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Abstract. We present Shanrang, the first fully asynchronous proactive
secret sharing scheme with dynamic committee support. Even in the
worst possible network environment, where messages could have arbi-
trary latencies, Shanrang allows a dynamic committee to store a secret
and periodically refresh the secret shares in a distributed fashion. When
the committee changes, both the old committee and the new committee
jointly refresh and transfer the shares to the new committee, without
revealing the secret to the adversary.

With n parties, Shanrang tolerates n/4 Byzantine faults and maintains
liveness as long as the messages are delivered. In contrast to prior work,
Shanrang makes no assumptions on the network latency. Designing an
asynchronous protocol is challenging because it is impossible to distin-
guish an adversary sending no messages from an honest party whose
messages have not arrived yet. We evaluated Shanrang on geographi-
cally distributed machines and we found Shanrang achieved 200 seconds
for handing off between 2 committees of 41 parties. Shanrang requires
O(Mn?logn) messages and runs in expected O(logn) rounds for every
handoff. To show Shanrang is robust even in a harsh network environ-
ment, we test Shanrang on the Tor network and it shows robust perfor-
mance.

Keywords: Proactive Secret Sharing - Asynchronous Protocols - Dis-
tributed Protocols.

1 Introduction

Secure key management in open distributed systems has been a long-standing
challenge. Loss of private keys might result in catastrophic consequences. For
example, the New York Times reports that over hundreds of billions worth of
Bitcoin are stored in lost or stranded wallets [1]. What’s more, the CEO of
Quadriga, one of the largest cryptocurrency exchanges in Canada, reportedly
lost the exchange’s only private key and, as a consequence, all the assets are no
longer retrievable.

People have made many efforts to mitigate this situation. A standalone cold
wallet stores the private keys offline in dedicated storage; special hardware is
considered a very safe option. However, cold wallets incur significant cost and are
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usually hard to use. Another popular option is to delegate the private key storage
to a distributed key management service. To the best of our knowledge, the
closest solution to secure private key delegation in an open blockchain network
is CHURP [10], a churn-robust proactive secret sharing scheme. CHURP allows
the parties to have a dynamic subset, namely, a committee, hosting a secret.
Periodically, the parties elect a new committee, and the new committee together
with the old committee performs a handoff protocol to transfer and refresh the
secret shares. CHURP tolerates network churns and allows the threshold to
change (namely, the threshold is the number of parties required to work together
in order to recover the secret).

However, CHURP assumes a synchronous network environment, where the
network message latency has a constant upper bound known by the parties.
In reality, network latency might diverge greatly from one time period to the
next. Although a protocol can always assume a sufficiently large latency bound,
when the Byzantine adversaries are present, a large time bound results in a
longer waiting timeout, which harms the performance and practicality of the
scheme. Besides, network outages and instability are unpredictable. When the
network assumption fails, the protocol loses its guarantee on liveness and other
properties. For critical services like financial institutes and distributed consensus
governance, robustness against network conditions is among the top priorities.

In an asynchronous network, we have no assumptions on the message la-
tencies. The key challenge in designing asynchronous protocols is that it is im-
possible for a party P; to distinguish between the following two cases regarding
another party P; when P; is expecting a message form P; but P; has not received
it:

— (1) The party P; sends a message honestly, but it has not yet arrived due to
the network latency;
— (2) The party P; is actually an adversary, and does not send anything.

Waiting for such a message is dangerous in an asynchronous protocol because the
second case can simply stop P; from making progress. Whenever we let parties
broadcast to all the parties in the protocol, in the next step we can at most let
an honest party expect n — ¢t messages. Otherwise, it might get stuck due to an
adversarial behavior. With this rule in mind, we utilize several building blocks
from prior works, including asynchronous common subsets, asynchronous binary
agreement, and asynchronous byzantine broadcasting to maintain liveness.

In this work, we present Shanrang, the first asynchronous proactive secret
sharing protocol with dynamic committees and Byzantine-fault tolerance sup-
port. Compared to CHURP, Shanrang assumes absolutely no assumptions on the
network latency. Shanrang makes progress as long as the messages are delivered.
This makes Shanrang able to survive the worst possible network environment.
In Section 6, we evaluate Shanrang on the Tor relay network because the Tor
network has considerably large variance of latency. Besides the strong robust-
ness property, Shanrang is also efficient and Byzantine fault tolerant. Overall,
Shanrang provides a secure scheme to delegate secrets like private keys to a
dynamically changing committee. The paper makes the following contributions:
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— We present Shanrang, the first asynchronous proactive secret sharing proto-
col with dynamic committees and Byzantine-fault tolerance support.

— We prove formally the properties of Shanrang and analyze the asymptotic
complexity of running time and communication cost.

— We perform comprehensive evaluations of Shanrang on geographically dis-
tributed machines on Amazon EC2. We also conduct experiments on the
Tor relay network, where the connections are unstable and the latency varies
greatly.

We first present the background, related works, and building blocks in Sec-
tion 2. We discuss a new primitive, the multi-value asynchronous common subset
protocol in Section 3. Then, we describe the Shanrang protocol in details in Sec-
tion 4. Next, we formally define the properties and prove them in Section 5.
We describe our evaluations in Section 6. Lastly, we conclude our work in Sec-
tion 7. We also include discussion on an extension of the KZG [9] commitment
in Appendix.

2 Background

Secret sharing protocols [15] allow a number of parties to jointly share a secret to
n parties such that an adversary has to compromise at least ¢ parties to recover
the secret, where n and t are parameters. Secret sharing is a critical building
block in a number of secure distributed protocols like key management and ac-
cess control. Secret sharing provides a way to avoid a single point of failure in
terms of secret handling. However, in the real world, adversaries are usually able
to corrupt more parties if given enough time. People model such adversaries as
mobile adversaries. With this kind of adversaries, sooner or later, any simple
secret sharing scheme will leak the secret due to enough corruptions made by
the adversaries. Proactive Secret Sharing [8] refreshes the secret with new ran-
domness periodically to defend it against mobile adversaries [17], adversaries
that can compromise more parties with more time. Mobile adversaries are not
bounded by the total number of parties they can compromise, but rather the
rate of compromising. This provides a way for distributed secret handling in
long-running systems.

