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Abstract—Decentralized anonymous payment schemes may
be exploited for illicit activities, such as money laundering,
bribery and blackmail. To address this issue, several regulatory-
friendly decentralized anonymous payment schemes have been
proposed. However, most of these solutions lack restrictions
on the regulator’s authority, which could potentially result in
power abuse and privacy breaches. In this paper, we present
a decentralized anonymous payment scheme with collaborative
regulation (DAPCR). Unlike existing solutions, DAPCR reduces
the risk of power abuse by distributing regulatory authority to
two entities: Filter and Supervisor, neither of which can decode
transactions to access transaction privacy without the assistance
of the other one. Our scheme enjoys three major advantages
over others: ① Universality, achieved by using zk-SNARK to
extend privacy-preserving transactions for regulation. ② Collab-
orative regulation, attained by adding the ring signature with
controllable linkability to the transaction. ③ Efficient aggregation
of payment amounts, achieved through amount tags. As a key
technology for realizing collaborative regulation in DAPCR, the
ring signature with controllable linkability (CLRS) is proposed,
where a user needs to specify a linker and an opener to generate
a signature. The linker can extract pseudonyms from signatures
and link signatures submitted by the same signer based on
pseudonyms, without leaking the signer’s identity. The opener
can recover the signer’s identity from a given pseudonym. The
experimental results reflect the efficiency of DAPCR. The time
overhead for transaction generation is 1231.2ms, representing
an increase of less than 50% compared to ZETH. Additionally,
the time overhead for transaction verification is only 1.2ms.

Index Terms—Ring Signature, Blockchain, Cryptocurrency,
Regulation, Decentralized Finance.

I. INTRODUCTION

IN recent years, blockchain technology has had a substantial
economic and social impact on the real world. One of

the most widely adopted applications is the decentralized
payment system, also known as cryptocurrency. In 2021, the
total volume of cryptocurrency transactions surged to $15.8
trillion. However, in contrast to traditional centralized payment
mechanisms, distributed payment systems such as Bitcoin [1]
and Ethereum [2] lack support for the privacy preservation of
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user identities and payment amounts. To address this privacy
concern, researchers have proposed decentralized anonymous
payment (DAP) systems like Monero, Zerocash and Zether
[3]–[5]. In these solutions, the addresses of traders and the
specific payment amount for each transaction are kept confi-
dential from other users.

However, providing unconditional privacy in DAP may lead
to an increase in criminal activities. Cryptocurrencies could
potentially be used for bribery, blackmail, terrorist financing,
and money laundering [6]. Chainalysis1 pointed out that in
2021, cryptocurrency-related criminal cases increased by 79%
compared to 2020. Although during the same period, the
overall transaction volume grew by over 550%, indicating
a decrease in the proportion of illegal activities in the total
transactions, this does not imply that regulation is unnecessary.
FATF2 and APG3 proposed that the absence of regulation has
created significant loopholes for criminals, necessitating swift
action to mitigate the risks of virtual assets being exploited by
criminal and terrorist elements.

Numerous DAP schemes incorporating regulation have been
proposed to combat illicit activities within decentralized pay-
ment systems. However, unrestricted regulation presents the
risk of power abuse and privacy breaches. Therefore, our
work focuses on achieving a delicate equilibrium between
privacy preservation and regulation. Specifically, to mitigate
the potential for regulatory power abuse, regulators should
only have access to the sender’s address for suspicious transac-
tions, while ensuring that the privacy information of compliant
transactions remains confidential to regulators. Furthermore, it
is essential to monitor the total payment amounts conducted
by individual users during a designated transaction period.
This monitoring becomes necessary as traders might choose
to execute multiple smaller transactions rather than a single
large transaction when transferring assets.

In this paper, we propose a decentralized anonymous pay-
ment scheme with collaborative regulation (DAPCR). The
advantages of DAPCR are as follows.

First, DAPCR is a highly generic solution to achieve the
regulation of any DAP scheme. It exhibits compatibility not
only with UTXO blockchains but also with account-based
blockchains. To realize the universality of DAPCR, we extend
the original transaction in the DAP scheme using zk-SNARK.

1Chainalysis: https://www.chainalysis.com/
2Financial Action Task Force: https://www.fatf-gafi.org/
3Asia/Pacific Group on Money Laundering: https://apgml.org/

https://www.chainalysis.com/
https://www.fatf-gafi.org/
https://apgml.org/


MANUSCRIPT 2

TABLE I: Properties of DAPCR and related works

Scheme Restricted
Regulation Non-interaction Amount

Aggregation Universality

DAPCR � � � �
[7] × � × ×
[8] × � × ×
[9] � � × ×
[10] × × × ×
[11] × × × ×

By adding additional regulatable fields to the transaction, the
regulator can effectively enforce the regulation, irrespective of
the original DAP transaction.

Moreover, we decentralize regulatory power between two
entities, similar to the separation of powers in governments,
to achieve restrictive regulation. In particular, the regulatory
power is divided between two regulators: Filter and Supervisor.
Filter is responsible for linking the transactions submitted by
the same signer and extracting the amount tag from each
transaction. Supervisor can recover the user’s public key
from a given pseudonym. Both regulators must collaborate
to accomplish the supervision task.

Furthermore, we design the amount tag to achieve efficient
aggregation of transaction amounts. Filter can extract the
amount tag from each transaction and aggregate amount tags
to determine whether the total amount exceeds the preset upper
limit. During this process, no additional privacy is exposed. To
clarify the advantages of our scheme, the properties of DAPCR
and related works are shown in Table I.

A. Paper Contributions

In summary, our contributions in this paper are as follows.
1. We propose the DAPCR scheme with the following advan-

tages: ① Universality ensures compatibility with existing
DAP schemes. ② Collaborative regulation prevents abuse
of power and privacy breaches. ③ Efficient aggregation of
payment amounts via amount tags. To our best knowledge,
DAPCR is the first universal collaborative regulation scheme
for DAP schemes.

2. We also propose the ring signature with controllable link-
ability (CLRS), which is a key technology for enabling
collaborative regulation in DAPCR. It allows the designated
user to link signatures from the same signer without reveal-
ing the signer’s identity.

3. We present security definitions of CLRS and DAPCR and
provide the security analysis for them.

4. We evaluate the performance of DAPCR on both local
devices and the Fabric network. The time cost for transaction
generation is about 1231.2ms and that of transaction verifi-
cation is about 12.5ms. These experimental results indicate
the effectiveness of DAPCR.

B. Paper Outline

Section II presents an overview of DAPCR. In Section III,
we review the background materials associated with our work.
Section IV presents the system framework and security defi-
nitions of CLRS and DAPCR. Next, we propose an efficient
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Fig. 1: Transaction Structure.

construction of CLRS, which is the building block of DAPCR
in Section V. In Section VI, we present an efficient and generic
construction of DAPCR. We also provide the performance
analysis for DAPCR in Section VII and the security analysis
for DAPCR in Appendix. Section VIII reviews the recent
literature relevant to DAP and ring signatures. Section IX
concludes our work.

II. OVERVIEW

In this section, we briefly describe the transaction structure,
the transaction policy, and the collaborative regulation between
Filter and Supervisor in DAPCR.

1) Transaction Structure: As shown in Fig. 1, a regulatable
transaction rtx consists of a DAP transaction tx, an amount
commitment comv , and a CLRS signature σ. Additionally,
users also generate a proof for that the opening of comv is
the payment amount v of tx, and attach it to the regulatable
transaction. Filter can extract the sender’s pseudonym nym
from the signature σ and the payment amount tag tagv
from the commitment comv , both of which are the basis
for determining whether users comply with the transaction
policy. Due to not considering the original DAP transaction
tx during the regulatory process, the DAPCR scheme exhibits
universality.

2) Transaction Policy: A commonly employed policy in
digital payment systems involves assigning each user an upper
limit, restricting their total payment amount to not exceed
this limit within a given period [12], [13]. We make slight
modifications to this policy and apply it to DAPCR:

In DAPCR, each user is allocated a privacy payment limit
for each trading period. At the end of a trading period, the total
amount of privacy payments must equal the privacy payment
limit. If the total amount is lower than the limit, users are
required to publish a self-transaction to make up for the differ-
ence in the amount. When a user reaches their privacy payment
limit but still wishes to engage in transactions, they can publish
public transactions. If a user’s total payment amount exceeds
their payment limit, Filter will mark their transactions during
this trading period as suspicious and include these transactions
in regulation.

3) Collaborative Regulation: To address the issues of
potential power abuse and privacy leakage that may arise
from a single entity regulating anonymous transactions, we
decentralize the regulatory authority to two entities: Filter (F)
and Supervisor (S).
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Fig. 2: Collaborative regulation between Filter and Supervisor.

Filter. To screen out suspicious transactions in the ledger, F
utilizes its extracting key to extract the pseudonym nym and
the amount tag tagv from each transaction on the blockchain.
The unique correspondence between pseudonyms and users’
public keys enables F to establish links among transactions
from the same user. Furthermore, the amount tag tagv repre-
sents the payment amount v of rtx. Multiple amount tags can
be aggregated into a total amount tag tagsum for regulatable
transactions.

To determine whether the user with the pseudonym nym
complies with the transaction policy, Filter performs the fol-
lowing steps:

1. Filter extracts the sender’s pseudonym from each transaction
on the blockchain, and screens out transactions submitted by
the user with the pseudonym nym.

2. For the transactions submitted by nym, Filter extracts
amount tags from these transactions and aggregates amount
tags into the total amount tag tagsum.

3. Filter determines whether nym’s total payment amount
exceeds their limit according to tagsum.

4. If exceeded, F submits the pseudonym nym and the total
amount tag tagsum to S.
Note that F cannot directly obtain the sender’s identity and

the payment amount from the pseudonym and the amount tag.
Supervisor. Once receiving nym and tagsum from F , S

can recover the user’s public key from its pseudonym and
obtain the payment amount from the total amount tag using S’s
private key. Notably, S cannot extract pseudonyms or amount
tags from transactions. Both regulators must collaborate to
accomplish the supervision task, thereby achieving a decen-
tralization of regulatory power between F and S.

III. PRELIMINARIES

A. Decentralized Anonymous Payments

A DAP scheme such as Zerocash [4], Monero [3] or Zether
[5] can be highly simplified into four algorithms as follows.
• Setup(1λ)→ pp. This algorithm takes a security parameter
λ as input and outputs a public parameter pp, which is an
implicit input for other algorithms.

• AddrGen(pp) → (addr, s). This algorithm outputs a user’s
address addr and secret key s.

