
Differential Meet-In-The-Middle Cryptanalysis

Christina Boura1, Nicolas David2, Patrick Derbez3, Gregor Leander4, and
María Naya-Plasencia2

1 Université Paris-Saclay, UVSQ, CNRS, Laboratoire de mathématiques de
Versailles, 78000, Versailles, France

christina.boura@uvsq.fr
2 Inria, France

{nicolas.david,maria.naya-plasencia}@inria.fr
3 Univ Rennes, Inria, CNRS, IRISA, France

patrick.derbez@irisa.fr
4 Ruhr University Bochum, Bochum, Germany

gregor.leander@rub.de

Abstract. In this paper we introduce the differential-meet-in-the-middle
framework, a new cryptanalysis technique against symmetric primitives.
The idea of this new cryptanalysis method consists in combining into one
attack techniques from both meet-in-the-middle and differential crypt-
analysis. The introduced technique can be seen as a way of extending
meet-in-the-middle attacks and their variants but also as a new way to
perform the key recovery part in differential attacks. We provide a simple
tool to search, given a differential, for efficient applications of this new
attack and apply our approach, in combination with some additional
techniques, to SKINNY-128-384. Our attack on SKINNY-128-384 permits
to break 25 out of the 56 rounds of this variant and improves by two
rounds the previous best known attacks in the single key model.

Keywords: new cryptanalysis family, differential cryptanalysis, meet-in-the-
middle cryptanalysis, SKINNY

1 Introduction

Since the 1970’s and the standarization of the DES block cipher, dozens, even
hundreds of different symmetric primitives have been designed to address spe-
cial needs and industrial requirements or to provide an answer to particular re-
search problems. A fundamental procedure that permits to decide which among
those primitives can be trusted and safely deployed is cryptanalysis. The first
symmetric cryptanalysis techniques were developed in the late 1980’s and in the
beginning of the 1990’s. Among these first attacks, one should cite of course
differential [7] and linear cryptanalysis [31], but also boomerang [38] and rect-
angle attacks [6], impossible differential cryptanalysis [27, 5], higher-order dif-
ferential cryptanalysis [28], meet-in-the-middle attacks [17] or differential-linear
attacks [29]. More attacks appeared in succession to new designs, as for exam-
ple the square attack [14], particularly well-adapted to AES-like constructions

2 Boura et al.

or the subspace invariant attacks [30] that worked well against some particular
lightweight ciphers. In parallel, some techniques, as the division property [36],
permitted to define a new algorithmic framework to generalize older attacks.
Nowadays, it is however more and more rare to come up with entirely new
cryptanalysis techniques, while improvements of the known ones are more com-
mon.

Among the existing cryptanalysis techniques, differential attacks [7] are prob-
ably the oldest and the most well studied cryptanalysis methods. Their idea is
to exploit an input difference that propagates through the cipher to an output
difference with a high probability. Through the years, these attacks have been
refined and many improvements to different steps of the attack procedure have
been introduced. One can cite the use of structures to build up the plaintext or
ciphertext pairs [8], the use of truncated differentials [28], conditional differen-
tials [26], the technique of probabilistic neutral bits [13] or refinements in the key
recovery process. A first research question in link with our work is the following:

Question 1. Do there exist alternative methods for doing the key recovery step
of a differential attack more efficiently?

Another popular technique that has been useful in many cryptanalysis appli-
cations, and the subject of a large number of improvements and further studies
is meet-in-the-middle (MITM) cryptanalysis [17]. The idea of basic MITM at-
tacks is to split the cipher into two parts, where each part can be computed
with partial knowledge of the key. An attacker can then validate partial key
guesses by checking for a match in the middle. Many extensions and refinements
of the basic attack exist today. One can for example cite the technique of partial
matching, where only a part of the middle state is known, guessing some bits
of the internal state [20], the all-subkeys approach [24], the splice-and-cut tech-
nique [1, 2, 22] and the sieve-in-the-middle (SITM) approach [11] that permits to
extend the length of a MITM attack by searching for a match through an extra
S-box layer in the middle. Finally, the method of bicliques is a cryptanalysis
technique [9] that aims at extending MITM attacks by some rounds. A second
research problem of interest to us and that motivated our initial work is:

Question 2. Is there a new way to permit to a MITM attack to cover more
rounds?

In this paper we provide a positive answer to both questions by proposing
a new cryptanalysis technique that we call the differential-meet-in-the-middle
attack. The idea of this new technique is to use a differential to cover several
middle rounds of the cipher while running a meet-in-the-middle attack on its
external rounds. More precisely, attacks relying on the MITM technique allow
to perform in parallel guesses of the initial and final involved keybits.

With our new technique, a middle part of the cipher is covered by a differen-
tial and thus we have to apply MITM techniques on much less rounds than with
all previous MITM-type attacks. Note that Demirci-Selçuk MITM attacks [16]
applied with the differential enumeration technique [19] also combine to some

Differential Meet-In-The-Middle Cryptanalysis 3

extent truncated differentials and the MITM approach, but in this case the guess
is done in parallel on the inner part (with a truncated-based distinguisher) and
the external part, trying to match some particular properties of the differen-
tial set. Interestingly, our new method can also be interpreted as a differential
attack where the key recovery step is done in a different way. Indeed, starting
from a given plaintext-ciphertext pair, we guess in parallel the input keys that
allow us to compute another plaintext ensuring the given input difference of the
differential, and the output keys that allow us to compute the other ciphertext
that ensures the output difference of the differential, and compute the associated
plaintext for all these ciphertexts by making calls to the oracle. Next, we try to
match the list of plaintexts computed with the guesses of the input key bits and
the list of plaintexts computed with the list of output keys by finding a collision.
We repeat this for enough plaintexts so that we can expect one of them to sat-
isfy the differential. All collisions found will imply a potential candidate for the
associated guess of keys. This can usually be done efficiently with list merging
algorithms like the ones in [33].

In order to demonstrate the efficiency of our new cryptanalysis technique,
we apply it to the block cipher SKINNY and we show how to break 25 out of
the 56 rounds of the SKINNY-128-384, the 128-bit block variant employing a
384-bit key. Our attack improves by two the number of rounds of the previous
best attack against this variant in the single key model. A summary of the best
attacks against SKINNY-128-384 is given in Table 1.5

Table 1. Best attacks against SKINNY-128-384 in the single key (SK) model together
with the results presented in this paper. ID stands for impossible differentials, MITM
for meet-in-the-middle attacks and DS-MITM for Demirci-Selçuk-type MITM.

Rounds Data Time Memory Type Ref.

21 2123 2353.6 2341 ID [39]
21 2122.89 2347.35 2336 ID [23]
22 296 2382.46 2330.99 DS-MITM [35]
22 292.22 2373.48 2147.22 ID [37]
23 2104 2376 28 MITM [18]

23 2117 2361.9 2118.5 Diff-MITM Section 5.1
24 2117 2361.9 2183 Diff-MITM Section 5.2
24 2122.3 2372.5 2123.8 Diff-MITM Section 5.3
25 2122.3 2372.5 2188.3 Diff-MITM Section 5.3

The rest of the paper is organized as follows. Section 2 describes the general
framework of our new cryptanalysis technique, compares it to both differen-
5 Note that [23] provides a 26-round attack against SKINNY-128-384. This attack is

an impossible differential one and relies on differences in the tweak. Even if this is
stated in the paper, the result is still erroneously presented as a single-key attack.