With the outgrowth of blockchains and cryptocurrency systems, permission-
less networks pose several new challenges for distributed protocols. In contrast
to permissioned networks, which assumes a public key infrastructure for the
parties involved and the parties cannot join or leave freely, permissionless net-
works allow nodes to join and leave at any time, and network churns could
happen. The parties handling the secret might also become unavailable over
time. Therefore, in such a context the protocol needs to support dynamic com-
mittee changes. Mobile Proactive Secret Sharing (MPSS) allows dynamic change
of the parties holding the secret shares. Additionally, MPSS allows the threshold
to change when the shares transfer to the new group. CHURP [10] presents a
churn-tolerant proactive secret sharing protocol with the support of dynamic
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committees. However, CHURP assumes synchronous networks and is prone to
unstable network latency.

2.1 Related Works

Herzberg et al. proposed the notion of Proactive Secret Sharing [8] (PSS) for the
first time, where the secret is periodically renewed and the information learned
by the adversary between the refreshment is useless.

Asynchronous Verifiable Secret Sharing [4] by Cachin et al. achieves verifi-
able secret sharing in asynchronous networks. The authors also include an asyn-
chronous proactive secret sharing protocol based on their verifiable secret sharing
protocol. VPSS [13] is another early attempt on verifiable proactive secret shar-
ing scheme. VPSS is based on Shamir’s secret sharing. Similarly, Asynchronous
Proactive Secret Sharing [17] (APSS) is another early construction of a proactive
secret sharing for asynchronous networks. The protocol allows dynamic commit-
tees, but the secret shares are exponentially large in terms of the size of the
committee.

In some use cases, we want to have a dynamic group of nodes holding the
secret share. The reader might ask why not simply launch a new instance of APSS
and homomorphically add them to local shares. The answer is in the threshold.
If we assume at most ¢ parties in a committee might be adversarial, when both
of the old committee and the new committee are present, there might be 2t
adversarial nodes involved. The tolerance needs to double during the handoff.

Mobile Proactive Secret Sharing [14] (MPSS) is based on [8] and allows the
committee to evolve along with time. MPSS uses PBFT [6] to reach a consen-
sus on the old committee shares and incurs an expensive message complexity of
O(n*). Therefore, MPSS is subject to the constraints of PBFT that the network
has to be partially synchronous. In Shanrang, we use asynchronous common
subset protocols to reach consensus on the interpolation points on the old com-
mittee, which is not only fully asynchronous, but also more efficient in terms of
message complexity.

CHURP [10], is our counterpart in the synchronous setting. CHURP achieves
churn-robust proactive secret sharing with dynamic committees. It assumes the
network to be synchronous, namely, a known upper bound of message delivery
latency. Meanwhile, Shanrang makes no assumption on the message delivery. The
liveness of Shanrang guarantees that as long as messages deliver, the protocol
makes progress.

HBACSS [16] is a fully asynchronous complete secret sharing protocol. Com-
plete secret sharing provides an additional property that all honest parties are
guaranteed to have correct shares. This is useful for MPC applications.

Figure 1 shows a preliminary comparison of related works and Shanrang.
Among the protocols listed, Shanrang is the only one that supports proactive
properties, asynchronous networks, and mobile committees, and without incur-
ring an exponentially large message complexity.
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Shanrang |PSS MPSS AVSS™ [APSS [VPSS [Churp HBACSS

Proactive Y Y Y Y Y Y Y N
Network Async Sync |Partial-Sync|Async |Async |Async |Sync Async
Mobile Committee |Y N Y N Y N Y N

O(n?) optimal

O(n?)  on-chain
Message Complexity|O(An?logn)|O(n?) |O(n*) O(n*) |exp(n) |O(n?) |pessimistic O(n)
Threshold t<n/4 t<n/2[t<n/3 t<n/3|t<n/3[t<n/3|t<n/2 t<n/3

Fig. 1. Comparisons of related work
» We refer to the proactive secret sharing protocol presented in the AVSS paper [4].
«+ Adversaries have to send messages in their models.

2.2 Building Blocks

In this section, we discuss several building blocks that Shanrang relies on, namely,
from bottom up, the asynchronous binary agreement protocol, the asynchronous
common subset protocol, and the asynchronous atomic broadcast protocol. These
protocols provide essential functionalities for agreeing on a random polynomial
to refresh the secrets in an asynchronous network. We also need the polynomial
commitment protocol to make sure the polynomials are well-formed.

Asynchronous Binary Agreement (ABA) is an asynchronous protocol that al-
lows a number of parties to reach a consensus on a binary value. It is a popular
primitive in distributed consensus protocols like the multi-value agreement pro-
tocol.

Informally, at the beginning of the protocol, every party P; has an input
x; € {0,1}. Finally, every honest party outputs the same bit b and b € {z;}. An
asynchronous binary agreement protocol satisfies the following properties.

— Agreement If a honest party outputs a bit b, and another honest party
outputs a bit ', then b = V'.

— Liveness Eventually, every honest party outputs a bit b.

— Soundness If any honest party outputs a bit b, there exists a party index ¢
such that the input x; = b.

In Shanrang, we instantiate the asynchronous binary agreement with a Byzan-
tine fault tolerating protocol from Mostefaoui et al. [12]. This ABA protocol
runs in expected O(logn) asynchronous rounds (we roughly measure the asyn-
chronous rounds by the number of distributed random coins).