• TxGen(addrS , addrR, v, s, Ipub, Ipri) → tx. The algorithm
takes as input a sender’s address addrS , a recipient’s address
addrR, the payment amount v, a secret key s, Ipub (which
represents additional public inputs) and Ipri (which repre-
sents additional private inputs), and outputs a transaction
tx.

• TxVfy(tx, Ipub) → 0/1. The algorithm takes as input a
transaction tx and outputs 1 if tx is valid or 0 otherwise.
A secure DAP scheme generally satisfies indistinguishabil-

ity, non-malleability and balance.
1. Indistinguishability. The ledger discloses no information to

any adversary attempting to access information beyond what
is publicly available.

2. Non-malleability. No adversary possesses the capability to
modify the information contained within a valid transaction
tx.

3. Balance. The amount paid by any adversary cannot exceed
its balance.

B. NIZK & SoK

1) NIZK Protocol: We first present an NP-relation R defin-
ing the language LR = {ϕ|∃ϖ : (ϕ,ϖ) ∈ R} in which ϕ and
ϖ are considered as a statement and a witness. Non-interactive
zero-knowledge protocol, also known as NIZK protocol, for
the relation R is composed of three algorithms as follows.
• G(1λ,R) → crs. The algorithm takes a security parameter
λ and an NP-relation R as input, and outputs a common
reference string crs.

• P(ϕ,ϖ, crs) → π. The prover algorithm takes a statement
ϕ, a witness ϖ and a common reference string crs as input,
and outputs a proof π.

• V(ϕ, π, crs)→ 0/1. The verifier algorithm takes a statement
ϕ, a proof π and a common reference string crs as input,
and outputs 1 if π is valid or 0 otherwise.
A NIZK scheme satisfies the following properties.

1. Completeness. For any (ϕ,ϖ) ∈ R,

Pr

[
crs← G(1λ,R);π ← P(ϕ,ϖ, crs) :

1← V(ϕ,ϖ, crs)

]
= 1.

2. Zero-knowledge [14]. No information other than the truth
of the statement is leaked. For any (ϕ,ϖ) ∈ R, any proba-
bilistic polynomial-time adversary A and a polynomial-time
simulator S = (Gsim,Psim),

Pr

[
(crs, τ)← Gsim(1λ,R);π′ ← Psim(ϕ, crs, τ) :

A(π′, crs, τ,R) = 1

]
−

Pr

[
crs← G(1λ,R);π ← P(ϕ,ϖ, crs) :

A(π, crs, τ,R) = 1

]
≤ negl(λ).

3. Knowledge Soundness [15]. A secure NIZK scheme cannot
prove a false statement. For any probabilistic polynomial-
time adversary A and a probabilistic polynomial-time ex-
tractor E ,

Pr

 crs← G(1λ,R);
(ϕ, π,ϖ)← (A∥E)(crs,R) :
1← V(ϕ, π, crs) ∧ (ϕ,ϖ) /∈ R

 ≤ negl(λ).
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Zk-SNARK, also known as the zero-knowledge succinct
non-interactive argument of knowledge, is a special type of
NIZK scheme. In addition to the above properties, zk-SNARK
also satisfies succinctness [16]: The runtime of a prover
algorithm is polynomial in |a|+λ and the size of π output by
the prover algorithm is polynomial in λ.

2) SoK protocols: Signature of knowledge protocols [17],
also known as SoK, allows a signer to publish signatures on
behalf of any NP-relation R. A SoK protocol ΠSoK consists
of three algorithms as follows.
• SoK.Setup(1λ,R) → pp. The algorithm takes a security

parameter λ and an NP-relation R as input, and outputs a
public parameter pp.

• SoK.Sign(m,ϕ,ϖ, pp)→ π. The algorithm takes a message
m, a statement ϕ, a witness ϖ and the public parameter pp
as input and outputs a signature of knowledge π.

• SoK.Vfy(m,ϕ, π, pp) → 0/1. The algorithm takes a mes-
sage m, a statement ϕ, a signature of knowledge π and the
public parameter pp as input, and outputs 1 if π is valid, or
0 otherwise.
A secure SoK satisfies correctness, simulatability and ex-

tractability.
1. Correctness. For any (ϕ,ϖ) ∈ R,

Pr

[
pp← Setup(1λ,R);π ← Sign(m,ϕ,ϖ, pp) :

1← Vfy(m,ϕ, π, pp)

]
= 1

2. Simulatability. There exists a probabilistic polynomial-time
simulator Sim = (Setupsim,Signsim) such that for any
probabilistic polynomial-time adversary A,

Pr
[
(pp, τ)← Setupsim(1λ, R) : ASim(pp) = 1

]
−

Pr
[
pp← Setup(1λ, R) : ASign(pp) = 1

]
≤ negl(λ),

where Sim takes (m,ϕ,ϖ) as input and outputs π ←
Signsim(m,ϕ, τ, pp) if (ϕ,ϖ) ∈ R and ⊥ otherwise.
In other words, that interaction with Setup and Sign is
indistinguishable from that with Setupsim and Signsim.

3. Extractability. There exists a simulator and an extractor
algorithm Ext such that for any probabilistic polynomial-
time adversary A,

Pr


(pp, τ)← Setupsim(1λ, R);

(m,ϕ, π)← ASim(pp);ϖ ← Ext(m,ϕ, π, τ, pp) :
(ϕ,ϖ) ∈ R ∨ (m,ϕ, π) ∈ Lsim∨

0← Vfy(m,ϕ, π, pp)

 = 1,

where Lsim is a list of queries to Signsim.
Note that NIZK and SoK protocols in the random oracle

model can be efficiently realized by applying the Fiat-Shamir
transform [18] to Σ-protocols.

IV. SYSTEM FRAMEWORK AND SECURITY DEFINITIONS

In this section, the system framework and security defini-
tions of DAPCR are going to be introduced.

A. DAP with Collaborative Regulation

1) System Framework: An entity that independently reg-
ulates the anonymous payment system may abuse regulatory
power. To avoid the disadvantage, we divide the regulatory
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Fig. 3: System framework.

power into two authorities called Filter and Supervisor. Figure
3 depicts the system framework of DAPCR, which consists of
five entities as follows:

1. Blockchain. The DAPCR scheme is based on a permissioned
blockchain, which is only accessed by users with permis-
sions. Supervisor is responsible for registering users who
are allowed to join the permissioned blockchain.

2. User. Only with the permission of Supervisor can users
join the blockchain and obtain a pseudonym. Supervisor
can recover the user’s public key from the pseudonym. We
assume that users may take any malicious action.

3. Consensus Nodes are responsible for checking the validity
of transactions and sealing the valid transactions into new
blocks.

4. Filter has the ability to link transactions from the same
sender and determine whether they comply with the trans-
action policy.

5. Supervisor is an entity responsible for registering users and
identifying the sender’s public key of suspicious transactions
with the assistance of S.
The workflow of the system is as follows: ① Filter and

Supervisor publish their public key on the blockchain, and a
user generates their public-private key pair. ② Users interact
with Supervisor to complete registration. ③ A user generates
a regulatable transaction and submits it to consensus nodes.
④ Consensus nodes verify the validity of transactions, ⑤
and seal valid transactions into blocks. ⑥ Filter screens out
suspicious transactions on the blockchain, ⑦ and submits them
to Supervisor who can obtain the sender’s address and payment
amounts with the assistance of Filter.

2) Formal Definition: A DAPCR scheme is composed by
the following probabilistic polynomial-time algorithms.
• param ← Setup(1λ). This algorithm takes as input a

security parameter λ and outputs a public parameter param,
which is implicit input to other algorithms.

• (pkF , skF ) ← FInit(param). F executes this algorithm to
generate their public-private key pair (pkF , skF ).

• (pkS , skS) ← SInit(param). S executes this algorithm to
generate their public-private key pair (pkS , skS).

• (uk, sk) ← KeyGen(pkS). This algorithm takes pkS as
input and outputs a public-private key pair (uk, sk) for a
user.

• (µ, tagµ, nym) ← Σreg(U : pkS , uk;S : pkS , skS). S
and a user U execute the interactive protocol Σreg for user
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registration. This protocol takes uk, pkS and skS as input
and outputs the upper limit of total payment amounts µ, a
tag tagµ of µ and the user’s pseudonym nym.

• rtx ← RtxGen(addrS , addrR, v, s, Ipub, Ipri, R, sk, pkF ). The
algorithm takes as input a tuple (addrS , addrR, v, s, Ipub,
Ipri, R, sk, pkF ) and outputs a regulatable transaction rtx,
where R = {uk0, uk1, ..., ukn−1}, uk = ukj ∈ R and sk
is a private key corresponding to uk.

• 0/1 ← Verify(rtx, pkF , R, Ipub). This algorithm, which
verify the validity of a regulatable transaction rtx, takes rtx,
pkF , R and Ipub as input, and outputs 1 if rtx is valid or 0
otherwise.

• (tagv, nym) ← Extract(rtx, skF ). The algorithm takes rtx
and skF as input and extracts an amount tag tagv and the
sender’s pseudonym nym from rtx. Since pseudonyms are
uniquely associated with user identities, they can be used to
link transactions from the same sender.

• (S, susp/⊥) ← Detect(nym, tagµ, skF , ledger). This al-
gorithm takes as input a pseudonym nym, a tag tagµ of
nym’s payment upper limit, Filter’s private key skF and a
decentralized ledger ledger, which denoted all transactions
sealed in blocks during a trading period, and outputs a set
S of all transactions submit by nym. The algorithm further
outputs susp if nym’s total payment amount exceeds their
upper limit, else outputs ⊥.

• rpt ← Report((S, susp), nym, pkF , skF ). This algorithm
takes as input a tuple (S, susp), a pseudonym nym and
a public-private key pair (pkF , skF ), and outputs a report
rpt proving that nym published suspicious transactions in a
trading period.

• (uk, vsum)/⊥ ← Recover(rpt, pkF , skS). This algorithm
takes a report rpt, Filter’s public key pkF and Supervisor’s
private key skS as input and check the validity of rpt. If rpt
is valid, it outputs the sender’s public key uk and the total
payment amount vsum else outputs ⊥.

B. Ring Signature with Controllable Linkability
We propose a ring signature with controllable linkability,

which serves as the foundational component of DAPCR. To
generate a signature, the user needs to specify a linker and
an opener. The authorized linker has the ability to extract the
user’s pseudonym from the signature and establish connections
between signatures from the same user using the pseudonym.
The authorized opener can retrieve the user’s public key from
the pseudonym.

