
Vortex : Building A Lattice-based SNARK
scheme with Transparent Setup

Alexandre Belling and Azam Soleimanian

Consensys R&D
{firstname.lastname}@consensys.net

Abstract. We present the first transparent and plausibly post-quantum
SNARK relying on the Ring Short Integer Solution problem (Ring-SIS), a
well-known assumption from lattice-based cryptography. At its core, our
proof system relies on a new linear-commitment scheme named Vortex
which is inspired from the work of Orion and Brakedown. Vortex uses
a hash function based on Ring-SIS derived from “SWIFFT” (Lyuba-
shevsky et al., FSE08). We take advantage of the linear structure of this
particular hash function to craft an efficient self-recursion technique. Al-
though Vortex proofs have O(

√
n) size in the witness size, we show how

our self-recursion technique can be used to build a SNARK scheme based
on Vortex. The resulting SNARK works over any field with reasonably
large 2-adicity (also known as FFT-friendly fields). Moreover, we intro-
duce Wizard-IOP, an extension of the concept of polynomial-IOP. Work-
ing with Wizard-IOP rather than separate polynomial-IOPs provides us
with a strong tool for handling a wide class of queries, needed for proving
the correct executions of the complex state machines (e.g., zk-EVM as
our use-case) efficiently and conveniently.

Keywords: SNARK, Ring-SIS, Self-Recursion, Wizard-IOP, Range Checks,
Lookup Proofs, Permutation Proofs.

1 Introduction

Functional Commitment Functional commitment [42] is a cryptographic
primitive in which a prover may commit to a function f and later prove evalua-
tion of f at any point. In this work, we mainly focus on two types of functional
commitments: linear commitments where f is restricted to be a linear function
and polynomial commitments where f is a polynomial. An interesting obser-
vation is that polynomial commitment is a special form of linear commitment,
since P (x) can be written as the scalar-product of two vectors (p0, . . . , pd−1) and
(1, x, . . . , xd−1), for P (X) =

∑
i pix

i.

Succinct Non-Interactive Argument of Knowledge (SNARK) Given a
binary relation R(x,w), SNARKs allow proving knowledge of a witness w such
that the relation R (usually drawn from a large family) is satisfied with respect
to a public input x. In particular, the verifier needs less time to verify the proof,

2 A.Belling, A.Soleimanian

generated by SNARK, rather than to re-do all the computations. In the last few
years, an ever-growing number of SNARK constructions have emerged, including
Groth16 [36], Plonk [5], Halo [22], Halo2 [30], Marlin [28], Spartan [46], Virgo
[55], LegoSnark [24], Hyrax [50], HyperPlonk [26], Brakedown [34], Orion [53],
Libra [52], Aurora [16], Fractal [27], Sonic [44] to cite a fraction of the existing
works.

zk-VMs and zk-EVMs In a state machine, a transition is the process of mov-
ing from an old state to a new state by reading a series of inputs and performing
sets of opcodes which are a limited and low-level set of instructions. Ethereum
is, in essence, a transaction-based state machine, where the state contains all
account addresses and their mapped account states. The Ethereum Virtual Ma-
chine (EVM) is the mechanism responsible for performing the transitions as
a succession of opcodes. zk-VMs (zk-Virtual Machines) and, more specifically,
zk-EVM (Ethereum Virtual Machine) are complex and powerful cryptographic
systems that allow one party to generate proofs assessing the correct execution of
a Virtual Machine using a SNARK scheme. The proofs can be as short as a few
hundred bytes and be verified in a few milliseconds on any platform (Groth16
[36]). For these reasons, zk-VMs have important applications in blockchain scal-
ability and blockchain interoperability. This is also the reason why this area
of research has recently seen tremendous activity in research and development:
Consensys-zkEVM [12], Cairo [32], Polygon-zkEVM [48], RISC [54], ScrollTech
[1]. However, building a system capable of proving arbitrary executions of the
Ethereum Virtual Machine is no easy task. To give an idea, the zk-EVM of
Consensys [12] models execution traces of the Ethereum Virtual Machine us-
ing hundreds of polynomials and thousands of arithmetic constraints of various
types. In this setting, the total witness size for proving the execution of a regular
block consists of hundreds of millions of field elements.

Interactive Oracle Proof Interactive Oracle Proof (IOP) is a family of ab-
stract ideal protocols in which the verifier is not required to read the prover’s
messages in full. Instead, the verifier has oracle access to the prover’s messages
and may probabilistically query them at any positions [14]. IOP protocols can be
transformed into concrete secure argument systems using a Merkle-Tree. Later
works have introduced several variants of IOP such as polynomial-IOP or tensor-
IOP, where the prover can perform polynomial evaluation queries [5] or tensor
queries [19]. Similarly, these protocols can be converted into concrete argument
systems (including SNARK) using functional extractable commitments. This
type of approach for building argument systems has proven to be fruitful and
has now become a standard.

Recursion is a technique that consists in verifying a publicly verifiable non-
interactive proof inside another argument system. This technique can be used for
building incrementally verifiable computation (IVC), proof-carrying data (PCD),
proof aggregation or further compression of proof size. [17] specifies how to in-

Vortex : Building A Lattice-based SNARK scheme with Transparent Setup 3

stantiate proof-carrying data through recursion using a pairing-friendly cycle of
elliptic curves. The following papers such as Halo [22], Halo2 [30] and Nova [40]
present several techniques to implement PCD or IVC using a (possibly non-
pairing-friendly) cycle of elliptic curves. The works of Fractal [27] and Plonky2
[49] also explore how to implement recursion for SNARKs based on hash func-
tions. In [13] the authors presented a recursion technique that specifically tar-
gets recursion over the protocol of GKR [33] and more generally any interactive
protocol whose Fiat-Shamir transform involves hashing long string in the first
round.

1.1 Our Contributions and Techniques

Wizard-IOP In Section 4, we present the Wizard-IOP framework. It can be
viewed as an extension of the notion of (polynomial-)IOP [15] (supporting more
complex queries). In this framework, the prover is allowed to send oracle-access
to multiple vectors across several rounds of interactions and the verifier may per-
form queries from a wide class. To give an idea, the verifier may send queries eval-
uating scalar-products of committed vectors or polynomial evaluations. He may
also send queries involving cyclic-shift of committed vectors or queries asserting
that two vectors are permutations of each other. Wizard-IOP allows designing
protocols in a way that contrasts with the usual polynomial-IOP techniques.
Compared to polynomial-IOP, Wizard-IOP offers a higher-level framework for
designing protocols. This makes Wizard-IOP more suitable for designing pro-
tocols that would otherwise be more complex using solely the framework of
polynomial-IOP. Most of all, the fact that Wizard-IOP supports queries with
this level of abstraction makes it seamlessly compatible with the work of the
zk-EVM specification of [12].

Arcane, a compilation framework Thereafter, Section 5 introduces the Ar-
cane Compiler, a tool that allows transforming any secure protocol specified in
the Wizard-IOP model into one that is secure in the polynomial-IOP model and
in which the verifier only queries a single opening point for all polynomials. The
techniques we use to build Arcane derive from known modular polynomial-IOPs
from past works such as Plonk, Halo2 or Cairo [5, 18, 30, 32, 31]. As the original
goal of our work is to build a succinct proof system for the zk-EVM specified in
[12], this compiler approach has numerous benefits. An important one is that it
allows specifying and implementing batching and optimization techniques that
would be a lot more complex otherwise. While the sub-protocols we employ are
not new, the succession of steps it follows is endemic to our work. The main
feature of Arcane is that it yields a single-point evaluation PIOP, allowing us to
use the output of Arcane alongside a non-homomorphic polynomial commitment
(i.e., Vortex) to create an efficient argument system.

Vortex, a lattice-based Batchable Linear Commitment (BLC) In Sec-
tion 6, we present Vortex. Vortex is a variant of the linear commitment scheme

4 A.Belling, A.Soleimanian

presented in the work of Brakedown and Orion [34, 53]. It relies on a hash func-
tion based on the Ring-SIS assumption (referred to as Ring-SIShash throughout
this work) and a systematic erasure code. The first instance of Ring-SIS-based
hash functions was introduced in [43]. It is a SNARK-friendly hash function
with linear structure defined over the ring of polynomials of degree less than d,
as Ha(s) =

∑
ai(x)si(x) ∈ R for R = Zq(X)/Xd + 1.

As mentioned earlier a linear commitment may allow a prover to open the
scalar product of a committed vector by a public vector chosen by the veri-
fier. A Batchable Linear Commitment (BLC) allows the same type of opening
for a batch of committed vectors with the same public vector. Equivalently,
we may say that a BLC allows one to commit to a matrix M and open the
matrix-vector product of M by a public vector. Vortex commitments have size
O(

√
|M |), prover time O(|M | log |M |) and verification time O(

√
|M |). The rea-

son our proving time is not linear is due to the use of the Reed-Solomon erasure
code (whose encoding algorithm requires FFT). Orion and Brakedown [53, 34]
achieve linear-time prover thanks to dedicated and optimized linear-time encod-
able erasure codes. Although we believe our techniques could be adapted to their
erasure codes, we motivate our choice with the fact that Reed-Solomon codes
are fast enough for our needs and easier to work with for recursion. We leave
this as an area of optimization to be explored in later versions of this work. We
believe that the reliance on Ring-SIS hash functions is an important novelty of
our work. This family of hash functions has the benefit of being at the same time
SNARK-friendly, comparatively as fast as standard hash functions and, most of
all, they rely on very well-studied cryptographic assumptions [2]. On the last
point, Pedersen Hashes [37] and the Sinsemillia hash function [30] also rely on
well-studied assumptions for collision resistance. Ring-SIShash compares favor-
ably to them both in native execution time and “SNARK-friendliness”. However,
(as for Sinsemillia and Pedersen hash) the function that we use is not suitable
to be used as a Random Oracle or a PRF 1.

Vortex-Transform of IOP to Argument of Knowledge It is a well-known
fact that one can transform a polynomial-IOP into a concrete argument of knowl-
edge by replacing the oracle-access to the message with linear or polynomial
commitment. To make this transformation more efficient, we equip Vortex with
a 2-step commitment phase. This approach allows dealing with interactive pro-
tocols efficiently. In an Interactive protocol (particularly an IOP), we use the
precommitment steps (first step) of the commitment for the Fiat-Shamir trans-
form but finalize the commitment at the end.

Slightly more in detail, we can pack the vectors in a single matrix W . Our
technique works even if the vectors have different sizes and are sent over during
different interaction rounds. Relying on the 2-step commitment, in the precom-
mitment step, the prover hashes each column of the matrix W using the SIS hash
function. Each of these precommitments is binding but not openable. When all
1 for instance, the hash of zero is zero

Vortex : Building A Lattice-based SNARK scheme with Transparent Setup 5

columns of W have been precommitted, the prover can start the finalization
step. During this step, the prover computes the checksum columns of W using
the erasure code and commits to them, and so it has a complete and openable
Vortex commitment to W . The finalizing step also allows Vortex to batch the
openings of vectors committed in different rounds, despite the fact that Vortex
is nothomomorphic.

SNARK via Self-Recursion. Since Vortex is interactive and has verifier com-
plexity and proof size O(

√
n), using the above compilation technique does not

yield immediately a SNARK. Indeed, being a SNARK requires polylogarithmic
proof-size and non-interactivity. To work around this problem, we use a self-
recursion technique that recursively shrinks the size of the proof to the square
root at each step. After O(log logn) steps of recursion, we obtain a protocol
with O(log logn) proof size and verification time. The proof can then be made
non-interactive in the Random Oracle model using a suitably chosen hash func-
tion. Thereafter, the obtained SNARK can optionally be compressed further
to O(1) using existing proof systems such as Groth16[36] or Plonk[5] whose
concrete proof size and verification time are tiny. The advantage of combining
self-recursion together with simple recursion is that it greatly reduces the prover
time compared to going for a simple recursion with Groth16 or Plonk. One might
say that self-recursion compresses the proof loosely but fast, while recursion with
pairing-based SNARKs compresses the proof tightly but slowly.

1.2 Related Work

In [51, 4, 8] the authors presented vector and linear commitments based on lattice
assumptions that can be combined with an IOP to build SNARK. But these
works need trusted setups, resulting in a SNARK with a trusted-setup. Moreover,
they use new (falsifiable) assumptions, all new variants of SIS assumption.

The work of [25] presents a functional commitment from the standard SIS
assumption. For linear commitment and polynomial commitment, the size of
the proof is linear w.r.t the length of the associated vectors. They also consider
selective-binding where the adversary must name the input on which it will
attempt to break binding before seeing the public parameters. This can be lifted
to the more realistic notion of adaptive binding (via complexity leveraging), up
to a loose reduction by a factor of the size of the input [25].

The work of [21] presents a commitment based on techniques inspired by
the work of Bulletproof [23] (to prove the correctness of scalar-product) that
imposes overheads on the choice of the SIS instance due to the “slack” (that
is, the ratio between the original committed vector and the extracted one [21]).
This construction can be extended to our linear commitment (by applying Bul-
letproof twice: once over the commitment, once over the scalar product), but as
mentioned, with the cost of larger parameters.

The work [10] presented a sublinear argument system (which may not be
considered SNARK based on the definition of succinctness) based on lattices.
Furthermore, their scheme also has “slack”.

6 A.Belling, A.Soleimanian

To the best of our knowledge, our work is the first to present a transpar-
ent IOP-based SNARK relying on well-studied assumptions from lattice-based
cryptography.

In Orion [53], the authors adapt the linear-commitment of Brakedown [34]
that has a large proof size and then built a proof composition technique to reduce
the proof size of their linear-commitment from square root to polylogarithm size.
They also use optimized erasure codes to work with any field (including non-
FFT-friendly fields). There are two main steps in the proof. First, the prover
sends a commitment to a vector u′. Then, she runs a second generic SNARK to
prove that she knows a witness W (batch of vectors) that is consistent with u′ at
some random positions Q. The generic SNARK should prove the encoding and
scalar product used during the protocol. They use a SNARK with quasi-linear
prover-time and polylogarithmic proof size in the length of vectors (number of
rows in W). Since the generic SNARK that they use is itself a code-based scheme
possibly using a different code, the author named this technique code-switching.