4 Boura et al.

tial and MITM attacks and provides several improvement techniques. Section 3
describes a new tool for searching attacks of this type on a given cipher. The
specifications of the SKINNY tweakable block cipher are given in Section 4. Our
attacks against SKINNY-128-384 are described in Section 5 and finally several
open problems are discussed in Section 6.

2 The new attack: Differential MITM

We propose in this work a new cryptanalysis technique against symmetric prim-
itives. This new attack aims at combining meet-in-the-middle (MITM) attacks
together with differential cryptanalysis, and we will call this new technique
differential-MITM. The main motivation of our work was to investigate whether
there exists a method for reaching more rounds than the sieve-in-the-middle at-
tack [11, 12], an extension of classical MITM attacks. However, our technique
can also be interpreted as a new key-recovery method to apply in differential
cryptanalysis. We will present in this section a high-level description of the new
technique. More precisely, we will provide a general framework that describes
how to mount a differential-MITM attack in a generic and simple way, and we
will show how to combine this generic method with two techniques: the parallel
treatment of data partitions in order to add one round mostly for free, as well
as a technique to reduce the data complexity.

2.1 General framework

Consider an n-bit cipher E decomposed into three sub-ciphers: Eout ◦Em ◦Ein,
as depicted in Figure 1. Let the number of rounds of Ein, Em and Eout be rin, rm
and rout respectively. Finally, let ∆x be the input difference to the middle part
Em, ∆y the output difference of Em and suppose that the differential ∆x → ∆y,
covering the rm middle rounds, has probability 2−p.

We start our analysis with a first randomly chosen plaintext P and its as-
sociated ciphertext C, and we aim at generating a second plaintext-ciphertext
pair (P̃ , C̃) such that together they satisfy the differential on the middle rounds.
Our new idea is to generate (P̃ , C̃) with a meet-in-the-middle approach. For
this, candidate plaintexts P̃ are computed from both the plaintext P and the
difference ∆x while candidate ciphertexts C̃ are computed from C and ∆y. The
match is then performed on the relation E(P̃) = C̃ (or P̃ = E−1(C̃)).

Note that the roles of the upper and lower part can be interchanged without
loss of generality in order to optimize the data and memory complexity, if we
consider that the access to both the encryption and the decryption oracles is
granted.

Upper part. Given P , the aim is to guess the minimal amount of key information,
that we will denote by kin, such that we can compute the associated P̃ that
ensures Ein(P)⊕Ein(P̃) = ∆x if the guess of kin corresponds to the secret key.
For each guess i for kin, we obtain a different candidate for P̃ , that we denote

Differential Meet-In-The-Middle Cryptanalysis 5

Fig. 1. A high-level description of the Differential - MITM technique

by P̃ i, leading to a total of 2|kin| such values. From them, we can compute the
2|kin| associated ciphertexts Ĉi = E(P̃ i) with calls to the encryption oracle and
store them in a hash table H.

Lower part. Similarly, given C, we can guess some key material kout, of bit-
length |kout|, and compute a new ciphertext C̃ that satisfies the equation E−1

out(C)⊕
E−1

out(C̃) = ∆y if the key guess is correct. We obtain 2|kout| values for C̃j , each
associated to a guess j for kout.

Number of pairs and match. For the correct key guess, the transition ∆x → ∆y

will happen with a probability 2−p. Therefore, we will repeat the upper and
lower procedures 2p times with 2p different messages Pℓ so that we can expect
one pair (Pℓ, P̃

i
ℓ) to satisfy the differential together with the associated pair

(Cℓ, C̃
j
ℓ). When this is the case, we will find a collision for a certain ℓ between

a Ĉi
ℓ computed in the upper part and stored in H and a C̃j

ℓ computed from the
lower part. Each collision (i, j) has an associated key guess kin = i, kout = j,
that we will consider as a potential candidate. The number of expected collisions
for each fixed Pℓ is 2|kin|+|kout|−|kin∩kout|−n.

Complexity. The time complexity of this attack can be estimated as

T = 2p × (2|kin| + 2|kout|) + 2|kin|+|kout|−|kin∩kout|−n+p,

where the first term corresponds to the computations done in Ein and Eout, and
the last one to the number of expected key candidates. With this, we recover
kin ∪ kout, so if we expect fewer key candidates than the whole set kin ∪ kout,
(i.e |kin| + |kout| − |kin ∩ kout| − n + p < |kin ∪ kout|, which holds as long as

6 Boura et al.

Algorithm 1 Differential MITM attack
while right key not found do ▷ 2p trials expected

Randomly pick P
C ← E(P) ▷ Oracle call
H ← ∅ ▷ hash table initialisation
for each guess i for kin do ▷ Forward computation

Compute P̃ i from i and P
Ĉi ← E(P̃ i) ▷ Oracle call
H[Ĉi]← H[Ĉi] ∪ {i}

end for
for each guess j for kout do ▷ Backward computation

Compute C̃j from j and C
for each i ∈ H[C̃j] do

Complete (i, j) to retrieve the master key
Try candidates against extra data

end for
end for

end while

p < n), we can guess the remaining bits of the master key and test the guess
with additional pairs. Thus we recover the whole key with a complexity smaller
than the cost of an exhaustive key search, and an additional cost of

2k−(|kin∪kout|) ×max{1, 2|kin|+|kout|−|kin∩kout|−n+p}

to be added to the time complexity T . In the expected case where |kin|+ |kout|−
|kin ∩ kout| − n+ p ≥ 0, the total time complexity is thus

T = 2p × (2|kin| + 2|kout|) + 2|kin∪kout|−n+p + 2k−n+p.

The (naive) data complexity of this first version of the attack can be esti-
mated as

D = min(2n, 2p+min(|kin|,|kout|)).

Finally, the naive memory complexity is given by M = 2min(|kin|,|kout|), though
it can be improved to 2min(|kin|−|kin∩kout|,kout−|kin∩kout|) by first guessing the
common key material before running the attack.

2.2 Improvement: Parallel partitions for layers with partial subkeys

We will show now that in the case where the round key addition does not affect
the whole state but only m < n bits of it (as is for instance the case in Feistel
constructions [21], or in the SKINNY [4] and GIFT [3] ciphers), we can add one ad-
ditional round to the attack. If p > m, the time complexity of adding this round
will not be affected. The exact data complexity of the attack must however be
checked case-by-case, as it might depend on the configuration of the differences
in the external states, but a technique proposed in the next subsection can allow
to reduce it. The memory complexity will be a priori increased.

Differential Meet-In-The-Middle Cryptanalysis 7

The main idea here is to consider, in addition of guessing the upper and
lower key bits in parallel, a partial guess of the starting states in parallel, so
that 2m states from the penultimate state and the last state (or the first state,
without loss of generality) are guessed in parallel, without needing to guess the
key that allows the transition from one to the other. When performing the final
match, we will take into account this key transition. Actually, it can be seen
as considering 2m plaintexts Pi and ciphertexts Cj in parallel, without knowing
which ones would match together, as this transition will be determined by the
last round-key.

Since we expect to try on average 2p plaintexts in order to find one that will
satisfy the differential of probability 2−p, we can divide the final state of size
2n into two parts. The part without the key addition will take 2p−m different
values, and the attack will be repeated for each one of those.