The linker is only aware of the linking relationships among
the signatures, while the signatures remain anonymous to the
linker. On the other hand, the opener, without the assistance
of the linker, is unable to retrieve the user’s public key
from the signature. Thus, CLRS effectively prevents the abuse
of identity-tracing capabilities. To clarify the advantages of
the proposed scheme, the properties of CLRS and related
signatures are shown in Table II.

A CLRS scheme consists of the following algorithms:
• pp← Setup(1λ). The algorithm takes a security parameter
λ as input, and generates a public parameter pp which is
implicitly input to other algorithms. Note that this algorithm
is transparent.

TABLE II: Properties of CLRS and related signatures

Scheme Controllable
Linkability1

Restricted
traceability2 Transparency Group

Manager
CLRS � � � ×
[19] × × � ×
[20] � × × �
[21] × × � ×
[22] × × � ×

1 Controllable linkability means that only the designated user can link
signatures from the same signer.

2 Restricted traceability means that the opener can only trace the identity
of the signer with the assistance of the linker.

• (pkL, skL)← LKGen(pp). The algorithm outputs a public-
private key pair (pkL, skL) for a linker.

• (pkO, skO)← OKGen(pp). The algorithm outputs a public-
private key pair (pkO, skO) for an opener.

• (uk, sk)← UKGen(pkO). The algorithm takes an opener’s
public key pkO as input and outputs a user’s public-private
key pair (uk, sk).

• σ/⊥ ← Sign(R,m, pkL, sk). The algorithm takes a ring
R = {uk0, uk1, ..., ukn−1}, a message m, a linker’s public
key pkL and a user’s private key sk as input. If sk is the pri-
vate key corresponding to ukj ∈ R and j ∈ {0, 1, ..., n−1},
the algorithm outputs a signature σ of (R,m) else outputs
⊥.

• 0/1 ← Vfy(R,m, σ, pkL). The algorithm takes a ring R, a
message m, a linker’s public key pkL and a signature σ as
input and outputs a bit b. If b = 1, σ is valid otherwise is
invalid.

• nym← Ext(σ, skL). The algorithm takes a valid signature
σ and a linker’s private key skL as input and outputs the
signer’s pseudonym nym.

• link/unlink ← Link(σ0, σ1, skL). A linker executes the al-
gorithm CLRS.Ext to extract pseudonyms nym0 and nym1

from σ0 and σ1. If nym0 = nym1, this algorithm outputs
link else outputs unlink.

• uk ← Open(nym, skO). The algorithm takes a pseudonym
nym and an opener’s private key skO as input and outputs
the user’s public key uk.
In addition, a linker can prove that the same pseudonyms

nym are extracted from multiple signatures σi|n−1
i=0 . In other

words, these signatures are signed by the same user with
pseudonym nym.
• π ← Prove(σi|n−1

i=0 , nym, pkL, skL). This algorithm takes
several signatures σi|n−1

i=0 , a pseudonym nym and a linker’s
public-private key pair (pkL, skL) as input, and outputs a
proof π of correct extraction.

• 0/1 ← Judge(σi|n−1
i=0 , nym, π, pkL). This algorithm takes

several signatures σi|n−1
i=0 , a pseudonym nym, a proof π

and a linker’s public key pkL as input, and outputs a bit b.
If b = 1, π is valid else is invalid.

C. Security Definition

1) Security Definition of CLRS: First, we introduce two
adversaries: A1, who has compromised the linker and obtained
the linking key skL, and A2, who has compromised the opener
and obtained the opening key skO. However, we assume
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Anonymity Experiment expAnoAi
(λ):

1: pp← Setup(1λ)
2: (pkL, skL)← LKGen(pp)
3: (pkO, skO)← OKGen(pp)
4: (R,m, uk0, uk1)← Ai(skAi

, pkL, pkO)
5: b←$ {0, 1}
6: σb ← Sign(R,m, pkL, skb)
7: b′ ← Ai(σb, skAi

, pkL, pkO)
8: if b′ = b then output 1
9: else output 0

10: end if
Nym-extractability Experiment expNExtAi

(λ):

1: pp← Setup(1λ)
2: (pkL, skL)← LKGen(pp)
3: (pkO, skO)← OKGen(pp)
4: (R,m, σ)← Ai(skAi

, pkL, pkO)
5: nym← Ext(σ, skL)
6: π ← Prove(σ, nym, pkL, skL)
7: b1 ← Vfy(R,m, σ, pkL)
8: b2 ← Judge(σ, nym, π, pkL)
9: if b1 = 1 ∧ b2 = 0 then output 1

10: else output 0
11: end if

Unforgeability Experiment I expUf1Ai
(λ):

1: pp← Setup(1λ)
2: (pkL, skL)← LKGen(pp)
3: (pkO, skO)← OKGen(pp)
4: R← C(pkO)
5: (m,σ)← A(R, skAi

, pkL, pkO)
6: b← Vfy(R,m, σ, pkL)
7: output b

Unforgeability Experiment II expUf2A1
(λ):

1: pp← Setup(1λ)
2: (pkL, skL)← LKGen(pp)
3: (pkO, skO)← OKGen(pp)
4: uk ← C(pkO)
5: (R,m, σ)← A1(uk, skL, pkL, pkO, uk)
6: nym← Ext(σ, skL)
7: b← Vfy(R,m, σ, pkL)
8: if b = 1 ∧ uk ∈ R∧

uk ← Open(nym, skO) then
9: output 1

10: else
11: output 0
12: end if

Nym-soundness Experiment expNSAi
(λ):

1: pp← Setup(1λ)
2: (pkL, skL)← LKGen(pp)
3: (pkO, skO)← OKGen(pp)
4: if i = 1 then
5: skAi

= skL
6: else
7: skAi

= skO
8: end if
9: (R,m, σ, nym0, nym1, π0, π1)←

Ai(skAi
, pkL, pkO)

10: b1 ← Vfy(R,m, σ, pkL)
11: b2 ← Judge(σ, nym0, π0, pkL)
12: b3 ← Judge(σ, nym1, π1, pkL)
13: if b1 = b2 = b3 = 1 ∧ nym0 ̸= nym1 ∧

(nym
skO
i , ·) ∈ R then

14: output 1
15: else
16: output 0
17: end if

Fig. 4: Security experiments for CLRS.

that an adversary cannot compromise both the opener and
the linker at the same time, because with skL and skO, an
adversary would be able to trace the signer of any valid
signature. We believe that this assumption is realistic. In
addition, we define that skA1 = skL and skA2 = skO.

Definition 1. We say that a CLRS scheme is secure if it satis-
fies correctness, unforgeability, anonymity, nym-extractability
and nym-soundness.

1. Correctness. CLRS satisfies correctness if

Pr


pp← Setup(1λ);uk ← UKGen(sk);

(pkO, skO)← OKGen(pp);
(pkL, skL)← LKGen(pp);

σ ← Sign(R,m, pkL, pkO, sk) :
If uk ∈ R then 1← Vfy(R,m, σ, pkL)

 = 1

2. Unforgeability. A1 (or A2) without any ring member’s
private key cannot forge a ring signature on behalf of the
ring. In addition, A1 cannot forge a signature from which
the pseudonym extracted is associated with an honest user.
A CLRS scheme satisfies unforgeability if for any proba-
bilistic polynomial-time adversary Ai, Pr[expUf1Ai

(λ) = 1] ≤
negl(λ) and Pr[expUf2A1

(λ) = 1] ≤ negl(λ)
3. Anonymity. CLRS satisfies anonymity if for any probabilistic

polynomial-time adversary Ai, |Pr[expAnoAi
(λ) = 1]− 1

2 | ≤
negl(λ).

4. Nym-extractability. A linker can always extract the signer’s
pseudonym from a signature and generate a proof for correct
extraction. CLRS satisfies nym-extractability if for any prob-
abilistic polynomial-time adversary Ai, Pr[expNExtAi

(λ) =
1] ≤ negl(λ).

5. Nym-soundness. Nym-soundness ensures that a linker cannot
extract pseudonyms of two different signers from a sig-
nature, even if users in the ring are fully corrupt. CLRS
satisfies nym-soundness if for any probabilistic polynomial-
time adversary Ai, Pr[expNSAi

(λ) = 1] ≤ negl(λ).
Security experiments for CLRS are presented in Fig. 4.

2) Security Definition of DAPCR: We also present two
adversaries for DAPCR: A′

1 is an adversary that compromises
Filter, while A′

2 is an adversary that compromises Supervisor.
However, we assume that adversaries cannot simultaneously
compromise both Filter and Supervisor because they could
collaborate to obtain private information from suspicious trans-
actions. We believe this assumption is reasonable. In addition,
we define that skA′

1
= skF and skA′

2
= skS .

Definition 2. We say that a DAPCR scheme is secure if
it satisfies indistinguishability, F-extractability, F-soundness,
balance and non-malleability.

1. Indistinguishability. For A′
2, the regulatable transaction re-

veals no information about transaction privacy. For A′
1,

they can link regulatable transactions from the same user
but cannot obtain any additional information. We say that
DAPCR satisfies indistinguishability if, for i ∈ {1, 2}, any
probability polynomial-time adversary A′

i and a security
parameter λ, the advantage of A′

i in winning the indistin-
guishability experiment is negligible, i.e. |Pr[expIndA′

i
(λ) =

1]− 1
2 | ≤ negl(λ).

2. F-extractability. For a valid regulatable transaction, F can
extract the sender’s pseudonym and the payment amount
tag from the transaction. DAPCR satisfies F-extractability
if Pr[expFExtA′

i
(λ) = 1] ≤ negl(λ).

3. F-soundness. For a valid regulatable transaction, F cannot
extract two different pseudonyms or tags from the transac-
tion. DAPCR satisfies F-soundness if Pr[expFSA′

1
(λ) = 1] ≤

negl(λ).
4. Balance. The amount paid by any probabilistic polynomial-

time adversaries cannot exceed their balance.
5. Non-malleability. No probabilistic polynomial-time adver-

sary possesses the capability to modify the information
contained within a regulatable transaction rtx.

