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Abstract. Adopting Post-Quantum Cryptography (PQC) in network
protocols is a challenging subject. Larger PQC public keys and signa-
tures can significantly slow the Transport Layer Security (TLS) proto-
col. In this context, KEMTLS is a promising approach that replaces
the handshake signatures by using PQC Key Encapsulation Mechanisms
(KEMs), which have, in general, smaller sizes. However, for broad PQC
adoption, hybrid cryptography has its advantages over PQC-only ap-
proaches, mainly about the confidence in the security of existing crypto-
graphic schemes. This work brings hybrid cryptography to the KEMTLS
and KEMTLS-PDK protocols. We analyze different network conditions
and show that the penalty when using Hybrid KEMTLS over PQC-only
KEMTLS is minor under certain security levels. We also compare Hybrid
KEMTLS with a hybrid version of PQTLS. Overall, the benefits of us-
ing hybrid protocols outweigh the slowdown penalties in higher security
parameters, which encourages its use in practice.

1 Introduction

Network protocols such as TLS 1.3 rely on traditional cryptography to provide
secure communications. Some schemes in use today are known to be insecure
under a Cryptographically Relevant Quantum Computer (CRQC) threat [22].
Since Shor’s publication [36], a global-scale transition event is expected before
a CRQC arrives. Several entities will have to update their applications and
systems to protect their assets against the CRQC threat. Such updates will
likely include Post-Quantum Cryptography (PQC), designed with mathematical
problems that do not have (known) efficient solutions by quantum and non-
quantum computing.

Recent research suggests that the transition to PQC is not trivial; it imposes
a high cost, mainly caused by larger cryptographic artifacts (e.g., public keys)
[42,25]. In anticipation of this event, researchers have started to evaluate PQC
in different scenarios and network protocols. Different entities can be involved
in the migration process, such as users, implementers, applications, hardware
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devices, government services, and Certificate Authorities (CAs). Each might have
different security or urgency requirements regarding the PQC adoption. Security
should also be transparent for most users, which means that users should not
need to know (or configure) the underlying cryptographic mechanisms of their
use cases. While transparency eases cryptography adoption, a consequence might
be making users unaware that the type of cryptography used today is vulnerable
to a (possible) future quantum attacker.

The TLS protocol transparently employs cryptography for users, except for
the cases where mutual authentication is required. The configuration often re-
sides on the server side, where system administrators use X.509 digital certifi-
cates provided by CAs [31]. Nevertheless, both sides will require a new version
that implements PQC in the protocol. Such a version exists already in the Open
Quantum Safe project (OQS) [39], currently in an experimental stage.

Due to the challenges imposed by the increased size (or complexity) of PQC,
researchers proposed different alternatives for TLS. One of them is the PQTLS,
which deploys PQC as a replacement [24,37]. In PQTLS, two PQC components
are used: a Key Encapsulation Mechanism (KEM) allowing peers to establish
symmetric keys and a Digital Signature scheme for end-entity authentication.
Literature suggests that the PQC adoption for TLS often incurs slowdowns in
handshake establishment times. A consequence of the PQC impact is the avail-
ability of web services, i.e., the number of connections per second the service can
hold with PQC and without it.

A different approach for PQC adoption in TLS is called KEMTLS [33]. It
uses KEMs for end-entity authentication as they might be smaller in size than
PQC signatures, aiming for better protocol performance. KEMTLS was evalu-
ated with different PQC algorithms and compared with pre-quantum current al-
ternatives (RSA, ECDSA). One of the KEMTLS variants is the KEMTLS-PDK,
a KEMTLS with pre-distributed public keys. KEMTLS-PDK targets scenarios
where the client already knows the server’s long-term KEM public key, allowing
the client to perform protocol operations in advance, thus reducing the time to
complete the handshake fully.

In the context of PQC adoption, Hybrid modes for Key Exchange (KEX)
and authentication are recommended. Hybrids allow participants to secure their
communications by combining two types of cryptography: “traditional”, also
called pre-quantum or classical schemes, which are widely used today, and PQC
schemes. For instance, one can combine by concatenating the output of the
algorithms (called ingredients), in which (at least) one is pre-quantum and the
second is a PQC one [39,33]. After the concatenation, a Key-Derivation Method
generates the desired symmetric keys for the communication, and therefore both
ingredients contribute to the derivation process.

PQC Hybrid modes are recommended for adoption mainly because they pre-
serve the existing confidence in the security of traditional cryptography. Hybrid
modes can be used until the confidence in PQC is fully established, as it may
take a long time. Newer PQC schemes might have been less scrutinized when
compared to classical ones. Should one of the ingredients be “dismantled” by
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a recent-discovered attack, the security holds by the other (unbroken) ingredi-
ent of the hybrid protocol. The OQS project recommends PQC hybrids [28§],
and NIST considers that hybrid modes using the concatenation-prior-derivation
approach have compliance with their standards [3]. Standard drafts for using
hybrids in TLS began to appear, for example, the “Hybrid key exchange in TLS
1.3” proposal [38]. On the other hand, few authors evaluate PQTLS using the
“Hybrid Penalty” metric, i.e., the costs of using the hybrid mode compared to
the PQC-only approach. Although dependent on several factors, the penalties
in selected algorithms in hybrid configurations can be minor [37].

When writing this work, the KEMTLS alternative for PQC adoption has
not yet been analyzed in the hybrid mode. It is vital to evaluate KEMTLS
with hybrids because they are the anticipated method for moving real-world
applications to PQC. In this context, this paper aims to fill this gap. Our main
contributions are:

— a Hybrid KEMTLS design and implementation, adding classical cryptogra-
phy to all of NIST’s Round 3 finalist KEM schemes;

— a framework for experimenting our Hybrid KEMTLS, allowing the commu-
nity to reproduce our results and carry out further evaluations;

— an extensive evaluation of our approach for Hybrid KEMTLS, considering
simulated networks and geographically-distant servers; and

— comparison of Hybrids between KEMTLS, KEMTLS-PDK, and PQTLS,
under the same network conditions and security levels, but also with different
metrics, such as handshake completion time and “time-to-send-application-
data”.

We provide an additional contribution result at the application level by em-
ploying a load test in an HT'TPS Server transmitting web content. This practical
experiment allows us to estimate the impacts of transitioning to a similar server
configuration with Hybrid PQC.

This paper is structured as follows. Section 2 gives the necessary background
on KEMTLS and its variants. Section 3 shows our design for Hybrid KEMTLS
(server-only and mutual authentication). All of the configurations and evalu-
ation metrics are described in Section 4. Section 5 presents the results of the
experiments, and Section 6 gives the conclusions of this study.

2 Background

2.1 Transport Layer Security

Transport Layer Security (TLS) is a network protocol that provides a confiden-
tial and authenticated communication channel. TLS is probably the most used
protocol for securing Internet connections. Other use cases for TLS include mi-
croservice architectures [41] and VPN connections [33], and it is recommended
for standardization in SDN and 5G networks [12,43].

An Authenticated Key Exchange (AKE) is performed in every TLS 1.3 full
handshake, generally the first interaction between a client and a server. The
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handshake protocol [31] starts with an ephemeral Key Exchange (KEX). It shares
secret data between the peers, each peer deriving secrets into a set of traffic
keys that protects communication using symmetric cryptography. During the
handshake, the TLS server authenticates itself to the TLS client using an x509
digital certificate (or a Pre-Shared-Key). The server can, optionally, request
client authentication (called mutual authentication).

Generally, a TLS 1.3 handshake is designed to complete in one Round-Trip-
Time (RTT), but there is a 0-RTT mode (for resumptions), and when the client
authenticates, it adds another RTT to the protocol. The first handshake message
(ClientHello) comprises a random nonce, protocol versions, a list of symmetric
cipher/HKDF hash pairs supported by the client, and other information. The
key_share is composed of an ephemeral public key for the KEX. Although op-
tional, at least a keyshare or a Pre-shared-Key (PSK) message must be sent.
The server then replies with his corresponding information (ServerHello mes-
sage), but with additional (optional) messages, such as the Certificate and
CertificateVerify. These two are part of the TLS authentication using digi-
tal signatures. An alternative is the server authentication through PSK, e.g., in a
session resumption, where the server does not send the certificate. The authenti-
cation ends with the Finished message, where an HMAC is computed from the
transcript of the handshake context. All of the keys required for the encryptions
in TLS 1.3 are derived based on the HKDF function [19].

