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Abstract. In this work we extend the known pseudorandomness of
Ring-LWE (RLWE) to be based on ideal lattices of non Dedekind do-
mains. In earlier works of Lyubashevsky et al (EUROCRYPT 2010)
and Peikert et al (STOC 2017), the hardness of RLWE was based on
ideal lattices of ring of integers of number fields, which are known to be
Dedekind domains. While these works extended Regev’s (STOC 2005)
quantum polynomial-time reduction for LWE, thus allowing more effi-
cient and more structured cryptosystems, the additional algebraic struc-
ture of ideals of Dedekind domains leaves open the possibility that such
ideal lattices are not as hard as general lattices.
To mitigate this issue, Bolboceanu et al (Asiacrypt 2019) defined q-
Order-LWE over any order (modulo q) in a number field and based its
hardness on worst-case hard problems of ideal lattices of the same order,
but restricted to invertible ideals. Orders generalize the ring of integers
to non-Dedekind domains. In a subsequent work in 2021, they proved a
non-effective “ideal-clearing” lemma for q-Order-LWE for any q that is
co-prime to index of the order in the ring of integers. This work can be
shown to give an efficient reduction from any ideal of the same order.
However, this requires factorization of arbitrary integers, namely the
norm of the given ideal.
In this work we give a novel approach to proving the “ideal-clearing”
lemma for q-Order-LWE by showing that all ideals I of an order are
principal modulo qI, for any q that is co-prime to index of the order in
the ring of integers. Further, we give a rather simple (classical) random-
ized algorithm to find a generator for this principal ideal, which makes
our hardness reduction (from all ideals of the order) not require any fur-
ther quantum steps on top of the quantum Gaussian sampling of the
original Regev reduction. This also removes the “known factorization”
requirement on q for the original RLWE hardness result of Peikert et al.

Finally, we recommend a “twisted” cyclotomic field as an alternative for
the cyclotomic field used in NIST PQC algorithm CRYSTALS-Kyber,
as it leads to a more efficient implementation and is based on hardness
of ideals in a non-Dedekind domain following Dedekind index theorem.

1 Introduction

In a ground-breaking work, Regev [Reg05] showed a (quantum) polynomial-time
reduction from worst-case lattice problems to a learning problem called learning



with error (LWE). He also obtained public-key cryptosystems using LWE whose
security is then based on worst-case lattice problems such as closest vector prob-
lem (CVP), shortest vector problem (SVP) and shortest independent vectors
problem (SIVP). The fact that that there are no known efficient quantum al-
gorithms for these hard problems, makes this approach to obtaining encryption
schemes even more significant, and has led to numerous applications in cryptog-
raphy.

As a more efficient variant of LWE, Lyubashevsky et al. introduced the Ring
Learning With Errors problem (RLWE) [LPR10] over the ring of integers OK

of a number field K = Q[X]/(f(X)). The hardness of RLWE is then based on
lattice problems restricted to ideal lattices in the ring OK, instead of general
integer lattices. Since addition and multiplication in the ring of integers can
be viewed as polynomial addition and multiplication, it allows for more efficient
cryptosystems, with almost a quadratic size improvement in the security parame-
ter. Additionally, it has allowed for a more sound security setting for many (fully)
homomorphic encryption schemes [Gen09], where the ring structure naturally al-
lows for homomorphic evaluation ring-operations [BGV12,Bra12,FV12,GSW13],
[DM15,CGGI16,CKKS17]. For conjectured hardness of RLWE, [LPR10] provide
a quantum polynomial-time reduction from the (seemingly) hard Approximate
Shortest Independent Vectors Problem (ApproxSIVP) over ideal lattices. While
the original [LPR10] reduction, especially for the decisional version of RLWE,
was restricted to cyclotomic number fields, in another technical tour-de-force
work [PRS17] extend the hardness of decisional-RLWE to arbitrary number fields
K, basing the hardness on worst-case lattice problems restricted to ideal lattices
in OK.

Since the ring of integers OK of a number field enjoy remarkable algebraic
properties, namely that such rings are Dedekind domains 3, and all ideals in the
rings are invertible and have a unique prime ideal factorization, the question
naturally arises if the normally hard lattice problems may be at a risk of being
weaker due to the additional algebraic structure. In particular, while all ideal
lattices are also full-ranked over the integers Z, and of the same rank as the
rank of the number field K as an extension of Q, every ideal of a Dedekind
domain can be generated by only two elements of the domain. Moreover, one of
the generators can be taken to be just the integer that is the norm of the ideal.
In light of this 4, it is natural to ask if the class of lattices can be expanded to
a class having lesser algebraic properties and still basing a polynomial algebra
cryptosystem on these lattices. Ideally, one would like to base the hardness of
RLWE on worst-case general integer lattices as is the case for LWE.

3 In Appendix C we provide a brief introduction to Dedekind domains and ring of inte-
gers. For the purpose of present discussion, the ringOK can be viewed as an extension
of the polynomial ring Z[X]/(f(X)) that includes elements from Q[X]/(f(X)) which
satisfy any polynomial equation with integer coefficients. This integral-closure leads
to OK satisfying unique prime-ideal factorization property (see e.g. [Cla84]).

4 We will later discuss in more detail the currently best known attacks on ideal lattices.
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To mitigate this issue, in [BBPS19], a generalization of the RLWE problem
is described, wherein the ambient ring is not the ring of integers of a number
field, but rather an order (i.e. any full-ranked sub-ring) such as the polynomial
ring Z[X]/(f(X)). Further, they show that the hardness of this q-Order-LWE (i.e.
modulo q) can be based on worst-case hard problems of ideal lattices of this sub-
ring. But their work was limited in that the reduction only worked for invertible
ideals of this sub-ring, which offer no extra richness to the set of ideals (lattices)
as those in a Dedekind domain. As we will see later, most of these RLWE-like
reductions employ a key lemma informally known as the “ideal-clearing lemma”,
which removes any mention of the (worst-case) ideal from the q-RLWE samples.
So, in a followup to [BBPS19], the paper [BBS21] proves an ideal clearing
lemma for q-Order-LWE that works for all ideals of the order O (i.e. not just
invertible ideals), for any q that is co-prime to [OK : O]. This is a remarkable
technical achievement, proved using Jordan-Hölder filtration of ideals, However,
for this lemma to yield an efficient reduction, the isomorphism shown in this
lemma must also be shown to be efficiently computable given a basis of the ideal.
While [BBS21] do not give an efficient isomorphsim, we have surmised that it
can be obtained with some work using techniques of computational algebraic
number theory (for more on this, see the subsection on related work). However,
this method does require factorization of arbitrary integers, namely the norm of
the (worst-case) ideal.

In this work, we give a novel proof of the “ideal clearing lemma” of [LPR10]
with a new proof and algorithm that does not use properties of Dedekind do-
mains and works for all orders in the number field. In particular, for any q that
is co-prime to the index of O in the ring of integers (the integrally-closed and
hence maximal order) OK, we show that for any ideal I of order O, the ideal
I modulo qI is principal. This fact is well-known for Dedekind domains and
is usually proven using unique prime-ideal factorization of Dedekind domains5.
However, we prove it for all orders using elementary ideal theory. Further, as
mentioned earlier, the ideal-clearing lemma needs efficient isomorphisms of rel-
evant modules, and we give a rather simple (classical) randomized algorithm to
find the generator of the principal ideal I/qI, given a Z-basis of I 6. The ran-
domized algorithm essentially takes a Zq[X]/(f(X))-linear combination of the
columns of a given Z-basis of I. Finally, we prove that given only a Z-basis of
the ideal I and a generator of principal ideal I/(qI), we can efficiently clear the
ideal in the hardness reduction. Later, in Section 1.1, we give a more detailed
overview of our techniques.

Naturally, our technique and novel randomized algorithm are also applicable
to OK but now working for all q. This leads to an improved (time complexity)
reduction for the usual q-RLWE hardness as compared to [LPR10]. In addition,

5 This fact is also implicitly used in the original ideal clearing lemma of [LPR10].
6 The general problem of finding a generator of a principal ideal is only known to have

a sub-exponential time classical algorithm [BF14], and a quantum polynomial time
algorithm [BS16].
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our technique does not require q to have a known-factorization, whereas [LPR10]
does.

The main result of this work thus shows that one can base hardness of de-
cisional Order-LWE on ideal lattice problems in non-Dedekind domains. In par-
ticular, instead of setting the RLWE instance in the maximal order, i.e. the ring
of integers OK of a number field K = Q[X]/(f(X)), we set our Order-LWE
instances in the ring O, or in particular the special order, the polynomial ring
RK = Z[X]/(f(X)), which is anyway easier to work with from a cryptosys-
tem perspective; the maximal order OK can have polynomials with rational
coefficients. We then show that, for all q that are co-prime to [OK : O], the
q-Order-LWE instances are as hard as the worst-case lattice problems, such as
CVP and SIVP, of ideal lattices of these (potentially) non-Dedekind domains
O. We obtain exactly the same security and noise parameters as [PRS17], and
most of our reduction uses the main technical lemmas from [PRS17], but re-
places the ideal-clearing lemma with our new proof and algorithm. In addition
to [BBS21], earlier works [RSW18,PP19] have also considered setting RLWE in
the polynomial ringRK, but had only shown hardness of polynomial-LWE based
on hardness of Dedekind-domain ideal lattices, namely OK lattices.

It is worth remarking that for every number field K, there is a finite number
m, namely [OK : O], such that every ideal I of OK can be scaled by m, so
that m · I is an ideal of O. Thus, the ideals (and corresponding lattices) in O
include all hard ideal lattices coming from OK. However, we show later that the
reverse is not true. Moreover, we will give non-trivial examples of ideals of RK

that require at least three generators. A comparison of all the relevant algebraic
properties of ideals of OK and non-Dedekind O can be found in Table 1.

Dedekind Index Theorem. Recall, we intend to show hardness of q-RLWE for all
q such that q and [OK : O] are co-prime. For the special order, the polynomial
ring RK, the Dedekind Index Theorem [Conb] gives an easy necessary and suf-
ficient test of when a prime p does not divides the index [OK : RK]. The test
involves checking the factorization of f(X) modulo p into irreducible polynomi-
als (modulo p) for a specific property (see Theorem 2.5). It is well known that

a prime p′ can divide [OK : RK] only if p′
2

divides the discriminant of the
field K. Therefore, the number of bad p′ is bounded by the number of factors
of the discriminant, and hence is finite and usually few. Then the RLWE can
be set modulo any q whose prime factors exclude the small number of bad p′.
However, we must also assure (using Dedekind’s index theorem) that there is
prime that divides [OK : RK], so that RK is a non-maximal order, and hence
not a Dedekind domain.

Example. Consider the polynomial f(X) = X256 + 2 · 32 · 13. By Eisenstein
criterion, f(X) is irreducible over Q, and thus K = Q[X]/(f(X)) is a number
field. Consider the polynomial ring7 R = Z[X]/(f(X)). The discriminant of
f(X) is just the determinant of the multiplication matrix of f ′(X) = 256 ·X255,

7 Since K will be clear from context, we will drop it from subscript of RK.
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and a little calculation shows that only 2, 13 and 3 can divide the discriminant,
and hence are the only possible bad candidates for the Dedekind index test. The
Dedekind index test shows that 2 does not divide [OK : R], but 3 does. Thus,
2 is a good prime and we can base our RLWE modulo any power of two, and
still be assured hardness based on worst case ideal lattices in R which is not a
Dedekind domain. We give more complicated examples in Section 6, where we
also prove that some non-trivial ideal requires at least three generators. But, the
above example was expressly chosen as a potential alternative to CRYSTALS-
Kyber [BDK+21] cyclotomic number-field which is defined with f(X) = X256+1.
Kyber also sets q = 3329 for q-RLWE and more generally Module-LWE. Now,
it turns out that −2 · 32 · 13 is a 256-th residue in Zq, and this leads to a
highly efficient implementation. The ramifications are discussed in more detail
in Section 6. We remark that hardness of a module version of our Order-LWE
can also be based on hardness of Module-SIVP with lattices of ideals in orders,
as the result of Langlois and Stehle [LS15] on Module-LWE is at a high level a
tensoring of lattices and the algebraic structure of ideals. Implementation issues
of general orders is discussed in Section 7.

Known Attacks on Ideal Lattices There are no known efficient classical/quantum
algorithms for polynomial-factor approximation of SVP, SIVP etc for ideal lat-
tices of OK (or sub-rings such as RK), even restricted to prime-power cy-
clotomic fields. However, after a flurry of heuristic claims [Ber14,CGS14], the
work [CDPR16] has shown that when restricted to principal ideals, the sub-
exponential-approximate SVP problem can be solved in quantum polynomial
time. The attack has two parts. First, an arbitrary generator of the principal
ideal is computed by index-calculus method by first computing the ideal class
group [BF14,BS16]. Second, a short generator is computed by running bounded-
distance-decoding on Dirichlet’s logunit lattice (i.e. the logarithms of the unit
group that form a small ranked lattice) [CDPR16]. For general ideals in OK, we
know that OK being a Dedekind domain has the property that every ideal has at
most two generators and in fact it is relatively easy to compute some pair of gen-
erators for every ideal using prime ideal factorization (see e.g. [FT91,LPR10]).
However, now the above second step does not work as logarithm of additive
terms is non-linear. We should remark that of the two generators one can always
be taken to be a number, e.g. the norm of the ideal, although even this does not
help in searching through the logunit lattice. So, more advanced techniques are
required.