Security experiments in DAPCR are presented in Fig. 5.
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Indistinguishability Experiment expIndA′
i
(λ):

1: param← Setup(1λ)
2: (pkF , skF )← FInit(param)
3: (pkS , skS)← SInit(param)
4: (T0, T1, R)← A′

i(skA′
i
, pkS , pkF )

where Tj = (addrSj
, addrRj

, vj , ukj)
and uk0, uk1 ∈ R

5: rtxb ← C(Tb, R, skb, ·)
6: b′ ← A′

i(rtxb, skA′
i
, pkS , pkF )

7: if b = b′ then
8: output 1
9: else

10: output 0
11: end if

F -extractability Experiment expFExtA′
i
(λ):

1: param← Setup(1λ)
2: (pkF , skF )← FInit(param)
3: (pkS , skS)← SInit(param)
4: (R, rtx, v, r)← A′

i(skA′
i
, pkS , pkF )

5: (nym, tagv)← Extract(rtx, skF )
6: if 1← Verify(rtx, pkF , R, Ipub)∧

tagv = Com(v, r)∧v = amount(rtx)∧
nym = nym(uk) ∧ uk ∈ R then

7: output 1
8: else
9: output 0

10: end if

F -soundness Experiment expFSA′
i
(λ):

1: param← Setup(1λ)
2: (pkF , skF )← FInit(param)
3: (pkS , skS)← SInit(param)
4: (R, rtx, T0, T1)← A′

i(skA′
i
, pkS , pkF )

where Tj = (nymj , tagj , π
nym
j , πtag

j )

5: if ∀j, 1← Vnym(rtx, nymj , π
nym
j )∨

∀j, 1← Vtag(rtx, tagj , π
tag
j )

1← Verify(rtx, pkF , R, Ipub) then
6: output 1
7: else
8: output 0
9: end if

Fig. 5: Security experiments for DAPCR.

V. RING SIGNATURE WITH CONTROLLABLE LINKABILITY

First, we introduce three NIZK protocols Πenc, Πdec and
Πmem that are used to construct CLRS.

1. Πmem = (Gmem,Pmem,Vmem) represents a NIZK protocol
for the relation

Rmem =

{
((c0, c1, ..., cn−1), (l, r), (g, h)) :
∀i, ci ∈ G ∧ cl = g0hr∧

l ∈ {0, 1, ..., n− 1} ∧ r ∈ Z∗
q

}
.

Σ-protocols for the above relation called one-out-of-many
proofs [23] that can be used to prove that one out of many
commitments can be opened to 0 without requiring the
prover to possess knowledge of the openings of the other
commitments. Applying the Fiat-Shamir transform to this
Σ-protocol yields the NIZK protocol Πmem. Moreover, the
protocol Πmem requires no trusted setup, and the proof size
is logarithmic in the number of all commitments.

2. Πenc = (Genc,Penc,Venc) represents a NIZK protocol for
the relation

Renc =

{
((c, u, pk), (α, β), (g, h)) :

c = gαhβ ∧ u = pkβ ∧ pk, g, h ∈ G ∧ α, β ∈ Z∗
q

}
.

The protocol allows one to prove the correctness of an
ElGamal ciphertext ct = (c, u) given a specific public key
pk.

3. Πdec = (Gdec,Pdec,Vdec) represents a NIZK protocol for
the relation

Rdec =

{ ((cti = (ci, ui)|n−1
i=0 ,m, pk), sk, h) :

∀i, ci = m · u
1
sk
i ∧ pk = hsk∧

m, pk, h, ci, ui ∈ G ∧ sk ∈ Z∗
q

}

where cti|n−1
i=0 are n ElGamal ciphertexts. This protocol can

prove that the decryption result of multiple ciphertexts is
the same plaintext m.
Similar to the protocol Πmem, Πenc and Πdec are respec-

tively transformed from interactive protocols Σenc and Σdec,
of which the details are presented in Appendix A.

A. Construction of CLRS

An efficient construction of CLRS consists of the following
algorithms:
• Setup. Consider two big prime numbers p and q. Elliptic

curve cryptography (ECC) is based on the use of non-
singular elliptic curves E on Fp. g is a generator of group

G, which is a cyclic group with order q. ECC can be given
by a tuple (G, g, p, q). The public parameter used in our
construction is denoted by pp = (g, h,H) where g, h ∈ G
and the hash function H : {0, 1}∗ → Z∗

q . pp is implicitly
input to other algorithms.

• LKGen. A linker randomly samples private key skL ∈ Z∗
q

and computes pkL = hskL .
• OKGen. An opener randomly samples private key skO ∈ Z∗

q

and computes pkO = gskO .
• UKGen. A user randomly samples private key sk ∈ Z∗

q and
computes pk = pkskO . Then the user randomly samples r ∈
Z∗
q and computes c = gskhr. Lastly, the user generates a

proof πenc ← Penc((c, pk, pkO), (r, sk), (h, g)). The user
outputs uk = (pk, c, πenc).
One calculates b← Venc((c, pk, pkO), πenc, (g, h)) to verify
the validity of uk. If b = 1, uk is valid else is invalid.
When implementing this scheme in the blockchain, a smart
contract can be deployed as a bulletin board, which is
responsible for verifying the validity of public keys and
recording valid public keys.

• Sign. To generate a signature σ for m, a user with the
key pair (uk, sk) chooses a ring R = {uk0, ..., ukn−1}
that satisfies uk = ukj ∈ R. Initially, the user randomly
samples k ∈ Z∗

q and computes com = gskhk and K = pkkL.
Subsequently, the user extracts ci from each public key
uki ∈ R, computes c′i = ci/com and gets a new ring
R′ = {c′0, c′1, ..., c′n−1} where c′j = g0hr−k. The user also
calculates a proof πmem ← Pmem(R′, (j, r − k), (g, h)).
Then the user randomly chooses x1, x2 ∈ Z∗

q and computes

com′ = gx1hx2 ,

K ′ = pkx2

L ,

e = H(R|m|com|com′|K|K ′),

y1 = x1 + e · sk,
y2 = x2 + e · k.

(1)

π = (com′,K ′, y1, y2) is a signature of knowledge prov-
ing ((com,K, pkL), (sk, k)) ∈ Renc. The formula 1 is
a SoK scheme transformed from the interactive protocol
Σenc presented in Appendix A-B. Finally, the user outputs
σ = (com,K, πmem, π).

• Vfy. Given a signature σ of (R,m), an opener’s public key
pkO and a linker’s public key pkL, a verifier checks the
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validity of σ. Initially, the verifier computes R′ and b ←
Vmem(R′, πmem, (g, h)). If b = 0, σ is invalid. Otherwise,
the verifier computes e = H(R|m|com|com′|K|K ′) checks
whether the following equations hold.

gy1hy2
?
= com′come

pky2

L
?
= K ′Ke

If both of the above equations hold, σ is valid else is invalid.
• Ext. Given a valid signature σ = (com,K, πmem, π) and a

linker’s private key skL, the linker computes the pseudonym
nym = K

− 1
skL com = gsk of the signer.

• Link. Given two signatures σ0, σ1 and a linker’s private key
skL, a linker executes the algorithm CLRS.Ext to extract
nym0 = gsk0 and nym1 = gsk1 from σ0 and σ1. If nym0 =
nym1 the algorithm outputs link else outputs unlink.

• Open. Given a pseudonym nym and an opener’s private key
skO, an opener recovers pk = nymskO = pkskO from the
pseudonym and outputs uk = (pk, ·).
In addition, a linker can execute the algorithm CLRS.Prove

to prove that a pseudonym nym is extracted from σ without
revealing the private key skL. One can verify whether nym
is extracted from σ.
• Prove. Given several signatures σi = (comi,Ki, ·) for i ∈
{0, 1, ..., n − 1}, a pseudonym nym and a linker’s private
key skL, the linker computes

πdec ← Pdec(((comi,Ki)|n−1
i=0 , nym, pkL), skL, h)

to prove correct decryption of (comi,Ki)|n−1
i=0 and that the

decryption result of these ciphertexts is a same message
nym. In other words, πdec is a proof for that several
signatures are published by the same signer with pseudonym
nym.

• Judge. Given several signatures σi = (comi,Ki, ·) for i ∈
{0, 1, ..., n − 1}, a pseudonym nym, a linker’s public key
pkL and a proof πdec, one can compute

b← Vdec(((comi,Ki)|n−1
i=0 , nym, pkL), πdec, h).

If b = 1, πdec is valid else is invalid.
Due to the above NIZK protocols without trusted setup, the

proposed CLRS scheme is transparent. Therefore, the CLRS
scheme can be used in a trustless networking environment
[24].

Theorem 1. The proposed CLRS scheme satisfies correctness.

PROOF. For a ring R = {uk0, uk1, ..., ukn−1}, the user
with public key ukj = (pkj , cj , πenc) = (pkskO , gskhr, πenc)
calculates σ = (com,K, πmem, π) of (R,m) that satisfies
σ ← CLRS.Sign(R,m, pkL, sk).

To verify the validity of σ, the verifier first computes
c′i = ci/com for i ∈ {0, 1, ..., n − 1} and gets R′ =
{c′0, c′1, ..., c′n−1}. If the NIZK protocol Πmem satisfies com-
pleteness and the SoK protocol for the relation Renc satisfies
correctness, both πmem and π can be successfully verified.
The signature σ will also pass the verification as a result.

Therefore, if the NIZK protocol used in the CLRS scheme
satisfies completeness, and the SoK protocol satisfies correct-
ness, then the CLRS scheme achieves correctness.

VI. DAP WITH COLLABORATIVE REGULATION

In this section, we present an efficient DAPCR scheme
based on a CLRS scheme and several NIZK protocols.

First, we introduce two NIZK protocols Πlog and Πv that
are used to construct the DAPCR scheme.

1. Πlog = (Glog,Plog,Vlog) represents the NIZK protocol for
the relation

Rlog = {(A,α, g) : A = gα ∧ g ∈ G ∧ α ∈ Z∗
q}.

The protocol can prove the knowledge of a discrete loga-
rithm while ensuring the confidentiality of its actual value.

2. Πv = (Gv,Pv,Vv) represents the NIZK protocol for the
relation

Rv =

{
((tx, c, Ipub, g, h), (addrS , addrR, Ipri, v, s, r)) :
tx← TxGen(addrS , addrR, v, s, Ipub, Ipri)∧

c = gvhr ∧ g, h ∈ G ∧ v, r ∈ Z∗
q

}
.

The protocol can prove that a committed value in c is the
payment amount v of a privacy-preserving transaction tx.
The details of this protocol are introduced in Appendix A.
An efficient DAPCR scheme consists of four phases: the

preparation phase, the transaction phase, the verification phase,
and the supervision phase.

1) Preparation Phase: Consensus nodes execute the ini-
tialization algorithm, and Supervisor S registers users in the
DAPCR system.
Setup. Consensus nodes execute

(g, h,H)← CLRS.Setup(1λ),

crs← Gv(1λ,Rv),

and output param = (g, h,H, crs) that is implicit input to
other algorithms.
FInit. F executes the algorithm CLRS.LKGen to get the
public-private key pair (pkL, skL) and publishes their public
key pkF = pkL.
SInit. S executes the algorithm CLRS.OKGen to get the
public-private key pair (pkO, skO) and publishes their public
key pkS = pkO.
KeyGen. A user computes (uk, sk) ← CLRS.UKGen(pkO)
and publishes their public key uk.
Register. A user U and Supervisor S engage in an interactive
protocol to register the user.

