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Abstract. Romulus-H is a hash function that currently competes as a finalist in
the NIST Lightweight Cryptography competition. It is based on the Hirose DBL
construction which is provably secure when used with an ideal block cipher. However,
in practice, ideal block ciphers can only be approximated. The security of concrete
instantiations must be cryptanalyzed carefully; the security margin may be higher or
lower than in the secret-key setting. So far, the Hirose DBL construction has been
studied with only a few other block ciphers, like IDEA and AES. However, Romulus-H
uses Hirose DBL with the SKINNY block cipher where only very little analysis has
been published so far.
In this work, we present the first practical analysis of Romulus-H. We propose a
new framework for finding collisions in hash functions based on the Hirose DBL
construction. This is in contrast to previous work that only focused on free-start
collisions. Our framework is based on the idea of joint differential characteristics
which capture the relationship between the two block cipher calls in the Hirose
DBL construction. To identify good joint differential characteristics, we propose a
combination of a MILP and CP model. Then, we use these characteristics in another
CP model to find collisions. Finally, we apply this framework to Romulus-H and
find practical collisions of the hash function for 10 out of 40 rounds and practical
semi-free-start collisions up to 14 rounds.
Keywords: Hash functions · Differential cryptanalysis · MILP · SMT · Romulus-H

1 Introduction
Hash functions are among the most versatile and widely-used cryptographic schemes. How-
ever, compared to other cryptographic primitives such as keyed block ciphers, estimating
the security margin of hash functions appears even more challenging. Most applications
rely on standardized hash functions such as the NIST standards SHA-2 and SHA-3, which
have undergone substantial scrutiny. Both are however not well-suited for more constrained
platforms, which may struggle with the large state size of the Keccak permutation or the
software-oriented design of SHA-2. For this reason, the National Institute of Standards
and Technology (NIST) is currently running the Lightweight Cryptography (LWC) stan-
dardization project, a cryptographic competition for lightweight authenticated encryption
schemes (AEAD) and hash functions.

One of the 10 finalists in the NIST LWC competition is the Romulus cipher suite,
published by Iwata et al. at FSE 2020 [IKMP20]. Romulus comprises multiple authenticated
encryption modes for different use-cases and the hash function Romulus-H. All members of
the Romulus cipher suite internally use the tweakable block cipher SKINNY [BJK+16].

The hash function Romulus-H follows the MDPH construction [Nai19]. This construction
combines the Hirose double block-length (DBL) mode [Hir06], a construction to build a
2n-bit compression function from an n-bit block cipher, with MDP [HPY07], an extension
of the Merkle-Damgård construction that prevents length extension attacks. MDPH is
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proved to be indifferentiable from a random oracle up to n − log(n) bits when instantiated
with an n-bit ideal block cipher [Nai19, GIM22]. Despite its status as a NIST LWC finalist,
only a single paper analyzed the resistance of Romulus-H against preimage and (free-start)
collisions attacks [DHS+21].

Related work. Much of the published corpus on hash function cryptanalysis either
focuses on the MD5/SHA-1/SHA-2 family or on the candidates of the SHA-3 competition,
particularly the winner Keccak. Many of the techniques introduced in these contexts
are hard to apply directly for collision search in the Hirose DBL construction. For
example, the analysis of MD5 [WLF+05, WY05] and its successors SHA-1 [WYY05,
SKP16, SBK+17] and SHA-2 [MNS11, MNS13, DEM15] strongly builds on the strategy of
message modification [WLF+05, WY05]. These attacks consider differential characteristics
with a dense, low-probability part that can be controlled and thus satisfied directly from
the message input, while the later rounds have sparser differences with higher probability
that can be satisfied mostly probabilistically. Inside-out approaches like the rebound attack
[MRST09, LMS+15] similarly find many solutions for part of the characteristic, and some
of these probabilistically satisfy the rest.

This is much more challenging in a double-block-length construction where such
dense parts would typically appear twice, in both primitive calls, so the separation into
controllable dense parts and probabilistic sparse parts does not work so well – at least not
when looking for hash collisions, where the output and input chaining variable are further
constrained. Besides such collisions of the full hash function, we may also look for collisions
of the compression function applied to each block in a Merkle-Damgård hash function.
Such compression function collisions are referred to as semi-free-start collisions (if the
difference is induced only via the message block, while the input and output chaining value
each have zero difference) and free-start collisions (if differences may appear in both the
message block and the input chaining value). However, they cannot be trivially extended
to attacks on the full hash function.

There are a few results on the Hirose double block length construction instantiated
with other block ciphers. At FSE 2012, Wei et al. [WPS+12] showed that the IDEA
block cipher does not lead to a secure construction when used with Hirose DBL. They
search for free-start collisions by using differential characteristics with a difference in the
chaining value equal to the initial difference between the two block cipher calls in the
Hirose construction. This way, the analysis is very similar to analysis of the Davies-Meyer
construction. However, free-start collisions cannot be easily extended to full collisions.

A similar approach has been applied to Hirose DBL instantiated with AES-256. Chen
et al. [CHKM14] propose free-start collision attacks on Hirose DBL with up to 9 rounds
of AES-256 by using a rebound attack [MRST09]. This attack was extended to 10 rounds
by using a quantum version of the rebound attack [CKS21].

The SKINNY tweakable block cipher used in Romulus-H has been analyzed in an
unkeyed setting in a different context, in the Matyas-Meyer-Oseas (MMO) construction.
This hash function construction is single-block-length and thus has an output size of
128 bits for SKINNY; so it only offers 64 bits of security against collisions. Guo et al.
describe collisions for 15 rounds of SKINNY-128-256-MMO in 255.8 time and 19 rounds of
SKINNY-128-384-MMO in 235 time [GLLP22].

While the MDPH construction is provably secure when instantiated with an ideal block
cipher, SKINNY only claims security in the much weaker related-key model. Therefore, we
need dedicated analysis of the security of using SKINNY in the MDPH construction; but
so far, few results have been published. At Crypto 2021, Dong et al. [DHS+21] published
meet-in-the-middle attacks on SKINNY-128-384 which they use to find preimages and free-
start collisions for 23 rounds of Romulus-H with time complexity 2248 and 2124, respectively.
To find preimages, they use a meet-in-the-middle attack on SKINNY which they identify
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based on an automated approach. Their free-start collision attack is based on generating
preimages for a partial target, i.e., preimages that map to a subset of size 2x of the output
space. Then, by generating about 2 x

2 preimages that map to that subset, a free-start
collision can be found. So far, no dedicated results on collisions for the hash function with
a constant IV, i.e., semi-free-start collisions or collisions, have been published to the best
of our knowledge.

