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Division of Regulatory Power:
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Abstract—Decentralized anonymous payment schemes may
be exploited for illicit activities, such as money laundering,
bribery and blackmail. To address this issue, several regulatory-
friendly decentralized anonymous payment schemes have been
proposed. However, most of these solutions lack restrictions
on the regulator’s authority, which could potentially result in
power abuse and privacy breaches. In this paper, we present
a decentralized anonymous payment scheme with collaborative
regulation (DAPCR). Unlike existing solutions, DAPCR reduces
the risk of power abuse by distributing regulatory authority to
two entities: Filter and Supervisor, neither of which can decode
transactions to access transaction privacy without the assistance
of the other one. Our scheme enjoys three major advantages
over others: ① Universality, achieved by using zk-SNARK to
extend privacy-preserving transactions for regulation. ② Collab-
orative regulation, attained by adding the ring signature with
controllable linkability to the transaction. ③ Efficient aggregation
of payment amounts, achieved through amount tags. As a key
technology for realizing collaborative regulation in DAPCR, the
ring signature with controllable linkability (CLRS) is proposed,
where a user needs to specify a linker and an opener to generate
a signature. The linker can extract pseudonyms from signatures
and link signatures submitted by the same signer based on
pseudonyms, without leaking the signer’s identity. The opener
can recover the signer’s identity from a given pseudonym. The
experimental results reflect the efficiency of DAPCR. The time
overhead for transaction generation is 1231.2ms, representing
an increase of less than 50% compared to ZETH. Additionally,
the time overhead for transaction verification is only 1.2ms.

Index Terms—Ring Signature, Blockchain, Cryptocurrency,
Regulation, Decentralized Finance.

I. INTRODUCTION

IN recent years, blockchain technology has had a substantial
economic and social impact on the real world. One of

the most widely adopted applications is the decentralized
payment system, also known as cryptocurrency. In 2021, the
total volume of cryptocurrency transactions surged to $15.8
trillion. However, in contrast to traditional centralized payment
mechanisms, decentralized payment systems such as Bitcoin
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[1] and Ethereum [2] lack support for the privacy preservation
of user identities and payment amounts. To address this privacy
concern, researchers have proposed decentralized anonymous
payment (DAP) systems like Monero, Zerocash and Zether
[3]–[5]. In these solutions, the addresses of traders and the
specific payment amount for each transaction are kept confi-
dential from other users.

However, providing unconditional privacy in DAP may lead
to an increase in criminal activities. Cryptocurrencies could
potentially be used for bribery, blackmail, terrorist financing,
and money laundering. Chainalysis1 pointed out that in 2021,
cryptocurrency-related criminal cases increased by 79% com-
pared to 2020. Although during the same period, the overall
transaction volume grew by over 550%, indicating a decrease
in the proportion of illegal activities in the total transactions,
this does not imply that regulation is unnecessary. FATF2 and
APG3 proposed that the absence of regulation has created
significant loopholes for criminals, necessitating swift action to
mitigate the risks of virtual assets being exploited by criminal
and terrorist elements.

Numerous DAP schemes incorporating regulation have been
proposed to combat illicit activities within decentralized pay-
ment systems. However, unrestricted regulation presents the
risk of power abuse and privacy breaches. Therefore, our
work focuses on achieving a delicate equilibrium between
privacy preservation and regulation. Specifically, to mitigate
the potential for regulatory power abuse, regulators should
only have access to the sender’s address for suspicious transac-
tions, while ensuring that the privacy information of compliant
transactions remains confidential to regulators. Furthermore, it
is essential to monitor the total payment amounts conducted
by individual users during a designated transaction period.
This monitoring becomes necessary as traders might choose
to execute multiple smaller transactions rather than a single
large transaction when transferring assets.

A. Advantages of DAPCR

In this paper, we propose a decentralized anonymous pay-
ment scheme with collaborative regulation (DAPCR). The
advantages of DAPCR are as follows:

1. Universality means that DAPCR can be constructed based
on any existing DAP scheme and is compatible with both

1Chainalysis: https://www.chainalysis.com/
2Financial Action Task Force: https://www.fatf-gafi.org/
3Asia/Pacific Group on Money Laundering: https://apgml.org/
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TABLE I: Properties of DAPCR and related works

Scheme Collaborative
Regulation Non-interaction Amount

Aggregation Universality

DAPCR � � � �
[6] × � × ×
[7] × � × ×
[8] � � × ×
[9] × × × ×

[10] × × × ×

UTXO and account models. To achieve this universality, we
extended the original transactions in a DAP scheme with zk-
SNARK. By introducing an additional regulated field to a
DAP transaction, Filter and Supervisor can extract regula-
tory data from the additional field using the same set of
algorithms, independently of the original DAP transactions.

2. Collaborative regulation means that the regulatory author-
ity in DAPCR is decentralized to Filter and Supervisor,
similar to the separation of powers in governments, requiring
their cooperation to regulate transactions. In particular, Filter
is responsible for linking the transactions submitted by
the same signer and extracting the amount tag from each
transaction. Supervisor can recover the user’s public key
from a given pseudonym. Both regulators must collaborate
to regulate transactions.

3. Payment aggregation means that Filter can aggregate pay-
ment amounts from the same user’s transactions and get a
total payment tag, which is used to determine whether the
total payment amount exceeds the user’s limit, with Filter
do not open transactions during this process.

To clarify the advantages of our scheme, the properties of
DAPCR and related works are shown in Table I.

B. Paper Contributions

In summary, our contributions in this paper are as follows.

1. We propose the DAPCR scheme with the following advan-
tages: ① Universality means that DAPCR can be constructed
based on any existing DAP scheme and is compatible with
both UTXO and account models. ② Collaborative regulation
prevents abuse of power and privacy breaches. ③ Payment
aggregation enables efficient screening of suspicious trans-
actions. To our best knowledge, DAPCR is the first universal
collaborative regulation scheme for DAP schemes.

2. We present security definitions of the DAPCR scheme and
provide the security analysis for it.

3. We evaluate the performance of DAPCR on both local
devices and the Fabric network. The time cost for transaction
generation is about 1231.2ms and that of transaction verifi-
cation is about 12.5ms. These experimental results indicate
the effectiveness of DAPCR.

4. We also propose the ring signature with controllable link-
ability (CLRS), which is a key technology for enabling
collaborative regulation in DAPCR. It allows the designated
user to link signatures from the same signer without reveal-
ing the signer’s identity.

C. Paper Outline
Section II presents an overview of DAPCR. In Section III,

we review the background materials associated with our work.
Section IV presents the system framework and security defi-
nitions of CLRS and DAPCR. Next, we propose an efficient
construction of CLRS, which is the building block of DAPCR
in Section V. In Section VI, we present an efficient and generic
construction of DAPCR. We also provide the security analysis
and performance analysis for DAPCR in Section VII and VIII.
Section IX reviews the recent literature relevant to DAP and
ring signatures. Section X concludes our work.

II. OVERVIEW

To construct a decentralized anonymous payment scheme
with regulation that satisfies universality, we extend the ex-
isting DAP scheme by adding additional regulated fields.
Regulators can use a predefined set of algorithms to extract the
necessary data from the regulated field, without considering
the original structure of the DAP transaction. Furthermore,
to ensure consistency between the regulatory data within a
regulated field and the payment data within a DAP transaction,
a user needs to generate a zero-knowledge proof to show this.
As shown in Fig. 1, the regulated transaction rtx in our scheme
consists of a DAP transaction tx, a proof π, and an additional
regulated field reg.

To prevent the abuse of power and the leakage of privacy,
we decentralize regulatory authority into two regulators: Filter
and Supervisor. Both must cooperate to carry out the regulation
effectively. Specifically, Filter can extract a pseudonym nym
and a tag tagv of payment amount from the regulated field
in a transaction to assess whether the user with pseudonym
nym violates the transaction policy, as described in Section
IV-A2. If a violation is detected, Filter will submit the user’s
suspicious transactions and pseudonym nym to Supervisor,
who can extract the sender’s identity from nym.

As an example, Fig. 1 depicts the workflow of regulation.
Initially, Filter retrieves transactions from the blockchain and
extracts pseudonyms and amount labels from each transac-
tion (Step ① in Fig. 1). To assess whether the user with
pseudonym nym1 complies with the transaction policy, Filter
screens out all transactions from this user based on the
pseudonym nym1 and aggregates the amount labels of these
transactions to obtain a total amount label tagsum (Step ②).
Filter can then determine whether the user complies with the
transaction policy according to tagv . Then Filter submits the
user’s pseudonym nym1 and transactions to Supervisor if the
user violates the transaction policy (Step ③). Supervisor will
recover the user’s identity from nym1 (Step ④).

Note that Filter cannot obtain identities or payment amounts
from pseudonyms and labels, and Supervisor cannot obtain
pseudonyms without Filter’s assistance. Therefore, if Filter and
Supervisor do not collude, payment privacy within compliant
transactions will not be disclosed to either party. The threat
model for our scheme is as follows.

Threat model: We assume that each user is selfish and
potentially malicious, capable of launching active attacks such
as double-spending attacks, malleability attacks, and over-
spending attacks to steal assets or provide incorrect regulatory
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Fig. 1: Overview of DAPCR.

data to regulators. The malicious user also attempts to extract
payment privacy within other users’ transactions in the decen-
tralized ledger. We also assume that Filter and Supervisor are
honest-and-curious. They adhere to the DAPCR scheme and
do not actively attack the system. Instead, they will attempt
to obtain payment privacy within honest users’ transactions.
Furthermore, we also assume that Filter and Supervisor cannot
collude. We believe this assumption holds in the consortium
blockchain, as Filter and Supervisor can be two separate and
independent entities participating in managing the consortium
blockchain. In real-life scenarios, the law enforcement agency,
such as the FBI, serves as Filter, while the judicial department,
such as a court, serves as Supervisor. The law enforcement
agency collects suspicious transactions from the decentralized
ledger and submits them, along with evidence, to the judicial
department. After verification, the judicial department removes
the anonymity of these transactions and holds the relevant
users accountable. It is important to note that these two entities
operate independently and do not conspire together.

In the above threat model, an adversary cannot compromise
both Filter and Supervisor. The DAPCR scheme prevents
privacy leaks by distributing regulatory authority to Filter
and Supervisor: ① If Filter is compromised, the adversary
can extract users’ pseudonyms from transactions but cannot
recover public keys from these pseudonyms. ② If Supervisor
is compromised, the adversary can only recover the senders’
public keys from pseudonyms of suspicious transactions sub-
mitted by Filter, but cannot directly revoke the anonymity of
transactions on the blockchain. Therefore, whether Filter or
Supervisor is compromised, the privacy of transactions that
adhere to the transaction policy will not be breached.

III. PRELIMINARIES

A. Decentralized Anonymous Payments
A DAP scheme in the account model, such as Zether [5],

can be highly simplified into algorithms as follows.

• Setup(1λ) → pp. This setup algorithm takes a security
parameter λ as input and outputs a public parameter pp,
which is an implicit input for other algorithms.

• AddrGen(pp) → (addr, s). A user executes this algorithm
to generate his address addr and secret key s.

• TxGen(addrS , addrR, v, s, Ipub, Ipri)→ tx. A user executes
this algorithm to generate a DAP transaction tx. The algo-
rithm takes as input a sender’s address addrS , a receiver’s
address addrR, the payment amount v, a secret key s,
Ipub (which represents additional public inputs) and Ipri
(which represents additional private inputs), and outputs a
transaction tx.

• TxVfy(tx, Ipub)→ 0/1. Anyone can execute this algorithm
to verify the validity of a transaction tx. The algorithm takes
as input a transaction tx and outputs 1 if tx is valid or 0
otherwise.