Asynchronous Common Subset (ACS) [2] In an asynchronous common subset
protocol, parties can propose a single bit (either 0 or 1) as the input to the
protocol. If enough parties have proposed, the honest parties eventually will
agree on a common subset of the parties who have proposed 1. More formally,

— Agreement If a honest party outputs V, eventually every honest party
outputs V.
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— Liveness If at least n —t honest nodes proposed, every honest party outputs
a vector V.

— Soundness If any honest party outputs V, then V includes at least n — 2t
honest parties, and |V| > n —t.

Asynchronous Atomic Broadcast [11] is an asynchronous protocol that allows n
parties to reach consensus on a sequence of outputs. If a value is input to enough
honest parties, it will be output by every honest party. Formally,

— Agreement If any honest party outputs a value v, then every honest party
outputs v

— Total Order For every two honest parties P; and Pj, either the output of
P; is a prefix of the output of P;, or the output of P; is a prefix of the output
of P;.

— Censorship Resilience If a value v is input to n — t honest parties, every
honest party outputs v eventually.

Polynomial Commitment is a useful primitive in cryptography that binds a
prover to a fixed polynomial and allows a verifier to efficiently check an evaluation
of the polynomial at a particular position.

In Shanrang, we instantiate the polynomial commitment scheme with the
Kate, Zaverucha and Goldberg (KZG) scheme [9].

3 New tool: Asynchronous Multi-Variate Common
Subset

Before we dive into the description of the Shanrang protocol, we define a new
primitive that we will be using in the main Shanrang protocol. This protocol
is in fact constructed in the Honeybadger BFT protocol [11], but the authors
called it an asynchronous common subset protocol. We want to distinguish this
from the strict definition of ACS in [2].

Asynchronous Multi- Variate Common Subset (AMVCS) allows a number of par-
ties to efficiently agree on a subset of a number of parties and their proposals.
AMVCS is closely-related to asynchronous common subset [2] and Asynchronous
Atomic Broadcast [11].

Different from an ACS protocol, AMVCS allows a party to propose an arbi-
trary message rather than a single bit value. After enough honest parties input
their messages, all honest parties eventually will reach a consensus on a subset
of the proposals.

We further distinguish the conceptually two different groups of parties in the
ACS protocol, the input group and the participating group. The input group are
those parties who both provide inputs to the protocol and participate in deciding
the common subset. In contrast, the participating parties do not input to the
protocol but only participate.
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Compared to the Asynchronous Atomic Broadcast protocol, an Asynchronous
Multi-Value Common Subset protocol does not care about the sequential order
of the outputs as it only outputs a set. However, AMVCS puts a (in some sense)
stronger constraint on the common subset that, every honest party sees the same
subset, while an atomic broadcast protocol only requires a non-trivial prefix of
all the output sequences to be the same. Moreover, not all parties propose val-
ues. The input group and participating group are decoupled. AMVCS does not
have the notion of resilience tolerance as all the parties might propose different
values.

More formally, AMVCS protocols satisfy the following properties.

— Agreement If a honest party outputs V, eventually every honest party

outputs V.
— Liveness If at least n —t honest nodes proposed, every honest party outputs
a vector V. C M, where M = {my,...,m>,_.} is the set of values proposed

by the parties (including adversaries who have proposed).
— Soundness If any honest party outputs V, then V includes at least the
proposals from n — 2t honest parties, and |V| > n — t.

To instantiate a AMVCS protocol, we use a similar approach in Honeybadger
BFT [11]. The protocol consists of two parts: a Reliable Broadcast protocol
(RBC) and an asynchronous common subset protocol. In the beginning, all the
parties in the input group broadcast the value with RBC to all the participating
parties. All the participating parties set up the ACS protocol. Note that, every
input party is also a participating party. Whenever a party receives the output m;
of an input party P; from the RBC protocol, it enters a bit 1 to the i-th channel
of the ACS protocol if it has not done so. Finally, when the ACS outputs a
common subset s C [n], the participating party inputs a bit 0 to all the rest
channels (i.e., whose index is not in the subset s), and outputs {m;|i € s} as the
output subset of AMVCS.

4 Protocol

In this section, we present the details of Shanrang protocol.

4.1 Model and Assumptions

In Shanrang, we assume point-to-point communication channels between parties
where the message latency is decided by the adversary.
We follow the same epoch-based proactive secret sharing model with CHURP [10].

As with CHURP, Shanrang is also a long-running cryptographic protocol. The
timeline is divided into epochs of variable length. At the beginning of each epoch,
Shanrang proactivize the secret by running a handoff protocol that transfers the
secret to a new commitee and refreshes the secret shares at the same time. When

the handoff protocol finishes, the new committee holds the secret and can par-
ticipate in any secure queries regarding the secret (e.g., an MPC protocol).
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More formally, for epoch number e > 0, we denote C(®) as the committee of
epoch e (how to elect such a committee in a robust way is orthogonal to our
work). Shanrang puts no restrictions between any adjacent committees. They
can be totally the same, or completely disjoint. We follow the same adversary
model as CHURP except that in Shanrang, we additionally allow the adversary
to determine the message latency. We limit the adversary to only control up to
t(¢) parties in the committee C'(®). While controlling a party, the adversary can
also observe the memory of that party and send arbitrary messages on behalf of
that party. For simplicity, we assume |C(®)| = n and t(¢) =t for all e > 0. And
we denote the i-th party in the e-th committee as Pi(e), holding a secret share
sge). In theory, Shanrang can support committees of different sizes and different
corruption thresholds. Namely, the threshold can change in different epochs.

At the beginning of the protocol, we assume the first parties hold shares
about a secret s. In each handoff protocol, the old committee C*~Y and the
new committee C(¢) together secretly use the old shares {sl(-e_l)} as private
inputs, calculate the new shares {sz(-e)}, and dispatch them to the correct party

Pl-(e) with the invariant that, upon requests, any ¢ + 1 parties can recover the
secret s.

