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Abstract. A good differential is a start for a successful differential attack. However, a
differential might be invalid, i.e., there is no right pair following the differential1, due
to some complicated contradictions that are hard to be considered. In this paper, we
present a novel and handy method to search and verify a differential characteristic
(DC) based on a recently proposed algebraic perspective on the differential(-linear)
cryptanalysis (CRYPTO 2021).
From this algebraic perspective, exact Boolean expressions of differentials over a
cryptographic primitive can be conveniently established, thus verifying a given DC is
naturally a Boolean satisfiability problem (SAT problem). With this observation, our
approach simulates the round function of the target cipher symbolically and derives a
set of Boolean equations in Algebraic Normal Form (ANF). These Boolean equations
can be solved by off-the-shelf SAT solvers such as Bosphorus, which accept ANFs as
their input.
To demonstrate the power of our new tool, we apply it to Gimli, Ascon, and Xoodoo.
For Gimli, we improve the efficiency of searching for a valid 8-round colliding DC
compared with the previous MILP model (CRYPTO 2020). Our approach takes
about one minute to find a valid 8-round DC, while the previous MILP model could
not find any such DCs in practical time. Based on this DC, a practical semi-free-start
collision attack on the intermediate 8-round Gimli-Hash is thus successfully mounted,
i.e., a colliding message pair is found. For Ascon, we check several DCs reported at
FSE 2021. Firstly, we verify a 2-round DC used in the collision attack on Ascon-Hash
by giving a right pair (such a right pair requires 2156 attempts to find in a random
search). Secondly, a 4-round differential used in the forgery attack on Ascon-128’s
iteration phase is proven invalid, as a result, the corresponding forgery attack is
invalid, too. For Xoodoo, we verify tens of thousands of 3-round DCs and two
4-round DCs extended from the so-called differential trail cores found by the designers
or our search tool. We find all of these DCs are valid, which well demonstrates the
sound independence of the differential propagation over Xoodoo’s round functions.
Besides, as an independent interest, we develop a SAT-based automatic search toolkit
called XoodooSat to search for 2-, 3-, and 4-round differential trail cores of Xoodoo.
Our toolkit finds two more 3-round differential trail cores of weight 48 that were
missed by the designers which enhance the security analysis of Xoodoo.

Keywords: Cryptographic Permutation · SAT · Automatic Verification · Differen-
tial Characteristic Search · Semi-free-start Collision Attacks

1A differential can also be considered invalid when its actual probability is (significantly) different from
the theoretically estimated one. Cases related to false probability are out of the scope of this paper.
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1 Introduction
With the rapid development of the Internet of Things (IoT), more and more light mobile
devices appear in people’s daily life such as smart cards, wireless sensors, and Radio Fre-
quency IDentification (RFID) tags. As these devices have limited memory and computing
resources, it is infeasible to directly apply traditional encryption algorithms such as the
Advanced Encryption Standard (AES) [DR02] in such scenarios. Therefore, lightweight
cryptographic (LWC) algorithms have attracted more and more attention. Especially,
in August 2018, the National Institute of Standards and Technology (NIST) initiated
a competition [NIS18] to solicit, evaluate, and standardize LWC algorithms, including
authenticated encryption with associated data (AEAD) and lightweight hash functions
that are suitable for use in constrained environments. Three candidates, Gimli [BKL+19],
Ascon [DEMS21], and Xoodyak [DHP+20] have attracted great attention because of
their clean designs and high efficiency. On March 29, 2021, Ascon and Xoodyak were
further announced as two of the ten finalist candidates of the competition.

Gimli, Ascon, and Xoodyak are all designed based on cryptographic permutations,
which is an increasingly popular paradigm to design LWCs. These permutation-based
ciphers usually bring high performances in both software and hardware implementations,
but simultaneously their novel designs make cryptanalysts feel difficult to fully understand
their security properties. As a result, always we would tend to study the security properties
of the underlying permutations to deepen our understanding of the whole ciphers.