A secure DAP scheme generally satisfies indistinguishabil-
ity, non-malleability and balance.

1. Indistinguishability. The ledger discloses no information to
any adversary attempting to access information beyond what
is publicly available.

2. Non-malleability. No adversary possesses the capability to
modify the information contained within a valid transaction
tx.

3. Balance. The amount paid by any adversary cannot exceed
its balance.

The DAP scheme in the UTXO model, such as Zerocash
[4], can also be represented using the above algorithms if
only one-to-one transactions are allowed. In Appendix B, we
discuss the minor differences between deploying DAPCR in
the UTXO model and deploying it in the account model. In the
construction of DAPCR, we overlook these minor differences
and use the above algorithms to describe the DAP scheme in
either model.
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B. NIZK & SoK

1) NIZK Protocol: We first present an NP-relation R defin-
ing the language LR = {ϕ|∃ϖ : (ϕ,ϖ) ∈ R} in which ϕ and
ϖ are considered as a statement and a witness. Non-interactive
zero-knowledge protocol, also known as NIZK protocol, for
the relationR is composed of three algorithms as follows [11].
• G(1λ,R) → crs. The setup algorithm takes a security

parameter λ and an NP-relation R as input, and outputs
a common reference string crs.

• P(ϕ,ϖ, crs) → π. The prover algorithm takes a statement
ϕ, a witness ϖ and a common reference string crs as input,
and outputs a proof π.

• V(ϕ, π, crs)→ 0/1. The verifier algorithm takes a statement
ϕ, a proof π and a common reference string crs as input,
and outputs 1 if π is valid or 0 otherwise.
A NIZK scheme satisfies completeness, zero-knowledge and

knowledge soundness.
1. Completeness. For any (ϕ,ϖ) ∈ R,

Pr

[
crs← G(1λ,R);π ← P(ϕ,ϖ, crs) :

1← V(ϕ,ϖ, crs)

]
= 1.

2. Zero-knowledge. No information other than the truth of the
statement is leaked. For any (ϕ,ϖ) ∈ R, any probabilistic
polynomial-time (PPT) adversary A and a polynomial-time
simulator S = (Gsim,Psim),∣∣∣Pr

[
(crs, τ)← Gsim(1λ,R);π′ ← Psim(ϕ, crs, τ) :

A(π′, crs, τ,R) = 1

]
−

Pr

[
crs← G(1λ,R);π ← P(ϕ,ϖ, crs) :

A(π, crs, τ,R) = 1

]∣∣∣ ≤ negl(λ).

3. Knowledge Soundness. A secure NIZK scheme cannot prove
a false statement. For any PPT adversary A and a PPT
extractor E ,

Pr

 crs← G(1λ,R);
(ϕ, π,ϖ)← (A∥E)(crs,R) :
1← V(ϕ, π, crs) ∧ (ϕ,ϖ) /∈ R

 ≤ negl(λ).

Zk-SNARK, also known as the zero-knowledge succinct
non-interactive argument of knowledge, is a special type of
NIZK scheme. In addition to the above properties, zk-SNARK
also satisfies succinctness: The runtime of a prover algorithm
is polynomial in |a|+λ and the size of π output by the prover
algorithm is polynomial in λ.

2) SoK protocols: Signature of knowledge [12], also known
as SoK, allows one to issue signatures on behalf of any NP
statement. A valid signature of knowledge implies that the
signer possesses a witness ϖ to the statement ϕ. A SoK
protocol ΠSoK consists of three algorithms as follows.
• SoK.Setup(1λ,R) → pp. The setup algorithm takes a

security parameter λ and an NP-relation R as input, and
outputs a public parameter pp.

• SoK.Sign(m,ϕ,ϖ, pp) → π. The signing algorithm takes
a message m, a statement ϕ, a witness ϖ and the public
parameter pp as input and outputs a signature of knowledge
π if (ϕ,ϖ) ∈ R or ⊥ otherwise.

• SoK.Vfy(m,ϕ, π, pp)→ 0/1. The verifying algorithm takes
a message m, a statement ϕ, a signature of knowledge π
and the public parameter pp as input, and outputs 1 if π is
valid, or 0 otherwise.

A secure SoK satisfies correctness, simulatability and ex-
tractability.

1. Correctness. For any (ϕ,ϖ) ∈ R,

Pr

[
pp← Setup(1λ,R); π ← Sign(m,ϕ,ϖ, pp) :

Vfy(m,ϕ, π, pp) = 1

]
= 1− negl(λ).

2. Simulatability. There are two PPT algorithms SimSetup
and SimSign where SimSetup(1λ,R) outputs the public
parameter pp and a trapdoor τ , and SimSign(m,ϕ, τ, pp)
outputs a signature π, such that for any PPT adversary A,∣∣∣Pr

[
(pp, τ)← SimSetup(1λ,R) : AOsim(R, pp) = 1

]
−

Pr
[
pp← Setup(1λ,R) : ASign(R, pp) = 1

] ∣∣∣ ≤ negl(λ),

where the oracle Osim receives (m,ϕ,ϖ) as input and
outputs π ← SimSign(m,ϕ, τ, pp) if (ϕ,ϖ) ∈ R and ⊥
otherwise.

3. Extractability. In addition to algorithms SimSetup and
SimSign, there exists an extractor algorithm Ext such that
for any PPT adversary A,

Pr

 (pp, τ)← SimSetup(1λ, R);
(m,ϕ, π)← AOsim(R, pp); ϖ ← Ext(m,ϕ, π, τ, pp) :
(ϕ,ϖ) ∈ R ∨ (m,ϕ, π) ∈ L ∨ Vfy(m,ϕ, π, pp) = 0


= 1− negl(λ),

where L is a list of queries to SimSign.
Note that NIZK and SoK protocols in the random oracle

model can be efficiently realized by applying the Fiat-Shamir
transform [13] to Σ-protocols.

C. Notations

Notations used in this paper and their descriptions are shown
in Table II.

IV. SYSTEM FRAMEWORK AND SECURITY DEFINITIONS

In this section, the system framework and security defini-
tions of DAPCR are going to be introduced.

A. DAP with Collaborative Regulation

1) System Framework: An entity that independently reg-
ulates the anonymous payment system may abuse regulatory
power. To avoid the disadvantage, we divide the regulatory
power into two authorities called Filter and Supervisor. Figure
2 depicts the system framework of workflow DAPCR, which
consists of five entities as follows:

1. Blockchain. The DAPCR scheme is based on a permissioned
blockchain, which is only accessed by users with permis-
sions. Supervisor is responsible for registering users who
are allowed to join the permissioned blockchain.

2. User. A new user needs permission from all consensus
nodes to join the consortium blockchain [14]. Each user is
assigned a payment limit µ, and his total payment amount of
anonymous transactions within each trading period should
not exceed this limit.

3. Consensus Nodes are responsible for checking the validity
of transactions and sealing the valid transactions into new
blocks.
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TABLE II: Notations and descriptions

Notation Description Notation Description
F Filter S Supervisor
U User (uk, sk) user’s public and private keys

(pkF , skF ) Filter’s public and private keys (pkO, skO) Supervisor’s public and private keys
tx anonymous transaction in DAP rtx regulated transaction in DAPCR

nym user’s pseudonym tagµ tag of user’s payment limit
µ user’s payment limit vsum user’s total payment amount
reg user’s registration data rpt report of suspicious transactions

(pkL, skL) linker’s public and private keys (pkO, skO) opener’s public and private keys
R set of public keys σ signature in CLRS

5

31
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3. Verification phase:
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Fig. 2: System framework and workflow.

4. Filter has the ability to link transactions from the same
sender and determine whether they comply with the trans-
action policy.

5. Supervisor is an entity responsible for registering users and
identifying the sender’s public key of suspicious transactions
with the assistance of S.
As shown in Fig. 2, the DAPCR scheme consists of four

phases. In the preparation phase, the public parameter is
published. Entities generate their public and private keys, and
new users obtain permission from consensus nodes to join the
blockchain. In the transaction phase, users generate regulated
transactions to transfer their assets. In the verification phase,
consensus nodes verify the validity of regulated transactions,
and only valid transactions are sealed into blocks. In the
regulation phase, Filter screens out suspicious transactions and
submits the report on suspicious transactions to Supervisor.
Once the report is received, Supervisor recovers the sender’s
public key of suspicious transactions.

2) Transaction Policy: Each user is assigned a payment
limit, and his total payment amount of anonymous transactions
within each trading period should not exceed the limit. To
simplify the design and enhance regulatory efficiency, the
DAPCR scheme requires that a user’s total payment amount
of anonymous transactions within a trading period equals his
payment limit. If it does not match, Filter will mark these
transactions as suspicious and include them in regulation.
If the total payment amount does not reach the payment
limit, the user can submit a transaction, of which the receiver
is himself, with a payment amount equal to the shortfall,
to make the total payment amount equal to the payment
limit. With each anonymous transaction the user publishes,
an equivalent amount is deducted from his payment limit. If
the user exhausts his payment limit but still wants to transact,

he can make a public transaction, which doesn’t affect his
payment limit.

3) Formal Definition: A DAPCR scheme is composed by
the following PPT algorithms.

• param ← Setup(1λ). This algorithm takes as input a
security parameter λ and outputs a public parameter param,
which is implicit input to other algorithms.

• (pkF , skF ) ← FInit(param). F executes this algorithm to
generate their public-private key pair (pkF , skF ).

• (pkS , skS) ← SInit(param). S executes this algorithm to
generate their public-private key pair (pkS , skS).

• (uk, sk) ← KeyGen(pkS). This algorithm takes pkS as
input and outputs a public-private key pair (uk, sk) for a
user.

• req← Join(uk, µ, pkS). A new user executes this algorithm
to generate a request req to join the blockchain for consensus
nodes. This algorithm takes uk, pkS , and the user’s payment
limit µ as input and outputs a request req. If the new user
obtains permission from all nodes, req will be recorded on
the blockchain.

• (tagµ, nym) ← Reg(req, pkS , skS). S reads req from the
decentralized ledger and executes this algorithm to generate
the data required for regulation. This algorithm takes req,
skS and pkS as input and outputs the user’s limit tag tagµ
and his pseudonym nym.

• rtx ← RtxGen(addrS , addrR, v, s, Ipub, Ipri, R, sk, pkF ). The
algorithm takes as input a tuple (addrS , addrR, v, s, Ipub,
Ipri, R, sk, pkF ) and outputs a regulated transaction rtx,
where R = {uk0, uk1, ..., ukn−1}, uk = ukj ∈ R and sk
is a private key corresponding to uk.

• 0/1 ← Verify(rtx, pkF , R, Ipub). This algorithm, which
verify the validity of a regulated transaction rtx, takes rtx,
pkF , R and Ipub as input, and outputs 1 if rtx is valid or 0
otherwise.

• (tagv, nym) ← Extract(rtx, skF ). The algorithm takes rtx
and skF as input and extracts an amount tag tagv and the
sender’s pseudonym nym from rtx. Since pseudonyms are
uniquely associated with user identities, they can be used to
link transactions from the same sender.

• (S, susp/⊥) ← Detect(nym, tagµ, skF , ledger). This al-
gorithm takes as input a pseudonym nym, a tag tagµ of
nym’s payment upper limit, Filter’s private key skF and a
decentralized ledger ledger, which denoted all transactions
sealed in blocks during a trading period, and outputs a set
S of all transactions submit by nym. The algorithm further
outputs susp if nym’s total payment amount exceeds their
upper limit, else outputs ⊥.
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TABLE III: Properties of CLRS and related signatures

Scheme Controllable Linkability Irrevocable-iff-linked 1 Collaborative Revocability 2 No Issuer
CLRS � � � �
[15] × � × �
[16] � � × �

[17], [18] × × × �
[19], [20] � × × �

[21] × � × �
[22] � � × ×

[23], [24] × × × �
1 means that a linker cannot revoke the anonymity of signatures, even if these signatures are linked.
2 means that the opener can only revoke the anonymity of signatures with the assistance of the linker.