1. U randomly samples β ∈ Z∗
q , and computes B = gβ and

w = H(pkβO|uk). Then U sends (B, uk) to S.
2. Once (B, uk) is received, S sets the upper limit µ ∈

Z∗
q of total payment volume for U , and computes w =

H(BskO |uk), tagµ = gµhw and nym = pk
1

skO . Then, S
adds (uk, µ, nym, tagµ) to the list LS , sends µ to U through
a secure channel.
Moreover, S sends (nym, tagµ) to F . Once (nym, tagµ)

is received, F adds it to the list LF .
2) Transaction Phase: Users are allowed to submit two

types of transactions: regulatable transactions with privacy
preservation and public transactions. In a trading period, the
total amount paid by a user through regulatable transactions
cannot exceed their privacy payment limit.
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RtxGen. Suppose that a user U intends to submit n regulatable
transactions within a trading period. To submit the i-th regu-
latable transaction rtxi, for i ∈ {0, 1, ..., n− 2}, U calculates

txi ← DAP.TxGen(addrS , addrR, vi, s, Ipub, Ipri)

where vi is the payment amount. Subsequently, U randomly
samples zi, wi ∈ Z∗

q and computes

cti = (gvihzi , pkzi−wi

L ) = (ci, ui)

which is a ElGamal ciphertext of a pedersen commitment
gvihwi . U computes

πlog
i ← Plog(ui, zi − wi, pkL),

πv
i ← Pv((txi, ci, Ipub, g, h), (addrS , addrR, Ipri, vi, s, zi), crs).

Finally, U calculates a ring signature

σi ← CLRS.Sign(Ri, cti, pkL, sk)

and sets rtxi = (txi, cti, π
v
i , π

log
i , σi).

For the final regulatable transaction rtxn−1 within a trading
period, U calculates wn−1 = w−

∑n−2
i=0 wi instead of sampling

a random number. All other operations remain unchanged.
Therefore, if the total payment amount within the trading
period equals U’s privacy payment limit µ, the equation∏n−1

i=0 gvihwi = tagµ holds.
If U has already reached their privacy payment limit µ

but still needs to make transactions, they can submit public
transactions. As public transactions are not a primary focus of
this paper, we will refrain from delving into their specifics.

3) Verification Phase: Consensus nodes (or smart con-
tracts) verify the validity of regulatable transactions, and only
valid transactions are sealed into blocks.
Verify. For a regulatable transaction rtx = {tx, ct, πv, πlog, σ},
one executes the following steps to verify the validity of rtx:

b1 ← DAP.TxVfy(tx, Ipub)

b2 ← CLRS.Vfy(R, ct, σ, pkL)

b3 ← Vv((tx, c, Ipub, g, h), πv, crs)

b4 ← Vlog(u, πlog, pkL)

If all validations pass, rtx is valid and the valid transaction is
sealed into a new block.

4) Supervision Phase: F screens out suspicious transac-
tions and submits the report on suspicious transactions to S.
Once the report is received, S obtains the sender’s public key
and payment amounts of suspicious transactions.
Extract. For a valid transaction rtxi = (cti, σi, ·), F extracts
the signer’s pseudonym and the amount tag from rtxi.

nymi ← CLRS.Ext(σi, skL),

tagvi
= ciu

− 1
skL

i = gvihwi .

Detect. Let S = {rtx0, rtx1, ..., rtxn−1} be the set of all n
transactions submitted by some user during a trading period. F
can link these transactions according to the user’s pseudonym
nym.

To determine if the transaction behavior of a user with
pseudonym nym complies with the transaction rules, F
searches for tagµ corresponding to nym in LF and computes
tagsum =

∏n−1
i=0 tagvi where tagvi |n−1

i=0 are extracted from
all transactions published by the user with pseudonym nym

in a period. Considering that tagµ = gµhw and tagsum =

g
∑n−1

i=0 vih
∑n−1

i=0 wi = g
∑n−1

i=0 vihw, the total payment volume
is equal to the upper limit if tagµ = tagsum. Otherwise, F
flags these transactions in S as suspicious.

To increase supervision efficiency, F can aggregate cipher-
texts and then extract tagsum:

C =

n−1∏
i=0

ci = g
∑n−1

i=0 vih
∑n−1

i=0 zi ,

U =

n−1∏
i=0

ui = pk
∑n−1

i=0 (zi−wi)
L ,

tagsum = CU
− 1

skL .

Report. For a set S = {rtx0, rtx1, ..., rtxn−1} of suspicious
transactions, F proves that these transactions are published
by the user with pseudonym nym and tagsum is formed by
aggregating the amount tags extracted from these transactions.
F first generates a proof πdec:

πdec ← Pdec((cti|n−1
i=0 , nym, pkL), skL, h).

Then F generates a proof πsum for that tagsum is extracted
from (C,U):

πsum ← Pdec((C,U, tagsum, pkL), skL, h).

Finally, F sends rpt = (S, nym, πdec, tagsum, πsum) to S.
Recover. Once a report rpt = (S, nym, πdec, tagsum, πsum) is
received, S checks whether the transactions in S are submitted
by the same user with pseudonym nym:

b1 ← Vdec((cti|n−1
i=0 , nym, pkL), πdec, h).

Then S checks the validity of tagsum:

b2 ← Vdec((
n−1∏
i=0

ci,

n−1∏
i=0

ui, tagsum, pkL), πsum, h).

If b1 = 0 ∨ b2 = 0, rpt is invalid else is valid. For a valid
report rpt, S computes uk ← CLRS.Open(nym, skO) and
then requires the user with public key uk to submit vsum and
w′ satisfies tagsum = gvsumhw′

.

Theorem 2. The proposed DAPCR scheme satisfies correct-
ness.

PROOF. For any transaction rtxi = (txi, cti, π
v
i , π

log
i , σi)

generated according to the DAPCR.RtxGen algorithm, a ver-
ifier employs the DAPCR.Verify algorithm to ascertain the
validity of rtxi. This verification process involves verifying
txi, πv

i , πlog
i and σi. Only if all of these components pass

validation, the transaction rtxi is deemed valid.
NIZK protocols Πv and Πlog used to construct the DAPCR

scheme satisfies completeness. Additionally, both the DAP
scheme and the CLRS scheme satisfy correctness. Hence, each
of txi, πv

i , πlog
i and σi can successfully pass the validation,

meaning that the transaction rtxi is validity.



MANUSCRIPT 10

An Efficient Construction of DAPCR
The workflow of DAPCR is divided into four phases: the preparation

phase, the transaction phase, the verification phase, and the supervision
phase.
I-Preparation Phase

In the preparation phase, consensus nodes execute the initialization
algorithm. Filter, Supervisor and users generates their public-private key
pair. Supervisor and each user engage in an interactive protocol to carry
out user registration.

Consensus nodes:
DAPCR.Setup:
- Inputs: security parameter λ
- Outputs: public parameter param
- Consensus nodes execute the following steps to generate the public

parameter:
1. compute pp = (g, h,H)← CLRS.Setup(1λ)
2. compute crs← Gv(1λ,Rv)

- Consensus nodes publish param = (g, h,H, crs).
Filter:

DAPCR.FInit:
- Inputs: public parameter param
- Outputs: Filter’s public-private key pair (pkF , skF )
- Filter executes the following steps to generate their public-private key

pair:
1. compute (pkL, skL)← CLRS.LKGen(pp)
2. set skF = skL and pkF = pkL

- Filter publishes their public key pkF .
Supervisor:

DAPCR.SInit:
- Inputs: public parameter param
- Outputs: Supervisor’s public-private key pair (pkS , skS)
- Supervisor executes the following steps to generate their public-

private key pair:
1. compute (pkO, skO)← CLRS.OKGen(pp)
2. set skS = skO and pkS = pkO

- Supervisor publishes their public key pkO .
User:

DAPCR.KeyGen:
- Inputs: Supervisor’s public key pkS
- Outputs: user’s public-private key pair (uk, sk)
- A user executes the algorithm CLRS.UKGen to generate their public-

private key pair: (uk, sk)← CLRS.UKGen(pkO).
- The user publishes their public key uk.

User ⇔ Supervisor:
DAPCR.Σreg:
- User:

1. randomly sample β ∈ Z∗
q and compute B = gβ

2. compute w = H(pkβO|uk)
3. send (B, uk) to Supervisor

- Supervisor:
1. receive (B, uk) from the user
2. set the upper limit µ ∈ Z∗

q of total payment volume for the user
3. compute w = H(BskO |uk), tagµ = gµhw

and nym = pk1/skO

5. add (uk, µ, nym, tagµ) to the list LS
6. send µ to the user through a secure channel

- Supervisor also sends (nym, tagµ) to Filter. Once (nym, tagµ) is
received, Filter adds it to the list LF .

II-Transaction Phase
In the transaction phase, users generates regulatable transactions to

transfer their assets.
User:

DAPCR.RtxGen:
- Inputs:

1. sender’s address addrS
2. receiver’s address addrR
3. payment amount vi
4. sender’s secret key s
5. additional public inputs Ipub and private inputs Ipri
6. Filter’s public key pkF

7. user’s private key sk
8. ring Ri

- Outputs: regulatable transaction rtxi
- A user executes the following steps to generate a regulatable trans-

action:
1. compute txi ← DAP.TxGen(addrS , addrR, vi, s, Ipub, Ipri)
2. randomly sample zi, wi ∈ Z∗

q

3. compute cti = (gvihzi , pk
zi−wi
L )

4. compute πlog
i ← Plog(ui, zi − wi, pkL)

5. compute
πv
i ← Pv((txi, ci, Ipub, g, h), (addrS , addrR, Ipri, vi, s, zi), crs)

6. calculate a ring signature σi ← CLRS.Sign(Ri, cti, pkL, sk)

7. set rtxi = (txi, cti, πv
i , π

log
i , σi)

- The user submits the regulatable transaction rtxi.
III-Verification Phase

In the verification phase, consensus nodes (or smart contracts)
generate verify the validity of regulatable transactions, and only valid
transactions are sealed into blocks.