Same as CHURP, Shanrang is also churn-tolerant. A proportion of parties
can leave the committee at any time, but new parties can only join the new
committee before a handoff protocol. We denote CS;J? as the alive parties
in the old committee. We also assume that each party in the committee has a
public key known to all the parties in the whole system. This is to make sure that
the point-to-point communication is authenticated. We also assume each pair of
parties has setup a symmetric key (e.g. via D-H exchange). Alternatively, we can
always use the public keys to encrypt the messages but we assume symmetric
encryptions are much faster.

In terms of the adversary tolerance budget, Shanrang can only tolerate 1/3 of

the previous alive parties, and 1/4 of the parties in the new committee. Namely,
t < min(||Cyi, /3], LIO]/4)).

alive

4.2 Inherited Techniques from CHURP

Same as CHURP, Shanrang uses bivariate polynomials B(z,y) s.t. B(0,0) = s
to generate the shares. Each share is a univariate polynomial, either B(z,%) or
B(i,y) where i is the index of the party.

During a handoff phase, the parties refresh the shares by jointly sampling
a new bivariate polynomial Q(z,y) s.t. Q(0,0) = 0. This is equivalent to re-
sharing a secret of 0. Each party adds the share of @ to its previous share
of B. It is easy to see that the new shares correspond to a new polynomial
B'(xz,y) = B(z,y) + Q(z,y), and therefore, B’(0,0) = B(0,0) = s.

Shanrang also inherits the dimension switching technique from CHURP that,
by using a degree (t,2t) polynomial B(:,-), the parties can switch to a higher
threshold 2t by switching the sharing dimension of B, namely, a share change
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from B(i,y) to B(x,i). This is important because both committees are present
during a handover, and the adversary can control up to 2t parties at this moment.

Like CHURP, Shanrang also assumes a pessimistic path. But we trigger the
pessimistic path only when we found an active adversarial behavior. Shanrang
handles network events like high latency surges well in the optimistic case. We
omit the description of the pessimistic path in this work since if triggered, it is
identical to that in CHURP.

4.3 Overview

In this subsection we give an overview of Shanrang protocol. During the handoff
phase, the parties first perform dimension reduction to switch from threshold ¢
to threshold 2¢. Then, the parties perform the proactivation to refresh the shares
by jointly sampling a new 0O-shared polynomial Q(z,y). The parties in the new
committee also need to perform verification to make sure that the shares from the
old committee are valid. Lastly, the parties end the handoff phase and calculate
the full shares to switch back to ¢-threshold.

4.4 Notation

Before we start describing Shanrang, we list our denotations in Table 1. We use
C=1 and C(® to represent the previous committee and the new committee.
For simplicity, we denote the set of the parties in C®~Y and C'(®) as ¢; and c.

We denote the public keys and private keys for the i-th party in the new
committee as PK; and SK;. We will also use a symmetric encryption scheme
between two parties in the old committee and the new committee. We denote
the key as K j, the encryption function as Ek () and the decryption function as

Dk (x). C’((j;l) denotes the alive parties in the old committee before the handoff.
We use B and B’ to indicate the old and new bivariate polynomial of degree
(t,2t).

We denote the polynomial commitment of B(z, j) as Cp(,,j), and the corre-
sponding witness as Wpg(, ;). We denote the O-share proactivization polynomial
as Q.

We inherit the optimization of CHURP of the 0-sharing and use the same
denotation of the subset of nodes participating in the handoff as U. However,
we have made necessary changes to tolerate the adversary in the asynchronous
network and use AMVCS to determine which subsets of U to interpolate the
new polynomials. We denote these subsets as U; and Us. Besides the above, we
also assume a collision-resistant hash function H(z). We use A; to represent the
Lagrange coefficients.

4.5 Algorithm

Figure 1 shows the outline of Shanrang’s handoff protocol. We assume Cp(, j),
the polynomial commitments of the previous shares, are public. At the beginning
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Table 1. notation

Notation Description
¢ ¢ Old/New committee
ci, C; Members of the old/new committee
PK;, SK; Public/Private keys of the new committee
K; ; symmetric key between two members generated by D-H key exchange

Ek (z), Dk (z) Encrypt/Decrypt function with key K
ole-b Subset of the old committee that is alive before handoff

alive
B (i,j), B’ (i,7) Old/new (t,2t)-degree polynomial for sharing the secret
CB(a,j) KZG commitment to B (z,7)

Wa,45) Witness to evaluation of B (z,7) at © =14
Q (i,7) Bivariate proactivization polynomial
U Nodes participating in the handoff
Ui,Us Subset of U guaranteed up to date after ACS
H (z) Hash function (link elements of set if necessary)
Aj Lagrange coefficients

of the protocol, it sorts the parties in the new committee based on lexicographic
order of the public keys, to deterministically select a subset of old committee U
of size 4t + 1.

The first step is to generate the dimension-reduced shares. Every party ¢; in
the old committee sends a point with witness {B(i,j), Wg( ;) } to every party
c; eU.

The parties c;- in U together invoke the OptShareReduce protocol and calcu-
late the reduced share B(z, j).

Then, the parties in U collaboratively proactivize the shares by setting up an
instance of AMVCS and invoke OptShareUpdate. After OptShareUpdate finishes,
the parties get a degree-2t local 0-share polynomial P(j).

Next, all the parties in the new committee C(®) launch another instance of
AMVCS. Note that, in this AMVCS, C(®) is the participating party set and U;
is the input party set. They invoke OptShareGen to verify the sampled 0-share
polynomials and generate the local shares for the new committee. Particularly,
for parties outside U, they participate in the AMVCS right away.

Finally, the parties in the new committee end the handoff phase and calculate
the full share by switching back to ¢-threshold.

In the next subsections, we go through the sub-protocols OptShareReduce,
OptShareUpdate, OptShareGen, and EndHandoff in details.

4.6 OptShareReduce

Figure 2 shows the pseudocode of OptShareReduce. It verifies the points from
the old committee and switches the dimension to 2¢.

