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Abstract. In this work we extend the known pseudorandomness of
Ring-LWE (RLWE) to be based on ideal lattices of non Dedekind do-
mains. In earlier works of Lyubashevsky et al (EUROCRYPT 2010)
and Peikert et al (STOC 2017), the hardness of RLWE was based on
ideal lattices of ring of integers of number fields, which are known to be
Dedekind domains. While these works extended Regev’s (STOC 2005)
quantum polynomial-time reduction for LWE, thus allowing more effi-
cient and more structured cryptosystems, the additional algebraic struc-
ture of ideals of Dedekind domains leaves open the possibility that such
ideal lattices are not as hard as general lattices.
We now show that for any number field Q[X]/(f(X)), for all prime inte-
gers p such that the factorization of f(X) modulo p passes the Dedekind
index theorem criterion, which is the case for almost all p, we can base
p-power RLWE in the polynomial ring Z[X]/(f(X)) itself and its hard-
ness on worst-case hard problems of ideal lattices of this ring. This ring
can potentially be a strict sub-ring of the ring of integers of the field,
and hence not be a Dedekind domain. We also give natural examples and
prove that certain ideals require at least three generators, as opposed to
two sufficient for Dedekind domains. Such rings also do not satisfy many
other algebraic properties of Dedekind domains such as ideal invertibil-
ity. Our proof technique is novel as it builds a self-contained algebraic
theory for general such rings that also works for cyclotomic q-RLWE, for
every q.

1 Introduction

In a ground-breaking work, Regev [Reg05] showed a (quantum) polynomial-
time reduction from worst-case lattice problems to a learning problem called
learning with error (LWE). He also obtained public-key cryptosystems using LWE
whose security is then based on worst-case lattice problems such as closest vector
problem (CVP) and shortest independent vectors problem (SIVP). The fact that
that there are no known efficient quantum algorithms for these hard problems,
makes this approach to obtaining encryption schemes even more significant, and
has led to numerous applications in cryptography.

? Part of this work was done when the author was a summer intern at IBM T. J.
Watson Research Center.



As a more efficient variant of LWE, Lyubashevsky et al. introduced the Ring
Learning With Errors problem (RLWE) [LPR10] over the ring of integers OK of
a number field K. The hardness of RLWE is then based on lattice problems re-
stricted to ideal lattices in the ring OK , instead of general integer lattices. Since
addition and multiplication in the ring of integers can be viewed as polynomial
addition and multiplication, it allows for more efficient cryptosystems, with al-
most a quadratic improvement in the security parameter. Additionally, it has
allowed for a more sound security setting for many (fully) homomorphic encryp-
tion schemes [Gen09], where the ring structure naturally allows for homomorphic
ring-operations [BGV12,Bra12,FV12,GSW13,DM15,CGGI16,CKKS17]. For con-
jectured hardness of RLWE, [LPR10] provide a quantum polynomial-time re-
duction from the (seemingly) hard Approximate Shortest Independent Vectors
Problem (ApproxSIVP) over ideal lattices. While the original [LPR10] reduction,
especially for the decisional version of RLWE, was restricted to cyclotomic num-
ber fields, in another technical tour-de-force work [PRS17] extend the hardness
of decisional-RLWE to arbitrary number fields K, basing the hardness on worst-
case lattice problems restricted to ideal lattices in OK.

Since the ring of integers of a number field enjoy remarkable algebraic prop-
erties, namely that such rings are Dedekind domains, and all ideals in the rings
are invertible and have a unique prime ideal factorization, the question naturally
arises if the normally hard lattice problems may be at a risk of being weaker
due to the additional algebraic structure. In particular, while all ideal lattices
are also full-ranked over the integers Z, and of the same rank as the rank of the
number field K as an extension of Q, every ideal of a Dedekind domain can be
generated by only two elements of the domain. Moreover, one of the generators
can be taken to be just the integer that is the norm of the ideal. In light of this,
it is natural to ask if the class of lattices can be expanded to a class having lesser
algebraic properties and still basing a polynomial algebra cryptosystem on these
lattices. Ideally, one would like to base the hardness of RLWE on worst-case
general integer lattices as is the case for LWE.

In this work, we show that one can base hardness of decisional-RLWE on ideal
lattice problems in non Dedekind domains. In particular, instead of setting the
RLWE instance in the ring of integers OK of a number field K = Q[X]/(f(X)),
we set our RLWE instances in the polynomial ring RK = Z[X]/(f(X)), which
is anyway easier to work with from a cryptosystem perspective; the ring OK

can have polynomials with rational coefficients and is a super-ring of RK. We
then show that, for all q that are not divisible by a small number of excluded
primes, the q-RLWE instances are as hard as the worst-case lattice problems,
such as CVP and SIVP, of ideal lattices of this non Dedekind domain. These
(finitely many) excluded primes are the primes p such that p divides [OK : RK],
i.e. the index of RK in the ring of integers of K. We obtain exactly the same
security and noise parameters as [PRS17], and most of our reduction uses the
main technical lemmas from [PRS17], but replaces the so called “ideal clearing
lemma” of [LPR10] with a new proof that does not use properties of Dedekind
domains. The main technical contribution of this paper is developing a theory
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for such non Dedekind domains which allow us to prove the ideal clearing lemma
in a novel way. The ideal clearing lemma also guarantees an efficient mapping
that can take an arbitrary basis of an ideal as input. We give a new randomized
algorithm to obtain this mapping which completely bypasses the usual prime
ideal factorization technique of [LPR10]. In this respect, our technique and novel
randomized algorithm are also applicable to number fields where OK is same as
RK, for example the popular cyclotomic number fields.

It is worth remarking that for every number field K, there is a finite number
m (namely, [OK : RK]) such that every ideal I of OK can be scaled by m, so
that m · I is an ideal of RK. Thus, the ideals (and corresponding lattices) in RK

include all hard ideal lattices coming from OK. However, we show later that the
reverse is not true. In the following, when it is clear from context, we will drop
the subscript K from RK.

Dedekind Index Theorem. We now specify the good primes p (i.e. excluding a
few bad primes) for each number field K = Q[X]/(f(X)), for which we can get a
reduction from worst-case ideal lattice problems of the polynomial ring to the p-
power RLWE instances. A hint comes from one of the many celebrated theorems
of Dedekind which gives an easy necessary and sufficient test of when a prime p
does not divide the index of R = Z[X]/(f(X)) as a subgroup of OK. The test
involves checking the factorization of f(X) modulo p into irreducible polynomials
(modulo p) for a specific property, which we will describe later. If p does not
divide this index, then another theorem of Dedekind shows that the prime ideal
factorization of ideal (p) of OK can be read off from the the factorization of
f(X) modulo p. We show in this work that in this case the ideal (p) of R also
factors into prime ideals of R, i.e. (p) is well-behaved even in R. We will refer
to these as the good primes. However, if some other prime p′ fails the test, and
hence p′|[OK : R], then R is a strict sub-ring of OK, and is then definitely not
a Dedekind domain. We will refer to these p′ as the bad primes. It is well known
that a prime p′ can divide [OK : R] only if p′

2
divides the discriminant of the

field K, and hence the number of bad p′ are already restricted to being factors
of the discriminant, and hence are finite in number and usually few. Thus, the
trick is to find a p for which the factorization of (p) is well-behaved and another
p′ which is bad (so that we are guaranteed a non Dedekind domain). Then the
RLWE can be set modulo any power of p in the non Dedekind domain R, and
the hardness reduction will still go through. In fact, one can set RLWE modulo
any q whose prime factors exclude the small number of bad p′.

Example. Consider the polynomial f(X) = X3n + 26. By Eisenstein criterion,
f(X) is irreducible over Q, and thus Q[X]/(f(X)) is a number field. Consider
the polynomial ring R = Z[X]/(f(X)). The discriminant of f(X) is just the
determinant of the multiplication matrix of f ′(X) = 3nX3n−1, and a little cal-
culation shows that only 3, 13 and 2 can divide the discriminant, and hence are
the only possible bad candidates for the Dedekind index test. The factorization
of f(X) modulo 2 is just X3n , and hence has only one irreducible polynomial,
i.e. X, as a factor with multiplicity 3n. Any factor that has multiplicity more
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than one is said to ramify (mod 2), and factors that have multiplicity one are
called unramified. Now, write f(X) as X3n + 2 · t(X), and note that t(X) is
just the trivial polynomial 13. The Dedekind index theorem says that t(X) is
divisible by a ramified factor (modulo 2), in this case the factor X, iff 2 divides
[OK : R]. In this case, X does not divide 13 mod 2, and hence 2 does not divide
[OK : R], and 2 is a good prime. Hence we can base our RLWE modulo any
power of two, and still be assured hardness based on worst case ideal lattices in
R. Now, let’s check that 3 divides the index, so that R is a strict sub-ring of OK.
The factorization of f(X) modulo 3 is X3n − 1 = (X − 1)3

n

. Thus, (X − 1) is
the only factor and it is ramified. Writing f(X) as f(X) = (X − 1)3

n

+ 3 · t(X),
we find that t(X) is divisible by ramified (X − 1) modulo 3. Thus, by Dedekind
Index theorem 3 divides [OK : R] and hence R is not a Dedekind domain. We
give more examples in Section 6, where we also prove that some ideal requires
at least three generators.

One may wonder that since the number of bad p′ is small, it maybe the
case that only a few ideals are lacking algebraic structure (i.e. of the Dedekind
domain kind). While it is true that there are only a few prime ideals lacking
algebraic structure, the number of non-prime ideals contained in these prime
ideals is unlimited, and are hidden as usual by giving a bad basis of the ideal.
Another important point to be raised is if one can demonstrate that non-trivial
ideals in such non Dedekind domains require more than two generators. In this
work, we also prove that there are non-trivial ideals, i.e. which do not have a
diagonal Hermite normal form, for which at least three generators are required,
and which cannot be scaled by a rational number to become an ideal of OK.

On Clearing the Ideal. As mentioned earlier, one of the main technical challenges
in the hardness reduction, starting from Regev’s LWE reduction, is setting up
a q-RLWE instance which is somehow not dependent on the worst-case lattice
instance, especially given only some basis B(L) of the lattice L. While in the
LWE instance, since the multiplication in LWE is just inner product, it is com-
patible with the lattice and the dual lattice clearing each other out, and the
issue of inverting the lattice-basis modulo q does not come up. In the case of
RLWE, since it is more “efficient”, the multiplication in RLWE is not the trace-
product, but polynomial multiplication. Thus, it is not enough that a lattice L
and its dual lattice L∨ have the property that L>L∨ = I. To solve this problem,
the ideal clearing lemma of [LPR10] obtains an efficiently invertible (module-)
isomorphism between I/qI and the whole polynomial ring3 modulo q, for any
ideal I. This isomorphism is not easy to obtain as lattice corresponding to I
may not be invertible modulo q, and in fact (q) as an ideal may have additional
factorization into prime ideals. Nevertheless, an efficient isomorphism is obtained
by computing prime ideal factorization or effectively inverting the ideal I itself
(instead of inverting its lattice-basis).

In our case, i.e. where R is a non Dedekind domain, the ideal I may not
be invertible. However, we prove a more general clearing lemma that suffices

3 More precisely, OK/qOK, for general fields
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for the reduction, and only requires that I be a principal ideal modulo qI.
Note, principal ideals are trivially invertible, as their Z-basis is their (circulant)
multiplication matrix. This approach can also be taken for Dedekind domains,
as it is well known that Dedekind domains modulo any ideal are principal ideal
domains. However, we show that even though our ring R may not be a Dedekind
domain, for any prime p, such that p is good with respect to the Dedekind
index theorem, R/prR is a principal ideal domain, for any positive integer r.
Further, we show that for any ideal I, I is principal modulo prI. Using Chinese
Remainder theorem, the result can then be extended to any q that is product
of powers of good primes. We also give a highly efficient randomized algorithm
to find a generator for the above mentioned principal ideals, which essentially
takes a random R/pR-linear combination of the columns of the Z-basis of the
ideal I.

On Cyclotomic Rings. As mentioned earlier, it is well-known that for cyclotomic
fields K, the ring of integers OK is same as the polynomial ring RK. A proof of
this fact using the Dedekind index theorem can be found in Appendix C. This
also means that every prime p is good with respect to the cyclotomic polynomials,
since [OK : RK] = 1. Thus, our theory and reduction applies with respect to
every integer q in showing hardness of q-RLWE. Hence this gives an alternate
proof of hardness of q-RLWE for cyclotomic rings, i.e. as far as clearing the ideal
is concerned and also efficiently obtaining the invertible isomorphisms required
by the clearing lemma. In fact, this makes our reduction computationally more
efficient.

Since our proofs are elementary, requiring only basic knowledge of ideals, an-
other contribution of the paper can be seen as obtaining the clearing lemma by
elementary means and not employing the Dedekind domain prime ideal factor-
ization theory. We remark that our proof does not employ the Dedekind index
theorem, but the proofs and the setting are inspired by the theorem. We also
employ the index theorem to give example fields and underlying polynomial
rings. Another interesting feature of our reduction is that it does not require a
known factorization of modulus q of RLWE, whereas [LPR10] requires a known
factorization of q in order to do prime ideal factorization of the integer prime
factors of q. Finally, the algebraic theory we build in this work does not require
f(X) to be irreducible over Q, but merely that f(X) has distinct complex roots.