Consensus nodes:
DAPCR.Verify:
- Inputs:

1. regulatable transaction rtx
2. Filter’s public key pkF
3. ring R
4. additional public inputs Ipub

- Outputs: 0/1
- Consensus nodes execute the following steps to verify a transaction:

1. compute b1 ← DAP.TxVfy(tx, Ipub)
2. compute b2 ← CLRS.Vfy(R, ct, σ, pkL)
3. compute b3 ← Vv((tx, c, Ipub, g, h), πv , crs)
4. compute b4 ← Vlog(u, πlog , pkL)
5. if b1 · b2 · b3 · b4 = 1 output 1 else output 0

- Consensus nodes seal valid transactions into blocks.
IV-Supervision Phase

In the supervision phase, Filter screens out suspicious transactions
and submits the report on suspicious transactions to Supervisor. Once
the report is received, Supervisor obtains the sender’s public key and
payment amounts of suspicious transactions.

Filter:
DAPCR.Extract:
- Inputs:

1. regulatable transaction rtxi
2. Filter’s private key skF

- Outputs:
1. pseudonym nymi

2. amount tag tagvi
- Filter extracts the pseudonym and the amount tag from a transaction:

1. compute nymi ← CLRS.Ext(σi, skL)

2. compute tagvi = ciu
−1/skL
i = gvihwi

DAPCR.Detect:
- Inputs:

1. pseudonym nym and its corresponding upper limit tag tagµ
2. Filter’s private key skF = skL
3. ledger which denoted all transactions sealed in blocks during a

trading period
- Outputs:

1. a set S = {rtx0, rtx1, ..., rtxn−1} of transactions submitted by
nym

2. susp/⊥
- Filter executes the following steps to determine if the transaction be-

havior of a user with pseudonym nym complies with the transaction
rules:
1. extract pseudonyms from all transactions in ledger
2. link transactions submitted by nym

and get a set S = {rtx0, rtx1, ..., rtxn−1}
2. extract amount tags tagvi |

n−1
i=0 from all transactions in S

3. compute tagsum =
∏n−1

i=0 tagvi
- If tagµ = tagsum, Filter outputs (S,⊥) else outputs (S, susp).
DAPCR.Report:
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- Inputs:
1. (S, susp) where S is a set of transactions
2. pseudonym nym
3. Filter’s public-private key pair (pkF , skF )

- Outputs: report rpt of suspicious transactions
- Filter executes the following steps to generate a report:

1. compute πdec ← Pdec((cti|n−1
i=0 , nym, pkL), skL, h)

2. compute
πsum ← Pdec((

∏n−1
i=0 ci,

∏n−1
i=0 ui, tagsum, pkL), skL, h)

3. set rpt = (S, nym, πdec, tagsum, πsum) to S
- Filter sends rpt to Supervisor.

Supervisor:
DAPCR.Recover:
- Inputs:

1. report rpt of suspicious transactions
2. Filter’s public key pkF
3. Supervisor’s private key skS

- Outputs:
1. sender’s public key uk
2. sender’s total payment amount vsum

- Supervisor executes the following steps to verify the report:
1. compute b1 ← Vdec((cti|n−1

i=0 , nym, pkL), πdec, h)
2. compute

b2 ← Vdec((
∏n−1

i=0 ci,
∏n−1

i=0 ui, tagsum, pkL), πsum, h)
3. if b1 = b2 = 1, the report is valid else is invalid

- If the report is valid, S computes uk ← CLRS.Open(nym, skO)
and then requires the user with public key uk to submit vsum and
w′ satisfies tagsum = gvsumhw′

.

VII. PERFORMANCE EVALUATION

In this section, we present a performance evaluation of the
DAPCR scheme proposed in Section VI.

We design four experiments to assess the performance of
DAPCR, all of which are executed on a local device with
an 8-core Intel(R) Core(TM) i7-10700 @ 2.90GHz CPU, 8
GB RAM and Ubuntu 20.04 LTS OS. DAPCR is constructed
based on ZETH [25] which is an adaptive version of Zerocash
designed for deployment on public or consortium blockchains
with smart contracts. In addition, we utilize the zk-SNARK al-
gorithm Groth16 [16], along with the SNARK-friendly elliptic
curve BabayJubjub [26] and the hash algorithm MIMC [27]
to implement the DAPCR scheme. Moreover, the experimen-
tal implementation makes use of the programming language
Golang4 and the zero-knowledge proof tool Snarkjs5.

We utilize the SNARK-friendly elliptic curve Baby Jubjub,
which is a special twisted Edwards curve with parameters a =
168700 and d = 168696, to construct CLRS and DAPCR.
The twisted Edwards curve can be described by the equation
ax2+y2 = 1+dx2y2. On local devices, the computation cost
of the addition and multiplication operations for Baby Jubjub
is 0.003ms and 0.244ms, respectively.

In Experiment-I, we evaluate the computational and commu-
nication overhead of CLRS, which is shown in Fig. 6a. First,
the time cost for user key generation is 0.7ms, independent
of the ring-size. Then, we evaluate the time overhead for
signature generation and verification under various ring-sizes.
It is evident that the time costs of signature generation and
verification are linearly related to the ring-size. When the

4https://go.dev/
5https://github.com/iden3/snarkjs

ring-size is 16 which is similar to the ring-size employed
in Monero, the time costs for signature generation and ver-
ification are 13.3ms and 6.9ms, respectively. Additionally,
we analyze the signature-length, which exhibits a logarithmic
relationship with the ring-size. When the ring-size is set to
16, the signature-length is 13.9KB. Hence, we consider the
CLRS scheme to be efficient.

In Experiment-II, we evaluate the computational overhead
of transaction generation in DAPCR and compared it with
that in ZETH, which is shown in Fig. 6b. The time cost of
transaction generation is linear to the number of transactions.
It takes about 1231.2ms to generate one transaction and less
than 250 s to generate 200 transactions in DAPCR. In Fig.
6b, Additional Overhead represents the additional overhead
introduced by DAPCR during the transaction generation phase
to achieve restricted regulation, as compared to ZETH. It is
evident that the additional overhead is less than 50% of the
computational overhead of transaction generation in ZETH.
Hence, we consider DAPCR to be efficient in the transaction
phase.

In Experiment-II, we also evaluate the computational over-
head of transaction verification in DAPCR and compared it
with that in ZETH. Fig. 6c presents the time cost of transac-
tion verification in a consensus node, which is linear to the
number of transactions. It takes about only 12.5ms to verify
one transaction and about 2.5 s to verify 200 transactions in
DAPCR. Although the time cost of transaction verification
in DAPCR is approximately three times higher compared to
ZETH, it still remains at a relatively low level. Furthermore,
we deploy the DAPCR scheme in Fabric6, where the time
interval between a user submitting a transaction and receiving
a response indicating successful verification is about 2.0 s.
Hence, we consider DAPCR to be efficient in the verification
phase.

In Experiment-III, we evaluate the time cost of Filter in
screening out suspicious transactions, which is shown in
Fig. 6d. We use Extract Nym to denote the time cost of
extracting pseudonyms from transactions, which is linear to
the number of transactions. If there are 10,000 transactions in
the DAPCR system, Extract Nym is less than 2.5 s. Assuming
that transactions from Alice account for 2% (5%, 10%) of all
transactions, the time cost of obtaining the total amount tag
of Alice is shown in Fig. 6d. Compared to Extract Nym, the
time cost of extracting the total amount tag is negligible. The
result of Experiment-III indicates that DAPCR is effective in
the supervision phase.

VIII. RELATED WORK

In this section, a non-exhaustive review of related works is
presented.

A. DAP with Regulation

To address the privacy concerns of traditional decentralized
payment system, several decentralized anonymous payment

6We deploy a Fabric (v2.4.9) network on a local device, which consists of
two peer nodes and one order node.

https://go.dev/
https://github.com/iden3/snarkjs
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Fig. 6: Performance experiments for DAPCR and CLRS

(DAP) schemes have been proposed, such as Zerocash, Zether,
SofitMix [28] and BlockMaze [29]. Privacy preservation en-
ables users to engage in transactions without disclosing their
identities or even the amounts involved, which also makes
it possible to conduct illicit activities using blockchain [30].
To tackle this issue and combat potential criminal behavior,
researchers have proposed various solutions in recent years.

Wang et al. [7] propose a decentralized anonymous payment
scheme with supervision (DAPS) based on zk-SNARK and the
elliptic curve cryptography. A transaction in DAPS contains
a ciphertext encrypted with the public key of the regulator.
The regulator can decrypt ciphertexts in transactions with
the private key to obtain the privacy. Faced with numerous
transactions, it is inefficient for the regulator needs to decrypt
the ciphertext in each transaction. Lin et al. [8] present
a secure and efficient decentralized conditional anonymous
payment system (DCAP) based on signatures of knowledge.
A transaction in DCAP contains anonymous addresses of the
sender and the recipient. The regulator can trace the long-term
address for an anonymous address, but the payment amount
of each transaction is public in DCAP. Wang et al. [7] and Lin
et al. [8] neglect to restrict the regulatory power, which may
be abused.

Some solutions recognize the importance of restricted reg-
ulation, but still have some shortcomings. Garman et al. [9]
design a DAP scheme based on Zerocash that forces users to
comply with specific policies and grants regulators the power
of coin tracing and user tracing. [9] restricts the power of the
regulator who is asked to provide an accountable record of
the power being used. However, the regulator can still obtain
privacy from a transaction. PRCash [31] is a new blockchain
currency with privacy preservation and regulation, in which
the sender’s identity is also encrypted with the regulator’s
public key and included in the transaction. UTT [32] is a
decentralized e-cash system with accountable privacy. In UTT
each user needs to get budget coins, which are used to limit
the total sum of payments, from the auditor per month.

zkLedger [11] and miniLedger [10] are two decentralized
payment systems that achieve privacy preservation and verifia-
bility auditing. These solutions realize rich auditing functions,
but require auditors to interact with users. However, users may
not always be online, and a malicious user may ignore the
auditor’s queries, which leads to delays in the audit.

Platypus [13] and PEReDi [33] are two central bank digital
currencies with privacy preservation and regulation. In Platy-

pus each user needs to encrypt his privacy with the regulator’s
public key and the ciphertext is included in the transaction. The
regulator can decrypt the ciphertext for transaction privacy. In
PEReDi several authorities form a committee to revoke privacy
or trace transactions from some user. The committee revokes
the privacy of a transaction by decrypting the ciphertext
saved in the ledger. It is inefficient to decrypt the ciphertext
of each transaction for its privacy when auditing numerous
transactions.

B. Ring Signature with Privacy Preservation and Regulation

Ring signatures were first proposed by Rivest et al. [34]
Classical ring signatures allow any member in a ring to
generate a signature for a message on behalf of all members
in the ring and provide unconditional anonymity, meaning any
user cannot determine which user in the ring has signed the
signature. However, the strong privacy preservation also poses
potential risks that some users may sign malicious messages.