Similar to the classical block ciphers, these permutations are also iterated algorithms
consisting of simple round functions. Naturally, some cryptanalytic methods originated
for block ciphers have been borrowed to evaluate the security of permutations. One of
the most important attacks among them is the differential cryptanalysis introduced by
Biham and Shamir at CRYPTO 1990 [BS91]. In a differential attack, the attacker seeks
a fixed input difference α0 that propagates through a r-round primitive (the primitive
could be a block cipher or a permutation) to a fixed output difference αr with a high
probability p, the differential is thus represented by (α0, αr). To find a proper differential
(α0, αr) with a high probability for the primitive, we examine the differential property of
the i-th (1 ≤ i ≤ r) round and try to find a local differential for this round denoted by
(ai−1, ai) whose probability is denoted by pi. With a tacit assumption that differentials of
two consecutive rounds are independent and its round subkeys (resp. round constants)
are independent and uniformly random [LMM91], these local differentials for all rounds
could be chained into one so-called differential characteristic (DC) (α0, α1, . . . , αr), whose
probability is computed by p =

∏r
i=1 pi. For the sake of simplicity, we generally refer to

all these underlying assumptions as the Markov assumption in this paper.
With the Markov assumption, many methods such as the so-called automated tools

have been invented to search for useful or even optimal DCs. When using the automated
tools, the propagation rules of differentials for components of a primitive in each round
are modeled by some specific constraints. All solutions satisfying these constraints are
expectedly valid DCs. Based on these constraints, additional constraints like describing
whether the corresponding Sboxes in the DCs are active or not would also be added to
the constraint pool. The set formed by all these constraints is denoted by C in this paper.
In general, a constraint representing the number of active Sboxes which is the so-called
objective function and denoted by O is also imposed. Different automated tools handle
(C,O) differently. There are three kinds of automated tools in the literature that are
often used for the search: (a) the Boolean satisfiability problem (SAT) [MP13], where
the constraints in C and the objective function are modeled by the corresponding clausal
normal forms (CNFs) or algebraic normal forms (ANFs). An extension of the SAT called
satisfiability modulo theories (SMT) [GD07] is also available which generalizes the SAT
to more complex formulas involving e.g., the integers and/or bit vectors. (b) the Mixed
Integer Linear Programming (MILP) [MWGP11] where (C,O) are described by a set of



Huina Li, Guozhen Liu, Haochen Zhang, Kai Hu, Jian Guo and Weidong Qiu 3

inequalities (including equations). (c) the constraint programming (CP) [GMS16], where
users could use more flexible formulas to describe (C,O). After generating (C,O) which is
also called a model of the corresponding tools, we can delegate the most laborious part of
searching for a DC to automatic tools.

Although the Markov assumption is generally considered reasonable for block ci-
phers, unfortunately, sometimes it would not hold for some permutations. At CRYPTO
2020 [LIM20], Liu, Isobe, and Meier pointed out that the 6-round and 2-round DC used for
attacking Gimli-Hash and Ascon-Hash respectively found by MILP in [ZDW19] is invalid.
In addition, a 12-round DC for Gimli permutation given by the designers [BKL+17] is
also proved incompatible. That means, although these DCs seem legal under the Markov
assumption, no conforming right pairs (pairs that propagate following the predefined DC)
can be found in practical cryptanalysis. No sophisticated key schedule algorithms or round
subkeys are considered as one of the reasons resulting in these incompatibilities.

In [LIM20], in order to make sure there is at least one conforming right pair following the
DC, Liu et al. constructed an improved MILP model that considers simultaneously both the
propagations of a DC (α0, α1, . . . , αr) and message pair (x0, x1, . . . , xr) where xi, 1 ≤ i ≤ r,
is the input into the i-th round function. By carefully analyzing the relations between αi and
xi, their MILP model traces the hybrid path ((α0, x0), (α1, x1), . . . , (αr, xr)). Therefore,
if the MILP model is feasible, the solution will be a valid DC with a right pair. Later,
Sadeghi, Rijmen, and Bagheri proposed another MILP model to verify a differential [SRB21].
Different from Liu et al.’s model that traces the difference and value, Sadeghi et al.’s
approach directly traces the two encrypted values as ((x0, x′

0), (x1, x′
1), . . . , (xr, x′

r)) and
assigns the input and output differences as α0 = x0 ⊕ x′

0, αr = xr ⊕ x′
r for the differential

(α0, αr).
Both methods require analyses of different components of primitives to construct the

inequalities, which is required us construct different model, such as AND-model, XOR-
model. For example, Liu et al.’s model requires independently constructing three constraint
models including a difference and value transitions model and a connection model which is
used to describe the relations between difference and value in the non-linear layer, while
Sadeghi et al.’s model constructs two values transitions model at the same time, and add
some linear constraints to ensure that the XOR of two values transitions satisfy the given
DC.

Although these methods directly constructing MILP model are very natural and simple,
which cannot exploit the algebra of polynomials naturally. As the underlying permutation
for most of LWC algorithms has a low algebraic degree of round function, it is natural
for us to combine related algebraic techniques. To fill the gap in the security analysis of
cryptographic permutations with low degree function, we propose a novel and efficient
search and verification approach from an algebraic perspective inspired by the previous
work of Liu, Lu and Lin [LLL21].