Similarly to Orion, we decrease the size of the proof, but with a different
and specific (rather than generic) technique. We benefit from the linear form
of Ring-SIShash to provide a proof for correct computation of the hashes and
the scalar products that occur during the protocol verification. This arises new
queries that are already supported by Wizard-IOP that again uses our linear
commitment scheme with possibly different parameters. Hence the name “self-
recursion” rather than “recursion”. Compared to the code-switching of Orion [53],
our self-recursion technique not only allows using codes with a different rate but
it also allows using a different lattice for the hashes (lattice-switching).

1.3 Overview of Vortex and its Self-Recursion

Vortex As for [53] and [34], the Vortex construction is rather simple and can
be succinctly described. Assume that P and V are, respectively, the prover and
the verifier. First, we elaborate on the commitment procedure. The prover com-
mits to a matrix W of size n as follows. P starts by encoding the rows of the
matrix using a systematic erasure code to obtain a new matrix W ′. The prover
then hashes each column of W ′ and sends them to the verifier as a commitment.
Thereafter, the verifier wishes to know if u = l · W for some vector l drawn
at random. The verifier encodes u to u′ using the erasure code and randomly
queries the openings of t columns of W ′. For the opened columns, the verifier
checks two things: (1) whether the alleged columns openings are consistent with
the corresponding hash values from the commitment and (2) whether the scalar-
product of l and the chosen columns are consistent with u′.

The above description is the same as the linear commitment in Brakedown
[34] and Orion [53]. However, the first difference is that we explicitly use Ring-
SIShash for the columns of W ′. SIS hash can be seen as a variant of the
SWIFFT hash function [43]. Its internal machinery is summed up in the fol-
lowing. Let v ∈ Fm be a vector to hash, and R be a polynomial ring. First,
the bits of v are rearranged in a vector vb of limbs of log b bits each (b is a

Vortex : Building A Lattice-based SNARK scheme with Transparent Setup 7

parameter of the hash function). In its turn, vb is embedded in a vector of poly-
nomials w = (w1, w2, · · · , wm) ∈ Rm such that each entry of vb corresponds
to a coefficient in w in order. Given a randomly sampled public hashing key
A = (A0, A1, · · · , Am) ∈ Rm, the digest hv is obtained as the coefficients of the
polynomial

hv(X) =
∑

i

Ai(X)wi(X)

.
The second difference is that our construction explicitly requires a systematic

erasure code. Consequently, all columns of W are contained in the columns of
W ′. This fact allows to precommit to a subset of the columns of W (by sending
their Ring-SIShash) and later finalize the commitment by sending the remaining
columns of W ′ (finalization). This property is what we call a 2-step commitment
procedure and it is key to efficiently converting polynomial-IOPs into concrete
interactive argument systems 2. Additionally, we exploit the fact that, in our case,
the vector l has a tensor structure, to develop a technique to pack large vectors
whose size is a multiple of the size of W . Our protocol conversion technique
Vortex Transform only applies to polynomial-IOPs where the polynomials are all
evaluated at the same points. Nonetheless, the Arcane compiler always outputs
protocols with this property. Finally, the Vortex Transform (as Brakedown and
Orion) is made flexible enough to work with vectors of various sizes thanks to
the fact that we can fold them into a matrix.

Self-recursion In order to convert Vortex-transform of (P)IOP protocols into
SNARKs, we develop a technique that we call self-recursion. At a very high level,
we design a Wizard-IOP for verifying Vortex proofs. This Wizard-IOP can on its
turn again be compiled through the Arcane compiler and Vortex. As a result, we
obtain a shorter proof at the cost of a small overhead on the prover time. This
operation can be repeated, and after O(log logn) iterations, we obtain a short
interactive proof which can be compiled into a SNARK using the Fiat-Shamir
transform. Our self-recursion technique relies heavily on the fact that Vortex’s
verifier uses Ring-SIShash for hashing the columns and the Reed-Solomon code
to encode the alleged evaluations u. Indeed, these two operations are amenable
to cheap arithmetization and probabilistic tests (due to their linear structures).
Thus, they allow a very efficient recursion procedure. Among the various tech-
niques that we use, we highlight the Horner Protocol a dedicated Wizard-IOP
for proving that a vector of polynomials whose coefficients are packed into a
committed vector evaluates into another committed vector. This is a protocol
specific to the SIS setting (polynomials in the SIS), that can prove the correct
opening of many SIS polynomials in a batch without outputting the openings
themselves. More precisely, as an observation, as we use the openings of SIS
polynomials internally, the prover does not require sending the openings. Prov-
ing knowledge of their correct computations is enough.

2 We remind the reader that using l = (1, x, x2, · · ·) converts Vortex into a polynomial
commitment scheme

8 A.Belling, A.Soleimanian

2 Preliminaries

Here we define the syntax of our main building blocks; SNARK and Polynomial
Commitment.

2.1 Argument of Knowledge

We define Rλ to be a relation generator (i.e., R ← Rλ) such that R is a poly-
nomial time decidable binary relation. For R(x;w), we call x as the statement
and w as the witness. We show the set of true statements by LR = {x :
∃ w R(x;w) = 1}. The definitions in this section are mainly borrowed from
[36].
Definition 1 (non-interactive Argument for Rλ). A Non-Interactive Ar-
gument for Rλ is a tuple of three p.p.t. algorithms (Setup,Prove,Verify) defined
as follows,

– σ ← Setup(R): on input R ← Rλ, it generates a reference string σ. All the
other algorithms implicitly receive the relation R.

– π ← Prove(σ, x, w): it receives the reference string σ and for R(x;w) = 1 it
outputs a proof π.

– 1/0← Verify(σ, x, π): it receives the reference string σ, the statement x and
the proof π and returns 0 (reject) or 1 (accept).

Definition 2 (Completeness). Completeness says that given a true statement
x ∈ LR, the prover can convince the honest verifier; for all λ ∈ N, R ∈ Rλ, x ∈
LR:

Pr [1 = Verify(σ, x, π) : σ ← Setup(R), π ← Prove(σ, x, w)] = 1

Definition 3 (Soundness). An argument of knowledge is sound if it is not
feasible to convince the verifier of a wrong statement. More formally, for any
non-uniform p.p.t. adversary A we have,

Pr[1 = Verify(σ, x, π) ∧ x /∈ LR : R ← Rλ, σ ← Setup(R), (x, π)← A(σ)] ≈ 0

Definition 4 (Knowledge-Soundness). Knowledge-Soundness strengthens the
notion of soundness by adding an extractor that can compute a witness from a
given valid proof. The extractor gets full access to the adversary’s state, includ-
ing any random coins. Formally, for any non-uniform p.p.t adversary A there
exists a non-uniform (expected polynomial time) extractor XA such that:

Pr
[
1 = Verify(σ, x, π) ∧R(x;w) = 0 : (R, z)← Rλ, σ ← Setup(R),

((x, π), w)← (A ∥ XA)(σ, z)

]
≈ 0

The advantage of the adversary in the knowledge-soundness game (the prob-
ability on the left side) is called knowledge-error.3

3 Although, we only use the notion of knowledge-soundness throughout this work. The
reader should be aware, a more general notion exists, witness-extended emulation.
Where the extractor also outputs an (indistinguishable) transcript of the protocol.

Vortex : Building A Lattice-based SNARK scheme with Transparent Setup 9

Compared to a non-interactive argument of knowledge, a succinct non-interactive
argument of knowledge, or SNARKs, adds a requirement of succinctness. In short
and informally, the proof and the verifier time must be small compared with the
witness of the relation being proven. We adopt a broad notion of succinctness by
only requiring the polylogarithmic proof size and verifier runtime in the witness
size.

Definition 5 (Succinctness, SNARK). A non-interactive argument system
X for a relation Rλ is succinct if the size of the proof π produced by the prover
and the run-time of the verifier is O(polylog|w|), for all relations R drawn from
Rλ. A non-interactive argument system with this property is called SNARK.

2.2 Roots of unity and Lagrange polynomials

Let Fq be a finite field of prime order q. We call the roots of the polynomials
Zk(X) = Xk − 1 the k-th roots of unity. Together, they form a multiplicative
subgroup Ωk of F∗

q , provided that k|q − 1. We say that Zk(X) = Xk − 1 is the
vanishing polynomial of Ωk.

We assume k is a power of 2, for each subgroup Ωk′ of Ωk (thus, k′|k), we
have ω′ = ωk/k′ where ω and ω′ are the generator of Ωk and Ωk′ (res.).

For any subgroup Ωk, the collection of polynomials given by (Lω,Ωk
(X))ω∈Ωk

forms the Lagrange basis for polynomials of degree k − 1 where,

∀ω ∈ Ωk : Lω,Ωk
(X) = ω(Xk − 1)

k(X − ω)

Let v = (v1, · · · , vk) be a vector of Fk. We call v(X) the polynomial encoding
v and we will often implicitly refer to a vector and its polynomial encoding with
the same notation.

v(X) =
∑

i

viLωi,Ωk
(X) = Xk − 1

k

∑
ω∈Ωk

ωvi

X − ω

When k is implicit, we use ω,Ω and Lω instead of ωk, Ωk or Lω,Ωk
for con-

venience in our notations.

Definition 6 (Domain selector). We define the (sub)domain-selector as the
polynomial Zn,kn(X) that is 1 over the subgroup Ωn of Ωnk, and zero else.
Namely, we have Zn,kn(X) =

∑n−1
j=0 Lωkj ,Ωkn

(X) and ω (res. ωk) being the
generator of Ωnk (res. Ωn).

2.3 Polynomial commitment

We conveniently adapt the definition of polynomial commitment given by [5,
18] (to its non-interactive version) to match the formalism of the present docu-
ment. Formally, a polynomial commitment is a tuple of p.p.t. algorithms (Setup,
Commit, Prove, Verify) where,

10 A.Belling, A.Soleimanian

– pp← Setup(1λ, t) generates the public parameters pp suitable to commit to
polynomials of degree < t. It is to be done by a trusted authority.

– C ← Commit(pp, P (X)) outputs a commitment C to a polynomial P (X) of
degree at most t using pp.

– (x, y, πx)← Prove(pp, P (X), x) outputs (x, y, πx) where πx is a proof for the
evaluation of y = P (x).

– 0/1 ← Verify(pp, C, x, y, πx) verifies that y = P (x) is the correct evaluation
of the polynomial committed in C.

Here we define the correctness and the security of a polynomial commitment
scheme.

Definition 7 (Correctness). We say that a polynomial commitment scheme
has (perfect) completeness if for all P (X), t, λ, x,

Pr

 1← Verify(pp, C, y, π) :

pp← Setup(1λ, t)
C ← Commit(pp, P (X))
π ← Prove(pp, P (X), x)
y = P (x)

 = 1

Definition 8 (Secure polynomial commitment [18]). A polynomial com-
mitment (Setup, Commit, Prove, Verify) is secure if it is knowledge-sound w.r.t
the relation,

R = {(x, y;P (X)) : P (x) = y}

2.4 IOP and Polynomial-IOP

An interactive oracle proof (IOP) for a relation R(x,w) is an interactive proof
in which the verifier is not required to read the prover’s messages in their en-
tirety; rather, the verifier has oracle access to the prover’s messages, and may
probabilistically query them. In Polynomial IOP the messages are polynomials
and the verifier has oracle access to the evaluation of polynomials on the queried
points.

2.5 Erasure code

Definition 9. Let Σ be the alphabet. A code C of size k over Σ is a collection
of words (codewords) of k element from Σ. Let h : Σk×Σk → N be the hamming
distance defined over Σk. A code has minimal distance d if for all distinct pair
of codewords wi, wj we have that h(wi, wj) ≥ d.

Definition 10. Let F be a field and the alphabet. A code C is linear if linear
combinations of codewords are also codewords. More precisely, if it is a vector
subspace of Fk.

Vortex : Building A Lattice-based SNARK scheme with Transparent Setup 11

Definition 11. An erasure correction code is a tuple (C,EncodeC ,DecodeC).
Where C is a code of size k over an alphabet Σ, Encode is an algorithm that
defines a function Σn → C where n < k. We call Σn the message space. Decode
is an algorithm that can correct up to d erasures from a codeword and recovers
the original message word. The fraction k/n is known as the rate of the code.

Definition 12 ((Systematic) Reed-Solomon code). is a family of erasure
codes with O(nlogn) encoding time (for messages of length n) where the encoding
is as follows. Let v be the message and |v| = n. It builds the polynomial interpola-
tion to the entries of v over (ωi)n−1

i=0 i.e., v(X) =
∑

i viLi(X). Then, it evaluates
this polynomial over k − n more points. Namely, v(ωj) for j = n, . . . , k − 1. We
call the vector Checksumv = (v(ωj))n′−1

j=n as the checksum. The codeword associ-
ated with v is (v||Checksumv).

2.6 A General Security Proof for Sub-Protocols

Apart from the security of Vortex that follows naturally from the proof in Brake-
down and Orion [34, 53], but based on the collision resistance of Ring-SISHash,
all the sub-protocols that we use (particularly the one for the self-recursion)
are secure following the same reasoning. This reasoning heavily depends on
Schwartz-Zippel Lemma.

Lemma 1 (Schwartz-Zippel Lemma). Let P (X) be a non-zero polynomial
of degree d over a field F. Let S be a finite subset of F and let r be selected at
random from S. Then

Pr[P (r) = 0] ≤ d/|F|

Throughout the paper, we always represent the sub-protocols in the PIOP
framework. This would allow us to argue their security in a general manner.

Lemma 2 (Knowledge-Soundness of PIOP). A PIOP is knowledge-sound
if it can reduce the claim equivalently to Global constraints and if the size of the
finite field is large enough (to have negligible probability d/|F| in Schwartz-Zippel
Lemma, |F| should be large).

It is well-known that a PIOP can be transformed into a concrete AOK by
replacing the oracle with a polynomial commitment, for such AOK we have,

Lemma 3 (knowledge-soundness of AOK). If the PIOP and the polynomial
commitment are knowledge-sound, then the AOK is knowledge-sound as well.