• rpt ← Report((S, susp), nym, pkF , skF ). This algorithm
takes as input a tuple (S, susp), a pseudonym nym and
a public-private key pair (pkF , skF ), and outputs a report
rpt proving that nym published suspicious transactions in a
trading period.

• (uk, vsum)/⊥ ← Recover(rpt, pkF , skS). This algorithm
takes a report rpt, Filter’s public key pkF and Supervisor’s
private key skS as input and check the validity of rpt. If rpt
is valid, it outputs the sender’s public key uk and the total
payment amount vsum else outputs ⊥.

B. Ring Signature with Controllable Linkability

We propose a ring signature with controllable linkability,
which is the building block of DAPCR. When signing a
message, the signer needs to specify both a linker and an
opener.

The CLRS scheme offers controllable linkability and collab-
orative revocability. The former means that only a designated
linker can link signatures from the same sender. The latter
means that the designated opener can revoke the anonymity
of a signature with the assistance of the linker, but cannot do
so independently, preventing the abuse of revocation authority
and protecting privacy. Specifically, the linker can extract
the pseudonym from each signature, and signatures with the
same pseudonym come from the same signer. The opener can
recover the signer’s identity from any pseudonym but cannot
directly open signatures. Table III compares the CLRS scheme
with related works to show the advantage of our scheme.

The linker and opener are two semi-honest entities, which
means they adhere to the CLRS protocol, do not actively
sign messages, but can access ring signatures published in the
system and attempt to identify the signers. We also assume
that linker and opener do not collude.

A CLRS scheme consists of the following algorithms:

• pp← Setup(1λ). The algorithm takes a security parameter
λ as input, and generates a public parameter pp which is
implicitly input to other algorithms.

• (pkL, skL)← LKGen(pp). The algorithm outputs a public-
private key pair (pkL, skL) for a linker.

• (pkO, skO)← OKGen(pp). The algorithm outputs a public-
private key pair (pkO, skO) for an opener.

• (uk, sk)← UKGen(pkO). The algorithm takes an opener’s
public key pkO as input and outputs a user’s public-private
key pair (uk, sk).

• σ/⊥ ← Sign(R,m, pkL, sk). The algorithm takes a ring
R = {uk0, uk1, ..., ukn−1}, a message m, a linker’s public
key pkL and a user’s private key sk as input. If sk is the pri-
vate key corresponding to ukj ∈ R and j ∈ {0, 1, ..., n−1},
the algorithm outputs a signature σ of (R,m) else outputs
⊥.

• 0/1 ← Vfy(R,m, σ, pkL). The algorithm takes a ring R, a
message m, a linker’s public key pkL and a signature σ as
input and outputs a bit b. If b = 1, σ is valid otherwise is
invalid.

• nym← Ext(σ, skL). The algorithm takes a valid signature
σ and a linker’s private key skL as input and outputs the
signer’s pseudonym nym.

• link/unlink ← Link(σ0, σ1, skL). A linker executes the al-
gorithm CLRS.Ext to extract pseudonyms nym0 and nym1

from σ0 and σ1. If nym0 = nym1, this algorithm outputs
link else outputs unlink.

• uk ← Open(nym, skO). The algorithm takes a pseudonym
nym and an opener’s private key skO as input and outputs
the user’s public key uk.
In addition, a linker can prove that the same pseudonyms

nym are extracted from multiple signatures σi|n−1
i=0 . In other

words, these signatures are signed by the same user with
pseudonym nym.
• π ← Prove(σi|n−1

i=0 , nym, pkL, skL). This algorithm takes
several signatures σi|n−1

i=0 , a pseudonym nym and a linker’s
public-private key pair (pkL, skL) as input, and outputs a
proof π of correct extraction.

• 0/1 ← Judge(σi|n−1
i=0 , nym, π, pkL). This algorithm takes

several signatures σi|n−1
i=0 , a pseudonym nym, a proof π

and a linker’s public key pkL as input, and outputs a bit b.
If b = 1, π is valid else is invalid.

C. Security Definition
1) Security Definition of CLRS: First, we introduce two

adversaries: A1, who has compromised the linker and obtained
the linking key skL, and A2, who has compromised the opener
and obtained the opening key skO. However, we assume
that an adversary cannot compromise both the opener and
the linker at the same time, because with skL and skO, an
adversary would be able to trace the signer of any valid
signature. We believe that this assumption is realistic.

Definition 1. We say that a CLRS scheme is secure if it satis-
fies correctness, unforgeability, anonymity, nym-extractability
and nym-soundness.
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Anonymity Experiment AnonAi
(λ):

1: pp← Setup(1λ)
2: (pkL, skL)← LKGen(pp)
3: (pkO, skO)← OKGen(pp)
4: (R,m, uk0, uk1)← Ai(skAi

, pkL, pkO)
5: b←$ {0, 1}
6: σb ← Sign(R,m, pkL, skb)
7: b′ ← Ai(σb, skAi

, pkL, pkO)
8: output b′ = b

Nym-soundness Experiment NymSoundAi
(λ):

1: pp← Setup(1λ)
2: (pkL, skL)← LKGen(pp)
3: (pkO, skO)← OKGen(pp)
4: (R,m, σ, nym0, nym1, π0, π1)←

Ai(skAi
, pkL, pkO)

5: output Vfy(R,m, σ, pkL) = 1
∧ Judge(σ, nym0, π0, pkL) = 1
∧ Judge(σ, nym1, π1, pkL) = 1

∧ nym0 ̸= nym1 ∧ (nym
skO
i , ·) ∈ R

Unforgeability Experiment-I Unforge1Ai
(λ):

1: pp← Setup(1λ)
2: (pkO, skO)← OKGen(pp)
3: (pkL, skL)← LKGen(pp)
4: (R,m, σ)←

AOUKGen,OSign,OReveal

i (pp, pkO, pkL)
5: output R ⊂ LUKGen \ LReveal

∧ (σ,R,m, pkL, ·) /∈ LSign

∧ Vfy(R,m, σ, pkL) = 1

Nym-extractability Experiment NymExtAi
(λ):

1: pp← Setup(1λ)
2: (pkL, skL)← LKGen(pp)
3: (pkO, skO)← OKGen(pp)
4: (R,m, σ)← Ai(skAi

, pkL, pkO)
5: nym← Ext(σ, skL)
6: π ← Prove(σ, nym, pkL, skL)
7: output Vfy(R,m, σ, pkL) = 1

∧ Judge(σ, nym, π, pkL) = 0

Unforgeability Experiment-II Unforge2A1
(λ):

1: pp← Setup(1λ)
2: (pkL, skL)← LKGen(pp)
3: (pkO, skO)← OKGen(pp)
4: (uk,R,m, σ)←

AOUKGen,OSign,OReveal
1 (pp, pkO, pkL)

5: output uk ∈ LUKGen \ LReveal

∧ (σ,R,m, pkL, uk) /∈ LSign

∧ Vfy(R,m, σ, pkL) = 1
∧ nym← Ext(σ, skL)
∧ uk ← Open(nym, skO)

Correctness Experiment CorrectAi
(λ):

1: pp← Setup(1λ)
2: uk ← UKGen(sk)
3: (pkO, skO)← OKGen(pp)
4: (pkL, skL)← LKGen(pp)
5: σ ← Sign(R,m, pkL, pkO, sk)
6: output uk ∈ R ∧ Vfy(R,m, σ, pkL) = 1

Fig. 3: Security experiments for CLRS.

1. Correctness. CLRS satisfies correctness if CorrectAi
(λ) ≤

negl(λ).
2. Unforgeability. For i ∈ {1, 2}, Ai without any ring mem-

ber’s private key cannot forge a ring signature on behalf
of the ring. In addition, A1 cannot forge a signature from
which the pseudonym extracted is associated with an honest
user. A CLRS scheme satisfies unforgeability if for any PPT
adversary Ai, Unforge1Ai

(λ) ≤ negl(λ), and for any PPT
adversary A1, Unforge2A1

(λ) ≤ negl(λ).
In these two experiments,
- OUKGen is an oracle that runs (uk, sk) ← UKGen(pkO).
LUKGen is a list of users’ public keys generated by this
oracle;

- OReveal is an oracle which returns the corresponding secret
key when queried on a user’s public key uk. LReveal is
a list of public keys of which the secret key has been
revealed;

- OSign is an oracle that on query (R,m, pkL, uk) returns
σ ← Sign(R,m, pkL, sk). LSign is a list of the queries
and responses (σ,R,m, pkL, uk).

3. Anonymity. CLRS satisfies anonymity if for any PPT adver-
sary Ai, AnonAi

(λ) ≤ negl(λ).
4. Nym-extractability. A linker can always extract the signer’s

pseudonym from a signature and generate a proof for correct
extraction. CLRS satisfies nym-extractability if for any PPT
adversary Ai, NymExtAi

(λ) ≤ negl(λ) where skA1
= skL

and skA2
= skO.

5. Nym-soundness. Nym-soundness ensures that a linker can-
not extract pseudonyms of two different signers from a
signature, even if users in the ring are fully corrupt.
CLRS satisfies nym-soundness if for any PPT adversary Ai,
NymSoundAi

(λ) ≤ negl(λ).

Security experiments for CLRS are presented in Fig. 3.
2) Security Definition of DAPCR: We also present two

adversaries for DAPCR: A′
1 is an adversary that compromises

Filter, while A′
2 is an adversary that compromises Supervisor.

However, we assume that adversaries cannot simultaneously
compromise both Filter and Supervisor because they could

collaborate to obtain private information from suspicious trans-
actions. We believe this assumption is reasonable.

Definition 2. We say that a DAPCR scheme is secure if
it satisfies indistinguishability, F-extractability, F-soundness,
balance and non-malleability.

1. Indistinguishability. For A′
2, the regulated transaction re-

veals no information about transaction privacy. For A′
1, they

can link regulated transactions from the same user but can-
not obtain any additional information. We say that DAPCR
satisfies indistinguishability if for any PPT adversary A′

i,
IndA′

i
(λ) ≤ negl(λ).

2. F-extractability. Filter can extract the sender’s pseudonym
and the tag of payment amount from any valid transaction.
DAPCR satisfies F-extractability if for any PPT adversary
A′

i, FExtA′
i
(λ) ≤ negl(λ) where amount(rtx) is the transac-

tion rtx’s payment amount, and nym(uk) is the pseudonym
of the public key uk.

3. F-soundness. For a valid regulated transaction, F cannot
extract two different pseudonyms or tags from the transac-
tion. DAPCR satisfies F-soundness if for any PPT adversary
A′

i, FSoundA′
i
(λ) ≤ negl(λ).

4. Balance. The amount paid by any PPT adversaries cannot
exceed their balance.

5. Non-malleability. No PPT adversary possesses the capability
to modify the information contained within a regulated
transaction rtx.
Security experiments for DAPCR are presented in Fig. 4.

V. RING SIGNATURE WITH CONTROLLABLE LINKABILITY

First, we introduce three NIZK protocols Πenc, Πdec and
Πmem that are used to construct CLRS.