For any party cg- € U, upon receiving at least 2¢ + 1 points with witnesses
from the old committee, it verifies the commitments and interpolates the points



Title Suppressed Due to Excessive Length

11

Algorithm 1: Shanrang Protocol Outline

Public Input: {CB(ZJ-) cj € C(e_l)}
Input: Set of nodes C¢~Y, C©
Assertion: ‘C(e_l) =n>3t+1, ‘C(e)

alive

=n'>4t+1

Order C(® based on lexicographic order of PK;

2 Let U = {c}|j € [4t + 1]} denote the first 4¢ + 1 nodes

© W0 N o o

10
11
12

13
14
15

16
17
18

Let Ci?;i) = {ci]i € [n]} denote all alive nodes in the old committee

// Step 1: Generate reduced share
Each node ¢; € ¢~ do

alive
for ¢j € U do
| Send off-chain to node ¢} a point with witness {B (3,7) s WB(Z‘J')}
end
Each node ¢ € U do

| Invoke OptShareReduce and calculate B (z, j)

// Step 2: Proactivate
Each node ¢ € U do

Set up Asynchronous common set protocol AMVCS;
‘ Invoke OptShareUpdate and calculate P (j)

// Step 3: Verification and Dimension Switch
Each node ¢ € C® do

Set up Asynchronous common set protocol AMVCS,
‘ Invoke OptShareGen and retrieve verification status.

// Step 4: End Handoff and Interpolate Full Shares
Each node ¢ € c® do

Set up Asynchronous binary agreement BAeng
‘ Invoke EndHandoff and calculate B’ (j,y)

to get B(x, j), a share in the (2t)-degree dimension. The subprotocol returns the

share B(zx,j) back to the outline.

4.7 OptShareUpdate

Figure 3 presents the subprotocol OptShareUpdate. This protocol asks all the
parties c; € U to jointly sample a new degree-2¢t polynomial P s.t. P(0) = 0.

[4t +1]. Then, it encrypts Pj(k) with the symmetric key of K x and inputs the

Firstly, the party locally generates a random degree-2¢ polynomial PJ’» s.t.
Pi(0) = 0. The party calculates 4t + 1 different evaluation points P}(k),k €

ciphertext Ey, , (Pj(k)) to the k-th party channel of AMVCS instance AMVCS;,

for every k € [4t + 1]. We use AMVCS here to make sure that the parties agree

on a single O-shared polynomial.
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Algorithm 2: OptShareReduce (For node c)

1 Upon receiving at least 2¢ + 1 points with witnesses
{(B(i,5), Wg,)|i € [2¢ +1]}
// Assuming from the first 2t+1 nodes
for i € 2t + 1] do
| Invoke VerifyEval (Cp (a5, i, B (i,5) , Wh(.j))
end
Interpolate correct points to construct B (z, j)

LU V)

Algorithm 3: OptShareUpdate (For node c})

Generate a random polynomial Pj s.t. deg (P}) = 2t, P} (0) =0
Encrypt points and input {Ex; , (P; (k))|k € [4t + 1]} to AMVCS,
3 Upon appearing in the output of AMVCS;
// All nodes agree on 3t+ 1 out of 4t + 1 nodes whose valuations
of polynomial will contribute to the global one
// Denote the aggreed subset as U
// Now we construct P = Zc;eUl P]

N o=

'

Decrypt points and retrieve {P] (j) |c; € U1}
Calculate P (j) = 3. <, Pi ()

o

Whenever the party sees an output from AMVCSy, it decrypts the points and
retrieves {P/(j)|c; € Ur}. Then, it calculates P(j) = > . <y, P/(j) and returns
the share.

4.8 OptShareGen

Figure 4 shows the pseudocode of subprotocol OptShareGen.

At the beginning, each party in U generates a random degree-t polynomial R;
s.t. R;(0) = P(j). Conceptually, now we have a O-shared degree-(,2t) bivariate
polynomial Q(z,y) = R, (z), and Q(0,0) = R;(0)|;=0 = P(j)|j=0 = P(0) = 0.

The party calculates B’ (z,j) = B (z, j)+R; (x), effectively the refreshed new
share. It also calculates Z; () = R; () — P (j) and the commitment Comm; =
{979, C2,, Wz,0, Cpr(a }-

Then, it enters the encrypted point Ef, ; (B/ (4,7) ,WB/(i,j)) and the com-
mitment Comm,; as input to the i-th channel of another instance AMVCS,, for
every ¢ € Uj.

Upon AMVCS; outputs, the party retrieves the commitments {Commy|c; € Us}
and the ciphertexts of {{B’ (j,k),Wg:(jr) }|c} € Uz2}. It then verifies that P is
really a zero-share polynomial

11 (gp"“))kk —1.

C;CEUQ

Finally, it checks the commitments for the shares sent from parties in Us.
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Algorithm 4: OptShareGen (For node c)

1 Generate a random polynomial R; s.t. deg (R;) =t, R; (0) = P (j)
2 Calculate B’ (z,j) = B (z,j) + R; (z) and Z; (z) = R; (z) — P (j)
3 Generate commitments Comm; = {gp(j),Czj,WZ],(O),CB/(IJ)
4 Encrypt points and input {Commy, Ex, , (B’ (i,7), Wgsr(i.5),p(;),)|¢i € U1} to
AMVCS,
5 Upon receiving output of AMVCS,
// All nodes agree on 2t + 1 out of 3¢+ 1 nodes whose evaluations
of the polynomial will contribute to the global one
// Denote the agreed subset as Us
6 Retrieve {Comm;|c; € Ua}
Decrypt points and retrieve {{B’ (j, k), Wg' (1) }|ck € U2}
8 Verify the commitments are valid and the zero-share property

Ak
Pk
Miyern (979) " =1
9 for ¢, € Us do

~

10 Verify g ®) = Commy 0]

11 Invoke VerifyEval (Cz,,0, Wz, (o))

12 Verify polynomial Cp/(4,k) = CB(a,k) X Cz, X gt®
13 Invoke VerifyEval (Cp/ 2.1y, 4, B' (4, k) , Wrr(j1))

14 end

4.9 EndHandOff

Figure 5 presents the last piece of the Shanrang protocol. In EndHandOff subpro-

tocol, if all the verfication passed, the party broadcasts the verfication details to-

gether with the sender’s signatures. It locally interpolates {{B' (4, k) s Warjk) } |c§C € U2}
to construct B’ (j,y). Finally, it broadcasts the KZG commitments of the new

shares {CB/(IJ-) ’c; € Ug} to all the parties with a Byzantine tolerating protocol.