For cyclotomic fields, remarkably, [CDW17] use the Stickelberger relation
and module (see e.g. [IR90]) to convert a general ideal to a (not too large
generator) principal sub-ideal, and under some plausible assumptions, obtain a
quantum polynomial time algorithm for sub-exponential-approximate SVP for
general ideals of cyclotomic fields. However, the Stickelberger relation works
using the Galois group of a cyclotomic extension of Q, so it does not extend
to non-Galois fields. But even for cyclotomic fields and Galois fields it will not
work for general (non-Dedekind) orders as not all ideals are invertible. Recall,
the principal ideals are broken using index calculus on the ideal class group, but
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for non-maximal orders, the class group is only defined for the ideals that are
invertible and not for all ideals (see the asterisk in line one of Table 1). So, none
of the above techniques are expected to work on ideals of non-maximal orders.
One may wonder that since the number of bad primes p′, i.e. the ones that divide
the index of RK in OK, is small, it maybe the case that only a few ideals are
lacking algebraic structure (i.e. of the Dedekind domain kind). While it is true
that there are only a few prime ideals lacking algebraic structure [Cond, Theorem
8.6], the number of non-prime ideals contained in these prime ideals is unlimited.
Another important point to be raised is if one can demonstrate that non-trivial
ideals in such non Dedekind domains require more than two generators. In this
work, we also prove that there are non-trivial ideals, i.e. which do not have a
diagonal Hermite normal form, for which at least three generators are required,
and which cannot be scaled by a rational number to become an ideal of OK.

Algebraic Property OK O ( OK

Class Group and Unit Group Computation [FT91,BF14] Yes Yes∗

Irredundant Primary Decomposition of Ideals [AM69, Ch. 4] Yes Yes

Jordan-Hölder Filtration of Ideals [Cond,BBS21] Yes Yes

Tight bound on Shortest Vector [PR07,LPR10] (Lemma 2.13) Yes Yes

Every Fractional Ideal is Invertible [Cla84,FT91,Cona] Yes No

Every Ideal co-prime to Conductor is Invertible [Cona] Yes Yes

Unique Prime Ideal Factorization (PIF) [Cla84,FT91] Yes No

PIF of ideals co-prime to Conductor [Cona] Yes Yes

Every Ideal can be generated by two elements [FT91] Yes No

Compute (two or more) generators given Z-basis (e.g. [LPR10]) Yes ?

Ideal I mod qI is Principal (for q co-prime to index) (Secs. 3,4) Yes Yes

Table 1. Comparison of algebraic properties that an ideal lattice satisfies in the worst
case. If a property is indicated with an affirmative, then it is also known to be ef-
ficiently computable (for class group, the claim is only for heuristic sub-exponential
complexity[BF14]; moreover (*), for O the class group is only defined limited to the
subset of invertible ideals of O (modulo group of all principal ideals) [Cona]). The
question mark above indicates that it is an open problem.

On Clearing the Ideal. As mentioned earlier, one of the main technical challenges
in the hardness reduction, starting from Regev’s LWE reduction, is setting up
a q-RLWE instance which is somehow not dependent on the worst-case lattice
instance, especially given only some basis B(L) of the lattice L. While in the LWE
instance, since the multiplication in LWE is just inner product, it is compatible
with the lattice and the dual lattice clearing each other out, and the issue of
inverting the lattice-basis modulo q does not come up. In the case of RLWE,
since it is more “efficient”, the multiplication in RLWE is not a trace-product,
but rather a polynomial multiplication. Thus, it is not enough that a lattice L
and its dual lattice L∨ have the property that L>L∨ = I. To solve this problem,
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the ideal clearing lemma of [LPR10] obtains an efficiently invertible (module-)
isomorphism between I/qI and the whole polynomial ring8 modulo q, for any
ideal I. This isomorphism is not easy to obtain as lattice corresponding to I
may not be invertible modulo q, and in fact (q) as an ideal may have additional
factorization into prime ideals. Nevertheless, an efficient isomorphism is obtained
by computing prime ideal factorization or effectively inverting the ideal I itself
(instead of inverting its lattice-basis). In our case, i.e. where O could be a non
Dedekind domain, the ideal I may not be invertible. However, we prove a more
general clearing lemma that suffices for the reduction, and only requires that I
be a principal ideal modulo qI.

Related Work. In [BBPS19], a generalization of the RLWE problem is de-
scribed, wherein the ambient ring is not the ring of integers of a number field,
but rather an order (i.e. a full-ranked sub-ring) such as the polynomial ring we
consider. In a followup work in [BBS21], prove an ideal clearing lemma for arbi-
trary orders, including the polynomial ring. The relevant isomorphisms in their
clearing lemma are not shown to be efficiently computable and they just prove
that the relevant ring modules are isomorphic. Their approach to proving the
ideal clearing lemma is different from ours. Instead of showing that for every
ideal I of O, for q co-prime to [OK : O], I/qI is principal, they take an alter-
native approach by first showing that I is always a sub-ideal of an invertible
ideal I ′, such that [O : I ′] is co-prime to q. The isomorphism is then built using
composition of two maps from earlier works, namely [PP19, Theorem 4.1]9 and
the original ideal clearing lemma of [LPR10]. The existence of I ′ with the rel-
evant property is shown using Jordan-Holder decomposition of ideals in orders
of a number field [Cond, Theorem 8.9]. However, it is not shown how I ′ can be
obtained efficiently given only a Z-basis of the ideal I.

We have surmised that the above mentioned I ′ of [BBS21] can be obtained
efficiently by a quantum algorithm via the following strategy: first, factor the
determinant of the given basis of I, using Shor’s quantum algorithm [Sho94].
Next, for each prime p in the factorization that is co-prime to [OK : RK], one
obtains a prime ideal factorization of the ideal (p), using another algorithm
of Dedekind and relevant theory of conductor ideals of R [Cona]. One then
searches through powers of each of these prime ideals to get the maximum power
that is a factor ideal of I. The product of all such prime ideal powers is the
required ideal I ′. Since Regev’s hardness reduction is anyway quantum, the fact
that this algorithm is quantum does not hamper one from obtaining a quantum
hardness reduction from ideals of R, although it is desirable to have a classical
isomorphism for the clearing lemma such as the one we show. It is worth noting,
as we point out in the technical overview (section 1.1), that the depth of the
quantum circuit for factoring is possibly much deeper than the quantum circuit

8 More precisely, OK/qOK, for general fields
9 In Theorem 4.1 of [PP19, Theorem 4.1] it is shown that, given a Z-basis of an ideal
I, there is an efficiently computable and invertible isomorphism as long as the ideal
I is co-prime to the ideal (q) of O.
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required for Regev’s discrete Gaussian sampling [Reg05]; the former requires
computing exponentiation modulo N whereas the latter requires computing the
representative of a point modulo the given basic parallelepiped of lattice of ideal
I.

While [PP19] focuses on unifying all known versions and generalizations of
Ring-LWE, Order-LWE, Module-LWE and others and showing that all of these
can be based on hardness of usual RLWE and hardness of ideals in the Dedekind
domain OK, they do prove some interesting technical lemmas which can be seen
as ideal-clearing lemmas. In particular, Theorem 4.1 in that work implies that
for q-Order-LWE (in any order O in a number field), one can base its hardness
on hardness of SIVP of sub-class of ideal (-lattices) of O, namely restricted to
ideal (-lattices) I co-prime to principal ideal qO. As mentioned earlier, this is a
component used in the work [BBS21].

In [RSW18], a reduction from decision (resp. search) RLWE in OK to decision
(resp. search) polynomial-LWE [SSTX09] (i.e. with the ring RK) is obtained,
Since, the hardness of RLWE in OK was only known based on hardness of ide-
als in OK, this result only ties the hardness of polynomial-LWE to hardness of
Dedekind-domain ideal lattices. In [PP19], a more general framework is consid-
ered which encompasses Module-LWE [BGV12,LS15] and Order-LWE [BBPS19]
and shows reductions from Ring-LWE to these other variants, and with tight re-
ductions, but with the same limitation.

In [AD17], the authors show a reduction from module-LWE in dimension d
to RLWE with modulus qd. This reduction continues to hold for module version
of Order-LWE in dimension d to qd-Order-LWE as the main theorem in [AD17],
Theorem 1, continues to hold for any order of the number field, and not just
the ring of integers. This is because the main property used in the proof of that
theorem is that ideals of the ring of integers are full-ranked as Z-modules. But
this holds for all orders of a number field (see lemma 2.2).

Outline. The rest of the paper is organized as follows. The remaining part
of Introduction contains a technical overview. Section 2 covers preliminaries of
lattices, smoothing lemma, and hard problems over lattices. Section 2.1 covers
basics of ideals and states the Dedekind Index theorem. Section 2.4 introduces
the polynomial ring calculus including dual ideals. Section 3 proves that ideal I
is principal modulo qI. Section 4 gives a novel randomized algorithm to find a
generator for above principal ideal. Section 5 proves the pseudo-randomness of
q-Order-LWE using earlier works and the novel formulation of the clearing lemma
and its proof using the theory and algorithms developed in earlier sections.
Section 6 considers alternatives to CRYSTALS-Kyber and gives examples of
non-bigenic ideals. The paper ends with a discussion on general orders.

1.1 Technical Overview

The state-of-the-art decisional Ring-LWE hardness, extended to lattices of ideals
(of ring of integers) of all number fields, is the culmination of three works: the
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original Regev LWE-reduction [Reg05], the decisional Ring-LWE hardness for
cyclotomic fields [LPR10], and the extension to all number fields [PRS17].

First, we briefly describe the main components of Regev’s hardness reduc-
tion from discrete Gaussian sampling (DGS) over worst-case integer lattices to
learning-with-error (q-LWE) modulo integer q. The DGS problem for a lattice L
can be classically solved if the variance σ for the Gaussian sampling is sufficiently
large, for instance σ > 22nλn(L), where n is the dimension of the lattice and
λn, as usual, is the minimum length of a set of n linearly independent vectors
from L. This step is also called the bootstrapping step of DGS. To obtain finer
sampling, i.e. for σ approaching a polynomial factor away from λn(L), Regev
employs a recursive strategy involving two reductions:

1. A quantum reduction that allows one to solve finer DGS for L given a worst-
case promise closest-vector-problem (CVP) oracle for the dual lattice L∨. A
promise-CVP oracle CVPL∨,d solves the closest vector problem as long as
the input instance is promised to be within distance d of the lattice L∨. The
larger the promise under which the CVP oracle works, the finer is the DGS
sampler, upto a limit. It is worth remarking that the main quantum compo-
nents of this algorithm is a quantum fourier transform, and a computation
(over superpositions) that computes a representative of point x modulo a
given basic parallelepiped of L∨.

2. A classical reduction that uses a q-LWE oracle, along with a fine DGS sam-
pler for L to solve promise-CVP over the dual lattice L∨. The finer the DGS
sampler, the larger the promise that the CVP solver can handle. One hard
problem solved in this step is what maybe referred to as “clearing the lat-
tice”. Note that the CVP input instance describes a point x close to some
lattice point y of some lattice L∨, whereas the q-LWE oracle which is used
to solve this problem does not explicitly refer to any lattice. Regev’s clever
idea is to use the DGS sampler to sample a lattice vector v from L, and take
the inner product of v with x to obtain the LWE sample. Since the dual
lattice, by definition, is spanned by L−>, this leads to clearing of the lattice
from the LWE instance.

The work [LPR10] essentially extended step 2 above to use a q-RLWE oracle
to solve the CVP problem for ideal lattices, more precisely, the ideal lattices of
dual of the ring of integers of the underlying number field. The reduction to
the decisional RLWE problem was only shown for cyclotomic fields. The biggest
challenge that was solved in this work was that the usual dual of a lattice, and
in this case a lattice defined by a Z-basis of an ideal I of the ring, need not itself
be an ideal. Fortunately, this problem is well studied in number theory, and it is
well-known that the appropriate lattice to consider is not the lattice defined by
the Z-basis of the ideal, but by the lattice embedded in Cn, the n-dimensional
complex domain, by the “canonical embedding”. This canonical embedding is
similar to a Fourier transform and is essentially the linear transform defined by
the Vandermonde matrix of f(X), where f(X) is the irreducible polynomial that
defines the number field K = Q[X]/(f(X)).
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Once we consider these embedded lattices, it turns out that the usual notion
of a dual lattice leads to a lattice that does correspond to a (fractional) ideal of
the same ring. This (fractional) ideal is referred to as the dual ideal I∨ of the
original ideal I. This is crucial in solving the “clearing the lattice” problem in
step 2 above, where the problem is more complicated now as the RLWE sample
generation uses polynomial (or number field) multiplication, and hence clearing
the lattice must also employ polynomial multiplication and not an inner product;
the latter sufficed for LWE. This is one of the main reasons that working with
the dual ideal is helpful, although it still doesn’t immediately solve the problem.
To fully tackle the problem [LPR10] formulated and proved an “ideal clearing
lemma”, which informally showed the following:

(i) an efficient isomorphism ψ that maps the finely sampled v (from the ideal I
or its corresponding lattice L) to the ring modulo q,

(ii) an efficiently invertible isomorphism φ that maps y, a lattice point in lattice
L∨ of dual ideal I∨ (or equivalently treating y as an element of ideal I∨) to
the dual of the ring (again, modulo q),

(iii) such that ψ(v) ∗ φ(y) = v ∗ y (mod q), where ‘*’ is the polynomial multipli-
cation in the number field (ideal clearing property).

Note that the image of φ and ψ lie in the ring and the dual of the ring respectively,
and do not refer to the ideal or the lattice, and hence the name “ideal clearing
lemma”. More importantly, it is imperative to show that these isomorphisms are
efficiently computable (invertible resp.) given only some basis of the ideal (or
the corresponding lattice). This, however, is not an easy task and requires algo-
rithms from computational number theory, and in particular the unique prime
ideal factorization of ideals of Dedekind domains. [LPR10] show an invertible
isomorphism ψ, as required above, by computing an element t in the ideal I∨
such that t · I−∨ is co-prime to ideal (q). Intuitively, multiplication by t serves
as the inverse of isomorphism ψ by noting the following: multiplication by any t
in I∨ would map the dual of the ring to the ideal I∨. However, if the principal
ideal (t) shares some prime ideals with factorization of (q), then this would not
be a bijection. Thus, by requiring that t ·I−∨ is coprime to (q), the map becomes
bijective. But, note that this reasoning only holds in a ring where there is unique
prime ideal factorization, and hence this technique only works for rings which
have unique prime ideal factorization. It is well-known that the ring of integers
OK of a number field K is a Dedekind domain which is also well-known to have
unique prime ideal factorization. Further, all strict sub-rings of ring of integers of
a number field are known to be non-Dedekind domain, and also not have unique
prime ideal factorization.