A. NIZK Protocols in CLRS
1. Πmem = (Gmem,Pmem,Vmem) represents a NIZK protocol

for the relation

Rmem =

{
((c0, c1, ..., cn−1), (l, r), (g, h)) :
∀i, ci ∈ G ∧ cl = g0hr∧

l ∈ {0, 1, ..., n− 1} ∧ r ∈ Z∗
q

}
.
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Indistinguishability Experiment IndA′
i
(λ):

1: param← Setup(1λ)
2: (pkF , skF )← FInit(param)
3: (pkS , skS)← SInit(param)
4: (T0, T1, R)← A′

i(skA′
i
, pkS , pkF )

where Tj = (addrSj
, addrRj

, vj , ukj)
∧ uk0, uk1 ∈ R

5: rtxb ←
RtxGen(addrSb

, addrRb
, vb, ukb, skb, R, ·)

6: b′ ← A′
i(rtxb, skA′

i
, pkS , pkF )

7: output b′ = b

F -extractability Experiment FExtA′
i
(λ):

1: param← Setup(1λ)
2: (pkF , skF )← FInit(param)
3: (pkS , skS)← SInit(param)
4: (R, rtx, v, r)← A′

i(skA′
i
, pkS , pkF )

5: (nym, tagv)← Extract(rtx, skF )
6: output v ̸= amount(rtx)

∨ (∀ uk ∈ R,nym ̸= nym(uk))
∧ Verify(rtx, pkF , R, Ipub) = 1

F -soundness Experiment FSoundA′
i
(λ):

1: param← Setup(1λ)
2: (pkF , skF )← FInit(param)
3: (pkS , skS)← SInit(param)
4: (R, rtx, T0, T1)← A′

i(skA′
i
, pkS , pkF )

where Tj = (nymj , tagj , π
nym
j , πtag

j )

5: output Vnym(rtx, nym0, π
nym
0 ) = 1

∨ Vnym(rtx, nym1, π
nym
1 ) = 1

∨ Vtag(rtx, tag0, π
tag
0 ) = 1

∨ Vtag(rtx, tag1, π
tag
1 ) = 1

∧ Verify(rtx, pkF , R, Ipub) = 1

Fig. 4: Security experiments for DAPCR.

Σ-protocols for the above relation called one-out-of-many
proofs [25] that can be used to prove that one out of many
commitments can be opened to 0 without requiring the
prover to possess knowledge of the openings of the other
commitments. Applying the Fiat-Shamir transform to this
Σ-protocol yields the NIZK protocol Πmem. Moreover, the
protocol Πmem requires no trusted setup, and the proof size
is logarithmic in the number of all commitments.

2. Πenc = (Genc,Penc,Venc) represents a NIZK protocol for
the relation

Renc =

{
((c, u), (α, β), (g, h, pk)) :

c = gαhβ ∧ u = pkβ ∧ pk, g, h ∈ G ∧ α, β ∈ Z∗
q

}
.

The protocol allows one to prove the correctness of an
ElGamal ciphertext ct = (c, u) given a specific public key
pk.

3. Πdec = (Gdec,Pdec,Vdec) represents a NIZK protocol for
the relation

Rdec =

{ ((cti = (ci, ui)|n−1
i=0 ,m, pk), sk, h) :

∀i, ci = m · u
1
sk
i ∧ pk = hsk∧

m, pk, h, ci, ui ∈ G ∧ sk ∈ Z∗
q

}

where cti|n−1
i=0 are n ElGamal ciphertexts. This protocol can

prove that the decryption result of multiple ciphertexts is
the same plaintext m.
Similar to the protocol Πmem, Πenc and Πdec are respec-

tively transformed from interactive protocols Σenc and Σdec,
of which the details are presented in Appendix A.

B. Construction of CLRS

An efficient construction of CLRS consists of the following
algorithms:
• Setup. Consider two big prime numbers p and q. Elliptic

curve cryptography (ECC) is based on the use of non-
singular elliptic curves E on Fp. g is a generator of group
G, which is a cyclic group with order q. ECC can be given
by a tuple (G, g, p, q). The public parameter used in our
construction is denoted by pp = (g, h,H) where g, h ∈ G
and the hash function H : {0, 1}∗ → Z∗

q . pp is implicitly
input to other algorithms.

• LKGen. A linker randomly samples private key skL ∈ Z∗
q

and computes pkL = hskL .
• OKGen. An opener randomly samples private key skO ∈ Z∗

q

and computes pkO = gskO .

• UKGen. A user randomly samples private key sk ∈ Z∗
q and

computes pk = pkskO . Then the user randomly samples r ∈
Z∗
q and computes c = gskhr. Lastly, the user generates a

proof πenc ← Penc((c, pk), (r, sk), (h, g, pkO)). The user
outputs uk = (pk, c, πenc).
One calculates b← Venc((c, pk), πenc, (h, g, pkO)) to verify
the validity of uk. If b = 1, uk is valid else is invalid.
When implementing this scheme in the blockchain, a smart
contract can be deployed as a bulletin board, which is
responsible for verifying the validity of public keys and
recording valid public keys.

• Sign. To generate a signature σ for m, a user with the
key pair (uk, sk) chooses a ring R = {uk0, ..., ukn−1}
that satisfies uk = ukj ∈ R. Initially, the user randomly
samples k ∈ Z∗

q and computes com = gskhk and K = pkkL.
Subsequently, the user extracts ci from each public key
uki ∈ R, computes c′i = ci/com and gets a new ring
R′ = {c′0, c′1, ..., c′n−1} where c′j = g0hr−k. The user also
calculates a proof πmem ← Pmem(R′, (j, r − k), (g, h)).
Then the user randomly chooses x1, x2 ∈ Z∗

q and computes

com′ = gx1hx2 ,

K ′ = pkx2

L ,

e = H(R|m|com|com′|K|K ′),

y1 = x1 + e · sk,
y2 = x2 + e · k.

(1)

π = (com′,K ′, y1, y2) is a signature of knowledge proving
((com,K), (sk, k)) ∈ Renc. The formula 1 is a SoK
scheme transformed from the interactive protocol Σenc

presented in Appendix A-A. Finally, the user outputs σ =
(com,K, πmem, π).

• Vfy. Given a signature σ of (R,m), an opener’s public key
pkO and a linker’s public key pkL, a verifier checks the
validity of σ. Initially, the verifier computes R′ and b ←
Vmem(R′, πmem, (g, h)). If b = 0, σ is invalid. Otherwise,
the verifier computes e = H(R|m|com|com′|K|K ′) checks
whether the following equations hold.

gy1hy2
?
= com′come

pky2

L
?
= K ′Ke

If both of the above equations hold, σ is valid else is invalid.
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• Ext. Given a valid signature σ = (com,K, πmem, π) and a
linker’s private key skL, the linker computes the pseudonym
nym = K

− 1
skL com = gsk of the signer.

• Link. Given two signatures σ0, σ1 and a linker’s private key
skL, a linker executes the algorithm CLRS.Ext to extract
nym0 = gsk0 and nym1 = gsk1 from σ0 and σ1. If nym0 =
nym1 the algorithm outputs link else outputs unlink.

• Open. Given a pseudonym nym and an opener’s private key
skO, an opener recovers pk = nymskO = pkskO from the
pseudonym and outputs uk = (pk, ·).
In addition, a linker can execute the algorithm CLRS.Prove

to prove that a pseudonym nym is extracted from σ without
revealing the private key skL. One can verify whether nym
is extracted from σ.
• Prove. Given several signatures σi = (comi,Ki, ·) for i ∈
{0, 1, ..., n − 1}, a pseudonym nym and a linker’s private
key skL, the linker computes

πdec ← Pdec(((comi,Ki)|n−1
i=0 , nym, pkL), skL, h)

to prove correct decryption of (comi,Ki)|n−1
i=0 and that the

decryption result of these ciphertexts is a same message
nym. In other words, πdec is a proof for that several
signatures are published by the same signer with pseudonym
nym.

• Judge. Given several signatures σi = (comi,Ki, ·) for i ∈
{0, 1, ..., n − 1}, a pseudonym nym, a linker’s public key
pkL and a proof πdec, one can compute

b← Vdec(((comi,Ki)|n−1
i=0 , nym, pkL), πdec, h).

If b = 1, πdec is valid else is invalid.

Theorem 1. The proposed CLRS scheme satisfies correctness.

PROOF. For a ring R = {uk0, uk1, ..., ukn−1}, the user
with public key ukj = (pkj , cj , πenc) = (pkskO , gskhr, πenc)
calculates σ = (com,K, πmem, π) of (R,m) that satisfies
σ ← CLRS.Sign(R,m, pkL, sk).

To verify the validity of σ, the verifier first computes
c′i = ci/com for i ∈ {0, 1, ..., n − 1} and gets R′ =
{c′0, c′1, ..., c′n−1}. If the NIZK protocol Πmem satisfies com-
pleteness and the SoK protocol for the relation Renc satisfies
correctness, both πmem and π can be successfully verified.
The signature σ will also pass the verification as a result.

Therefore, if the NIZK protocol used in the CLRS scheme
satisfies completeness, and the SoK protocol satisfies correct-
ness, then the CLRS scheme achieves correctness.

VI. DAP WITH COLLABORATIVE REGULATION

In this section, we present an efficient DAPCR scheme
based on a CLRS scheme and several NIZK protocols.

A. NIZK Protocols in DAPCR

First, we introduce two NIZK protocols Πlog and Πv that
are used to construct the DAPCR scheme.

1. Πlog = (Glog,Plog,Vlog) represents the NIZK protocol for
the relation

Rlog = {(A,α, g) : A = gα ∧ g ∈ G ∧ α ∈ Z∗
q}.

The protocol can prove the knowledge of a discrete loga-
rithm while ensuring the confidentiality of its actual value.

2. Πv = (Gv,Pv,Vv) represents the NIZK protocol for the
relation

Rv =

{
((tx, c, Ipub, ℏ, g, h), (addrS , addrR, Ipri, v, s, r)) :

tx← TxGen(addrS , addrR, v, s, Ipub, Ipri)∧
c = gvhr ∧ g, h ∈ G ∧ v, r ∈ Z∗

q

}
.

The protocol can prove that a committed value in c is the
payment amount v of a privacy-preserving transaction tx.
The details of this protocol are introduced in Appendix A.

B. Construction of DAPCR
An efficient DAPCR scheme consists of four phases: the

preparation phase, the transaction phase, the verification phase,
and the regulation phase.

1) Preparation Phase: The public parameter is published.
Entities generate their public and private keys, and new
users obtain permission from consensus nodes to join the
blockchain.
Setup. Consensus nodes execute

(g, h,H)← CLRS.Setup(1λ),

crs← Gv(1λ,Rv),

and output param = (g, h,H, crs) that is implicit input to
other algorithms.
FInit. F executes the algorithm CLRS.LKGen to get the
public-private key pair (pkL, skL) and publishes their public
key pkF = pkL.
SInit. S executes the algorithm CLRS.OKGen to get the
public-private key pair (pkO, skO) and publishes their public
key pkS = pkO.
KeyGen. A user computes (uk, sk) ← CLRS.UKGen(pkO)
and publishes their public key uk.
Join. A new user U randomly samples β ∈ Z∗

q , and computes
B = gβ and w = H(pkβO|uk). Then U sends a request req =
(uk,B, µ), where µ is his payment limit within each trading
period, to consensus nodes. To join the blockchain, U must
obtain permission from all nodes. If successful, (uk,B, µ) will
be recorded on the chain.
Register. If a new user with public key uk has joined the
blockchain, S reads req = (uk,B, µ) from the decentralized
ledger, and computes w = H(BskO |uk), tagµ = gµhw and
nym = pk

1
skO . Then, S adds (uk, µ, nym, tagµ) to the list

LS . Moreover, S sends (nym, tagµ) to F . Once (nym, tagµ)
is received, F adds it to the list LF .