On the other hand, the part affected by the key addition, will take 2m possible
values for X, the state before the key addition, and for each we can compute the
state Sr−1 in Figure 2 from the output of the differential MITM attack. From
this state, we will guess the kout bits, in order to compute the associated state
potentially generating the output difference of the middle differential, obtaining
2|kout|+m candidates to match. In parallel, the state Y after the key addition will
also take all the 2m possibilities, and with them we decrypt in order to obtain
the plaintext, and do the upper key guessing procedure to deduce the good
pairs, obtaining 2|kin|+m candidates. The number of possible solutions might
seem higher by a factor of 22m, but note that we have to match X and Y , as
well as their associated pairs X ′ and Y ′, and they must satisfy X⊕X ′ = Y ⊕Y ′.
This adds m bit-conditions, or more if this final subkey was already determined
by kin and kout, which is usually the case. This implies m additional conditions,
and 22m2−m2−m = 1, so the cost, given by the number of solutions, stays exactly
the same as the attack with one round less. We will see how this technique can
be applied in practice in Section 5.

Fig. 2. Partial guess of the final state to add one round for free. Sr−1 is the final state
of the simple differential MITM attack.

8 Boura et al.

2.3 Improvement: Reducing data with imposed conditions

We explain here a way to obtain a time-data-memory trade-offs for the original
attack. If when choosing the plaintext P , we force x of its bits, that might have
been active otherwise, to a certain value, and if we expect the same from the as-
sociated plaintext P̃ , the overall probability of the attack will decrease to 2−p−x,
as we will have to repeat the procedure until a P̃ that satisfies this constraint is
found. More precisely, if P̃ does not fit this condition, the corresponding tuple
will not be stored in the hash table since we do not have access to its cipher-
text. However by doing so, the data complexity will be reduced by a factor of
2x as well as the memory complexity. When combining this technique with the
previous one, we can derive the following two inequalities for x:

p+ x ≤ n− x and 2p+x(2|kin| + 2|kout|) < 2k.

This type of trade-off applies in particular when all the code book, 2n, would be
needed before fixing the x bits, and the data complexity becomes 2n−x.

Data reduction without time increase As the total number of candidates for
the key of the input part (respectively output) will be 2|kin|−x (respectively
2|kout|−x), if we are able to find these candidates with their associated P̃ (respec-
tively C̃) in a complexity given by the number of solutions, the time complexity
would become:

2p+x(2|kin|−x + 2|kout|−x) = 2p(2|kin| + 2|kout|),

which allows us to reduce the data complexity to 2n−x while not increasing the
time complexity. The optimal data complexity in this case will be 2

n+p
2 , obtained

with x equals to n−p
2 .

This can actually be done in many cases using rebound-like techniques [32].
This is the case of all of our attacks summarized in Table 1.An example can be
seen in Section 5.

2.4 Discussion and Comparison

As argued before, our new cryptanalysis technique is closely related to two fam-
ilies of cryptanalysis: MITM attacks and differential attacks. In this section we
will discuss similarities and differences between these families and will try to
identify cases where our new technique might be efficient or cases where it per-
mits to reach better results compared to the best known attacks.

Relation to MITM attacks In relation to MITM attacks and its variants,
like the sieve-in-the-middle technique, our attack, already if using a differential
with probability one, could have, a priory, the potential of reaching more rounds.
The starting point of our research was whether it was possible to add even more
rounds in the middle of a MITM-like attack and this is how we came up with

Differential Meet-In-The-Middle Cryptanalysis 9

the new attack. The data complexity of the new attack could be higher than a
classical MITM one as now we compute a new P̃ from each guess of the key, and
this plaintext can take many different values, besides the 2p different plaintexts
Pℓ taken as starting points in order to find one that satisfies the differential. On
the other hand, despite the fact that the sets of bits kin or kout involved in the
parallel computations of the differential MITM attack are not determined in the
same way as the key bits involved in MITM attacks, we expect those quantities
to be relatively close under similar settings, as this principally depends on the
propagation properties of the round function. More precisely, it seems that more
aligned [10] the round function is, closer the sets will be.

Therefore, we expect that ciphers where classical MITM attacks work well,
can also be interesting targets for differential-MITM attacks. This is actually
how we found the application shown in Section 5 on SKINNY. Indeed, the best
known attack against SKINNY-384-128 previous to ours was a MITM one [18].

Relation to differential attacks Curiously enough, our new attack can also be
seen as a new way of performing the key-recovery part associated to a differential
distinguisher.

Classical differential attacks. A differential attack starts with a differential
distinguisher on rm rounds of relatively high probability 2−p. One then typi-
cally extends the distinguisher by rin rounds to reach the plaintext state and
by rout rounds to reach the ciphertext state, with probability 1 as depicted in
Figure 3. Structures are then used to build plaintext (or ciphertext) pairs. A
structure of size 2s allows to build 22s−1 pairs (though building all these pairs is
rarely needed), but for each structure we need to consider typically an additional
probability so that the pairs from the structure satisfy the input difference of the
distinguisher. If we are not considering truncated but fixed differentials, as it will
be our case, the probability of reaching a fixed difference ∆x is approximately
2−s. In order to expect that at least one pair will satisfy the distinguisher, we will
need to consider 2p−s+1 structures, each of size 2s, and for each structure, 2s−1

pairs will reach the input difference ∆x, leading to a total of 2p−s+1+s−1 = 2p

pairs reaching ∆x. Typically, for determining a priori potential good pairs, one
performs some sieving that will allow not to try all the pairs from all the struc-
tures. This sieving is done by looking at the activity pattern of the ciphertexts
and can be estimated as 2−c = 2−n+a, where a is the bit-size of the active part in
the ciphertext. The final key recovery part depends on the particular properties
of the round function, but its complexity can be considered to be relatively small
thanks to early abort and divide-and-conquer techniques.

The data complexity of such an attack is 2p+1 and the time complexity can
be estimated as

2p+1 + 2p−s+122s−12−cCk ≈ 2p+s−n+a,

where Ck is the average cost of determining the key bits for each candidate pair.
We can see that if s and a are big enough, i.e. a + s >> n, which can

happen when several rounds are appended, the complexity of a differential MITM

10 Boura et al.

Fig. 3. Framework of a classical differential attack.

attack for an equivalent number of rounds might be more interesting. Indeed,
the influence of the input and output extensions to the complexity are added
and not multiplied. In particular, our attack can become much more efficient
when the key size of the cipher is bigger than the state size, otherwise 2p might
already be close to the limit.

3 Automatic detection of involved keys

In many cases, it is technically very easy to exactly determine which information
about the key is required in the forward or backward computation. As often,
when it comes to the question of dependency only, the easiest and less error-
prone method is to experimentally determine which bits have an actual influence.
Assume we are given (the implementation of) a function F : Fn

2 → Fm
2 and want

to determine if the ith input bit of x has an influence on the output of F (x),
that is if there exist an input x such that

F (x) ̸= F (x⊕ ei),

where ei is the vector that has a one exactly at position i.
For this, we could simply take a random input x and compute F (x)⊕F (x⊕ei).

If the result is non-zero, we know that the output depends on the ith input bit.
After repeating this process a few times and if we always get zero as a result,
we conclude that the ith bit does not have an influence on the output. The later
decision might of course be wrong (while the former never is). However, for our
applications this is (i) very unlikely to happen due to the construction of the
round functions and (ii) irrelevant for the attacks as a key bit that influences
the output only in one out of many outputs usually does not have to be guessed.

Focusing on our target, given the implementation of the cipher, i.e. in partic-
ular the (round-reduced) encryption and decryption procedures along with the
key schedule, we can easily process as represented in Algorithm 2.