Security Analysis of Sub-Protocols.
Initially, all our sub-protocols are presented in the PIOP framework, where

the claim is (equivalently) converted to local and global constraints over the poly-
nomials (and over a large domain). From there by the Schwarts-Zippel Lemma,
the constraints are satisfied if and only if the constraints are satisfied over a sin-
gle random point. This guarantees that the PIOP is knowledge-sound. Then, one

12 A.Belling, A.Soleimanian

uses a polynomial commitment to convert PIOP to AOK, this is what converts
the sub-protocols in the ideal PIOP model to a concrete AOK which can be used
in our construction. The resulting sub-protocols are knowledge-sound thanks to
the fact that polynomial commitment and PIOP are knowledge-sound.

Putting everything together, all the sub-protocols are knowledge-sound thanks
to the Schwarts-Zippel lemma (and equivalence of claim with constraints) and
knowledge-soundness of polynomial commitment.

3 Overview of compilation

We present here the set of techniques we use for proving the execution of a
zk-EVM. Namely, the zk-EVM of [12] is formalized in a high-level constraint
language, and we translate it into a concrete proof system producing proofs that
are verifiable on the Ethereum network. As outlined in Fig. 1, we organize this
transpilation process around 4 major axis: the Wizard-IOP model, the Arcane
compiler, the Vortex commitment scheme and a self-recursion technique.

Vortex

Arcane
Compiler

Single-Point
PIOP

Wizard-IOP

Argument of Knowledge

Vortex
Transform

Self
Recursion

Fig. 1. Global structure of the prover

4 Wizard IOP

As mentioned, in an IOP protocol[15] a prover P sends oracle access to (possibly
large) messages to a verifier V. The verifier then can send certain kinds of queries
(from a small family) to the oracle. Several variants of IOP exist in the literature.
In particular, polynomial-IOP [44], [28], [5] is a model where all prover messages

Vortex : Building A Lattice-based SNARK scheme with Transparent Setup 13

are viewed as polynomials and the verifier may query evaluation of these poly-
nomials at random points of his choice. More recent works study tensor-IOP [19]
protocols in which the verifier is granted the right to query scalar-products of
the prover’s messages (seen as vectors over a field) by random vectors with the
restriction that these vectors must have a tensor structure.

Wizard-IOP is a model pushing this perspective on IOP a bit further. Here,
the prover may send oracle access to vectors over a given field and the verifier is
allowed to perform queries chosen from a wide class. As we explain later in this
section, these queries can involve several polynomials or “abstract references” to
them. We elaborate on the notion of “abstract reference” later, but to give an ini-
tial idea: taking the “cyclic shift” of a vector v would be considered an “abstract
reference”. The backbone idea behind Wizard-IOP is that it lets us specify ever
more complex protocols in the simplest possible way, while intermediate protocol
design techniques (such as proving a lookup relation or a permutation relation)
are treated as automatable compilation steps. Subsequently, instead of mentally
building modular protocols from the bottom up using the notion of univariate
queries as atoms of a more complex system, the framework of Wizard-IOP allows
specifying protocols with a top-down approach. We start from abstract proto-
col, and we work out an optimized polynomial-IOP throughout the steps of the
Arcane Compiler Section 5. While this simplifies protocol specification and secu-
rity analysis, it also allows automating optimizations and batching techniques.
Most of all, the zk-EVM arithmetization specified in [12] involves hundreds of
polynomials and thousands of constraints. It would be unthinkable to unfold all
the sub-protocols and optimization techniques that we would need to present a
concrete polynomial-IOP for this arithmetization. But since their description is
written in a formalism closely matching the Wizard-IOP model, we can directly
transpile their arithmetization into a Wizard-IOP. Besides, thinking in terms of
compilation steps rather than sub-protocols helps to maintain our work. Assume
a new (purely hypothetical) batching technique for “range-check” is discovered
and improves the prover’s runtime by a factor of 2, then we can simply add it
in the compiler and this will echo on every Wizard-specified protocol. Similarly,
if a vulnerability is found in one of the techniques, fixing a compiler step will fix
all protocols using it without any risk to forget any part.

4.1 Available queries

We hereby list and describe the queries available to V.

Range check Given a bound B known beforehand. The query is made over a
vector v, the oracle responds 1 if and only if all entries vi of v satisfy 0 ≤ vi < B.
We shall denote the range checks as, “Range” : v < B.

Inclusion check Given two lists of vectors (seen as matrices) S and T all rows
in S should be included among the rows of T , ignoring multiplicity. We denote
the inclusion query as, “Inclusion” : S ⊂ T .

14 A.Belling, A.Soleimanian

Fixed Permutation check Given two lists of vectors (seen as matrices) and
any (imposed) fixed permutation σ, we have that the row i in S must equal the
row σ(i) in T . If so, the oracle returns 1, else 0. Thus, S and T are expected
to have the same number of rows. We denote a fixed permutation check as,
“FixedPermutation” : S ∼σ T .

Permutation check Given two lists of vectors (seen as matrices) S and T all
rows in S should be included among the rows of T (and vice-versa), accounting
for multiplicities. Thus, S and T are expected to have the same number of rows
(note that in fixed permutation queries, σ is imposed. Here we just want to prove
that σ exists, whatever it is). We denote a permutation query as, “Permutation”:
S ∼ T .

Scalar-Product Given two vectors a and b and the scalar c, the oracle returns
1 iff ⟨a|b⟩ = c. For the scalar-product check ⟨a|b⟩ = c, we use the notation,
“ScalarProduct” : ⟨a|b⟩ = c.

Local Constraint The oracle returns the values for the queried positions and
the verifier expects that these values satisfy a specific relation. As an example,
let u, v be two vectors to which we have oracle access. We may send the local
constraint query “Local”: u[0]− 2v[1] == 0 to ask the oracle if the first entry of
u equals the double of the second entry of v. We may conveniently express local
constraints over polynomials (rather than vectors) over fixed points.

Global Constraint Given a k-variate arithmetic expression C whose (total)
degree should be reasonably low and a list of k vector v1, · · · , vk of the same size
n. The oracle return 1 if and only if for all i, C(v1,i, · · · , vk,i) = 0. For instance,
the global constraint “Global”: Shift(u, 1) − u = 0 asserts that “all” the entries
of u are equal to the next one. Thus, this constraint asserts that all entries of
u are equal. Again, we may express a Global constraint based on polynomials
(rather than vectors) when it is more convenient.

A global constraint is always defined over a domain of the same size as the
engaged polynomials (the one with the maximum size), Namely, for polynomials
of degree d, the global constraint should be satisfied over the domain Xd − 1.
By this fact, we may not explicitly mention the domain for a global constraint.

Univariate Evaluations (UniEval) For a vector vi of size n, let the polyno-
mial v(X) evaluates to vi on a subgroup of n-roots of unity. The oracle returns a
univariate evaluation of v(X) over a random point (random but possibly related
to other steps of the underlying protocol) chosen by the verifier. For convenience,
we will usually talk about one univariate query for multiple polynomials to let
the compiler know these are queried at the same point.

4.2 Abstract references

Abstract references are a useful way to refer to vectors that are directly derived
from pre-existing committed vectors. These operators can be combined with one

Vortex : Building A Lattice-based SNARK scheme with Transparent Setup 15

another and can be used as the object of a query. One might send a range check
query for a subsample of a committed vector v rather than on the entirety of
the positions of v for instance. Note that abstract references are neither queries
nor they are committed vectors but they can be seen as a way to make queries
about committed vectors more expressive.

Subsampling Given access to a vector v of size n, an offset i and a sampling
period k such that k|n and i < k. Returns the vector of size n/k obtained by tak-
ing all the elements vjk+i for all j < n/k. We use the notation Subsample(v; i, k)
to denote the subsampling from v with offset i and period k.

Interleaving Given access to k committed vectors v1, · · · , vk, returns a reference
to the vector obtained by interleaving them (e.g., for the vector a = (a0, . . . , an)
and b of the same size, the interleaving is (a0, b0, a1, b1, . . . , an, bn)). We use the
notation Interleaving(a, b) to designate the obtained vector.

Cyclic Shifting Given a vector v and an integer k (possibly negative). Returns
a cyclically shifted version of v by k elements. We may use the notation Shift(v; k)
to refer to the obtained vector.

Repeating Returns a k fold repetition of the input vector v.

5 Arcane Compiler, Polynomial IOP from Wizard IOP

The Arcane compiler transforms Wizard IOP into a Polynomial IOP. Arcane
is organized as a sequence of compilation steps, each of them carrying a small
transformation with them. A transformation can be either a small optimization
or a reduction technique that transforms an “abstract” query into more “simple”
queries. Applying these compilations steps one after the other produces step after
step Wizard-IOP that uses fewer types of queries. To give a more tangible idea,
Arcane starts by removing the range check and converting them into inclusion
checks. Then, in their turn, the inclusion checks are converted into local, global
constraints and permutation checks and so on. In the end, Arcane outputs a
polynomial-IOP where the verifier performs one (univariate evaluation) query
on each message, all at the same point. Hence, we call the resulting protocol a
single-query Polynomial-IOP. This section discusses the compilation steps of the
Arcane compiler in sequential order. To give a brief overview, the steps happen
in the following order :

1. reduction of the Range checks
2. reduction of the Inclusion checks
3. reduction of the fixed-permutation checks
4. reduction of the permutation checks
5. reduction of the scalar-product checks
6. merging of the global constraints

16 A.Belling, A.Soleimanian

7. reduction of the abstract references
8. single-point univariate queries from multiple univariate queries and local

constraints

The techniques we present are essentially borrowed from previous works [30], [5]
and [32].

5.1 Reduction of the Range checks

Although a number of more optimized techniques for range-checks are known,
we opt for the simplest possible one in our settings. During a preprocessing
phase, we send oracle access to a vector b = (0, 1, 2, · · · , B − 1) for each bound
B appearing in the input protocol. Then, all range-checks, “Range” v < B,
are converted into inclusion checks, assessing if all entries of v are entries of b
regardless of the positions or multiplicity.

5.2 Reduction of the Inclusion checks

The technique we present is borrowed from the work of Halo2 [30]. Let {Ri}i∈[m]
and {Ii}i∈[m] be two sets of columns such that all have the same size and Ii is
included in the corresponding reference column Ri. As a convention, we use v(X)
to designate the polynomial encoding the associated vector v in Lagrange basis.
For example, by Ri(X) we mean the polynomial encoding of Ri obtained by
interpolating the entries of Ri on a domain of m-roots of unity.

Inclusion({Ii, Ri}i∈[m])

1. if m > 1 :
– Verifier samples r ← F and sends to the oracle.
– Prover and Oracle set R′(X) =

∑
i
riRi(X) and I ′(X) =

∑
i
riIi(X)

else : They set R′(X) = R1(X) and I(X) = I1(X)
2. Prover sends two polynomial R∗(x) and I∗(X) to the oracle defined in a way that

– “Permutation” : {I∗, R∗} is a permutation of {I ′, R′}
– “Local” : I∗[0] = R∗[1]
– “Global” : (I∗(ωX)− I(X))(R∗(ωx) = I∗(ωX)) = 0 (∗)

Fig. 2. Inclusion Check.

As one can see, the above construction converts inclusion constraint to per-
mutation, local and global queries.

5.3 Reduction of the fixed-Permutation checks

The technique we present is inspired by the work of [30] and [5]. Let n,m be
integers and let σ be a permutation of [n] and A = {Ai}i∈[m] and B = {Bi}i∈[m]

Vortex : Building A Lattice-based SNARK scheme with Transparent Setup 17

such that B is obtained by permuting the rows of A according to σ. As σ
is known beforehand, we give oracle-access to a signature of σ in an offline
phase. This signature consists in two vectors s = (1, ω, · · · , ωn−1) and s′ =
(ωσ(1)−1, · · · , ωσ(n−1)−1). Naturally, the same s and s′ can be reused for differ-
ent queries if suited and since the polynomial encoding of s is s(X) = X there
is implicitly no need to send it to the oracle. The compiler then replaces every
fixed permutation query on A and B by a permutation query on A′ = (A∥s) and
B′ = (B∥s′).

5.4 Reduction of the Permutation checks

Here we use the polynomial notation to denote what would be understood as
vectors in the Wizard-IOP framework. Let P1 and P2 be polynomials interpola-
tion to the same vectors up to a permutation. Namely, P1 and P2 respectively
interpolate v1 and v2 which are allegedly permutations of one another and of
length l. The technique we present is borrowed from a series of works including
[32], [5], [30] originating from the work of [11]. The intuition behind the protocol
is as follows. A polynomial P1(X) is the permutation of P2(X) if and only if
the grand-product associated with the first polynomial as

∏
i∈[l](X + v1,i) and

the one from the second polynomial i.e.,
∏

i∈[l](X + v2,i) are equal at a random
point X = α. Or equivalently

Z(α) :=
∏

i∈[l](α+ v1,i)∏
i∈[l](α+ v2,i)

= 1

The pseudocode is given in Fig. 3 where the permutation function receives two
sets of vectors {Ai}i∈[m] and {Bi}i∈[m] and highlights how Arcane converts a
permutation checks into local and global constraints.

Permutation({Ai, Bi}i∈[m])

1. if m > 1 :
– Verifier samples r ← F and sends to the oracle
– Prover and Oracle set A′(X) =

∑
i
riAi(X) and B′(X) =

∑
i
riBi(X)

else : they set A′(X) = A1(X) and B(X) = B1(X)
2. Prover sends Z(X), the unique polynomial such that

– “Local” : Z(1) = 1
– “Global” : Z(ωX)(B′(X) + α1) = Z(X)(A′(X) + α) (*)

Fig. 3. Permutation Check.

As one can see, the above construction converts permutation constraints into
local and global constraints.