2) Transaction Phase: Users are allowed to submit two
types of transactions: regulated transactions with privacy
preservation and public transactions. In a trading period, the
total amount paid by a user through regulated transactions
cannot exceed their privacy payment limit.
RtxGen. Suppose that a user U intends to submit n regulated
transactions within a trading period. To submit the i-th reg-
ulated transaction rtxi, for i ∈ {0, 1, ..., n − 2}, U randomly
samples zi, wi ∈ Z∗

q and computes

txi ← DAP.TxGen(addrS , addrR,i, vi, s, Ipub,i, Ipri,i),

cti = (gvihzi , pkzi−wi

L ) = (ci, ui),

σi ← CLRS.Sign(Ri, cti, pkL, sk),
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where cti is a ElGamal ciphertext of a pedersen commitment
gvihwi . Then U computes

πlog
i ← Plog(ui, zi − wi, pkL),

πv
i ← Pv((txi, ci, Ipub,i, ℏi, g, h), (addrS , addrR,i, Ipri,i, vi, s, zi), crs),

where ℏi = H(σi), and sets rtxi = (txi, cti, π
v
i , π

log
i , σi).

For the final regulated transaction rtxn−1 within a trading
period, U calculates wn−1 = w−

∑n−2
i=0 wi instead of sampling

a random number. All other operations remain unchanged.
Therefore, if the total payment amount within the trading
period equals U’s privacy payment limit µ, the equation∏n−1

i=0 gvihwi = tagµ holds.
If U exhausts his payment limit µ but still needs to transact,

he can submit a public transaction, which doesn’t affect his
payment limit. To generate a public transaction txpub, U
calculates a DAP transaction tx, attaches (addrS , addrR, v)
to it, and generates a proof πpub that confirms addrS as
the sender’s address, addrR as the receiver’s address, and
v as the payment amount of tx. Finally, U gets a public
transaction txpub = (tx, addrS , addrR, v, πpub). As the public
transactions is not a primary focus of this paper, we will refrain
from delving into their specifics.

3) Verification Phase: Consensus nodes (or smart con-
tracts) verify the validity of regulated transactions, and only
valid transactions are sealed into blocks.
Verify. For a regulated transaction rtx = {tx, ct, πv, πlog, σ},
one executes the following steps to verify the validity of rtx:

b1 ← DAP.TxVfy(tx, Ipub),

b2 ← CLRS.Vfy(R, ct, σ, pkL),

b3 ← Vv((tx, c, Ipub, ℏ, g, h), πv, crs),

b4 ← Vlog(u, πlog, pkL),

where ℏ = H(σ). If b1 ∧ b2 ∧ b3 ∧ b4 = 1 and all public keys
in the ring R are from registered users, rtx is valid and the
valid transaction is sealed into a new block.

4) Regulation Phase: F screens out suspicious transactions
and submits the report on suspicious transactions to S. Once
the report is received, S obtains the sender’s public key and
payment amounts of suspicious transactions.
Extract. For a valid transaction rtxi = (cti, σi, ·), F extracts
the signer’s pseudonym and the amount tag from rtxi.

nymi ← CLRS.Ext(σi, skL),

tagvi = ciu
− 1

skL
i = gvihwi .

Detect. Let S = {rtx0, rtx1, ..., rtxn−1} be the set of all n
transactions submitted by some user during a trading period. F
can link these transactions according to the user’s pseudonym
nym.

To determine if the transaction behavior of a user with
pseudonym nym complies with the transaction rules, F
searches for tagµ corresponding to nym in LF and computes
tagsum =

∏n−1
i=0 tagvi where tagvi |n−1

i=0 are extracted from
all transactions published by the user with pseudonym nym
in a period. Considering that tagµ = gµhw and tagsum =

g
∑n−1

i=0 vih
∑n−1

i=0 wi = g
∑n−1

i=0 vihw, the total payment volume
is equal to the upper limit if tagµ = tagsum. Otherwise, F
flags these transactions in S as suspicious.

To increase supervision efficiency, F can aggregate cipher-
texts and then extract tagsum:

C =

n−1∏
i=0

ci = g
∑n−1

i=0 vih
∑n−1

i=0 zi ,

U =

n−1∏
i=0

ui = pk
∑n−1

i=0 (zi−wi)
L ,

tagsum = CU
− 1

skL .

Report. For a set S = {rtx0, rtx1, ..., rtxn−1} of suspicious
transactions, F proves that these transactions are published
by the user with pseudonym nym and tagsum is formed by
aggregating the amount tags extracted from these transactions.
F first generates a proof πdec:

πdec ← Pdec((cti|n−1
i=0 , nym, pkL), skL, h).

Then F generates a proof πsum for that tagsum is extracted
from (C,U):

πsum ← Pdec((C,U, tagsum, pkL), skL, h).

Finally, F sends rpt = (S, nym, πdec, tagsum, πsum) to S.
Recover. Once a report rpt = (S, nym, πdec, tagsum, πsum) is
received, S checks whether the transactions in S are submitted
by the same user with pseudonym nym:

b1 ← Vdec((cti|n−1
i=0 , nym, pkL), πdec, h).

Then S checks the validity of tagsum:

b2 ← Vdec((
n−1∏
i=0

ci,

n−1∏
i=0

ui, tagsum, pkL), πsum, h).

If b1 = 0 ∨ b2 = 0, rpt is invalid else is valid. For a valid
report rpt, S computes uk ← CLRS.Open(nym, skO) and
then requires the user with public key uk to submit vsum and
w′ satisfies tagsum = gvsumhw′

.

Theorem 2. The proposed DAPCR scheme satisfies correct-
ness.

PROOF. For any transaction rtxi = (txi, cti, π
v
i , π

log
i , σi) gen-

erated according to the DAPCR.RtxGen algorithm, a verifier
employs the DAPCR.Verify algorithm to ascertain the validity
of rtxi. This verification process involves verifying txi, πv

i ,
πlog
i and σi. Only if all of these components pass validation,

the transaction rtxi is deemed valid.
NIZK protocols Πv and Πlog used to construct the DAPCR

scheme satisfies completeness. Additionally, both the DAP
scheme and the CLRS scheme satisfy correctness. Hence, each
of txi, πv

i , πlog
i and σi can successfully pass the validation,

meaning that the transaction rtxi is validity.

VII. SECURITY ANALYSIS

In this section, we analyze the security of our scheme.
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A. Security Analysis of CLRS

Theorem 3. No PPT adversary can break the anonymity of
CLRS with non-negligible advantage.

PROOF. We use GAno
real to denote the anonymity experiment

expAnoAi
(λ) executed in the real world. To analyze the security

of CLRS, we design a simulation GAno
sim . In GAno

sim , the challenger
C interacts with A1 (or A2) as in GAno

real . The only modification
is that C outputs a signature σsim = (comsim,K, πmem

sim , πsim)
of (R,m) in which comsim, K, πmem

sim and πsim are indepen-
dent of uk0 and uk1.

Game GAno
real . With the purpose of initializing this experi-

ment, C first computes

crsmem ← Gmem(1λ,Rmem),

ppenc ← SoK.Setup(1λ,Renc),

and other public parameters. C further computes public keys
of honest users, and R1 represents the set of these public keys.

Next, Ai generates a ring R2, a message m and two
public keys uk0, uk1 satisfies uk0, uk1 ∈ R1 ∧ R2. Ai sends
(R2,m, uk0, uk1) to C.

Once (R2,m, uk0, uk1) is received, C randomly chooses
b ∈ {0, 1} and computes

σb ← CLRS.Sign(R2,m, pkL, skb)

where σb = (com,K, πmem, π) = (gskbhk, pkkL, πmem, π). C
sends σb to Ai.

After receiving σb, Ai attempts to determine which public
key was used to compute the signature. A1 can query an oracle
QExt to extract pseudonyms from signatures. A2 can query an
oracle QOpen to obtain a public key from a given pseudonym.
Finally, Ai makes a guess b′ for the value of b, and wins the
experiment if and only if b = b′.

Game GAno
sim . During the initialization phase, C computes

the public parameters and public keys of honest users, denoted
by R1. The only difference is that trapdoors are generated
alongside the computation of parameters crsmem and ppenc.

(crsmem, τmem)← Gmem
sim (1λ,Rmem)

(ppenc, τenc)← SoK.Setupsim(1λ,Renc)

Similar to the case in GAno
real , Ai generates a ring R2, a

message m and two public keys uk0, uk1 satisfies uk0, uk1 ∈
R1 ∧R2. Ai sends (R2,m, uk0, uk1) to C.

Once (R2,m, uk0, uk1) is received, C randomly chooses
b ∈ {0, 1} and comsim ∈ G∗. Then C computes

πmem
sim ← Pmem

sim (R′
2, τmem, crsmem),

πsim ← SoK.Signsim((comsim,K, pkL), τenc, ppenc),

and sends σsim = {comsim,K, πmem
sim , πsim} to Ai. Since

σsim is independent of uk0 and uk1, the advantage of Ai in
winning GAno

sim is negligible.
Based on the simulatability of a SoK protocol and the

zero-knowledge of a NIZK protocol, it can be deduced that
the distribution of (com, πmem, π) is equivalent to that of
(comsim, πmem

sim , πsim). While A1 can query QExt to extracted
nym from σb and nym′ from σsim, nym = pk

1/skO

b and
nym′ are indistinguishable since skO is unknown to A1.

Therefore, σsim in GAno
sim and σb in GAno

real are indistinguish-
able. Considering the negligible advantage of Ai in winning
GAno
sim and the indistinguishability between GAno

real and GAno
sim , the

advantage of Ai in winning GAno
real is also negligible.

Theorem 4. No PPT adversary can break the unforgeability
of CLRS with non-negligible advantage.

PROOF. For a discrete logarithm problem (g,A = ga) where
g ∈ G and a ∈ Z∗

q , if Ai breaks the unforgeability of CLRS,
C can make use of Ai to solve the discrete logarithm problem.
Adversaries can win the experiments in two ways:

Case-1: For an honest ring, i.e. all members in the ring are
honest, Ai generates a valid signature.

To initialize this experiment, C first executes

(crsenc, τenc)← Gencsim(1λ,Renc).

For j ∈ {0, 1, ..., l}, C randomly chooses rj ∈ Z∗
q and pkj ∈

G∗, and computes

π′
j ← Penc

sim((hrjA, pkj), τenc, crsenc).

Then C sets cj = hrjA and publishes ukj = (pkj , cj , π
′
j).

Lτ represents the set of public keys generated based on the
trapdoor. Ai can query C for user’s secret keys and signatures.
If Ai queries C for the secret key corresponding to uk, the
experiment aborts.

To win the experiment, Ai forges a signature σ =
(com,K, πmem, π) of (R,m) where R ⊂ LUKGen \ LReveal

and (σ,R,m, pkL, ·) /∈ LSign. The probability that R ⊂ Lτ is
1

η1(λ)
where η1(λ) is a polynomial. By the extractability of a

SoK protocol, C can extract a valid witness ϖ = (a, k) to the
statement ϕ = (com,K) from π. Therefore, C can make use
of Ai to obtain a such that A = ga.

Case-2: There exists an honest user with uk = (pk, c, πenc)
whose private key sk is unknown to A1. A1 calculates a
signature σ of (R,m) and a proof πdec for that nym is
correctly extracted from σ. If nym is the pseudonym of
uk, and σ and πdec are valid, A1 successfully breaks the
unforgeability of CLRS.

To initialize this experiment, C first executes

(crsenc, τenc)← Gencsim(1λ,Renc).