1.2 Extension to Arbitrary Orders in the Number Field

In this work, we achieve the ideal clearing lemma by a slightly different strategy,
which not just simplifies the claim for Dedekind domains, but is also applicable
for O, as long as q is co-prime to index of O in OK (denoted [OK : O]). The
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alternate strategy requires showing that for any ideal I of O, and any such q, the
ideal I/qI is a principal ideal of the ring O/qI. We also give a simple and novel
randomized algorithm to find a generator for this principal ideal. Finally, we
show that with this generator in hand, we can give the requisite isomorphisms φ
and ψ above, which are easily shown to be efficiently computable and invertible,
and which satisfy the ideal clearing property.

Since the proof of ideal clearing lemma requires some key lemmas involving
the dual ideal, which in turn is defined using the canonical embedding, we begin
by giving in section 2.4 a basic introduction to dual ideals, especially tailored for
the orders O. The core of our work is in showing that I/qI is a principal ideal of
the ring R/qI, and we achieve this goal in a relatively elementary way, without
invoking advanced techniques such as localization, Jordan-Holder decomposition,
and of course neither the Dedekind domain prime ideal factorization.

We briefly describe how we prove that I/qI is a principal ideal of the ring
O/qI. We first prove that O/qO is a principal ideal domain. For Dedekind
domains, this is a well-known result, and holds for all q, in fact modulo all
ideals. For general orders, it well-known that qO is a product of prime ideals
(i.e. when q is co-prime to [OK : O]), say qO = pe11 · perr . Next, any ideal a is
shown to be a product of an ideal â (co-prime to all the above ideals pi) and
product of some powers of above pi. This is possible as ideals in orders are full-
ranked sub-groups. With this factorization in hand, we first show that each of
O/peii is a principal ideal ring, which just requires showing that pi is principal
modulo peii for ei > 1. This is the trickiest part of the proof, and uses (recursive)
factorization as above of each principal ideal (z) for z ∈ pi, and shows that one
of these must be the whole ideal pi (modulo peii ). The rest of the proof follows
by Chinese remainder theorem.

The most interesting part of the proof is that it shows that every nonzero
ideal a modulo peii is generated by a power of a same z ∈ p (see theorem 3.4). This
allows us to give a simple randomized algorithm for the principal ideal I/qI,
given any Z-basis for the ideal I. Indeed, the simple algorithm picks n random
elements ρk(X) (k ∈ [n]) from O/qO. Next, we view each of the n columns of
the Z-basis of I as polynomials, say γk(X), which are all generated by power of a
same z (modulo each pi). The algorithm simply outputs

∑
k∈[n] γk(X) ∗ ρk(X).

We prove that this is a generator of the principal ideal with a decent non-
negligible probability.

2 Preliminaries

2.1 Ideal Basics

Let R be any commutative ring with unity. An (integral) ideal I ⊆ R is an
additive subgroup that is closed under multiplication by the elements from R. A
fractional ideal I is a subset of R, such that there exists an element r ∈ R that
makes r · I an integral ideal of R. An ideal I of R is invertible if there exists
a fractional ideal J sich that IJ = R. An ideal I generated by finitely many
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g1, g2, ...gk is denoted by (g1, g2, ..., gk). Note, (1) = R. A prime ideal of a ring
R is an ideal P such that ab ∈ P implies a ∈ P or b ∈ P. A maximal ideal
of a ring R is a non-trivial ideal (i.e. not same as R) that is maximal under the
subset relation. Two ideals I and J are called co-prime if I + J = (1). An
element c ∈ R will be called invertible modulo an ideal I if there exists a
µ ∈ R and λ ∈ I such that µc = 1 + λ. In other words, c is a unit of quotient
ring R/I. We enumerate a list of well-known facts about ideals, with elementary
proofs, in appendix A.

For a proof of the following general form of CRT, see e.g. [Eis13].

Theorem 2.1 (Chinese Remainder Theorem (CRT)). Let I1, ..., Ik be a
set of pairwise co-prime ideals of a ring R. Then, R/I1 · · · Ik ≡

∏
iR/Ii.

2.2 Basic Algebraic Number Theory

A number field is a finite extension of the field of rational numbers Q. By the
celebrated primitive element theorem, every number field K is isomorphic to
Q[X]/(f(X)) where f(X) ∈ Z[X] is irreducible over Q, and [K : Q] is the
degree of the polynomial f(X). Let R be a subring of a ring R′. An element
x ∈ R′ is said to be integral over R if it satisfies a monic polynomial equation,
where the polynomial has coefficients in R. The ring of integers of a number
field K, denoted OK, are the set of elements of K that are integral over Z. Thus,
OK is integrally closed. The ring of integers can in general be a strict super-ring
of the polynomial ring RK = Z[X]/(f(X)). However, for cyclotomic fields, the
ring of integers OK is same as RK (see Appendix D for a proof). It is well-
known that the ring of integers OK of a number field is a Dedekind domain (see
e.g. [FT91]). Even though our work does not employ Dedekind domains other
than for comparison purposes, we give a brief introduction to Dedekind domains
in Appendix C.

Generalizing the rings OK and RK, an order O in the field K is a subring of
K that is finitely generated as a Z-module and contains a Q-basis of K. Orders
in K are the subrings of OK with finite index, and hence OK is referred to as the
maximal order. Since a Dedekind domain is integrally closed, the non-maximal
orders are not Dedekind domains. However, orders share many features of the
maximal order OK (see e.g. [Cond, Section 8]):

Lemma 2.2. (i) An order in K is an integral domain and has fraction field K.

(ii) All nonzero prime ideals in an order are maximal.

(iii) Every order has a Z basis that can be chosen to include 1.

(iv) All nonzero ideals in an order are finitely generated as a free Z-module with
rank n = [K : Q].

(v) Given a rank n Z-basis matrix of a nonzero ideal a of O, B(a), every sub-
ideal m of a is the Z-span of B(a) ·M , where M is an integer n×n matrix.
Consequently, det(M) is same as [a : m].

(vi) For every nonzero prime ideal p of O, and for every r ≥ 0, pr 6= pr+1.

12



The proof of (v) follows from the previous items and by computing Hermite nor-
mal form. The proof of determinant follows by combining the structure theorem
of finitely generated abelian groups [Lan02, Theorem 8.2] and the elementary di-
visors theorem of finitely generated submodules [Lan02, Theorem 7.8] (aka Smith
Normal Form). The proof of (vi) follows from the generalized Cayley-Hamilton
theorem (see e.g. [AM69, Corr. 2.5] or [Eis13], cf. Nakayama’s lemma [AM69,
Lemma 2.6]). For general orders, it is not necessary that [pr : pr+1] is constant,
whereas for the maximal order this is true.

Theorem 2.3. ([Cond, Theorem 8.6]) Let m = [OK : O]. Every prime ideal p
of O, such that mO 6⊂ p, is invertible.

The proof of the following lemma is similar to proof of [Cona, Theorem 3.6]
and can be found in Appendix A.

Lemma 2.4. Let m = [OK : O]. An ideal b of O that is relatively prime to
principal ideal mO is a product of prime ideals of O.

Note that in this work we will not require that this factorization of b be unique.
For a proof of the following celebrated theorem see [Conb] or [Coh93, Theo-

rem 6.1.4]. Recall, for a prime p, Zp[X] is a unique factorization domain.

Theorem 2.5 (Dedekind Index Theorem). Let p be a prime integer. For
any monic polynomial f(X) ∈ Z[X] that is irreducible over Q, let OK be the
ring of integers of the number field K = Q[X]/(f(X)). Let the following be the
(unique) factorization of f(X) modulo p into powers of m irreducible polynomials
hi(X) ∈ Zp[X] (i ∈ [m]):

f(X) = h1(X)e1 · · ·hm(X)em + p · t(X),

where ei are positive integers, and t(X) ∈ Zp[X]. Then, p - [OK : Z[X]/(f(X))]
if and only if for all i ∈ [m] such that ei ≥ 2, polynomial hi(X) does not divide
t(X) in Zp[X].

2.3 The Canonical Space H, Lattices, and Hard Lattice Problems

We’ll be working with polynomial rings modulo a monic polynomial f(X) ∈ Z[X]
of degree n whose (complex) roots are distinct. Each ring element is a polynomial

g(X) =
∑n−1
i=0 giX

i of degree less than n, which can be viewed as a length-n
(column) vector of its coefficients (g0, . . . , gn−1). We will denote this vector by
boldface g, i.e. g, and we will use this as a general notational principle.

To start with, we will work with the ring RQ = Q[X]/(f(X)). When f(X) is
irreducible, K = RQ is a number field. Later, we will develop the theory for many
sub-rings such as R = Z[X]/(f(X)), its modulo q version Rq = Zq[X]/(f(X))
for some q ∈ Z, and in general any order in K.

For clarity, we use operator “∗” for polynomial multiplication, operator “·”
for matrix multiplication, and operator “×” for cartesian product.
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The ring RQ is definitely a Q-algebra, and a (possibly degenerate) extension
of the field Q. Since, C is the completion of algebraic closure of Q, RQ naturally
embeds in C, with Q ⊆ RQ embedding identically in C. However, there are n
such distinct embeddings in C. These n embeddings are automorphic (i.e. auto-
morphisms of the image of RQ in C) if RQ is a Galois field extension. However,
in general we will get n embeddings which are not necessarily automorphic. The
n embeddings viewed together can be seen as mapping to the following space
H, which we will refer to as the canonical embedding in the general case, i.e.
whether RQ is a Galois extension or not even a field extension.

The canonical space H is defined as follow where s1 + 2s2 = n:

H =
{

(x0, . . . , xn−1) ⊆ Rs1 × C2s2 | ∀i ∈ [s2] : xs1+i = xs1+s2+i
}
⊆ Cn

We now describe the canonical embedding from the polynomial ring RQ to
this space H given by a matrix.

Vandermonde Matrix and Discriminant Let the n distinct roots of f(X) be
(z0, . . . , zn−1). Note the complex roots of f(X) come in conjugate pairs, because
for integer polynomial, f(z̄) = f(z). We can order the roots such that zi ∈ R for
i ∈ [s1] and zs1+i = zs1+s2+i for i ∈ [s2], where s1 + 2s2 = n.

The (square) Vandermonde matrix V of the roots of f(X) is given by

V =


1 z0 z20 · · · zn−10

1 z1 z21 · · · zn−11
...

...
...

. . .
...

1 zn−1 z
2
n−1 · · · zn−1n−1


whose determinant is det(V ) =

∏
0≤i<j<n(zj−zi). Because all roots are distinct,

det(V ) 6= 0 and hence V is invertible. We will abuse notation, and call the
Vandermonde matrix of zi’s, to be also the Vandermonde matrix of f(X).

The discriminant ∆f of a polynomial is defined to be the square of the de-
terminant of the Vandermonde matrix of f(X). In corollary B.3 we will relate the
discriminant to the determinant of the multiplication matrix (in Q[X]/(f(X)))
of the derivative of f(X).

Given a polynomial g(X) and its vector representation g, the product of
V and g is essentially the evaluation of polynomial g(X) at roots of f(X):
(g(z0), g(z1), . . . , g(zn−1)) ∈ H. Therefore, the Vandermonde matrix V of f(X)
canonically embeds the polynomial in RQ into the canonical space H: first view
the polynomial as vector of coefficients over Q (⊆ R ⊆ C). The first s1 rows of
V maps this vector into Rs1 , and the remaining rows of V maps this vector into
C2s2 , with conjugate pairs. Note that V (g ∗h) is same as point-wise product of
V g and V h, for any polynomials g and h.

Lattice The lattice L is defined as an additive subgroup of H given by a set of
basis vectors {b0, . . . ,bm−1} from H:

L =

{
m−1∑
i=0

zi · bi | (z0, . . . , zn−1) ∈ Zn
}
.
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It’s dual is defined as L∨ =
{
y ∈ H | ∀x ∈ L : 〈y,x〉 = yHx ∈ Z

}
. Here (·)H

denotes the Hermitian (conjugate) transpose. It’s easy to verify that (L∨)∨ = L.
The minimum distance of a lattice is defined as the length of the shortest

non-zero lattice vector: λ1(L) = min0 6=x∈L {‖x‖}.

Gaussians Define G =
{
r ∈ Rn+ | rs1+i = rs1+s2+i, 0 ≤ i < s1

}
. For any r ∈ G,

the elliptical Gaussian distribution Dr over the space H is defined to have a

probability density function proportional to ρr(x) = exp
(
−
∑n−1
i=0 |xi/ri|2

)
.

For real r > 0, We also define the spherical Gaussian distribution Dr as Dr·1.

Definition 2.1 (Smoothing Condition). For any lattice L ⊂ H, a positive
real ε > 0 and r ∈ G, we say r ≥ ηε(L) if ρ1/r(L∨\ {0}) ≤ ε where 1/r =
(1/r0, 1/r1, . . . , 1/rn−1).

Lemma 2.6 ([MR07,PRS17]). (Smoothing Lemma) For any lattice L ⊂
H, ε > 0 and r ≥ ηε(L). the statistical distance between (Dr mod L) and the
uniform distribution over H/L is at most 2ε.

Lemma 2.7 ([MR07]). For any lattice L ⊂ H and c ≥ 1, we have c
√
n/λ1(L∨) ≥

ηε(L) where ε = exp(−c2n).

Proposition 2.8 ([MR07]). For any lattice L ⊂ H and ε ∈ (0, 1), we have

ηε(L) ≥
√

log(1/ε)
π /λ1(L∨).

For a lattice L ⊂ H and r ∈ G, the discrete Gaussian distribution DL,r is
defined to have support L and mass function DL,r(x) = ρr(x)/ρr(L) for x ∈ L.

Lattice Problems We introduce the following (seemingly hard) lattice problems.

Definition 2.2 (SVP and SIVP). On the canonical space H endowed with
some geometric norm (such as the `2 norm), let γ > 1, given a lattice L, the
Shortest Vector Problem SVPγ asks for an element x ∈ L such that ‖x‖ ≤
γ·λ1(L), and the Shortest Independent Vectors Problem SIVPγ asks for n linearly
independent elements in L whose norms are at most γ · λn(L).