18 A.Belling, A.Soleimanian

5.5 Reduction of the Scalar-Product checks

As a reminder, Scalar-Product queries reduction allows the verifier to query the
scalar product of two committed polynomials (seen in Lagrange basis). We de-
scribe a technique to efficiently reduce a batch of scalar product queries into local
and global constraints. This technique is derived from the univariate sumcheck
described in [16]. Let a(X) =

∑
i<nH

aiLωi(X) and b(X) =
∑

i<nH
biLωi(X) be

two polynomials of degree nH = |H|. We also introduce

p(X) = a(X)b(X) mod. XnH − 1 =
∑

i<nH

piX
i

then we have that
∑

i<nH
a(ωi)b(ωi) =

∑
i<nH

aibi = nHp0 = nHp(0) (due to
the relation

∑
i ω

k
i = 0 for k ̸= 0 mod nH).

This naturally gives us a technique for compiling at once a batch of k scalar-
product queries on (a1(X), · · · ak(X)) and (b1(X), · · · bk(X)) into global and lo-
cal constraints. In Fig. 4, the reader can assume that the verifier already has
oracle access to (a1(X), · · · ak(X)) and (b1(X), · · · bk(X)) and alleged scalar-
product value c• for each pair (a•(X), b•(X)) from the prover.

ScalarProduct(a1, . . . , ak; b1, . . . , bk; c1, . . . , ck)

1. the prover sends the polynomials aj(X) and bj(X) to the oracle.
2. The verifier sends a random challenge r←$F
3. The prover computes P (X) =

∑
j<k

rjai(X)bi(X) mod Xn − 1. Then, she sends
oracle access to P (X) to the verifier.

4. “Local” : sends query for P (0) and expects nH

∑
j<k

rjcj

5. “Global” : P (X)−
∑

j<k
rjaj(X)bj(X) = 0

Fig. 4. scalar-product Check

5.6 Merging the Global constraints

This simple compiler step essentially captures all the global constraints of the
input Wizard-IOP. From then on, the compiler will group these queries into
buckets according to the size of the associated domain. Coming back to the
compiler description, once all queries have been grouped in buckets, the compiler
generates a single global query per bucket by taking a random linear combination
of the queries. The main objective of this step is to reduce the overheads of the
next query.

5.7 Reduction of the Global constraints

We present a standard technique that we owe to the work of Plonk [5]. Let
v1, · · · , vk be k vectors of Fn and a k-variate arithmetic circuit C(X1, · · · , Xk) of

Vortex : Building A Lattice-based SNARK scheme with Transparent Setup 19

degree d. We denote by v•(X) the polynomials encoding v• in Lagrange basis. We
have that the global constraint is satisfied if and only if there exists a polynomial
Q(X) of degree (d− 1)n such that,

C(v1(X), · · · vk(X)) = (Xn − 1)Q(X)
Starting from this observation, the Arcane compiler runs the following procedure
separately for each global query.

ReduceGlobalConstraint(C, v1, · · · , vk)

1. The prover computes and sends oracle access to Q(X) computed as follows,

Q(X) = C(v1(X), · · · vk(X))
Xn − 1

2. The verifier samples a random coin α←$F
3. The verifier makes the following query

– “Univariate” : v1(α), · · · , vk(α), Q(α)
And checks C(v1(α), · · ·) ?= (αn − 1)Q(α)

Fig. 5. Global Constraints

5.7.1 Global constraint over subsampled vectors We may encounter
the case where one of the vectors subject to a global constraint query, say, v•
is subsampled from an oracle-given vector w. In this case, we apply a variant
of the above-described procedure. Let us assume v• = Subsample(i, p, w) where
i, f, w are respectively the offset, the period and the original subsampled vector.
We know that p = |w|/n because the global constraint requires its “inputs” to
be of size n. If we set w′ = Shift(w, i) (cyclic-shift w by i), then we have that
v• = Subsample(0, f, w′). Now, using the fact that the polynomial encoding of
w′(X) agrees with v•(X) over the n-th roots of unity, we simply use it instead
of v•(X) in the above-described procedure. As a result, the polynomial Q(X)
has degree > (d− 1)n (because w′(X) has a larger degree than v•(X)). Thus, a
drawback of this technique is that it increases the oracle complexity.

5.8 Reduction of the Abstract References

From this point on, the partially compiled Wizard-IOP only uses Local con-
straints or Univariate queries, possibly involving abstract references. We now
discuss how to “eliminate” these abstract references from the protocol. For local
constraints, it is quite straightforward. Since a local constraint involves opening
a vector at a specific point agreed on offline, we may simply shift the fixed open-
ing position accordingly.

20 A.Belling, A.Soleimanian

On the other hand, it remains to discuss how to convert univariate queries on
abstract references into univariate queries “directly” on oracle-given polynomials
(shown by P here). In the following, we summarize the possible conversions in a
list of equivalence. Since abstract references can be composed with each other,
the implicit conversion procedure must be repeated recursively.

CyclicShift(P, k)(x) = y ⇐⇒ P (ωkx) = y

Repeat(P, k)(x) = y ⇐⇒ P (xk) = y

Interleave(P1, · · · , Pk)(x) = y ⇐⇒
∑
i∈[k]

P (ω−ix)Zn,nk(ω−ix)

In the latter, n is the degree of each polynomial and Zk,nk(X) is the domain-
selector (defined in Section 2.2). Note that if the domain for Repeat(P, k) is Ωnk,
then the domain for P (X) is Ωn, the subgroup of Ωnk.

Regarding the “Subsampling”, the verifier could in theory build the polynomial
associated with the subsampling via Lagrange interpolation, but this needs many
queries to the original polynomial. Instead, we play with the form of global
constraints and follow Section 5.7.1. Therefore, in the current state of this work,
there is a small restriction: subsampling can only be used “at the top”. Namely,
“subsampling” may only be used at the “top” and cannot be used in univariate
queries directly. When we have global constraints over a subsampled vector, we
use the variant mentioned above (Section 5.7.1 by changing the domain of the
global constraint.

5.9 Single-point Univariate queries from multiple Univariate
queries and Local constraints

In the last step, the verifier makes only univariate queries, either at arbitrary ran-
dom points (univariate evaluation queries) or at fixed points (local constraints).
The goal of this step is to reduce into a protocol where all the oracle-given poly-
nomials are all queried at a single point. To achieve this, we leverage an idea of
[18] that allows batching polynomial opening in the context of the KZG poly-
nomial commitment scheme [39]. We adapt this method for polynomial-IOPs as
follows.

We assume a set of opened points S, a set of n polynomials {i ∈ [n] : Pi(X)}
each of degree di. Where Pi(X) is queried in a set of evaluation point Si ⊂ S. For
x ∈ S, let Lx,S(X) be the Lagrange polynomial corresponding with the point
x ∈ S. Finally, let Ri(X) =

∑
x∈Si

ŷx,iLx,Si
(X) be the polynomial mapping the

opening point of Si to their alleged evaluations ŷx,i. More precisely, Pi(x) = ŷx,i

and Ri(X) agrees with P (X) over Si. The compilation routine we describe in
what follows results from the observation that,

Vortex : Building A Lattice-based SNARK scheme with Transparent Setup 21

∀i ∈ [n] : (Pi(X)−Ri(X))
∏

x/∈Si

(X − x) is divided by
∏
x∈S

(X − x)

MultiPointToSinglePoint(P1, · · · , Pn, S1, · · ·Sn, R1, · · · , Rn)

1. The verifier samples α←$F
2. The prover computes and sends oracle-access to

Q(X) =
∑
i∈[n]

αi Pi(X)−Ri(X)∏
x∈Si

(X − x)

3. The verifier samples x←$F and queries
– “Univariate”: P1(x), · · ·Pn(x), Q(x)

Finally, he checks

Q(x)
∏
x∈S

(X − x) =
∑
i∈[n]

αi(Pi(x)−Ri(x))
∏

x′ /∈Si

(x− x′)

Fig. 6. Multi-point to single-point reduction procedure

6 Vortex, lattice-based linear commitment

Vortex is a variant of the commitment scheme proposed in Orion [53] and Brake-
down [34], and it relies on a lattice-based hash, which we describe in Section 6.1,
and an erasure-code. In this work, we use the systematic version of Reed-Solomon
which has encoding time O(N logN), where N is the size of the codeword. Vor-
tex allows a prover to commit successively to several vectors, (possibly across
multiple rounds of a public-coin protocol) and allows the prover to perform a
batched argument for scalar-product opening for multiple committed vectors at
once by the same public vector. This makes this commitment scheme compatible
with public-coin interactive protocols. Vortex is described in Section 6.2. Vortex
commitment and opening arguments have size O(

√
N) and the arguments have

verification time O(
√
N). In Section 7, we explain how we transform Wizard-

IOP protocols into concrete argument systems (via Vortex) and in Section 8 we
present our self-recursion technique to achieve succinctness.

6.1 Lattice-based hash

The lattice-based hash function we present relies on the Ring-SIS assumption
to achieve collision resistance. The design of our hash function is essentially the
same as the SWIFFT [43] hash function. The only concrete difference is that
the design of SWIFFT restricts the input set of the Ring-SIS inputs to be {0, 1}

22 A.Belling, A.Soleimanian

while our hash function accepts an input set of the form [0, 2n−1] (for small n).

Let q be a prime, Fq be the finite-field, b a power of two such that b < q and
d,m two positive integers such that d is a power of 2 and m > log q

log b . We consider
the ring R = Fq [X]

Xd+1 of polynomials whose coefficients lie in Fq modulo Xd + 1.
To instantiate the hash function, we need first to go through a transparent setup
phase where a Ring-SIS key is sampled. We set N = md log b

log q . A description of
the procedure is given in Fig. 7

Setup(q, m, d, b)→ pp

1. A = (Ai)i<m ←$Rm

2. return pp = A

Hash(x ∈ FN
q)

1. Encode each element of x in log q/ log b limbs li, such that ∥li∥ < b for all i.
2. Arrange the limbs li as coefficients of polynomials to obtain a vector L = (Li)i<m ∈
Rm

3. Compute the scalar product h = A · L (requiring polynomial multiplication in R)
4. return h by returning its coefficients

Fig. 7. Description of the lattice-based hash

The collision resistance and the preimage both directly derive from the Ring-
SIS and the Ring-ISIS4 problems respective to the instances (q, m, b).

If q−1|n+1, the scalar product of L ·A may be computed with the following
procedure. Let ω̄ ∈ Fq such that ω̄n = −1. Note that {ω̄2i+1} forms a coset of the
n-th roots of unity that all vanishes under Xn + 1. We can efficiently compute
the evaluations of Li and precompute the one for Ai using the Cooley-Tuckey
algorithm (also known as FFT, or NTT in the literature). In this basis, the
multiplication of polynomials coincides with the Hadamard (entry-wise) product,
and we can get h directly in evaluation before switching back to coefficient basis
in the end. Overall, the complexity of the hashing procedure is O(mn logn).
For small values of n and b, other techniques such as Tom-Cook are known to
be efficient as well. In Appendix A we recap the security analysis of this hash
function and give concrete parameters for a target bits of security.

6.2 Description of Vortex

In this subsection, we expand on the details of Vortex. We will first assume
two integers n and m. Vortex allows committing to n vectors wi ∈ Fm in a
single commitment and opening them simultaneously for scalar products with
4 Inhomogeneous SIS

Vortex : Building A Lattice-based SNARK scheme with Transparent Setup 23

a common public vector. Additionally, Vortex comes with a 2-step commitment
procedure that allows the prover to precommit separately to each wi and then
packing the commitment together in a finalization step which output a joint
commitment for all wi. The precommitment are binding but are not openable,
the finalized commitment is the one that is openable. We also highlight the dif-
ferences between Vortex and Orion along our explanations.

Let H be a lattice-based hash function (Section 6.1) parametrized to be able
to hash vectors of size (at least) m. We also use L a systematic erasure-code
with block-size n and codeword-size n′ > n. We denote its distance by d, its
rate by ρ = n/n′ and we name its encoding algorithm encodeL. One key differ-
ence with Orion [53] and Brakedown [34] here is that we additionally require the
encoding function to be systematic. This means that the original block should
be a sub-vector of the corresponding codeword. By checksum, we refer to the
part of a codeword, that is “added” aside of the original block. In practice, we
set L to be the systematic version of the Reed-Solomon code in Lagrange basis.
It hasO(n logn) encoding time and benefits from Maximal Distance Separability.

Vortex is a functional commitment scheme that allows efficient simultaneous
opening of multiple scalar-product of committed vectors and the same public
(and random) vector. The protocol consists in 5 algorithms : Setup, Precommit,
Finalize, ProveBatchOpening and VerifyBatchOpening. An important difference
here is that contrary to how the polynomial commitments of Brakedown [34]
and Orion [53] are laid out, Vortex does not have proximity-check separate from
the BatchOpening. This design choice follows from an observation made in [34]
(initially proved in [20]) that when the query is random (and we will only need
random queries), we can merge those two phases. As a result, we obtain a halving
in the proof size and verification time. Jumping a bit ahead, we are going to use
Vortex alongside (single-point) PIOP to build an AOK, and for this Vortex
processes the queries coming from (single-point) PIOP, and these queries are
random.

1. Setup is a transparent offline phase run by both the prover and the verifier.
During this phase, they perform some precomputations involving sampling
the parameters of the Ring-SIS instance and the erasure code that are used
to save some time in the other steps, as part of the public parameters.

2. The Precommit algorithm is run by the prover and simply consists in hashing
a witness vector wi of size m using the hash function and sending the result
hi to the verifier.

3. Finalize can be run by the prover once n vectors w1, · · · , wn have been pre-
committed. Let W , be the matrix whose column i is wi. Thus, W has m
rows and n columns. The prover encodes each row of W (noted W [j]) us-
ing the encoding function and obtains W ′ (which has n′ columns). Observe
that, since the encoding procedure encodeL is systematic, we have that all
columns W are also columns of W ′. Without loss of generality, we will as-
sume that W corresponds to (w′

1 · · ·w′
n), the n first columns of W ′. The

24 A.Belling, A.Soleimanian

prover then computes the hash of the columns (n+1)..n′ of W ′: hn+1 · · ·hn′

and sends them to the verifier. The collection H = h1 · · ·hn′ forms the final
commitment.