Our contributions. We fill this gap in the analysis of Romulus-H and present the first
collision attacks. Our attacks are the first attacks on the round-reduced hash function
with complexity below the security claim. Our contribution can be summarized as follows.

• We create a framework for analyzing hash functions based on Hirose DBL and the
Merkle-Damgård construction. We propose so-called joint differential characteristics.
These capture the relationship between the two block cipher calls in the Hirose
DBL construction by using an additional connecting characteristic. Thus, unlike the
preimage attacks by Dong et al. [DHS+21], we do not treat the second primitive call
as a black-box.

• To identify these joint differential characteristics, we propose a two-step search
process based on MILP and CP models. Furthermore, we show efficient CP models
for finding collisions based on joint differential characteristics.

• We apply this framework to Romulus-H hash function and provide optimizations
based on the STK framework as well as on the slow diffusion of SKINNY.

• With these models, we obtain practical collisions for round-reduced variants of
Romulus-H. Concretely, we show practical collisions for 10 out of 40 rounds of
Romulus-H and practical semi-free-start collisions for 14 rounds.

Our results are summarized in Table 1. The first table rows show our bounds on
the minimum number of active S-boxes (#S) in joint characteristics in general and in a
simplified, equality-based model. Next, we show the estimated probability of the best
characteristics we found. These estimations are under the Markov assumption, which is
clearly not satisfied in the unkeyed setting. The bold values are optimal when restricted
to a fixed cellwise characteristic with the minimum number of active S-boxes; we observe
a large gap between an activity-based bound and actual characteristics, i.e., many S-boxes
use suboptimal transitions. Yet, our results show that our tool-based approach can make
efficient use of the available degrees of freedom and find solutions for characteristics with
very low probability.

Table 1: Results and bounds on the number of active S-boxes based on different models.
Rounds 6 7 8 9 10 11 12 13 14 15 16
#S (joint) 11 16 25 33 41 46 54 59 69 73 74
#S (equal) 11 16 25 33 42 50 59 67 76 77 96
Best prob. 2−28 — 2−95.2 2−163.3 2−194.8 — 2−302.9 — 2−397.5 2−349.9 2−478.3

Semi-coll. ✓ — ✓ ✓ ✓ — ✓ — ✓ — —
Collision ✓ — ✓ ✓ ✓ — — — — — —

Outline. In Section 2, we recall the specification of Romulus-H and SKINNY, as well
as background on automated differential cryptanalysis. In Section 3, we propose our
framework for collision-finding in the Hirose DBL construction and propose the concept
and modelling of joint characteristics. In Section 4, we apply the framework to Romulus-H
and present some cipher-specific optimizations as well as our results. We conclude in
Section 5.
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2 Background
In this chapter we outline necessary preliminary knowledge including the definition of
Romulus-H, and the SKINNY block cipher. Furthermore, we recall differential cryptanalysis,
how it can be automated and how it can be applied to hash functions.

2.1 The Romulus-H hash function
Romulus-H is a hash function proposed by Iwata et al. at FSE 2020 [IKMP20]. Together
with 3 authenticated encryption modes for different use-cases, Romulus-H forms the Romulus
suite. This suite of cryptographic algorithms is currently a finalist of the NIST Lightweight
Cryptography competition.

Romulus-H is based on the Merkle-Damgård construction with permutation (MDP)
as depicted in Figure 1. Compared to the original Merkle-Damgård construction, this
construction applies a permutation before processing the final message block to prevent
length extension attacks. Romulus-H uses an xor with the value 2 as the permutation.
The combination of MDP with Hirose DBL is called MDPH [Nai19].

To build a compression function h, SKINNY-128-384+ is used in the Hirose DBL
(double block length) construction as shown in Figure 2. This compression function takes
a 256-bit chaining value h and a 256-bit message block Mi as input and outputs a new 256
bit chaining value h′ = CF(h, Mi). The output is calculated as follows. First, the chaining
value is split into 2 separate 128-bit values: hL ∥ hR = h. Then, h′ is calculated as follows:

h′
L = E(hL, hR ∥ Mi) ⊕ hL

h′
R = E(hL ⊕ 1, hR ∥ Mi) ⊕ hL ⊕ 1
h′ = h′

L ∥ h′
R ,

where E(Mi, TK) denotes encryption of the plaintext Mi under tweakey TK.

0256

M1 M2 Mm−1 Mm

. . .
2

H(M)

Figure 1: The Merkle-Damgård construction with permutation (MDP) used in Romulus-H.
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Figure 2: The compression function of Romulus-H based on Hirose’s DBL construction.
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2.2 The SKINNY family of block ciphers
SKINNY is a family of tweakable block ciphers proposed by Beierle et al. [BJK+16]. It
features a 64-bit or 128-bit state and a tweakey of size 128, 256, or 384 bits. Romulus-H
uses a state size of 128 bits and a tweakey of 384 bits. The state is organized as a 4 × 4
matrix of 8-bit elements. The tweakey is stored in 3 4 × 4 matrices of 8-bit elements
called TK1, TK2, and TK3. However, instead of SKINNY-128-384, Romulus-H uses the
round-reduced variant SKINNY-128-384+ with 40 instead of 56 rounds.

SKINNY’s round function is depicted in Figure 3 and consists of the following steps.

0 1 2 3
4 5 6 7
8 9 a b
c d e f

SC
AC

≫1
≫2
≫3

Figure 3: SKINNY’s round function.

SubCells: An 8-bit S-box is applied to all 16 cells of the state in parallel. This S-box
was chosen to meet certain minimum security requirements while minimizing the
complexity of a hardware implementation. Consequently, the DDT (differential
distribution table) contains entries with probabilities ranging from 2−2 to 2−7. Also,
it is highly structured as evident from Figure 4. In this figure, each pixel corresponds
to an entry in the DDT with darker pixels corresponding to higher probability.

Figure 4: Differential distribution table of the SKINNY S-box. White pixels indicate
impossible transitions while darker pixels indicate transitions of higher probability.

AddConstants: A round constant is xored onto the leftmost column of the state.