Related Work. In [BBPS19], a generalization of the RLWE problem is de-
scribed, wherein the ambient ring is not the ring of integers of a number field,
but rather an order (i.e. a full-ranked sub-ring). They show that this Order-
LWE problem enjoys worst-case hardness with respect to short-vector problems
of invertible-ideal lattices of the order, which naturally are also known to follow
prime ideal factorization and other good properties of Dedekind domain ideals
(see e.g. [Cona, Theorem 6.1]). This is in contrast to our result where we show
worst-case hardness with respect to all ideal lattices of the non-maximal order.
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In [RSW18], a reduction from decision (resp. search) RLWE in K = Q[X]/(f(X))
to decision (resp. search) polynomial-LWE [SSTX09] (i.e. with the ring R =
Z[X]/ (f(X))) is obtained, Since, the hardness of RLWE in K = Q[X]/(f(X))
was only known based on hardness of ideals in OK, this result only ties the
hardness of polynomial-LWE to hardness of Dedekind-domain ideal lattices.

Outline. The rest of the paper is organized as follows. Section 2 covers prelim-
inaries of lattices, smoothing lemma, and hard problems over lattices. Section 3
covers basics of ideals and states the Dedekind Index theorem. Section 4 intro-
duces the polynomial ring calculus including dual ideals and dual rings. Section 5
introduces the notion of Dedekind-special primes w.r.t. a separable polynomial
which sets up the primes p for each number field for which our reduction works.
The section also proves that ideal a is principal modulo pra. Section 6 gives
examples and gives a novel proof that certain ideals require at least three gener-
ators. Section 7 gives a novel randomized algorithm to find a generator for above
principal ideal. Section 8 proves the pseudo-randomness of q-RLWE using earlier
works and the novel formulation of the clearing lemma and its proof using the
theory and algorithms developed in earlier sections. We also give and prove our
version of the clearing lemma for ring of integers of arbitrary number fields.

2 Preliminaries

We’ll be working with the polynomial rings modulo a monic polynomial f(X) ∈
Z[X] of degree n whose (complex) roots are distinct. Each ring element is a

polynomial g(X) =
∑n−1
i=0 giX

i of degree less than n, which can be viewed as
a length-n (column) vector of its coefficients (g0, . . . , gn−1). We will denote this
vector by boldface g, i.e. g, and we will use this as a general notational principle.
More formally, we define a mapping ϕ from the polynomials to its coefficient
representation, i.e. ϕ(g(X)) = g, and it has an inverse ϕ−1(g) = g(X).

In particular, we are interested in the following three rings: the integer poly-
nomial ring R = Z[X]/(f(X)), its modulo q version Rq = Zq[X]/(f(X)) for
some q ∈ Z, and the rational polynomial ring RQ = Q[X]/(f(X)).

For clarity, we use operator “∗” for polynomial multiplication in Z[X] or quo-
tient rings such as Z[X]/(f(X)), operator “·” for scalar multiplication, operator
“×” for matrix (vector) multiplication and cartesian product.

2.1 The Canonical Space H and Lattices

The ring RQ is definitely a Q-algebra, and a (possibly degenerate) extension of
the field Q. Since, C is the completion of algebraic closure of Q, RQ naturally
embeds in C, with Q ⊆ RQ embedding identically in C. However, there are
n such distinct embeddings in C. These n embeddings are automorphic (i.e.
automorphisms of the image of RQ in C) if RQ is a Galois field extension.
However, in our general case, we will get n embeddings which are not necessarily
automorphic. The n embeddings viewed together can be seen as mapping to the
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following space H, which we will refer to as the canonical embedding in the
general case, i.e. whether RQ is a Galois extension or not even a field extension.

The canonical space H is defined as follow where s1 + 2s2 = n:

H =
{

(x0, . . . , xn−1) ⊆ Rs1 × C2s2
∣∣ ∀i ∈ [s2] : xs1+i = xs1+s2+i

}
⊆ Cn

We then describe the canonical embedding from the polynomial ring R =
Z[X]/(f(X)) to this space H given by a matrix.

Vandermonde Matrix and Discriminant Let the n distinct roots of f(X) be
(z0, . . . , zn−1). Note the complex roots of f(X) come in conjugate pairs, because
for integer polynomial, f(z̄) = f(z). We can order the roots such that zi ∈ R for
i ∈ [s1] and zs1+i = zs1+s2+i for i ∈ [s2], where s1 + 2s2 = n.

The (square) Vandermonde matrix V of the roots of f(X) is given by

V =


1 z0 z20 · · · zn−10

1 z1 z21 · · · zn−11
...

...
...

. . .
...

1 zn−1 z
2
n−1 · · · zn−1n−1


whose determinant is det(V ) =

∏
0≤i<j<n(zj−zi). Because all roots are distinct,

det(V ) 6= 0 and hence V is invertible. We will abuse notation, and call the
Vandermonde matrix of zi’s, to be also the Vandermonde matrix of f(X).

The discriminant ∆f of a polynomial is defined to be the square of the de-
terminant of the Vandermonde matrix of f(X). In corollary 4.9 we will relate the
discriminant to the determinant of the multiplication matrix (in Q[X]/(f(X)))
of the derivative of f(X).

Given a polynomial g(X) ∈ RQ and its vector representation g ∈ Qn, we
have (1, z, z2, . . . , zn−1)> × g = g(z). The product of V and g is essentially the
evaluation of polynomial g(X) at roots of f(X): (g(z0), g(z1), . . . , g(zn−1)) ∈ H.
Therefore, the Vandermonde matrix V of f(X) canonically embeds the poly-
nomial in RQ into the canonical space H: first view the polynomial as vector
of coefficients over Q (⊆ R ⊆ C). The first s1 rows of V maps this vector into
Rs1 , and the remaining rows of V maps this vector into C2s2 , with conjugate
pairs. Note that V (g ∗h) is same as point-wise product of V g and V h, for any
polynomials g and h.

Lattice The lattice L is defined as an additive subgroup of H given by a set of
basis vectors {b0, . . . ,bm−1} from H:

L =

{
m−1∑
i=0

zi · bi

∣∣∣∣∣ (z0, . . . , zn−1) ∈ Zn
}
.

It’s dual is defined as L∨ =
{

y ∈ H| ∀x ∈ L : 〈y,x〉 = yHx ∈ Z
}

. Here (·)H
denotes the Hermitian (conjugate) transpose. It’s easy to verify that (L∨)∨ = L.

The minimum distance of a lattice is defined as the length of the shortest
non-zero lattice vector: λ1(L) = min0 6=x∈L {‖x‖}.
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Gaussians Define G =
{

r ∈ Rn+
∣∣ rs1+i = rs1+s2+i, 0 ≤ i < s1

}
. For any r ∈ G,

the elliptical Gaussian distribution Dr over the space H is defined to have a

probability density function proportional to ρr(x) = exp
(
−
∑n−1
i=0 |xi/ri|2

)
.

For real r > 0, We also define the spherical Gaussian distribution Dr as Dr·1.

Definition 2.1 (Smoothing Condition). For any lattice L ⊂ H, a positive
real ε > 0 and r ∈ G, we say r ≥ ηε(L) if ρ1/r(L∨\ {0}) ≤ ε where 1/r =
(1/r0, 1/r1, . . . , 1/rn−1).

Lemma 2.1 ([MR07,PRS17]). (Smoothing Lemma) For any lattice L ⊂
H, ε > 0 and r ≥ ηε(L). the statistical distance between (Dr mod L) and the
uniform distribution over H/L is at most 2ε.

Lemma 2.2 ([MR07]). For any lattice L ⊂ H and c ≥ 1, we have c
√
n/λ1(L∨) ≥

ηε(L) where ε = exp(−c2n).

Proposition 2.3 ([MR07]). For any lattice L ⊂ H and ε ∈ (0, 1), we have

ηε(L) ≥
√

log(1/ε)
π /λ1(L∨).

For a lattice L ⊂ H and r ∈ G, the discrete Gaussian distribution DL,r is
defined to have support L and mass function DL,r(x) = ρr(x)/ρr(L) for x ∈ L.

2.2 Lattice Problems

We introduce the following (seemingly hard) lattice problems.

Definition 2.2 (SVP and SIVP). On the canonical space H endowed with
some geometric norm (such as the `2 norm), let γ > 1, given a lattice L, the
Shortest Vector Problem SVPγ asks for an element x ∈ L such that ‖x‖ ≤
γ·λ1(L), and the Shortest Independent Vectors Problem SIVPγ asks for n linearly
independent elements in L whose norms are at most γ · λn(L).

Definition 2.3 (DGS). Let γ > 0. The Discrete Gaussian Sampling problem
DGSγ is, given a lattice L ⊆ H and r ≥ γ, output samples from the distribution
DL,r.

More specifically, in this work, we consider the above problems restricted to
the ideal lattices, when lattices are generated by ideals of the polynomial ring
R = Z[X]/(f(X)). See section 4.2.

Definition 2.4 (GDP). For a lattice L ⊆ H, the Gaussian Decoding Problem
GDPL,r asks, given a coset e + L where e ∈ H is sampled from Gaussian Dr,
find e.
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3 Ideal Basics

Let R be any commutative ring with unity. An (integral) ideal a ⊆ R is an
additive subgroup that is closed under multiplication by the elements from R.
A fractional ideal a is a subset of R, such that there exists an element r ∈ R
that makes r · a an integral ideal of R. An ideal a generated by finitely many
g1, g2, ...gk is denoted by (g1, g2, ..., gk). Note, (1) = R. A prime ideal of a
ring R is an ideal p such that ab ∈ p implies a ∈ p or b ∈ p. A maximal ideal
of a ring R is a non-trivial ideal (i.e. not same as R) that is maximal under
the subset relation. Two ideals a and b are called co-prime if a + b = (1). An
element c ∈ R will be called invertible modulo an ideal a if there exists a
µ ∈ R and λ ∈ a such that µc = 1 + λ. In other words, c is a unit of quotient
ring R/a. We now enumerate a list of well-known facts about ideals, which also
have elementary proofs (see e.g. [AM69] or [Cla84] for proofs, if not provided in
the appendix A).

Lemma 3.1. (i) If a prime ideal p contains product of two ideal ab, then at
least one of a or b is in p.

(ii) If an ideal a is co-prime to two ideals, say b and c, then a is co-prime to bc.

(iii) If ideals a and b are co-prime, then for any positive integers r, s, their powers
ar and bs are also co-prime.

(iv) If a maximal ideal m contains product of powers of distinct maximal ideals
n1, ...., nk, then m must be one of n1, ...., nk.

Lemma 3.2. For any ring R, and any maximal ideal a = (a1, a2) of R, let
x ∈ R be such that x is not in a. Then for any positive integers r, s, x is
invertible modulo (ar1, a

s
2).

See appendix A for a proof.

Noetherian Ring A ring R is called Noetherian if every ideal of R is finitely
generated. We show that Z[X]/(f(X)) is finitely generated for any polynomial
f(X) ∈ Z[X], and hence Noetherian.

Lemma 3.3. If a ring R is Noetherian, then for any ideal a of R, the ring R/a
is Noetherian.

Corollary 3.4. (see [Cond]) The ring R = Z[X]/(f(X)) is Noetherian for any
polynomial f(X) ∈ Z[X].

Theorem 3.5 (Krull Intersection Theorem). Let R be a Noetherian ring,
and I an ideal in R. Then

I ∗
∞⋂
i=1

I i =

∞⋂
i=1

I i
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For an elementary proof see [Kap73, Theorem 74].
We will directly prove the following corollary in lemma 5.10 using theorem 3.5

for certain requisite maximal ideals in the ring R = Z[X]/(f(X)), even when
f(X) is not irreducible over Q, i.e. when R is not necessarily an integer domain.
However, we state this more general corollary here for high-level discussion.

Corollary 3.6 (See e.g. [Eis13]). For any Noetherian ring R that is also an
integral domain, for any ideal I of R,

∞⋂
i=1

I i = 0

For a proof of the general form of CRT below, see e.g. [Eis13].

Theorem 3.7 (Chinese Remainder Theorem (CRT)). Let a1, ..., ak be a
set of pairwise co-prime ideals of a ring R. Then,

R/a1 · · · ak ≡
∏
i

R/ai

For a proof of the following celebrated theorem see [Conb] or [Coh93, Theo-
rem 6.1.4]. Recall, for a prime p, Zp[X] is a unique factorization domain.

Theorem 3.8 (Dedekind Index Theorem). Let p be a prime integer. For
any monic polynomial f(X) ∈ Z[X] that is irreducible over Q, let OK be the
ring of integers of the number field K = Q[X]/(f(X)). Let the following be the
(unique) factorization of f(X) modulo p into powers of m irreducible polynomials
hi(X) ∈ Zp[X] (i ∈ [m]):

f(X) = h1(X)e1 ...hm(X)em + p · t(X),

where ei are positive integers, and t(X) ∈ Zp[X]. Then, p - [OK : Z[X]/(f(X))]
if and only if for all i ∈ [m] such that ei ≥ 2, polynomial hi(X) does not divide
t(X) in Zp[X].

4 Polynomial Ring Calculus

4.1 Circulant Matrices

Definition 4.1 (Circulant Matrices modulo f(X)). On polynomial ring
modulo f(X), the circulant matrix (modulo f(X)) for a ring element g(X) is
given by an n-by-n matrix Cg whose i-th column is the coefficients of g(X) ∗Xi

modulo f(X) for i = 0, 1, . . . , n− 1.

We could take the underlying polynomial ring to be any of R,RQ and Rq.
For simplicity, in the following part, we abuse the notion of circulant matrix
without explicitly mentioning the underlying modulo polynomial f(X).
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Proposition 4.1. For any two ring elements g(X) and h(X), Cg × h corre-
sponds to the their product g(X) ∗ h(X).

Corollary 4.2. For any two ring elements g(X) and h(X), Cg ×Ch = Cg∗h.

It’s not difficult to see that circulant matrices are closed under addition and
multiplication. Moreover, the multiplication commutes.