4. The batch-opening phase is an interactive protocol where the prover runs the
ProveBatchOpening algorithm and the verifier runs the VerifyBatchOpening.
At the beginning of this phase, the prover holds a set of committed witnesses
(and checksums) w1, · · · , w′

n and the verifier holds the final commitment
as input. Both also hold l ∈ Fm and u ∈ Fn, the statement, as input.
The prover’s goal is to convince the verifier that ∀i < n, ⟨wi|l⟩ = ui. The
verifier samples t columns q1, · · · qt (qi ≤ n′) uniformly at random, and the
prover responds with (s1 · · · st) = (w′

q1
, · · ·w′

qt
). Then, the verifier computes

“the folding” u′ the encoding of u and performs the following checks for all
opened columns : (1) the scalar-product ⟨si|l⟩

?= u′
qi

and (2) the hash of si

is consistent with hqi
.

Fig. 11 sums up the above,

Setup(n, m,L, λ)→ pp

1. Setup an instance of Ring-SIS, Hash corresponding to the security level λ
2. Choose t (the number of columns that should be opened later) to reach the security

level λ
3. Runs pre-computations relative to encodeL if any
4. Collect all the computed parameters in pp and return it

Fig. 8. Vortex setup

Precommit(pp, wi)→ hi

1. hi ← Hash(wi)
2. return hi

Fig. 9. Vortex precommitment

Finalize(pp, W)→ (hn+1 · · ·hn′)

1. Encode each row of W and obtain W ′

2. Hash each column w′
n+1 · · ·w′

n′ of W ′ to obtain (hn+1 · · ·hn′)
3. Return (hn+1 · · ·hn′)

Fig. 10. Vortex commitment finalization

Vortex : Building A Lattice-based SNARK scheme with Transparent Setup 25

Opening with statement (l, u)
ProveOpening(pp, W ′, l, u) VerifyOpening(pp, H, l, u)

q←$ [n′]t
← q

(s1, · · · , st)→
u′ ← encodeL(u)
for 0 < i ≤ t:
⟨si|l⟩

?= u′
qi

Hash(si)
?= hqi

Fig. 11. Vortex opening

The security of Vortex (Definition 8) follows similarly to the security proof
of Brakedown [34].

7 Vortex Transform: From PIOP to Argument of
Knowledge

In this section, we describe the mechanic of a Vortex transform that allows trans-
forming the (single-point univariate) PIOP output by the Arcane compiler into
a concrete Argument of Knowledge (AOK) in the random-oracle model.

7.1 Vortex Polynomial Commitment

Here we show how to build a polynomial commitment from Vortex. To commit
and open a polynomial P (with degree less that m) via Vortex, it is enough for
the public vector l to be of the form l = (1, x, x2, . . . , xm), while the coefficients
of P are embedded in a column of W . The prover P may send a polynomial
P whose degree is larger than the number of rows in W . In this case, it can
be folded in several chunks P (X) = P0(X) + XmP1(X) + · · · and inserts each
Pi(X) to W , so we shall call the resulting vectors u, u′ (from Vortex) “foldings”
of polynomials. The verifier can then recombine the evaluations of Pi(X) to
obtain the evaluation of P (X). The columns to be committed to in Vortex are
obtained by taking the coefficients of each polynomial Pi(X).

7.2 From PIOP to Argument of Knowledge

Note that a more trivial way to go from a PIOP to an argument system is
to (fully) commit to each polynomial separately and later open them. Here we
benefit from the “2-step” property of Vortex. Rather than committing to each
polynomial separately, we precommit to each polynomial (where this precom-
mitment can be used in the Fiat-Shamir transform) and at the end, we pack all

26 A.Belling, A.Soleimanian

polynomials in a “finalized” commitment. The details of the conversion (from
PIOP to argument system) are given below:

Let (P,V) be, respectively, the prover and verifier of (single-point) PIOP and
(P ′,V ′) the ones for AOK.

1. Add an offline phase to sample the public parameters of Vortex
2. Whenever the P sends oracle access to a polynomial P∗ to V, P ′ intercepts

the access, compute the k = deg(P∗)/m chunk polynomials P∗,1, · · · , P∗,k

and create the columns w∗,1, · · · , w∗,k to be committed. Then, P ′ computes
for all 0 < j <= k : h∗,j ← Precommit(pp, w∗,j) and forwards h∗,1, · · ·h∗,k

to V ′. The verifier V ′ can notify V that he now has oracle-access to P∗ (in
each round, they do the same for the invoked polynomials and update the
matrix W).

3. Immediately after V has received oracle-access to the last polynomial Pn in
the protocol, P ′ collects W (by concatenating all columns he has seen), runs
hn · · ·hn′ ← Finalize(pp,W) and forwards it to V ′.

4. When the verifier queries the evaluation of all polynomials at x. V ′ forwards
the query l = (1, x, x2, · · ·) to P ′ which responds with u1, · · · , un.

5. From then on, V ′ recomputes y1 · · · yn as explained above and P ′ and V ′ can
now run the interactive BatchOpening of Vortex.

8 Self-Recursion of Vortex

We explain how to delegate the verification of the verifier with knowledge sound-
ness. We benefit from the linear structure of our lattice-based hash function to
construct a self-recursion protocol for Vortex. This allows us to build a SNARK
over any FFT-friendly field.

As Vortex proofs are big (albeit sublinear) : O(
√
N), to get a SNARK, we

compress the proof via a self-recursion technique where instead of opening the
chosen columns (s1, . . . , st) and sending them to the verifier, the prover computes
the hashes and the scalar-products itself (while it has oracle access to the folding
u′ and the hash values). It sends proofs for the following facts:

– the hash values over the chosen columns are computed correctly
– the scalar-product of chosen columns and the public vector l are computed

correctly.
– the encoding encodeL(u) is correctly computed as u′.
– The opened columns are the right ones.

Concretely, self-recursion transforms the Vortex into a Wizard-IOP in which
the prover sends oracle access to the relevant messages instead of sending them
to the verifier directly (including the columns, all hash values and foldings of
the Vortex). The verifier is then tasked to perform a few queries so that he can
convince himself that the prover’s messages add up to an accepting transcript.
The resulting protocol can then be recompiled again using the Arcane Compiler

Vortex : Building A Lattice-based SNARK scheme with Transparent Setup 27

(developed in Section 5) and the Vortex Transform of Section 6 and we can re-
iterate this process by reusing different Ring-SIS instances and different erasure
codes. This technique allows us to play with the tradeoff that we have when
choosing the Ring-SIS parameters and the erasure code. Typically, Ring-SIS in-
stances that use a large modulus degree compress poorly but are very fast to
run while, on the other hand, Ring-SIS instances with a small modulus degree
compress very well but are slower to run. This creates a trade-off between the
prover time on one side and the verifier time and proof size on the other. The
self-recursion strategy allows us to use Ring-SIS instances with a large degree
for the initial steps and progressively reduce the degree. Similarly, we can use
an erasure-code with a large rate (and small relative distance) at the beginning
and progressively decrease the rate as we loop into self-recursion.

SNARK from Argument of Knowledge Considering the AOK presented
in Section 7 After multiple steps of self-recursionof Vortex, the proof achieves
succinctness and it is possible to finalize it into a SNARK using the Fiat-Shamir
transform.

Shorter proof size Optionally, it is possible to further compress the proof by
recursion for non-interactive proof systems. At a high level, we wrap the verifier’s
computations inside an arithmetic circuit. Since the self-recursed protocol is a
public-coin protocol, we compile it into a non-interactive protocol using the Fiat-
Shamir transform. The random oracle is instantiated using a SNARK-friendly
hash function, such as Poseidon or RC-Concrete [35, 9]. The underlying field
of the arithmetization can differ from the underlying field of the self-recursed
protocol. Doing so comes with a multiplicative overhead in the size of the arith-
metic circuit. Fortunately, the prior self-recursion strategy already ensures that
the proof to verify is already somewhat small. As a result, we get a very short
proof with a better prover time. We leave the details of the concrete SNARK
scheme that we may use and of how we implement the verifier in the circuit.
From then on, the present section focuses exclusively on the self-recursion tech-
nique.

For the organization of the section: first, in Section 8.1, we present the Horner
protocol, a commit-and-open protocol specific to our SIS setting, allowing us to
commit to a batch of polynomials in constant size. This protocol would be mainly
used during the Ring-SIShash Testing. Then in Section 8.2 we provide all the
steps and testing protocols needed for the self-recursion.

8.1 Preliminaries for the Self-Recursion: Horner Commitment

In the following sections, we commonly employ a specific technique - Horner
commitments - for batching the polynomial evaluations that are specific to our
SIS setting (Note that in Vortex, we may encounter two types of polynomials: the
ones that Vortex may get as input to commit to and the ones that are relevant

28 A.Belling, A.Soleimanian

for SIS). Horner Commitments allows one to prove the correct openings without
giving the evaluations/openings themselves. This is an important feature since
we use this protocol internally (before UniEval queries) and thus can reduce the
size of the hash input for the Fiat-Shamir transform, and therefore the proof size
5. To prove the openings of the SIS polynomials are correct (without knowing the
openings), we propose a batching construction based on the Horner approach.
Note that a more trivial way is to commit to each polynomial and then open it
at the given point α, this requires many individual commitments and openings,
which would impose a huge overhead on the communication (particularly, we use
the Horner trick over columns from the Vortex that are already long, populated
with many SIS polynomials). In the following, the Horner protocol receives m
polynomials Pi of degree d and a point α and proves the alleged evaluations
of all Pi(α). For a polynomial P (X), we denote its Horner form at point α by
PHorner

α (X)(defined in the protocol).

Horner({Pi}i∈[m],α)

– Prover and Oracle set P (X) as the polynomial interpolating to the concatenations
of Pi (here Pi is the vector of coefficient of Pi(X)).

– Prover and Oracle set P Horner
α (X) (the Horner-form of P (X)) as follows:

∀ 0 ≤ i < m, j < d : P Horner
α (ωid+j) =

{
P (ωid+j) if j = d− 1
P (ωid+j) + αP Horner

α (ωid+j+1) else

– the verifier checks that
“Global”: P Horner

α (X) − P (X) − αP Horner
α (Xω)(1 − Zd−1,md(X)) = 0 where

Z(X)d−1,md is the domain-selector.

Fig. 12. Honer Commit and Open.

As one can see, the openings Pi(α) are subsampling of PHorner
α with offset 0,

and period d− 1.

Remark 1. Compared to the approach of committing and opening individually
m polynomials, here the verifier only needs to check the global constraint over
the domain Ωmd (that is, a single UniEval query). This is thanks to the fact that
as we use the values Pi(α) internally, we are not forced to output them directly.

8.2 Recursion Steps and Testing Protocols

Now we are ready to present the testing protocols needed for the self-recursion.

Recursion for public-coin protocol. We describes the subprotocols in a
way that each also includes the simulations of queries between the Vortex and
5 This also matters when a different outer-layer SNARK is used

Vortex : Building A Lattice-based SNARK scheme with Transparent Setup 29

the subprotocol. We assume that (P,V) are the prover and verifier of Vortex.
Our goal is to instantiate (P ′,V ′), prover and verifier of a Wizard-IOP protocol
associated with self-recursion from which an extractor can recover a transcript
of (P,V). In our settings, P ′ sees the messages from both P and V, and tries to
convince V ′ that she saw an accepting transcript.

Note that (P,V) is a public-coin interactive protocol in which V generates
random challenges. One difficulty of our setting is that we need to convince V ′

that the challenges were generated correctly. For that matter, we establish a
direct connection between V ′ and V: whenever V wants to generate a random
coin, he instead delegates the generation to V ′.

8.2.1 Giving oracle-access to the column hashes For the sake of Vortex
Transform Section 7, we can only assume that P will output round after round
a subset of the entries of H, the final commitment. We now call the entries of H,
the columns-hash for convenience. Assume that after k steps of precommitment
(corresponding with the rounds of the PIOP), the prover has already output nk

columns-hash and is preparing to send ∆k more (thus nk+1 = nk + ∆k). Let
d be the number of field elements to represent an SIS hash (the degree in the
Ring-SIS w.r.t R).
When P outputs the column hashes hnk

, . . . , hnk+∆k−1, P ′ computes a polyno-
mial Hk constructed as follows : for i ∈ [0, nkd)∪[nk+1d, n

′d), Hk(ωi) = 0 and for
i ∈ [nk, nk+1), j ∈ [d], Hk(ωid+j) = hi,j . P ′ sends oracle access to Hk to V ′. We
can already notice that if P ′ is honest, then we have that H(X) =

∑
k Hk(X) is

a polynomial interpolating the entries of H, the final commitment. To ensure P ′

is honest, V ′ performs a global constraint query Hk(X)Zk(X) = 0 where Zk is a
preprocessed polynomial whose evaluations at points ωk are 1 whenever Hk(ωk)
is alleged to be 0 for k < n′, and 0 otherwise.

8.2.2 Testing systematic Reed-Solomon code-membership In the orig-
inal Vortex, the verifier V has plain access to u and computes u′ by itself. Doing
so enforces two things: u is indeed the original message of u′ and that u′ is
a member of the code (correct Reed-Solomon encoding of a vector). Here, the
prover P ′ instead sends oracle-access to u′. The verifier V ′ can learn u from u′

by looking at the n first coordinates, but he still needs to verify that u′ is a valid
codeword, namely u′ is associated with a polynomial of degree n. Therefore, we
present an approach for u′ being a valid codeword.

P ′ forwards to V ′ a polynomial u′(X) whose evaluations over roots of unity
are the alleged evaluations(⟨l|W ′⟩ = u′).Note that Reed-Solomon codes have
efficient probabilistic error detection procedures, we propose a simple Wizard-
IOP procedure that allows testing membership of a Reed-Solomon code in which
the verifier is only required to evaluate u′(X) at a random point. In the following
u′(X) =

∑
u′

iLi(X) =
∑
ūiX

i for some values ūi and û(X) =
∑
ūiLi(X). Here

and it the rest of this section, by scalar-product of two polynomials, we are
implicitly referring to the scalar-product of the vectors corresponding with their

30 A.Belling, A.Soleimanian

evaluations. This is a reasonable convention by the description of scalar-product
protocol in Fig. 4.