The nice feature of the algorithm is that it works for any cipher structure and
without the need to know or implement any internal details. However, on this
generality we might miss many possible improvements. As an example, consider
the key schedule of SKINNY. Here, every round-tweak-key bit is the sum of three
bits of (updated) master tweak-key bits. The algorithm above would (correctly)
detect the dependence of the output on those three bits, but obviously guessing
the sum of the bits is enough. We can easily adopt the above algorithm to take

Differential Meet-In-The-Middle Cryptanalysis 11

Algorithm 2 Check Dependencies
Input: An Implementation of the round reduced encryption and decryption Er, a

difference ∆
Output: The set of key bits K required to propagate ∆ through E−1

r

1: K ← ∅
2: for each i from 0 to n− 1 do
3: for each t from 1 to tries do
4: x ← random message
5: k ← random key
6: y1 ← Er(k, x) ▷ Query Encryption
7: z1 ← E−1

r (k, y1 ⊕∆) ▷ Query Decryption
8: y2 ← Er(k ⊕ ei, x) ▷ Query Encryption with bit flipped
9: z2 ← E−1

r (k ⊕ ei, y2 ⊕∆) ▷ Query Decryption with bit flipped
10: if z1 ̸= z2 then
11: Include key bit i to K
12: end if
13: end for
14: end for
15: Return K

into account linear (tweak) key-schedules. The main idea is not to flip master
key-bits directly, but rather round-key bits.

Let us denote the linear key schedule by L : Fκ
2 → Fnṙ

2 . The ith bit of the
expanded key can thus be written as ⟨Li, k⟩ where Li denotes the ith row of
the matrix corresponding to L. Furthermore we denote by Êr the encryption
excluding the key schedule, i.e.

Er(k, x) = Êr(L(k), x).

Instead of master key-bits, we now aim at computing the round-key bits that
the encryption depends on and collecting the corresponding linear combinations
of the master-key.

R1 R2 R3 R−1
3 R−1

2 R−1
1

k

x

L

∆x

The vector-space contains the information that is sufficient to guess in order
to compute the upper part of the attack. The dimension of K corresponds to the

12 Boura et al.

Algorithm 3 Check Linear-Dependencies

Input: An Implementation of the round reduced encryption and decryption Êr, the
key-schedule L and a difference ∆

Output: A linear subspace of key bits K required to propagate ∆ through Ê−1
r

1: K ← {}
2: for each i from 0 to n . . . r − 1 do
3: for each t from 1 to tries do
4: x ← random message
5: k ← random key
6: y1 ← Êr(L(k), x) ▷ Query Encryption
7: z1 ← Ê−1

r (L(k), y1 ⊕∆) ▷ Query Decryption
8: y2 ← Êr(L(k)⊕ ei, x) ▷ Query Encryption with bit flipped
9: z2 ← Ê−1

r (L(k)⊕ ei, y2 ⊕∆) ▷ Query Decryption with bit flipped
10: if z1 ̸= z2 then
11: Include Li to K
12: end if
13: end for
14: end for
15: Return span(K) ▷ Vector space spanned by the corresponding Li

amount of information that has to be guessed, its Gauss-Jordan-basis contains
information on which master key bits can be guessed equivalently. This algo-
rithm again is easy to adapt given an implementation of a cipher. In practice,
given a differential ∆x → ∆y, we can apply this algorithm on both (Ein, ∆x)
and (E−1

out, ∆y) to respectively get the sets kin and kout required in our new
framework.

For SKINNY, Algorithm 3 allows to complete both the differential trails given
in Section 5 into attacks against 23 and 24 rounds, that we will finally extend
by one additional round at the end to get the currently best known results on
SKINNY-128-384.

4 The SKINNY family of ciphers

The SKINNY family of tweakable block ciphers was designed by Beierle et al. [4].
It is a family of lightweight ciphers following a classical SPN structure but im-
plementing a very compact S-box, a linear layer based on a sparse non-MDS
binary matrix and a lightweight key schedule. The block size n can be 64 or 128
bits and for both versions the state is seen as a 4 × 4 matrix of 4-bit or 8-bit
cells. Row 0 is considered the uppermost one and column 0 is taken to be the
leftmost one. The numbering of the words inside the state matrix is as follows.

Differential Meet-In-The-Middle Cryptanalysis 13

SKINNY follows the tweakey framework [25] and XORs a tweakey to the two
upmost rows of the state. There exist three main variants for the tweakey size: t =
n, t = 2n and t = 3n and the corresponding variant is denoted by SKINNY-n-t.
Furthermore, the tweakey to block size ratio is denoted by z = t/n. The tweakey
state is viewed also as a set of z 4 × 4 arrays of cells. For z = 3, which is the
variant of interest to us, the three tweakey arrays are denoted by TK1, TK2
and TK3.

The round function of SKINNY is depicted on Figure 4, and the number of
times this function is iterated depends on both n and t, as shown in Table 2.

Table 2. Number of rounds for each of the main variants SKINNY-n-t.

Block size n t = n t = 2n t = 3n

64 32 36 40

128 40 48 56

One round of SKINNY is composed of five operations applied in the fol-
lowing order: SubCells (SC), AddConstants (AC), AddRoundTweakey (ART),
ShiftRows (SR) and MixColumns (MC). We know briefly describe the opera-
tions that are of interest to us.

SubCells (SC) This operation applies an S-box to all cells of the state. The
table representation of the 8-bit S-box used in the 128-bit variants is given in
Appendix A.

AddRoundTweakey (ART) We describe this step only for the variants with z = 3.
Here, the first and second rows of the 3 tweakey arrays TK1, TK2 and TK3 are
extracted and XORed to the internal state, respecting the bit positions inside
the arrays. More formally, if ISi,j is the cell at the intersection of row i and j of
the state, we have that for (i, j) ∈ {0, 1} × {0, 1, 2, 3}:

ISi,j = TK1i,j ⊕TK2i,j ⊕TK3i,j .

ShiftRows (SR) This operation rotates the cells inside a row to the right by
a certain offset that depends on the row. More precisely, cells in row i, where
0 ≤ i < 4, are rotated by i positions to the right.

MixColumns (MC) This operation updates the state by multiplying each column
by a binary matrix M. This matrix, as well as its inverse are as follows.

M =

1 0 1 1

1 0 0 0

0 1 1 0

1 0 1 0

 , M−1 =

0 1 0 0

0 1 1 1

0 1 0 1

1 0 0 1

 .

Next we describe the tweakey schedule of SKINNY-128-384, the variant we
analyse in this work.

14 Boura et al.

Fig. 4. Round function of SKINNY [4]

Tweakey schedule of SKINNY-128-384 At each round, all tweakey arrays are
updated as follows (see also Figure 5). First, the same permutation PT is applied
on the cell positions of the 3 tweakey arrays: for all 0 ≤ i ≤ 15, we have that
TK1i ← TK1PT [i] with

PT = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7],

and the same exact permutation is applied to the cells of TK2 and TK3. Finally,
the cells of the first two rows of TK2 and TK3 are individually updated by the
LFSR :

(x7||x6||x5||x4||x3||x2||x1||x0)→ (x0 ⊕ x6||x7||x6||x5||x4||x3||x2||x1),

where x0 is the LSB in a byte.