AddRoundTweakey: The top two rows of the three tweakey states TK1, TK2, and TK3
are xored onto the state.

UpdateRoundTweakey: The cells of TK1, TK2, and TK3 are permuted according to

(0, . . . , 15) → (9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7)

where the indices are taken row-wise. This ensures that the upper half of the initial
three tweakey states apply to the even-numbered rounds, while the lower half apply
to the odd-numbered rounds. Finally, the top two rows of TK2 and TK3 are updated
with two separate LFSRs of period 15. Note that the LFSRs are exact inverses of
each other.
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ShiftRows: The cells of the state are rotated row-wise similar to AES but to the right.

MixColumns: Each column of the state is multiplied with the following binary matrix:
1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

 .

This mixing layer is chosen to be lightweight and can be implemented with only
three xors and some rewiring.

2.3 Differential Cryptanalysis
Differential cryptanalysis is one the main techniques for evaluating the security of crypto-
graphic primitives. It was proposed by Biham and Shamir in 1990 to attack the DES block
cipher [BS90]. The core idea is to find differential characteristics which trace the difference
between two executions of a cryptographic primitive and hold with a particular probability.
In SPN designs, this probability is determined by the active S-boxes, i.e., S-boxes with
nonzero input difference.

In the context of hash function cryptanalysis, differential characteristics are particularly
useful for finding collisions; i.e., we are interested in vanishing characteristics with output
difference 0. Besides the classic xor-differences, other difference notions such as modular
differences (subtraction modulo 2n) and signed differences [WY05, WLF+05] are useful.
Additionally, different levels of determination of differences can be used to describe different
phases of the search: Similar to truncated differential analysis [Knu94], we may consider
parts of the characteristic undetermined, or even refine the notion and impose additional
constraints on the values [DR06].

Automating Differential Cryptanalysis. The process of finding differential characteristics
has increasingly been automated. One common tool is Mixed-Integer Linear Programming
(MILP), a modelling approach based on linear constraints and linear objectives, which
is often used to find patterns of active S-boxes[MWGP11, ENP19, ZHWW20, MR22].
Additionally, SMT and SAT solvers are often used to find differential characteristics based
on these S-box patterns [AK18, MAS15]. In the context of hash function cryptanalysis,
automation is mostly driven by custom dedicated tools, particularly when searching for
actual collisions [MNS11, SBK+17]. For preimage attacks, a few results using SAT solvers
have been shown [HMRS12].

3 Framework for Finding Collisions in the Hirose DBL
In this section, we outline our general framework for finding collisions in hash functions
based on MDPH. This framework is built on what we call joint differential characteristics
and performs the following 4 steps.

1. Find a joint cellwise characteristic with few active S-boxes.

2. Find many joint bitwise characteristics based on the cellwise characteristic.

3. Filter the bitwise characteristics by searching for an assignment in the semi-free-start
collision setting. A semi-free start collision is a choice of chaining value h and distinct
messages M1, M2 such that CF(h, M1) = CF(h, M2).

4. Find a full collision by generating many prefixes until a collision can be found. A full
collision is a choice of two distinct messages M1, M2 such that H(M1) = H(M2)
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3.1 Joint Differential Characteristics
To apply differential analysis to the Hirose DBL construction we define the concept of
joint differential characteristics. We define this concept based on a few observations. We
can use the same differential characteristic for both invocations of SKINNY. There is a
connection between the two SKINNY calls within a single compression function which we
describe using the connecting difference. In the first few rounds, this connecting difference
is mostly zero because the initial difference affects only a single bit. We can keep track
of this connecting difference by using a connecting differential characteristic. After some
time, it does not pay to keep track of the connection difference. Then, we can leave this
difference unknown as done in truncated differential cryptanalysis. Therefore, we define
a joint characteristics as a (main) differential characteristic δ for the tweakable SKINNY
block cipher and a connecting characteristic τ , i.e., a truncated differential characteristic
with zero difference in the tweakey as both SKINNY calls within a compression function
use the same tweakey. We depict the idea and notation based on the example of a single
S-box in Figure 5.

x0 S y0

x1 S y1

x2 S y2

x3 S y3

δi δo

δi δo

τi τo

τi τo

Figure 5: The idea of joint differential characteristics illustrated on a single S-box.

For each S-box transition (δi, τi) → (δo, τo) in a block cipher with s-bit S-boxes, we
have the following: (δi, δo) ∈ Fs

2, (τi, τo) ∈ Fs
2 ∪ {?}, and τi = ? =⇒ τo = ?.

Joint probability. We calculate the overall probability of a joint characteristic as the
product of the probabilities of each S-box transition. To accurately evaluate the joint
transition (δi, τi) → (δo, τo) through an S-box, we cannot rely only on the DDT, but need
additional information. For this purpose, we define two additional tables for the S-box S,
the DDT3 and DDT4, depending on whether we want to know τo or not:

DDT3[δi, τiδo] = #{x ∈ Fs
2 : S(x) ⊕ S(x ⊕ δi) = δo ∧ S(x ⊕ τi) ⊕ S(x ⊕ τi ⊕ δi) = δo}

DDT4[δi, τi, δo, τo] = #{x ∈ Fs
2 : S(x) ⊕ S(x ⊕ δi) = δo ∧ S(x ⊕ τi) ⊕ S(x ⊕ τi ⊕ δi) = δo∧

S(x) ⊕ S(x ⊕ τi) = τo ∧ S(x ⊕ δi) ⊕ S(x ⊕ δi ⊕ τi) = τo} .

Additionally, we use XDDT, XDDT3, and XDDT4 to denote the underlying solution sets,
i.e., the sets of input values to the S-box (x in the equation above) that lead to the desired
transition. Then, the transition probability p of (δi, τi) → (δo, τo) for an s-bit S-box is

p =


(DDT[δi, δo] · 2−s)2 if τi = ?
DDT[δi, δo] · 2−s if τi = 0 and τo = 0
DDT3[δi, τi, δo] · 2−s if τi ∈ Fs

2 and τo = ?
DDT4[δi, τi, δo, τo] · 2−s otherwise.

(1)
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Maximum Probability of the DDT3 and DDT4. The largest entries in the DDT3 and
DDT4 (for nonzero τi) equal the differential uniformity of the S-box. This is a special case
of the following fact:

DDT4[δi, δi, δo, δo] = DDT[δi, δo]
DDT3[δi, δi, δo] = DDT[δi, δo] .