1. P ′ computes û(X), the polynomial that interpolates the coefficients of u′(X).
Allegedly, the n′ − n last evaluations of û(X) are zeros, since, equivalently,
u′ is alleged to be part of the code L (and therefore should be of degree n).
P ′ sends oracle-access to u′(X) and û(X) to V ′.

2. V ′ queries, “Scalar-Product”: ⟨û(X)|Ẑu(X)⟩ = 0, where Ẑu(X) is a polyno-
mial that vanishes on its n first entries and is 1 between n and n′.The verifier
V ′ then generates a random coin ru.

3. P ′ sends oracle-access to a polynomial Pu(X) of degree n′ such that ∀k <
n′ : Pu(ωk) = rk

u

4. V ′ respond with the following queries: “Scalar-product” : ⟨Pu(X)|û(X)⟩ = yu

and “Evaluation query” : u′(r) = y′
u. V ′ then checks that yu

?= y′
u

5. finally V ′ checkes the well-forming of P (X) via Pu(ωX) = ruPu(X) and
Pu(1) = 1.

The objective of (2) is to prove that û encodes a polynomial whose last n′ − n
coefficients are 0 and the objective of (4) is to prove that û and u′ are the same
polynomials encoded differently.

8.2.3 Evaluation of long polynomials with oracle-access to the folding
As mentioned in Section 7.1, a long6 polynomial Pi(X) can be represented via
several columns included in W . Thus, assume that each of np columns of W
(starting from the first column) is associated with a polynomial Pi. Then we
have Pi(x) =

∑np

j=0 u
′
jx

mj = yi where m is the number of rows in W and u′ is
the folding from Vortex.

Unlike the original Vortex that the verifier has plain-access to the folding u′

and can build yi, here V ′ has plain access only to yi and the prover P ′ should
convince the verifier that these values are correctly computed from the vector
u′. The protocol between P ′ and V ′ is described in Fig. 13.

8.2.4 Checking the Ring-SIS hashes evaluations Here we aim for proving
that (1) Ring-SIS hashing of the chosen columns are correct and (2) the bound
for Ring-SIS hash is respected. To prove (1), we first move from claims over R
to the claims over F[X], and then from the claims over F[X] to the claims over
F via our Horner Protocol. For (2), we use a simple range check.

First, let us clarify the setting. V ′ has oracle access to Hk(X) a set of poly-
nomials encoding together the final commitment of Vortex (consequently to
H(X) =

∑
Hk(X)) and plain access to q the random choice of columns to

be opened.
And the hash computation over the chosen columns S• is as∑

i<m

Ai(X)S•,i(X) = h(X) mod R

6 We use the word “long” rather than “high degree”, since we see polynomials as
vectors inside Vortex

Vortex : Building A Lattice-based SNARK scheme with Transparent Setup 31

OracleEval({u′
j , yi}j∈[n′],i∈[m],x)

Prover’s input: {u′
j , yi}j∈[n′],i∈[m],x

Verifier’s input: {yi}j∈[n′],x

– Prover and Oracle set U(X) as the polynomial interpolating to u′
i.

– Verifier sends the randomness β ← Zq.
– Prover and Oracle set Uβ(X) as follows:

: Uβ(ωinp+j) =
{

βi · xmj ∀i < m, j < np

0 if npi + k > mnp

– Verifier:
• Checks that Uβ is well-formed:

“Global”: Uβ(ωX) − Uβ(X)xm + (Uβ(X) − Iβ(X))Znp,mnp where Iβ(X) =∑
βiLωinp (X).

• sends a query “scalar-product” : ⟨U(X)|Uβ(X)⟩ =
∑

βiyi.

Fig. 13. Evaluation with oracle-access to the folding.

.
For convenience, we reuse the notation of Section 6.1, L• = (L•,j)j<ms

,
to denote the embedding in R = F[X]

Xd+1 of the limb expansion of a column •
and h(X) the hash encoded as a ring element of R. In the current phase, for
each opened columns •, V ′ will be provided oracle-access to a polynomial S•(X)
encoding the coefficients of L•,j(X) =

∑
k<d L•,j,kX

k as follows, S•(ωjd+k) =
L•,j,k i.e., S•(X) =

∑
j L•,j,kLjd+k(X).

The prover should also provide oracle-access to the polynomial A(X) that
is obtained by interpolating the vector A, where A is the concatenation of the
coefficients of the polynomials Ai(X) =

∑
j ai,jX

j constituting the hashing key
of Ring-SIShash defined in Section 6.1. Thus, ∀i < msis, j < d,A(ωid+j) = ai,j .
Here, msis denotes the number of polynomials in the Ring-SIShash, and d is the
degree of the Ring-SIS modulus polynomials.
Particularly, P ′ will attempt to convince V ′ that Si(X), associated with chosen
columns, encodes values within the range specified by the instance of Ring-SIS
hash function. In addition to this, V ′ also needs to be convinced that the values
encoded in each Si(X) are consistent with the hashes encoded in the polynomial
H(X) (again for the chosen columns), that would be followed from the fact that,

∑
i<m

Ai(X)S•,i(X) = h(X) + (Xd + 1)hleftover(X) (1)

for some polynomial hleftover(X). This allows moving from ring R to F[X]. For
convenience, we refer to hleftover(X) as the ‘leftover of the hash’.

The general idea here is to evaluate all the polynomials involved in Eq. (1)
at point α, namely, moving from F[X] to F. This converts the discussion over

32 A.Belling, A.Soleimanian

polynomials to discussion over field elements, which is easy to deal with. For
this, we use the Horner protocol presented in Section 8.1.

1. P ′ sends,
– oracle access to H(X), A(X), and to Sik

(X) for ik ∈ q i.e., on the chosen
columns.

– oracle access to a polynomial Hleftover(X) of degree d|q| = dt encoding
the coefficients of the leftovers hleftover of the selected column hashes.

2. the verifier sends a query to check the coefficient of Sik
(X) for ik ∈ q are

within range as required by the Ring-SIS instance.
3. the verifier V ′ chooses a random value α, the prover and the verifier run

the Horner protocol for H(X) (defined before) where the Horner form is
HHorner

α (X). The verifier defines H ′
α(X) as the subsampling of HHorner

α (X)
with period d and offset 0. This provides access to the values h(α) for the
chosen columns (consistent with H(X)). They do the same for Hleftover(X),
and for A(x). Then define A′

α(X) and H ′
leftover,α(X) as the subsampling of

AHorner
α (X) and HHorner

leftover,α(X) (res.) with respect to the period d and offset 0.
4. They also need to run the Horner protocol on Sik

for ik ∈ q. They can do this
with one more layer of batching via random combination. More precisely,
the verifier sends a randomness β and they run the Horner protocol on
S(X) =

∑
βkSik

(X). Again, let S′
α(X) be defined as the subsampling of

SHorner
α (X). The prover also provides oracle access to Rβ(X) the polynomial

encoding the successive powers of β.
5. V ′ sends the following queries to check the correct computation of Ring-

SISHash.
– “Scalar-product” : ys ← ⟨H ′

α(X)|Rβ(X)⟩ (over t-roots of unity only).
– “Scalar-product” : yt ← ⟨H ′

leftover,α(X)|Rβ(X)⟩ (over the t-roots of unity
only)

– “Scalar-product” : yh ← ⟨A′
α(X)|S′

α(X)⟩ (over the msis roots of unity
only)

– And finally check that yh
?= ys + (αd + 1)yh

– “Global” : (X − 1)(Rβ(ωX)−βRβ(X)) = 0 (for well-forming of Rβ(X))

Here we use the trick from the section Section 5.8, to convert these global
constraints over subsamplings to the global constraint over the original (Horner-
form) polynomials (note that the verifier already has oracle-access to the Horner-
form polynomials, by the description of Horner protocol).

8.2.5 Testing the scalar-products Let l = (1, x, x2, · · ·) be the vector from
Vortex statement. The prover (of Vortex) P will output s1, · · · , sn and P ′ needs
to convince V ′ that the scalar products ⟨si|l⟩ = ū hold for all i ∈ [t]. In our
setting, V ′ has oracle-access to ū(X)(the polynomial encoding u′ at the chosen
columns) and plain access to l. The challenge is that he does not have access
to si directly. Instead, P ′ sends oracle access to polynomials encoding the limb
decomposition of the si (i.e., Si(X) from Section 8.2.4). Therefore, we need a
workaround to allow the verifier V ′ to test the correctness of the scalar-product.
The prover P ′ and the verifier V ′ proceed as follows:

Vortex : Building A Lattice-based SNARK scheme with Transparent Setup 33

1. The prover provides the oracle access to u′(X), and ū(X) encoding the en-
tries of the folding u′ on the chosen columns.

2. P ′ sees each element s•,j belonging to Zq and represent it in base b (where b is
the bound for Ring-SIShash). We denote by S•(X), the polynomial encoding
the concatenation base-b representation of s•,j .

3. P ′ constructs a polynomial lb(X). Let nb = log q/ log b be the number of
limbs per field element needed by the lattice-based hash function described in
Section 6.1 and let mr be the depth of a Vortex column. lb(X) is constructed
as the unique polynomial satisfying,

∀i < mr, j < nb, lb(ωinb+j) = lib
j

Note that by this representation we expect that

⟨Si(X)|lb(X)⟩ =
∑

j

xj(base-b representation of si,j) =
∑

j

xjsi,j

.
4. V ′ sends the following queries:

– “Global” : (lb(X) − l(X))Zb(X) + (lb(ωX) − blb(X))(nb − Zb(X)) = 0
(to check the well-forming of lb(X)).

– “Scalar-product” (for all ik ∈ q) ⟨Sik
(X)|lb(X)⟩ ?= ūk

– “Inclusion” : (q(X), ū(X)) ⊂ (In′(X), u′(X)) where q(X) is encoding of
q, and In′(ωi) = i for i < n′ that is committed in an offline phase.

8.2.6 Complexity analysis. We begin by reminding the readers of the pa-
rameters in play. Let npoly be an integer denoting the number of polynomials
the prover wishes to commit to (across r rounds) and let d1, · · · , dnpoly be their
respective domain size. When the prover commits to these polynomials (possibly
throughout multiple rounds of a larger protocol), he packs them in a matrix of
mr rows and n columns and then the matrix is row-encoded into a matrix of
n′ > n columns using a systematic Reed-Solomon code. We say that ρ = n′

n is
the expansion factor of the code. The verifier is sent the hash of those columns
obtained using the ring-SIS hash function of Section 6.1. In its internal work,
the hash function split all field elements into nb limbs shorter than b (where b is
a parameter of the ring-SIS instance in use) and outputs a hash consisting of d
field elements (also a parameter of the ring-SIS instance). The verifier asks the
prover to open t columns.

We assume (P,V) to be original prover and verifier of a protocol compiled
using Vortex. Let N =

∑
i∈npoly

di = nmr denote the size of the matrix P wishes
to commit to and open. We denote the runtime complexity of P by P(0)(N),
the runtime complexity of V by V(0)(N) and the communication complexity by
C(0)(N). Moreover, we have that

– P(0)(N) = Ω(N)

34 A.Belling, A.Soleimanian

– V(0)(N) = v(N) +O(
√
N) with v(N) = o(

√
N)

– C(0)(N) = c(N) +O(
√
N) with c(N) = o(

√
N)

After one step of recursion, the resulting new prover P(1) is tasked to commit
and open a matrix whose size is proportional to a Vortex proof: N ′ = O(

√
N) if

the parameters are suitably chosen. This incurs an overhead of O(
√
N logN).On

its end, the verifier V(1) ought to perform a constant number of additional checks,
but verify the opening of a smaller matrix. This translates into an increase of
the verification time and the communication complexity by small constant over-
heads v1 and respectively c1 but also a smaller dominating term O(n 1

4) instead
of O(

√
N). We denote the runtime complexity of P(1) by P(1)(N), the runtime

complexity of V(1) by V(1)(N) and the updated communication complexity by
C(1)(N). To sum up the above, after one step of recursion the updated complex-
ity are the following:

– P(1)(N) = Ω(N) + o(N)
– V(1)(N) = v(N) + vi +O(N 1

4)
– C(1)(N) = c(N) + ci +O(N 1

4)

And after, f = log logN steps the term O(N
1

2f+1) is reduced to a constant
and we have:

– P(f)(N) = Ω(N)
– V(f)(N) = v(N) + max vi log logN
– C(f)(N) = c(N) + max ci log logN

Whether and how these asymptotic bounds can be improved by carefully
choosing different lattice instances and erasure codes remains an open question.
As general guidance, the first instance of Vortex should use a large-degree-large-
bound SIS instance and an erasure code with a small expansion factor. However,
these choices of parameters tend to increase N ′ and we need to preserve N ′ =
o(N). The recursion steps coming thereafter should optimize for the verification
time and communication complexity.

Note that with each recursion we need a key for the hash function and the key
of recursion i is committed by the key of recursion i+ 1. To guarantee the use of
the proper keys, the prover and the verifier compute the recursive commitments
to the keys in an offline phase (i.e., preprocessing). As a result, the verifier key
has size o(logN) and the proving key complexity has size O(N).

Acknowledgement

We would like to thank Zhenfei Zhang for pointing out an issue with some of the
parameter sets of SIS problem in the initial version of this paper. We are also
grateful to Nicolas Liochon and Olivier Bégassat for their feedback and useful
discussions on the paper.

Vortex : Building A Lattice-based SNARK scheme with Transparent Setup 35

References

[1] A native zkEVM Layer 2 Solution for Ethereum. url: https://scroll.
io/.

[2] Miklós Ajtai. “Generating Hard Instances of Lattice Problems”. In: Elec-
tron. Colloquium Comput. Complex. TR96 (1996).

[3] Martin R. Albrecht et al. “Estimate all the {LWE, NTRU} schemes!” In:
IACR Cryptol. ePrint Arch. 2018.

[4] Martin R. Albrecht et al. “Lattice-Based SNARKs: Publicly Verifiable,
Preprocessing, and Recursively Composable - (Extended Abstract)”. In:
Advances in Cryptology - CRYPTO 2022. Vol. 13508. LNCS. Springer,
2022, pp. 102–132. doi: 10.1007/978-3-031-15979-4_4. url: https:
//doi.org/10.1007/978-3-031-15979-4%5C_4.