Fig. 5. Tweakey schedule of SKINNY. All tweakey arrays TK1, TK2 and TK3 follow
the same transformation with the only exception that no LFSR is applied to TK1. [4]

Property. In most attacks, including ours, it is more efficient to guess round-
key bits than key bits. Since the key-schedule of SKINNY is fully linear, guess-
ing enough (e.g. 384 in the TK3 model) independent round-key bits allows to
uniquely determine the master key and thus all remaining round-key bits. SKINNY
has a unique property which makes easy the evaluation of the dimension of any
set of round-key bytes: in the TKx model, a round-key byte Kr[i] always de-
pends on exactly x master key bytes, one from each TK keys and they all have
the same index. Furthermore, given x round-key bytes from the 30 first rounds
and depending on the same x master key bytes, they are always independent
and allow to uniquely determine their x corresponding master key bytes.

Differential Meet-In-The-Middle Cryptanalysis 15

5 Differential-Meet-the-Middle attacks against
SKINNY-128-384

We present now three attacks against round-reduced variants of SKINNY-128-384
by using our new differential-meet-in-the-middle technique. We first describe a
simple attack against 23 rounds as well as several improvements and trade-offs.
We then explain how this attack can be extended to an attack on 24 rounds
without increasing the attack’s overall complexity. Finally, we describe a new
attack against 25 rounds.

5.1 An attack against 23-round SKINNY-128-384

As explained in Section 2, differential-meet-in-the-middle attacks rely on two
classical cryptanalysis techniques: differential attacks and meet-in-the-middle
attacks. The main idea is to use a meet-in-the-middle attack to generate a pair
following a given differential in the middle rounds. Thanks to this procedure,
we are able to extend a differential distinguisher by more rounds than with a
classical early-abort procedure, as discussed in Section 2.4.

Fig. 6. Truncated differential trail for the attack on 23 rounds.

Differential. The truncated differential used in our attack against 23 rounds
of SKINNY-128-384 is depicted in Figure 6. It has 56 active S-boxes, without
counting those of the first and the last round. We verified that this truncated
differential can be successfully instantiated by using the constrained program-
ming Choco-solver [34], and more precisely the model developed by Delaune et
al. to search for the best differential characteristics for the SKINNY family of block
ciphers [15]. The best instantiation of this truncated differential has a probabil-
ity of 2−119 and there are in total 2048 instantiations with this same probability.
These instantiations can be divided into four groups (∆(i)

x , ∆
(i)
y), for i = 1, 2, 3, 4,

each one having 512 trails inside, starting with the same difference ∆
(i)
x and ter-

minating after 13 rounds with the same difference ∆
(i)
y . We found as well many

more differential trails with the same input/output differences but smaller prob-
abilities: 2560 with probability 2−120, 7168 with probability 2−121, 18432 with

16 Boura et al.

probability 2−122 and 44800 with probability 2−123. Thus the probability of the
differential depicted on Figure 6 is higher than 2−105.9.

The attack. We describe now our core attack against 23-round SKINNY-128-384.

1. Ask for the encryption of the whole codebook.
2. Randomly pick one plaintext/ciphertext pair (P,C).
3. For each possible value i of kin compute the tuple (P, P̃ , i) so that the dif-

ference on state after the 6th S-box layer is [0 0 0 2 0 0 0 0 0 0 0 0 2 0 0 0]
(see Figure 6). Doing so requires to know the values of all the active S-boxes
involved in the probability 1 transition ∆x → ∆P , where ∆P is the plain-
text difference, and kin is the set of round-key bytes needed to compute them
from the plaintext.

4. Store all these tuples in a hash table. This step requires to guess 31 round-key
bytes as depicted in Figure 7.

5. Similarly, for each possible value j of kout compute the tuple (C, C̃, j) so that
the difference on the state before the 19th S-box layer is 0x64 on all active
bytes. The set kout involves 32 bytes and thus there are 2256 such tuples.

6. For each of them check for possible matches on the hash table. The match
is performed on both the new ciphertext (i.e. (P̃ , C̃) must be a valid plain-
text/ciphertext pair) as well as on the linear relations between the round-key
bytes of the upper and lower guess.

7. Each match leads to a (full) key candidate that can be tried against very
few additional plaintexts (3 in our case).

8. Repeat from Step 2 until the right key is retrieved.

Table 3. Round-key bytes involved in the 23-round core attack.

Byte kin kout # equations
0 K0[0], K2[2] K18[2], K20[4], K22[6] 2
1 K0[1], K2[0] K20[2], K22[4] 1
2 K0[2], K2[4] K20[6], K22[5] 1
3 K0[3], K2[7] K20[1], K22[0] 1
4 K0[4], K2[6] K20[5], K22[3] 1
5 K0[5], K2[3] K20[7], K22[1] 1
6 K0[6], K2[5], K4[3] K20[3], K22[7] 2
7 K0[7], K2[1], K4[0] K20[0], K22[2] 2
8 K1[2], K3[4] K19[4], K21[6] 1
9 K1[0] K19[2], K21[4] 0
10 K1[4] K19[6], K21[5] 0
11 K1[7], K3[1] K19[1], K21[0] 1
12 K1[6], K3[5] K21[3] 0
13 K1[3] K19[7], K21[1] 0
14 K1[5], K3[3] K19[3], K21[7] 1
15 K1[1], K3[0] K19[0], K21[2] 1

Differential Meet-In-The-Middle Cryptanalysis 17

Fig. 7. Core attack against 23 rounds of SKINNY-128/384. Knowledge of blue key bytes
allows to compute values of green ones and thus to propagate differences. No difference
in both white and red bytes, but the red ones are required to compute green bytes.
Indexes in round-key bytes are the indexes of the corresponding master key bytes. The
equivalent subkeys Ui are computed as MC(SR(Ki)), from the original subkeys Ki.

18 Boura et al.

The data complexity of this attack is 2128 since in Step 1 we ask for the
encryption of the full codebook. The memory complexity is determined by Step 3
in which 2248 words of 128+248 = 376 bits each are stored. Note that we do not
need to store C1 since it is common to all tuples. Thus the memory complexity
is 2249.5 128-bit words. The time complexity is 2248 for computing the hash
table, 2256 for performing Step 4, and, as shown in Table 3, kin ∪ kout is the
full key so that the complexity of Step 6 is 2384−128 = 2256. Finally, the attack
has to be repeated 2105.9 times (the probability of the distinguisher) in order to
construct one right differential pair. Hence, the overall complexity of our attack
is 2105.9 × 2256 = 2361.9.

Decreasing memory complexity. It is possible to decrease the memory complexity
of the attack by avoiding the match on the linear relations between both kin and
kout. Indeed, since the key-schedule of SKINNY is fully linear, we can first guess
the intersection of kin and kout, and only then run the attack. The dimension of
the intersection is 248 + 256− 384 = 120 and thus the memory complexity can
be decreased to 2249.5−120 = 2129.5.

Data/Time/Memory trade-off. To decrease the data complexity of our attack, as
described in Section 2.3, it is possible to only ask for the encryption of a portion
of the whole codebook, let say 2128−x plaintext/ciphertext pairs. In this case, the
probability that we have access to the corresponding ciphertext of P2 is 2−x and
the attack has to be ran 2x times to compensate. Overall, the complexity of our
23-round attack is then D = 2128−x plaintext/ciphertext pairs, M = 2129.5−x

128-bit words and T = 2361.9+x encryptions. To expect at least one pair following
the differential under the extra constraint on the plaintexts, x cannot be higher
than (128− 105.9)/2 = 11.05.