Definition 2.3 (DGS). Let γ > 0. The Discrete Gaussian Sampling problem
DGSγ is, given a lattice L ⊆ H and r ≥ γ, output samples from the distribution
DL,r.

Definition 2.4 (GDP). For a lattice L ⊆ H, the Gaussian Decoding Problem
GDPL,r asks, given a coset e + L where e ∈ H is sampled from Gaussian Dr,
find e.

More specifically, in this work, we consider the above problems restricted
to the ideal lattices, when lattices are generated by ideals of orders in the field
K = Q[X]/(f(X))– see section 2.5.
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2.4 Polynomial Ring Calculus

Circulant Matrices In polynomial ring modulo f(X), the circulant matrix
(modulo f(X)) or multiplication matrix for a ring element g(X) is given by an
n-by-n matrix Cg whose i-th column is the coefficients of g(X) ∗ Xi modulo
f(X) for i = 0, 1, . . . , n− 1.

It’s not difficult to see that circulant matrices are closed under addition
and multiplication. Moreover, the multiplication commutes. For any two ring
elements g(X) and h(X):

– Cg + Ch = Cg+h.
– Cg · h corresponds to their product g(X) ∗ h(X).
– Cg ·Ch = Cg∗h = Ch∗g = Ch ·Cg.

Additionally, a circulant matrix Cg has an inverse C−1g = Cg−1 iff g(X) is
invertible modulo f(X).

The inverse of the circulant matrix can also be given as C−1g = 1
det(Cg)

·
adj(Cg) where adj(Cg) is the adjugate matrix of Cg. If g(X) is from R =
Z[X]/(f(X)), Cg is integer, and its inverse C−1g is also integer except for a
common (integer) denominator det(Cg).

Another view of the canonical embedding. Take the Vandermonde matrix V of
f(X). It defines an embedding from the polynomial ring RQ to its evaluation
domain H. We now demonstrate that, the Vandermonde matrix V diagonalizes
the circulant matrices into its canonical embedding.

Let Dg be the diagonal matrix with its diagonal being the canonical em-
bedding of g(X), i.e. (Dg)i,i = g(zi). Consider (V · Cg)i,j = pj(zi) where
pj(X) = g(X)∗Xj (mod f(X)). In other words, pj(X) = g(X)Xj− tj(X)f(X)
for some polynomial tj(X), we have

(V ·Cg)i,j = pj(zi) = g(zi) · zji − tj(zi) · 0 = g(zi) · zji = (Dg · V )i,j

and hence V Cg = DgV or V CgV
−1 = Dg.

The determinant of the circulant matrix Cg can be then calculated as

det(Cg) =
det(Dg)

det(V ) det(V −1)
= det(Dg) =

n−1∏
i=0

g(zi) (1)

where zi’s are the roots of f(X). Note that this is just the product of all the
entries in the embedding of g(X). When f(X) is irreducible, and thus RQ is a
field, then this quantity, i.e. the determinant det(Cg) is called the (field) norm
of g(X) in the extension field RQ of Q.

2.5 Ideal Lattices and Dual Ideals

Ideal Z-Basis. By lemma 2.2 (iv) ideals of any order O in K have a rank n
Z-basis. Thus, any ideal I is the Z-span of an n × n basis matrix, which we
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denote by B(I). Note that all basis matrices are closed under integer unimodular
transformation, and hence their determinants are the same. Similarly, the order
itself has a Z-basis, which we will denote by B(O).

Lemma 2.9. The principal ideal gO of order O generated by a g ∈ O has a
Z-basis Cg ·B(O).

Ideal Lattice. Since an ideal I of O has a Z-basis, say B(I), it defines a lattice
in O ⊆ RQ. We can also embed this lattice in H, and consider the embedding as
a lattice in H. The canonical embedding given by the Vandermonde matrix V
of f(X) naturally induces an ideal lattice L(I) in H, given by matrix V ·B(I).

Ideal Lattice Dual. For an ideal I, the dual of its ideal lattice L(I) in H is
defined to be L(I)∨ =

{
y ∈ H | ∀x ∈ L(I), yH · x ∈ Z

}
= {y ∈ H | ∀z ∈

Zn, yH · V ·B(I) · z ∈ Z} =
{
V −HB(I)−Hz | z ∈ Zn

}
. As mentioned above,

the basis B(I) also defines a lattice in RQ, and one can define a dual of the ideal
itself using trace pairing. Recall that we abuse the notation by denoting a ∗ b
as the coefficients vector of polynomial a(X) ∗ b(X) modulo f(X). The trace
pairing of a(X), b(X) ∈ RQ, Tr(a(X), b(X)) is defined to be trace of V · (a ∗ b)
which is same as (V a)> · (V b). Thus, we can define the dual I∨ of ideal I to
be the set

{b(X) ∈ RQ | ∀a(X) ∈ I, Tr(a(X), b(X)) ∈ Z} .

Note that this is the pre-image in RQ of the complex conjugate of L(I)∨. We
prove below that this is indeed a (fractional) ideal of O. Hence, we will refer to
I∨ as the dual ideal of I.

Lemma 2.10. For an ideal I of O with basis B(I),

i) the dual I∨ is the Z-span of (V >V )−1B(I)−>,
ii) the matrix det(B(I)) ·det(V >V ) · (V >V )−1 ·B(I)−> is an integer matrix,
iii) the dual I∨ is a fractional ideal of O.

The proof of the above lemma is standard using elementary symmetric poly-
nomials and can be found in Appendix B.

The Dual (of the) Ring. When the entire ring O is considered as an ideal,
its dual O∨, by lemma 2.10, is a fractional ideal given by the Z-basis matrix
(V >V )−1 ·B(O)−>. See Appendix B for a full characterization of the dual ideal
O∨.

Lemma 2.11. For an ideal I of O, for any a ∈ I and any b ∈ I∨, a ∗b ∈ O∨.

Proof. Since by lemma 2.10, I∨ is a (fractional ideal), for any c ∈ O, b∗c is also
in I∨. Thus, by definition of the dual-ideal (applied to dual of I), Tr(a,b ∗ c) ∈
Z. Since this trace is same as trace of V · (a ∗ b ∗ c), this also implies that
Tr(a ∗ b, c) ∈ Z. Since this holds for all c ∈ O, again by definition of dual ideal
(applied to dual of O), a ∗ b is in dual of O, i.e. O∨.
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Proposition 2.12. For g(X) ∈ RQ, we have Cg(V
>V )−1 = (V >V )−1C>g ,

and (V >V )Cg = C>g (V >V ).

Proof. Note that the Vandermonde matrix V diagonalizes the circulant matrix
V CgV

−1 = Dg. Thus,

V >V Cg = V >DgV = V >D>g V = (DgV )>V = (V Cg)
>V = C>g V

TV .

This proposition, along with lemma 2.11, will be used in proving the ideal
clearing lemma.

We also give a counterpart of lemma 2.9 of [LPR10] (which in turn uses [PR07]).
The proof is similar and can be found in Appendix B.

Lemma 2.13. For any ideal I of O, where f(X) is irreducible and of degree n.

√
n · det(I)1/n ≤ λ1(I) ≤

√
n · det(I)1/n ·

√
∆

1/n
f

3 Principal Ideal Lemma for Dedekind-Special Integers

Consider the number field K = Q[X]/(f(X)), where f(X) is irreducible over
Q. Let O be an order in K. In this section we will show that for every q, such
that q is co-prime to m = [OK : O], the ring O modulo q is a principal ideal
domain (PID). Moreover, we show that every ideal a of O, modulo the ideal qa,
is principal. Normally, such a claim holds for Dedekind domains, and the proofs
require the unique prime ideal decomposition theorem for Dedekind domains.
We show that if the ring is an order in a number field, even though it may not
be a dedekind domain, it can directly be shown that the ring O modulo q is a
PID, and further, every ideal a is principal modulo qa.

To start with, by lemma 2.4, qO is a product of prime ideals of O, which we
state as a lemma below.

Lemma 3.1. In the order O, for any q that is co-prime to m, the ideal (q) is
same as pe11 pe22 ...p

er
r , for some distinct prime ideals p1, ..., pr of O, and positive

integers e1, ..., er.

From now on we will let r, p1, ..., pr and e1, ..., er stand for values associated
with q as in the lemma above.

The following theorem follows from above and CRT.

Theorem 3.2.

O/qO ∼=
r∏
i=1

O/peii

The rest of the section is devoted to proving that O/q is a principal ideal
ring (PID) (Theorem 3.4 below), and any ideal a is principal modulo qa (The-
orem 3.7). If O was a Dedekind domain, the usual proof goes as follows: One
first shows that O/pi is isomorphic to Opi/OiOpi , where Opi is the localization
of O at the ideal pi. If the reader is not familiar with localization, he/she can
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skip this discussion, as the direct proof we give does not use localization. Next,
it is shown that the local ring Opi is a principal ideal domain (PID) by showing
that it is a discrete valuation ring (DVR). This step requires the prime ideal
decomposition theorem for Dedekind domains. Since the quotient ring of a PID
is a PID, the claim follows.

While our ring O may not be a Dedekind domain, most of the above steps
would still go through for our special q, except for proving that Opi is a DVR,
which is usually proved using the prime ideal decomposition theorem for Dedekind
domains. Luckily, in our special case, we can still prove Opi is a DVR without
the decomposition theorem for Dedekind Domains. As promised, we give a direct
proof of Theorem 3.4.

Lemma 3.3. Any ideal a of O can be written as â ·
∏
i∈[r] p

ti
i , where ti are

non-negative integers, and â is an ideal of O co-prime to every pi (i ∈ [r]).

Proof. If a is co-prime to every pi (i ∈ [r]), then ti can be taken to be zero,
and we are done. Otherwise, let I ⊆ [r] be the non-empty and maximal set of
indices i, i ∈ [r], such that a is not co-prime to pi. Since each pi is prime and
maximal, this implies that a is a subset of each of pi (i ∈ I). For each i ∈ I,

let t(i) > 0 be the largest integer such that a is a subset of p
t(i)
i . Such a t(i) is

well-defined as [O : a] is fixed, and [O : ptii ] becomes large with increasing t(i)
by lemma 2.2 (v)& (vi).

We show that there exists an ideal â such that a = â ·
∏
i∈I p

t(i)
i .

Let T =
∑
i∈I t(i). Define â to be the fractional ideal

q−T · a ·

∏
i∈I

p
(ei−1)t(i)
i ∗

∏
j∈[r],j 6=i

p
ejt(i)
j

 .

Using lemma 3.1, it is straightforward to check that â · (
∏
i∈I p

t(i)
i ) = a.

We now show that â is actually an integral ideal, i.e. an ideal of O. We

will show that a ·
(∏

i∈I p
(ei−1)t(i)
i ∗

∏
j∈[r],j 6=i p

ejt(i)
j

)
is in (p)T . Since, for all

i ∈ I, a is in p
t(i)
i , a ⊆ ∩i∈Ipt(i)i . But, these ideals p

t(i)
i are all co-prime, and

hence a ⊆
∏
i∈I p

t(i)
i . Claim then follows from the factorization of (q) given by

lemma 3.1.
Claim: Ideal â is co-prime to every pi, i ∈ [r].
Proof of Claim: If there exists an i ∈ [r], say i∗, such that â is not co-prime to pi∗ ,

then since the latter is maximal, â is contained in pi∗ . But, since a = â·
∏
i∈I p

t(i)
i ,

this implies that a is contained in p
t(i∗)+1
i∗ , contradicting the maximality of t(i∗).

This proves the claim and the lemma.

Theorem 3.4. For all j ∈ [r], O/pejj is a principal ideal ring. Further, for every

j ∈ [r], there is a fixed z ∈ O/pejj such that every non-zero ideal a of O/pejj is
generated by a non-negative integer power of z.
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Proof. If an ideal a is co-prime to pj , and hence also co-prime to p
ej
j then a+p

ej
j =

(1), and hence a modulo p
ej
j is generated by one, which is a zero-th power of the

stipulated z. So, we are left with the case where ideal a is not co-prime to pj .
By lemma 3.3, any ideal a can be written as â ·

∏
i∈[r] p

ti
i , where ti are non-

negative integers, and â is an ideal of O co-prime to every pi (i ∈ [r]). As before,
â modulo p

ej
j is generated by one. Similarly, for all i 6= j, ptii modulo p

ej
j is

generated by one. If tj ≥ ej , p
tj
j is zero modulo p

ej
j and is generated by zero, so

the only interesting case we are left with is 0 < tj < ej . We will just show that
pj is principal modulo p

ej
j with ej > 1, as this would imply that every power of

pj is also principal, and if pj is generated by some z, then p
tj
j is generated by

ztj .
For each z ∈ pj , consider the principal ideal (z) in O. Again, by lemma 3.3,

it can be written as product of ideals co-prime to pj and some finite power tz of
pj . Thus, ideal (z) modulo p

ej
j is ptzj . Let z∗ be an z ∈ pj with minimal tz. We

claim that every z ∈ pj/p
ej
j is in ptz∗j /p

ej
j , and hence pj/p

ej
j is same as ptz∗j /p

ej
j .

This will show that pj modulo p
ej
j is principal, being generated by z∗. The claim

is dispatched by noting that for every z ∈ pj/p
ej
j , by definition of tz and the

fact that tz∗ is minimal, (z)/p
ej
j is contained in ptz∗j /p

ej
j , and hence z itself is

contained in ptz∗j /p
ej
j .

Corollary 3.5. O/qO is a principal ideal ring.

Proof. Follows by theorems 3.2 and 3.4 as product of principal ideal rings is a
principal ideal ring.

Corollary 3.6. For all i ∈ [r], the ideal pi of O is same as (q, hi) for some
hi ∈ pi.

Proof. By corollary 3.5, the ideal pi mod qO is generated by some hi ∈ pi/qO.
W.l.o.g. pick any hi ∈ pi as the representative. Then, pi + (q) = (hi) + (q). Since
(q) ⊂ pi and the corollary follows.