While the DDT4 of an 8-bit S-box is a table with 232 entries, it is very sparse.
For example, the DDT4 of the 8-bit SKINNY S-box only contains 216.8 nonzero entries.
Therefore, we can store it efficiently as a sparse matrix. The DDT3 is also relatively sparse;
for SKINNY there are 216.2 nonzero entries (out of 224).

3.2 MILP Model for Joint Cellwise Characteristics
To find joint characteristics and conforming inputs, we follow a multi-step approach. One
of the main challenges is the complexity of the DDT4, which is challenging for automated
solvers. For this reason, we want to minimize the number of S-boxes we need to model with
the full DDT4, and first search for cellwise characteristics; that is, we first only determine
the activity pattern of the joint characteristics, not the precise bit-level differences. This
way, we obtain (a) upper bounds on the probability of the best joint characteristics and
(b) starting points to search for good (though not necessarily optimal) bit-level differential
characteristics.

We define a MILP model to search for optimal or near-optimal joint cellwise charac-
teristics and associated bounds. To calculate cellwise bounds, we consider the maximum
differential probability given by these tables. We consider three different settings to
evaluate the advantage of joint characteristics:

• Plain setting: We ignore any connection between the upper and lower characteristic
(i.e., τ̄ = ? is completely undetermined) and consider the same characteristic δ̄
independently for both SKINNY calls. For each active S-box δ̄i ̸= 0, we pay (at least)
the maximum differential probability of the S-box DDT twice. In other words, we
consider only the first case in Equation 1. For the cellwise model, we need only one
variable per S-box, as the same optimal characteristic δ̄ can be used for upper and
lower part and τ̄ is not needed; for the bitwise model, we only need the DDT.

• Equality setting: We propagate the fixed input difference of τ̄ with probability 1,
i.e., we deduce in which cells τ̄ is definitely zero. Then, for each active S-box δ̄i ̸= 0,
we pay the S-box DDT transition either once (if τ̄i = 0, second case in Equation 1) or
else twice as in the independent setting. For the cellwise model, we use two variables
per S-box for δ̄ and τ̄ , but only the δ̄ variables are actual decision variables while τ̄
can be deduced deterministically. For the bitwise model, we still only need the DDT.

• Joint setting: We use the full definition of joint characteristics from Subsection 3.1,
with the transition probabilities of Equation 1. The connection characteristic τ̄ is
modelled as a partial characteristic: Differences can be either known (τ ∈ Fs

2 for
bitwise characteristics or τ̄ ∈ {0, x} for cellwise characteristics, where x denotes an
active, nonzero difference) or unknown (τ̄ = ?). In an S-box with a known, nonzero
input difference τ̄i ̸= 0, we can choose to either know or forget the output difference.
For the cellwise model, we need corresponding decision variables to these states; for
the bitwise model, we need the DDT, DDT3, and DDT4.

MILP model for the plain setting. The objective of this model is to minimize the
number of active S-boxes in the main characteristic δ̄ in order to maximize the differential
probability in the two “independent” SKINNY calls. We introduce the following binary
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decision variables for R-round SKINNY-128-384: X[r, i, j] is the S-box activity of δ̄ in
round r ∈ R′ = {0, 1, . . . , R} (where X[R, ·, ·] is the output), row i ∈ I = {0, 1, 2, 3}, and
column j ∈ J = {0, 1, 2, 3}; Y [r, i, j] is the activity pattern of δ̄ after AddRoundTweakey
for r ∈ R = {0, 1, . . . , R − 1}; and K[r, i, j] is the activity pattern of the round subtweakey.
This round subtweakey is the xor of the 3 round tweakeys TK1[r], TK2[r], TK3[r]; to
correctly model potential cancellations in this addition that are consistent with their LFSR
update functions, we follow the designers’ MILP model [BJK+16]: we use variables L[i, j]
to denote the lane activity. If L[i, j] = 0, then K[0, i, j] and all corresponding permuted
versions of this cell for r ≥ 1 must be 0. If L[i, j] = 1, then at least r − 1 of the r
corresponding cells must be active, as cancellations can occur only once per 30 rounds (in
the TK2 setting).

Based on these variables, a cellwise differential model of the round update function is
quite straightforward using only 2-input cellwise xors. We model all xors without helper
variables to minimize the solving time [ENP19].

Since we want to find collisions, we additionally constrain the input and output
differences accordingly. In the DBL construction, both SKINNY instances are used with a
feed-forward. Thus, we obtain a free-start collision of the compression function if the input
and output difference match, i.e., X[0, i, j] = X[R, i, j] for all i ∈ I, j ∈ J . In this paper,
we focus on semi-free-start collisions and full hash collisions, so we require a zero input
difference in the chaining value, X[0, i, j] = 0 for all i, j. Additionally, we are limited to
the TK2 setting, as only the 2 tweakey input states corresponding to the message block
M can induce differences (see Figure 2).

MILP model for the equality setting and joint setting. For both settings, the objective
is to minimize the joint S-box transition cost and thus maximize the joint differential prob-
ability. We introduce additional binary decision variables for the connecting characteristic
τ̄ : T [r, i, j] is the S-box activity of τ̄ in round r; U [r, i, j] denotes whether this activity is
known (U = 0) or unknown (U = 1) at the S-box output; and F [r, i, j] marks whether a
known, active input difference τ̄i = x to an S-box is forgotten, i.e., τ̄o = ?. Thus, U [r, i, j]
denotes whether the S-box output is unknown, while U [r, i, j] − F [r, i, j] denotes whether
the input is unknown.

The cost C[r, i, j] ∈ {0, 1, 2} of an S-box transition depends on all these decision
variables and is measured in multiples of the differential weight of the best non-zero DDT
transition. It is nonzero whenever the main characteristic is active, δ̄i ̸= 0, or the connecting
characteristic is active with known output difference, τ̄i = τ̄o = x (see Equation 1). It
reaches the maximum cost of 2 when the main characteristic is active, δ̄i ̸= 0, and the
connecting characteristic has an unknown input difference, τ̄i = ?. This can be expressed
in linear constraints as

∀i ∈ I, j ∈ J , r ∈ R : C[r, i, j] ≥ X[r, i, j]
C[r, i, j] ≥ T [r, i, j] − U [r, i, j]
C[r, i, j] ≥ 2 · X[r, i, j] + U [r, i, j] − F [r, i, j] − 1 .