2.2 Post-Quantum Cryptography

One of the main problems in TLS is that the cryptographic computations in
TLS 1.3 AKE do not protect against quantum attackers. All of the cryptography
based on the Integer Factorization Problem (IFP), Discrete Logarithm Problem
(DLP), and Elliptic Curve Discrete Logarithm Problem (ECDLP) is vulnerable
to Shor’s algorithm [36]. Although powerful-enough quantum computers are not
publicly available (at the time of this writing), this threat is worrisome consid-
ering if an attacker is capturing TLS packets to decrypt them in the future. In
order to solve this issue, researchers started to study and develop Post-Quantum
Cryptography (PQC) and its adoption in TLS (and other protocols) [14,24,37].
PQC includes schemes based on different mathematical problems in which there
is no (known) efficient solution by both classical and quantum computers [7].
Public-key cryptography is often used for Key Exchange (KEX) and peer
authentication in network protocols. In order to protect network communi-
cations from quantum adversaries, PQC schemes must be included. A Key-
Encapsulation Mechanism (KEM) and a Digital Signature from PQC are re-
quired, or at least one PQC KEM [33]. However, one of the main challenges of
selecting PQC schemes is their increased size compared to classical schemes [39)].
Table 1 allows comparing sizes of some PQC and classical algorithms used for
KEX (for a PQC signature sizes comparison, please refer to [42]). The sizes are
different for each NIST security level, where each level means that the scheme
is as hard to break (using exhaustive key search) as symmetric AES-128 (level
one), AES-192 (level three), and AES-256 (level five) [21]. In this work, we will
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Table 1: Classical and PQC schemes comparison

Algorithm Parameter Public Key Claimed NIST Quantum-
Name Set Name size (bytes) Security Level safe?

NIST P256 secp256r1 (L1) 64 1 X
NIST P384 secp384r1 (L3) 96 3 X
NIST P521 secp521rl (L5) 132 5 X
Kyber512 (KyberL1) 800 1 v
Kyber Kyber768 (KyberL3) 1184 3 v
Kyber1024 (KyberL5) 1568 5 v
LightSaber KEM (Saber L1) 672 1 v
Saber Saber_KEM (Saber L3) 992 3 v
FireSaber KEM (Saber L5) 1312 5 v
NTRU-HPS-2048-509 (NTRU L1) 699 1 v
NTRU  NTRU-HPS-2048-677 (NTRU L3) 930 3 v
NTRU-HPS-4096-821 (NTRU L5) 1230 5 v

use a naming convention where the algorithm name is followed by an indication
of the corresponding security level. For example, we will place “KyberL5” to
mean that Kyber1024 was used.

Currently, the most notorious PQC standardization effort is being conducted
by the US National Institute of Standards and Technology (NIST) [23]. The PQC
proposals submitted to the process can be classified in the following groups [7]:
lattice-based cryptography, which uses linear algebra constructions; code-based
cryptography, which uses error-correcting codes; multivariate-based cryptography,
using systems of multivariate equations; isogeny-based cryptography, based on
Supersingular elliptic curve isogenies; and hash-based cryptography, using cryp-
tographic hash functions.

The NIST process is divided into “selection rounds”. Several schemes were
submitted to the first round, some were broken, and others were merged. In the
third round NIST announced four finalists for KEMs, namely: Classic McEliece,
Kyber, Saber, and NTRU, and three for digital signatures: Dilithium, Falcon,
and Rainbow. At the time of this writing, the end of the third round of the
process defined which algorithms will be standardized:

— KEM: Kyber, based on lattices, used for Key Exchange and Public-Key
Encryption; and

— Digital Signatures: Dilithium (primary choice), based on lattices; Falcon
and Sphincs+, based on lattices and hash functions, respectively.

Several international agencies are following the NIST process. A fourth round
is going on, and other algorithms will be scrutinized. The KEMs selected for
the fourth round are BIKE, Classic McEliece, HQC, and SIKE [40] (however,
both Rainbow and SIKE are now considered broken [8,10]). Besides, NIST calls
for new digital signature schemes, particularly interested in those with a small
signature size (compared to other PQC schemes). Even though the process has
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yet to be concluded, some protocol implementations like OpenSSH use PQC in
their connections by default. This example indicates that network protocols will
gradually start adopting PQC schemes in their designs.

2.3 Post-Quantum Adoption in TLS

One of the challenges of adopting PQC for TLS is the size of the protocol’s
messages, as most prominent PQC algorithms substantially increase the size of
cryptographic objects, consequently increasing the protocol’s payload sizes. For
example, some PQC algorithms cannot be deployed in the TLS protocol “as-is”,
which means changing the protocol is required to fit the algorithm best. Be-
sides, network control mechanisms on the Internet, such as the TCP Congestion
Control, can impose a performance slowdown when message sizes surpass a pre-
determined threshold. Therefore, their adoption in network protocols can be a
problem.

The term “hybrid” means that both PQC and traditional algorithms are used
in conjunction, where the security of this construction is combined. Only after the
confidence in PQC is fully established is it recommended to abandon the classical
cryptography schemes. Here, we refer to classical schemes built on IFP, DLP,
and ECDLP-based cryptography. Such schemes have higher confidence, years of
utilization, and have been standardized (such as the NIST ones [4,5]). On the
other hand, the NIST standardization process for PQC schemes still needs to be
completed. Therefore, hybrids are recommended before a complete transition to
PQC adoption. Worth mentioning that, in this work, the term hybrid does not
include Quantum Key Distribution (QKD) [27] and should not be confused with
Hybrid Encryption (HE) [20], which is a combination of Public-Key schemes it
with symmetric cryptography.

Therefore, hybrid designs accompanied by their performance and security
analysis are essential. Besides, understanding the penalties when transiting to
hybrid modes contributes to the PQC adoption. One important consideration
regarding the Hybrid PQC design is the cryptographic combiner in use [9]. The
combiner is responsible for keeping security if one of the combined schemes is not
secure anymore. Besides, performance evaluations are necessary to understand
the impacts of Hybrid PQC utilization (compared to classical schemes and PQC-
only approaches).

Although changing a protocol design to fit a cryptographic algorithm deviates
from the purpose of crypto agility, the Post-Quantum scenario shows that
different protocol designs can improve performance. In this context, KEMTLS
[33] arises as a size-optimized alternative for TLS. KEMTLS is designed with
PQC KEMSs, which have, in general, smaller sizes compared to Digital Signatures.
The design includes an ephemeral KEM and a second KEM for long-term usage.
This way, the digital signature present in every (full) TLS 1.3 handshake is
replaced with KEMs.
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2.4 KEMTLS variants

KEMTLS-PDK [34] is a variant of the KEMTLS with pre-distributed keys, mak-
ing it suitable for scenarios where the client knows the server’s long-term public
key prior to the communication. In this way, the client can perform an encap-
sulation against the server’s long-term public key in his first round, sending
the resultant ciphertext through the ClientHello extension ext_pdk. Then the
server decapsulates the client’s ciphertext and plugs the shared secret into the
key-derivation schedule at the earliest possible stage when deriving the Early
Secret.

In KEMTLS, there are conceptually three phases: Ephemeral key exchange
using KEMs, implicitly authenticated key exchange using KEMs, and confirma-
tion/explicit authentication. The client can send application data after 1 round,
during the second phase, when the server is implicitly authenticated. However,
the handshake is fully completed in 2 rounds, only after the third phase when
the server is explicitly authenticated. KEMTLS-PDK improved the number of
rounds, where the server is explicitly authenticated after only 1 round. This ear-
lier authentication of the server in the protocol flow means that the handshake
is fully completed at the same time the client can send application data. The
1-RTT time of the KEMTLS-PDK makes it more competitive with TLS in terms
of time to complete the handshake fully.

Celi et al.[11] provided a Go-lang implementation of KEMTLS, KEMTLS-
PDK, and PQTLS through a fork of the Go Standard Library. The server’s cer-
tificate contains a delegated credential in this implementation, which uses the
PQC signature algorithm for PQTLS, or the PQC KEM algorithm for KEMTLS
and KEMTLS-PDK. This approach decouples the handshake authentication al-
gorithm from the authentication algorithms used in the certificate chain, al-
legedly facilitating the cryptographic agility principle in the protocol’s design.
The algorithms used in this implementation are taken from the CIRCL [13] li-
brary, which implements many post-quantum algorithms natively in Go. For the
tests, the PQC signature algorithms used were Dilithium3 and Dilithium4, while
the PQC KEM algorithms were Kyber512 and Sikep434.

A variant of KEMTLS specifically made for scenarios with mutual authenti-
cation is presented in KEMTLS with Delayed Forward Identity Protection [17].
In their approach, the privacy of the client is a primary concern. In their pro-
posal, an adversary that knows the server’s private key would not be able to
disclose the client’s identity, and the approach provides a guarantee that the
client’s identity will only be recoverable by an authenticated server. In order to
do so, the client knows the server’s public key beforehand, and the client’s cer-
tificate must be sent encrypted. However, encrypting it with the server’s public
key is not enough if its private key is compromised. Therefore, an ephemeral
contribution of the server is necessary to generate the key that will encrypt
the client’s certificate. This contribution happens in the second-round trip of
KEMTLS, increasing the handshake latency.