[5] Zachary Ariel Gabizon, J. Williamson, and Oana Ciobotaru. “PLONK:
Permutations over Lagrange-bases for Oecumenical Noninteractive argu-
ments of Knowledge”. In: IACR Cryptol. ePrint Arch. (2019), p. 953.

[6] Shi Bai et al. “Improved Combinatorial Algorithms for the Inhomogeneous
Short Integer Solution Problem”. In: J. Cryptol. (2019).

[7] Shi Bai et al. “Improved Combinatorial Algorithms for the Inhomogeneous
Short Integer Solution Problem”. In: J. Cryptol. (2019).

[8] David Balbás et al. “Functional Commitments for Circuits from Falsifi-
able Assumptions”. In: IACR Cryptol. ePrint Arch. (2022), p. 1365. url:
https://eprint.iacr.org/2022/1365.

[9] Mario Barbara et al. Reinforced Concrete: Fast Hash Function for Zero
Knowledge Proofs and Verifiable Computation. Cryptology ePrint Archive,
Report 2021/1038. https://ia.cr/2021/1038. 2021.

[10] Carsten Baum et al. “Sub-linear Lattice-Based Zero-Knowledge Argu-
ments for Arithmetic Circuits”. In: Advances in Cryptology - CRYPTO
2018 - 38th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 19-23, 2018, Proceedings, Part II. Ed. by Hovav Shacham
and Alexandra Boldyreva. Vol. 10992. Lecture Notes in Computer Science.
Springer, 2018, pp. 669–699. doi: 10.1007/978-3-319-96881-0_23.
url: https://doi.org/10.1007/978-3-319-96881-0%5C_23.

[11] Stephanie Bayer and Jens Groth. “Efficient Zero-Knowledge Argument for
Correctness of a Shuffle”. In: EUROCRYPT. 2012.

[12] Olivier Bégassat et al. A ZK-EVM specification. 2022.
[13] Alexandre Belling, Azam Soleimanian, and Olivier Bégassat. “Recursion

over Public-Coin Interactive Proof Systems; Faster Hash Verification”. In:
IACR Cryptol. ePrint Arch. (2022), p. 1072. url: https://eprint.iacr.
org/2022/1072.

[14] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive Or-
acle Proofs”. In: Theory of Cryptography - 14th International Conference,
TCC 2016-B, Beijing, China, October 31 - November 3, 2016, Proceedings,
Part II. Ed. by Martin Hirt and Adam D. Smith. Vol. 9986. Lecture Notes
in Computer Science. 2016, pp. 31–60. doi: 10.1007/978-3-662-53644-
5_2. url: https://doi.org/10.1007/978-3-662-53644-5%5C_2.

https://scroll.io/
https://scroll.io/
https://doi.org/10.1007/978-3-031-15979-4_4
https://doi.org/10.1007/978-3-031-15979-4%5C_4
https://doi.org/10.1007/978-3-031-15979-4%5C_4
https://eprint.iacr.org/2022/1365
https://ia.cr/2021/1038
https://doi.org/10.1007/978-3-319-96881-0_23
https://doi.org/10.1007/978-3-319-96881-0%5C_23
https://eprint.iacr.org/2022/1072
https://eprint.iacr.org/2022/1072
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-53644-5%5C_2

36 A.Belling, A.Soleimanian

[15] Eli Ben-sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive Or-
acle Proofs”. In: Theory of Cryptography TCC 2016-B. Vol. 9986. LNCS.
2016, pp. 31–60.

[16] Eli Ben-Sasson et al. “Aurora: Transparent Succinct Arguments for R1CS”.
In: IACR Cryptol. ePrint Arch. 2018.

[17] Eli Ben-sasson et al. “Scalable Zero Knowledge Via Cycles of Elliptic
Curves”. In: Algorithmica 79 (Oct. 2016), pp. 1–59.

[18] Dan Boneh et al. “Efficient polynomial commitment schemes for multiple
points and polynomials”. In: IACR Cryptol. ePrint Arch. (2020), p. 81.

[19] Jonathan Bootle, Alessandro Chiesa, and Jens Groth. “Linear-Time Argu-
ments with Sublinear Verification from Tensor Codes”. In: IACR Cryptol.
ePrint Arch. 2020 (2020), p. 1426.

[20] Jonathan Bootle, Alessandro Chiesa, and Jens Groth. “Linear-Time Argu-
ments with Sublinear Verification from Tensor Codes”. In: Theory of Cryp-
tography - 18th International Conference, TCC 2020, Durham, NC, USA,
November 16-19, 2020, Proceedings, Part II. Vol. 12551. Lecture Notes in
Computer Science. Springer, 2020, pp. 19–46. doi: 10.1007/978-3-030-
64378- 2_2. url: https://doi.org/10.1007/978- 3- 030- 64378-
2%5C_2.

[21] Jonathan Bootle et al. “A Non-PCP Approach to Succinct Quantum-Safe
Zero-Knowledge”. In: Advances in Cryptology - CRYPTO 2020 - 40th An-
nual International Cryptology Conference, CRYPTO 2020, Santa Barbara,
CA, USA, August 17-21, 2020, Proceedings, Part II. Ed. by Daniele Mic-
ciancio and Thomas Ristenpart. Vol. 12171. Lecture Notes in Computer
Science. Springer, 2020, pp. 441–469. doi: 10.1007/978-3-030-56880-
1_16. url: https://doi.org/10.1007/978-3-030-56880-1%5C_16.

[22] Sean Bowe, Jack Grigg, and Daira Hopwood. Recursive Proof Composition
without a Trusted Setup. Cryptology ePrint Archive, Report 2019/1021.
2019.

[23] Benedikt Bünz et al. “Bulletproofs: Short Proofs for Confidential Trans-
actions and More”. In: 2018 IEEE Symposium on Security and Privacy,
SP 2018. IEEE Computer Society, 2018, pp. 315–334. doi: 10.1109/SP.
2018.00020. url: https://doi.org/10.1109/SP.2018.00020.

[24] Matteo Campanelli, Dario Fiore, and Anäıs Querol. “LegoSNARK: Modu-
lar Design and Composition of Succinct Zero-Knowledge Proofs”. In: ACM
SIGSAC. Nov. 2019, pp. 2075–2092.

[25] Leo de Castro and Chris Peikert. “Functional Commitments for All Func-
tions, with Transparent Setup”. In: IACR Cryptol. ePrint Arch. (2022),
p. 1368. url: https://eprint.iacr.org/2022/1368.

[26] Binyi Chen et al. “HyperPlonk: Plonk with Linear-Time Prover and High-
Degree Custom Gates”. In: IACR Cryptol. ePrint Arch. 2022 (2022), p. 1355.

[27] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. “Fractal: Post-quantum
and Transparent Recursive Proofs from Holography”. In: LNSC. Vol. 12105.
May 2020, pp. 769–793.

https://doi.org/10.1007/978-3-030-64378-2_2
https://doi.org/10.1007/978-3-030-64378-2_2
https://doi.org/10.1007/978-3-030-64378-2%5C_2
https://doi.org/10.1007/978-3-030-64378-2%5C_2
https://doi.org/10.1007/978-3-030-56880-1_16
https://doi.org/10.1007/978-3-030-56880-1_16
https://doi.org/10.1007/978-3-030-56880-1%5C_16
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020
https://eprint.iacr.org/2022/1368

Vortex : Building A Lattice-based SNARK scheme with Transparent Setup 37

[28] Alessandro Chiesa et al. “Marlin: Preprocessing zkSNARKs with Uni-
versal and Updatable SRS”. In: Advances in Cryptology EUROCRYPT.
Vol. 12105. LNCS. Springer, 2020, pp. 738–768.

[29] Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. “Short Stickel-
berger Class Relations and Application to Ideal-SVP”. In: EUROCRYPT.
2017.

[30] the Electric Coin Company. The Halo 2 book. url: https : / / zcash .
github.io/halo2/.

[31] Ariel Gabizon and Zachary J. Williamson. “Plookup: A simplified polyno-
mial protocol for lookup tables”. In: IACR Cryptol. ePrint Arch. (2020).

[32] Lior Goldberg, Shahar Papini, and Michael Riabzev. “Cairo - a Turing-
complete STARK-friendly CPU architecture”. In: IACR Cryptol. ePrint
Arch. 2021 (2021), p. 1063.

[33] Shafi Goldwasser, Yael Kalai, and Guy Rothblum. “Delegating Compu-
tation: Interactive Proofs for Muggles”. In: ACM STOC. ACM, 2008,
pp. 113–122.

[34] Alexander Golovnev et al. “Brakedown: Linear-time and post-quantum
SNARKs for R1CS”. In: IACR Cryptol. ePrint Arch. 2021 (2021), p. 1043.

[35] Lorenzo Grassi et al. “Starkad and Poseidon: New Hash Functions for Zero
Knowledge Proof Systems”. In: IACR Cryptol. ePrint Arch. (2019), p. 458.

[36] Jens Groth. “On the Size of Pairing-Based Non-interactive Arguments”.
In: Advances in Cryptology - EUROCRYPT. Vol. 9666. LNCS. Springer,
2016, pp. 305–326.

[37] Daira Hopwood et al. Zcash protocol specification: Version 2022.04.26
Technical report, Zerocoin Electric Coin Company. https://github.com/
zcash/zips/blob/main/protocol/protocol.pdf. 2022.

[38] Nick Howgrave-Graham and Antoine Joux. “New Generic Algorithms for
Hard Knapsacks”. In: Advances in Cryptology – EUROCRYPT 2010. 2010,
pp. 235–256.

[39] Aniket Kate, Gregory Zaverucha, and Ian Goldberg. “Constant-Size Com-
mitments to Polynomials and Their Applications”. In: Advances in Cryp-
tology - ASIACRYPT. Vol. 6477. LNCS. Springer, 2010, pp. 177–194.

[40] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. “Nova: Recursive
Zero-Knowledge Arguments from Folding Schemes”. In: Advances in Cryp-
tology – CRYPTO 2022. Ed. by Yevgeniy Dodis and Thomas Shrimpton.
Cham: Springer Nature Switzerland, 2022, pp. 359–388.

[41] Jianwei Li and Phong Q. Nguyen. “A Complete Analysis of the BKZ Lat-
tice Reduction Algorithm”. In: IACR Cryptol. ePrint Arch. 2020 (2020),
p. 1237.

[42] Benôıt Libert, Somindu C. Ramanna, and Moti Yung. Functional Com-
mitment Schemes: From Polynomial Commitments to Pairing-Based Ac-
cumulators from Simple Assumptions. 2016.

[43] Vadim Lyubashevsky et al. “SWIFFT: A Modest Proposal for FFT Hash-
ing”. In: Fast Software Encryption, 15th International Workshop, FSE
2008. Vol. 5086. Lecture Notes in Computer Science. Springer, 2008, pp. 54–

https://zcash.github.io/halo2/
https://zcash.github.io/halo2/
https://github.com/zcash/zips/blob/main/protocol/protocol.pdf
https://github.com/zcash/zips/blob/main/protocol/protocol.pdf

38 A.Belling, A.Soleimanian

72. doi: 10.1007/978-3-540-71039-4_4. url: https://doi.org/10.
1007/978-3-540-71039-4%5C_4.

[44] Mary Maller et al. “Sonic: Zero-Knowledge SNARKs from Linear-Size Uni-
versal and Updatable Structured Reference Strings”. In: ACM SIGSAC
-CCS. ACM, 2019, pp. 2111–2128.

[45] Daniele Micciancio and Oded Regev. Class on lattice-based cryptography.
2008.

[46] Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without
trusted setup. CRYPTO. 2020.

[47] Zedong Sun, Chunxiang Gu, and Yonghui Zheng. “A Review of Sieve Algo-
rithms in Solving the Shortest Lattice Vector Problem”. In: IEEE Access
8 (2020), pp. 190475–190486.

[48] Polygon Hermez Team. Scalable payments. Decentralised by design, open
for everyone. https://hermez.io.

[49] Polygon Zero Team. PLONKY2 : Fast Recursive Argument with Plonk and
FRI. https://github.com/mir-protocol/plonky2/blob/main/plonky2.pdf. Draft
: version 2022. 2022.

[50] Riad Wahby et al. “Doubly-Efficient zkSNARKs Without Trusted Setup”.
In: SP. IEEE Computer Society, 2018, pp. 926–943.

[51] Hoeteck Wee and David J. Wu. “Succinct Vector, Polynomial, and Func-
tional Commitments from Lattices”. In: IACR Cryptol. ePrint Arch. (2022).
url: https://eprint.iacr.org/2022/1515.

[52] Tiacheng Xie et al. “Libra: Succinct Zero-Knowledge Proofs with Optimal
Prover Computation”. In: Advances in Cryptology - CRYPTO. Vol. 11694.
LNCS. Springer, 2019, pp. 733–764.

[53] Tiancheng Xie, Yupeng Zhang, and Dawn Xiaodong Song. “Orion: Zero
Knowledge Proof with Linear Prover Time”. In: IACR Cryptol. ePrint
Arch. 2022.

[54] Risc Zero. https://github.com/risc0/risc0. 2022.
[55] Jiaheng Zhang et al. Transparent Polynomial Delegation and Its Applica-

tions to Zero Knowledge Proof. 2020 IEEE Symposium on Security and
Privacy (SP). 2019.

A Selecting ring-SIS instances

In Section 6.1, we specify a generalized version of the SWIFFT hash function.
In the current section, we provide an overview of the existing attacks and their
costs. As for SWIFFT, our hash function is directly an instantiation of ring-SIS.
The hash function, or rather, the family of hash functions we analyze hashes
into prime fields and support several norm bounds instead of {0, 1} for Ajtai
[2] and SWIFFT [43]. The instances that we analyze span over a large range
of parameters, and this requires evaluating both lattice reduction attacks and
combinatorial attacks. Finally, the scope of this work is restricted to the classical
setting.

https://doi.org/10.1007/978-3-540-71039-4_4
https://doi.org/10.1007/978-3-540-71039-4%5C_4
https://doi.org/10.1007/978-3-540-71039-4%5C_4
https://hermez.io
https://eprint.iacr.org/2022/1515
https://github.com/risc0/risc0

Vortex : Building A Lattice-based SNARK scheme with Transparent Setup 39

A.1 The Short-Integer-Solution and its “ring” variant

Let m > n be integers, q a prime and b < q.