Corollary 4.3. On polynomial ring modulo f(X), all the circulant matrices
form a commutative subring under matrix addition and multiplication.

Lemma 4.4. On polynomial ring modulo f(X), a circulant matrix Cg has an
inverse C−1g = Cg−1 iff g(X) is invertible modulo f(X).

For rational polynomial ring RQ = Q[X]/(f(X)), the inverse of the circulant
matrix can also be given as C−1g = 1

det(Cg)
·adj(Cg) where adj(Cg) is the adjugate

matrix of Cg with adj(Cg)i,j = (−1)i+j ·det(Mj,i). Here, Mi,j , commonly known
as the minor, is obtained by removing the i-th row and j-th column from Cg.
If g(X) is from R and Cg is integer, its inverse C−1g is also integer except for a
common (integer) denominator det(Cg).

Another view of the canonical embedding. Take the Vandermonde matrix V of
f(X). It defines an embedding from the polynomial ring R to its evaluation
domain H. Let Dg be the diagonal matrix with its diagonal being the canon-
ical embedding of g(X), i.e. (Dg)i,i = g(zi). Consider (V × Cg)i,j = pj(zi)
where pj(X) = g(X) ∗Xj . Note that the polynomial multiplication is under the
polynomial ring modulo f(X). Because pj(X) = g(X)Xj − tj(X)f(X) for some
polynomial tj(X), we have

(V ×Cg)i,j = pj(zi) = g(zi) · zji − tj(zi) · 0 = g(zi) · zji = (Dg × V )i,j

and hence V Cg = DgV or V CgV
−1 = Dg.

In other words, in the polynomial ring modulo f(X), the diagonal matrix of
g(X)’s evaluations (at roots of f(X)) can be obtained by a similarity transfor-
mation (given by Vandermonde matrix V of f(X)) of the circulant matrix of
g(X).

The determinant of the circulant matrix Cg can be then calculated as

det(Cg) =
det(Dg)

det(V ) det(V −1)
= det(Dg) =

n−1∏
i=0

g(zi) (1)

where zi’s are the roots of f(X). Note that this is just the product of all the
entries in the embedding of g(X). When f(X) is irreducible, and thus RQ is a
field, then this quantity, i.e. the determinant det(Cg) is called the norm of g(X)
in the extension field RQ of Q.
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4.2 Ideals and Ideal Lattices

In this section, we focus on RQ = Q[X]/(f(X)) and its sub-ring, the integer
polynomial ring R = Z[X]/(f(X)). When f(X) is irreducible over Q, RQ is a
field, denoted by K. It’s ring of integers OK is the integral extension of R, and
is quite often not the same as R.

Ideal. As shown in corollary 3.4, ideals of R are finitely generated. Thus, any
ideal I can be given by a finite set of generators, say, g0, g1, . . . , gt−1 ∈ R as

I = {a0g0 + a1g1 + . . . , at−1gt−1| ai ∈ R}
=
{
Cg0a0 + Cg1a1 + Cgt−1

at−1
∣∣ai ∈ Zn

}
=
{[

Cg0 |Cg1 | · · · |Cgt−1

]
× a
∣∣a ∈ Zt×n

}
It’s not difficult to see that, one can derive an n-by-n integer basis matrix by
computing the Hermite normal form of

[
Cg0 |Cg1 | · · · |Cgt−1

]
, or simply by itera-

tively using the fact that Euclid’s algorithm gives a unimodular transformation
from [a b] to [gcd(a, b) 0] (for any intgers a, b). We denote by B(I) the basis
matrix of I. Note that all basis matrices are close under integer unimodular
transformation, and hence their determinants are the same. Specifically, a prin-
cipal ideal is an ideal generated by only one element g, whose basis matrix could
be given as a circulant matrix Cg.

If not explicitly mentioned, we focus on full rank ideals I whose basis matrix
is invertible over Q; this is always the case when f(X) is irreducible. For a
principal ideal given by Cg this is equivalent to requiring that g(X) is invertible
in Q[X]/(f(X)).

Ideal Lattice. Since an ideal I of R has a Z-basis, say B(I), it defines a lattice
in R ⊆ RQ. We can also embed this lattice in H, and consider the embedding
as a lattice in H. The canonical embedding given by the Vandermonde matrix
V of f(X) naturally induces an ideal lattice L(I) in H, given by matrix V B(I).

Ideal Lattice Dual. For an ideal I, the dual of its ideal lattice L(I) inH is defined
to be L(I)∨ =

{
y ∈ H| ∀x ∈ L(I), yH · x ∈ Z

}
=
{

y ∈ H| ∀z ∈ Zn, yH · V B(I)z ∈ Z
}

=
{
V −HB(I)−Hz

∣∣ z ∈ Zn
}

. As mentioned above, the basis B(I) also defines
a lattice in RQ, and one can define a dual of the ideal itself using trace pairing.
Recall the mapping ϕ between a polynomial and its coefficients represented as
a vector. The trace pairing of a(X), b(X) ∈ RQ, Tr(a(X), b(X)) is defined to be
trace of V ·ϕ(a(X)∗b(X)) which is same as (V ·ϕ(a(X)))> · (V ·ϕ(b(X)). Thus,
we can define the dual I∨ of ideal I to be the set

{b(X) ∈ RQ| ∀a(X) ∈ I, Tr(a(X), b(X)) ∈ Z} .

Note that this is the pre-image in RQ of the complex conjugate of L(I)∨. We
prove below that this is indeed a (fractional) ideal of R. Hence, we will refer to
I∨ as the dual ideal of I.
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Lemma 4.5. For an ideal I of R with basis B(I) 4,

i) the dual I∨ is the Z-span of (V >V )−1B(I)−>,
ii) the matrix det(B(I)) ·det(V >V ) · (V >V )−1 ·B(I)−> is an integer matrix,

iii) the dual I∨ is a fractional ideal of R.

Proof. For part (i), since the dual I∨ is the pre-image (under V ) of the com-
plex conjugate of L(I)∨, and the latter has Z-basis V −HB(I)−H , the matrix
(V >V )−1B(I)−> forms a Z-basis for I∨ .

For part (ii), we only need to show that (V >V ) is integer, since B(I) is

always an integer matrix for I ⊆ R. Consider its entry (V >V )i,j =
∑n−1
k=0 z

i+j
k .

We argue that the power sums of roots, pt =
∑n−1
k=0 z

t
k, is an integer for 0 ≤

t ≤ 2n. Note that the coefficients of f(X) =
∏n−1
t=0 (X − zt) =

∑n
t=0 etX

t are
elementary symmetric polynomials et = et(z0, . . . , zn−1) in the roots of f(X).
Starting from p0 = n and p1 = e1 ∈ Z, by Newton’s identity, every power sum
pt is an integer linear combination of {p0, . . . , pt−1} and

{
e0, . . . , emin(t,n)

}
.

Now we prove (iii). We need to show that for every g ∈ R and a ∈ I∨, g∗a is
in I∨, i.e. for all b ∈ I, Tr(g ∗a ∗b) is integer. By commutativity of polynomial
multiplication, this is same as requiring that Tr(a∗g∗b) is integer. But c = g∗b
is in I, as it is an ideal, and hence Tr(a∗c) is an integer as a is in I∨ and c is in
I. Thus, I∨ is closed under multiplication by R. Now, again by commutativity,
for every d ∈ R, dI∨ is also closed under multiplication by R. Thus (iii) follows
from (i) and (ii).

The Dual Ring. When the entire ring R is considered as an ideal, i.e. (1), its
dual, by lemma 4.5, is a fractional ideal given by the Z-basis matrix (V >V )−1,
and is referred to as the dual ring5 R∨.

Lemma 4.6. For an ideal I of R, for any a ∈ I and any b ∈ I∨, a ∗ b ∈ R∨.
6

Proof. Since by lemma 4.5, I∨ is a (fractional ideal), we have that for any c ∈ R,
since b ∗ c is also in I∨. Thus, by definition of the dual-ideal (applied to dual of
I), Tr(a,b ∗ c) ∈ Z. Since the trace is same as V × (a ∗ b ∗ c), this also implies
that Tr(a ∗ b, c) ∈ Z. Since this holds for all c ∈ R, again by definition of dual
ideal (applied to dual of R), a ∗ b is in dual of R, i.e. R∨.

Let f(X) =
∑n
i=0 fi ·Xi with fn = 1. Take its derivative f ′(X) =

∑n−1
i=0 (i+

1) · fi+1 ·Xi. First, notice that f ′(X) is invertible in RQ = Q[X]/(f(X)).

Proposition 4.7. Given f(X) with all distinct roots, its derivative f ′(X) shares
no common root with f(X).

4 This lemma actually holds for any sub-ring of RQ, e.g. the ring of integers of a
number field with f(X) irreducible over Q.

5 This is really a misnomer, as R∨ is not closed under multiplication by R∨, but only
closed under multiplication by R. Hence it is not a ring, but merely a R-module.
We will continue to call this the dual ring as in [DD12].

6 This lemma also holds for every sub-ring of RQ.
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The proof of the above proposition is standard. When f(X) is irreducible
over Q, it is known that f(X) has distinct roots over the complex numbers.

We now show that, the dual ring R∨ has the circulant matrix of the inverse
of f ′(X) as a Z-basis, and since R∨ is also a fractional ideal of R, it can also be
seen as the fractional ideal 7 generated by the inverse of f ′(X). More precisely,
the basis matrix (V >V )−1 is same as C−1f ′ M , where M is the following n-by-n
unimodular matrix:

M =


f1 f2 · · · fn

f2
. . . fn 0

... fn
. . .

...
fn 0 · · · 0


i.e. where Mi,j = fi+j+1 if i+ j < n and Mi,j = 0 otherwise.

Lemma 4.8. (V >V )−1 = C−1f ′ M .

Proof. It suffices to show that M × V >V = Cf ′ . This is equivalent to

V MV >V V −1 = V Cf ′V
−1

V MV > = Df ′ .

Here Df ′ is a diagonal matrix with (Df ′)i,i = f ′(zi) where zi’s are (complex)
roots of f(X). Next we verify that

(V MV >)i,j =

n−1∑
s=0

n−s−1∑
t=0

fs+t+1 · zsi · ztj =

n−1∑
p=0

fp+1 ·

(
p∑
s=0

zsi z
p−s
j

)

If i = j, we have

(V MV >)i,i =

n−1∑
p=0

fp+1 ·
p∑
s=0

zpi =

n−1∑
p=0

fp+1 · (p+ 1) · zpi = f ′(zi).

Otherwise when i 6= j, we have

(V MV >)i,j =
n−1∑
p=0

fp+1 ·

(
p∑
s=0

zsi z
p−s
j

)
=

n−1∑
p=0

fp+1 ·

(
zp+1
i − zp+1

j

zi − zj

)

=
f(zi)− f0 − f(zj) + f0

zi − zj
= 0.

Corollary 4.9. For monic f(X), ∆f = |det(Cf ′)|.

Moreover, this particular matrix M also has an interesting property, that it
symmetricizes every circulant matrices by right multiplication:

7 It is well known [Conc] that the dual O∨
K of the ring of integers OK of a number

field K is not always generated by the inverse of f ′(X).
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Proposition 4.10. For g(X) ∈ RQ, CgM is symmetric.

Proof. Recall that the circulant matrix Cg is diagonalized by similarity trans-
formation of the Vandermonde matrix V of f(X): Dg = V CgV

−1.Thus, CgM
= Cf ′×C−1f ′ CgM = Cf ′×Cg×C−1f ′ M = Cf ′×Cg×(V >V )−1 = Cf ′(V

>V )−1

× V >V Cg(V
>V )−1 = M × V >DgV

−> = MC>g .
We claim that CgM is symmetric since M is symmetric.

Corollary 4.11. For g(X) ∈ RQ, Cg(V
>V )−1 = (V >V )−1C>g and (V >V )Cg =

C>g (V >V ).

Corollary 4.12. For any principal ideal a of R, a∨ = a−1R∨.

Proof. Let g be a generator of the principal ideal a. By lemma 4.5, (V >V )−1C−>g
is a Z-basis of the dual ideal a∨. By corollary 4.11, this is same as C−1g (V >V )−1.

Since (V >V )−1 is a Z-basis for R∨, the claim follows.

For the ring of integers, the above lemma generalizes to all ideals a of the
domain, and not just principal ideals (see e.g. [Conc]). The above corollary can
also be extended to all invertible ideals of R, but for our purposes this suffices.
This corollary, along with lemma 4.6, will be used in proving the ideal clearing
lemma.

5 Ideal a modulo pra is Principal for Dedekind-Special
primes p

In this section we will show that for every monic and separable f(X) and special
primes p, we can prove that the ring R modulo pr, for any positive integer
r, is a principal ideal ring (PIR). Moreover, we show that every ideal a of R,
modulo the ideal pra, is principal. Normally, such a claim holds for Dedekind
domains, and the proofs require the unique prime decomposition theorem for
Dedekind domains. We show that even if the ring is not a Dedekind domain, for
some commonly used Noetherian rings, it can directly be shown that the ring R
modulo pr is a PIR, and further, every ideal a is principal modulo pra.

Let p be a prime such that in the factorization of f(X) modulo p in terms of
irreducible polynomials (mod p), i.e.

f(X) =

m∏
i=1

hi(X)ei + p ∗ t(X),

for all i ∈ [m], for which ei is more than one, it is the case that t(X) is invertible
modulo the ideal (p, hi(X)) of Z[X]. In other words, for all i such that hi(X)
has multiplicity more than one, it is the case that t(X) is not divisible by hi(X)
modulo p. The Dedekind index theorem (theorem 3.8) states that for irreducible
(over Q) f(X) and such primes p, prime p does not divide [OK : R]. Here, as
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usual, OK is the ring of integers8 of the number field K = Q[X]/(f(X)), and R,
i.e. Z[X]/(f(X)), is a sub-ring of OK.