Theorem 3.7. For any ideal a of O, a is principal modulo qa, i.e. as an ideal
of O/qa.

Proof. First consider the case that a is co-prime to all pi (i ∈ [1..r]). Then, by
lemma 3.1 and basic properties of ideals (see lemma A.1 (xiv) and (xii)), and
CRT, we have O/(qa) ∼= O/a ·

∏r
i=1O/p

ei
i . So a will be principal in R/qa, if it is

principal in each of the component rings. Theorem 3.4, shows that a is principal
in O/peii , and a is trivially principal modulo a, and hence the lemma is proved
in this case.

Otherwise, by lemmas 3.3 and 3.1, we have, a · (q) = â ·
∏
i∈[r] p

ei+ti
i , for

some non-negative integers ti. Also, â is co-prime to each pi and hence to each
pei+tii . Thus, by CRT, O/(qa) ∼= O/â ·

∏r
i=1O/p

ei+ti
i . Then, using theorem 3.4,

â is principal modulo a · (q) by employing CRT, just as in the simple case above
where a was co-prime to all pi. By Theorem 3.4, each pi is also principal modulo
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psj , for any s. So, we just need to show that pi is principal modulo â. Since â is
co-prime to pi, there exists elements in α ∈ pi and β ∈ â, such that α + β = 1.
Thus, α = 1 modulo â, and hence pi is same as (1) modulo â. Ideal â is also
co-prime to pi, and hence by the same argument as above, pi is same as (1)
modulo â.

4 Generator Extractor for Principal Ideals

In this section we restrict ourselves to the setting of Section 3. In particular, K is
any number field, say K = Q[X]/(f(X)) for some irreducible polynomial f(X)
of degree n, with n = [K : Q], and O is any order in the field. Let m = [OK : O]
be the index of O in the maximal order OK, i.e. the ring of integers of K. Let q
be relatively prime to m. We first focus on q being a prime power, say ps. The
case where q is a product of powers of different primes is handled subsequently.
Given an ideal a described by a set of generators {γi}i∈[r] in O or a Z-basis B(a),
we wish to compute a generator of the principal ideal a modulo psa (which is
principal by theorem 3.7).

We show that the following simple and efficient randomized algorithm com-
putes such a generator with non-negligible probability.

Algorithm 1 FindGen

Input: A rank n Z-basis B for an ideal a of O.
Output: A single generator a(X) for ideal a mod psa, i.e. ideal a/psa of O/psa.

1: Pick a random n-vector ρ with component polynomials ρk (k ∈ [r]) chosen uni-
formly and independently from finite ring O/pO, which is same as Zp[X]/(f(X))
for the special case of polynomial ring O = Z[X]/(f(X)).

2: View the n columns of B as n polynomials γk ∈ O (k ∈ [r]).
3: Compute a(X) =

∑n
k=1 ρk ∗ γk in O.

4: Output a(X)

Remark. Note that given a Z-basis matrix B(O) of order O, the quotient ring
O/pO has the same matrix B(O) as a Zp-basis.

Lemma 4.1. For a prime p co-prime to m, let pO have a factorization in terms
of prime ideals as pO =

∏r
i=1 p

ei
i . The algorithm FindGen outputs a generator

a(X) of a modulo psa with probability at least
∏
i∈[r](1− 2/pdi), where di is the

degree of extension of the finite field (of characteristic p) O/pi over Zp.

Proof. First, note that each of the n columns of B can be viewed as polynomials
γk ∈ O (k ∈ [r]), such that the γk collectively form a set of generators (over O)
of a. Recall, a(X) computed in the algorithm is just

∑
k ρkγk.

By lemma 3.3, we have a · (p)s = â ·
∏
i∈[r] p

s·ei+ti
i , where â is co-prime to

every pi (i ∈ [r]). Thus, by employing CRT, we have that the ring O/psa is
isomorphic to O/â ·

∏
i∈[r]O/p

s·ei+ti
i . Since, a is zero mod â, a(X) is also zero
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and hence trivially generates a mod â. Thus, we can focus on a modulo ps·ei+tii ,
for each i ∈ [r].

Fix an i ∈ [r]. Denote ps·ei+tii by qi. View each of the elements γk (k ∈ [r])
also as elements of the quotient ring O/qi, and the randomly chosen elements ρk
as also elements in O/qi. Denote a reduced mod qi by ai. By Theorem 3.4, ai is
principal and is generated by finite power of some gi. Similarly, each (γk) mod
qi is itself generated by a finite power of the same gi, say the power is vk,i ≥ 0.

Hence, ai is generated by g
v∗i
i , where v∗i = min{vk,i : k ∈ [r]}. We need to show

that
∑
k ρkγk generates exactly (gi)

v∗i mod qi.
Note, γk can be written as αk,ig

vk,i
i mod qi, where αk,i is not in pi. Then,∑

k ρkγk mod qi can be written as g
v∗i
i ∗

∑
k ρkαk,ig

vk,i−v∗i
i . Note, at least for one

k ∈ [r], vk,i − v∗i is zero. So, let Ii be the non-empty set of indices, subset of [r],
such that vk,i − v∗i is zero.

Since pi is a maximal ideal of O, every element of O not in pi is invertible
mod pi, we need to show that with decent probability, over the random choices
of {ρk}k, for all i ∈ [r],

∑
k∈Ii ρkαk,i is not zero modulo pi. Note that for k 6∈ Ii,

the quantities ρkαk,ig
vk,i−v∗i
i are in (gi) ⊆ pi, so the full sum (over all k ∈ [r])

will be non-zero modulo pi and hence invertible.
To calculate this probability, we first note that O/pi is a finite field as pi is a

maximal ideal and is of finite rank in O, as each ideal of an order has finite index
in the order (see e.g. [Cond, Section 8]). Further pi contains p and hence the field
has characteristic p. Thus, by Galois theory of finite fields, O/pi is isomorphic
to GF(pdi), for some positive integer di, i.e. the degree of extension. Thus, we
can view each of ρk and αk,i as elements of this field (by reducing mod p). We
have already seen that αk,i is non-zero in this field, as it is not in pi. However, a
random choice of ρk in O/pO may lead ρk to be zero modulo pi, although this
probability is small, as we next show.

First, by employing CRT and theorem 3.2, ρk is uniformly and independently
distributed in the rings O/peii . Since, as additive groups peii is an abelian sub-
group of pi which is a sub-group of O, every element of O/peii can be uniquely
expressed as a + b where a ∈ pi/p

ei
i and b ∈ O/pi, i.e. O/peii ∼= (O/pi)(pi/peii ).

Thus, a randomly and uniformly chosen element of O/peii is in ideal pi, i.e. is
zero in (O/pi) with probability 1/|O/pi|. This latter quantity is exactly 1/pdi .
In fact, this random element is uniformly distributed in each coset of sub-group
pi/p

ei
i .

Thus, probability that βi =
∑
k∈Ii ρkαk,i is in ideal pi is at most 1/pdi∗|Ii|

plus 1/pdi , which is at most 2/pdi . Since, ρk are independently distributed in the
various rings Z[X]/si, the probability that all of these m quantities βi are non-
zero is at least

∏
i∈[r](1− 2/pdi), which is also a lower bound on the probability

that a(X) is a generator of a modulo psa.

For a prime p co-prime to m, let pO have a factorization in terms of prime
ideals as pO =

∏r
i=1 p

ei
i . The algorithm FindGen outputs a generator a(X) of

a modulo psa with probability at least
∏
i∈[r](1− 2/pdi), where di is the degree

of extension of the finite field (of characteristic p) O/pi over Zp.
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Extension to Product of Powers of Primes. Let q =
∏
j p

sj
j be a product of

powers of primes such that for every j, such that q and hence each pj is co-
prime to m. For each j, let pjO have a factorization in terms of prime ideals as
pjO =

∏rj
i=1 p

ej,i
j,i . The above algorithm can be correctly extended by choosing

ρi randomly and independently from Zq′ [X]/(f(X)) where q′ =
∏
j pj . The

probability of success in this case is at least
∏
j

∏
i∈[rj ](1− 2/p

dj,i
j ), where dj,i is

the degree of extension of the finite field (of characteristic pj) O/pj,i over Zpj .

Extension to Arbitrary q without known-factorization. If the factorization of q
is not known, and say q =

∏
j p

sj
j as above, we can still use the above algorithm,

but this time by choosing ρi randomly and independently modulo O/qO. In the
proof of lemma 4.1, again using CRT and focusing on individual primes, say
pj , ρk is now uniformly and independently distributed in O/pej,isjj,i . This ring

is isomorphic to O/(pj , h
ej,isj
j,i ). By the probability analysis in the lemma 4.1

above, the probability of success remains the same as in the known factorization
case above.

Boosting the Probability of Success. One can boost the probability of finding
a generator of a modulo qa by repeating the above algorithm, but to stop the
repetition we need an efficient test that a(X) as computed is indeed a generator.
But, this is same as checking (a, qa) = (a(X), qa), which can be efficiently tested
by computing the Hermite normal form of B (the given Z-basis of a) and the
Hermite normal form of [Ca | qB], and checking for equality.

5 Hardness of Decisional Order-LWE

In this section, we focus on a degree-n monic irreducible polynomial f(X) ∈
Z[X], and an order O in the number field K = Q[X]/(f(X)), and an integer
q ≥ 2 such that q is co-prime to [OK : O]. Let KR = R[X]/(f(X)). Let Oq stand
for O/qO.

First we give out the same distribution of error distributions as in [PRS17]
and more generally in [PP19], which we will use in the following reduction.

Definition 5.1 (Error Distribution). Fix arbitrary s(n) = ω(
√

log(n)). For
α > 0, a distribution sampled from Υα is an elliptical Gaussian distribution Dr,
where r ∈ G is sampled as follow: for i = 0, . . . , s1 − 1, sample xi ∈ D1 and set
r2i = α2(x2i + s2(n))/2, for i = s1, . . . , s1 + s2− 1, sample xi, yi from D1/

√
2 and

set r2i = r2i+s2 = α2(x2i + y2i + s2(n))/2.

Definition 5.2 (Order-LWE Distribution). ([BBPS19]) Let V be the Van-
dermonde matrix of the polynomial f(X). For s ∈ O∨q and an error distribution
ψ over KR, we define the Order-LWE distribution As,ψ over Oq × KR/O∨ as
(a,b = a ∗ s/q +V −1e mod O∨

)
where e is sampled from ψ, a is uniform over

Oq.
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Definition 5.3 ((Average-case) Decisional Order-LWE Problem). Let Υα
be a distribution over family of error distributions, each over R[X]/(f(X)). The
average-case decisional Order-LWE problem, OLWEq,Υα is to distinguish (with
non-negligible advantage) between independent samples from As,ψ for a random
choice of uniform s ∈ O∨q and ψ ∈ Υα and the same number of uniformly random
and independent samples from Oq ×KR/O∨.

Let O-DGSγ be the discrete Gaussian sampling problem DGSγ when re-
stricted to the ideal lattices of the order O.

Theorem 5.1. Let α = α(n) ∈ (0, 1), q = q(n) ≥ 2 be an integer co-prime to
[OK : O] for an order O in K. If αq ≥ 2·ω(1), for some negligible ε = ε(n), there
is a probabilistic polynomial-time quantum reduction from O-DGSγ to (average
case, decisional) OLWEq,Υα , where

γ = max
{
ηε(L(I)) · (

√
2/α) · ω(1),

√
2n/λ1(L(I)∨)

}
Note that ηε(L) > ω(

√
log(n))/λ1(L∨). Using known reduction [Reg06],

this immediately implies a polynomial-time quantum reduction from SIVPγ to

(average-case, decision) OLWEq,Υα for any γ ≤ max
{
ω(
√
n log(n)/α,

√
2n
}

.

In case of spherical error, same as [PRS17, Section 7] we have

Corollary 5.2. With the same notation as Theorem 5.1, there’s a polynomial
time quantum reduction from O-DGSγ to (average-case, decisional) OLWEq,Dξ
using ` samples, where

γ = max

{
ηε(L(I)) · (

√
2/ξ) ·

(
n`

log(n`)

) 1
4

· ω(
√

log(n)),
√

2n/λ1(L(I)∨)

}
,

as long as ξq ≥
(

n`
log(n`)

) 1
4 · ω(

√
log(n)).

Our proof of theorem 5.1 will be exactly the same as [PRS17, Theorem
6.2], that starts with a discrete Gaussian sampler with very large radius, and
iteratively applies the following lemma 5.3.

Definition 5.4. For r > 0, ζ > 0 and T ≥ 1, define Wr,ζ,T as the set of
cardinality (s1 + s2) · (T + 1) containing for each i = 0, . . . , s1 + s2 − 1 and
j = 0, . . . , T the vector ri,j which is equal to r in all coordinates except in the
i-th, and the (i+ s2)-th if i ≥ s1, where it is equal to r · (1 + ζ)j.

Lemma 5.3. There’s an efficient quantum algorithm that, given an oracle that
solves OLWEq,Υα , an ideal I of O, a number r ≥

√
2q · ηε(L(I)) and r′ =

r ·ω(1)/(αq) ≥
√

2n/λ1(L(I)∨), polynomially many samples from discrete Gaus-
sian distribution DL(I),r for each r ∈ Wr,ζ,T (for some ζ = 1/poly(n) and
T = poly(n)), and a vector r′ ≥ r′, outputs an independent sample from DL(I),r′ .
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As in [PRS17, Lemma 6.5], this iterative step is given by combining the
following two parts: a classical one in lemma 5.4 that use a discrete Gaussian
sampler and an OLWE oracle to solve the Gaussian Decoding Problem (GDP),
and a quantum one in lemma 5.5 that use this GDP solver to provide discrete
Gaussian samples with smaller radius.

Lemma 5.4. There’s a probabilistic (classical) polynomial time algorithm that,
taking an oracle that solves OLWEq,Υα for α ∈ (0, 1) and integer q > 2, an
ideal I of O, a parameter r ≥

√
2q · ηε(L(I)), and polynomially many samples

from discrete Gaussian DL(I),r for each r ∈Wr,ζ,T for some ζ = 1/poly(n) and
T = poly(n), solves GDPL(I)∨,g for any g = o(1) · αq/(2r).