At CRYPTO 2021, Liu, Lu and Lin proposed an algebraic perspective on differential(-
linear) cryptanalysis [LLL21]. This new algebraic perspective pointed out that the output
difference of a Boolean function is a special Boolean function of the input difference and
input value.

For a Boolean function f : Fn
2 → F2 representing a certain output bit of a primitive,

the output difference of f with respect to the input difference ∆ at a point X is

D∆f(X) = f(X)⊕ f(X ⊕∆).

Liu et al. defined a new Boolean function f∆ as

f∆(X, x) = f(X ⊕ x∆),

where x is an auxiliary binary variable. Then Liu et al. gave the following formula

Dxf∆ = D∆f, (1)
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where Dxf∆ is the partial derivative of f∆ with respect to x. In this paper, we will directly
build our approach based on Equation 1.
Our contributions. In this paper, the contributions are four-fold as follows,
A new method to search and verify a differential or DC.

According to Equation 1, the output difference of a Boolean function can be represented
as a Boolean expression Dxf(X ⊕ x∆), meaning that once the input difference ∆ is
fixed the output difference is completely determined by X. Therefore, to check whether
Dxf(X ⊕ x∆) = o ∈ F2 holds equals to determine whether a solution X exists for this
Boolean equation. In addition, if the input value X and output difference o are set free
(i.e., we do not specify their values), any solution (X, ∆, o) satisfying Dxf(X ⊕ x∆) = o is
a valid differential with a right pair (X, X ⊕∆). Both of them are SAT problems that can
be solved with many off-the-shelf SAT solvers. To construct the Boolean equation, we only
need to simulate the update of the target cipher to obtain the expression of Dxf(X ⊕ x∆),
which is easy to handle by symbolic computation. In this paper, we take SageMath [The22]
as the symbolic computation tool and the Bosphorus [CSCM19] as the SAT solver.
Applications to Gimli. For Gimli [BKL+19], Liu et al. used their MILP model to
search for a valid 6-round Semi-Free-Start (SFS) collision DC according to the pattern
in [ZDW19], which took them about 4 hours. As a comparison, it takes us only 24.11
seconds to provide a colliding DC and a right pair that satisfies the same DC pattern. In
order to establish a SFS collision attack on the intermediate 8-round Gimli-Hash, the
authors of [LIM20] proposed a conditional 8-round DC whose input and output differences
are both active only in the rate part. Expectedly it requires 264 attempts to find out such
a DC satisfying all conditions if we search for it randomly. Liu et al. applied their MILP
model to this problem trying to find a desirable right pair. Unfortunately, no solutions
were returned in practical time [LIM20]. We apply our tool to this problem, and it shows
that our tool is more efficient than their MILP model. In practice, it takes about one
minute to find a colliding DC as well as a right pair that satisfies all those conditions.
With this pair, we successfully mount a practical SFS collision attack on the intermediate
8-round Gimli-Hash. These collision message pairs are provided in this paper.
Applications to Ascon. For Ascon [GPT21], we examine some differentials proposed
in previous forgery and collision attacks on Ascon-AEAD and Ascon-Hash. A 2-round
DC that was used in the improved 2-round collision attack on Ascon-Hash, four 3-round
DCs and a 4-round DC used in the forgery attacks on the finalization or iteration phases
of Ascon-128 or Ascon-128A [GPT21] as well as a 5-round truncated DC in [DEMS21]
are all proved valid. Namely, corresponding confirming right pairs are found for them.

On the other hand, a 4-round differential leveraged in the forgery attack on Ascon-128
reported in [GPT21] is found invalid since our tool proves no right pair exists. Thus, this
forgery attack is accordingly invalid.
Applications to Xoodoo. For Xoodoo [DHAK18], the designers have exhaustively
searched all 3-round differential trail cores up to weight2 50 with a dedicated tree search
algorithm, among which the weight of optimal trail cores is 36. Each differential trail core
actually corresponds to exponentially many real 3-round DCs expanded by the omitted
χ operation. To examine the validity of these 3-round DCs, we randomly select tens of
thousands of 3-round DCs extended from the differential trail cores, and we find all of them
are valid, which demonstrates the sound independence of round functions of Xoodoo.
Moreover, we also verify two 4-round DCs of weight 80 extended from two 4-round
differential trail cores of weight 803 (found with our independent SAT-based automatic
search toolkit called XoodooSat) by presenting their right pairs. As an independent interest,