For the joint setting, we initialize

∀ i ∈ I, j ∈ J : U [0, i, j] = F [0, i, j], T [0, i, j] =
{

1 i = j = 0,

0 else.

For simplicity, we only describe the joint setting; the equality setting is functionally
equivalent to the joint setting with U [0, 0, 0] = 1, i.e., considering the initial fixed difference
of 1 as unknown, which will propagate to all following (potentially) active cells in τ̄ .
Similarly, the model is reduced to the plain setting if we set U [0, i, j] = 1 for all i, j.
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We can model the effect of the round function for τ̄ in a similar way as δ̄ based on
2-input xors, using a simple TK0 setting as both calls use the same tweakey, so there are
no connecting differences in the tweakey schedule. Regarding the known/unknown status,
we can choose to forget τ̄o in any S-box with active, known input τ̄i:

∀i ∈ I, j ∈ J , r ∈ R : F [r, i, j] ≤ T [r, i, j]

For the xor operations, if either of the inputs is unknown, then the output is unknown;
else, it is known. For example, if the S-box input in cell (i, j) of round r+1 is derived as the
xor of S-box output cells (i′, j′) and (i′′, j′′) in round r (via ShiftRows and MixColumns),
then we add

U [r, i′, j′] ≤ U [r + 1, i, j] − F [r + 1, i, j]
U [r, i′′, j′′] ≤ U [r + 1, i, j] − F [r + 1, i, j]

U [r, i′, j′] + U [r, i′′, j′′] ≥ U [r + 1, i, j] − F [r + 1, i, j] .

We discuss the bounds obtained with this model in Subsection 4.1 and use the best cellwise
characteristics as starting points for collision-finding.

3.3 SMT Model for Finding Joint Bitwise Characteristics
To find a joint bitwise characteristic, we use the Z3 SMT solver [dMB08]. Concretely, we
create variables for all active S-box input and output differences in the main characteristic
and variables for all active and known differences in the connecting characteristic.

To model the linear layer, we use xor constraints of the SMT solver. We only need to
model those differences that are active in the truncated joint characteristic. Note that we
only model the connecting differential characteristic as long as there is a known difference.

To model the S-boxes, we consider the relevant DDTs. For a given S-box, we distinguish
based on the values of the activity indicators of the joint cellwise characteristic, i.e., δ̄,
τ̄i, τ̄o. If both characteristics are inactive, i.e., δ̄ = τ̄i = τ̄o = 0, we do not need to model
anything. If only the main characteristic is active and the connecting difference is inactive
or unknown, i.e., δ̄ = x and τ̄i ∈ {0, ?}, then we need to model the DDT. To do this, we list
all possible transitions {δi, δo : DDT(δi, δo) > 0} in a DNF. We then convert this DNF to
a small CNF using the espresso logic minimizer and pass it to the Z3 solver. If only the
connecting difference is active and known, i.e., τ̄i = τ̄o = x and δ̄ = 0, we use an analogous
model. The remaining cases are handled similarly. For the case of the connecting difference
turning unknown, i.e., τ̄i = x, τ̄o = ?, we model the DDT3. Finally, if all differences are
nonzero and known, i.e., δ̄ = τ̄i = τ̄o = ?, we model the DDT4.

While the model is functional, we perform a small modification to improve efficiency
and to find better characteristic. To do this, we define a cutoff value wc, and only consider
the transitions {δi, δo : DDT(δi, δo) ≥ wc} in a DNF. We do this analogously for the DDT3
and DDT4 with cutoff values wc,DDT3, and wc,DDT4, respectively. This serves two purposes.
First of all, the resulting model will be simpler as fewer transitions need to be considered.
And second, the resulting differences will have higher probability as all transitions worse
than the cutoff are left out.

We want to use the characteristics this model generates to find semi-free-start collision
and ultimately full collisions. To do this, we search for assignments of the characteristic
with arbitrary or fixed chaining value hf for semi-free-start collisions or full collisions,
respectively. One factor that influences whether such an assignment exists is the probability
and the degrees of freedom in the given setting. In the semi-free-start setting, we can
freely the message M1 and the chaining value h. While when searching for full collisions,
we only freely control the message M1; the chaining value h is determined pseudorandomly
based on the preceding message blocks. As an attacker, this chaining value h can thus
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only be influenced by generating many different preceding message blocks. We can only
expect to find an assignment (i.e., a (semi-free-start) collision) if the degrees of freedom
exceed the probability of differential characteristic.

When applying this model to Romulus-H in Section 4, we find that this is not a sufficient
condition. We would expect a probability of ≥ 2−512 to be sufficient to find semi-free-start
collisions and a probability of ≥ c · 2−256 to be sufficient to find full collisions within c
trials. However, we identify many characteristics with sufficient probability where no valid
assignment exists. This is because we estimate the probability under the assumption of a
Markov cipher, i.e., under the assumption that each round is totally independent of the
previous round. This is not the case for most block ciphers and definitely not the case for
SKINNY. First of all, each round of SKINNY only mixes 64 bits of tweakey material into
the 128 bit state. Furthermore, the key schedule is relatively simple as it only consists of
cellwise permutations and LFSRs. Therefore, in our application to Romulus-H this only
serves as a necessary condition.

3.4 SMT Model for Finding Collisions
So far, we have found a cellwise joint characteristic and a compatible bitwise joint char-
acteristic. Now we want to use the bitwise joint characteristic to find a semi-free-start
collision, i.e., an assignment for h and M such that CF(h, M) = CF(h, M ⊕ ∆M).

A naive way to find such an assignment would be to model the whole compression
function twice and restrict the difference between them based on the main differential
characteristic and the difference within each compression function based on the connecting
differential characteristic. Such a model is easy to construct; however, it creates a lot of
unnecessary variables and constraints. For example, many variables must be equal due
to a zero difference in the joint characteristic. Furthermore, we can even use the fixed
nonzero differences in the characteristic to eliminate variables.

Instead of this naive model, we only define variables for the execution of CF(h, M)
and add conditions such that the differential characteristic is followed as done in previous
work [MZ06]. We optimize our model based on the main differential characteristic and the
connecting characteristic. We outline these optimizations in the paragraphs below.