Lemma 5.5 ([PRS17, Lemma 6.7]). There is an efficient quantum algorithm

that, given any n-dimensional lattice L, a number g < λ1(L∨)
2
√
2n

, a vector r ≥ 1,

and an oracle that solves GDPL∨,g with all but negligible probability, outputs a
sample from DL, r

2g
.

The proof of lemma 5.4 follows exactly from [PRS17, Lemma 6.6], except the
core reduction from Gaussian Decoding Problem to OLWE in [PRS17, Lemma
6.8] requires the underlying ring to be a dedekind domain, which is not true
in the general case. We provide a counterpart in lemma 5.6 that works for all
orders.

Lemma 5.6. There’s an efficient algorithm that, takes as input an integer q ≥
2, a dual ideal lattice L(I)∨ where I is an ideal of O, a coset e + L(I)∨ with
a bound d ≥ ||e||∞, a parameter r ≥

√
2q · ηε(L(I)) and samples from DL(I),r

for some r ≥ r. It outputs samples that are within negligible statistical distance
from the Order-LWE distribution As,r′ for a uniformly random s ∈ O∨q , where
(r′i)

2 = (ri|ei|/q)2 + (rd/q)2.

To prove this lemma 5.6, we follow the standard techniques as in [PRS17,
Lemma 6.8] which is a slight generalization over [LPR10, Lemma 4.7], elaborated
as below.

Proof Sketch. First sample a random ẑ = V z from the discrete Gaussian DL(I),r
where z ∈ I. Because r ≥

√
2q · ηε(L(I)), by smoothing lemma 2.6, the distri-

bution of (z mod qI) is within a negligible distance from uniform distribution
over I/qI. Also let e′ be an independent sample from the continuous Gaussian
Dα/

√
2.

Now, for any element V y = ŷ = e + x̂ ∈ e +L(I)∨, where x̂ = V x ∈ L(I)∨,
we could directly provide a “Order-LWE sample” from I/qI ×KR/O∨ as(

z mod qI, z ∗ y/q + e′ mod O∨ =
z ∗ x

q
+

1

q
CzV

−1e + e′ mod O∨
)
.

for some secret x ∈ I∨/qI∨. To jump out of the ideal, we use lemma 5.7,
a counterpart of clearing lemma of [LPR10, Lemma 2.15] for non dedekind
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domains, that gives (i) an invertible and efficiently computable bijection ψ :
I/qI → O/qO, and (ii) an efficiently invertible and computable bijection φ :
I∨/qI∨ → O∨/qO∨, with the additional property that z ∗ x = ψ(z) ∗ φ(x).
Therefore the final Order-LWE distribution would be over Oq ×KR/O∨ as(
ψ(z mod qI), z ∗ y/q + e′ mod O∨ =

ψ(z) ∗ φ(x)

q
+

1

q
CzV

−1e + e′ mod O∨
)

for some secret φ(x) ∈ O∨/qO∨. Note that since ψ is invertible, ψ(z mod qI) is
almost uniform over O/qO = Oq.

Moreover, if we sample e as in GDPL(I)∨,g where g = αq/(
√

2r), the distribu-

tion of
(

1
qCzV

−1e + e′
)

will be exactly Υα, as in [PRS17, Lemma 6.8]. Then we

complete the proof by applying the standard technique to randomize the secret
as in [Reg10, Lemma 3.2]

The following lemma is an extension of an important technical lemma from [LPR10,
Lemma 2.15], which is informally referred to as the ideal clearing lemma, and is
the key to extending Regev’s LWE-hardness [Reg10] to the Ring-LWE setting.
Our proof of the lemma is quite different from the proof in [LPR10] as it ex-
tends to non dedekind-domains and hence cannot use the standard prime ideal
factorization and ideal invertibility guaranteed for dedekind domains.

Lemma 5.7. Ideal Clearing Lemma for Order O. For any positive integer
q co-prime to m = [OK : O], given a Z-basis B(O) for O and a Z-basis B(I)
for ideal I of O, and a generator g ∈ I for the principal ideal I/qI,

(i) There’s an efficiently computable O-module isomorphism ψ : I/qI → O/qO,
(ii) There’s an efficiently invertible O-module isomorphism φ : I∨/qI∨ → O∨/qO∨,
(iii) such that, for any z ∈ I/qI and x ∈ I∨/qI∨, their polynomial product

satisfies
z ∗ x ≡ ψ(z) ∗ φ(x) (mod qO∨)

Proof. We have that g is a generator of I modulo qI. In other words, as ideals,
I = (g) + qI. Thus, g ∈ I. Thus, by lemma 2.9,

CgB(O) = B(I) ·D, (2)

where D is an integer matrix, which is easily computed from g,B(O) and B(I).
We also have that every column of B(I) is generated by Cg mod qI, or mod

qB(I). Thus,
B(I) = CgB(O)U + q ·B(I)T (3)

for some integer, matrices U and T . Equivalently,

B(I) · (I − qT ) = CgB(O)U , (4)

or, since Cg is full-ranked, we have

(CgB(O))−1B(I) · (I − qT ) = U (5)
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We next show that D ·U = I (mod q). Note, from (2) and observing that
B(I) is full-ranked, D = B(I)−1CgB(O). Multiplying the above equation on
the left by D, we get (I − qT ) = D ·U , and hence

D ·U = I (mod q), (6)

which allows us to compute U (mod q). Now, consider the following two map-
pings for claims (i)-(iii). For any z ∈ I and x ∈ I∨, define

ψ(z) = a = B(O)UB(I)−1z (mod qO) (7)

φ(x) = g ∗ x (mod qO∨) (8)

For any z in I, and a = ψ(z) we have Cga ≡ CgB(O)UB(I)−1z, which by
(3) is same as B(I)(I − qT )B(I)−1z = z (mod qI), So, ψ is an invertible map.
It is also surjective since Cga is in I for any a ∈ O. Since, ψ−1 is easily seen
to be a O-module homomorphism, ψ is an O-module isomorphism. Further, we
already showed how to compute U (mod q) efficiently, this proves (i).

For (ii), we first note that by proposition 2.12 and using (2),

g ∗ x = (V >V )−1 · (V >V ) ·Cg · x (9)

= (V >V )−1C>g · (V >V ) · x (10)

= (V >V )−1B(O)−>D>B(I)>(V >V ) · x mod qO∨, (11)

where the last equality follows by noting that (V >V )−1B(O)−> is a Z-basis for
O∨ (see lemma 2.10).

Thus, by lemma 2.10, φ(x) is inverted by (V >V )−1B(I)−>U>B(O)>(V >V )
to x mod qI∨. Further, for any s ∈ O∨, (V >V )−1B(I)−>U>B(O)>(V >V )s
lies in I∨ by the aforementioned basis. Thus, φ is an invertible and surjective
O-module homomorphism, that is also efficiently invertible, thus proving (ii).

Now, we move on to prove (iii). For some t0 ∈ O and t1 ∈ O∨, we have

ψ(z) ∗ φ(x)

=
(
B(O)UB(I)−1z− q · t0

)
∗ (Cgx− q · t1)

=B(O)UB(I)−1z ∗Cgx− q · t0 ∗ g ∗ x− q ·B(O)UB(I)−1z ∗ t1 + q2 · t0 ∗ t1

≡ B(O)UB(I)−1z ∗Cgx (mod qO∨) (12)

≡ C−1g B(I)(I − q · T )B(I)−1z ∗Cgx (mod qO∨)

≡ z ∗ x− q ·C−1g B(I)TB(I)−1z ∗Cgx (mod qO∨)

≡ z ∗ x− q ·CgCxC
−1
g B(I)TB(I)−1z (mod qO∨)

≡ z ∗ x− q · x ∗B(I)TB(I)−1z (mod qO∨)

≡ z ∗ x (mod qO∨) (13)

where (12) follows by noting that t0 ∗ g ∈ I and x ∈ I∨ and then employing
lemma 2.11. Similarly, B(O)UB(I)−1z is in O. Also, for the last equation (13),
we use lemma 2.11.
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Remark. When comparing with [LPR10], note that they obtain a t ∈ I such
that t·I−1 is co-prime to ideal (q). In other words, t·I−1+(q) = (1). Multiplying
both sides by the ideal I, we get, (t) + qI = I, which is same as saying that t
is the generator of I mod qI. In other words [LPR10] implicitly shows that I is
principal mod qI, but this is well-known for Dedekind domains. As mentioned
earlier, our case is more difficult, yet we manage to prove it.

6 Example Polynomial Rings and non-Bigenic Ideals

In the introduction we considered a slight twist of the cyclotomic polynomial
X256 + 1 which is used in the recently announced NIST post-quantum cryp-
tography encryption algorithm CRYSTALS-Kyber [BDK+21]. Cyclotomic poly-
nomials, especially of degree power-of-two, are further preferred as these allow
very efficient number-theory transforms (NTT), thus enabling efficient polyno-
mial multiplication. But, it is also well-known that arithmetic modulo ”twisted-
cyclotomic” irredicible polynomials, say X256 − a, and modulo q such that a
has a 256-th root in Zq, also enjoy efficient NTT by just pre-multiplying the
coefficient vector of a polynomial by the diagonal matrix consisting of powers of
a1/256. In other words, the Vandermonde matrix of X256 − a (modulo q) is the
product of Vandermonde matrix of X256 − 1 and the above diagonal matrix.

In the Introduction, we had set a = −2 · 32 · 13 for three reasons. First, by
Eisenstein criterion, this make f(X) irreducible over Q. Second, using Dedekind
index theorem, we showed that R is strict sub-ring of OK in this case. Finally,
it can be checked by a computer that a = −2 · 32 · 13 is a 256-th residue in
the field Zq with q = 3329 as in [BDK+21]. Interestingly, the Kyber proposal
chose the prime q to be the smallest prime such that order of q is one modulo
256 and q-RLWE allows for setting up an encryption scheme with non-negligible
probability decryption failure. Unfortunately, order of this q is two modulo 512,
and hence the 512-th primitive roots of unity only exist in a degree two extension
of Zq. Note, one needs 512-th primitive roots of unity for NTT modulo X256 +1.
This causes a slightly expensive NTT computation depending on whether there
is enough parallel processing power available or not. Surprisingly, with X256 +2 ·
32 ·13, after the initial diagonal-matrix transform, we only need 256-th primitive
roots, and hence our number field setting potentially allows a more efficient
polynomial multiplication modulo q than the cyclotomic number field.

We next turn our attention to the error-distribution implied by the hardness
reduction on the RLWE samples, especially in the (polynomial) coefficient setting
and not the canonical-embedding setting, as we want to make sure that the RLWE
errors do not overwhelm the payload. However, the error distribution implied for
the coefficient setting, while non-spherical, is actually smaller than the spherical-
distribution for the cyclotomic setting. This follows from two facts:

1. Theorem 5.1 which shows that the error-distribution Υα is independent of
the number-field, and the hardness-reduction only restricts the scaling α and
the variance γ of the underlying hard problem R-DGSγ in ideal lattice I by

γ ≥
√

2n/λ1(L(I)∨), as long as α <
√

log n/n,
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2. The translation of the error distribution from the canonical embedding back
to the ring is composition of two transformations: an isometric transforma-
tion following by the inverse of the diagonal transformation. The latter has
the j-th diagonal entry a−j/256, which is a real number less than and equal
to one, with equality only for j = 0.

Thus the question boils down to whether R-DGSγ is easier in R = Z[X]/(X256−
a) or R = Z[X]/(X256 + 1). In this work we have focused on showing that the
former ring being a non-Dedekind domain has less algebraic structure. However,
when disregarding the issue of algebraic structure, the ideal lattices in different K
can potentially have different complexity, and this is a well-known open problem
to relate ideal lattices of different number fields. We ran some preliminary tests
on resistance of ideal-lattice-SVP problem to the LLL algorithm [LLL82], and
found no significant difference in the above two rings. However, more rigorous
experimentation and analysis is warranted, and we hope more researchers take
up this challenge.

6.1 Non-bigenic ideals

An ideal will be called bigenic if it can be generated by two or less elements of
the ring. When R is a strict subring of ObK, it is well known that in such a case
R is not a Dedekind domain, and indeed all prime ideals of R that are not co-
prime to the so-called conductor ideal of R are not invertible (see e.g. Theorem
6.1 in [Cona]). Another well-known property of Dedekind domains is that all its
ideals are bigenic. However, it is not an easy task to show that some ideal of
non-Dedekind-domain R is not bigenic. Although, examples exist of non-bigenic
ideals in strict subrings (of rank n) of OK [Cona, Remark 2.3], these subrings
are not the polynomial ring R, and moreover these non-bigenic ideals have a
diagonal Hermite normal form Z-basis, and in any case these example ideals are
as it ideals of the larger ring OK. We will show below a non-trivial ideal of R
that requires a minimum of three generators.

This example is inspired by [Conc, Example 4.16]. Consider the irreducible
(over Q) polynomial f(X) = X5 − 24 · 3, and the corresponding number field
K = Q[X]/(f(X)). Consider β = X4/8 as an element of K. Its easy to check
that β5 − 2 · 34 = 0, and hence β ∈ OK. This also shows that R = Z[X]/(f(X))
is not same as OK, and hence is not integrally closed and consequently not a
Dedekind domain. We now have an easy example of a non-bigenic ideal of R.

Proposition 6.1. The ideal I = (8, 2X + 4, X2 + 4) of R = Z[X]/(X5 − 48)
has the following properties

(i) I is not bigenic,
(ii) no rational scaling of I is a bigenic ideal of R,
(iii) no rational scaling of I is a fractional ideal of OK,
(iv) the HNF of Z-basis of I is not diagonal.
(v) I is product of two bigenic ideals, namely I = (4, X + 2) · (2, X).
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For a proof of the proposition, see Appendix A. Properties (i) and (v) imply
that bigenic ideals of R above do not form a multiplicative group. This is in
contrast to principal ideals that do form a multiplicative group which is the basis
of definition of ideal class groups [FT91]. It is worth remarking that (4, X + 2)
is not a prime ideal as it is contained in (2, X + 2) and it is well-known that all
non-zero prime ideals (of any order of a number field) are maximal [Cond, Sec.
8].