Definition 13 (Short-Integer-Solution problem (SIS)). Given random A ∈
Zn×m

q , find x such that Ax = 0n ∧ ∥x∥∞ < b

Definition 14 (Inhomogeneous-SIS (ISIS)). Given random A ∈ Zn×m
q and

t ∈ Zn
q , find x such that Ax = t

Foremost, from a few observations on SIS. One can see, that

– SIS (and ISIS) cannot become harder by increasing m. That’s because an
attacker can always restrict the search space to m′ < m by arbitrarily forcing
some entries of x to zero.

– It can only become harder as we increase n, this corresponds to adding more
constraints on what can be a valid x.

– It can only become harder as we restrict to smaller b. That’s because it’s
equivalent to restricting the search space.

– b >= q makes the problem trivial, as it can be solved by Gaussian elimination
in polynomial-time.

Remark 2. The work of [29] uncovered an efficient procedure for solving γ-ideal-
SVP in polynomial time, a problem closely related to ring-SIS. We argue that
they do not apply to the scope of our analysis. Indeed,

– They are in the quantum setting
– The approximation factor they apply the attack on is exponential, this is

not what we typically use for cryptographic applications
– Ring-SIS is not exactly an ideal lattice problem (It is therefore not currently

known if an efficient reduction from ring-SIS to Ideal-SVP actually exists).

From then on, we define the ring version of the SIS problem.

Definition 15 (The ring-(Inhomogeneous)SIS problem). Given A ∈ Rm

drawn randomly, following the uniform distribution (for its coefficients) and b <
q. Find x ∈ Rm, non-zero, such that ∥x∥∞ < b ∧Ax = 0R

The ring-(I)SIS assumptions can be seen as special cases of SIS where A is
drawn from a restricted set of matrices representing the polynomial multipli-
cation module Xn + 1. One should note that m means different things in our
definitions of SIS and ring-SIS. For clarity “mSIS = nmRSIS”. Working with
ring-SIS has several practical benefits compared to SIS: the space taken to rep-
resent A is n time smaller, and the product Ax can be computed much faster
using FFT algorithms in nm logn instead of mn2.

40 A.Belling, A.Soleimanian

A.2 Security properties

We require our hash function (as specified in Section 6.1 to have Preimage re-
sistance and Collision resistance.

Definition 16 (Preimage resistance). Given y. Find x such that H(x) = y

The definition of preimage of resistance coincide with the I-SIS problem. We
attack it by solving SIS (y,A) · (1, x) = 0. This is equivalently as hard as solving
SIS with input size m.

Definition 17 (Collision resistance). Find x, x′ such that H(x) = H(x′)

An attack against collision-resistance is obtained by breaking SIS for the
matrix (A∥ − A), under the constraint that a solution s = (s1∥s2)T satisfies
s1 ̸= s2. This is equivalent to multiplying m per 2. From that, we can deduce
the fact that collisions are easier to find than preimages. Thus, in the following,
we will restrict our attention to attacks for finding collisions.

A.3 Overview of the cryptanalysis report

To estimate the hardness of ring-SIS instances, we consider two classes of at-
tacks: combinatorial and lattice reductions. In practice, no attack is known to
work significantly better on ring-SIS rather than an equivalent SIS instance. Ad-
ditionally, in practice the security of our hash function is bottlenecked by attacks
on collision resistance. Thus, we will only consider the equivalent (not-ring)-SIS
instance with parameters q, n,m′ = nm, b.

A.4 Lattice reduction techniques (BKZ2.0)

Foremost, we note that solving an SIS instance is exactly to finding a short-vector
in the kernel lattice.

L = Λ⊥(A) = {z ∈ Zm′

q : Az = 0}
The first thing, one should have in mind is that we are always free to pick

m0 < m′ if it pleases us to do so. The best-known algorithm to do so is BKZ2.0, a
generalization of the seminal LLL algorithm. This algorithm works by repeatedly
calling an SVP oracle which optimally reduces lattices to smaller dimension
k < m0. The BKZ algorithm will output, with overwhelming probability, a
vector of size b2 = ∥v∥2 = δm0vol(L)1/m0 and thus we need to set,

b2 = δm0qn/m0 ∧ b
√
m0 < q

The second term comes from the fact that if m0 is too big, then the smallest
L2-ball containing the L∞ ball of SIS candidate contains the whole space. This
does not necessarily mean the instance is broken, but it means our estimations
are irrelevant. So, we will reject those cases. We recall that for random lattices,
kernels vol(L) = qn with overwhelming probability.

There are two strategies to choose b2.

Vortex : Building A Lattice-based SNARK scheme with Transparent Setup 41

– Pessimistic Pick b2 to be the radius of the smallest ball (not centered at 0)
that contains [0; b[m0 . In that case, from the Minkowski bound,

b2 =
√
m0

b

2
.

– Heuristic Pick b2 to be the radius of a ball whose volume equals bm. This
gives us

b2 = b
Γ (m0/2 + 1)1/m0

√
π

For our parameters, we pick the heuristic approach.

Here, we have two free parameters: m0 and δ. δ is what we call the root Her-
mite factor. It can be interpreted as the “output quality” that you can expect
from BKZ. For the most part, it depends on the BKZ block-size k (and also a
little on m0).

A comprehensive choice of the oracle, along with a model for their runtime
can be found in the work of [3]. All oracles and models come with different
tradeoffs. The most efficient ones (in runtime) are Sieve ones, while Enumeration
ones require smaller space. Finally, based on the work of [47], we take that LD
Sieve is the fastest sieve algorithm. This gives us the following heuristic runtime
formula (in CPU cycles) for a single call to the SVP oracle.

log toracle = 0.292k + 16.4 (2)

In a recent work, [41] gives a refined estimation of the overall runtime of
BKZ2.0 (number of calls to the oracle) alongside a lower-bound of the achieved
root-Hermite factor. In [41], they give a lower bound for the L2 norm of the
first vector of the output basis, but we worked out the root-Hermite factor. We
present their result in the two equations below. ρ gives the total number of calls
to the oracle and the second expression is a lower-bound on the obtained δ.

ρ = m0
3

k2 logm0

log δ = 1
2m0(k − 1)(m0 − 1 + k(k − 2)

m0
) log γk (3)

γk is a mathematical constant : the k-th Hermite constant. We do not have
a closer formula for it. It is related to the density achieved by optimal sphere
packing in dimension k. LN20 [41] uses it because they wanted an upper-bound in
the running time of an SIS instance for all existing lattices with given dimension
k. In practice, we use random lattice instances, and we instead use estimations
of the density of a random lattice instance. Thus, we use a term obtained using
the Gaussian heuristic instead (as it is advised by the authors of LN20) and this
will give us Eq. (4):

42 A.Belling, A.Soleimanian

log δ = 1
4m0(k − 1)

(
m0 − 1 + k(k − 2)

m0

) (
log k

2πe + 1
k

log πk
)

(4)

One should note that Eq. (4) is only asymptotically correct. Thus, we will
only use it for k > 36. This is to avoid inaccuracies from using values out of the
range. This value was obtained from an experiment where we increased k and m0
with k = m0. The values of log δ we obtained were growing for k < 36 (which
is a nonsense) and decreasing for k > 36. In practice, we have only retained
parameters-values for which k > 200 thus the latter is not a concern here.

A.5 Combinatorial Attack

In addition to lattice reduction techniques, an important class of attacks for SIS
and ISIS stems from the field of attacks against the subset-sum problem.

A.5.1 Camion-Patarin and Wagner attacks The course [45] describes
the basic version of these attacks and gives an easy procedure to determine their
efficiency. The attack is also known as CPW. In [6], the authors present several
improved methods over the former method, and they achieve a 10-bit reduction
on SWIFFT. Those improvements have been obtained by generalizing the initial
attack they used careful manual-tuning of its parameters.

As in [6] suggests, once we have found the optimal list-tree depth k, we can
reduce the value of m to the smallest value that verifies

2k

k + 1 <
m log(b)
n log q

We remind the reader that we are looking for collisions in the input space
x ∈ [0; b[m which differs from ∥x∥∞ < b. This explains why our formula uses
b in place of 2b − 1 as it can be sometimes found in the literature. The above
attack can, in fact, be generalized to a setting where the output space is split in
k chunks of size l1, l2, . . . , lk such that

∑
i li = n. By tweaking the size of each li

we can optimize the attack.

Methodology We will consider two cases:

– If n ≤ 50, we exhaustively try every possible combination of li such that∑
i li = n for k < log2 m. And we simulate the attack by counting all op-

erations. To reduce the cost of the exhaustive search, we restrict the search
space to li ≤ li+1.

– If n > 50, then we apply the simplified analysis given in [45]. From [45], the
cost This will give us an overly pessimistic result, but in practice, these SIS
instances are better attacked using lattice reduction techniques. Thus, this
fact is without consequence on our estimations.

Vortex : Building A Lattice-based SNARK scheme with Transparent Setup 43

In our estimation, for values of n (i.e., the dimension of the output space),
we considered a refinement of the technique to account for the fact that dif-
ferent tuning are possible (splitting the output space in “non-equals” chunks).
We exhaustively search the best set of parameters when n < 50. Otherwise, the
exhaustive search of parameters is too computationally heavy, and we fall back
to the method of [45]. This is without consequence for our estimations. Indeed,
in practice, for our choices of q, we observe that SIS instances with n < 50 are
typically bottlenecked by the BKZ attack – for our choices of q – in practice.

To estimate the cost of the attack
– In the basic case, we use the formula
– In the exhaustive case, we simply count all operations. We assume the run-

ning time of merging two lists is linear in the size of the resulting merged
list. We consider that, the running time of creating the initial leaves lists is
roughly equal to enumerating all possibilities.

A.5.2 On the HGJ and BCJ refinements Howgrave-Graham and Joux
introduced these techniques in 2010, [38]. This class of attacks is somewhat
similar to CPW, in the sense that it relies on recursively splitting the initial
problem and merging the partial solutions. As an outline, the difference there is
that it relies on splitting the problem in “weight” rather than in space.
Definition 18 (Density of a SIS instance). These techniques have proven to
be more effective when the problem has a low-density of solutions, while CPW is
more effective for higher-density instances. In our case, we seek to pick instances
of SIS which maximize the “compression ratio” and hence the density. Typically,
our instances have densities that are above the range of effectiveness of these
attacks. Thus, we do not consider them in this work.

A.5.3 On optimizations for ring-SIS In [7], the authors present a tech-
nique to reduce the cost of the attack when the set of *acceptable* input polyno-
mials is preserved by multiplication by the transformation ψ : s(X) → Xs(X).
This is the case when either the ring modulus is Xn − 1 or the input space has
sign symmetry (meaning B = −B) and the modulus is Xn + 1. We stress that
neither is our case, and we recall that we use the modulus Xn +1 with B = [0; b[.

It is however possible to reduce to a case where this technique is applicable
nonetheless. Let 1m = (1, 1, 1, . . .),, instead of directly trying to find s such that
As = 0 we seek s′ ∈ B′ =′ B − b−1

2 such that A(s′ + b−1
2 (1, 1, 1, · · ·)) = 0. If

b is even (our case), then the solution space for s′ has sign symmetry. We note
that although B′ is not a set of short integers, this does not affect the runtime
of CPW.

We do not expand on the technical details of the techniques. At a high-level,
these techniques decrease the size of each list by a factor of 2n, where n is the
degree of the ring-modulus. Thus, it achieves a speed-up of 2n.

However, as the work of [7] points out, this optimization is incompatible with
the following one, based on the Hermite Normal Form (HNF).

44 A.Belling, A.Soleimanian

A.5.4 Optimization using the Hermite Normal Form (HNF) The
Hermite Normal Form of a matrix is an equivalent representation of the (I)-
SIS problem. If A = (A0∥A1∥ . . . ∥An−1) is the SIS matrix, then we call H =
(I∥A−1

0 A1∥A−1
0 A1∥ · · ·) = (I∥A′) its normal form. The (I)SIS can then be equiv-

alently rephrased as, what we call, the approximate (I)SIS problem.

Definition 19 (Approximate (I)SIS problem). Find s, e ∈ B, such that
Ax+ e = R, where R = 0 in the homogeneous case.

Based on this, we can adapt the CPW algorithm to turn it into an attack for
the approximate (I)SIS problem. [7] expands on the details of the algorithm.

Some notes on the costs estimates We note that both estimates are missing
some hidden costs,

– The attacks we consider are as memory intensive as they, typically as much
as they cost in terms of computation.

– We do not account for the evaluation costs of each partial candidate solution.
This would in practice add a few bits of security.

– The storage of each candidate is not “1”. On top of impacting the memory
complexity (which we chose not to account for anyway), it has an impact on
the costs of the memory accesses as well.

For these reasons, we believe the costs are somewhat over-pessimistic. Nonethe-
less, we prefer to go with the initial approach and leave it as a future task to
evaluate the concrete cost in CPU cycles of these attacks.

A.6 Concrete parameters

Based on the above analysis, we have run a parameter selection. The table below
gives a set of parameters for the ring-SIS instance. Here, q denotes the order of
the underlying prime field, b is the bound of the SIS instance, and n is the degree
of the ring modulus Xn + 1.

log2(q) log2(β) n BKZ attack CPW attack
64 2 32 182.17 144.0
64 4 64 147.31 305.57
64 6 128 166.13 598.14
64 10 256 149.93 1272.31
64 16 512 136.4 2741.67
64 22 1024 160.7 5967.82
254 2 7 157.7 259.03
254 4 16 146.1 270.0
254 6 32 164.73 637.0
254 10 64 148.63 1262.46
254 16 128 135.18 2720.33
254 24 256 133.28 5921.27
254 32 512 164.03 13013.8

	Vortex : Building A Lattice-based SNARK scheme with Transparent Setup