As explained in Section 2.3, in practice, given any pair of ciphertexts, we can
enumerate the possible values for both kin and kout with a complexity roughly
equivalent to the number of solutions. Such a procedure is described in Ap-
pendix B. Thus, the trade-off does not increase the time complexity and the
overall complexity of our attack is D = 2117, T = 2361.9 and M = 2118.5.

5.2 Extension to 24 rounds

Our differential-meet-in-the-middle attack against 23-round SKINNY can be ex-
tended to an attack against 24 rounds without increasing its overall complexity
by using the generic improvement presented in Section 2.2. This can be achieved
since on one hand the key-schedule is linear (and enough round-key bytes are
involved in our attack so that the master key is fully retrieved) and on the
other hand the round-key is only applied on half of the state in each round. The
scenario of this new attack is quite similar to the original one:

1. Ask for the encryption of the whole codebook.
2. Pick 264 plaintext/ciphertext pairs (Pℓ, Cℓ) such that MC−1(Cℓ) is constant

on the two last rows as depicted in Figure 8. Here we exploit the fact that
the round key is only applied on the first two rows of the internal state.

Differential Meet-In-The-Middle Cryptanalysis 19

3. As for this original attack, compute all possible tuples (Pℓ, P̃
i
ℓ , i) for each

value i of kin and each Pℓ from the structure defined at the previous step
such that the state difference after the 6th S-box layer is 0x02 on both active
bytes.

4. Store them in a hash table. Note that the tuples are computed for all the
264 plaintexts selected at Step 2 so the memory complexity is 2248+64 = 2312

504-bit words.
5. For each value j of kout and each state S23,ℓ coherent with Step 2 (i.e. 264

states, one for each possible value of the round-key K23), compute all possible
tuples (S23,ℓ, S̃

j
23,ℓ, j) so that the difference on state before the 19th S-box

layer is 0x64 on the four active bytes.
6. Check for possible matches on the hash table. The match is now performed

on three quantities:
– the difference between the last states: C⊕C̃ = MC◦SR(SC(S23)⊕SC(S̃23)).

This is a 64-bit filter because the difference is zero on the two last rows
since MC−1(C) is constant on the two last rows.

– the filter on the keys (from key schedule equations): a 120-bit filter as
for the original attack against 23 rounds (15 equations on 8 bits each,
see Table 3).

– the filter on the keys (from equations describing the last round). Indeed,
since kin∪kout generates the master key, K23 can be rewritten as f(kin)⊕
g(kout) where f and g are both linear and, because of the linearity of
all the operations, the equation C = MC(SR(SC(S23) ⊕ K23)) can thus
be rewritten as C ⊕ MC(SR(f(kin)) = MC(SR(SC(S23) ⊕ g(kout))). This
represents a 64-bit filter.

7. Repeat from Step 2 until the right key is retrieved.

SC(S23)

constant

264
AC

ART

constant

264 »> 1

»> 2

»> 3

ShiftRows

constant

264

MixColumns

264

C

Fig. 8. Last round of the attack against 24 rounds.

The attack has to be repeated enough times so that the structure contains at
least one pair following the differential. Since during Step 2 we generate 264 pairs
and since the probability of the differential is 2−105.9, the procedure has to be
repeated 241.9 times. Thus the data complexity is 2128 (i.e. the whole codebook
is needed), the memory complexity is around 2314 128-bit words and the time
complexity 2256+64+41.9 = 2361.9 encryptions.

Note that previous improvements regarding both the memory and data com-
plexities still apply and thus our attack has complexity: D = 2128−11 = 2117

20 Boura et al.

plaintext/ciphertext pairs, M = 2194−11 = 2183 128-bit words and T = 2361.9

encryptions.

5.3 An attack against 25 rounds of SKINNY-128-384

To mount a differential meet-in-the-middle attack against 25 rounds of SKINNY,
we used the differential depicted in Figure 9. The best instantiation of this
truncated differential has a probability of 2−131. By fixing the difference of the
active bytes to 0x32 at the input and to 0x64 at the output, we found several
instantiations with a high enough probability: 2048 with probability 2−131, 10240
with 2−132, 28672 with 2−133 and finally 73728 trails with probability 2−134.
Thus, the probability of the depicted differential is higher than 2−116.5. This
differential is then extended by 4 rounds to the plaintext and 5 rounds to the
ciphertext to reach 24 rounds as depicted in Figure 10.

Fig. 9. Truncated differential trail for the attack on 25 rounds.

The key bytes involved in the attack are given in Table 4, leading to a com-
plexity of D = 2128 data, T = 2256× 2116.5 = 2372.5 encryptions andM = 2249.5

128-bit words. Furthermore, the dimension of the intersection between both kin
and kout is once again 248+256−384 = 120, which allows to reduce the memory
complexity to 2129.5 128-bit words.

As for the 23-round attack described above, this attack can be extended by
one round without increasing its overall complexity. As a consequence, and after
applying the data/time/memory trade-off presented Section 2.3, the complexity
of our attack against 25 rounds is D = 2128−x plaintext/ciphertext pairs, M =
2194−x 128-bit words and T = 2372.5+x encryptions. In this case, x cannot be
higher than (128−116.5)/2 = 5.75. Furthermore, we can again apply this trade-
off without increasing the time complexity and thus the final complexity is D =
2122.3, T = 2372.5 and M = 2188.3.

6 Conclusion and open problems

We introduced in this work a new cryptanalysis technique, that we called the
differential-MITM attack. We managed to successfully apply this new technique
to SKINNY-128-384. Our attack against this variant of the SKINNY family of

Differential Meet-In-The-Middle Cryptanalysis 21

Fig. 10. Core attack against 24 rounds of SKINNY-128-384. Knowledge of blue key
bytes allows to compute values of green ones and thus to propagate differences. No
difference in both white and red bytes, but the red ones are required to compute green
bytes. Indexes in round-key bytes are the indexes of the corresponding master key
bytes.

22 Boura et al.

Table 4. Round-key bytes involved in the 24-round core attack.

Byte kin kout # equations
0 K0[0], K2[2] K20[4], K22[6] 1
1 K0[1], K2[0] K20[2], K22[4] 1
2 K0[2], K2[4] K20[6], K22[5] 1
3 K0[3], K2[7] K20[1], K22[0] 1
4 K0[4], K2[6] K20[5], K22[3] 1
5 K0[5], K2[3] K22[1], K24[0] 1
6 K0[6], K2[5] K20[3], K22[7] 1
7 K0[7], K2[1] K20[0], K22[2] 1
8 K1[2], K3[4] K21[6], K23[5] 1
9 K1[0], K3[2] K21[4], K23[6] 1
10 K1[4], K3[6] K21[5], K23[3] 1
11 K1[7], K3[1] K21[0], K23[2] 1
12 K1[6] K21[3], K23[7] 0
13 K1[3], K3[7] K21[1], K23[0] 1
14 K1[5], K3[3] K21[7], K23[1] 1
15 K1[1], K3[0] K19[0], K21[2], K23[4] 2

ciphers allowed us to provide the best single key attack against this construction,
by reaching two more rounds than the previously best known attack.

The introduction of this new technique releases naturally numerous ques-
tions and opens many new research directions. First, we would like to further
understand the link between the new attack and classical MITM attacks and
how these two attacks can be compared. For example, we would like to identify
for what kind of primitives the quantity of the involved key material in the dif-
ferential MITM attack would be typically smaller compared to a classical MITM
attack applied to the same cipher in a similar setting. We did some preliminary
experiments on different ciphers by mounting both types of attacks in a compa-
rable way and in some cases the amount of key bits to be guessed was smaller
for the new attack while in some other cases this same amount was smaller for
a classical MITM attack. It would be therefore interesting to be able to predict
in an easy way, how this quantity compares for the two attacks.