Considering the above problem, Felix Giinther et al.[17] proposes a protocol
that provides forward identity protection in 1-RTT solely based on KEMs. They
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introduced a semi-static server key in KEMTLS, also known in advance by the
client. The client will encapsulate against the semi-static and long-term keys,
obtaining their respective shared secrets and feeding them to a key derivation
function. Lastly, the approach will generate a symmetric key for encrypting the
client’s certificate. Since semi-static keys are not assumed to be certified, when
a new semi-static key is generated, it is sent through a handshake that consists
of two round trips. These semi-static keys are refreshed periodically. Thus if the
semi-static key is not compromised before it expires, the client’s identity remains
private even if the server’s long-term private key is compromised. In summary,
the authors show that introducing semi-static keys has a negligible cost for the
handshake.

All of the KEMTLS variants proposed do not consider the hybrid PQC de-
sign. A Hybrid PQC design is composed of (at least) two algorithms, a PQC one
and a classical one, where the security properties must hold as long as one of the
ingredients remains unbroken [9]. However, hybrids are considered the first step
in the PQC transition process. Some works evaluate hybrid designs in PQTLS
[24,37], but none use KEMTLS as the PQC adoption approach. Next, we present
our hybrid design for KEMTLS.

3 Hybrid KEMTLS Design

The Hybrid KEMTLS design is shown in Figure 1, considering a handshake
configuration with server-only authentication. A provides the design with mu-
tual authentication. The client and server cryptographic computations are de-
scribed on each side, where the ones highlighted with square dotted boxes are the
modifications to the original KEMTLS. This design adds classical cryptography
computations to build the hybrid, but in a way that it keeps the same prop-
erties as the original KEMTLS offers, namely: offline deniability, and a smaller
trusted codebase. We are not using signatures in the handshake, but signature
algorithms are required in the certificate chain used.

The KEMTLS protocol is based on two KEM keypairs, an ephemeral and
a static one. Therefore, to "hybridize” it, we added new classic KEM keypairs
to the protocol. We instantiated the Hybrid KEMTLS with the following clas-
sic KEM’s: KEM_P256_HKDF_SHA256, a KEM using P256 curve and HKDF with
SHA-256; KEM_P384 HKDF_SHA384, a KEM using P384 curve and HKDF with
SHA-384; and KEM_P521_HKDF_SHA512, a KEM using P521 curve and HKDF with
SHA-512. All classical KEMs we use are obtained from CIRCL library [13]. This
enables us to assess a hybrid at any NIST security level.

The Hybrid KEMTLS algorithm names are composed of two parts. The first
part of the name is the classic KEM curve (p256, p384 or p521), and the second
part of the name is the PQC KEM algorithm name. For example, P256_Kyber512
stands for a Hybrid KEMTLS instance with the KEM_P256_HKDF_SHA256 classic
KEM and Kyber512 PQC KEM. Following the naming convention used in this
work, we add the letter “H” for instantiations in hybrid mode (e.g., KyberL1l
H.). We also integrate the PQC algorithm using all parameters for the available
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Fig. 1: Proposed Hybrid KEMTLS Handshake (Server-only authentication)

security levels. Then, we had to map each classical algorithm instantiation (with
the selected parameters) to the corresponding PQC instantiation, allowing us to
combine correctly at the same NIST security level.

The Hybrid KEMTLS protocol works similarly to the KEMTLS, but now
each cryptographic operation has its classic counterpart, as the square dotted
boxes highlight it. The first step of the protocol, in terms of cryptographic op-
erations, is the key pair generation for both the PQC and Classic ephemeral
KEMSs. The resultant public keys pk_e and pk_ec are concatenated and transmit-
ted to the server through the key_share extension from the ClientHello TLS
message. Upon reception of these keys, the server performs an encapsulation
against each one, generating the ephemeral shared secrets K _e (post-quantum)
and K _ec (classic), and ciphertexts ct_e (post-quantum) and ct_ec (classic). After
that, both ciphertexts are sent back to the client through the key_share exten-
sion of the ServerHello message. In this same flight, the EncryptedExtensions
and Certificate messages are sent. The Certificate message holds an X.509
Certificate composed of two static KEM public keys concatenated (classic and
PQQC).

Upon receiving the server reply messages, the client decapsulates both the
post-quantum ciphertext and the classic ciphertext, obtaining the same two
ephemeral shared secrets as the server, K _e, and K _s. Then the client encapsu-
lates against the server’s static KEM public keys, resulting in the static shared



10 Authors Suppressed Due to Excessive Length

secrets K _s and K _sc and ciphertexts ct_s and ct_sc, which are concatenated
and sent to the server through the KEMTLS’s ClientKEMCipher text message
along with the Finished Message. The server then decapsulates the received ci-
phertexts obtaining the same static shared secrets K_s and K _sc as the client.
After that, the server can send the Finished message back to the client, finishing
the Hybrid KEMTLS Handshake.

The Hybrid KEMTLS proposed Key Schedule follows the KEMTLS Key
Schedule, inspired by the TLS 1.3 Key Schedule [31]. The TLS 1.3 Key Schedule
is based on a sequence of calls to HKDF extract-and-expand functions. HKDF-
Extract takes an Input Keying Material (IKM) and a Salt, generating an output
secret, whereas HKDF-Expand function takes a secret, a label, and a transcript
hash (described by RFC 8446 [31] - Section 4.4.1). The HKDF-Extract output
secret is the input secret for the HKDF-Expand, which generates a protocol
traffic secret derived into a TLS 1.3 traffic key, according to RFC 8446 [31]
Section 7.3.

KEMTLS slightly modified this Key Schedule by partially removing TLS 1.3’s
Early Secret stage and adding a new stage between TLS 1.3’s Handshake Se-
cret (HS) and Master Secret. This stage produces the Authenticated Handshake
Secret (AHS). In KEMTLS, the HS is obtained through an HKDF-Extract of
the ephemeral KEM shared secret and the AHS through the static KEM shared
secret. In this way, both types of shared secrets contribute to generating the
application traffic keys.

In this work, our Hybrid KEMTLS Key Schedule (Figure 2) has the same
construction as the KEMTLS Key schedule, differing only in the data used as
Input Keying Material to the Handshake Secret and the Authenticated Hand-
shake Secret. Since the Hybrid KEMTLS requires a cryptographic combiner that
keeps the security if one of the algorithms is broken, the IKM used to produce
the Handshake Secret is the concatenation of the shared secrets K _e and K _ec.
At the same time, the IKM used to the Authenticated Handshake Secret is the
concatenation of shared secrets K_s and K _sc.

Regarding the concatenation (prior to KDF'), we justify this choice based on
the NIST standards for key derivation that allows such a construction [3]. Since
all shared secrets are used, if a hybrid mode is selected, each K contributes to the
generation of the traffic keys, requiring both parties (i.e., client and server) to
support all the algorithms of the selected hybrid mode. However, this should not
be a significant issue since we add one algorithm (pre-quantum) cryptography to
KEMTLS, which is commonly used nowadays. As KEMTLS, our design allows
us to select the same algorithm for KEX and authentication, which can simplify
the negotiation procedure of the protocol.

3.1 Security Analysis

Schwabe et al. [33] describe KEMTLS security aspects. We did not modify mes-
sage flows in the KEMTLS protocol, avoiding abrupt changes that would impact
their security analysis. In hybrid modes, the security relies mainly on the cryp-
tographic combiner [16,9], which is the focus of our analysis here. We rely on
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Fig.2: Hybrid KEMTLS Proposed Key Schedule

the following assumptions: PRF, and Dual-PRF (Definitions 1 [15] and 2 [6],
respectively), which corresponds to the assumptions present in Bindel’s et al.
dualPRF combiner (Definition 3) [9].

Definition 1 (Pseudorandom Function). Let F : Dom — Rng be a func-
tion family from domain Dom = {0,1}" to image set Rng = {0,1}™. A function
f: Keys x Dom — Rng, where Keys = {0,1}°, is a PRF if the following
properties hold:

1. Forxz € {0,1}"™ as an input and k € {0,1}* as a key, f (k,x) can be computed
by a polynomial-time algorithm.
2. Let A be a probabilistic PRF-adversary algorithm, bounded by time-complexity
t. The@fthe PRF-advantage of A, is:
Ad i (k) == | Priceggo.1y: [ A ]—Pryc r[A7]| < NEGL(k)
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where NEGL() is a negligible function and k a security parameter.

Definition 2 (Dual-PRF). Let S : Sy x S1 — S.Out be a function family.
Let &V . §1 x Sy — S.Out. If both S and S°*P are PRFs, then S is a
Dual-PRF.