Fix a polynomial f(X), not necessarily irreducible over Z[X]. For any prime
p such that the factorization of f(X) modulo p has the above property, p will be
called a Dedekind-special prime 9. The polynomial t(X) (more precisely, its
representative in Zp[X]) will be referred to as the quotient in the factorization
of f(X) modulo p. In this section we will fix p to be a Dedekind-special prime,
and as usual, R will stand for the ring Z[X]/(f(X)).

For each i ∈ [m], define the following ideals pi of R: pi = (hi(X), p). Also, define
the following ideals si of R: si = (hi(X)ei , p).

Lemma 5.1. In the ring R, for i ∈ [m],

(i) the ideal pi is maximal.

(ii) si = peii .

Proof. (i) The proof is straightforward by noting that hi(X) is irreducible mod-
ulo p.

(ii) If ei = 1, there is nothing to prove. Otherwise, peii is contained in si =
(hi(X)ei , p) follows simply because the only term in peii that is not in (p) is
hi(X)ei . For the other direction, we only need to show that p is contained
in peii . We show that p ∈ (hi(X)ei , p ∗ hi(X)ei−1, pei) ⊆ peii . Note that
ideal (hi(X)ei) contains p ∗ t(X) by the factorization of f(X), and where
t(X) is the quotient in the factorization. Moreover, by the Dedekind-special
property of p (w.r.t. f(X)), and given that ei ≥ 2, t(X) is not in (hi(X), p) =
pi. Thus, since pi is maximal by (i), t(X) is invertible modulo (hi(X), p).
Then, by lemma 3.2, t(X) is invertible modulo (hi(X)ei−1, pei−1). Thus,
(t(X), hi(X)ei−1, pei−1) = (1), and further p∗(t(X), hi(X)ei−1, pei−1) = (p),
and the claim follows.

The proof of the following two lemmas is similar to that of the proof of
lemma 5.1(ii). Detailed proofs can be found in appendix A.

Lemma 5.2. In the ring R, let w =
∑m
i=1 ei. If w ≥ 2, and some ei = 1 (w.l.o.g.

em = 1), then pw−2∗hm(X) is invertible modulo the ideal (pw−1,
∏m−1
j=1 hj(X)ej ).

Lemma 5.3. Let w =
∑m
i=1 ei. If for all i ∈ [m], ei > 1, then t(X), the

quotient in the factorization of f(X) modulo p, is invertible modulo the ideal
(pw−1, pw−2hm(X)).

8 The ring of integers OK is potentially an extension of the ring Z[X]/(f(X)), as it
contains all elements of Q[X]/(f(X)) that satisfy a polynomial relation with integer
coefficients.

9 Similarly, any integer that is a product of powers of Dedekind-special primes will
also be referred to as Dedekind-special for f(X).
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Remark. In the ring of integers OK of the number field K = Q[X]/(f(X)),
another theorem of Dedekind gives a similar factorization of the ideal (p) as in
the lemma below, when the Dedekind-special property holds for p w.r.t. f(X).

Lemma 5.4. In the ring R, the ideal (p) is same as pe11 pe22 ...p
em
m .

Proof. pe11 pe22 ...p
em
m is subset of (p); this is easy to see since all but one generators

in
∏m
i=1(hi(X)ei , p) are trivially in (p). The last generator

∏m
i=1 hi(X)ei is also

in (p), because it is same as f(X) modulo p, which is zero in R modulo p.
For the other direction, first consider the case where for all i ∈ [m], ei > 1. We

show that the three terms in pe11 pe22 ...p
em
m , namely pw, pw−1pm, and

∏m
i=1 hi(X)ei

generate p. The last term is same as p·t(X) (by the factorization of f(X) mod p).
Thus, taking p as a common factor, the three terms generate p · 1 by lemma 5.3.

Now, consider the case that there is some i such that ei = 1, w.l.o.g. em = 1.
If m = 1 and hence e1 = 1, we have that (p) itself is maximal as every element
in R not in (p) is invertible modulo p. For m ≥ 2, we show that p is generated
by
∏m
i=1(hi(X), p)ei in R. Let w =

∑m
i=1 ei. Pick the generators pw−1 ∗ hm(X),

p ∗
∏m−1
j=1 hj(X)ej (X) and pw from

∏m
i=1(hi(X), p)ei . Taking a common factor

p out, we focus on the generators pw−2 ∗ hm(X),
∏m−1
j=1 hj(X)ej and pw−1. An

easy application of the lemma 5.2 shows these three generators generate 1.

Theorem 5.5. For any positive integer r,

Zpr [X]/(f(X)) ∼= R/prR ∼= R/
m∏
i=1

pr·eii
∼=

m∏
i=1

R/pr·eii

Proof. We focus on the second and third congruence, as the first is straight for-
ward. The second congruence follows directly from lemma 5.4. Since the powers
of co-prime ideals are also co-prime, we apply CRT (of general rings and co-prime
ideals) to conclude the proof.

The rest of the section is devoted to proving that R/pri is a principal ideal
ring (PIR) (Theorem 5.6 below), and any ideal a is principal modulo pra (The-
orem 5.9). If R was a Dedekind domain, the usual proof goes as follows: One
first shows that R/pri is isomorphic to Rpi/p

r
iRpi , where Rpi is the localization

of R at the ideal pri . If the reader is not familiar with localization, he/she can
skip this discussion, as the direct proof we give does not use localization. Next,
it is shown that the local ring Rpi is a principal ideal domain (PID) by showing
that it is a discrete valuation ring (DVR). This step requires the prime ideal
decomposition theorem for Dedekind domains. Since the quotient ring of a PID
is a PID, the claim follows.

While our ring R may not be a Dedekind domain, most of the above steps
would still go through for our special p, except for proving that Rpi is a DVR,
which is usually proved using the prime ideal decomposition theorem for Dedekind
domains. Luckily, in our special case, we can still prove Rpi is a DVR without
the decomposition theorem for Dedekind Domains. As promised, we give a direct
proof of Theorem 5.6. The proof of Theorem 5.9 is slightly more involved and
uses the Krull intersection theorem for Noetherian rings.
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Theorem 5.6. For all i ∈ [m], for all positive integers r > 0, R/pr·eii is a
principal ideal ring.

In the proof of this theorem, there are two main cases, where either ei = 1,
or ei > 1. In the first case p is always a generator of ideals (modulo pr·eii ) that
are sub-ideals of pi, and in the second case, using the Dedekind-special property
of p (w.r.t. f(X)), the polynomial hi(X) is always a generator of ideals that are
sub-ideals of pi. Details follow.

Proof. Let q be any ideal of R/pri . We first show that every ideal q of R/pr·eii

that is not a sub-ideal of (hi(X), p) (as an ideal of R/pr·eii ) is same as ideal
(1) of R/pr·eii , and hence trivially principal. By lemma 5.1, pi is maximal in
R. Thus, by lemma 3.2 any a(X) ∈ R that is not in the maximal ideal pi =
(hi(X), p) is invertible modulo pi, and also invertible modulo pr·eii . If q is not
a sub-ideal of (hi(X), p)R/pr·eii , then there is an element a(X) in q that is not
in (hi(X), p)R/pr·eii . Thus a(X) is not in (hi(X), p)R and hence is a unit of
R/pr·eii , making q same as (1).

So, now we focus on ideals q that are sub-ideals of (hi(X), p). We first show
that the ideal (hi(X), p) is principal in R/pr·eii . There are two cases:

1. ei = 1:
In this case, we show that (hi(X), p) is same as ideal (p) in R/pr·eii . For this,
we show that hi(X) is generated by p modulo pr·eii . From the factorization
of f(X) modulo p, we know that

hi(X) ∗
∏

j∈[m],j 6=i

hj(X)ej = p ∗ t(X),

in R, for some polynomial t(X). Moreover, each of the irreducible polyno-
mials hj(X), j ∈ [m], j 6= i is not in (hi(X), p) because Zp[X] is a UFD, and
hence is invertible modulo pr·eii by lemma 3.2. Thus hi(X) is generated by
p modulo pr·eii .

2. ei > 1: In this case, we show that (hi(X), p) is same as ideal (hi(X)) in
R/pr·eii . For this, we show that p is generated by hi(X) modulo pr·eii . From
the factorization of f(X) modulo p, we know that

hi(X)ei ∗
∏

j∈[m],j 6=i

hj(X)ej = p ∗ t(X),

in R, for some polynomial t(X). Moreover, because p is a Dedekind-special
w.r.t. f(X), t(X) is invertible modulo pi = (hi(X), p). But, since pi is max-
imal, t(X) is also invertible modulo pi = (hi(X), p)r·ei . Thus, p is generated
by hi(X)ei modulo pr·eii , and hence also generated by hi(X) modulo pr·eii .

Thus, (hi(X), p) is a principal ideal of R/pr·eii . Let g stand for this single
generator of (hi(X), p), i.e. g = p when ei = 1 and g = hi(X) when ei > 1.
Hence, every ideal q that is a sub-ideal of (hi(X), p), is a sub-ideal of (g). For
any non-zero element a in q, let ta be the largest integer greater than zero such

18



that a ∈ (g)ta . Note ta < r · ei, for otherwise a is zero in R/pr·eii . Thus, all
elements of q are in some ideal (g)t, with 0 < t < r · ei. Let tq be the minimum
of these t. Note 1 ≤ tq < r ·ei. We now show that q = (g)tq . Consider an element
of a of q that is in (g)tq . Then, a can be written as gtq ∗ a′, where a′ is not in
the maximal ideal (h(X), p) of R. Hence, as before, a′ is invertible in R/pr·eii ,
and thus gtq is in q. This shows that q = (g)tq , which makes it a principal ideal.

Corollary 5.7. Zpr [X]/(f(X)) is a principal ideal ring.

Proof. Follows by theorems 5.5 and 5.6 as product of principal ideal rings is a
principal ideal ring.

Lemma 5.8. If f(X) is irreducible as a polynomial in Z[X], then any ideal a
of R = Z[X]/(f(X)) can be written as â

∏
i∈[m] p

ti
i , where ti are non-negative

integers, and â is an ideal of R co-prime to every pi (i ∈ [m]).

Proof. If a is co-prime to every pi (i ∈ [m]), then ti can be taken to be zero,
and we are done. Otherwise, let I ⊆ [m] be the non-empty and maximal set of
indices i, i ∈ [m], such that a is not co-prime to pi. Since each pi is maximal (by
lemma 5.1), this implies that a is a subset of each of pi (i ∈ I). For each i ∈ I,

let t(i) > 0 be the largest integer such that a is a subset of p
t(i)
i . Such a t(i) is

well-defined by corollary to Krull intersection theorem (Corollary 3.6), noting
that R is also an integral domain.

We show that there exists an ideal â such that a = â ∗
∏
i∈I p

t(i)
i .

Let T =
∑
i∈I t(i). Define â to be the fractional ideal

p−T ∗ a ∗

∏
i∈I

∏
j∈[m],j 6=i

p
t(i)
j

 .

Using lemma 5.4, it is straightforward to check that â ∗ (
∏
i∈I p

t(i)
i ) = a.

We now show that â is actually an integral ideal, i.e. an ideal of R. We will

show that a ∗
(∏

i∈I
∏
j∈[m],j 6=i p

t(i)
j

)
is in (p)T . Since, for all i ∈ I, a is in p

t(i)
i ,

a ⊆ ∩i∈Ipt(i)i . But, these ideals p
t(i)
i are all co-prime, and hence a ⊆

∏
i∈I p

t(i)
i .

We next show that for all i ∈ I, p
t(i)
i ∗

∏
j∈[m],j 6=i p

t(i)
j is in (p)t(i). But, this is

clear from the factorization of (p) given by lemma 5.4.
Claim: Ideal â is co-prime to every pi, i ∈ [m].
Proof of Claim: If there exists an i ∈ [m], say i∗, such that â is not co-prime to pi∗ ,

then since the latter is maximal, â is contained in pi∗ . But, since a = â∗
∏
i∈I p

t(i)
i ,

this implies that a is contained in p
t(i∗)+1
i∗ , contradicting the maximality of t(i∗).

This proves the claim and the lemma.

Theorem 5.9. If f(X) is irreducible as a polynomial in Z[X], then for any ideal
a of R = Z[X]/(f(X)), a is principal modulo pra, i.e. as an ideal of R/pra.

This theorem follows by applying lemmas 5.8 and 5.4. Details follow.
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Proof. First consider the case that a is co-prime to all pi. Then, by lemma 5.4
and lemma 3.2 and lemma 3.1 (iii), we have

pra = a
∏
i∈[m]

pr·eii .

Then, by CRT,

R/(pra) ∼= R/a ∗
m∏
i=1

R/pr·eii .

So a will be principal in R/(pra), if it is principal in each of the component rings.
Theorem 5.6, shows that a is principal in R/pr·eii , and a is trivially principal
modulo a, and hence the lemma is proved in this case.

Otherwise, by lemmas 5.8 and 5.4, for any integer r ≥ 0, we have, a ∗ (p)r =
â ∗
∏
i∈[m] p

r·ei+ti
i , for some non-negative integers ti. Also, â is co-prime to each

pi and hence to each pr·eii (by lemma 3.2) . Also, by CRT,

R/(pra) ∼= R/â ∗
m∏
i=1

R/pr·ei+tii .

Then, using theorem 5.6, â is principal modulo a ∗ (p)r by employing CRT, just
as in the simple case above where a was co-prime to all pi. By Theorem 5.6,
each pi is also principal modulo psj , for any s. So, we just need to show that pi
is principal modulo â. Since â is co-prime to pi, there exists elements in α ∈ pi
and β ∈ â, such that α+ β = 1. Thus, α = 1 modulo â, and hence pi is same as
(1) modulo â. Ideal â is also co-prime to pi, and hence by the same argument as
above, pi is same as (1) modulo â.