As MITM attacks combine particularly well with the technique of bicliques,
another natural question is whether differential MITM attacks combine well
with bicliques as well. Furthermore, is it possible to find any concrete applica-
tion where the combination of a differential MITM with bicliques could improve
previous MITM or other attacks? Finally, can the technique of bicliques be com-
bined with the method of partitions we proposed in the case of partial subkey
additions, and how do they compare?

A last open question is whether instead of combining MITM techniques with
differential attacks, one could successfully combine MITM with some other well-
known family of cryptanalysis, such as for example linear or differential-linear
attacks.

Differential Meet-In-The-Middle Cryptanalysis 23

Acknowledgements. This project has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement no. 714294 - acronym QUASYModo).
It was also partially supported by the French Agence Nationale de la Recherche
through the SWAP project under Contract ANR-21-CE39-0012 and through the
DeCrypt project under Contract ANR-18-CE39-0007. Finally, the authors would
like to thank the Dagstuhl Seminar 22141 on Symmetric Cryptography that gave
the opportunity to the authors to advance this collaboration.

References

1. Aoki, K., Sasaki, Y.: Preimage attacks on one-block MD4, 63-step MD5 and more.
In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. Lecture Notes in Computer
Science, vol. 5381, pp. 103–119. Springer (2008)

2. Aoki, K., Sasaki, Y.: Meet-in-the-middle preimage attacks against reduced SHA-0
and SHA-1. In: Halevi, S. (ed.) CRYPTO 2009. Lecture Notes in Computer Science,
vol. 5677, pp. 70–89. Springer (2009)

3. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT:
A small present - towards reaching the limit of lightweight encryption. In:
Fischer, W., Homma, N. (eds.) Cryptographic Hardware and Embedded Sys-
tems - CHES 2017 - 19th International Conference, Taipei, Taiwan, Septem-
ber 25-28, 2017, Proceedings. Lecture Notes in Computer Science, vol. 10529,
pp. 321–345. Springer (2017). https://doi.org/10.1007/978-3-319-66787-4_16,
https://doi.org/10.1007/978-3-319-66787-4_16

4. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. Lecture
Notes in Computer Science, vol. 9815, pp. 123–153. Springer (2016)

5. Biham, E., Biryukov, A., Shamir, A.: Miss in the middle attacks on IDEA and
Khufu. In: Knudsen, L.R. (ed.) FSE ’99. Lecture Notes in Computer Science,
vol. 1636, pp. 124–138. Springer (1999)

6. Biham, E., Dunkelman, O., Keller, N.: The rectangle attack - rectangling the Ser-
pent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. Lecture Notes in Computer
Science, vol. 2045, pp. 340–357. Springer (2001)

7. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO ’90. Lecture Notes in Computer Sci-
ence, vol. 537, pp. 2–21. Springer (1990)

8. Biham, E., Shamir, A.: Differential cryptanalysis of the full 16-round DES. In:
Brickell, E.F. (ed.) CRYPTO ’92. Lecture Notes in Computer Science, vol. 740,
pp. 487–496. Springer (1992)

9. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full
AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. Lecture Notes in Computer
Science, vol. 7073, pp. 344–371. Springer (2011)

10. Bordes, N., Daemen, J., Kuijsters, D., Assche, G.V.: Thinking outside the super-
box. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology - CRYPTO 2021 -
41st Annual International Cryptology Conference, CRYPTO 2021, Virtual Event,
August 16-20, 2021, Proceedings, Part III. Lecture Notes in Computer Science,
vol. 12827, pp. 337–367. Springer (2021). https://doi.org/10.1007/978-3-030-84252-
9_12, https://doi.org/10.1007/978-3-030-84252-9_12

24 Boura et al.

11. Canteaut, A., Naya-Plasencia, M., Vayssière, B.: Sieve-in-the-middle: Improved
MITM attacks. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. Lecture
Notes in Computer Science, vol. 8042, pp. 222–240. Springer (2013)

12. Canteaut, A., Naya-Plasencia, M., Vayssière, B.: Sieve-in-the-middle: Improved
MITM attacks (full version). IACR Cryptol. ePrint Arch. p. 324 (2013),
http://eprint.iacr.org/2013/324

13. Choudhuri, A.R., Maitra, S.: Differential cryptanalysis of Salsa and ChaCha –
An evaluation with a hybrid model. Cryptology ePrint Archive, Paper 2016/377
(2016), https://eprint.iacr.org/2016/377, https://eprint.iacr.org/2016/377

14. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher Square. In: Biham, E.
(ed.) FSE ’97. Lecture Notes in Computer Science, vol. 1267, pp. 149–165. Springer
(1997)

15. Delaune, S., Derbez, P., Huynh, P., Minier, M., Mollimard, V., Prud’homme, C.:
Efficient methods to search for best differential characteristics on SKINNY. In:
Sako, K., Tippenhauer, N.O. (eds.) ACNS 2021, Part II. Lecture Notes in Computer
Science, vol. 12727, pp. 184–207. Springer (2021)

16. Demirci, H., Selçuk, A.A.: A meet-in-the-middle attack on 8-round AES. In: Ny-
berg, K. (ed.) FSE 2008. Lecture Notes in Computer Science, vol. 5086, pp. 116–
126. Springer (2008)

17. Diffie, W., Hellman, M.: Special feature exhaustive cryptanalysis of the NBS Data
Encryption Standard. Computer 10(6), 74–84 (1977)

18. Dong, X., Hua, J., Sun, S., Li, Z., Wang, X., Hu, L.: Meet-in-the-middle attacks
revisited: Key-recovery, collision, and preimage attacks. In: Malkin, T., Peikert, C.
(eds.) CRYPTO 2021, Part III. Lecture Notes in Computer Science, vol. 12827,
pp. 278–308. Springer (2021)

19. Dunkelman, O., Keller, N., Shamir, A.: Improved single-key attacks on 8-round
AES-192 and AES-256. In: Abe, M. (ed.) ASIACRYPT 2010. Lecture Notes in
Computer Science, vol. 6477, pp. 158–176. Springer (2010)

20. Dunkelman, O., Sekar, G., Preneel, B.: Improved meet-in-the-middle attacks
on reduced-round DES. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) IN-
DOCRYPT 2007. Lecture Notes in Computer Science, vol. 4859, pp. 86–100.
Springer (2007)

21. Feistel, H.: Cryptography and computer privacy. Scientific american 228(5), 15–23
(1973)

22. Guo, J., Ling, S., Rechberger, C., Wang, H.: Advanced meet-in-the-middle preim-
age attacks: First results on full Tiger, and improved results on MD4 and SHA-2.
In: Abe, M. (ed.) ASIACRYPT 2010. Lecture Notes in Computer Science, vol. 6477,
pp. 56–75. Springer (2010)

23. Hadipour, H., Sadeghi, S., Eichlseder, M.: Finding the impossible: Auto-
mated search for full impossible differential, zero-correlation, and integral
attacks (preliminary version). IACR Cryptol. ePrint Arch. p. 1147 (2022),
https://eprint.iacr.org/2022/1147

24. Isobe, T., Shibutani, K.: All subkeys recovery attack on block ciphers: Extending
meet-in-the-middle approach. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. Lecture
Notes in Computer Science, vol. 7707, pp. 202–221. Springer (2012)