Then C randomly chooses r ∈ Z∗
q and computes

πenc
sim ← Penc

sim((hrA,AskO ), τenc, crsenc).

Finally, C publishes uk = (AskO , hrA, πenc
sim) = (pk, c, πenc

sim).
To win the experiment, A1 randomly selects an honest user

and forges a signature σ = (com,K, πmem, π) of (R,m)
where uk /∈ LUKGen \ LReveal and (σ,R,m, pkL, uk) /∈ LSign.
Assuming A1 selects uk with a probability 1

η2(λ)
, where η2(λ)

represents an upper bound on the number of honest users.
In the experiment, C aborts if A1 queries for the private
key sk of the public key uk. A1 also generates a proof for
that nym is the result of correctly decrypting the ciphertext
(com,K). If nym is a pseudonym of uk, i.e. nym = ga,
the knowledge-soundness of NIZK protocols implies that
ϕdec = (com,K, nym, pkL) is a valid statement such that
(ϕdec, skL) ∈ Rdec. Furthermore, if π is a valid signature of
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knowledge, the extractability of a SoK protocol ensures that
C can extract a valid witness ϖenc = (a, k) to the statement
ϕenc = (com,K) from π. Therefore, C can make use of A1

to obtain a such that A = ga.
In conclusion, if Ai can break the unforgeability of CLRS

with a non-negligible probability, C can solve the DL problem
using Ai’s successful attack.

Theorem 5. No PPT adversary can break the nym-
extractability of CLRS with non-negligible advantage.

PROOF. For a valid public key uk = (pk, c, πenc), the
completeness of the protocol Πenc implies that pk = pkskO
and c = gskhr. For a valid signature σ = (com,K, πmem, π)
of (R,m), correctness of the protocol Πmem implies that
c′ = c/com = g0hr′ . Thus, com = gskhk and k = r − r′.
The extractability of the SoK protocol implies that a valid
witness ϖ = (sk, k) to the statement ϕ = (com,K) can be
extracted from π. The witness satisfies uk = (pkskO , ·) ∈ R
and (com,K) = (gskhk, pkkL).

Since (com,K) can be viewed as an ElGamal encryption
under the public key pkL, correctness of the ElGamal encryp-
tion scheme ensures that decrypting (com,K) with the private
key skL yields nym = gsk, which is the output of CLRS.Ext.
In addition, based on the completeness of the protocol Πdec,
the proof πdec for that nym is correctly extracted from σ will
be verified correctly. Therefore, CLRS.Judge takes σ, nym
and πdec as input and outputs 1.

Theorem 6. No PPT adversary can break the nym-soundness
of CLRS with non-negligible advantage.

PROOF. As analyzed in the proof of Theorem 5, the com-
pleteness of the protocol Πenc implies that pk = pkskO and
c = gskhr if a public key uk = (pk, c, πenc) is valid.
In addition, the correctness of the protocol Πmem implies
that c′j = g0hr′ if σ = (com,K, πmem, π) is valid. Thus,
com = gskhk and k = r − r′. The extractability of the
SoK protocol implies that a valid witness ϖ = (sk, k) to the
statement ϕ = (com,K) can be extracted from π. The witness
satisfies uk = (pkskO , ·) ∈ R and (com,K) = (gskhk, pkkL).

If the proof πdec is valid, the soundness of the protocol
Πdec ensures that nym is the result of decrypting (com,K)
with a private key skL. Considering the perfect correctness
of the ElGamal encryption scheme, the result of decrypting
the ciphertext using a given private key is unique. If this
is not the case, Ai can be employed to construct another
adversary capable of compromising the perfect correctness of
the ElGamal encryption scheme.

Therefore, the pseudonym extracted from a signature is
unique.

B. Security Analysis of DAPCR

Theorem 7. No PPT adversary can break the indistinguisha-
bility of the DAPCR scheme with non-negligible advantage.

PROOF. We use Gind
real to denote the experiment expindA′

i
(λ)

executed in the real world. To analyze the security of DAPCR,
we design a simulation Gind

sim. In Gind
sim, the challenger C interacts

with A′
i as in Gind

real. The only modification is that C outputs a

challenge transaction rtxsim = {txsim, ctsim, πv
sim, πlog

sim, σ}
where txsim, ctsim, πv

sim and πlog
sim are independent of Tb.

Game Gind
real. C first calculates

param← DAPCR.Setup(1λ),

(pkF , skF )← DAPCR.FInit(param),

(pkS , skS)← DAPCR.SInit(param),

publishes (param, pkF , pkS) and sends skF to A′
1 (or skS

to A′
2). C also generates public keys of honest users, and R1

represents the set of these public keys.
Next, A′

i generates a ring R2 and two tuples T0 and T1

where tuplej = (addrSj , addrRj , vj , ukj) and uk0, uk1 ∈
R1 ∧R2. A′

i sends (T0, T1, R) to C.
After receiving (T0, T1, R), C randomly chooses b ∈ {0, 1}

and computes

rtxb ← RtxGen(addrSb
, addrRb

, vb, R, skb, ·)

where skb is the private key associated with ukb. C sends
rtxb = (tx, ct, πv, πlog, σ) to A′

i.
Once rtxb is received, A′

i makes a guess b′ for the value of
b, and wins the experiment if and only if b = b′.

Game Gind
mid. The experiment in Gind

mid is similar to that
in Gind

real, but the only modification is that C replaces tx with
txsim. To initialize the experiments, C makes use of simulators
to generate trapdoors alongside the computation of common
reference strings. After receiving (T0, T1, R), C generates
a transaction txsim that is independent of T0 and T1, and
makes use of a trapdoor to calculate a proof πv

mid. C sends
rtxmid = (txsim, ct, πv

mid, πlog, σ) to A′
i.

If the DAP scheme used to construct DAPCR is secure,
tx and txsim are indistinguishable. Then zero-knowledge of
NIZK protocols implies that the distribution of πv is identical
to that of πv

mid. Thus, the absolute value of the difference
between the advantage of A′

i in winning Gind
mid and that in

winning Gind
real is negligible.

Game Gind
sim. Gind

sim is similar to Gind
mid, but the only mod-

ification is that C replaces ct with ctsim. To initialize the
experiments, C makes use of simulators to generate trap-
doors alongside the computation of common reference strings.
After receiving (T0, T1, R), C randomly samples ctsim =
(csim, usim) ∈ G2 that is independent of T0 and T1, and
makes use of a trapdoor to calculate proofs πv

sim and πlog
sim.

C sends rtxsim = (txsim, ctsim, πv
sim, πlog

sim, σ) to A′
i.

For A′
2, the indistinguishability of the ElGamal encryption

ensures that the distribution of ctsim is identical to that of
ct. The zero-knowledge of NIZK protocols implies that the
distribution of (πv

sim, πlog
sim) is identical to that of (πv

mid, πlog).
For A′

1, the amount tag can be extracted from a transac-
tion. In particular, A′

1 calculates tagsim = csimu
−1/skL

sim and
tagv = cu−1/skL = gvhwi , both of which have the same
distribution. Similar to the case of A′

2, the distribution of
(ctsim, πv

sim, πlog
sim) is identical to that of (ct, πv

mid, πlog).
Thus, the absolute value of the difference between the

advantage of A′
i in winning Gind

sim and that in winning Gind
mid is

negligible. Since txsim, ctsim, πv
sim and πlog

sim are independent
of uk0 and uk1, the advantage of A′

i in winning Gind
sim is equal

to the advantage of A′
i in breaking the anonymity of CLRS.
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Therefore, the advantage of A′
i in winning Gind

real is negli-
gible. The proposed DAPCR scheme satisfies indistinguisha-
bility if the DAP scheme, the NIZK protocols, the ElGamal
encryption and the CLRS scheme making up it are secure.

Theorem 8. No PPT adversary can break the F-extractability
of the DAPCR scheme with non-negligible advantage.

PROOF. For a valid transaction rtx = (tx, ct, πv, πlog, σ) where
ct = (c, u), the completeness of the protocol Πv implies
that c = gvhz where v is the payment amount of tx, and
the completeness of the protocol Πlog ensures that u = pkrL
where r ∈ Z∗

q . Since ct = (gvhz, pkrL) can be viewed as a
well-formed ciphertext of a pedersen commitment gvhz−r, the
correctness of the encryption scheme implies that decrypting
ct with the private key skF = skO yields tagv = gvhz−r.

Since the CLRS scheme satisfies nym-extractability, F can
extract the signer’s pseudonym from σ. Thus, the pseudonym
nym and the amount tag tagv can be extracted from rtx by
F .

Theorem 9. No PPT adversary can break the F-soundness
of the DAPCR scheme with non-negligible advantage.

PROOF. For a valid transaction rtx = (tx, ct, πv, πlog, σ)
where ct = (c, u), the completeness of the protocol Πv

implies that c = gvhz where v is the payment amount of
tx, and the completeness of the protocol Πlog ensures that
u = pkrL where r ∈ Z∗

q . Since ct = (gvhz, pkrL) can be
viewed as a well-formed ciphertext of a pedersen commitment
gvhz−r, the perfect correctness of the encryption scheme
implies that the result of decrypting the ciphertext ct using a
given private key skF = skO is unique. If this is not the case,
A′

i can be employed to construct another adversary capable
of compromising the perfect correctness of the encryption
scheme.

Since the proposed CLRS scheme satisfies nym-soundness,
F cannot two different valid pseudonyms from σ. Thus, the
pseudonym and the amount tag extracted from rtx are unique.

The proposed DAPCR scheme, which is based on DAP,
adds additional regulated fields to privacy-preserving trans-
actions. If an adversary generates a regulated transaction
rtx = (tx, ct, πv, πlog, σ) with a payment exceeding their
balance, they also gets a transaction tx breaking the balance
of DAP. If an adversary modifies the data stored within a
regulated transaction rtx, they also obtains a modified trans-
action tx breaking the non-malleability of DAP, or forges a
proof breaking the security of zk-SNARK. Thus, the proposed
DAPCR scheme satisfies balance and non-malleability if the
DAP scheme and the zk-SNARK scheme making up it is
secure.

C. Attacks
In this section, we take the example of DAPCR constructed

based on ZETH or Zether to analyze how the scheme resists
the following malicious attacks.

1) Sybil attack: The DAPCR scheme is designed for
consortium blockchains, making it effective against certain

malicious attacks targeting public blockchains, such as Sybil
attacks. Consortium chains have strict controls on user admis-
sions. Each user in the system undergoes identity authentica-
tion. If any user is found engaging in malicious behavior, they
will be removed from the blockchain.

2) One-time account attack: One-time account attack
means that an adversary controls multiple one-time accounts
for transactions, making it difficult for Filter to link trans-
actions from this adversary and thus evade regulation. Since
the DAPCR scheme is deployed on a consortium blockchain, a
new account needs permission from all consensus nodes to join
the consortium chain, and the user’s account address and real-
world identity are transparent to consensus nodes. Therefore,
a user cannot simultaneously control multiple accounts and
conduct one-time account attacks.

3) Double-spending attack: Double-spending attack means
that an adversary spends the same amount multiple times.
In the DAPCR scheme based on ZETH, it is necessary to
publish the corresponding serial number to spend the balance
in a coin, and the same serial number cannot be used twice.
If consensus nodes detect that a serial number has already
been revealed, the transaction will be rejected. In the Zether-
based scheme, each user is limited to publishing a single
transaction in each epoch. This transaction contains proof that
the nonce is generated based on the user’s private key and
the epoch number. The associated smart contract accumulates
these nonces and, crucially, rejects any transaction bearing a
duplicate nonce. In simple terms, if the anonymous payment
mechanism that constitutes DAPCR can resist double-spending
attacks, then the DAPCR scheme itself can resist such attacks.