We now prove the above lemma 5.8 (and hence theorem 5.9) without requiring
that R be an integral domain; the requirement of being an integral domain was
required to employ the corollary to Krull intersection theorem (corollary 3.6).
The proof we give below (lemma 5.10) does not use this corollary, and is specific
to the maximal ideals pi of the Noetherian ring R.

For each i ∈ [m], define an ideal p̄i of R by

p̄i =

∞⋂
t=0

pti.

It is a well-defined ideal of R, because for every element α of R, and every
element β of p̄i ⊆ p0i = R, αβ is in every pti (t ≥ 0), as all pti are ideals of R.

Lemma 5.10. For all i ∈ [m], the ideal p̄i = 0

A proof of this lemma can be found in Appendix A.

20



Extension to Product of Powers of Primes.

Theorem 5.11. Let q =
∏
j p

rj
j be a product of powers of primes such that

for every j, the pj is Dedekind-special w.r.t. f(X). If f(X) is irreducible as a
polynomial in Z[X], then for any ideal a of R = Z[X]/(f(X)), a is principal
modulo qa, i.e. as an ideal of R/qa.

The proof of this theorem is similar to the proof of above theorem 5.9, by
iteratively computing â (using lemma 5.8) that is co-prime to all (pj) and addi-
tionally observing that ideals (p) and (p′) are co-prime for distinct primes p and
p′.

6 Example Polynomial Rings and non-Bigenic Ideals

An ideal will be called bigenic if it can be genereated by two or less elements of the
ring. In this section, we give natural examples of modular polynomials (f(X), p)
such that f(X) modulo p is Dedekind-special, yet the ring R = Z[X]/(f(X)) is a
strict sub-ring of the ring of integers OK of the number field K = Q[X]/(f(X)).
It is well known that in such a case R is not a Dedekind domain, and indeed all
prime ideals of R that are not co-prime to the so-called conductor ideal of R are
not invertible (see e.g. Theorem 6.1 in [Cona]). Another well-known property
of Dedekind domains is that all its ideals are bigenic. However, it is not an
easy task to show that some ideal of non-Dedekind-domain R is not bigenic.
Although, examples exist of non-bigenic ideals in strict subrings (of rank n) of
OK [Cona], these subrings are not the polynomial ring R, and moreover these
non-bigenic ideals have a diagonal Hermite normal form Z-basis. We will show
below a non-trivial ideal of R that requires a minimum of three generators.

Consider f(X) = X4 + 7. By Eisenstein criterion, f(X) is irreducible over
Q. Next, modulo 2, f(X) = (X + 1)4 (mod 2), and in particular f(X) = (X +
1)4 − 2 ∗ t(X), where t(X) = 2X3 + 3X2 + 2X − 3. However, (X + 1) | t(X)
modulo 2, and hence by Dedekind index theorem 2 | [OK : R], and consequently
R is a strict sub-ring of OK and hence not a Dedekind domain. We next check
that for every prime p different from 2, (f(X), p) is Dedekind-special. First,
modulo p = 7, f(X) = X4 (mod 7), and f(X)−X4 = 7 ∗ 1. Since, X does not
divide 1 modulo 7, (f(X), 7) is Dedekind-special. Since, it is also known10 that
[OK : R]2 divides ∆f , the prime p can divide [OK : R] only if ∆f has p2 as a
factor. In our example, using corollary 4.9, ∆f = 4473, and hence only primes
2 and 7 can divide [OK : R], and hence for all other primes p, by Dedekind
index theorem, (f(Y ), p) is also Dedekind-special. Thus, using CRT, we can
base hardness of RLWEq for any integer q that is not even, on hard problems in
lattices corresponding to ideals of non-Dedekind-domain R. It is not difficult to
see that the above argument can be generalized to arbitrary power-of-two degree
f(X).

Proposition 6.1. The ideal I = (8, 4(X+1), 2(X+1)2) of R = Z[X]/(X4+7)
is not bigenic.
10 ∆f = [OK : R]2 · disc(OK), and disc(OK) is an integer.
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Proof. Note that I as an ideal of R requires at least three generators if I0 =
(8, 4(X+1), 2(X+1)2, X4+7) as an ideal of Z[X] requires at least four generators.
By a change of variable, i.e. setting X+1 = Y , and noting that Z[Y −1] is same as
Z[Y ], we are left with proving that (8, 4Y, 2Y 2, Y 4−4Y 3+6Y 2−4Y+8) as an ideal
of Z[Y ] requires at least four generators. This ideal simplifies to (8, 4Y, 2Y 2, Y 4),
from which it is clear that the ideal needs at least four generators.

The above example has the issue that 1/2 · I which is also an ideal of R may
or may not be bigenic, as the above simple proof does not extend to 1/2 · I.
A bigger issue is that I, considered as a subset of K = Q[X]/(X4 + 7), is also
as it is an ideal of the ring of integers OK, and hence the corresponding lattice
inherits all the algebraic properties of a Dedekind domain. In fact, we conjecture
that for all ideals R of this particular K, either the ideal is bigenic or it is as it
an ideal of OK. So, to have a more fruitful example we must look to a different
number field, which we show next.

This example is inspired by [Conc, Example 4.16]. Consider the irreducible
(over Q) polynomial f(X) = X5 − 24 · 3, and the corresponding number field
K = Q[X]/(f(X)). Consider β = X4/8 as an element of K. Its easy to check
that β5 − 2 · 34 = 0, and hence β ∈ OK. This also shows that R = Z[X]/(f(X))
is not same as OK, and hence is not integrally closed and consequently not a
Dedekind domain. We now have an easy example of a non-bigenic ideal of R.

Proposition 6.2. The ideal I = (16, 4X, 2X2) of R = Z[X]/(X5 − 24 · 3) is
not bigenic. Further this ideal of R is not as it is an ideal of ring of integers of
K = Q[X]/(X5 − 24 · 3).

Proof. The proof is similar to the previous proposition, noting that I as an ideal
of R requires three generators if I0 = (16, 4X, 2X2, X5 − 48) as an ideal of
Z[X] requires at least four generators. But, I0 is same as (16, 4X, 2X2, X5),
which is easily seen to require four generators as an ideal of Z[X].

To check that I is not an ideal of OK. Recall, β = x4/8 is in OK. We just
show that 4X · β is not in I, and hence I is not closed under multiplication by
ObK. indeed, we have 4X · β = X5/2 = 24 which is same as 8 modulo 16. Since
8 is not in the ideal I, this completes the proof.

This example is still not satisfying for two reasons. First, we should really
show that 1/2 · I is not bigenic, for if this latter ideal was bigenic, a rational
scaling of I becomes bigenic. Second, the HNF Z-basis of this ideal is diagonal.
Fortunately, the ideal in the following proposition has strong properties, although
the proof is more involved now.

Proposition 6.3. The ideal I = (8, 2(X+2), X(X+2) of R = Z[X]/(X5−48)
has the following properties

(i) I is not bigenic,
(ii) no rational scaling of I that is an ideal of R is bigenic,

(iii) no rational scaling of I is a fractional ideal of OK,
(iv) the HNF Z-basis of I is not diagonal.
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Proof. We focus on proving (i), as the rest will follow easily.
Now, assume to the contrary that this ideal is bigenic and generated by

L0 = (`1, `2), and as ideals of Z[X]/(X5 − 48), L0 = I. Both `1 and `2 must be
in the Z-span of Z-basis of the ideal I, which is depicted below by concatenating
the circulant matrices of 8, 2X + 4 and X2 + 4. We also compute its reduced
Hermite normal form (HNF).

HNF


4 0 0 48 0 4 0 0 0 96 8 0 0 0 0
0 4 0 0 48 2 4 0 0 0 0 8 0 0 0
1 0 4 0 0 0 2 4 0 0 0 0 8 0 0
0 1 0 4 0 0 0 2 4 0 0 0 0 8 0
0 0 1 0 4 0 0 0 2 4 0 0 0 0 8

 =


8 4 4 0 0
0 2 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


From the HNF it is clear that `1 can be written as a1X

4 + b1X
3 + c1(X2 + 4) +

d1(2X + 4) + e1 · 8 and similarly, `2 can be written as a2X
4 + b2X

3 + c2(X2 +
4) + d2(2X + 4) + e2 · 8, where all of a1, ...e1, a2, ..., e2 are in Z.

Next, note that it suffices to prove that L1 = (`1, `2, X
5, 48) as ideal of

Z[X] does not contain all three of 8, 2X + 4, and X2 + 4. We will instead prove
something stronger that L2 = (`1, `2, X

4, 16) as ideal of Z[X] does not contain
all three of 8, 2X + 4, and X2 + 4.

Further, since we have included X4 in L2, we can now assume w.l.o.g. that
a1 and a2 are zero. Further, using Euclidean algorithm, w.l.o.g. assume that
c2 is zero. Thus, `1 = b1X

3 + c1(X2 + 4) + d1(2X + 4) + e1 · 8, and `2 =
b2X

3 + d2(2X + 4) + e2 · 8. Further, since 16 is included in L2, e1 and e2 can
just be restricted to {0, 1}.

Now, since L2 must generate x2 + 4, and given that b1, ...e1, b2, ..., e2 are just
integers, it is clear that c1 = 1 mod 16. Also, it is clear that both e1 and e2
cannot be zero, for otherwise 8 cannot be generated. Since c1 is non-zero, to
generate 2x + 4, modulo 16, one can only use `2 (and not use `1), and hence
d2 = 1 mod 16, and b2, e2 = 0 mod 16, which as argued above just means that
e2 = 0, and hence e1 = 1. But, this means X2 + 4 cannot be generated from L2.
That completes the proof of (i)

We now go on to prove (ii)-(iv). We have already shown above that the HNF
of the ideal I is not diagonal, so that proves (iv). Since, the ideal I contains
X2+4, any rational scaling of I that keeps it as a subset of R must be an integer
scaling. However, the above proof of non-bigenic nature of I easily extends to
any integer scaling of I.

For (iii), we first show that I by itself (i.e. without any scaling) is not an
ideal of OK. Recall, β = x4/8 is in OK. We just show that (2X + 4) · β is not
in I, and hence I is not closed under multiplication by ObK. To begin with,
note that (X2 + 4)(X2 − 4) = (X4 − 16) is in the ideal I. Using this, we have
(2X + 4) · β = X5/4 + X4/2 = 12 + X4/2 = 12 + 8 (modulo I) which is same
as 4 modulo 16. Since 4 is not in the ideal I (of R), this completes the proof.

Next, consider the set p
q · I, for co-prime integers p, q. Again, we just show

that p
q (2X + 4) · β is not in p

q · I. But this is same as checking that (2X + 4) · β
is not in ·I.
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7 Randomized Algorithm to Compute a Generator of
Ideal a modulo pra

In this section we restrict ourselves to the setting of Section 5. Given an ideal
a described by a set of generators {γi}i∈[n] in R or a Z-basis B(a), we wish to
compute a generator of the principal ideal a modulo pra, which is principal by
theorem 5.9.

We show that the following simple and efficient randomized algorithm com-
putes such a generator with non-negligible probability11.

Algorithm 1 FindGen

Input: A Z-basis B for an ideal a of R.
Output: A single generator a(X) for ideal a mod pra.

1: Pick a random n-vector ρ with component polynomials ρk (k ∈ [n]) chosen uni-
formly and independently from Zp[X]/(f(X)) = R/(p).

2: View the n columns of B as n polynomials γk ∈ R (k ∈ [n]).
3: Compute a(X) =

∑m
k=1 ρk ∗ γk in R.

4: Output a(X)

7.1 Correctness

Lemma 7.1. The algorithm FindGen outputs a generator a(X) of a modulo
pra with probability at least

∏
i∈[m](1 − 2/pdi), where di is the degree of the

irreducible (modulo p) polynomials hi(X) such that f(X) =
∏
i∈[m] hi(X)ei in

Zp[X].

Proof. By lemma 5.8 and lemma 5.4, we have for any integer r ≥ 0, a ∗ (p)r =
â ∗
∏
i∈[m] p

r·ei+ti
i , where â is co-prime to every pi (i ∈ [m]). Thus, noting that

all the pi are prime (lemma 5.1), and by employing CRT, we have that the ring
R/pra is isomorphic to R/â ∗

∏
i∈[m]R/p

r·ei+ti
i . Since a is zero modulo â, we

can focus on a modulo pr·ei+tii , for each i ∈ [m].

First, note that each of the n columns of B can be viewed as n polynomials
γk ∈ R (k ∈ [n]), such that the γk collectively form a set of generators (over R)
of a. Recall, a(X) computed in the algorithm is just

∑
k ρkγk.

Fix an i ∈ [m]. View each of the elements γk (k ∈ [n]) also as elements of the
quotient ring R/pr·ei+tii , and the randomly chosen elements ρk as also elements
in R/pr·ei+tii . Denote a reduced modulo pr·ei+tii by ai. By Theorem 5.6, ai is
principal and is generated by a finite power of g (including 1 = g0), where g is
either p or hi(X) (depending on whether ei is one or greater than one resp.).
Similarly, each γk (the generators of a) is itself generated by a finite power of

11 This is similar to the known randomized algorithms that find a second generator for
an ideal of a Dedekind domain, given a basis and a first generator (see e.g. [Coh93]).
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g modulo ptii s
r, say the power is vk,i ≥ 0. Hence, ai is generated by gv

∗
i , where

v∗i = min{vk,i : k ∈ [n]}.
Note, γk can be written as αk,ig

vk,i modulo pr·ei+tii , where αk,i is not in pi =
(hi(X), p). Then,

∑
k ρkγk modulo pr·ei+tii can be written as gv

∗
i ∗
∑
k ρkαk,ig

vk,i−v∗i .
Note, at least for one k ∈ [n], vk,i− v∗i is zero. So, let Ii be the non-empty set of
indices, subset of [n], such that vk,i − v∗i is zero.