Optimizations based on main differential characteristic. We model each S-box based
on the XDDT. Concretely, we model all possible values (x, y) such that y = S(x) and
x ∈ XDDT[δi, δo]. Similar to the model for finding characteristics, we use the espresso logic
minimizer to generate a small CNF. Note that we also apply this model to the inactive
S-boxes, where XDDT[0, 0] corresponds to the whole input space. By using this model, all
the S-box transitions are guaranteed to happen.

For the linear layer, we only need to ensure that the values we choose for the S-boxes are
also consistent with the linear layer. As the linear layer transitions happen with probability
1, we don’t need any extra constraints. To build the model, we use xor constraints of the
SMT solver. Note that we also need to model the round constants.

This model is already functional and fast. However, we can further improve it by
considering the connecting difference.

Further optimizations based on connecting characteristic. So far, we have seen that we
only need to model one compression function with some extra constraints on the S-boxes.
Now, we explain how we can use the connecting difference to reduce the number of S-boxes
and linear layers we need to model this one compression function.

Consider an S-box transition with differences δi → δo and connecting differences τi → τo.
If both connecting differences are known, i.e., τi ̸= ? and τo ̸= ?, then we only need to
model a single S-box assignment instead of two. Concretely, we model (x, y) such that
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y = S(x) ∧ x ∈ XDDT4[δi, τiδo, τo]. As before, we use the espresso logic minimizer to
create an optimized CNF for this assignment. Note that if τi = τo = 0, then the XDDT4
equals XDDT(δi, δo) and we get the same model as before, but we only need to create it
once instead of twice.

If only one of the connecting differences is known, i.e., τi ≠ ? and τo = ?, then we create
two models for the two S-box assignments (x, y0) such that y0 = S(x) and x ∈ XDDT(δi, δo)
and (x, y1) such that y1 = S(x ⊕ τi) and (x ⊕ τi) ∈ XDDT(δi, δo). These are modeled as
two separate minified CNFs.

If both connecting differences are unknown, i.e., τi = ? and τo = ?, then we need to use
the model outlined above. That is, we model the two separate S-box assignments (x0, y0)
and (x1, y1) according to the XDDT.

To model the linear layer, we can use similar observations. In particular, we only need
to include the linear layer for those values that we actually use in the S-box model above.
Concretely, if the connecting difference τ at an output of the linear layer is known (τ ̸= ?),
then we only need to model this calculation once. Otherwise, we need to model it twice.

3.5 Extension to Full Collisions

While (semi-)free-start collisions show potential weaknesses in a hash function, we ultimately
want to find full collisions. That is, we want to find two messages M1 and M2 such that
H(M1) = H(M2) and M1 ̸= M2.

For our search, this means that the input chaining value is constrained, either to 0
(if we target the first message block) or to the chaining value produced by a fixed prefix.
We still want to take advantage of the (limited) degrees of freedom in the chaining value,
so we repeatedly pick a random prefix Mpre. This prefix leads to a fixed chaining value
h = CF(0256, Mpre) as defined by the MDPH construction. Then, we use this chaining
value as a starting point for a collision in the next compression function call. Consequently,
we search for messages of the following form:

M1 = Mpre ∥ M ,

M2 = Mpre ∥ (M ⊕ ∆M) .

To model this setting, we can reuse the SMT model from the previous subsection with
only a minor modification. Instead of leaving the chaining value h free, we use the fixed
chaining value h = CF(0256, Mpre). This way, the assignment for M will not only be a
semi-free-start collision but a full collision for the hash function. The setup for the colliding
messages in the analyzed construction is depicted in Figure 6.

0256

Mpre M pad(. . .)

2

H
h

(a) Processing of M1.

0256

Mpre M ⊕ ∆M pad(. . .)

2

H
h

(b) Processing of M2.

Figure 6: Processing of the colliding messages in the MDP construction.

We do not expect that this process is successful on the first try. Therefore, we generate
many random prefix values Mpre until we find an assignment for M . Note that this process
can be performed in parallel on many cores.
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4 Application to Romulus-H
Now, we apply the framework to find hash collision from the previous section to Romulus-H.
We introduce dedicated optimizations based on the STK-framework and SKINNY and
discuss the results.

4.1 Results for Joint Cellwise Characteristics
We use the unmodified MILP model to derive upper bounds on the number of active
S-boxes in joint cellwise characteristics.

The results of these models are listed in Table 2. Based on these bound for the number
of S-boxes, we can also find a bound on the best joint differential characteristics However,
we do not expect these bounds to be very tight because the concrete transitions for each
S-box have a big range of probability from 2−2 to 2−7. For a valid bound, we need to
assume all S-box transitions use the best case of 2−2 which will not be the case in practice.

Based on these results, we see that the idea of joint differential characteristics gains
importance as the number of S-boxes grows. In particular, for 16 rounds, only 74 active
S-boxes are needed in the joint settings while 96 are needed in the equality setting.

Table 2: Bounds on the number of active S-boxes based on different models.
Rounds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Plain 0 0 4 4 4 16 22 34 44 54 60 66 78 86 86 106
Equal 0 0 2 2 2 11 16 25 33 42 50 59 67 76 77 96
Joint 0 0 2 2 2 11 16 25 33 41 46 54 59 69 73 74

Figure 7 shows a joint characteristic in the joint setting with a cost of 69 active S-boxes.

4.2 Finding Joint Bitwise Characteristics for Romulus-H
Next, we use the cellwise characteristics from the previous step to find bitwise characteristics
for Romulus-H. For this purpose, we introduce an optimized model for the tweakey schedule
which applies to all STK constructions. Furthermore, we discuss different trade-offs and
approaches for obtaining minimized CNFs of the large DDT4 tables.

4.2.1 Optimized model for the tweakey schedule

We want to create a model for all possible round tweakey differences that are compatible
with the cellwise joint characteristic. In our setup, we only need to model the TK2 and
TK3 lanes of each active tweakey lane. The TK1 lanes always have zero difference, as
these are given by the chaining value in the MDPH mode of operation and we are looking
for semi-free-start collisions.

We want to model the LFSRs of the tweakey schedule with as few variables and as few
xor constraints as possible. Therefore, we take inspiration by the technique outlined by
Soos et al. [SNC09]. They propose to choose the reference bits, i.e., the actual variables
the solver solves for, in the middle of the output stream of the LFSR. This way, fewer xor
constraints are needed as the output bits we calculate using xors are closer to the actual
variables of the model.