Note that, since at least 2t 4+ 1 parties participate the broadcasting, any party

will receive at least ¢ + 1 sets of commitments. Among them, at least one set is

valid.

4.10 Analysis

Assuming n parties in the old commitee and n’ parties in the new commit-
tee. Shanrang generates O(nt) messages in generating the reduced shares. In
OptShareUpdate, each input to the AMVCS is O(t), so the communication com-
plexity is O(At?logt). In OptShareGen, each input to the AMVCS is O(n'), so
the communication complexity is O(Atn'?logn’) since only O(t) among n’ nodes
are actually broadcasting. As the AMVCS instances run the binary agreements
in parallel, the total time complexity is in expectation O(logn’).
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Algorithm 5: EndHandoff (For node c)

1 Upon all verifications passed
2 Broadcast successful verification
3 Interpolate points {{B’ (j,k), WB/(j’k-)}|c;€ € Uz} to construct B’ (j,y)
4 Byzantine broadcast KZG commitments of new reduced shares
{Cpi(a,5)|cj € Uz} to all the parties.
Upon some commitment verification failed
‘ Byzantine broadcast failed verification and its detail to blame the party.
Upon at most ¢t nodes did not output success
| End handoff and move to the normal phase of the epoch
Upon at least ¢ + 1 nodes output fail
10 ‘ Fall to pessimistic path

© o N o u

5 Proofs

Theorem 1 (Liveness). The adversary A cannot prevent the protocol from
making progress, i.e. all honests nodes can eventually end handoff phase.

Proof. We follow the three stages of the main algorithm and prove that an
adequate amount of nodes are up to date for the three algorithms to proceed.
To do that we prove the following three lemmas:

Lemma 1. Given that

C(e_l)‘ > 3t+1, all 4 + 1 nodes in U, including at

alive

least 3t + 1 honest ones, can eventually construct their original reduced share
B (x,j) in algorithm OptShareReduce.

Proof. A can corrupt at most ¢ nodes in C((j;)i), so at least 3t +1 —t =2t + 1
honest nodes will send points with witnesses to all nodes in U. Nodes in U are
guaranteed to receive at least 2t+1 points with witnesses, among which at most ¢
points are sent from corrupted nodes. At least ¢t + 1 points will pass verification.
They are all correct points and each node has enough points to interpolate a
t-degree polynomial B (z, j).

Lemma 2. Given that |U| = 4t +1, All honest nodes in U can eventually agree
on polynomial P, summing the proposed polynomial of 3t + 1 nodes, including at
least 2t + 1 honest ones, in algorithm OptShareUpdate.

Proof. A total of 4t + 1 nodes participate in AMVCS; with at most ¢ corrupted.
According to the totality property of the AMVCS primitive, all honest nodes
(at least 3t + 1) can produce an output. Also, according to the validity property,
it contains the inputs of at least 3t + 1 nodes, 2t 4+ 1 of which are honest. This
guarantees the successful agreement on P.

Lemma 3. Given that |C’(e)| > 4t 4+ 1, All honest nodes in C©) can eventually
agree on polynomial Q, interpolating the proposed polynomial of 2t + 1 nodes,
including at least t + 1 honest ones, in algorithm OptShareGen.
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Proof. A total of at least 3t + 1 nodes participate in AMVCS, with at most
t corrupted. According to the totality property of the AMVCS primitive, all
honest nodes can produce an output. Also, according to the validity property, it
contains the input of at least 2¢ + 1 nodes, t 4+ 1 of which are honest nodes. This
guarantees the successfull interpolation on Q.

Thus, all nodes can eventually receive enough points and commitments from
AMVCS,. If all the inputs are from honest nodes, for each honest node, all
verification will pass and it will output success and interpolate the correct full
share. On the other hand if there are corrupted nodes among them, honest nodes
will fail the verification and output fail.

Based on how the corrupted nodes behave, there are several possibilities.

— If any corrupted node violate zero-share and generate a wrong new share,
such behavior can be detected during the verification involving only the
commitment package, i.e. line 10-14 of algorithm OptShareGen. This means
all honest nodes will fail some of these verifications.

— On the other hand, if all the corrupted nodes follow zero-share, but anyone
of them sends a faulty value of the correct new share, such behavior can
be detected during the KZG evaluation verification, i.e. line 15 of algorithm
OptShareGen. This means there can be only part of the honest nodes that
fail these verifications.

— Also, we take into consideration that corrupted nodes may refuse to submit
their verifications in an attempt to stall the handoff.

We require that the handoff phase ends when at most ¢ nodes do not out-
put success. At that time we can guarantee the success of zero-share and the
correctness of the handoff, as well as enough points to recover the secret and
enough nodes to proceed the protocol. If some honest nodes finish their verifica-
tion and output success later on, they can still add in to the new committee. If
they output fail, they can just refrain from joining.

On the other hand, if at least ¢ + 1 nodes output fail, the handoff fails and
we fall into pessimistic path (same as CHURP) to single out corrupted nodes.
This way the protocol is destined to proceed and liveness is guaranteed.

Theorem 2 (Integrity). When handoff phase eventually ends, either all hon-
est nodes hold their correct full shares and all three invariants hold, or at least
t 4+ 1 honest nodes output fail.