25. Jean, J., Nikolic, I., Peyrin, T.: Tweaks and keys for block ciphers: The TWEAKEY
framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. Lecture
Notes in Computer Science, vol. 8874, pp. 274–288. Springer (2014)

26. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional differential cryptanalysis
of nlfsr-based cryptosystems. In: Abe, M. (ed.) ASIACRYPT 2010. Lecture Notes
in Computer Science, vol. 6477, pp. 130–145. Springer (2010)

Differential Meet-In-The-Middle Cryptanalysis 25

27. Knudsen, L.: DEAL-a 128-bit block cipher. complexity 258(2), 216 (1998)

28. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
’94. Lecture Notes in Computer Science, vol. 1008, pp. 196–211. Springer (1994)

29. Langford, S.K., Hellman, M.E.: Differential-linear cryptanalysis. In: Desmedt, Y.
(ed.) CRYPTO ’94. Lecture Notes in Computer Science, vol. 839, pp. 17–25.
Springer (1994)

30. Leander, G., Abdelraheem, M.A., AlKhzaimi, H., Zenner, E.: A cryptanalysis of
PRINTcipher: The invariant subspace attack. In: Rogaway, P. (ed.) CRYPTO 2011.
Lecture Notes in Computer Science, vol. 6841, pp. 206–221. Springer (2011)

31. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT ’93. Lecture Notes in Computer Science, vol. 765, pp. 386–397.
Springer (1993)

32. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The rebound attack:
Cryptanalysis of reduced whirlpool and grøstl. In: Dunkelman, O. (ed.) Fast
Software Encryption, 16th International Workshop, FSE 2009, Leuven, Belgium,
February 22-25, 2009, Revised Selected Papers. Lecture Notes in Computer Sci-
ence, vol. 5665, pp. 260–276. Springer (2009)

33. Naya-Plasencia, M.: How to improve rebound attacks. In: Rogaway, P. (ed.)
CRYPTO 2011. Lecture Notes in Computer Science, vol. 6841, pp. 188–205.
Springer (2011)

34. Prud’homme, C., Fages, J.G., Lorca, X.: Choco Solver Documentation.
TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S. (2016),
http://www.choco-solver.org

35. Shi, D., Sun, S., Derbez, P., Todo, Y., Sun, B., Hu, L.: Programming the demirci-
selçuk meet-in-the-middle attack with constraints. In: Peyrin, T., Galbraith, S.D.
(eds.) ASIACRYPT 2018, Part II. Lecture Notes in Computer Science, vol. 11273,
pp. 3–34. Springer (2018)

36. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015, Part I. Lecture Notes in Computer Science,
vol. 9056, pp. 287–314. Springer (2015)

37. Tolba, M., Abdelkhalek, A., Youssef, A.M.: Impossible differential cryptanalysis
of reduced-round SKINNY. In: Joye, M., Nitaj, A. (eds.) AFRICACRYPT 2017.
Lecture Notes in Computer Science, vol. 10239, pp. 117–134 (2017)

38. Wagner, D.A.: The boomerang attack. In: Knudsen, L.R. (ed.) FSE ’99. Lecture
Notes in Computer Science, vol. 1636, pp. 156–170. Springer (1999)

39. Yang, D., Qi, W., Chen, H.: Impossible differential attacks on the SKINNY family
of block ciphers. IET Inf. Secur. 11(6), 377–385 (2017)

A The 8-bit S-box used in SKINNY-128-t

The 8-bit S-box S used for the 128-bit variants of SKINNY is given below. All
values are in hexadecimal notation.

26 Boura et al.

S = [65 4c 6a 42 4b 63 43 6b 55 75 5a 7a 53 73 5b 7b
35 8c 3a 81 89 33 80 3b 95 25 98 2a 90 23 99 2b
e5 cc e8 c1 c9 e0 c0 e9 d5 f5 d8 f8 d0 f0 d9 f9
a5 1c a8 12 1b a0 13 a9 05 b5 0a b8 03 b0 0b b9
32 88 3c 85 8d 34 84 3d 91 22 9c 2c 94 24 9d 2d
62 4a 6c 45 4d 64 44 6d 52 72 5c 7c 54 74 5d 7d
a1 1a ac 15 1d a4 14 ad 02 b1 0c bc 04 b4 0d bd
e1 c8 ec c5 cd e4 c4 ed d1 f1 dc fc d4 f4 dd fd
36 8e 38 82 8b 30 83 39 96 26 9a 28 93 20 9b 29
66 4e 68 41 49 60 40 69 56 76 58 78 50 70 59 79
a6 1e aa 11 19 a3 10 ab 06 b6 08 ba 00 b3 09 bb
e6 ce ea c2 cb e3 c3 eb d6 f6 da fa d3 f3 db fb
31 8a 3e 86 8f 37 87 3f 92 21 9e 2e 97 27 9f 2f
61 48 6e 46 4f 67 47 6f 51 71 5e 7e 57 77 5f 7f
a2 18 ae 16 1f a7 17 af 01 b2 0e be 07 b7 0f bf
e2 ca ee c6 cf e7 c7 ef d2 f2 de fe d7 f7 df ff]

B Enumeration Procedure of kout for the 23-round
Attack

In this section we describe a procedure to retrieve the possible values of kout in
the case where the pair of ciphertexts is given. Its complexity is 2128 simple op-
erations, showing that the data/time/memory trade-off described in Section 2.3
can be applied without increasing the time complexity. Since the key is not ap-
plied on the full state, the procedure is more complex than a classical rebound
but still relies on the fact that, on average, knowing the differences at both the
input and output of an Sbox leads to one pair of actual values.

The steps of our enumeration procedure are depicted on Figure 11. The main
idea is to propagate differences from the ciphertexts to Round 18, get the actual
values since differences in this internal state are fully known, and propagate them
back to the ciphertexts to obtain the key material we want. Except at Step 1 in
which we guess 8 values, all next steps perform one guess each. Steps 7 and 8
both have a probability of success of 2−8 and thus we expect only 213×8 = 2104

partial solutions at the end of Step 8.

Differential Meet-In-The-Middle Cryptanalysis 27

Round 18 3 5

9

11

SC

3 5

9

11
K18

3 5

9

11

SR

35

9

11

MC

Round 19 3

4

5

6

9

99

11

11

11

8

6 10

SC

3

4

5

6

9

99

11

11

11

8

6 10

K19

3

3

3

5

6

9 11 8

10

10

10

7

7

6

6

10 SR

3

3

3

5

6

9 11 8

10

10

10

7

7

6

6

10 MC

Round 20 2

3

3

4

5

6

6

9

9 7

7

8

10

10

11

1

SC

2

3

3

4

5

6

6

9

9 7

7

8

10

10

11

1

K20

1

1

1

2

2

2

3 4

6

9 7

10

6

6

10

10

SR

1

1

1

2

2

2

3 4

6

97

10

6

6

10

10

MC

Round 21
1 1 1 1

1 1 1 1

1 2

3 4

6

9

10

7

SC

1 1 1 1

1 1 1 1

1 2

3 4

6

9

10

7
K21

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

SR 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

MC

Round 22
1 1 1 1

1 1 1 1

SC 1 1 1 1

1 1 1 1
K22

SR

Fig. 11. Enumeration procedure of kout for the 23-round attack. Differences in blue
cells and actual values in red cells are known. No difference in white cells.