Definition 3 (dualPRF Combiner). Let Ky and KCy be two Key Encapsulation
Mechanisms (KEMs). Let k; and ¢; be the output of an encapsulation from K;,
1 <4 < 2. If PRF is a pseudorandom function (Definition 1) and dPRF is a dual-
PRF (Definition 2), then dualPRF[K;, Ko, dPRF, PRF] combines two KEMs with
output C as follows:

C = PRF(dPHF(kl, kg), (Cl,Cg)).

Bindel et al. [9] showed an example instantiation of dualPRF using HKDF . Extract
and HKDF . Expand functions, aiming at combining KEMs securely. In their work,
they prove the security of dualPRF combiner, i.e., dualPRF(K7,K5) is IND-CCA
secure as long as K; or Ky are IND-CCA secure KEM, and the Dual-PRF as-
sumption (Definition 2) holds. Our approach for combining KEMs in the hybrid
mode is based on the dualPRF proposal. The main difference is that we have to
duplicate dualPRF usage. Given that Bindel et al. [9] demonstrated the security
of dualPRF combiner, we can prove that our Hybrid KEMTLS combiner is also
secure.

Theorem 1 (Hybrid KEMTLS combiner security). Let IT = [Ca(Ke1,Kez),
C1(Ks3,Ks4)] be the hybrid KEMTLS combiner, where the cryptographic com-
biner C; is instantiated using a secure dualPRF (Definition 3), Kx; is a Key-
Encapsulation Mechanism (KEM) with x referring to ephemeral KEM or static
KEM, an odd j to a classical KEM and an even j to a PQC KEM. Then, for
any adversary A against 11,

AdvR S = Adva, ¢, + Advg, e, < NEGL(),
where NEGL() is a negligible function.

Proof. Recall that a dual pseudorandom function is a PRF even when one of its
inputs is random, but the other is. Mapping this concept to hybrid mode, even
if Ay could (hypothetically) distinguish one of the KEM’s output from random,
the other KEM holds the security because dualPRF output is still random due
to our assumption. From Figure 2, the keys K., K., K, and K. produced by
KEMs are concatenated prior to derivation with HKDF, i.e.,

Handshake Secret < HKDF-Extract (K,||Kec,
HKDF-Expand(. , “derived”, )),
and
Authenticated Handshake Secret < HKDF-Extract (K||K., HKDF-Expand(. ,
“derived”, 0)),
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where each HKDF call is chained and dependent on the previous call, as shown
in the key schedule (Figure 2). Besides, in the protocol, successive HKDF calls
for derivation use the handshake transcript hash, which in turn includes KEM’s
ciphertexts, matching the dualPRF definition (Definition 3). The design com-
bines secrets from two ephemeral KEMs (classical and PQC) using dualPRF,
producing the Handshake Secret. Then it combines the long-term secrets, also
using dualPRF in the same way, producing the Authenticated Handshake Se-
cret. So, if A; breaks C; with non-negligible probability, it means that, given
the Handshake Secret, 4; can recover the concatenated output of the KEMs
(K.||Kee). Therefore, we can derive an adversary B that breaks Dual-PRF (Def-
inition 2), but this contradicts our assumption. By symmetry, the same applies
to Ay. Hence, our combination has the same security guarantees as dualPRF.

3.2 Modelling Cost of the Instantiations

Depending on the algorithms selected for instantiating Hybrid KEMTLS, an
associated cost will be added to the protocol in terms of size. The algorithm
parameters define the sizes, and then we can model an estimate of the impact
in the protocol. In our design, the protocol cost Cg;,. can be defined as:

Csize = KEXg;e + Authy;,. + Certificatesg;.. + Metadatag; e,

where KEX ;.. refers to the size of the protocol’s Key Exchange, here includ-
ing ClientHello and ServerHello messages; Authg;,. is the size of KEMTLS
server-only or mutual authentication ciphertexts; Certificatesg;,, is the sum of
sizes of the server certificate plus Intermediate CA certificate; and Metadatayg;..
is the sum of other protocol-related data sizes. If mutual authentication is re-
quired, two additional messages must be considered: Server KEMCiphertext
and the client’s Certificate. Section 4 describes additional certificate chain
configurations used in this work.

Table 2 shows the protocol-level cost of hybrid KEMTLS instances in size
(in bytes). It considers cryptographic object sizes and additional protocol data
(e.g., ECDHE group numbers) compared to a baseline TLS 1.3 configuration.
The PQC algorithms are finalists of the NIST process (Round 3). The last two
columns show the total size for Server-only authentication (the letter ’S’) and
Mutual authentication (the letter "M’). We omitted the metadata column, but
it adds approximately 320 bytes to Cy;.e, or 540 for mutual authentication. We
kept X509 metadata inside the Certificates column. Mutual authentication shows
similar result but adds 540 as metadata value, and it approximately doubles
the columns ’Auth’ and ’Certificates’. Using this table, one can see the cost of
using the Hybrid KEMTLS instance we proposed. Besides, it allows estimating
impact in networks. For example, all P521 instances are close to (default) TCP
congestion window size (cwnd), measured by the number of segments. Typically,
the Maximum Segment Size (MSS) is close to MTU size (e.g., 1460, 1500 bytes),
and the cwnd defaults to 10 MSS. Due to the TCP congestion control, hybrids
with greater size will incur additional round-trips.
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Table 2: Expected cost (bytes) of hybrid KEMTLS instances

Hybrid Instance Security Level KEX Auth Certificates CSizeN[
P256 (Baseline) 1 484 74 839 1715 2847
P256 Kyber512 (KyberL1 H.) 1 2052 833 7807 11012 19872
P384 Kyber768 (KyberL3 H.) 3 2820 1185 10708 15033 27141
P521 Kyber1024 (KyberL5 H.) 5 3756 1701 14475 20252 36650
P256_LightSaber KEM (SaberL1 H.) 1 1892 801 7679 10692 19390
P384_Saber KEM (SaberL3 H.) 3 2628 1185 10514 14647 26564
P521 FireSaber KEM (SaberL5 H.) 5 3404 1605 14220 19549 35595
P256_NTRU_HPS_2048_509 (NTRU L1 H.) 1 1882 764 7707 10673 19363
P384 _NTRU_HPS_2048_677 (NTRU L3 H.) 3 2408 1027 10454 14209 25909
P521 _NTRU_HPS_4096_821 (NTRU L5 H.) 5 3080 1363 14138 18901 34623

We also model computational cost our hybrid KEMTLS design. The focus
of this model is on the cost of cryptographic computations since they are the
main changing parts of our proposal. In this case, we can define the client’s
computational cost when using hybrid KEMTLS as Cojientops:

Celientops = HKeyGen,,, .. + HDecaps,,, .. + HEncaps,;,,. + 2 * HVerify,, .,

where HKeyGen,, . and HDecaps,;,. are KEM operations (ephemer-al) and
HEncaps,,,,, and 2 xHVerify,, . are authentication operations (with long-term
keys). Although a KEM is used, two signatures must be verified to complete
the authentication (server and Intermediate CA certificates), for each algorithm
(PQC and Classical). For the server-side, the cost Cserperops has the main dif-
ference: it does not have HVerify,, . involved, nor signing operation, only:
HEncaps,,,,. for KEX, HDecaps,,,,. for authentication. Lastly, the "H’ letter rep-
resents the hybrid mode, requiring two operations: one for the PQC and the
other for the classical algorithm. Note, however, that are other costs when using
the hybrid protocol in practice (e.g., network latency time).

4 Evaluation Characteristics

We use two environments for the experiments: geographical-distant servers and
simulated network experiments. The first experiment uses two Google N2 VMs,
configured with Intel(R) Xeon(R) 2.80GHz CPU and 8 GiB RAM. They are lo-
cated in different geographical regions: europe-central2-a (Warsaw, Poland)
and southamerica-eastl-a (Sdo Paulo, Brazil), with an average latency of
108ms. The simulated experiment uses NetEm [18] with two parameters: laten-
cies (2ms, 10ms, 100ms, 300ms); and packet loss probabilities (1, 2, 3, 5%). The
simulations were executed in an Intel i5-8250U 1.60GHz, with turbo boost tech-
nology disabled. In both experiments, 1000 handshakes were evaluated, one at
a time.

Unlike TLS 1.3 handshake, KEMTLS requires an additional round-trip to au-
thenticate the server and complete the handshake. Figure 3 shows the differences
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considering a Post-Quantum TLS 1.3 and KEMTLS handshakes. In both pro-
tocols, the handshake completion time occurs when a peer receives a Finished
message. Therefore, when comparing the protocols, the Finished message com-
pletes the handshake at different moments. KEMTLS handshake completion
time will be longer than PQTLS due to the added round-trip. However, from
a practical perspective, the client can send application data at the exact hand-
shake moment in both protocols. Note that the client is usually the party that
initiates a communication (e.g., with an HTTPS request).