2The weight of the differential trail cores is equal to log2(p−1), where p is the differential probability
3Recently, one paper [DMA22] that proves that the minimum weight of any 4-round trail core is 80

appeared in the ePrint.
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Table 1: Comparison of our solving times with previous works.
Primitive Rnd In Attack DC from Validity Our Time Pre. Time

Gimli-Hash 6 SFS collision Tab.7 Valid 9.74s 4h [LIM20]
8 SFS collision Tab.9 Valid 66.71s -† [LIM20]

Ascon-Hash 2 Collision [GPT21] Valid 0.02s -

Ascon-128A 3 Forgery(final.) [GPT21] Valid 0.07s -
3 Forgery(iter.) [GPT21] Valid 0.31s -

Ascon-128

3 Forgery(final.) [GPT21] Valid 0.08s -
3 Forgery(iter.) [GPT21] Valid 81s -
4 Forgery(final.) [GPT21] Valid 194s -
4 Forgery(iter.) [GPT21] Invalid 0.05s -
5 - [DEMS21] Valid 3894s -

Xoodoo

3 - Tab.27 Valid 1.37s -
3 - Tab.31 Valid 1.62s -
3 - Tab.33 Valid 1.08s -
3 - Tab.29 Valid 0.12s -
4 - Tab.35 Valid 1.24s -
4 - Tab.37 Valid 343s -

Keccak-f [800] 4 Collision [GLST22] Valid 7.86s 79s‡[SRB21]
Keccak-f [1600] 4 Collision [GLST22] Valid 21.59s 210s‡[SRB21]

†The MILP model in [LIM20] could not return any results in practical time.
‡Using the verification method of [SRB21] to automatically verify DCs but with the
help of SAT.

our toolkit also finds two more 3-round differential trail cores than the designers’ tool
[DHAK21] which were missed due to a bug in their implementation4.

It is interesting to note that for permutations of large state size like Keccak-f , our
approach still shows excellent performance. Considering the similarities between the
Xoodoo and Keccak-f , we verify one 4-round DC 5 of Keccak-f [1600] and one 4-round
DC of Keccak-f [800] in [GLST22] with the weight of 133 and 95, respectively, and
confirm that all of them are valid.

We give a summary of the best times achieved to verify DCs over various cryptographic
primitives in Table 1. Compared with the previous methods [LIM20, SRB21], our method
is superior to previous methods [LIM20, SRB21] in both efficiency and effectiveness. To
better compare our method with [SRB21], we construct a SAT model using the previous
verification method of [SRB21] to verify 4-round DC of Keccak-f [800] and Keccak-
f [800], the obviously better results are obtained than that using the verification method
of [SRB21]. All of our solving times are solved by CryptoMiniSat solver (version 5.8.0).
All experiments are conducted on a server with Inter(R) Xeon(R) CPU E5-4650 v3 @
2.10GHz 12 Core, 65G RAM, and Ubuntu 18.04.5.
Paper outline. The rest of this paper is organized as follows. In Section 2, we give
some concepts used in our work. We describe the full details of our verification and search
approach in Section 3. We present the application of our approach on Gimli in Section 5,
on Ascon in Section 4 and on Xoodoo in Section 6, respectively. Finally, we conclude
our paper in Section 7. Details of experimental data, including the solving times, DCs,
and right pairs are given in Appendix.

4We have confirmed this with the Keccak team, the designers of Xoodoo. After fixing this bug, the
Keccak team continued to search for more 3-round differential trail cores up to weight 52.

5Since these two 4-round DCs omit the nonlinear layer of the last round, we refer to them as 3.5-round
DCs in our verification.
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2 Preliminaries
In this section, we give some related terms and properties used in our work. We also review
the previous methods for DCs verification.

2.1 Differential Cryptanalysis
In a differential attack, the attacker seeks a fixed input difference α0 that propagates
through an r-round primitive (the primitive could be a block cipher or a permutation) to
a fixed output difference αr with a high probability p, the differential is thus represented
by (α0, αr).

If there exists an ordered pair (x, x⊕ α0) satisfying f(x)⊕ f(x⊕ α0) = αr, then it is
said to follow the differential (α0, αr). In this case, we call (α0, αr) a valid differential, and
(x, x⊕ α0) is called a right pair.

Usually, finding a differential and computing its probability is difficult, so we tend
to study the differential properties of every round of the cipher. Let f = fr−1 ◦ fr−1 ◦
· · · ◦ f0 be an r-round iterative cipher and αi, αi+1 be the input and output difference
of f i, 0 ≤ i < r. (α0, α1, . . . , αr) is called a DC of the cipher f . If there is a vector of
variables (x0, x1, . . . , xr) satisfying f i(xi) ⊕ f i(xi ⊕ αi) = αi+1 for all 0 ≤ i < r, we say
{(x0, x1, . . . , xr), (x0 ⊕ α0, x1 ⊕ α1, . . . , xr ⊕ αr)} is a right pair following the DC.