4) Over-spending attack: Over-spending attack means that
an adversary spends more than they possess. In the DAPCR
scheme based on ZETH or Zether, a user should attach a proof
to his transaction, which can show that the amount spent does
not exceed the balance in his coin or account. The security of
zero-knowledge proof protocols ensures that the probability
of any adversary forging a valid proof for over-spending is
negligible. Therefore, if the anonymous payment mechanism
that constitutes DAPCR can resist over-spending attacks, then
the DAPCR scheme itself can resist such attacks.

5) Malleability attack: Malleability attack means that an
adversary modifies the data stored within a transaction. In the
ZETH-based scheme, the honest user generates a transaction
rtx = (tx, ct, πv, πlog, σ). The payment data is stored within
tx, which can be considered as a transaction in ZETH,
and the regulatory data is stored within the regulated field
reg = (ct, σ). Due to the non-malleability of ZETH, any
adversary cannot modify the payment data in tx. To modify
the regulatory data within reg, the adversary needs to forge a
proof π′

v to replace πv . The security of zk-SNARK ensures
that the probability of any adversary forging a valid proof is
negligible.

VIII. PERFORMANCE EVALUATION

In this section, we present a performance evaluation of the
DAPCR scheme proposed in Section VI.

We design four experiments to assess the performance of
DAPCR, all of which are executed on a local device with
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an 8-core Intel(R) Core(TM) i7-10700 @ 2.90GHz CPU,
8 GB RAM and Ubuntu 20.04 LTS OS. DAPCR is con-
structed based on ZETH [26] which is an adaptive version
of Zerocash designed for deployment on public or consortium
blockchains with smart contracts. In addition, we utilize the
zk-SNARK algorithm Groth16 [11], along with the SNARK-
friendly elliptic curve BabayJubjub [27] and the MiMC hash
algorithm to implement the DAPCR scheme. Moreover, the
experimental implementation makes use of the programming
language Golang4 and the zero-knowledge proof tool Snarkjs5.

In Experiment-I, we evaluate the computational and commu-
nication overhead of CLRS, which is shown in Fig. 5a. First,
the time cost for user key generation is 0.7ms, independent
of the ring-size. Then, we evaluate the time overhead for
signature generation and verification under various ring-sizes.
It is evident that the time costs of signature generation and
verification are linearly related to the ring-size. When the
ring-size is 16 which is similar to the ring-size employed
in Monero, the time costs for signature generation and ver-
ification are 13.3ms and 6.9ms, respectively. Additionally,
we analyze the signature-length, which exhibits a logarithmic
relationship with the ring-size. When the ring-size is set to 16,
the signature-length is 2.1KB. Hence, we consider the CLRS
scheme to be efficient.

In Experiment-II, we evaluate the time cost of transaction
generation in DAPCR, which is shown in Fig. 5b. The
time cost of transaction generation is linear to the number
of transactions. It takes about 1231.2ms to generate one
transaction and less than 250 s to generate 200 transactions
in DAPCR. We also compare the time cost of transaction
generation in DAPCR and that in XLN22 [28], which is also
a DAP scheme with regulation based on Zerocash. In XLN22,
the average time required to generate a transaction is 11.52 s,
while in DAPCR, it is only 1.23 s. Compared to Zerocash,
XLN22 introduces an additional computational cost of 10.70 s
and a communication cost of over 75KB for a transaction,
while DAPCR only introduces an additional computational
cost of 0.41 s and a communication cost of 2.1KB. Hence,
we consider DAPCR to be efficient in the transaction phase.

In Experiment-II, we also evaluate the computational over-
head of transaction verification in DAPCR and compared it
with that in ZETH. Fig. 5c presents the time cost of transac-
tion verification in a consensus node, which is linear to the
number of transactions. It takes about only 12.5ms to verify
one transaction and about 2.5 s to verify 200 transactions in
DAPCR. Although the time cost of transaction verification
in DAPCR is approximately three times higher compared to
ZETH, it still remains at a relatively low level. Furthermore,
we deploy the DAPCR scheme in Fabric6, where the time
interval between a user submitting a transaction and receiving
a response indicating successful verification is about 2.0 s.
Hence, we consider DAPCR to be efficient in the verification
phase.

4https://go.dev/
5https://github.com/iden3/snarkjs
6We deploy a Fabric (v2.4.9) network on a local device, which consists of

two peer nodes and one order node.

In Experiment-III, we evaluate the time cost of Filter in
screening out suspicious transactions, which is shown in
Fig. 5d. We use Extract Nym to denote the time cost of
extracting pseudonyms from transactions, which is linear to
the number of transactions. If there are 10,000 transactions in
the DAPCR system, Extract Nym is less than 2.5 s. Assuming
that transactions from Alice account for 2% (5%, 10%) of all
transactions, the time cost of obtaining the total amount tag
of Alice is shown in Fig. 5d. Compared to Extract Nym, the
time cost of extracting the total amount tag is negligible. The
result of Experiment-III indicates that DAPCR is effective in
the regulation phase.

IX. RELATED WORK

A. DAP with Regulation

Wang et al. [6] propose a decentralized anonymous payment
scheme with supervision (DAPS) based on zk-SNARK and the
elliptic curve cryptography. A transaction in DAPS contains
a ciphertext encrypted with the public key of the regulator.
The regulator can decrypt ciphertexts in transactions with
the private key to obtain the privacy. Faced with numerous
transactions, it is inefficient for the regulator needs to decrypt
the ciphertext in each transaction. Lin et al. [7] present
a secure and efficient decentralized conditional anonymous
payment system (DCAP) based on signatures of knowledge.
A transaction in DCAP contains anonymous addresses of the
sender and the recipient. The regulator can trace the long-term
address for an anonymous address, but the payment amount
of each transaction is public in DCAP. Wang et al. [6] and Lin
et al. [7] neglect to restrict the regulatory power, which may
be abused.

Some solutions recognize the importance of restricted reg-
ulation, but still have some shortcomings. Garman et al. [8]
design a DAP scheme based on Zerocash that forces users to
comply with specific policies and grants regulators the power
of coin tracing and user tracing. [8] restricts the power of the
regulator who is asked to provide an accountable record of
the power being used. However, the regulator can still obtain
privacy from a transaction. PRCash [29] is a new blockchain
currency with privacy preservation and regulation, in which
the sender’s identity is also encrypted with the regulator’s
public key and included in the transaction. UTT [30] is a
decentralized e-cash system with accountable privacy. In UTT
each user needs to get budget coins, which are used to limit
the total sum of payments, from the auditor per month.

zkLedger [10] and miniLedger [9] are two decentralized
payment systems that achieve privacy preservation and verifi-
ability auditing. These solutions realize rich auditing functions,
but require auditors to interact with users. However, users may
not always be online, and a malicious user may ignore the
auditor’s queries, which leads to delays in the audit.

Platypus [31] and PEReDi [32] are two central bank digital
currencies with privacy preservation and regulation. In Platy-
pus each user needs to encrypt his privacy with the regulator’s
public key and the ciphertext is included in the transaction. The
regulator can decrypt the ciphertext for transaction privacy. In
PEReDi several authorities form a committee to revoke privacy

https://go.dev/
https://github.com/iden3/snarkjs
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Fig. 5: Performance experiments for DAPCR and CLRS

or trace transactions from some user. The committee revokes
the privacy of a transaction by decrypting the ciphertext
saved in the ledger. It is inefficient to decrypt the ciphertext
of each transaction for its privacy when auditing numerous
transactions.

B. Ring Signature with Privacy Preservation and Regulation

The ring signature [33] allows a user in the ring to sign
a message on behalf of all members with unconditional
anonymity, which poses a potential risk of signing malicious
messages. To address this issue, the linkable ring signature
has been proposed. In linkable ring signatures [15], anyone
can link signatures signed by the same user without opening
these signatures. In the ring signature with escrowed linkability
[16], only a trusted authority can link signatures, which
maintains anonymity for regular users. In the traceable ring
signature [17], [18], also known as the revocable-iff-linked
ring signature, if a user generate two or more signatures
with the same tag, the anonymity of these signatures can be
revoked.

There are some schemes that attempt to achieve the balance
between anonymity and accountability. The accountable ring
signature [19] and the revocable ring signature [20] allow the
designated user or trusted authority to revoke the anonymity
of signatures. Additionally, in the revocable and linkable ring
signature [21], anyone can link signatures signed by the same
user, and the trusted authority can revoke the anonymity of
signatures. However, if the designated user or trusted authority
is compromised, it can lead to a severe security crisis.

In the ring signature with user-controlled linkability [23]
and the claimable ring signature [24], a signer can link their
signatures and provide a publicly verifiable linking proof.
These schemes are not suitable for anonymous payment mech-
anisms because only the signer can link their signatures. In
group signatures with controlled linkability [22], only entities
authorized by a trusted center can link signatures. As an
inherent characteristic of group signatures, the trusted center
can revoke the anonymity of the signatures. In addition, a new
user needs to engage in an interactive protocol with the issuer
to join the group signature system.

Compared to group/traceable signatures [34], users in
CLRS generate public and private keys locally, avoiding
centralized key generation and distribution. Furthermore, in
group/traceable signatures, the central authority can uncondi-

tionally revoke the anonymity of a signature, whereas in the
CLRS scheme, the opener must cooperate with the linker to
determine the identity of the signer, preventing the abuse of
power and privacy leakage.

X. CONCLUSION

In this paper, we propose a decentralized anonymous pay-
ment scheme with collaborative regulation, which achieves
universality, collaborative regulation and efficient aggregation
of transaction amounts. Regulation in our scheme relies on the
functioning of Filter at the end of each trading period, which is
a potential target for malicious attackers. However, transaction
validation is handled by consensus nodes, so even if Filter
is compromised, validated transactions can still be added to
the decentralized ledger. In future work, we can optimize
the regulatory process to prevent single points of failure, and
modify the DAPCR scheme to achieve UC security.
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APPENDIX A
NIZK PROTOCOLS FOR CLRS AND DAPCR

A. Σ-protocol for the relation Renc

For a ElGamal ciphertext ct = (c, u) = (gαhβ , pkβ), a
prover interacts with a verifier to prove ((c, u), (α, β)) ∈
Renc.

1. The prover randomly chooses x1, x2 ∈ Z∗
q , computes c′ =

gx1hx2 and u′ = pkx2 and sends (c′, u′) to the verifier.
2. Once receiving (c′, u′), the verifier randomly chooses e ∈

Z∗
q and sends it to the prover.

3. Once receiving e, the prover computes y1 = x1 + e · α,
y2 = x2 + e · β and sends them to the verifier.

4. Finally, the verifier determines whether equations pky2
?
=

u′ue and gy1hy2
?
= c′ce hold. If both of the equations hold,

the proof is valid else is invalid.

B. Σ-protocol for the relation Rdec

For several ciphertexts cti = (ci, ui), i ∈ {0, 1, ..., n − 1},
a message m and a public key pk = hsk, a prover interacts
with a verifier to prove ((cti|n−1

i=0 ,m, pk), sk) ∈ Rdec.
1. The prover randomly chooses x ∈ Z∗

q , computes A = hx

and Bi = (ci/m)x for i ∈ {0, 1, ..., n − 1}, and sends
(A,Bi|n−1

i=0 ) to the verifier.
2. Once receiving (A,Bi|n−1

i=0 ), the verifier randomly chooses
e ∈ Z∗

q and sends it to the prover.
3. Once receiving e, the prover computes y = x + e · sk and

sends it to the verifier.
4. Finally, the verifier determines whether the equations hy ?