PQTLS KEMTLS
Client Server Client Server

Handshake Handshake
; ~—__Messages

Received “TTRpp O e 0
“€7TReP \ >
Finished | = gowed--"! o .
(Server) i~ " : K Reco df:’_‘_a//(fwdata"j
. , eceived : “=Ueq !
. Finished &~
- ’ (Seryer) '
N ’ '
M S S v
Handshake \v/ Handshake
time time

Time-to-send-
app-data

Fig. 3: Comparison of Handshake completion time in KEMTLS and PQTLS

Considering a future adoption scenario for the Hybrids, we also provide a
“load test” evaluation of an HTTPS server instantiated. The server is instanti-
ated with both PQTLS and KEMTLS hybrid versions. We use go-bench as a
web server benchmarking tool [35]. We measure the concurrent requests sent by
go-bench to assess how many of them the server can handle (successfully or not).
We deploy a webserver that transmits 2 MB of random data for this test, close
to the median webpage weight in 2021 [1]. For this benchmark, we also increased
the number of maximum open file descriptors in the server (using ulimit -n
1048576 Linux command).

We integrate our hybrid versions in go-bench to perform this test over 128,
256, 512, and 1024 concurrent client threads. The experiment was allowed to run
for 6 minutes for each hybrid instantiation and each number of concurrent client
threads. An additional parameter in go-bench is the HTTP Keep-alive connec-
tions that we set to false, which prevents the server from reusing a previously
established connection. We monitor the server’s process peak memory usage
during the test using grep “VmHWM /proc/<PID>/status Linux command.

Our tests are based on the NIST Round 3 Finalists regarding the algorithm
selection for the experiments. We evaluate scenarios with Kyber, Saber, and
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NTRU variants, in the three security levels, always in hybrid mode (with NIST
curves). Classic-McEliece has a large public key that exceeds the TLS message
size limits, making it only suitable for scenarios where the public key is not
transmitted. For this reason, we evaluated it separately in the Hybrid KEMTLS-
PDK in a load test scenario, presented in section 5.3. In KEMTLS, we use a
KEM-based ECDH and a PQC KEM to compose our hybrid scheme. A similar
configuration is used in PQTLS, but for authentication, we used Falcon and
Dilithium, also in hybrid mode. In both protocols, we fixed the certificate chain
to be hybrid and only one hybrid algorithm, chosen to be Dilithium. The choice
of a fixed certificate chain allows for comparing KEMTLS and PQTLS at the
protocol level (regarding handshake operations). Hence the same chain is used for
both protocols. Other options would include a classical certificate chain, mixed-
chains [25], or PQC-only chains, but this work focuses on the transition with
Hybrid PQC.

Additionally, RFC 8446 allows peers to avoid sending Root CAs certificates
[31]. Therefore, the Certificate message in the protocol includes two certifi-
cates: the server (or client) certificate and the Intermediate CA certificate. There-
fore we followed this scenario where only the Intermediate CA certificate is sent.
We believe this scenario is more suitable for minimizing the impact of the PQC
adoption, though it assumes that both peers have (and trust) the Root CA
certificate pre-installed (and trust).

Another design decision made for the experiments is that the same NIST
security level is used for all algorithms part of the handshake protocol. Namely,
the KEX, the authentication, and the certificate chain are at the same security
level. Since the focus here is to analyze performance impact, the results will
correspond to the selected security requirement. Therefore, we expect better
performance for the minimum security level and the worst performance impact
for the maximum (NIST) security level. In this way, the experiments would
provide minimum and maximum indicators.

We adapted a Golang repository implementation from Celi et al. [11] for
our experiments. We “hybridize” their KEMTLS and PQTLS implementation
using NIST curves p256, p384, or p521, accordingly to the security level of each
algorithm version. We also implement a new testbed to support different PQC
algorithms and allow the reproducibility of our experiments. We use libogs-go
wrapper [30] from the OQS project to integrate all algorithms in KEMTLS.

In the context of hybrid adoption and aiming at a fair comparison, our eval-
uation has the following metrics:

1. Handshake Completion Time: at the client, it initiates from the start of the
protocol until it receives the Finished message.

2. Time-to-Send-App-Data: the required time for the client send application
data to the server.

3. Hybrid Penalty: if H is the measured time in a hybrid instantiation and P
is the PQC-only time, we subtract H — P, resulting in the hybrid penalty.

4. HTTPS/TLS request successes and failures: the number of successful re-
quests and failures for the server’s load test.
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5. Server-side Memory load: the process memory peak usage for the server’s
load test.

In summary, metric 1,2,3 are measured in the client’s protocol implemen-
tation, whereas metrics 4 and 5 are metrics for evaluating the server. Table 3
summarizes the characteristics and environments of the experiments. The exper-
iments can be reproduced as we provide both the hybrid KEMTLS repository
and the test repository [2]. Raw results are also publicly available there.

Table 3: Description of the experiments performed in this work

Experiment Environment Metrics used Protocols Compared

. Geo. Distant server 1,2,3 PQC-Only and Hybrid KEMTLS
KEMTLS Hybrid Penalty o/ 1o ted Network 12,3 PQC-Only and Hybrid KEMTLS

Hybrid C . Geo. Distant server 2 Hybrid PQTLS and Hybrid KEMTLS
ybrd Lompanson Simulated Network 2 Hybrid PQTLS and Hybrid KEMTLS
Load Test Geo. Distant server 4,5 Hybrid PQTLS and Hybrid KEMTLS

5 Hybrid KEMTLS Evaluation

The evaluation is divided into three parts. Section 5.1 discusses the hybrid penal-
ties found in the experiments. Section 5.2 compares hybrid KEMTLS to hybrid
PQTLS performance. Lastly, Section 5.3 discusses the web server load-testing
experiment using hybrids. Note that we will use the algorithm naming or pa-
rameter set naming for referring to PQC algorithms (and their security levels)
as shown in Table 1.

5.1 Hybrid Penalty

The Hybrid Penalty in KEMTLS is the cost of adding a hybrid mode over the
PQC-only configuration. This section presents the KEMTLS analysis, starting
with the geographical-distant server experiment, followed by the Simulated En-
vironment results.

Geographical-Distant Server This experiment evaluates Hybrid KEMTLS
(and KEMTLS-PDK) using geographically separated peers, considering hand-
shake completion times. Figures 4 to 8 present the box plots for the KEMTLS
timings of the three NIST security levels, considering server-only authentication.
Figures 5 to 9 correspond to the KEMTLS-PDK results.

In the geographical-distant scenario, we do not control network variations
or load variations that might occur in the Google VMs. On the other hand,
such a test environment better reflects a realistic scenario. In this scenario, we
observed different results regarding the hybrid penalties (i.e., the cost of adopting
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our hybrid). The box plots for security level 1 show overlapping timings, which
means that the penalties are minor, regardless of the tested algorithms. However,
increasing the security level, the boxes no longer overlap, increasing the penalty.
As seen in Figure 8, with level 5, the hybrid penalties are much more significant
than the other levels caused by the classical algorithm.

Due to design differences, KEMTLS-PDK obtained better timings because of
its reduced number of RTTs. The RTT conceals most cryptographic operation
timings in such a geographical-distant connection. When analyzing the hybrid
penalties, KEMTLS and KEMTLS-PDK have similar results. These results fa-
vor hybrid versions but not much at higher security levels. B shows results for
hybrid KEMTLS using mutual authentication, where the penalties have similar
behavior, corroborating these findings.
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Simulated Environment Unlike the geographical-distant experiment, the sim-
ulated environment allows controlling the effect of parameter variations such as
network latency. Table 4 highlights the hybrid penalties in KEMTLS using the
average handshake time (HS) as the metric and increasing the simulated latency.
The network latency plays a significant role in the handshake completion time.
By configuring 1 ms of link latency, the client and the server will be delayed by
2 ms, and since KEMTLS requires two round trips to complete the handshake,
it doubles this number, reaching 4 ms. The same behavior happens in KEMTLS
mutual authentication, requiring three instead of two round trips. However, in
practice, KEMTLS allows the client to send application data before handshake
completion, removing one (additional) round trip and its performance impact.

Table 4: Average Handshake time (HS, in ms) for PQC-Only and Hybrid
KEMTLS under different simulated latencies ("I’ means security level and "H’
if in hybrid mode).