To address this issue, Bootle et al. [19] proposed the concept
of accountable ring signatures. Like classical ring signatures,
the signature remains completely anonymous to ordinary users.
However, when a user signs a message, he or she selects an
authorized user, who can open the signature and revoke its
anonymity, allowing for the identification of the signer. This
approach carries serious privacy risks that are exacerbated if
the authorized user is hacked.

Our scheme is based on accountable ring signatures and
decentralizes the ability to revoke anonymity to the linker and
opener. The linker can extract the label of the signer from
the signature. Since the public key and label of the signer
correspond uniquely, the linker can link the signatures from
the same signer without revealing the public key of the signer.
The linker can then send the label to the opener, who can
recover the public key of the signer from the label.

In group signatures, there exists a similar type of scheme
known as group signature with controllable linkability [20].
This type of scheme allows an entity holding the linkability
key to link signatures from the same signer without reveal-
ing their real identity. However, group signatures rely on
trusted centers and group administrators, and the security of
the system is severely affected once they are hacked. Our
scheme is based on the idea of ring signatures and does not
require administrators to manage the ring members, nor does
it have trusted settings. Without any single point of failure,
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our scheme is also suitable for distributed scenarios, such as
blockchains.

Another approach to achieving accountability is through
traceable ring signatures [21] and linkable ring signatures [22].
Linkable ring signatures allow publicly linking signatures from
the same signer without leaking the signer’s real identity. In
contrast, traceable ring signatures enable any user to publicly
trace the identity of the signer, provided that the same signer
signed two signatures.

IX. CONCLUSION

In this paper, we propose a decentralized anonymous pay-
ment scheme with collaborative regulation, which achieves
universality, collaborative regulation and efficient aggregation
of transaction amounts. To achieve efficient regulation, users
are required to register with Supervisor before publishing
transactions. Therefore, compared to public blockchains, the
DAPCR scheme is more suitable for consortium blockchains.
Furthermore, the regulation in DAPCR relies on the function-
ing of Filter at the end of each trading period, which is a
potential target for malicious attackers. In future work, there
are several potential directions for improvement. First, we can
focus on optimizing user registration. Secondly, reducing the
workload of Filter can lead to improved performance and
efficiency. Finally, exploring and expanding the application
scenarios of the CLRS signature can unlock new possibilities
and benefits.

APPENDIX A
NIZK PROTOCOLS FOR CLRS AND DAPCR

A. Σ-protocol for the relation Renc

For a ElGamal ciphertext ct = (c, u) = (gαhβ , pkβ), a
prover interacts with a verifier to prove ((c, u, pk), (α, β)) ∈
Renc.

1. The prover randomly chooses x1, x2 ∈ Z∗
q , computes c′ =

gx1hx2 and u′ = pkx2 and sends (c′, u′) to the verifier.
2. Once receiving (c′, u′), the verifier randomly chooses e ∈

Z∗
q and sends it to the prover.

3. Once receiving e, the prover computes y1 = x1 + e · α,
y2 = x2 + e · β and sends them to the verifier.

4. Finally, the verifier determines whether equations pky2
?
=

u′ue and gy1hy2
?
= c′ce hold. If both of the equations hold,

the proof is valid else is invalid.

B. Σ-protocol for the relation Rdec

For several ciphertexts cti = (ci, ui), i ∈ {0, 1, ..., n − 1},
a message m and a public key pk = hsk, a prover interacts
with a verifier to prove ((cti|n−1

i=0 ,m, pk), sk) ∈ Rdec.
1. The prover randomly chooses x ∈ Z∗

q , computes A = hx

and Bi = (ci/m)x for i ∈ {0, 1, ..., n − 1}, and sends
(A,Bi|n−1

i=0 ) to the verifier.
2. Once receiving (A,Bi|n−1

i=0 ), the verifier randomly chooses
e ∈ Z∗

q and sends it to the prover.
3. Once receiving e, the prover computes y = x + e · sk and

sends it to the verifier.

4. Finally, the verifier determines whether the equations hy ?
=

pkeA and

(

n−1∏
i=0

ci
m
)y

?
= (

n−1∏
i=0

ui)
e
n−1∏
i=0

Bi

hold. If both of the equations hold, the proof is valid else
is invalid.

The Fiat-Shamir transform can convert the above Σ-
protocol into a NIZK protocol or a SoK protocol for the same
relation.

C. NIZK protocol for the relation Rv

To ensure the general applicability of our scheme, we adopt
the zk-SNARK7 protocol to generate a proof for the relation
Rv . Before calculating proofs, an arithmetic circuit C needs
to be constructed based on the relation Rv .

Public inputs to C are as follows.

1. privacy-preserving transaction tx
2. pedersen commitment c
3. additional public inputs Ipub used to calculate tx
4. g, h ∈ G
5. public parameter pptx in the DAP scheme

Private inputs to C are as follows.

1. sender’s address addrS and receiver’s address addrR
2. transaction amount v
3. sender’s private key s
4. additional private inputs Ipri used to calculate tx
5. random number r ∈ Z∗

q

C imposes the following constraints on public inputs and
private inputs.

1. tx is generated by the algorithm DAP.TxGen(·) with
inputs (addrS , addrR, v, s, Ipub, Ipri).

2. c is a pedersen commitment of (v, r), i.e. c = gvhr.

Based on the arithmetic circuit C, a trusted center can
execute the algorithm Gv to generate crsv . However, if the
process of parameter generation is compromised, an adversary
can generate forged proofs. To address these issues, Bowe et al.
[35], [36] proposed a secure multiparty computation protocol
among n nodes, which ensures that no one can generate forged
proofs if at least one node is honest. Thus, we can deploy
multiple nodes to execute the MPC protocol for initializing
the DAPCR system.

APPENDIX B
SECURITY ANALYSIS

In this section, we analyze the security of our scheme.

7Zk-SNARK has lower communication overhead and computational over-
head for proof verification compared to zk-STARK. This makes zk-SNARK
more suitable for our purpose, as it minimizes the utilization of valuable on-
chain resources.
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A. Security Analysis of CLRS

Theorem 3. No probabilistic polynomial-time adversary can
break the anonymity of CLRS with non-negligible advantage.

PROOF. We use GAno
real to denote the anonymity experiment

expAnoAi
(λ) executed in the real world. To analyze the security

of CLRS, we design a simulation GAno
sim . In GAno

sim , the challenger
C interacts with A1 (or A2) as in GAno

real . The only modification
is that C outputs a signature σsim = (comsim,K, πmem

sim , πsim)
of (R,m) in which comsim, K, πmem

sim and πsim are indepen-
dent of uk0 and uk1.

Game GAno
real . With the purpose of initializing this experi-

ment, C first computes

crsmem ← Gmem(1λ,Rmem),

ppenc ← SoK.Setup(1λ,Renc),

and other public parameters. C further computes public keys
of honest users, and R1 represents the set of these public keys.

Next, Ai generates a ring R2, a message m and two
public keys uk0, uk1 satisfies uk0, uk1 ∈ R1 ∧ R2. Ai sends
(R2,m, uk0, uk1) to C.

Once (R2,m, uk0, uk1) is received, C randomly chooses
b ∈ {0, 1} and computes

σb ← CLRS.Sign(R2,m, pkL, skb)

where σb = (com,K, πmem, π) = (gskbhk, pkkL, πmem, π). C
sends σb to Ai.

After receiving σb, Ai attempts to determine which public
key was used to compute the signature. A1 can query an oracle
QExt to extract pseudonyms from signatures. A2 can query an
oracle QOpen to obtain a public key from a given pseudonym.
Finally, Ai makes a guess b′ for the value of b, and wins the
experiment if and only if b = b′.

Game GAno
sim . During the initialization phase, C computes

the public parameters and public keys of honest users, denoted
by R1. The only difference is that trapdoors are generated
alongside the computation of parameters crsmem and ppenc.

(crsmem, τmem)← Gmem
sim (1λ,Rmem)

(ppenc, τenc)← SoK.Setupsim(1λ,Renc)

Similar to the case in GAno
real , Ai generates a ring R2, a

message m and two public keys uk0, uk1 satisfies uk0, uk1 ∈
R1 ∧R2. Ai sends (R2,m, uk0, uk1) to C.

Once (R2,m, uk0, uk1) is received, C randomly chooses
b ∈ {0, 1} and comsim ∈ G∗. Then C computes

πmem
sim ← Pmem

sim (R′
2, τmem, crsmem),

πsim ← SoK.Signsim((comsim,K, pkL), τenc, ppenc),

and sends σsim = {comsim,K, πmem
sim , πsim} to Ai. Since

σsim is independent of uk0 and uk1, the advantage of Ai in
winning GAno

sim is negligible.
Based on the simulatability of a SoK protocol and the

zero-knowledge of a NIZK protocol, it can be deduced that
the distribution of (com, πmem, π) is equivalent to that of
(comsim, πmem

sim , πsim). While A1 can query QExt to extracted
nym from σb and nym′ from σsim, nym = pk

1/skO

b and
nym′ are indistinguishable since skO is unknown to A1.

Therefore, σsim in GAno
sim and σb in GAno

real are indistinguish-
able. Considering the negligible advantage of Ai in winning
GAno
sim and the indistinguishability between GAno

real and GAno
sim , the

advantage of Ai in winning GAno
real is also negligible.

Theorem 4. No probabilistic polynomial-time adversary can
break the unforgeability of CLRS with non-negligible advan-
tage.

PROOF. For a discrete logarithm problem (g,A = ga) where
g ∈ G and a ∈ Z∗

q , if Ai breaks the unforgeability of CLRS,
C can make use of Ai to solve the discrete logarithm problem.
Adversaries can win the experiments in two ways:

Case-1: For an honest ring, i.e. all members in the ring are
honest, Ai generates a valid signature.

With the purpose of initializing this experiment, C first
executes

(crsenc, τenc)← Gencsim(1λ,Renc).

Then C randomly chooses ri ∈ Z∗
q and pki ∈ G∗, and

computes

πenc
sim,i ← Penc

sim((hriA, pki, pkO), τenc, crsenc)

for i ∈ {0, 1, ..., n − 1}. Finally, C sets ci = hriA and
publishes uki = (pki, ci, π

enc
sim,i).

To win the experiment, Ai forges a signature σ =
(com,K, πmem, π) of (R,m). By the extractability of a SoK
protocol, C can extract a valid witness ϖ = (ri, a) for the
statement ϕ = (com,K, pkL) from π. Therefore, C can make
use of Ai to obtain a such that A = ga.