Note: The three invariants are:

— Inv-Secret: The secret s = B (0,0) remains the same.

— Inv-Comm: KZG commitments to a complete set of reduced shares, e.g.
{B (z,k)|k € [2t 4+ 1]}, are available to all nodes.

— Inv-State: At least 3t + 1 nodes of the new committee hold a full share
B (j,y) and a proof to its correctness, which contains a set of 2¢ + 1 points
and their respective witnesses.
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Proof. We notice that a complete set of reduced shares only requires that there
are 2t + 1 of them. It does not need exactly be k € [2t 4 1], because Cp(, ;) =
gB@3) and we can apply lagrange interpolation to generate the KZG commit-
ment of any specific share, as long as there are 2t + 1 available ones.

Specifically, assuming k € P, we can derive the following formula from la-
grange interpolation B (z,1) = >, . p A\, B (2, k):

/ A
Coa) = gB(a,l) _ H g)\kB(a,k) _ H CB'Ez,k) (1)
kEP keP

This means a set of 2t + 1 witnesses are sufficient to generate the witness of
any point of a reduced share.

Note that there may be fractions on the exponential, which is equivalent to
extracting the root of a group element. Although we cannot derive the actual
value of the root due to t-C'DH assumption, there is a way we can detour this
operation by tweaking the KZG commitment scheme. The modified scheme and
its proof is provided in Appendix A.

According to lemma 1, all honest nodes in U can correctly construct their
reduced share. Then, in algorithm OptShareGen, the new committee will verify
the points they receive to prove the correctness of @, ensuring the correctness
of the new full share. Specifically, we can sequentially prove the correctness of
each step of generating new shares:

— The commitments received are valid and consistent, as in line 8 of algorithm
OptShareGen, .

— P is a zero-hole polynomial, i.e. P (0) =0, as in line 9,

— Zj is a zero-hole polynomial, i.e. Zj (0) = Rx (0) — P (j) = 0, as in line 12.
(This means B’ (0,j) = B(0,7) + P(j), and by interpolation it means
B’ (0,0) = B(0,0) + P (0) = B(0,0). Thus it proves invariant Inv-Secret)

— B’ (z,k) is correct, i.e. B (z,k) = B(x,k) + Zy, (x) + P (k), as in line 12.

— CBr(ak) is the correct KZG commitment of B’ (x, k), as in line 13.

(This proves invariant Inv-Comm)

— B’(j,k) is a correct valuation of B’ (z,k) at j, as in line 13.

(This proves invariant Inv-State)

Based on these validations we know that, after interpolation, the new full
share B’ (j,y) guarantees the three invariants, which proves the integrity of the
algorithm.

Theorem 3 (Secrecy). The adversary A, corrupting no more than t nodes in
both the old and the new committee, can deduce nothing about the secret s, i.e.
all possible values of it is equally likely.

Proof. Based on the hiding property of the KZG commitment, KZG witnesses
and commitments give no information about the secret s because A cannot
determine the respective polynomial with non-negligible probability.

Based on the security of the symmetric encryption scheme, corrupted nodes
cannot learn the private inputs to AMVCS,.
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Based on the security of the Diffie-Hellman assumption, encrypted messages
are also secure to corrupted nodes if they do not take part in the exchange.

Other information retrieved by A also provide no information about the
secret s according to the following three lemmas.

Lemma 4. Corrupting no more than t nodes in both the old and the new com-
mittee, A sees all values of secret s as equally likely in algorithm OptShareReduce.

Proof. A can learn at most 2t reduced share B (z,j), in worst case ¢ of which

from corrupting nodes in U and the other ¢ from corrupting nodes in Cé;_vi)
that stay in the new committee. Apart from that A can learn at most ¢ full
share B (j,y) from corrupting nodes in CC(LZ;?. But since B is a (t, 2t)-degree
polynomial, the numbers of both full shares and reduced shares are no more
than the respective degree of it. So these shares are not sufficient to interpolate
the secret-sharing function B. Thus the value of any point not included in these

shares, including the secret s = B (0,0), are viewed completely random.

Lemma 5. A Corrupting no more than t nodes in the new committee, the new
committee can generate a random polynomial Q.

Proof. According to lemma 2, the output of AMVCS; contains the input of 2¢+41
honest nodes, guaranteeing the generation of P to be random. According to
lemma 3, the output of AMVCS,; contains the input of ¢ + 1 honest nodes, guar-
anteeing the interpolation of ) to be random.

Lemma 6. Corrupting no more than t nodes in the new committee, A sees all
values of secret s as equally likely in algorithm OptShareGen.

Proof. A can learn at most ¢ full share B’ (j,%) from corrupting nodes in C().
It is no more than the respective degree of the polynomial B’, which is also t.
So these shares are not sufficient to interpolate the secret-sharing function B’.
Thus, the value of any point not included in these shares, including the secret
s = B’(0,0), are completely random.

In this way secrecy of the protocol is proved.

6 Evaluation

We implemented Shanrang with Python and tested on geographically distributed
machines on Amazon EC2. Specifically, we simulate an old committee of 3t + 1
parties performing handoffs with a new committee of 4¢ 4+ 1 parties. We use
Honeybadger BFT [11] as the AMVCS protocol. For the symmetric encryption
system, we use AES-256 in the CBC mode. We instantiate the common coin
primitive with Boldyreva’s signature scheme [3]. We use the Charm wrapper of
PBC library for the bilinear group used in KZG scheme. We used the symmetric
bilinear group SS512, which provides security of 159 bits. Each commitment
takes 64 bytes. For each data point, we ran 5 times.

We evaluated Shanrang on two different setups:
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Fig. 2. Total Time vs. Size of New Committee

— Running all the parties on Amazon EC2 machines located in 12 regions
across different continents. Specifically, we use t2.micro machines from North
Virginia, Ohio, North California, Oregon, Ireland, London, Frankfurt, Sao
Paulo, Singapore, Sydney, Tokyo and Central Canada. This setup shows
how Shanrang performs on the global network. Geographically separated
nodes provides strong robustness against failure or corruption. This highly
increases the difficulty of adversaries to corrupt them in a short amount of
time.