Algorithm and Latency: 1 ms Latency: 5 ms Latency: 50 ms Latency: 150 ms
Security Level HS St. HS St. HS St. HS St.
Y Time Penalty Dev. Time Penalty Dev. Time Penalty Dev. Time Penalty Dev.
KyberLl 6.0 - 04 223 - 0.3 202.8 - 0.2 6029 - 02
KyberL1 H. 7.0 1.0 04 232 0.9 0.3 203.6 0.9 0.3 603.7 0.8 04
KyberL3 38.5 - 0.8 548 - 0.8 236.3 - 1.0 636.6 - 1.0
KyberL3 H. 46.8 8.3 09 629 8.1 2.3 243.2 6.9 1.2 643.9 7.3 16
KyberL5 63.0 - 08 784 - 0.8 261.1 - 6.0 659.9 - 1.0
KyberL5 H. 194.6 131.6 2.4 2114 133.0 3.7 393.0 132.0 4.5 791.6 131.7 3.2
SaberLLl 6.1 - 05 223 - 0.3 202.8 - 0.2 6029 - 03
SaberL1 H. 7.1 1.0 05 233 0.9 0.4 203.7 0.9 0.4 603.8 0.8 04
SaberL3  38.9 - 0.7 555 - 0.8 236.0 - 1.0 637.1 - 22
SaberL3 H. 46.1 7.2 0.8 62.7 7.1 0.8 243.9 7.9 1.0 644.6 7.5 1.8
SaberL5  62.6 - 1.7 79.0 - 0.8 260.3 - 0.9 661.1 - 25
SaberL5 H. 196.5 133.8 2.4 2122 133.2 3.2 391.9 131.6 3.3 792.7 131.6 3.4
NTRU L1 6.1 - 03 223 - 0.3 202.8 - 0.2 6029 - 02
NTRU L1 H. 7.1 1.0 03 233 1.0 0.4 203.6 0.8 0.3 603.7 0.8 0.3
NTRU L3 39.2 - 0.8 55.8 - 0.8 236.5 - 24 636.9 - 1.0
NTRU L3 H. 46.5 7.3 08 63.0 7.2 0.8 243.6 7.0 1.0 644.1 7.2 1.0
NTRU L5 62.7 0.8 78.7 - 0.8 2594 1.0 659.3 1.6

NTRU L5 H. 197.1 134.4 28 211.1 132.3 4.5 393.7 134.3 29 793.3 134.0 3.3

Table 4 shows that the hybrid penalty is negligible at lower security levels
and significant at level 5. For instance, the largest penalty in security level 1
is 1.0 ms (e.g., KyberL1 H.), for security level 3 is 8.3 ms from KyberL3 H.,
and for security level 5 is 134.4 ms from NTRU L5 H. The latency variation did
not impact the hybrid penalty significantly since they are more affected when
changing to different security levels.

We also simulated different packet loss probabilities looking for hybrid penal-
ties. Table 5 shows the results of using the time-to-send-app-data metric for
PQC-Only and hybrid versions of KEMTLS. We do not use handshake comple-
tion time here because it would double the actual packet loss employed (due to
the additional RTT). When analyzing columns from Table 5, we observed sig-
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Table 5: Time-to-send-app-data (in ms) considering different packet loss proba-
bilities.

Algorithm and Packet Loss: 1% Packet Loss: 2% Packet Loss: 3% Packet Loss: 5%
Security Level Median 95% percentile Median 95% percentile Median 95% percentile Median 95% percentile
KyberL1 1.6 2.9 1.6 3.3 1.6 207.5 1.7 208.3
KyberL1 H. 2.3 3.4 2.3 7.9 2.3 207.3 24 209.4
KyberL3 34.0 36.1 34.3 39.2 34.8 239.6 34.9 242.0
KyberL3 H. 39.9 42.1 39.8 43.4 40.3 246.1 40.7 247.2
KyberL5 58.4 60.9 58.5 63.6 57.6 263.1 58.9 266.3
KyberL5 H. 162.6 166.8 162.0 167.2 161.0 359.2 162.1 368.0
SaberL1 1.6 2.7 1.7 3.4 1.7 206.9 1.7 208.6
SaberL.1 H. 2.4 3.6 2.4 8.1 24 7.9 24 209.8
SaberL3 34.5 37.0 34.8 38.1 34.5 238.7 34.3 241.9
SaberL.3 H. 40.0 42.6 40.2 244.2 40.7 245.5 40.8 247.6
SaberL5 58.1 60.8 58.7 64.8 58.1 263.6 58.1 265.5
SaberL5 H. 161.9 167.6 162.4 168.2 162.1 168.5 162.5 368.1
NTRU L1 1.7 2.5 1.7 3.7 1.7 206.3 1.7 209.1
NTRU L1 H. 2.4 3.5 2.4 4.1 2.4 207.3 24 209.5
NTRU L3 34.3 36.6 34.2 38.3 34.3 51.1 34.8 242.4
NTRU L3 H. 40.3 43.5 40.4 44.6 40.4 46.3 40.2 246.9
NTRU L5 58.6 61.3 59.0 62.2 58.2 263.9 58.8 266.0
NTRU L5 H. 163.0 167.7 162.2 169.7 162.7 364.4 162.2 368.0

nificant changes in the penalties in medians since the largest difference observed
is 1.3 ms, from NTRU L5 H. (median at packet loss probability of 3% minus
the one at 2%). When reaching 5% loss probabilities, some connections can slow
down significantly, which can be seen at the 95% percentile. This slowdown hap-
pens because increasing size the likelihood of losing packets increases. Similar
behavior is observed in mutual-authenticated connections (see B, Table 8). How-
ever, this increase happens with PQC-only and hybrids, with a larger increase in
security level 5 (for example, KyberL5 H. differs near 100 ms to PQC-only, for
all packet loss probabilities). Overall, using level 1 hybrid instantiations, we do
not anticipate a large penalty if a wireless connection experiences packet loss.

5.2 Hybrid Comparison

This section analyzes the performance of different hybrid approaches (in KEMTLS
and PQTLS).

Geographical-Distant Server We selected the time-to-send-app-data metric
for the client who starts the protocol (in general) and is the first to send ap-
plication data. For applications dependent on the handshake completion time,
one can compare hybrid PQTLS timings with the KEMTLS timings provided in
Figures 4 to 8. In such a case, KEMTLS additional round-trip imposes a delay
which is often worse than PQTLS timings.

Figures 10 to 12 compare hybrids (KEMTLS and PQTLS), considering the
algorithms at each NIST security level. At level 1, the hybrid’s boxes overlap,
meaning similar timings. The main difference is that hybrid PQTLS has a dual-
signature operation for the handshake transcript data. Hybrid KEMTLS replaces
it with two KEM encapsulations (using a classical and a PQC algorithm).
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The hybrid approaches achieved similar performance at security level 1. At
security level 3, however, we observed an interesting result when comparing
them. The hybrid KEMTLS is significantly faster than PQTLS in the time-to-
send-app-data metric. Hybrid PQTLS sizes, usually superior to KEMTLS sizes,
can easily surpass network thresholds such as TCP Maximum Segment Size. For
example, considering the TCP window standard size (10 MSS), if we compare
hybrids C,;..: KEMTLS using KyberL3 H. has 15033 bytes, and it is 16.57%
smaller than hybrid PQTLS using KyberL3 and DilithiumL3, both in hybrid
mode (18019 bytes). This difference incurs an additional round-trip at the TCP
level. If we increase MSS size, the performance can be equated, but such a
change can affect network performance negatively, as discussed by Sikeridis et
al. [37]. We could not test Falcon in security level 3 (no parameter set available).
Lastly, level 5 instantiations also exhibit a performance difference that favors
the deployment of hybrid KEMTLS rather than PQTLS.
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Simulated Environment Table 6 compares hybrids using simulated network
latencies. They are all average values (in ms); on average, hybrid KEMTLS
achieved better performance in all security levels tested. We used the “time-
to-send-app-data” metric (instead of the handshake completion time) since we
consider it a more practical (and fair) comparison.

Table 6: Hybrid KEMTLS time-to-send-app-data (in ms) compared with Hybrid
PQTLS under different simulated latencies

Algorithms and Timings Timings Timings Timings
Security Level Latency: 1 ms Latency: 5 ms Latency: 50 ms Latency: 150 ms
KyberL1 H. - DilithiumL1 H. 4.9 13.1 103.5 303.5
KyberL1 H. - FalconL.1 H. 5.4 13.6 104.0 304.1
KyberL1l H. (KEMTLS) 4.5 12.5 102.7 302.9
SaberL1 H. - DilithiumL1 H. 5.0 13.1 103.4 303.5
SaberL.1 H. - FalconL1 H. 5.4 13.6 104.0 304.1
SaberL1 H. (KEMTLS) 4.5 12.6 102.8 302.9
NTRU L1 H. - DilithiumL1 H. 5.0 13.1 103.4 303.5
NTRU L1 H. - FalconLL1 H. 5.4 13.6 103.9 304.1
NTRU L1 H. (KEMTLS) 4.5 12.6 102.7 302.8
KyberL3 H. - DilithiumL3 H. 68.7 76.6 167.0 366.5
KyberL3 H. (KEMTLS) 42.5 50.7 141.0 341.4
SaberL3 H. - DilithiumL3 H. 68.5 76.6 167.5 367.1
SaberL3 H. (KEMTLS) 42.5 50.6 141.2 341.5
NTRU L3 H. - DilithiumL3 H. 68.7 76.2 167.6 367.5
NTRU L3 H. (KEMTLS) 43.1 50.9 141.5 341.6
KyberL5 H. - DilithiumL5 H. 181.7 191.3 279.1 479.8
KyberL5 H. - FalconLL5 H. 182.2 190.6 280.3 480.3
KyberL5 H. (KEMTLS) 163.9 171.8 263.6 462.3
SaberL5 H. - DilithiumL5 H. 182.1 190.4 279.4 480.5
SaberL5 H. - FalconL5 H. 182.9 190.3 280.2 480.9
SaberL5 H. (KEMTLS) 163.8 172.6 263.9 462.6
NTRU L5 H. - DilithiumL5 H. 182.3 190.0 280.0 479.3
NTRU L5 H. - FalconL5 H. 182.6 190.7 280.9 480.7
NTRU L5 H. (KEMTLS) 163.9 176.7 263.3 462.9