Case-2: There exists an honest user with uk = (pk, c, πenc)
whose private key sk is unknown to A1. A1 calculates a
signature σ of (R,m) and a proof πdec for that nym is
correctly extracted from σ. If nym is the pseudonym of
uk, and σ and πdec are valid, A1 successfully breaks the
unforgeability of CLRS.

With the purpose of initializing this experiment, C first
executes

(crsenc, τenc)← Gencsim(1λ,Renc).

Then C randomly chooses r ∈ Z∗
q and computes

πenc
sim ← Penc

sim((hrA,AskO , pkO), τenc, crsenc).

Finally, C publishes uk = (AskO , hrA, πenc
sim) = (pk, c, πenc

sim).
For public-private key pairs of other honest users, C randomly
chooses the private key, calculates the public key and keep the
private key locally.

To win the experiment, A1 randomly selects a user from
honest users and forges a signature σ = (com,K, πmem, π).
Assuming A1 selects uk with a probability 1

η(λ) , where η(λ)
represents an upper bound on the number of honest users.
In the experiment, C aborts if A1 queries for the private
key sk of the public key uk. A1 also generates a proof for
that nym is the result of correctly decrypting the ciphertext
(com,K). If nym is a pseudonym of uk, i.e. nym = ga,
the knowledge-soundness of NIZK protocols implies that
ϕdec = (com,K, nym, pkL) is a valid statement such that
(ϕdec, skL) ∈ Rdec. Furthermore, if π is a valid signature of
knowledge, the extractability of a SoK protocol ensures that
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C can extract a valid witness ϖenc = (a, k) for the statement
ϕenc = (com,K, pkL) from π. Therefore, C can make use of
A1 to obtain a such that A = ga.

In conclusion, if Ai can break the unforgeability of CLRS
with a non-negligible probability, C can solve the DL problem
using Ai’s successful attack.

Theorem 5. No probabilistic polynomial-time adversary can
break the nym-extractability of CLRS with non-negligible
advantage.

PROOF. For a valid public key uk = (pk, c, πenc), the
completeness of the protocol Πenc implies that pk = pkskO
and c = gskhr. For a valid signature σ = (com,K, πmem, π)
of (R,m), correctness of the protocol Πmem implies that
c′ = c/com = g0hr′ . Thus, com = gskhk and k = r−r′. The
extractability of the SoK protocol implies that a valid witness
ϖ = (sk, k) for the statement ϕ = (com,K, pkL) can be
extracted from π. The witness satisfies uk = (pkskO , ·) ∈ R
and (com,K) = (gskhk, pkkL).

Since (com,K) can be viewed as an ElGamal encryption
under the public key pkL, correctness of the ElGamal encryp-
tion scheme ensures that decrypting (com,K) with the private
key skL yields nym = gsk, which is the output of CLRS.Ext.
In addition, based on the completeness of the protocol Πdec,
the proof πdec for that nym is correctly extracted from σ will
be verified correctly. Therefore, CLRS.Judge takes σ, nym
and πdec as input and outputs 1.

Theorem 6. No probabilistic polynomial-time adversary can
break the nym-soundness of CLRS with non-negligible advan-
tage.

PROOF. As analyzed in the proof of Theorem 5, the com-
pleteness of the protocol Πenc implies that pk = pkskO and
c = gskhr if a public key uk = (pk, c, πenc) is valid. In
addition, the correctness of the protocol Πmem implies that
c′j = g0hr′ if σ = (com,K, πmem, π) is valid. Thus, com =
gskhk and k = r − r′. The extractability of the SoK protocol
implies that a valid witness ϖ = (sk, k) for the statement
ϕ = (com,K, pkL) can be extracted from π. The witness
satisfies uk = (pkskO , ·) ∈ R and (com,K) = (gskhk, pkkL).

If the proof πdec is valid, the soundness of the protocol
Πdec ensures that nym is the result of decrypting (com,K)
with a private key skL. Considering the perfect correctness
of the ElGamal encryption scheme, the result of decrypting
the ciphertext using a given private key is unique. If this
is not the case, Ai can be employed to construct another
adversary capable of compromising the perfect correctness of
the ElGamal encryption scheme.

Therefore, the pseudonym extracted from a signature is
unique.

B. Security Analysis of DAPCR

Theorem 7. No probabilistic polynomial-time adversary can
break the indistinguishability of the DAPCR scheme with non-
negligible advantage.

PROOF. We use Gind
real to denote the experiment expindA′

i
(λ)

executed in the real world. To analyze the security of DAPCR,

we design a simulation Gind
sim. In Gind

sim, the challenger C interacts
with A′

i as in Gind
real. The only modification is that C outputs a

challenge transaction rtxsim = {txsim, ctsim, πv
sim, πlog

sim, σ}
where txsim, ctsim, πv

sim and πlog
sim are independent of Tb.

Game Gind
real. C first calculates

param← DAPCR.Setup(1λ),

(pkF , skF )← DAPCR.FInit(param),

(pkS , skS)← DAPCR.SInit(param),

publishes (param, pkF , pkS) and sends skF to A′
1 (or skS

to A′
2). C also generates public keys of honest users, and R1

represents the set of these public keys.
Next, A′

i generates a ring R2 and two tuples T0 and T1

where tuplej = (addrSj
, addrRj

, vj , ukj) and uk0, uk1 ∈
R1 ∧R2. A′

i sends (T0, T1, R) to C.
After receiving (T0, T1, R), C randomly chooses b ∈ {0, 1}

and computes

rtxb ← RtxGen(addrSb
, addrRb

, vb, R, skb, ·)

where skb is the private key associated with ukb. C sends
rtxb = (tx, ct, πv, πlog, σ) to A′

i.
Once rtxb is received, A′

i makes a guess b′ for the value of
b, and wins the experiment if and only if b = b′.

Game Gind
mid. The experiment in Gind

mid is similar to that
in Gind

real, but the only modification is that C replaces tx with
txsim. To initialize the experiments, C makes use of simulators
to generate trapdoors alongside the computation of common
reference strings. After receiving (T0, T1, R), C generates
a transaction txsim that is independent of T0 and T1, and
makes use of a trapdoor to calculate a proof πv

mid. C sends
rtxmid = (txsim, ct, πv

mid, πlog, σ) to A′
i.

If the DAP scheme used to construct DAPCR is secure,
tx and txsim are indistinguishable. Then zero-knowledge of
NIZK protocols implies that the distribution of πv is identical
to that of πv

mid. Thus, the absolute value of the difference
between the advantage of A′

i in winning Gind
mid and that in

winning Gind
real is negligible.

Game Gind
sim. Gind

sim is similar to Gind
mid, but the only mod-

ification is that C replaces ct with ctsim. To initialize the
experiments, C makes use of simulators to generate trap-
doors alongside the computation of common reference strings.
After receiving (T0, T1, R), C randomly samples ctsim =
(csim, usim) ∈ G2 that is independent of T0 and T1, and
makes use of a trapdoor to calculate proofs πv

sim and πlog
sim.

C sends rtxsim = (txsim, ctsim, πv
sim, πlog

sim, σ) to A′
i.

For A′
2, the indistinguishability of the ElGamal encryption

ensures that the distribution of ctsim is identical to that of
ct. The zero-knowledge of NIZK protocols implies that the
distribution of (πv

sim, πlog
sim) is identical to that of (πv

mid, πlog).
For A′

1, the amount tag can be extracted from a transac-
tion. In particular, A′

1 calculates tagsim = csimu
−1/skL

sim and
tagv = cu−1/skL = gvhwi , both of which have the same
distribution. Similar to the case of A′

2, the distribution of
(ctsim, πv

sim, πlog
sim) is identical to that of (ct, πv

mid, πlog).
Thus, the absolute value of the difference between the

advantage of A′
i in winning Gind

sim and that in winning Gind
mid is

negligible. Since txsim, ctsim, πv
sim and πlog

sim are independent
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of uk0 and uk1, the advantage of A′
i in winning Gind

sim is equal
to the advantage of A′

i in breaking the anonymity of CLRS.
Therefore, the advantage of A′

i in winning Gind
real is negli-

gible. The proposed DAPCR scheme satisfies indistinguisha-
bility if the DAP scheme, the NIZK protocols, the ElGamal
encryption and the CLRS scheme making up it are secure.

Theorem 8. No probabilistic polynomial-time adversary can
break the F-extractability of the DAPCR scheme with non-
negligible advantage.

PROOF. For a valid transaction rtx = (tx, ct, πv, πlog, σ) where
ct = (c, u), the completeness of the protocol Πv implies
that c = gvhz where v is the payment amount of tx, and
the completeness of the protocol Πlog ensures that u = pkrL
where r ∈ Z∗

q . Since ct = (gvhz, pkrL) can be viewed as a
well-formed ciphertext of a pedersen commitment gvhz−r, the
correctness of the encryption scheme implies that decrypting
ct with the private key skF = skO yields tagv = gvhz−r.

Since the CLRS scheme satisfies nym-extractability, F can
extract the signer’s pseudonym from σ. Thus, the pseudonym
nym and the amount tag tagv can be extracted from rtx by
F .

Theorem 9. No probabilistic polynomial-time adversary can
break the F-soundness of the DAPCR scheme with non-
negligible advantage.

PROOF. For a valid transaction rtx = (tx, ct, πv, πlog, σ)
where ct = (c, u), the completeness of the protocol Πv

implies that c = gvhz where v is the payment amount of
tx, and the completeness of the protocol Πlog ensures that
u = pkrL where r ∈ Z∗

q . Since ct = (gvhz, pkrL) can be
viewed as a well-formed ciphertext of a pedersen commitment
gvhz−r, the perfect correctness of the encryption scheme
implies that the result of decrypting the ciphertext ct using a
given private key skF = skO is unique. If this is not the case,
A′

i can be employed to construct another adversary capable
of compromising the perfect correctness of the encryption
scheme.

Since the proposed CLRS scheme satisfies nym-soundness,
F cannot two different valid pseudonyms from σ. Thus, the
pseudonym and the amount tag extracted from rtx are unique.

The proposed DAPCR scheme, which is based on DAP, adds
additional regulatable fields to privacy-preserving transactions.
If an adversary generates a regulatable transaction rtx =
(tx, ct, πv, πlog, σ) with a payment exceeding their balance,
they also gets a transaction tx breaking the balance of DAP. If
an adversary modifies the information stored within a regulat-
able transaction rtx, they also obtains a modified transaction
tx breaking the non-malleability of DAP. Thus, the proposed
DAPCR scheme satisfies balance and non-malleability if the
DAP scheme making up it is secure.
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