open problems for future work.

– We investigated the random probing and random fault security of counter-
measures, but we leave the combined security analysis from Appendix A.

– The application of the random fault model to masked or encoded operations
such as multipliers following the observations from Appendix C.

– The random probing or random fault analysis of other masking techniques
such as multiplicative masking, arithmetic masking, or prime field masking.

Acknowledgements. A special thanks to Vincent Rijmen for the helpful dis-
cussions. This work was supported by CyberSecurity Research Flanders with
reference number VR20192203.
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A The Random Combined Model

We consider the security model where the random probing and random fault ad-
versaries are combined, meaning an adversary that can both fault and probe the
algorithm. Although, in this work, we do not analyze the security of any coun-
termeasures against the combined adversary, we wish to provide the combined
model to support future work.

A.1 Random Combined Adversary

The random combined adversary consists of the natural combination of the ran-
dom probe and random fault adversary. Namely, this is an adversary which can
place a random probe and a random fault on each variable in an algorithm.
However, we note that the random probe and the fault act independent of each
other. Meaning, while a random probe has an ε probability to view a variable,
the random fault has a κ probability to be applied, and the values ε and κ do
not influence each other. For consistency’s sake, we consider the random probe
is applied first and the random fault second. Meaning that the random probe
observes the unaltered value in the algorithm before the fault is applied (placing
a probe on the next operation using the variable would view the altered value).

To remain in line with the random probing and random fault model, we con-
sider that an adversary has to place all its random probes and random faults
before the algorithm is run and the adversary receives the results from the ran-
dom probes when the algorithm is finished. When considering implementations
closer to reality, adaptive adversaries, which can place faults depending on what
previous probes returned, could be considered.

A.2 Security Model: Correctness

Similar to the random fault model, the combined model also consists of two se-
curity games, a correctness game and a privacy game. We explain the correctness
game first.

Since the adversary has to place all random faults before the random probes
return any information, the correctness game for a random combined adversary
is the same as for a random fault adversary. As a result, the advantage is the
same as with the correctness game of the random fault model.
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A.3 Security Model: Privacy

The privacy game of the random combined model is similar to the random
probing model and the privacy game of the random fault model. We depict the
game in Figure 9. The game consists of a challenger picking a random bit b, the
challenger then creates an oracle Ob from the algorithm and provides this to the
adversary A. This adversary is computationally unbounded, but it is bounded
in the number of queries to the oracle. The adversary provides two secrets k0, k1
together with a set of variables of the algorithm Vp to probe and a set of functions
(excluding the encoding and decoding phases) G = {gi | i ∈ Vf} to fault. The
oracle then picks the secret kb, generates its internal randomness, computes the
algorithm one variable at a time, samples a random probe on the values V from
the variables Vp, from Bern(ε), to view them and (in case the adversary specified
so) applies a random fault, from Bern(κ). The oracle returns the state of the
abort signal of the algorithm together with the values returned by the random
probes. After q queries, the adversary returns the bit b which was chosen by the
challenger.

AC

Ob

Ob

b

k0, k1,Vp,FG

⊥, {F (v)|v ∈ V, F
Bern(ϵ)← N}

b← $

Apply {Gi
Bern(κ)← Fgi |gi ∈ G}

Fig. 9. The privacy game of the random combined model.

The advantage of A is defined as

Adv(A) = | Pr[AO0

= 1]− Pr[AO1

= 1] | .

B Random Fault Reduction

In this appendix, we show that a random fault adversary reduces to a threshold
fault adversary. We recall that a k-threshold fault adversary on a string Fℓ

2 can
choose up to k ≤ ℓ variables to apply faults (which apply with 100% certainty).
The proof follows the one from the reduction of the random probing adversary
to a threshold probing adversary from Duc et al. [13].

Theorem 1. Let A be a κ-random fault adversary on Fℓ
2. Then, there exists a

⌈2κℓ− 1⌉-threshold fault adversary S on Fℓ
2 such that ∀(x1, ..., xℓ) ∈ Fℓ

2

outA(x1, ..., xℓ)
d
= outS(x1, ..., xℓ) ,
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with outA the state (x1, ..., xℓ) after applying the faults from A (equiv. S) and
d
= denoting the equality between two distributions. The above equality holds as
long as A applies at most ⌈2κℓ−1⌉ faults which happens with probability at least
1− exp(−κℓ

3 ).

The proof immediately follows from the Chernoff bound.

C “Horizontal” Statistical Ineffective Fault Attacks

In this appendix, we analyze the security of a masked and duplicated multiplier.
We observe that we can enhance the advantage of a random fault adversary by
attacking multiple inputs over faulting a single variable.

Consider a masked-then-duplicated AND where the shares (a0, a1, b0, b1) of
the bits a, b are multiplied to form the cross products (a0b0, a0b1, a1b0, a1b1).
This operation is performed twice with the second time over the duplicates such
that the cross products can be verified for error detection. This example of a
multiplier is not uncommon, for example it follows the design by Dhooghe and
Nikova [11].

We provide some advantages in the privacy model considering different attack
vectors. These attacks are all examples of statistical ineffective fault attacks by
Dobraunig et al. [12].

– When attacking only one share (e.g. a0) with a bitflip, the advantage of the
adversary between the secrets (a, b) = (0, 0) and (1, 1) is κ/2.

– A bitflip of both shares of a single secret (e.g. both a0, a1) gives the adversary

a κ(2−κ)
2 advantage.

– Set-to-zero faults of both shares of a single secret (e.g. both a0, a1) provides

an advantage κ(2+κ)
4 .

– A bitflip to all input shares provides an advantage 2κ− 5κ2 + 5κ3 − 3/2κ4.

From the above attacks’ success rates, we observe that it is beneficial to attack
multiple bits (for example, by widening the spot of a laser). These improved
attacks can be compared to the fault variant of the horizontal attack on the
ISW multiplier as observed by Battistello et al. [4]. Instead of probing several
cross products for an improved advantage, we fault the inputs to trip several
abort signals on the cross products for an improved advantage. A full analysis of
the random fault advantage of masked and encoded multipliers is left for future
work.
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