Since by lemma 5.1, pi is a maximal ideal of R and hence every element of R
not in pi is invertible modulo pi, we need to show that with high probability, over
the random choices of {ρk}k, for all i ∈ [m],

∑
k∈Ii ρkαk,i is not zero modulo pi.

Note that for k 6∈ Ii, the quantities ρkαk,ig
vk,i−v∗i are in (g) ⊆ (hi(X), p), so the

full sum (over all k ∈ [n]) will be non-zero modulo (hi(X), p) = pi and hence
invertible.

To calculate this probability, we first note that Z[X]/(hi(X), p) is a finite
field, more precisely GF(pdi), as hi(X) is irreducible modulo p, with di being
the degree of hi(X). Thus, we can view each of ρk and αk,i as element of this
field (by reducing mod p). We have already seen that αk,i is non-zero in this
field, as it is not in (hi(X), p). However, a random choice of ρk in Zp[X]/(f(X))
may lead ρk it to be zero modulo (hi(X), p), although this probability is small,
as we next show.

First, note that Zp[X]/(f(X)) = R/(p). Then, by employing CRT and the-
orem 5.5, ρk is uniformly and independently distributed in the rings R/peii . Fur-
ther, by lemma 5.1(i), peii = si = (p, hi(X)ei). Thus, R/peii = Z[X]/ (f(X), p,
hi(X)ei), which is same as Z[X]/(p, hi(X)ei).

Hence ρk is zero modulo pi only if it is a multiple of hi(X). Since all (canon-
ically represented) polynomials in si have degree at most di ∗ ei − 1, there are
at most pdi∗ei polynomials. Similarly, all canonical polynomials in si that are a
multiple of hi(X) are at most pdi∗(ei−1). This proves that the probability that ρk
is zero in GF(pdj ) is at most 1/pdi . Moreover, conditioned on ρk being non-zero,
the probability that it is c for some non-zero c in GF(pdi) is same regardless of c,
as number of elements in the coset of c in si is same for all c. Thus, conditioned
on ρk being non-zero, ρk is uniformly distributed in GF(pdi).

Thus, probability that βi = (
∑
k∈Ii ρkαk,i mod (hi(X), p)) is zero, i.e. zero

in GF(pdi), is at most 1/pdi∗|Ii| plus 1/pdi , which is at most 2/pdi . Since, ρk are
independently distributed in the various rings Z[X]/si, the probability that all
of these m quantities βi are non-zero is at least

∏
i∈[m](1− 2/pdi), which is also

a lower bound on the probability that a(X) is a generator of a modulo pra.

Extension to Product of Powers of Primes. Let q =
∏
j p

rj
j be a product of

powers of primes such that for every j, the modular polynomial (f(X), pj) is
Dedekind-special. The above algorithm can be correctly extended by choosing
ρi randomly and independently from Zq′ [X]/(f(X)) where q′ =

∏
j pj . The

probability of success in this case is at least
∏
j

∏
i∈[mj ](1− 2/p

dj,i
j ), where dj,i

is the degree of the mj irreducible polynomials hj,i(X) (modulo pj) such that
f(X) =

∏
i∈[m] hj,i(X)ej,i in Zp[X].
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Extension to Arbitrary q without known-factorization. If the factorization of q
is not known, and say q =

∏
j p

rj
j as above, we can still use the above algorithm,

but this time by choosing ρi randomly and independently modulo Zq[X]/(f(X)).
In the proof of lemma 7.1, again using CRT and focusing on individual primes,
say pj , ρk is now uniformly and independently distributed in Z[X]/p

eirj
i . By

a similar argument as in the proof of lemma 5.1(i), this ring is isomorphic to
Z[X]/(p, hi(X)eirj ). By the probability analysis in the lemma 7.1 above, the
probability of success remains the same as in the known factorization case above.

Boosting the Probability of Success. One can boost the probability of finding
a generator of a modulo qa by repeating the above algorithm, but to stop the
repetition we need an efficient test that a(X) as computed is indeed a generator.
But, this is same as checking (a, qa) = (a(X), qa), which can be efficiently tested
by computing the Hermite normal form of B (the given Z-basis of a) and the
Hermite normal form of [Ca | qB], and checking for equality. Here, Ca is the
circulant matrix of a(X) in Z[X]/(f(X)).

8 Hardness of Decisional RLWE

In this section, by default, we focus on a degree-n monic polynomial f(X) and
an integer q ≥ 2 where (f(X), q) is Dedekind-special. Let RR = R[X]/(f(X)).

First we give out the same distribution of error distributions as in [PRS17],
which we will use in the following reduction.

Definition 8.1 (Error Distribution). Fix arbitrary s(n) = ω(
√

log(n)). For
α > 0, a distribution sampled from Υα is an elliptical Gaussian distribution Dr,
where r ∈ G is sampled as follow: for i = 0, . . . , s1 − 1, sample xi ∈ D1 and set
r2i = α2(x2i + s2(n))/2, for i = s1, . . . , s1 + s2− 1, sample xi, yi from D1/

√
2 and

set r2i = r2i+s2 = α2(x2i + y2i + s2(n))/2.

Definition 8.2 (RLWE Distribution). Let V be the Vandermonde matrix of
the modulo polynomial f(x). For s ∈ R∨q and an error distribution ψ over RR, we

define the RLWE distribution As,ψ over Rq×RR/R∨ as
(
a,b = a ∗ s/q + V −1e mod R∨

)
where e is sampled from ψ, a is uniform over Rq.

Definition 8.3 ((Average-case) Decisional RLWE Problem). Let Υα be
a distribution over family of error distributions, each over R[X]/(f(X)). The
average-case decisional RLWE problem, RLWEq,Υα is to distinguish (with non-
negligible advantage) between independent samples from As,ψ for a random choice
of uniform s ∈ R∨q and ψ ∈ Υα and the same number of uniformly random and
independent samples from Rq ×RR/R∨.

Let R-DGSγ be the discrete Gaussian sampling problem DGSγ when re-
stricted to the ideal lattices on the polynomial ring R = Z[X]/(f(X)).
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Theorem 8.1. Let α = α(n) ∈ (0, 1), q = q(n) ≥ 2 be an integer and f(x)
be any degree-n monic polynomial where (f(X), q) is Dedekind-special. Let R =
Z[X]/(f(X)) be a polynomial ring. If αq ≥ 2 · ω(1), for some negligible ε =
ε(n), there is a probabilistic polynomial-time quantum reduction from R-DGSγ
to (average case, decisional) RLWEq,Υα , where

γ = max
{
ηε(L(I)) · (

√
2/α) · ω(1),

√
2n/λ1(L(I)∨)

}
Note that ηε(L) > ω(

√
log(n))/λ1(L∨). Using known reduction [Reg06],

this immediately implies a polynomial-time quantum reduction from SIVPγ to

(average-case, decision) RLWEq,Υα for any γ ≤ max
{
ω(
√
n log(n)/α,

√
2n
}

.

In case of spherical error, same as [PRS17, Section 7] we have

Corollary 8.2. With the same notation as Theorem 8.1, there’s a polynomial
time quantum reduction from R-DGSγ to (average-case, decisional) RLWEq,Dξ
using ` samples, where

γ = max

{
ηε(L(I)) · (

√
2/ξ) ·

(
n`

log(n`)

) 1
4

· ω(
√

log(n)),
√

2n/λ1(L(I)∨)

}
,

as long as ξq ≥
(

n`
log(n`)

) 1
4 · ω(

√
log(n)).

Our proof to theorem 8.1 will be exactly the same as [PRS17, Theorem
6.2], that starts with a discrete Gaussian sampler with very large radius, and
iteratively applys the following lemma 8.3.

Definition 8.4. For r > 0, ζ > 0 and T ≥ 1, define Wr,ζ,T as the set of
cardinality (s1 + s2) · (T + 1) containing for each i = 0, . . . , s1 + s2 − 1 and
j = 0, . . . , T the vector ri,j which is equal to r in all coordinates except in the
i-th, and the (i+ s2)-th if i ≥ s1, where it is equal to r · (1 + ζ)j.

Lemma 8.3. There’s an efficient quantum algorithm that, given an oracle that
solves RLWEq,Υα , an ideal I ⊆ R, a number r ≥

√
2q · ηε(L(I)) and r′ =

r ·ω(1)/(αq) ≥
√

2n/λ1(L(I)∨), polynomially many samples from discrete Gaus-
sian distribution DL(I),r for each r ∈ Wr,ζ,T (for some ζ = 1/poly(n) and
T = poly(n)), and a vector r′ ≥ r′, outputs an independent sample from DL(I),r′ .

As in [PRS17, Lemma 6.5], This iterative step is given by combining the
following two parts: a classical one in lemma 8.4 that use a discrete Gaussian
sampler and a RLWE oracle to solve the Gaussian Decoding Problem (GDP),
and a quantum one in lemma 8.5 that use this GDP solver to provide discrete
Gaussian samples with smaller radius.

Lemma 8.4. There’s a probabilistic (classical) polynomial time algorithm that,
taking an oracle that solves RLWEq,Υα for α ∈ (0, 1) and integer q > 2, an
ideal I ∈ R, a parameter r ≥

√
2q · ηε(L(I)), and polynomially many samples

from discrete Gaussian DL(I),r for each r ∈Wr,ζ,T for some ζ = 1/poly(n) and
T = poly(n), solves GDPL(I)∨,g for any g = o(1) · αq/(2r).
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Lemma 8.5 ([PRS17, Lemma 6.7]). There is an efficient quantum algorithm

that, given any n-dimensional lattice L, a number g < λ1(L∨)
2
√
2n

, a vector r ≥ 1,

and an oracle that solves GDPL∨,g with all but negligible probability, outputs a
sample from DL, r

2g
.

The proof of lemma 8.4 follows exactly from [PRS17, Lemma 6.6], except for
two problems:

1. The core reduction from Gaussian Decoding Problem to RLWE in [PRS17,
Lemma 6.8] requires the underlying ring to be a dedekind domain, which
is not true in our case (see section 6). We provide such counterpart in
lemma 8.6.

2. We need a similar lemma as in [PRS17, Lemma 6.9] for non-maximal orders
(i.e. orders that are not the ring of integers) of number fields, which says
that any elliptical Gaussian whose parameters’ product is sufficiently large
is “smooth” modulo an ideal. We provide a proof in lemma 8.9.

Lemma 8.6. There’s an efficient algorithm that, takes as input an integer q ≥
2, a dual ideal lattice L(I)∨ where I is an ideal in R, a coset e + L(I)∨ with
a bound d ≥ ||e||∞, a parameter r ≥

√
2q · ηε(L(I)) and samples from DL(I),r

for some r ≥ r. It outputs samples that are within negligible statistical distance
from the RLWE distribution As,r′ for a uniformly random s ∈ R∨q , where (r′i)

2 =
(ri|ei|/q)2 + (rd/q)2.

To prove this lemma 8.6, we follow the standard techniques as in [PRS17,
Lemma 6.8] which is a slight generalization over [LPR10, Lemma 4.7], elaborated
as below.

Proof Sketch. First sample a random ẑ = V z from the discrete Gaussian DL(I),r
where z ∈ I. Because r ≥

√
2q · ηε(L(I)), by smoothing lemma 2.1, the distri-

bution of (z mod qI) is within a negligible distance from uniform distribution
over I/qI. Also let e′ be an independent sample from the continuous Gaussian
Dα/

√
2.

Now, for any element V y = ŷ = e + x̂ ∈ e +L(I)∨, where x̂ = V x ∈ L(I)∨,
we could directly provide a “RLWE sample” from I/qI ×RR/R∨ as(

z mod qI, z ∗ y/q + e′ mod R∨ =
z ∗ x

q
+

1

q
CzV

−1e + e′ mod R∨
)
.

for some secret x ∈ I∨/qI∨. To jump out of the ideal, we use lemma 8.7,
a counterpart of clearing lemma of [LPR10, Lemma 2.15] for non dedekind
domains, that gives (i) an invertible and efficiently computable bijection ψ :
I/qI → R/qR, and (ii) an efficiently invertible and computable bijection φ :
I∨/qI∨ → R∨/qR∨, with the additional property that z ∗ x = ψ(z) ∗ φ(x).
Therefore the final RLWE distribution would be over Rq ×RR/R∨ as(
ψ(z mod qI), z ∗ y/q + e′ mod R∨ =

ψ(z) ∗ φ(x)

q
+

1

q
CzV

−1e + e′ mod R∨
)
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for some secret φ(x) ∈ R∨/qR∨. Note that since ψ is invertible, ψ(z mod qI) is
almost uniform over R/qR = Rq.

Moreover, if we sample e as in GDPL(I)∨,g where g = αq/(
√

2r), the distribu-

tion of
(

1
qCzV

−1e + e′
)

will be exactly Υα, as in [PRS17, Lemma 6.8]. Then we

complete the proof by applying the standard technique to randomize the secret
as in [Reg10, Lemma 3.2]

The following lemma is an extension of an important technical lemma from [LPR10,
Lemma 2.15], which is informally referred to as the ideal clearing lemma, and is
the key to extending Regev’s LWE-hardness [Reg10] to the Ring-LWE setting.
Our proof of the lemma is quite different from the proof in [LPR10] as it ex-
tends to some non dedekind domains, and hence cannot use the standard prime
ideal factorization and ideal invertibility guaranteed for dedekind domains. The
mapping φ we obtain below is actually more (computationally) efficiently invert-
ible than the corresponding mapping in [LPR10]. Since, for cyclotomic number
fields, the ring of integers is same as the polynomial ring R, this more efficient
mapping can be employed.