Additionally, we use the fact that the LFSRs for TK2 and TK3 are exact inverses of
each other and combine that with the known cancellations in the cellwise characteristic in
the tweakey schedule. If there is a difference cancellation between TK2 and TK3 in the
tweakey schedule, we know that the two differences in this cell must be equal. Therefore,
we can create a single set of 8 variables as a reference state to model the difference for
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Figure 7: Joint cellwise characteristic for 14 rounds of Romulus-H with 69 active S-boxes.

the two active tweakey lanes TK2 and TK3. Then, based on these 8 variables, we create
all the linear expressions that we need to model the TK2 and TK3 lane. By using these
ideas, we only need 8 variables instead of 16 to model one TK2 lane and the associated
TK3 lane.

4.2.2 Optimized CNF encoding of the DDT4

Creating a small representation of the DDT4 in CNF formulation is challenging because it
is so large. In particular, just using the espresso logic minimizer does not lead to results,
even after multiple days. Instead, we can use the SAT solver Lingeling, which supports
CNF minimization with time limits, to minimize the CNF [Bie17].

Concretely, our approach is performed in 4 steps. First, we create a DNF of all entries
above or equal to the cutoff value wc,DDT4. Second, we convert this DNF to a CNF by
using espresso with the right configuration. We use the .phase 0 option to swap the
set of ones and zeros after reading the input. This way we can specify the much small
DNF, and it is internally converted to a CNF of reasonable size. Instead of optimizing
this CNF, we use the -Decho command line flag to disable all optimization steps and just
receive a reasonably sized CNF. Third, we note that a DDT transition above the cutoff is
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a necessary condition for a DDT4 transition above the cutoff. Hence, we can add a CNF of
{δi, δo, : DDT(δi, δo) ≥ wc,DDT4} and {τi, τo, : DDT(τi, τo) ≥ wc,DDT4}. These two CNFs
allow Lingeling to eliminate many clauses, as many clauses of the DDT4 CNF are already
covered by one of the DDT CNFs.

When we apply this model to the formulation of {δi, τi, δo, τo : DDT4(δi, τi, δo, τo) ≥
wc,DDT4} with cutoff wc,DDT4 = 8 we see a drastic decrease in the number of required
clauses. Instead of listing the nearly 232 entries below the cutoff, we only list the 215.7

entries above or equal to the cutoff thanks to the .phase 0 option. When running espresso
with all optimization steps disabled, we receive a CNF with 146 317 = 217.2 clauses within
a few seconds. Then, we add 217 clauses for each of the two DDTs. Finally, we run
Lingeling in optimization mode and receive a CNF with only 31 578 = 214.9 clauses after a
few hours.

4.2.3 Results for Bitwise Characteristics and Semi-Free-Start Collision

We apply this model to the best cellwise joint characteristic for 10 rounds and find that
choosing the right cutoff values is crucial for identifying good characteristics quickly. When
using wc = 4, wc,DDT3 = wc,DDT4 = 8, the SMT solver reports that no such characteristics
exist after a few seconds. When using wc = 4, wc,DDT3 = wc,DDT4 = 4, we find a new joint
characteristic about every 20 seconds on a laptop. The identified joint characteristics have
probabilities ranging from 2−219 to 2−229.

To speed up the search, we also apply the model to the best cellwise joint characteristic
for 10 rounds in the equality model. Then, we do not need to model the heavy DDT4.
When using a DDT cutoff of wc = 4, the Z3 solver needs about 250 milliseconds for each
joint characteristic. While these have lower probabilities on average, we can generate many
more of them within the same time. After generating 355 joint characteristics, we find
a satisfiable one with probability p = 2−233.8 which is depicted in Figure 8. The green
border indicates which S-boxes have a connecting difference that is known to be zero.

We also apply the model to the best cellwise joint characteristic for 14 rounds in
the equality model. Because a cutoff of wc = 4 leads to an unsatisfiable model, we use
wc = 2. In this configuration, Z3 needs about 600 milliseconds to generate a new joint
characteristic. After generating 405 joint characteristics, we find a satisfiable one with
probability p = 2−419.66 which is depicted in Figure 9. Interestingly, we did not find any
additional satisfiable characteristics, even after generating many thousands more.

For this joint characteristic, we can find valid assignments to obtain a semi-free-
start collision for 14 rounds of Romulus-H. Concretely, we find a chaining value h and
two messages M1, M2 such that CF(h, M1) = CF(h, M2), where CF denotes 14-round
compression function:

h = 4039b0e35651a1ab68979475e7c469b4e961b61a8f4ac9362e36a6cb44eec973,

M1 = 2c367b0d018a8f536cf8ea100401d344734f8e890c5bfc45b2c693b1c19b8959,

M2 = 2c36460d01b78fc06cf8ea310401d344734fa5890c70fc8fb2c693d8c19b8959,

M1 ⊕ M2 = 00003d00003d0093000000210000000000002b00002b00ca0000006900000000.

Finding this semi-free-start based on the characteristic takes about 60 seconds on a laptop.
The main bottleneck which prevents extending this results to more rounds is finding
characteristics that are actually satisfiable. We generated thousands of characteristics
for 15 rounds; none of them where satisfiable. Based on the consideration of degrees of
freedom and probabilities there might be solutions for 15 rounds as well. However, there
seem to be many hidden contradictions because SKINNY is not a Markov cipher.
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Figure 8: Joint characteristic for 10 rounds of Romulus-H with p = 2−233.8.

4.3 Bounding Joint Differential Characteristics

We have established that there is a link between satisfiability and the probability of a
differential characteristic. This raises the question of whether we can extend our attacks
by explicitly searching for characteristics with high probability.