Using Dilithium (instead of Falcon) in the server certificate improved PQTLS
due to the better signing time, but still slower than KEMTLS. The differences in
performance between hybrid KEMTLS and hybrid PQTLS are small in security
level 1 since the largest difference observed was 1.3 ms. However, it becomes
more significant when increasing security parameters, with an average difference
of 25.9 ms in level 3 (standard deviation of 0.5 ms) and an average difference of
17.2 ms in level 5 (standard deviation of 1.2 ms).

5.3 Load Test

Using the parameters specified in Section 4, we performed a load testing of a
web service providing content using our hybrid instantiations, compared to a
baseline configuration (using classical cryptography only). Figure 13 shows the
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number of successful requests for algorithms in hybrid modes using the secu-
rity level 1 parameter set. The hybrids used are KyberLl H. (P256_Kyber512)
for KEMTLS KEX and Authentication; KyberL1 H. (KEX) and DilithiumL1
H. (P256_Dilithium2) (Auth) for PQTLS; KyberLl H. (KEX) and Classic-
McElieceLl1 H. (P256_Classic-McEliece-348864) (Au-th) in KEMTLS-PDK;
and KyberL1 H. and DilithiumL1 H. for PQTLS Cached-cert configuration. We
selected McEliece in PDK since it can be the optimized size configuration (as
shown in [34]). Due to recent attacks in Rainbow, we did not evaluate PQTLS us-
ing a Rainbow Cached certificate (which would be a size-optimized instantiation
for PQTLS). RFC 7924 [32] specifies caching of certificates.

128 client - 256 client n 512 client n 1024 client
threads threads threads threads

KyberL1 H. -
DilithiumL1 H.
(Cached-Cert)

KyberL1 H. -
Classic-McElieceL1 H.
(KEMTLS-PDK)

KyberL1 H. -
DilithiumL1 H.
(PQTLS)

KyberL1 H.
(KEMTLS)

0 20k 40k 60k 80k 100k
# of Requests

Fig. 13: Load testing with hybrids at level 1

Regarding the number of requests, the four configurations obtained similar
results and a low error rate (mostly zero) when 128 client threads were used.
Despite KEMTLS additional RTT for the handshake completion, KEMTLS per-
formed similarly to PQTLS at 128 and 256 client threads. This similarity can
be explained by the fact that both protocols allow the client to send application
data in the same RTT, and the server’s resources were not exhausted. On the
other hand, when increasing the number of client threads, the differences be-
tween the configurations grow significantly. For instance, hybrid KEMTLS con-
nections each have an additional RTT, which might cause the network to become
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overloaded early, especially when there are more threads, which leads to fewer
successful requests (compared to PQTLS). Additionally, the web page content
size (2MB) helps to congest the network because each client thread requests such
data. Regarding the number of errors (i.e., failed requests), we omitted them in
Figure 13, since in all tests, they were below 25 failures, thus not significant. It
is worth mentioning that increasing the number of client threads leads to greater
differences in PQ versus baseline (classical).

We expected that the Cached-Cert and KEMTLS-PDK would achieve more
successful requests because fewer data was transferred between the peers. How-
ever, KEMTLS-PDK with McEliece achieved the server limit at 512 clients.
We noted that McEliece has greater memory requirements (please refer to [29]),
mainly due to its larger public key. Besides, on the client side, verifying Dilithium
signatures is faster than decapsulating McEliece ciphertexts. The gain in sizes
did not lead to better performance in this case.

5.4 Summarizing Results

Figure 14 summarizes some experiments performed in this work, adding the
memory peak metric (so far not discussed). We present an aggregation of av-
erage handshake time, average time-to-send-app-data, both from the simulated
environment, handshake sizes, number of successful requests, and memory peak
usage (by the server), considering hybrid implementations at security level 1. Ini-
tially, we compared hybrid to PQC-only implementation, but now all the data
is normalized to the baseline configuration, which uses classical cryptography.

_ Hybrid PQTLS
Avg. Time-to- == (KyberL1 H.
send-app-data DilithiumL1 H.)
Hybrid KEMTLS
-
(KyberL1 H.)
Baseline
== (P256)

Max. Successful
Requests

Avg. Handshake
Time

Max. Server
Memory Peak

Handshake
size

Fig. 14: Summary of performance of hybrids at level 1

The main finding for security level 1, shown in Figure 14, is that the hybrid
penalties in performance (now compared to baseline) are small. The handshake
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sizes increased almost 7x in our hybrid, using level 1, and the average handshake
time takes almost 2x since there is an additional RTT (from KEMTLS’ original
design). There is no significant penalty for using the time-to-send-application-
data at this level. However, regarding penalties, we observed that the behavior
changed when increasing security parameters. The penalties start to grow when
comparing hybrids to PQC-only alternatives (shown in Section 5.1).

The number of requests is not evident in Figure 14 scale, but the Max.
Successful requests decreased by 3% and 6% for hybrids (PQTLS and KEM-
TLS, respectively, level one). In absolute values, it decreased between 2485 and
5604 requests, which can be significant depending on the application transiting
to hybrids. Lastly, memory requirements increased by nearly 64 MB (KEMTLS)
and 43 MB (PQTLS) when using hybrid alternatives, which is not significant in
current server configurations.

6 Conclusions

Hybrid modes are one first step toward the PQC transition process. This work
is the first to investigate hybrids using the KEMTLS and KEMTLS-PDK ap-
proaches. KEMTLS can achieve smaller size configurations for TLS, but pro-
viding hybrids for KEMTLS allows for a safer transition since it keeps classical
algorithms. Compared to PQC algorithms, classical ones had more time for se-
curity analysis.

Overall, the Hybrid Penalties when adding classical algorithms in the KEMTLS
design are minor, particularly when analyzing instantiations with lower security
parameters. We confirm this result in simulated and geographically distant con-
nections. Therefore, hybrids are suitable for KEMTLS (and the PDK variant)
since they add confidence from classical algorithms, but the performance penal-
ties are insignificant. Our evaluation includes algorithms from the NIST PQC
standardization process. It is worth mentioning that the average timings of Ky-
ber, Saber, and NTRU (in KEMTLS), Dilithium, and Falcon (in PQTLS) were
close enough in a way that we could not select between the best algorithm con-
figuration in the hybrid instantiations. This result was expected since all of them
are based on lattices and finalists in the NIST’s standardization process (Round
3).

We also compared distinct hybrid approaches under different metrics, namely
hybrid modes for KEMTLS and PQTLS. At security level 3, we observed that
every byte saved counts since hybrid KEMTLS performed much better than
hybrid PQTLS, as the first had suitably fit in the TCP congestion window.
Aiming at a different evaluation metric, we performed a load test in a hybrid
HTTPS web server. As the number of client threads increased, we observed
superior performance of hybrid PQTLS over hybrid KEMTLS, but both lost to
the classical cryptography configuration. This load-test experiment allowed us

to estimate the impacts on the server providing HTTP content when adopting
hybrid PQC.
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Experimenting with PQC in TLS is a cumbersome task because there is a
wide range of choices: evaluation metrics, security parameters, algorithm selec-
tion, certificate chain configurations, mutual authentication, and caching certifi-
cates, among others. Although we did not evaluate PKI revocation scenarios,
which would increase TLS handshake sizes, one could use short-lived certificates
[26] in which the revocation impact is reduced. Investigating approaches to mit-
igate the revocation impact is an interesting line of work that would benefit the
PQC adoption in TLS.