=
pkeA and

(

n−1∏
i=0

ci
m
)y

?
= (

n−1∏
i=0

ui)
e
n−1∏
i=0

Bi

hold. If both of the equations hold, the proof is valid else
is invalid.
The Fiat-Shamir transform can convert the above Σ-

protocol into a NIZK protocol or a SoK protocol for the same
relation.

C. NIZK protocol for the relation Rv

To ensure the general applicability of our scheme, we adopt
the zk-SNARK protocol to generate a proof for the relation
Rv . Before calculating proofs, an arithmetic circuit C needs
to be constructed based on the relation Rv .

Public inputs to C are as follows.
1. privacy-preserving transaction tx
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2. pedersen commitment c
3. additional public inputs Ipub used to calculate tx
4. hash ℏ of a signature σ
4. g, h ∈ G
5. public parameter pptx in the DAP scheme
Private inputs to C are as follows.

1. sender’s address addrS and receiver’s address addrR
2. transaction amount v
3. sender’s private key s
4. additional private inputs Ipri used to calculate tx
5. random number r ∈ Z∗

q

C imposes the following constraints on public inputs and
private inputs.

1. tx is generated by the algorithm DAP.TxGen(·) with
inputs (addrS , addrR, v, s, Ipub, Ipri).

2. c is a pedersen commitment of (v, r), i.e. c = gvhr.
Based on the arithmetic circuit C, a trusted center can

execute the algorithm Gv to generate crsv . However, if the
process of parameter generation is compromised, an adversary
can generate forged proofs. To address these issues, Bowe et al.
[35] proposed a secure multiparty computation protocol among
n nodes, which ensures that no one can generate forged proofs
if at least one node is honest. Thus, we can deploy multiple
nodes to execute the MPC protocol for initializing the DAPCR
system.

APPENDIX B
DISCUSSION OF DEPLOYING DAPCR IN DIFFERENT

MODELS

A regulated transaction rtx = (tx, ct, πv, πlog, σ) consists of
three parts: a DAP transaction tx, a regulated additional field
reg = {ct, σ}, and the zero-knowledge proof π = {πv, πlog}.
Whether the DAPCR scheme is deployed in the UTXO model
or the account model, the algorithm for generating regulated
fields is the same. The difference lies in the zero-knowledge
proof component.

1) Account Model: In the account model, a user’s balance
is stored in their account. A user publishes a transaction
to deduct a certain amount from his account and add an
equivalent amount to the recipient’s account. To transform the
DAP transaction tx into a regulated one, the regulated field
reg = {ct, σ} should be attached to tx. The sender also needs
to provide a proof π = {πv, πlog} to show the consistency of
regulatory data within reg and payment data within tx.

2) UTXO Model: In the UTXO model, a user’s balance is
stored in unspent transaction outputs (UTXOs). Users need
to combine or split UTXOs to make payments of arbitrary
amounts. Taking Zerocash in the UTXO model as an example,
a transaction takes two old coins cold1 and cold2 as inputs and
outputs two new coins cnew1 and cnew2 . To realize effective
regulation, we restrict transactions to be one-to-one. In other
words, coins cold1 , cold2 and cnew1 must belong to the same
address, with cnew1 considered as change and its value can be
0. The actual payment amount in the transaction is the value
of cnew2 . This restriction can be realized using zk-SNARKs:
the sender generates an additional proof when constructing
the transaction to show that cold1 , cold2 and cnew1 belong to

the same address. Hence, the DAP scheme in the UTXO
model can also be represented using algorithms in Section
III-A. Specifically, the transaction generation algorithm is
TxGen(addrS , addrR, v, s, Ipub, Ipri) → tx, where addrS is
the address to which coins cold1 , cold2 , and cnew1 belong,
addrR is the address to which cnew2 belongs, v represents
the value of cnew2 , and (cold1 , cold2 , cnew1 , cnew2 ) are included in
the transaction tx. To transform the DAP transaction tx in
the UTXO model into a regulated one, the regulated fields
reg = {ct, σ} should be attached to tx. The zero-knowledge
proof π′ should not only prove the consistency of regulatory
data within reg and payment data within tx but also show that
coins cold1 , cold2 , and cnew1 belong to the same address. This
is the distinction between deploying DAPCR in the UTXO
model and deploying it in the account model.

APPENDIX C
ALGORITHMS OF DAPCR SCHEME

For convenience, we summarize the main algorithms of
DAPCR as follows.

An Efficient Construction of DAPCR
The workflow of DAPCR is divided into four phases: the preparation

phase, the transaction phase, the verification phase, and the regulation
phase.
I-Preparation Phase

In the preparation phase, the public parameter is published. Entities
generate their public and private keys, and new users obtain permission
from consensus nodes to join the blockchain.

Consensus nodes:
DAPCR.Setup:
- Inputs: security parameter λ
- Outputs: public parameter param
- Consensus nodes execute the following steps to generate the public

parameter:
1. compute (g, h,H)← CLRS.Setup(1λ)
2. compute crs← Gv(1λ,Rv)

- Consensus nodes publish param = (g, h,H, crs).
Filter:

DAPCR.FInit:
- Inputs: public parameter param
- Outputs: Filter’s public-private key pair (pkF , skF )
- Filter executes the following steps to generate their public-private key

pair:
1. compute (pkL, skL)← CLRS.LKGen(pp)
2. set skF = skL and pkF = pkL

- Filter publishes their public key pkF .
Supervisor:

DAPCR.SInit:
- Inputs: public parameter param
- Outputs: Supervisor’s public-private key pair (pkS , skS)
- Supervisor executes the following steps to generate their public-

private key pair:
1. compute (pkO, skO)← CLRS.OKGen(pp)
2. set skS = skO and pkS = pkO

- Supervisor publishes their public key pkO .
User:

DAPCR.KeyGen:
- Inputs: Supervisor’s public key pkS
- Outputs: user’s public-private key pair (uk, sk)
- A user executes the algorithm CLRS.UKGen to generate their public-

private key pair: (uk, sk)← CLRS.UKGen(pkO).
- The user publishes their public key uk.

User → Consensus nodes:
DAPCR.Join:
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- User:
1. randomly sample β ∈ Z∗

q and compute B = gβ

2. compute w = H(pkβO|uk)
3. send req = (uk,B, µ) to consensus nodes

- To join the blockchain, the user must obtain permission from all
nodes. If successful, req will be recorded on the blockchain.

Supervisor:
DAPCR.Register:
- Supervisor:

1. read req = (uk,B, µ) from the decentralized ledger
2. compute w = H(BskO |uk), tagµ = gµhw

and nym = pk1/skO

3. add (uk, µ, nym, tagµ) to the list LS
- Supervisor also sends (nym, tagµ) to Filter. Once (nym, tagµ) is

received, Filter adds it to the list LF .
II-Transaction Phase

In the transaction phase, users generates regulated transactions to
transfer their assets.

User:
DAPCR.RtxGen:
- Inputs:

1. sender’s address addrS
2. receiver’s address addrR
3. payment amount vi
4. sender’s secret key s
5. additional public inputs Ipub and private inputs Ipri
6. Filter’s public key pkF
7. user’s private key sk
8. ring Ri

- Outputs: regulated transaction rtxi
- A user executes the following steps to generate a regulated transac-

tion:
1. compute txi ← DAP.TxGen(addrS , addrR,i, vi, s, Ipub,i, Ipri,i)

2. sample zi, wi ∈ Z∗
q and compute cti = (gvihzi , pk

zi−wi
L )

3. compute σi ← CLRS.Sign(Ri, cti, pkL, sk) and ℏi = H(σi)
4. compute πv

i ← Pv((txi, ci, Ipub,i, ℏi, g, h),
(addrS , addrR,i, Ipri,i, vi, s, zi), crs)

5. compute πlog
i ← Plog(ui, zi − wi, pkL)

6. set rtxi = (txi, cti, πv
i , π

log
i , σi)

- The user submits the regulated transaction rtxi.
III-Verification Phase

In the verification phase, consensus nodes (or smart contracts) verify
the validity of regulated transactions, and only valid transactions are
sealed into blocks.

Consensus nodes:
DAPCR.Verify:
- Inputs:

1. regulated transaction rtx
2. Filter’s public key pkF
3. ring R
4. additional public inputs Ipub

- Outputs: 0/1
- Consensus nodes execute the following steps to verify a transaction:

1. compute ℏi = H(σi)
2. compute b1 ← DAP.TxVfy(tx, Ipub)
3. compute b2 ← CLRS.Vfy(R, ct, σ, pkL)
4. compute b3 ← Vv((tx, c, Ipub, ℏ, g, h), πv , crs)
5. compute b4 ← Vlog(u, πlog , pkL)
6. if b1 ∧ b2 ∧ b3 ∧ b4 = 1 and all public keys in the ring R are

from registered users output 1 else output 0
- Consensus nodes seal valid transactions into blocks.
IV-Regulation Phase

In the regulation phase, Filter screens out suspicious transactions
and submits the report on suspicious transactions to Supervisor. Once
the report is received, Supervisor obtains the sender’s public key and
payment amounts of suspicious transactions.

Filter:
DAPCR.Extract:
- Inputs:

1. regulated transaction rtxi
2. Filter’s private key skF

- Outputs:
1. pseudonym nymi

2. amount tag tagvi
- Filter extracts the pseudonym and the amount tag from a transaction:

1. compute nymi ← CLRS.Ext(σi, skL)

2. compute tagvi = ciu
−1/skL
i = gvihwi

DAPCR.Detect:
- Inputs:

1. pseudonym nym and its corresponding upper limit tag tagµ
2. Filter’s private key skF = skL
3. ledger which denoted all transactions sealed in blocks during a

trading period
- Outputs:

1. a set S = {rtx0, rtx1, ..., rtxn−1} of transactions submitted by
nym

2. susp/⊥
- Filter executes the following steps to determine if the transaction be-

havior of a user with pseudonym nym complies with the transaction
rules:
1. extract pseudonyms from all transactions in ledger
2. link transactions submitted by nym

and get a set S = {rtx0, rtx1, ..., rtxn−1}
2. extract amount tags tagvi |

n−1
i=0 from all transactions in S

3. compute tagsum =
∏n−1

i=0 tagvi
- If tagµ = tagsum, Filter outputs (S,⊥) else outputs (S, susp).
DAPCR.Report:
- Inputs:

1. (S, susp) where S is a set of transactions
2. pseudonym nym
3. Filter’s public-private key pair (pkF , skF )

- Outputs: report rpt of suspicious transactions
- Filter executes the following steps to generate a report:

1. compute πdec ← Pdec((cti|n−1
i=0 , nym, pkL), skL, h)

2. compute
πsum ← Pdec((

∏n−1
i=0 ci,

∏n−1
i=0 ui, tagsum, pkL), skL, h)

3. set rpt = (S, nym, πdec, tagsum, πsum) to S
- Filter sends rpt to Supervisor.

Supervisor:
DAPCR.Recover:
- Inputs:

1. report rpt of suspicious transactions
2. Filter’s public key pkF
3. Supervisor’s private key skS

- Outputs:
1. sender’s public key uk
2. sender’s total payment amount vsum

- Supervisor executes the following steps to verify the report:
1. compute b1 ← Vdec((cti|n−1

i=0 , nym, pkL), πdec, h)
2. compute

b2 ← Vdec((
∏n−1

i=0 ci,
∏n−1

i=0 ui, tagsum, pkL), πsum, h)
3. if b1 ∧ b2 = 1, the report is valid else is invalid

- If the report is valid, S computes uk ← CLRS.Open(nym, skO)
and then requires the user with public key uk to submit vsum and
w′ satisfies tagsum = gvsumhw′

.
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