Lemma 8.7. (Ideal Clearing Lemma) For any integer q that is Dedekind-
special for f(X), given a Z-basis B(I) for ideal I ⊆ R,

(i) there is an efficiently computable R-module isomorphism ψ : I/qI → R/qR,

(ii) there is an efficiently invertible R-module isomorphism φ : I∨/qI∨ → R∨/qR∨,
such that

(iii) for any z ∈ I/qI and x ∈ I∨/qI∨, their polynomial product satisfies

z ∗ x ≡ ψ(z) ∗ φ(x) (mod qR∨)

Proof. By Algorithm FindGen (lemma 7.1), we can efficiently find a g that is
a generator of I modulo qI. In other words, as ideals, I = (g) + qI. Thus,
g ∈ I. This implies that g = B(I)d(0) for some integer-vector d(0). Similarly,
the coefficient representation of g(X) ∗Xi, is B(I)d(i) for some integer vector
d(i). Thus,

Cg = B(I) ·D, (2)

where D is an integer matrix (with columns d(i)).

Also, we have that every column of B(I) is generated by Cg mod qI, or mod
qB(I). Thus,

B(I) = CgU + q ·B(I)T (3)

for some integer, matrices U and T . Equivalently,

B(I) · (I − qT ) = CgU , (4)

or, since Cg is full-ranked, we have

C−1g B(I) · (I − qT ) = U . (5)
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We next show that D ·U = I (mod q). Note, from (2) and observing that
B(I) is full-ranked, D = B(I)−1Cg. Left multiplying both sides of (5) by D,
we get (I − qT ) = D ∗U , and hence

D ·U = I (mod q). (6)

Now, consider the following two mappings for claims (i)-(iii). For any z ∈ I
and x ∈ I∨, define

ψ(z) = a = UB(I)−1z (mod qR) (7)

φ(x) = g ∗ x (mod qR∨) (8)

For any z in I, and a = ψ(z) we have Cga ≡ CgUB(I)−1z, which by (4) is
same as B(I)(I − qT )B(I)−1z = z (mod qI), So, ψ is invertible, i.e. ψ−1(a) =
g ∗ a = z (mod qI). It is also surjective since Cga is in I for any a ∈ R. Since,
ψ−1 is easily seen, by commutativity, to be a R-module homomorphism, ψ is an
R-module isomorphism. Further, U can be efficiently computed using (6), and
this proves (i).

For (ii), we first note that by corollary 4.11 and using (2),

g ∗ x = (V >V )−1 · (V >V ) ·Cg · x
= (V >V )−1C>g · (V >V ) · x
= (V >V )−1D>B(I)>(V >V ) · x (9)

Recall by lemma 4.5, (V >V )−1B(I)−> is a Z-basis of I∨, and (V >V )−1

is a Z-basis of R∨. Thus using (9), we can invert φ(x) by left multiplcation by
(V >V )−1B(I)−>U>(V >V ) to x mod qI∨. Further, for any s ∈ R∨, (V >V )−1·
B(I)−>U>(V >V )·s lies in I∨ by the aforementioned basis. Thus, φ is an invert-
ible and surjective R-module homomorphism, that is also efficiently invertible,
thus proving (ii).

Now, we move on to prove (iii). For some t0 ∈ R and t1 ∈ R∨, we have

ψ(z) ∗ φ(x)

=
(
UB(I)−1z− q · t0

)
∗ (Cgx− q · t1)

=UB(I)−1z ∗Cgx− q · t0 ∗ g ∗ x− q ·UB(I)−1z ∗ t1 + q2 · t0 ∗ t1

≡ UB(I)−1z ∗Cgx (mod qR∨) (10)

≡ C−1g B(I)(I − q · T )B(I)−1z ∗Cgx (mod qR∨)

≡ z ∗ x− q ·C−1g B(I)TB(I)−1z ∗Cgx (mod qR∨)

≡ z ∗ x− q ·CgCxC
−1
g B(I)TB(I)−1z (mod qR∨)

≡ z ∗ x− q · x ∗B(I)TB(I)−1z (mod qR∨)

≡ z ∗ x (mod qR∨) (11)

where (10) follows by noting that t0 ∗ g ∈ I and x ∈ I∨ and then employing
lemma 4.6. Similarly, UB(I)−1z is in I ⊆ R, and we can mod out its multipli-
cation by t1 ∈ R∨. Also, for the last equation (11), we use lemma 4.6, noting
that B(I)TB(I)−1z is in I.
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Remark. When comparing with [LPR10], note that they obtain a t ∈ I such
that t·I−1 is co-prime to ideal (q). In other words, t·I−1+(q) = (1). Multiplying
both sides by the ideal I, we get, (t) + qI = I, which is same as saying that t
is the generator of I mod qI. In other words [LPR10] implicitly shows that I is
principal mod qI, but this is well-known for Dedekind domains. As mentioned
earlier, our case is more difficult, yet we manage to prove it.

The above clearing lemma also generalizes to ring of integers of a number
field, which is known to be a Dedekind domain. Also, for Dedekind domains D it
is known that for any ideal a, D/a is a principal ideal ring (see wikipedia entry
for ”Principal Ideal Rings” for a proof). The lemma stated and proved below is
easier to use than the original lemma in [LPR10] because as mentioned in the
remark above it just needs an arbitrary generator of the principal ideal I/(qI).

Lemma 8.8. (Ideal Clearing Lemma for Ring of Integers [LPR10]) For
any positive integer q, given a Z-basis B(I) for ideal I of OK, and a generator
g ∈ I for the principal ideal I/(qI),

(i) there is an efficiently computable OK-module isomorphism ψ : I/(qI) →
OK/(qOK),

(ii) there is an efficiently invertible OK-module isomorphism φ : I∨/(qI∨) →
O∨K/(qO∨K),

(iii) such that, for any z ∈ I/(qI) and x ∈ I∨/(qI∨), their polynomial product
satisfies

z ∗ x ≡ ψ(z) ∗ φ(x) (mod qO∨K)

For a proof of the lemma, see Appendix B.

We now give a counterpart of [PRS17, Lemma 6.9].

Lemma 8.9. For any ideal I of R, and r ∈ G, where

c :=

(
n∏
i=1

ri

)1/n

· (det(I) ·∆f )
−1/n ≥ 1,

where we have r ≥ ηε(L(I)) for ε = exp(−c2n).

Proof. Let R be diag(r), and Lr = R−1 · V · L(I), so that L∨r = R · L(I)∨.
Since, the dual ideal I∨ is the pre-image (under embedding V ) of the conjugate
of L(I)∨, any non-zero w in L∨r has the form R · conj(V w), for w ∈ I∨.
Claim: for w ∈ I∨,

∏
i(V w)i ≥ ∆−1f · det(I)−1.

Proof of Claim: We proved in lemma 4.5 that I∨ is a fractional ideal of R.
that is Z-spanned by (V >V )−1I−T . Thus, any w ∈ I∨ can be viewed as a
polynomial w(X) (over Q) with circulant matrix Cw. Moreover, every column
of Cw can be viewed as a polynomial that is in the ideal I∨. Thus, Cw can
be generated from the Z-basis of I∨ as Cw = (V >V )−1I−TM, where M is an
integer n×n matrix. Now, det(Cw) is same as det(Dw) where Dw is the diagonal
matrix formed from vector V w (see equation (1)). Since, by above, det(Cw) ≥
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det(V >V )−1 · det(I)−1, we have that
∏
i(V w)i ≥ det(V >V )−1 · det(I)−1.

Since det(V >V ) is exactly ∆f , the claim follows,
Thus, for any w in Lr, ‖w‖ is same as

∑
i r

2
i · |(V w)i|2, which by arithmetic

mean being no less than the geometric mean implies that

‖w‖2 ≥ n

(∏
i

r2i · |(V w)i|2
)1/n

,

which from the above claim and the hypothesis of the lemma implies that ‖w‖2 ≥
c2n, so that λ1(L∨r ) ≥ c

√
n. The smoothing lemma 2.1 then implies that 1 ≥

ηε(Lr), or equivalently r ≥ ηε(L(I)).

Remark. Note that det(V >V ) is exactly ∆f , and for special case I = R∨,
we know that it is generated by (V >V )−1 and hence det(I) = det(V >V )−1.

Consequently, det(R∨) ·∆f = 1, and c = (
∏n
i=1 ri)

1/n
. Since, the above lemma

is used in proof of lemma 8.4, applied to arbitrary ideals in R, the determinant
of (any basis) of these ideals is an integer and hence larger than det(I). Thus,
c will only be smaller than the c for the case of R∨, and hence a smaller ε is
obtained.
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DD12. Léo Ducas and Alain Durmus. Ring-LWE in polynomial rings. In Marc
Fischlin, Johannes Buchmann, and Mark Manulis, editors, PKC 2012: 15th
International Conference on Theory and Practice of Public Key Cryptog-
raphy, volume 7293 of Lecture Notes in Computer Science, pages 34–51,
Darmstadt, Germany, May 21–23, 2012. Springer, Heidelberg, Germany. 5
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A Appendix

Lemma 3.1 (repeated).

(i) Every non-trivial ring has at least one maximal ideal.

(ii) A maximal ideal is always a prime ideal.

(iii) The quotient ring R/a is a field iff a is a maximal ideal.

(iv) For ideals a and b, their sum a + b is the set of all x + y where x ∈ a and
y ∈ b. It is the smallest ideal containing a and b.

(v) Thus, a maximal ideal m is co-prime to every ideal that is not a subset of m.

(vi) If a and b are not co-prime, then there exists a maximal ideal m such that
a + b ⊆ m.

(vii) If a and b are co-prime, then a ∩ b = ab.

(viii) If a prime ideal p contains product of two ideal ab, then at least one of a or
b is in p.

(ix ) If an ideal a is co-prime to two ideals, say b and c, then a is co-prime to bc.

(x ) If for some positive integer r, and a ∈ R, ar is contained in a prime ideal p,
then a is contained in p (by definition of prime ideal).

(xi) This easily generalizes to the fact that if for some positive integer r, and
ideal a, ar is contained in a prime ideal p, then a is contained in p.

(xii) If ideals a and b are co-prime, then for any positive integers r, s, their powers
ar and bs are also co-prime.

(xiii) If a maximal ideal m contains product of powers of distinct maximal ideals
n1, ...., nk, then m must be one of n1, ...., nk.

Proof. Proof of ((i)). If a prime ideal p contains product of two ideal ab, then
at least one of a or b is in p. If neither of a and b is contained in p, then there
are elements a ∈ a and b ∈ b, that are not in p. Yet, a ∗ b, being in ab is in p,
contradicting the fact that p is prime.

Proof of ((ii)). If an ideal a is co-prime to two ideals, say b and c, then a is
co-prime to bc. For if not, then a + bc is contained in a maximal ideal m, and
hence bc is also contained in m. By previous item, one of b or c, w.l.o.g. b, is
contained in m. Since a is also contained in m, this implies that a+b is contained
in m, contradicting the fact that a and b are co-prime.

Proof of ((iii)). If ideals a and b are co-prime, then for any positive integers
r, s, their powers ar and bs are also co-prime: if ar and bs are not co-prime
then there is a maximal ideal m containing ar + bs, and hence also ar and bs

individually. Since m is also prime, m contains both a and b and hence also their
sum, contradicting the fact that a and b are co-prime.

Proof of ((iv)). If a maximal ideal m contains product of powers of distinct
maximal ideals n1, ...., nk, then m must be one of n1, ...., nk. Say,

∏
i n
ri
i is con-

tained in m. Suppose m is not the same as one of n1, ..., nk. Then, m is co-prime
to each of ni, and hence also to their powers nrii , which are also pair-wise co-
prime. Thus, one of nrii is in m (by item (i)), and hence maximal ideal ni is itself
in maximal ideal m, an absurdity.
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Lemma 3.2 (repeated) For any ring R, and any maximal ideal a = (a1, a2) of
R, let x ∈ R be such that x is not in a. Then for any positive integers r, s, x is
invertible modulo (ar1, a

s
2).

The lemma can be proved easily in multiple ways, but we prefer an argument
used in Prop. 2.5 in [LLL82].

Proof. Clearly, for r = 1 and s = 1, the claim holds, i.e. x is invertible modulo
the maximal ideal a, as R/a is a field. Thus,

µx = 1− (ν1a1 + ν2a2),

for some µ, ν1, ν2. If ν2 is zero, then x is invertible modulo (a1) and hence also
modulo any power of (a1), and we are done. Similarly, for ν1 being zero. Else,

µx+ ν1a1 = 1− ν2a2,

Multiplying both sides by 1 + ν2a2 + ...+ (ν2a2)s−1, we get

µ′x+ ν′1a1 = 1− νs2as2,

for some µ′ and ν′1. Rewriting this as

µ′x+ νs2a
s
2 = 1− ν′1a1,

and multiplying both sides by 1 + ν′1a1 + ...+ (ν′1a1)r−1, the claim follows.

Lemma 5.2 (repeated) In the ring R, let w =
∑m
i=1 ei. If w ≥ 2, and some

ei = 1 (w.l.o.g. em = 1), then pw−2 ∗hm(X) is invertible modulo the ideal (pw−1,∏m−1
j=1 hj(X)ej ).