7 Discussion of General Orders

It’s important to note that an ideal of an order is always a (fractional) ideal of
any sub-order. On the other hand as we saw in lemma 6.1 an ideal in an order
may not be a (fractional or scaled) ideal in a larger order. Thus, given a bound on
the determinant of a Z-basis of orders of a number field, the order that is minimal
w.r.t. the sub-ring (partial-) ordering has arguably the (maximally-) richest class
of ideals. Thus, ideally speaking one would like to setup a cryptosystem using
Order-LWE defined w.r.t. such an order. Unfortunately, multiplication of poly-
nomials modulo qO, for arbitrary O, becomes a tricky issue and further research
is required to see if such orders have efficient multiplications like FFT-based
methods. As an illustration, consider the following Q-basis of (polynomials) the
cyclotomic field K = Q[X]/(x4 + 1):

1 0 0 0
0 8 0 0
0 0 4 0
0 0 0 2


The Z-span of the above columns (polynomials) can be seen to be a ring, and
hence the above is a Z-basis of an order O in K – e.g. note, 4x2 ∗ 2x3 =
−8x mod (x4 + 1) which is in the Z-span of above matrix. Similarly, the dual
O∨, is Z-generated by the inverse of the above matrix (by lemma 2.10). Further
note that for any q, O/qO is Zq generated by the same above matrix, and sim-
ilarly for the dual. Thus the first component a of the Order-LWE sample (see
Definition 5.2) can be represented by randomly choosing a vector in Zq. How-
ever, multiplication of two such elements a1 and a2 is not directly obtained by
polynomial multiplication of a1 ∗ a2 (modulo f(X), q), e.g. the constant term
needs an adjustment.

In view of this, polynomial rings considered in section 6 in non-Galois number
fields seem to offer the best security-implementation trade-off. However, general
orders not only offer potentially richer class of ideals but can also be based in
cyclotomic fields. Thus, further research is warranted with regards to “minimal”
orders that maintain some form of FFT-like polynomial multiplication and small
representation as well.
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and Damien Stehlé. CRYSTALS - Kyber, NIST PQC 3rd
Round Submission. 2021. https://pq-crystals.org/kyber/data/
kyber-specification-round3-20210804.pdf. 1, 6

[Ber14] D. Bernstein. A subfield-logarithm attack against ideal lattices. Feb
2014. 1

[BF14] J.-F. Biasse and C. Fieker. Subexponential class group and unit
group computation in large degree number fields. LMS J. Comput.
Math., 17 (suppl. A):385–403, 2014. 6, 1, 1

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Lev-
eled) fully homomorphic encryption without bootstrapping. In Shafi
Goldwasser, editor, ITCS 2012, pages 309–325. ACM, January 2012.
1, 1

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus
switching from classical GapSVP. In Reihaneh Safavi-Naini and Ran
Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 868–
886. Springer, Heidelberg, August 2012. 1

[BS16] J.-F. Biasse and F. Song. A polynomial time quantum algorithm for
computing class groups and solving the principal ideal problem in
arbitrary degree number fields. Proc. SODA, 2016. 6, 1
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A Full Proofs of Lemmas

Lemma A.1. (i) Every non-trivial ring has at least one maximal ideal.
(ii) A maximal ideal is always a prime ideal.
(iii) The quotient ring R/a is a field iff a is a maximal ideal.
(iv) For ideals a and b, their sum a + b is the set of all x + y where x ∈ a and

y ∈ b. It is the smallest ideal containing a and b.
(v) Thus, a maximal ideal m is co-prime to every ideal that is not a subset of m.
(vi) If a and b are not co-prime, then there exists a maximal ideal m such that

a + b ⊆ m.
(vii) If a and b are co-prime, then a ∩ b = ab.
(viii) If a prime ideal p contains product of two ideal ab, then at least one of a or

b is in p.
(ix) If an ideal a is co-prime to two ideals, say b and c, then a is co-prime to bc.
(x) If for some positive integer r, and a ∈ R, ar is contained in a prime ideal p,

then a is contained in p (by definition of prime ideal).
(xi) This easily generalizes to the fact that if for some positive integer r, and

ideal a, ar is contained in a prime ideal p, then a is contained in p.
(xii) If ideals a and b are co-prime, then for any positive integers r, s, their powers

ar and bs are also co-prime.
(xiii) If a maximal ideal m contains product of powers of distinct maximal ideals

n1, ...., nk, then m must be one of n1, ...., nk.
(xiv) For any ring R, and any maximal ideal a = (a1, a2) of R, let x ∈ R be such

that x is not in a. Then for any positive integers r, s, x is invertible modulo
(ar1, a

s
2).

Proof. Proof of ((viii)). If a prime ideal p contains product of two ideal ab, then
at least one of a or b is in p. If neither of a and b is contained in p, then there
are elements a ∈ a and b ∈ b, that are not in p. Yet, a ∗ b, being in ab is in p,
contradicting the fact that p is prime.

Proof of ((ix )). If an ideal a is co-prime to two ideals, say b and c, then a is
co-prime to bc. For if not, then a + bc is contained in a maximal ideal m, and
hence bc is also contained in m. By previous item, one of b or c, w.l.o.g. b, is
contained in m. Since a is also contained in m, this implies that a+b is contained
in m, contradicting the fact that a and b are co-prime.

Proof of ((xii)). If ideals a and b are co-prime, then for any positive integers
r, s, their powers ar and bs are also co-prime: if ar and bs are not co-prime
then there is a maximal ideal m containing ar + bs, and hence also ar and bs

individually. Since m is also prime, m contains both a and b and hence also their
sum, contradicting the fact that a and b are co-prime.

Proof of ((xiii)). If a maximal ideal m contains product of powers of distinct
maximal ideals n1, ...., nk, then m must be one of n1, ...., nk. Say,

∏
i n
ri
i is con-

tained in m. Suppose m is not the same as one of n1, ..., nk. Then, m is co-prime
to each of ni, and hence also to their powers nrii , which are also pair-wise co-
prime. Thus, one of nrii is in m (by item (viii)), and hence maximal ideal ni is
itself in maximal ideal m, an absurdity.
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Proof of ((xiv)). This can be proved easily in multiple ways, but we prefer
an argument used in Prop. 2.5 in [LLL82].

Clearly, for r = 1 and s = 1, the claim holds, i.e. x is invertible modulo the
maximal ideal a, as R/a is a field. Thus,

µx = 1− (ν1a1 + ν2a2),

for some µ, ν1, ν2. If ν2 is zero, then x is invertible modulo (a1) and hence also
modulo any power of (a1), and we are done. Similarly, for ν1 being zero. Else,

µx+ ν1a1 = 1− ν2a2,

Multiplying both sides by 1 + ν2a2 + ...+ (ν2a2)s−1, we get

µ′x+ ν′1a1 = 1− νs2as2,

for some µ′ and ν′1. Rewriting this as

µ′x+ νs2a
s
2 = 1− ν′1a1,

and multiplying both sides by 1 + ν′1a1 + ...+ (ν′1a1)r−1, the claim follows.

The proof of the following lemma is similar to proof of [Cona, Theorem 3.6].
Lemma 2.4 (repeated) An ideal b of O that is relatively prime to principal
ideal mO is a product of prime ideals of O.

Proof. If b is prime, we are done. Otherwise let p ⊃ b for a maximal ideal p. We
have p + (m) ⊃ b + (m) = O, and hence p is relatively prime to (m). Thus, p
cannot contain (m). and hence by Theorem 2.3, p is invertible. Let b′ = p−1b.
Since p−1p = O, p−1b ⊂ O and pb′ = b. Since b 6= p, b′ 6= (1). Since pb′ ⊂ b′

and the inclusion is strict (if not then for all k ≥ 0 we have b′ = pkb′ ⊂ pk,
which is a contradiction for large k since [O : pk] gets large with k while [O : b′]
is finite), b′ as a smaller index in O than b. Since b′ ⊃ b and b + (m) = O, we
have b′ + (m) = O. So, by induction on the index of b′, b′ is a product of prime
ideals. And hence b itself is a product of prime ideals.

Proposition 6.1 (repeated) The ideal I = (8, 2X + 4, X2 + 4) of R =
Z[X]/(X5 − 48) has the following properties

(i) I is not bigenic,
(ii) no rational scaling of I is a bigenic ideal of R,

(iii) no rational scaling of I is a fractional ideal of OK,
(iv) the HNF Z-basis of I is not diagonal.
(v) I is product of two bigenic ideals, namely I = (4, X + 2) · (2, X).

Proof. We focus on proving (i), as the rest will follow easily.
Now, assume to the contrary that this ideal is bigenic and generated by

L0 = (`1, `2), and as ideals of Z[X]/(X5 − 48), L0 = I. Both `1 and `2 must be
in the Z-span of Z-basis of the ideal I, which is depicted below by concatenating
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the circulant matrices of 8, 2X + 4 and X2 + 4. We also compute its Hermite
normal form (HNF) 10.

HNF


4 0 0 48 0 4 0 0 0 96 8 0 0 0 0
0 4 0 0 48 2 4 0 0 0 0 8 0 0 0
1 0 4 0 0 0 2 4 0 0 0 0 8 0 0
0 1 0 4 0 0 0 2 4 0 0 0 0 8 0
0 0 1 0 4 0 0 0 2 4 0 0 0 0 8

 =


8 4 4 0 0
0 2 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


From the HNF it is clear that `1 can be written as a1X

4 + b1X
3 + c1(X2 + 4) +

d1(2X + 4) + e1 · 8 and similarly, `2 can be written as a2X
4 + b2X

3 + c2(X2 +
4) + d2(2X + 4) + e2 · 8, where all of a1, ...e1, a2, ..., e2 are in Z.

Next, note that it suffices to prove that L1 = (`1, `2, X
5, 48) as ideal of

Z[X] does not contain all three of 8, 2X + 4, and X2 + 4. We will instead prove
something stronger that L2 = (`1, `2, X

4, 16) as ideal of Z[X] does not contain
all three of 8, 2X + 4, and X2 + 4.

Further, since we have included X4 in L2, we can now assume w.l.o.g. that
a1 and a2 are zero. Further, using Euclidean algorithm, w.l.o.g. assume that
c2 is zero. Thus, `1 = b1X

3 + c1(X2 + 4) + d1(2X + 4) + e1 · 8, and `2 =
b2X

3 + d2(2X + 4) + e2 · 8. Further, since 16 is included in L2, e1 and e2 can
just be restricted to {0, 1}.

Now, since L2 must generate x2 + 4, and given that b1, ...e1, b2, ..., e2 are just
integers, it is clear that c1 = 1 mod 16. Also, it is clear that both e1 and e2
cannot be zero, for otherwise 8 cannot be generated. Since c1 is non-zero, to
generate 2x + 4, modulo 16, one can only use `2 (and not use `1), and hence
d2 = 1 mod 16, and b2, e2 = 0 mod 16, which as argued above just means that
e2 = 0, and hence e1 = 1. But, this means X2 + 4 cannot be generated from L2.
That completes the proof of (i)

We now go on to prove (ii)-(iv). We have already shown above that the HNF
of the ideal I is not diagonal, so that proves (iv). Since, the ideal I contains
X2+4, any rational scaling of I that keeps it as a subset of R must be an integer
scaling. However, the above proof of non-bigenic nature of I easily extends to
any integer scaling of I.

For (iii), we first show that I by itself (i.e. without any scaling) is not an
ideal of OK. Recall, β = x4/8 is in OK. We just show that (2X + 4) · β is not
in I, and hence I is not closed under multiplication by OK. To begin with,
note that (X2 + 4)(X2 − 4) = (X4 − 16) is in the ideal I. Using this, we have
(2X + 4) · β = X5/4 + X4/2 = 12 + X4/2 = 12 + 8 (modulo I) which is same
as 4 modulo 8. Since 4 is not in the ideal I (of R), this completes the proof.

Next, consider the set p
q · I, for co-prime integers p, q. Again, we just show

that p
q (2X + 4) · β is not in p

q · I. But this is same as checking that (2X + 4) · β
is not in I, since R is an integer domain.

10 This has/can been computed by hand, but has also been confirmed by a number
theory software.
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To prove (v), note that (4, X+2) · (2, X) = (8, 2(X+2), 4X,X(X+2)). This
is easily seen to be same as (8, 2(X + 2), 4(X + 2), X2 + 2(X + 2)− 4 + 8), and
hence is same as (8, 2(X + 2), X2 + 4) = I.

B Characterization of Dual Ideals

Lemma 2.10 (repeated) For an ideal I of O with basis B(I)

i) the dual I∨ is the Z-span of (V >V )−1B(I)−>,

ii) the matrix det(B(I)) ·det(V >V ) · (V >V )−1 ·B(I)−> is an integer matrix,

iii) the dual I∨ is a fractional ideal of O.

Proof. For part (i), since the dual I∨ is the pre-image (under V ) of the com-
plex conjugate of L(I)∨, and the latter has Z-basis V −HB(I)−H , the matrix
(V >V )−1B(I)−> forms a Z-basis for I∨ .

For part (ii), we only need to show that (V >V ) is integer, since B(I) is

always an integer matrix for I ⊆ O. Consider its entry (V >V )i,j =
∑n−1
k=0 z

i+j
k .

We argue that the power sums of roots, pt =
∑n−1
k=0 z

t
k, is an integer for 0 ≤

t ≤ 2n. Note that the coefficients of f(X) =
∏n−1
t=0 (X − zt) =

∑n
t=0 etX

t are
elementary symmetric polynomials et = et(z0, . . . , zn−1) in the roots of f(X).
Starting from p0 = n and p1 = e1 ∈ Z, by Newton’s identity, every power sum
pt is an integer linear combination of {p0, . . . , pt−1} and

{
e0, . . . , emin(t,n)

}
.