— Running all the parties on The Onion Router (Tor) relay network. Tor is a se-
cure encrypted protocol that transmits communications with onion routers,
where the encrypted messages are relayed through a number of relay nodes.
Tor network is known unstable and it has very high latency [7]. Despite the
wide range of latency of Tor [5], Shanrang provides the liveness guarantee
without any trouble.

6.1 Optimal Handoffs

Figure 2 shows the plot of the total time versus the size of the new committee.
The x-axis is the size of the new committee, ranging from 5 to 41 for EC2 and
from 5 to 21 for Tor experiments. The y-axis is the total time measured in
seconds. We can see that for both settings, total time to complete one handoff
increases as the number of nodes increases. Even with the high latency on the
Tor network, performance remains on the same level with that on EC2 machine
network. With our python implementation, we achieve a handoff time of 200
seconds for a network of up to 41 nodes.

Figure 3 and Figure 4 present how the message size and the number of
messages change with the size of new committee. As our protocol is totally
network agnostic, the message sizes and counts are the same across the EC2 and
Tor setups. More specifically, when the size of the new committee reaches 42,
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the total network traffic reaches around 4MB, causing a network bandwidth of
20 KB/sec. This bandwidth does not pose any trouble even for the Tor network.

6.2 Handoff with Corrupted Nodes

To evaluate how Shanrang works against adversaries, we added silent adversaries
to the committee to test the performance of the protocol under corruption. For
silent adversaries, they do not respond to any messages. Specifically, we ran 41
nodes and vary the number of nodes that become silent adversaries. Figure 5
shows the total time of handoffs versus the number of corrupted nodes. We can
see that the performance does not fluctuate much. This is mainly because, among
EC2 machines across continents, message delivery does not have a consistent
speed so even when all nodes behave honestly, some messages are to be received
later and nodes that send them are viewed behind in progress. Namely, slow
nodes are treated as adversaries automatically and the tolerance quota is always
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utilized to speed up the protocol by having the fast nodes not waiting for the
slow nodes. However, different from a true adversary that behaves maliciously, an
honest slow node is able to catch up. Considering that the protocol can proceed
without these messages, corrupted nodes that do not send messages at all will
not significantly slow down the progress. Similarly, Figure 6 and Figure 7 show
that the message size per honest node and message count per honest node does
not change significantly with the number of adversaries.

7 Conclusion

In this work, we present Shanrang, the first fully asynchronous proactive se-
cret sharing scheme with dynamic committee support. It tolerates up to n/4
Byzantine faults.
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A Interpolation with KZG commitments

In this section, we discuss how we modify PolyCommitp [9] to satisfy our need of
interpolating commitments and witnesses. In short, we allow the commitments
and witnesses to be represented in a “power + exponential” form, while still
maintaining their uniqueness.

Specifically, in our scheme, we use (C,p) = C 7 to represent a commitment.
The same applies to witnesses. As long as p # 1, we cannot simplify it using the
public key anymore because of the t-CDH assumption. That’s why we have to
keep this form after the interpolation.

We follow the original setup and the implementations of Commit and CreateWitness,
except that for these two functions, we output a tuple, namely, (C, 1) instead of
C and (W, 1) instead of W.

As for VerifyEval function, we adjust it so that it accepts our weakened rep-
resentation of commitments and witnesses:

VerifyEval (PK, (C,pc) ,i,¢ (i), (w;, pw)) verifies that ¢ (i) is the evaluation
at the index 7 of the polynomial committed to by (C,p). After calculating d =
(Pes Pw) = ged (Pe, Pw) and I = [pe, pw] = lem (pe, Pw ), the algorithm outputs 1 if
e (C,g)pTw =e (wi,ga_i)% e (g,g)w(’), and 0 otherwise.

Note that, if both the commitment and the witness are directly generated
by the original Commit and CreateWitness implementations, where, both are not
generated by interpolation and p. = p,, = 1, then it is exactly the same as the
original VerifyEval function.

1
The algorithm is still correct because if we let C' = Ce and w) = w/™ , then
based on the original scheme we have:
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= (e (wig* ) e (o, g)“"”)l —e(wi,g° ) e(g,9)?  (2)

Also, such modification satisfies the property of evaluation binding. Suppose
there exists an adversary A that is able to break the property of commitment
(C, p.) and compute two witness tuples (i, ¢ (i), (w;, p,)) and (i, ()", (w}, pl,)),
such that they are both accepted by VerifyEval, we can construct an adversary
B that breaks the t-SDH assumption using .A:

B presents the ¢-SDH instance <g,g,g°‘,ga2, ...,gat> as public key to A.

A computes the commitment and two witness tuples as above. B calculates
(Pes Pwy Py) = dy pe = dre, pw = dry, D), = drl,, and after offsetting it gets:

e(C.g)"™ = e (wi,g°") e (g, g)" " (3)

e(Cog)"™ = e (wl,g* ) e(g, )" (4)

For 1; = log, w; and v} = log, wj, we can get:

eq. (3)™ = eq. (4)"

=i (@ — 3) Terly + dreryrl,d (1) = ) (@ — 8) Tery + dreryrl,d (i) (5)
Yiry, — iy dryry,
¢() —o(i) a—i

Therefore, B can compute:

S S
W\ (@6 m) _ ity —vitw 1
i _ gdrwrgu(as(i)'—w)) =ga—i, (6)

and output <—i,gﬁ>, thus breaking the ¢-SDH assumption.

The modification also satisfies the hiding property, because we do not change
how commitments and witnesses are generated. Any witness generated through
the interpolation requires at least ¢+ 1 points, which is not allowed in the hiding
property. Lastly, we note that the denominators should be polynomial-sized to
guarantee the soundness.