To find the best joint differential characteristics compatible with a given cellwise trail,
we use a technique similar to the one in CryptoSMT [Kö]. The main idea is to define an
upper limit on the overall log-probability wmax and then find a value x such that the model
with wmax = x is satisfiable while the model with wmax = x − 1 is not. To build this model,
we use the cellwise characteristics obtained from the equality model as a basis. This makes
our model easier, as we do not have to consider the large DDT3 and DDT4. Concretely,
we split the DDT into sub-tables w-DDT where for each weight w ∈ {0, 2, 3, 4, 5, 6, 7}.
Each table w − DDT corresponds to those entries in the DDT with associated probability
2w−1 < p ≤ 2w. Then we create a separate CNF for each w-DDT. For each S-box, we
then create indicate variables vw for each value of w and model vw ⇒ (δi, δo ∈ w-DDT).
Additionally, we need to make sure that at least one of the indicate variables is true; so
we add the following constraint:

∨
w vw. With this model we might slightly overestimate

the probability of our differential characteristic (a characteristic with probability slightly
worse 2x might be satisfiable with wmax = x) because we are grouping transitions with
non-power-of-two probability with the next higher power of two. However, this effect is
limited as of the 11 469 transitions only 170 have a probability that is not a power of two.
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Figure 9: Joint characteristic for 14 rounds of Romulus-H with p = 2−419.66.

Results. The probabilities of the best characteristics identified with this model are listed
in Table 1 on page 3. The probabilities typeset in bold font correspond to tight bounds
were either all transitions used a power-of-two entry in the DDT or it has been verified with
a more exact model that creates a separate class for each possible transition probability.
The other probabilities are the best characteristics identified but not necessarily optimal
for the given cellwise characteristic. For 7, 11, and 13 rounds, we could not apply any
of the SMT models, because some tweakey lanes contain no cancellation which was not
considered in the code.
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4.4 Finding Collisions for Romulus-H
Compared to semi-free-start collisions, when searching for full collisions we are much more
limited by the fixed chaining value h which is determined by the prefix Mpre. To find
semi-free-start collisions, we use the approach from Subsection 3.4 unmodified. However, as
the number of rounds increases, many of the bitwise joint characteristics are not satisfiable.
We thus generate many characteristics in a loop and immediately check satisfiability in a
semi-free start setting; this way, we reduce the number of characteristics for the full search.

When searching for full collisions, we can perform some optimizations based on the
unkeyed first round of SKINNY. Remember that each prefix Mpre leads to a fixed chaining
value hL at the input of SKINNY block cipher. Therefore, we have limited degrees of freedom
in the first few rounds. The first SubCells layer is completely tweakey-independent (and
thus message-independent). Any active S-box in the connecting differential characteristic
will only be valid for a subset of chaining values.

Similarly, we can optimize based on the second round where the tweakey dependency
is still low. The second SubCells layer only depends on 64 bits of tweakey material which
is only slowly mixed with the state. Remember that tweakey addition is performed on the
first and second row only. According to the definition of MixColumns, the second row only
influences the third row after mixing, while the third row influences rows 1, 2, and 4. Now,
consider the characteristic in Figure 10. The three highlighted S-box transitions in the
second round only depend on a single tweakey byte. Consequently, only a small fraction of
all hL values permit an assignment of the free tweakey values such that the characteristic
is followed in the first two rounds. In the example from Figure 10, this fraction is 2−11.
Based on these observations, we can efficiently filter the chaining values. Then, we only
need to call the SAT solver for a small fraction of chaining values. This filtering step for
chaining values is crucial for finding collisions in reasonable time.

hL
SC
AC bf

b7 42

bf
b7 42 ≫1

≫2
≫3

bf
42 b7

bf
bf

42 b7
bf

SC
AC

cb
45

cb cb
cb

active, dep. on tk2 inactive, dep. on tk5 active, dep. on other tki

Figure 10: Filtering chaining values hL in the first two rounds for full collisions. The three
blue S-box transitions only depend on a single tweakey byte. The other tweakey byte in
the same column (red highlight) does not affect the transitions.

Results. Based on the 10-round characteristic identified earlier (Figure 8), we found a full
collision for 10 rounds. We needed just under an hour on a CPU with 88 cores to identify the
result. Concretely, we found Mpre, M1, and M2 such that H(Mpre ∥ M1) = H(Mpre ∥ M2),
where H denotes Romulus-H based on 10-round SKINNY-128-384:

Mpre = 55554654434b555559495a41504a4c414c415452474144524a4447515247594c,

M1 = b63a14a596b5216e97e6d7cc7b0b014d1d533b4f882a207504dd06463e1f98ed,

M2 = b63aa4a596b5211697e620cc50202a4d1d534a4f882a20fc04dd2d46dffe79ed,

M1 ⊕ M2 = 0000b000000000780000f7002b2b2b00000071000000008900002b00e1e1e100.

We did not find any full collisions for more than 10 rounds. The main problem seems to
be that with more rounds the probability decreases drastically and for 12 rounds the best
characteristic has probability 2−302.9 which is lower than the 256 degrees of freedom we
have due to the message input. For 12 rounds further optimizations are necessary to have
a chance of obtaining practical attacks with this approach.
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5 Conclusion
In this work, we developed a new framework for analyzing the hash functions based on the
Hirose DBL construction and the MDP mode of operation. This framework uses the idea
of joint differential characteristics which capture the dependencies within the Hirose DBL
constructions. We applied this framework to Romulus-H and found practical collisions up
to 10 out of 40 rounds and practical semi-free-start collisions up to 14 rounds. These are
the first practical attacks on round-reduced Romulus-H, and indeed the first attacks on the
reduced hash function with complexity below the 128-bit security claim. The results do
not threaten full-round Romulus-H.

Our framework shows that the dependencies between the two block cipher calls in the
Hirose DBL construction should be taken into account. These dependencies increase the
number of rounds that can be attacked as fewer S-boxes need to be considered. Our results
only apply to round-reduced version of Romulus-H and do not threaten the security of the
full version. Based on these results, we gain valuable insights into the dependencies within
the Hirose DBL construction.

These insights warrant future work on Romulus-H and other hash functions based on
Hirose DBL. As our main bottleneck is finding satisfiable characteristics, we believe further
research into why so many characteristics are not satisfiable might improve upon our results.
A thorough understanding of these conflicts that lead to not satisfiable characteristics,
would allow avoiding them much earlier. One source of these conflicts is the limited key
addition of SKINNY as we have seen when searching for full collisions. Another potential
direction for future work is to explore different cellwise characteristics as a starting points.

In this work we have focused on practical attacks, which leads to the question whether
we can extend the number of attacked rounds based on theoretical estimates. One idea is
to apply the approach of Wei et al. to Romulus-H to find free-start collisions. Furthermore,
a version of the Rebound attack that considers joint differential characteristics might give
semi-free-start collisions for even more rounds. We conclude that our research on joint
differential characteristics may serve as a starting point for several lines of research.
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