Now we prove (iii). We need to show that for every g ∈ O and a ∈ I∨, g∗a is
in I∨, i.e. for all b ∈ I, Tr(g ∗a ∗b) is integer. By commutativity of polynomial
multiplication, this is same as requiring that Tr(a∗g∗b) is integer. But c = g∗b
is in I, as it is an ideal, and hence Tr(a∗c) is an integer as a is in I∨ and c is in
I. Thus, I∨ is closed under multiplication by O. Now, again by commutativity,
for every d ∈ O, dI∨ is also closed under multiplication by O. Thus (iii) follows
from (i) and (ii).

Let f(X) =
∑n
i=0 fi ·Xi with fn = 1. Take its derivative f ′(X) =

∑n−1
i=0 (i+

1) · fi+1 ·Xi. First, notice that f ′(X) is invertible in RQ = Q[X]/(f(X)).

Proposition B.1. Given f(X) with all distinct roots, its derivative f ′(X) shares
no common root with f(X).

The proof of the above proposition is standard. When f(X) is irreducible
over Q, it is known that f(X) has distinct roots over the complex numbers.

We now show that, the dual O∨ has the circulant matrix of the inverse of
f ′(X) as a Z-basis, and since O∨ is also a fractional ideal of O, it can also be
seen as the fractional ideal 11 generated by the inverse of f ′(X). More precisely,

11 It is well known [Conc] that the dual O∨K of the ring of integers OK of a number
field K is not always generated by the inverse of f ′(X).
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the basis matrix (V >V )−1 is same as C−1f ′ M , where M is the following n-by-n
unimodular matrix:

M =


f1 f2 · · · fn

f2
. . . fn 0

... fn
. . .

...
fn 0 · · · 0


i.e. where Mi,j = fi+j+1 if i+ j < n and Mi,j = 0 otherwise.

Lemma B.2. (V >V )−1 = C−1f ′ M .

Proof. It suffices to show that M × V >V = Cf ′ . This is equivalent to

V MV >V V −1 = V Cf ′V
−1

V MV > = Df ′ .

Here Df ′ is a diagonal matrix with (Df ′)i,i = f ′(zi) where zi’s are (complex)
roots of f(X). Next we verify that

(V MV >)i,j =

n−1∑
s=0

n−s−1∑
t=0

fs+t+1 · zsi · ztj =

n−1∑
p=0

fp+1 ·

(
p∑
s=0

zsi z
p−s
j

)

If i = j, we have

(V MV >)i,i =

n−1∑
p=0

fp+1 ·
p∑
s=0

zpi =

n−1∑
p=0

fp+1 · (p+ 1) · zpi = f ′(zi).

Otherwise when i 6= j, we have

(V MV >)i,j =

n−1∑
p=0

fp+1 ·

(
p∑
s=0

zsi z
p−s
j

)
=

n−1∑
p=0

fp+1 ·

(
zp+1
i − zp+1

j

zi − zj

)

=
f(zi)− f0 − f(zj) + f0

zi − zj
= 0.

Corollary B.3. For monic f(X), ∆f = |det(Cf ′)|.

Moreover, this particular matrix M also has an interesting property, that it
symmetricizes every circulant matrices by right multiplication:

Proposition B.4. For g(X) ∈ RQ, CgM is symmetric.

Proof. Recall that the circulant matrix Cg is diagonalized by similarity trans-
formation of the Vandermonde matrix V of f(X): Dg = V CgV

−1.Thus, CgM
= Cf ′×C−1f ′ CgM = Cf ′×Cg×C−1f ′ M = Cf ′×Cg×(V >V )−1 = Cf ′(V

>V )−1

× V >V Cg(V
>V )−1 = M × V >DgV

−> = MC>g .
We claim that CgM is symmetric since M is symmetric.
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Lemma 2.13 (repeated) For any ideal I of O, where f(X) is irreducible and
of degree n,

√
n · det(I)1/n ≤ λ1(I) ≤

√
n · det(I)1/n ·

√
∆

1/n
f

Proof. The upper bound follows as usual by Minkowski bound and definition
of ∆f . The lower bound is proved similarly to the proof of a similar lemma for
OK [PR07]. In more detail, any w ∈ I can be viewed as a polynomial w(X) (over
Q) with circulant matrix Cw. Moreover, every column of Cw can be viewed as a
polynomial that is in the ideal I. Thus, Cw can be generated from the Z-basis
of I as Cw = B(I)M, where M is an integer n × n matrix. Now, det(Cw) is
same as det(Dw) where Dw is the diagonal matrix with diagonal the vector
V w (see equation (1)). Since, by above, det(Cw) ≥ det(B(I)), we have that∏
i(V w)i ≥ det(B(I)).

Now, ‖w‖ is same as
∑
i |(V w)i|2, which by arithmetic mean being no less

than the geometric mean implies that

‖w‖2 ≥ n

(∏
i

|(V w)i|2
)1/n

,

and combining with the previous inequality, the lower bound follows.

We now give a counterpart of [PRS17, Lemma 6.9], which capitalizes on the
fact that the norm of an ideal is same as the determinant of any of its Z-basis.

Lemma B.5. For any ideal I of O, and r ∈ G, where

c :=

(
n∏
i=1

ri

)1/n

· (det(I) ·∆f )
−1/n ≥ 1,

we have r ≥ ηε(L(I)) for ε = exp(−c2n).

Proof. Let R be diag(r), and Lr = R−1 ·V · L(I), so that L∨r = R · (V · L(I))∨.
Since, the dual ideal I∨ is the pre-image (under embedding V ) of the conjugate
of L(I)∨, any non-zero w in L∨r has the form R · conj(V w), for w ∈ I∨.
Claim: for w ∈ I∨,

∏
i(V w)i ≥ ∆−1f · det(I)−1.

Proof of Claim: We proved in lemma 2.10 that I∨ is a fractional ideal of O. that
is Z-spanned by (V >V )−1I−T . Thus, any w ∈ I∨ can be viewed as a polynomial
w(X) (over Q) with circulant matrix Cw. Moreover, every column of Cw can
be viewed as a polynomial that is in the ideal I∨. Thus, Cw can be generated
from the Z-basis of I∨ as Cw = (V >V )−1I−TM, where M is an integer n× n
matrix. Now, det(Cw) is same as det(Dw) where Dw is the diagonal matrix
with diagonal the vector V w (see equation (1)). Since, by above, det(Cw) ≥
det(V >V )−1 · det(I)−1, we have that

∏
i(V w)i ≥ det(V >V )−1 · det(I)−1.

Since det(V >V ) is exactly ∆f , the claim follows,
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Thus, for any w in L∨r , ‖w‖ is same as
∑
i r

2
i · |(V w)i|2, which by arithmetic

mean being no less than the geometric mean implies that

‖w‖2 ≥ n

(∏
i

r2i · |(V w)i|2
)1/n

,

which from the above claim and the hypothesis of the lemma implies that
‖w‖2 ≥ c2n, so that λ1(L∨r ) ≥ c

√
n. Lemma 2.7 then implies that 1 ≥ ηε(Lr),

or equivalently r ≥ ηε(L(I)).

Remark. Note that det(V >V ) is exactly ∆f , and for special case I = O∨,
we know that it is generated by (V >V )−1 and hence det(I) = det(V >V )−1.

Consequently, det(O∨) ·∆f = 1, and c = (
∏n
i=1 ri)

1/n
. Since, the above lemma

is used in proof of lemma 5.4, applied to arbitrary ideals in O, the determinant
of (any basis) of these ideals is an integer and hence larger than det(I). Thus,
c will only be smaller than the c for the case of O∨, and hence a smaller ε is
obtained.

C Introduction to Dedekind Domains

A Dedekind domain is a non-trivial integral domain in which every non-zero
fractional ideal is invertible. An ideal is called proper if it not same as (0) or
(1). A major theorem of Dedekind domain states that every proper ideal of a
Dedekind domain can be uniquely (upto re-ordering) factored as a product of
proper prime ideals (see e.g. [FT91] or [Cla84]). Further, every proper prime
ideal is a maximal ideal.

Let R be a subring of a ring R′. An element x ∈ R′ is said to be integral
over R if it satisfies a monic polynomial equation, where the polynomial has
coefficients in R. The ring of integers, denoted OK of a number field K are
elements of K that are integral over Z. It is well-known that the ring of integers
OK of a number field is a Dedekind domain (see e.g. [FT91]).

For a prime number p, if an ideal a of OK contains the ideal (p) (of OK),
we say that a lies above p. Another well-known property of Dedekind domains
is that every prime ideal of OK lies above some prime p. An alternative equiv-
alent definition of Dedekind domain is that it is an integrally-closed Noetherian
domain in which every nonzero prime ideal is maximal.

For any ideal a of the Dedekind domain OK, the (absolute) norm of a, N(a),
is defined to be [OK : a], i.e. the cardinality of the residue class ring OK/a. We
state the following facts as a lemma (see any text on algebraic number theory
for proofs, for instance [FT91])

Lemma C.1. (i) Let p denote a non-zero prime ideal of OK and let r be a
positive integer. Then, we have an isomorphism of additive groups: OK/p ∼=
pr/pr+1 (see II.1.16 of [FT91]).

(ii) For a prime ideal p, N(pr) = (N(p))r.
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(iii) For any two non-zero ideals a, b of OK, N(ab) = N(a)N(b).
(iv) If a is a prime ideal of OK lying above prime p, then OK/a is a field extension

of finite field Zp of some finite degree e. Further, N(a) = pe. (see (II.1.37)
of [FT91]).

(v) The norm of a principal ideal (a), N((a)), is same as the (absolute value of)
field norm of a, i.e. NOK/Q(a). (see (II.1.38) of [FT91], and see section 2.4
for definition of field norm).

(vi) The discriminant of any monic irreducible polynomial f(X), ∆f , divides
[OK : R]2, where K = Q[X]/(f(X)) and R = Z[X]/(f(X)) (see (II.1.39)
of [FT91]).

(vii) The norm of an ideal a of OK is same as the (absolute value of) determinant
of any Z-basis of a. (see (II.1.39) of [FT91]).

D Introduction to Ring of Integers of Cyclotomic Fields

In this section, we restrict ourselves to cyclotomic fields, i.e. where f(X) is a
cyclotomic polynomial. Recall, a complex number ζ is a primitive m-th root of
unity, if its order is exactly m. The m-th cyclotomic polynomial is defined by

Φm(X) =
∏

(X − ζ)

where the product runs over the different primitive m-th roots of unity ζ. Since,
such primitive roots lie in a splitting extension field E (over Q) of Xm − 1,
the primitive roots are exactly the generators of the cyclic group of order m;
thus degree of Φm(X) is exactly the Euler totient function φ(m). It is well-
known that cyclotomic polynomials are irreducible in Q[X]. The cyclotomic field
Q[X]/(Φm(X)) will be denoted by Q[m].

We have the following well-known identities.

Xm − 1 =
∏
d|m

Φd(X)

Φm(X) =
∏
d|m

(Xd − 1)µ(m/d)

Φpr (X) =
Xpr − 1

Xpr−1 − 1
=

p−1∑
i=0

Xipr−1

where µ(·) is the mobius function, p is a prime, and r ≥ 1. It follows that Φm(X)
is always a polynomial over the base field Q.

We also have the following lemma, whose proof can be found in any text in
algebraic number theory, for instance (VI. 1.14) of [FT91].

Lemma D.1. If m = m1m2 with (m1,m2) = 1, then Q[m] is the compositum
of arithmetically disjoint fields, i.e.

Q[m] ∼= Q[m1]⊗Q Q[m2]

OQ[m]
∼= OQ[m1] ⊗Z OQ[m2]
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It is well-known that the ring of integers OK of a cyclotomic field is same
as the polynomial ring Z[X]/(Φm(X)). Below, we give an easy proof of this fact
using Dedekind index theorem. This polynomial ring will also be referred to as
the m-th cyclotomic ring. Recall, in section 2, we defined the discriminant of
a separable polynomial f(X) to be the square of the determinant of the vander-
monde matrix of f(X). When f(X) is a cyclotomic polynomial, the discriminant
of the polynomial is also called the discriminant of the cyclotomic field and
denoted ∆K (as also the discriminant of the ring of integers, or the cyclotomic
ring).

Theorem D.2. For any m, the ring of integers OK of the cyclotomic field K =
Q[X]/(Φm(X)) is same as the polynomial ring R = Z[X]/(Φm(X)). Thus, R is
a Dedekind domain.

Proof. By lemma D.1, we are reduced to proving the theorem for m that are
prime powers, i.e. m = qr, for some prime q and positive integer r. It is well
known12 that a prime p divides [OK : R] only if p2 is a factor of ∆Φm(X).

By corollary B.3 , the discriminant of a monic separable f(X) is same as the
determinant of the circulant matrix of f ′(X). Further, since the similarity trans-
form given by the vandermonde matrix of f(X), transforms the circulant matrix
of any g(X) to a diagonal matrix with entries g(ζi), where ζi are the roots of
f(X), one can show that ∆f1∆f2 divides the discriminant of f1(X)f2(X). Thus,
discriminant of Φm(X) divides the discriminant of Xm − 1. For m = pr, the
discriminant of Xm − 1 is easily seen to be (upto sign) a power of p. Thus,
∆Φm(X) can only be divisible by prime p. This further implies that only prime

p, if any, can divide [OK : R].
By Dedekind index theorem 2.5, for any prime p, p does not divide [OK : R]

iff p is Dedekind-special for Φm(X). Thus, we just need to check that prime p
coming from m = pr is Dedekind-special for Φm(X). Since modulo p, the power-

p map is a Frobenius map, we have that Φpr (X) = Φp(X)
pr−1

mod p. Next,
note that Φp(X) = (X − 1)p−1 mod p, by first noting that Xp − 1 = (X − 1)p

mod p. Thus, Φpr (X) = (X − 1)φ(p
r). To test the Dedekind-special property,

write Φpr (X) = (X−1)φ(p
r) +p∗ t(X). Evaluating both sides at X = 1, we note

that Φpr (X)|X=1 = p, and hence t(1) = 1 mod p. Thus t(X) is not divisible by

(X − 1) modulo p, and hence p is Dedekind special for Φpr (X).

12 ∆f = [OK : R]2 · disc(OK), and disc(OK) is an integer.
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