However, there are other scenarios for evaluating the PQC adoption in TLS.
We left for future work investigating (hybrid) KEMTLS applied in scenarios
with Internet-of-Things (IoT) and 5G networks, which might require energy
consumption as an essential evaluation metric.
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A Mutual Authentication

Figure 15 shows the Hybrid KEMTLS design in the mutual authentication case.
The main changes are the CertificateRequest message sent by the server,
which triggers the client to send its certificate containing two KEM public keys
(from a PQC and classical algorithm). The server encapsulates under the client’s
keys and replies the ServerKEMCiphertext message. The new shared secrets K.
(PQC) and K.c (classical) are used in the key derivation process.
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Fig. 15: Hybrid KEMTLS Handshake (Mutual authentication)

Since the CertificateRequest message is sent by the server, there is another
round trip added to the handshake time. The extra round trip affects timings,
specially if we consider that the additional payload (i.e., the client’s certificate)
could help to surpass the TCP congestion window. However, note that the time-
to-send-application-data can be the same as server-only authentication (similar
to RFC 8446 [31]). Therefore mutual authentication might not affect this metric.
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B KEMTLS Additional Results

This Appendix is divided in two parts: geo-distant server and simulated network
experiment (Sections B.1 and B.2).

B.1 Geographically Distant Server

Figures 16 to 18 shows the penalties when using hybrid KEMTLS with mutual
authentication, under the geographically distant server experiment. The metric
in use is the handshake time. Similarly to the server-only authentication results,
the penalties are small using NIST Security level 1 parameters, and they increase
as the security levels increase. The main difference is that mutual authentication
imposes an additional round-trip time (RTT) and therefore the required amount
of time to establish the connection (this already observed in other works, e.g. [11],
but not with hybrids). It is worth mentioning that in this experiment we do not
control the network parameters, so latency variations can happen. In contrast to
security levels 3 and 5, we can see the overlap between boxplots (level one), thus
the usage of such hybrids does not degrade protocol performance significantly.
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Fig. 18: Mutual Auth. Comparison (L5)

B.2 Simulated Environment

Table 7 presents KEMTLS results regarding the average handshake time met-
ric, using the simulated latencies but with mutually authenticated connections.
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The results corroborates to the findings about hybrid penalty in KEMTLS using
server-only authentication. Increasing the latencies does not change the overall
penalty. Recall that the hybrid penalty is the penalty over PQC-only instantia-
tion. For example, in security level 1 instantiations, the penalties are small (near
1 ms) and their increase for level five ranges from 190 to 195 ms.

Table 7: Average handshake time (HS, in ms) for PQC-only and hybrid KEMTLS
in mutually-authenticated connections.

Algorithm Latency: 1ms Latency: 5ms Latency: 50ms Latency: 150ms
HS  Penalty  St. HS  Penalty  St. HS  Penalty  St. HS  Penalty  St.

Time (ms) (ms) Dev. (ms) Time (ms) (ms) Dev. (ms) Time (ms) (ms) Dev. (ms) Time (ms) (ms) Dev. (ms)
KyberL1 9.5 0.7 33.8 0.7 304.8 0.6 905.0 0.9
KyberL1 H. 11.0 1.5 0.8 35.2 1.4 0.8 306.1 1.3 0.8 906.3 1.3 0.9
KyberL3 79.4 1.5 102.7 1.4 374.3 1.9 974.2 1.8
KyberL3 H. 89.6 10.2 1.3 114.8 12.1 1.3 384.0 9.7 1.5 984.6 10.4 1.3
KyberL5 128.7 1.7 153.2 2.5 422.9 2.3 1021.7 2.5
KyberL5 H. 319.6 190.9 3.3 344.0 190.9 3.1 615.5 192.6 3.3 1216.4 194.7 6.1
SaberL1 9.5 0.7 33.8 0.7 304.9 0.9 905.0 0.7
SaberL1 H. 11.0 1.5 0.8 35.2 1.4 0.8 306.2 1.3 0.8 906.3 1.3 0.9
SaberL3 79.0 1.4 103.3 1.6 374.0 1.8 973.6 1.5
SaberL3 H. 89.4 10.4 1.3 114.1 10.8 14 384.3 10.3 1.5 984.5 10.9 1.2
SaberL5 128.9 1.7 152.6 1.7 422.8 1.9 1023.3 1.8
SaberL5 H. 320.8 192.0 4.1 344.0 191.5 3.9 616.0 193.2 3.4 1214.0 190.7 34
NTRU L1 9.5 0.8 33.8 0.8 304.8 0.7 904.9 0.8
NTRU L1 H. 11.0 1.5 0.7 35.2 1.4 0.8 306.1 1.3 0.8 906.3 1.3 0.9
NTRU L3 79.5 1.5 105.4 6.6 373.9 1.8 974.1 1.7
NTRU L3 H. 90.4 10.9 1.3 114.1 8.6 1.8 384.3 10.4 1.4 985.0 10.9 1.3
NTRU L5 129.8 1.5 152.6 1.8 422.3 1.8 1025.2 1.7
NTRU L5 H. 325.0 195.2 26.3 345.0 192.4 2.9 614.5 192.2 4.2 1214.6 189.4 4.0

Table 8: KEMTLS Time-to-send-app-data (in ms) considering different packet
loss probabilities and mutual authentication.

. Packet Loss: 1% Packet Loss: 2% Packet Loss: 3% Packet Loss: 5%

Algorithm . . . . . . . .
Median 95% percentile Median 95% percentile Median 95% percentile Median 95% percentile
KyberL1 3.1 4.9 3.1 209.4 3.2 210.6 3.2 211.2
KyberL1 H. 4.5 10.2 4.5 209.8 4.5 211.6 4.6 212.3
KyberL3 73.2 80.6 72.9 279.0 73.1 280.1 73.4 282.8
KyberL3 H. 82.9 88.3 84.0 290.1 83.7 290.8 83.7 292.8
KyberL5 124.0 132.1 122.5 328.3 123.7 330.5 124.0 334.8
KyberL5 H. 317.0 511.9 318.0 522.8 316.5 523.3 317.6 527.2
SaberL1 3.2 8.6 3.2 209.5 3.2 210.5 3.3 211.0
SaberL1 H. 4.6 9.8 4.6 210.3 4.6 212.0 4.6 212.5
SaberL3 2.7 77.6 75.2 280.9 74.8 281.7 74.6 283.1
SaberL3 H. 85.2 91.9 85.4 291.4 85.0 292.3 85.0 294.6
SaberL5 122.7 127.5 124.7 329.6 124.3 331.8 124.7 332.6
SaberL5 H. 317.2 324.0 3184 523.7 318.0 525.0 318.8 528.2
NTRU L1 3.2 8.7 3.2 208.9 3.2 210.3 3.3 2114
NTRU L1 H. 4.6 10.0 4.6 210.2 4.6 211.7 4.6 212.7
NTRU L3 73.3 79.3 74.7 280.8 73.8 280.4 74.9 285.1
NTRU L3 H. 85.3 90.3 84.7 291.0 85.1 291.4 85.6 293.8
NTRU L5 123.1 128.7 124.1 330.4 125.6 331.4 1254 333.4
NTRU L5 H. 317.3 324.9 318.1 522.2 317.3 525.5 319.0 527.8

On the other hand, about the overall performance, the number of round-trips
of mutual authentication design is different, which adds one RTT to the network
latency. Using the 1 ms simulated latency as example, in server-only authentica-
tion the link latency will be 2 ms (client side and server side). Since KEMTLS
has two RTTs, the network latency will be 4 ms, and in the mutual authenti-
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cation case it will be 6 ms (three RTTs). Analyzing KyberLL1 H. performance,
we obtained 11 ms in average (Table 7), which means 5 ms of computational
cost and 6 ms of network latency (3 RTTs times 2 ms). Now looking at 150
ms simulated latency, KyberLL1 H. gets an average handshake time of 906.3 ms,
which means approximately 6 ms of computational cost and 900 ms of network
latency (3 RTTs times 300 ms). Given a standard deviation near to 1 ms, we
can observe very close computational cost and, consequently, the penalties are
also similar.

Regarding packet loss, Table 8 shows the variations for KEMTLS in the time-
to-send-app-data metric and considering mutual authentication. Again, the be-
havior is similar to server-only authentication (in terms of the hybrid penalties)
except that the timings have greater latency. These are caused mainly by the
increased handshake size.

Since mutually authentication requires client certificates, it not only increases
the RTTs but it also increases the handshake sizes. Please refer to Table 3.2 for
the precise numbers. Now, if the packet loss probabilities increase, the likelihood
of a re-transmission also increases, triggering TCP transmission control mech-
anisms. Looking at security level 1 and using 5% loss probability, KyberLl H.,
for example, has achieved 212 ms at the 95th percentile (Table 8), compared
to the 209.4 ms percentile in server-only authentication (Table 5). On the other
hand, looking at security level 5, KyberL5 H. has a 95% percentile of 527.2 ms
(mutual authentication) versus 368.0 ms (server-only authentication). These re-
sults shows that the impact of size is significant when considering packet loss
scenarios. It is worthy to note that all decimals in the tables are due to the
average computations. We did not employed additional controls measurements
for micro or nanosecond precision.
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