Proof. The case w = 2 is implied by the above lemma 5.1 and lemma 3.2. So,
we focus on w > 2. Since all hi(X) are irreducible and distinct, by using the
extended Euclidean algorithm in Z[X], we have

µ(X)pw−2hm(X) + λ(X)

m−1∏
j=1

hj(X)ej = c,

for some non-trivial polynomials µ(X) and λ(X) and an integer c. If c is a

multiple of the prime p, then λ(X)
∏m−1
j=1 hj(X)ej is zero modulo p. Since λ(X)

is non-trivial this implies that one of hj(X) is zero modulo p, which is impossible.
Thus, (c, p) = 1, and hence

µ′(X)pw−2hm(X) + λ′(X)

m−1∏
j=1

hj(X)ej = 1− νp,

for some non-trivial polynomials µ′(X) and λ′(X) and an integer ν. Multiplying
both sides by 1 + νp+ ...+ (νp)w−2, we have

µ′′(X)pw−2hm(X) + λ′′(X)

m−1∏
j=1

hj(X)ej = 1− νw−1pw−1,

for some non-trivial polynomials µ′′(X) and λ′′(X), and that concludes the proof.

36



Lemma 5.3 (repeated) Let w =
∑m
i=1 ei. If for all i ∈ [m], ei > 1, then t(X),

the quotient in the factorization of f(X) modulo p, is invertible modulo the ideal
(pw−1, pw−2hm(X)).

Proof. Since p is Dedekind-special, t(X) is not in any pi, and hence not in pm.
Since all h1(X) is irreducible, an t(X) is not in (p, hm(X)), by using the extended
Euclidean algorithm in Z[X], we have

µ(X)pw−2hm(X) + λ(X)t(X) = c,

for some non-trivial polynomials µ(X) and λ(X) and an integer c. If c is a
multiple of the prime p, then λ(X)t(X) is zero modulo p. Since λ(X) is non-
trivial this implies that one of t(X) is zero modulo p, which is impossible by
the Dedekind-special property. Thus, (c, p) = 1, and we conclude using the same
argument as in the previous lemma.

Lemma 5.10 (repeated) For all i ∈ [m], the ideal p̄i = 0

Proof. Since R is Noetherian, and p̄i is an ideal of R, it is finitely generated, and
hence a finite set of k generators, for some k > 0, say g1, ..., gk. Moreover, since
p̄i ⊆ pi, these generators are also in pi = (hi(X), p). Let, µ1, ..., µk and λ1, ..., λk
be elements of R such that for each k ∈ [k], gj = µjp+ λjhi(X), where w.l.o.g.
µj is not a multiple of hi(X), and otherwise µj and λj are polynomials of degree
less than the degree of monic f(X). This also implies that gj = λjhi(X) mod p.
Let J∗ be the maximal subset of [k], such that λj is non-zero for j ∈ J∗.
Claim 1: The set J∗ is empty.
Proof of Claim 1: In the ring R, since f(X) is monic, we can assume that gj is
reduced to degree less than degree of f(X). For j ∈ J∗, gj is a multiple of h(X)
mod p. Since Zp[X] is a UFD, consider the unique factorization of gj in Zp[X],
and let the largest power of hi(X) in this factorization be hi(X)tj , where tj > 0.
Let gj(X) = λ′jhi(X)tj mod p, where λ′j is non-zero, and is not a multiple of
hi(X) mod p.

Let t∗ = min {tj | j ∈ J∗}. Let j∗ be an arbitrary index in J∗ such that
tj = t∗. Since by Krull intersection theorem (theorem 3.5), p̄i ⊆ pip̄i, each
generator gj is in pip̄i, which is same as (hi(X), p)(g1, ...gk). Thus,

gj∗ = hi(X) ∗
∑
j∈J∗

αjλ
′
jhi(X)tj mod (p, f(X)),

where αj is in R, and at least one αj is non-zero. Substituting, λ′j∗hi(X)tj∗ on
the left hand side we get

λ′j∗hi(X)tj∗ = hi(X) ∗
∑
j∈J∗

αjλ
′
jhi(X)tj mod (p, f(X)).

This can equivalently be written as

λ′j∗hi(X)tj∗−tj∗ = hi(X) ∗
∑
j∈J∗

αjλ
′
jhi(X)tj−tj∗ mod (p, f(X)),
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as all tj > tj∗ > 0 for j ∈ J∗. But, this is a contradiction of λ′j∗ being not a
multiple of hi(X) mod p.
End of Proof of Claim 1

Thus, for all k ∈ [k], gj = µjp. Again, since by theorem 3.5, p̄i ⊆ pip̄i,
each generator gj is in pip̄i, which is same as (hi(X), p)(g1, ...gk). Thus, for any
particular j′ ∈ [k],

µj′p =
∑
j∈[k]

(αjp+ βjhi(X))µjp mod (f(X)),

where αj , βj are in R, and at least one is non-trivial. Since Z[X] is a UFD and
f(X) is monic, we can factor12 out p. And thus,

µj′ =
∑
j∈[k]

βjhi(X)µj mod (p, f(X)).

But, this implies that either µj′ is zero or µj′ is a multiple of hi(X), the latter
being a contradiction. Hence, all µj are zero for j ∈ [k]. This implies that that
p̂i = 0.

B Proof of Ideal Clearing Lemma for Ring of Integers

Lemma 8.8 (repeated) (Ideal Clearing Lemma for Ring of Integers [LPR10])
For any positive integer q, given a Z-basis B(I) for ideal I of OK, and a gener-
ator g ∈ I for the principal ideal I/(qI),

(i) There’s an efficiently computable OK-module isomorphism ψ : I/(qI) →
OK/(qOK),

(ii) There’s an efficiently invertible OK-module isomorphism φ : I∨/(qI∨) →
O∨K/(qO∨K),

(iii) such that, for any z ∈ I/(qI) and x ∈ I∨/(qI∨), their polynomial product
satisfies

z ∗ x ≡ ψ(z) ∗ φ(x) (mod qO∨K)

Proof. We will write B(OK) for a basis of OK.
We have that g is a generator of I modulo qI. In other words, as ideals,

I = (g) + qI. Thus, g ∈ I. Thus,

CgB(OK) = B(I) ·D, (12)

where D is an integer matrix.
We also have that every column of B(I) is generated by Cg mod qI, or mod

qB(I). Thus,

B(I) = CgB(OK)U + q ·B(I)T (13)

12 This is where one would usually require that R is an integer domain.
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for some integer, matrices U and T . Equivalently,

B(I) · (I − qT ) = CgB(OK)U , (14)

or, since Cg is full-ranked, we have

(CgB(OK))−1B(I) · (I − qT ) = U (15)

We next show that D ·U = I (mod q). Note, from (12) and observing that
B(I) is full-ranked, D = B(I)−1CgB(OK). Multiplying the above equation on
the left by D, we get (I − qT ) = D ·U , and hence

D ·U = I (mod q). (16)

Now, consider the following two mappings for claims (i)-(iii). For any z ∈ I and
x ∈ I∨, define

ψ(z) = a = B(OK)UB(I)−1z (mod qOK) (17)

φ(x) = g ∗ x (mod qO∨K) (18)

For any z in I, and a = ψ(z) we have Cga ≡ CgB(OK)UB(I)−1z, which by
(13) is same as B(I)(I−qT )B(I)−1z = z (mod qI), So, ψ is an invertible map.
It is also surjective since Cga is in I for any a ∈ OK. Since, ψ−1 is easily seen
to be a OK-module homomorphism, ψ is an OK-module isomorphism. Further,
we already showed how to compute U efficiently, this proves (i).

For (ii), we first note that by corollary 4.11 and using (12),

g ∗ x = (V >V )−1 · (V >V ) ·Cg · x (19)

= (V >V )−1C>g · (V >V ) · x (20)

= (V >V )−1B(OK)−>D>B(I)>(V >V ) · x mod qO∨K, (21)

where the last equality follows by noting that (V >V )−1B(OK)−> is a Z-basis
for O∨K (see footnote to lemma 4.5).

Thus, by lemma 4.5, φ(x) is inverted by (V >V )−1B(I)−>U>B(OK)>(V >V )
to x mod qI∨. Further, for any s ∈ O∨K, (V >V )−1B(I)−>U>B(OK)>(V >V )s
lies in I∨ by the aforementioned basis. Thus, φ is an invertible and surjective
OK-module homomorphism, that is also efficiently invertible, thus proving (ii).

Now, we move on to prove (iii). For some t0 ∈ OK and t1 ∈ O∨K, we have

ψ(z) ∗ φ(x)

=
(
B(OK)UB(I)−1z− q · t0

)
∗ (Cgx− q · t1)

=B(OK)UB(I)−1z ∗Cgx− q · t0 ∗ g ∗ x− q ·B(OK)UB(I)−1z ∗ t1 + q2 · t0 ∗ t1

≡ B(OK)UB(I)−1z ∗Cgx (mod qO∨K) (22)

≡ C−1g B(I)(I − q · T )B(I)−1z ∗Cgx (mod qO∨K)

≡ z ∗ x− q ·C−1g B(I)TB(I)−1z ∗Cgx (mod qO∨K)

≡ z ∗ x− q ·CgCxC
−1
g B(I)TB(I)−1z (mod qO∨K)

≡ z ∗ x− q · x ∗B(I)TB(I)−1z (mod qO∨K)

≡ z ∗ x (mod qO∨K) (23)
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where (22) follows by noting that t0 ∗ g ∈ I and x ∈ I∨ and then employing
lemma 4.6. Similarly, B(OK)UB(I)−1z is in I. Also, for the last equation (23),
we use lemma 4.6.

C Ring of Integers of Cyclotomic Fields

In this section, we restrict ourselves to cyclotomic fields, i.e. where f(X) is a
cyclotomic polynomial. Recall, a complex number ζ is a primitive m-th root of
unity, if its order is exactly m. The m-th cyclotomic polynomial is defined by

Φm(X) =
∏

(X − ζ)

where the product runs over the different primitive m-th roots of unity ζ. Since,
such primitive roots lie in a splitting extension field E (over Q) of Xm − 1,
the primitive roots are exactly the generators of the cyclic group of order m;
thus degree of Φm(X) is exactly the Euler totient function φ(m). It is well-
known that cyclotomic polynomials are irreducible in Q[X]. The cyclotomic field
Q[X]/(Φm(X)) will be denoted by Q[m].

We have the following well-known identities.

Xm − 1 =
∏
d|m

Φd(X)

Φm(X) =
∏
d|m

(Xd − 1)µ(m/d)

Φpr (X) =
Xpr − 1

Xpr−1 − 1
=

p−1∑
i=0

Xipr−1

where µ(·) is the mobius function, p is a prime, and r ≥ 1. It follows that Φm(X)
is always a polynomial over the base field Q.

We also have the following lemma, whose proof can be found in any text in
algebraic number theory, for instance (VI. 1.14) of [FT91].

Lemma C.1. If m = m1m2 with (m1,m2) = 1, then Q[m] is the compositum
of arithmetically disjoint fields, i.e.

Q[m] ∼= Q[m1]⊗Q Q[m2]

OQ[m]
∼= OQ[m1] ⊗Z OQ[m2]

It is well-known that the ring of integers OK = Q[X]/(Φm(X)) of a cyclo-
tomic field is same as the polynomial ring Z[X]/(Φm(X)). Below, we give an
easy proof of this fact using Dedekind index theorem. This polynomial ring will
also be referred to as the m-th cyclotomic ring. Recall, in section 2, we de-
fined the discriminant of a separable polynomial f(X) to be the square of the
determinant of the vandermonde matrix of f(X). When f(X) is a cyclotomic
polynomial, the discriminant of the polynomial is also called the discriminant
of the cyclotomic field and denoted ∆K (as also the discriminant of the ring of
integers, or the cyclotomic ring).
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Theorem C.2. For any m, the ring of integers OK of the cyclotomic field K =
Q[X]/(Φm(X)) is same as the polynomial ring R = Z[X]/(Φm(X)). Thus, R is
a Dedekind domain.

Proof. By lemma C.1, we are reduced to proving the theorem for m that are
prime powers, i.e. m = qr, for some prime q and positive integer r. It is well
known13 that a prime p divides [OK : R] only if p2 is a factor of ∆Φm(X).

By corollary 4.9 , the discriminant of a monic separable f(X) is same as the
determinant of the circulant matrix of f ′(X). Further, since the similarity trans-
form given by the vandermonde matrix of f(X), transforms the circulant matrix
of any g(X) to a diagonal matrix with entries g(ζi), where ζi are the roots of
f(X), one can show that ∆f1∆f2 divides the discriminant of f1(X)f2(X). Thus,
discriminant of Φm(X) divides the discriminant of Xm − 1. For m = pr, the
discriminant of Xm − 1 is easily seen to be (upto sign) a power of p. Thus,
∆Φm(X) can only be divisible by prime p. This further implies that only prime

p, if any, can divide [OK : R].
By Dedekind index theorem 3.8, for any prime p, p does not divide [OK : R]

iff p is Dedekind-special for Φm(X). Thus, we just need to check that prime p
coming from m = pr is Dedekind-special for Φm(X). Since modulo p, the power-

p map is a Frobenius map, we have that Φpr (X) = Φp(X)
pr−1

mod p. Next, note
that Φp(X) = (X − 1)p−1 mod p, by first noting that Xp − 1 = (x − 1)p mod
p. Thus, Φpr (X) = (X − 1)φ(p

r). To test the Dedekind-special property, write
Φpr (X) = (X − 1)φ(p

r) + p ∗ t(X). Evaluating both sides at X = 1, we note
that Φpr (X)|X=1 = p, and hence t(1) = 1 mod p. Thus t(X) is not divisible by

(X − 1) modulo p, and hence p is Dedekind special for Φpr (X).

13 ∆f = [OK : R]2 · disc(OK), and disc(OK) is an integer.

41


	Enhancing Ring-LWE Hardness using Dedekind Index Theorem