Following the Markov cipher assumption [LMM91] where the round functions are
treated as independent functions, a differential and a DC whose probabilities are larger
than 0 are always valid if we can find at least one right pair for them. However, the
independence of round functions might not always hold, especially for permutations without
round keys. Some inner contradictions are difficult to be considered when searching for
a differential or DC. That means some differential attacks on certain ciphers might be
false since the differentials or DCs used in the attacks might be invalid. Therefore, it is
necessary to check the validity of differentials or DCs of a permutation derived under the
Markov assumption.

2.2 Algebraic Perspective on Differential(-Linear) Cryptanalysis
At CRYPTO 2021 [LLL21], Liu, Lu, and Lin presented a new algebraic perspective on
differential cryptanalysis. As shown in Equation 1, the output difference of a Boolean
function can be explicitly expressed as a Boolean expression. When applied to a cryp-
tographic primitive with multiple output bits, each output bit can be represented by a
Boolean function (expressed in ANF) of the input bits. Accordingly, the output difference
of the primitive is determined by applying Equation 1 to all output bits.

Although theoretically Equation 1 is exact and requires no assumptions, the ANF of f∆
as well as Dxf∆ in Equation 1 is difficult to obtain for a modern cryptographic primitive.
To overcome the obstacle, Liu et al. introduced the differential algebraic transitional form
(DATF) to obtain a simpler expression of Dxf∆ with variable substitutions.

Consider a cryptographic primitive that consists of r rounds, i.e., E = Er−1 ◦Er−2 ◦
· · · ◦E0, where Ei : Fn

2 → Fn
2 , 0 ≤ i < r are the i-th round function. Each coordinate of the

output of E is viewed as a composite ANF. For a difference ∆ and a value X, we study the
differential property of E0 first. According to Equation 1, we first compute E0(X ⊕ x∆).
Next we do variable substitutions for each output bit of E0(X⊕x∆). Suppose f0

i is the i-th
bit of its output, which could be uniquely written as f0

i = (f0
i )′′x⊕ (f0)′, where (f0

i )′′ and
(f0)′ are independent of x, we introduce two transitional variables a0

i and b0
i to substitute

(f0
i )′′ and (f0)′, respectively. Thus f0

i could be simplified in form to f0
i = a0

i x⊕ b0
i . When

the variable substitutions of all output bits of E0 are finished, we could compute the output
bits of E1 based on the simplified expressions of E0’s output and do variable substitutions
for E1. Repeat this process until we derive a transitional form of the output of E. Note



Huina Li, Guozhen Liu, Haochen Zhang, Kai Hu, Jian Guo and Weidong Qiu 7

we retain x during the substitution process, thus a simplified expression of Dxf∆ can be
derived in every step.

2.3 SAT-based Cryptanalysis
Given a Boolean formula f(x1, x2, . . . , xn), the Boolean satisfiability problem (SAT) is
to determine whether there is any assignment of values to these Boolean variables which
makes the formula true. The SAT problem is satisfiable if a valid assignment exists,
otherwise it is unsatisfiable. Most of the previously introduced SAT-based cryptanalysis
methods [SWW18, SWW21, GLST22] encode directly the cryptanalysis problem as a SAT
instance under the Markov assumption and then invoke the off-the-shelf SAT solver to
solve it.

There are many off-the-shelf SAT solvers available which have been introduced into
cryptanalysis, such as the CryptoMiniSat [SNC09] and CaDiCaL [Bie19]. Usually, modern
SAT solvers based on conflict-driven clause learning (CDCL) [MLM21] support the CNF
as their input which uniquely defines a Boolean formula. A formula in CNF consists of
clauses joined by conjunctions (∧), where each clause is a disjunction (∨) of literals, each
literal represents a positive or negative variable, e.g., xi or ¬xi.

However, for cryptanalysts, ANF which consists of ⊕ and ∧ is more friendly and
preferred to use since the output bits of a cryptographic primitive are naturally written as
ANFs of its input bits. Unfortunately, compared with CNF solvers, ANF solvers on huge
polynomial systems often use more memory that might be infeasible on many computing
platforms.

To fill this vacancy, Davin et al. proposed an ANF simplification and solving tool,
called Bosphorus [CSCM19], which bridges between ANF and CNF solving techniques.
The Bosphorus supports the ANFs as its input, which could take advantage of the algebra
of polynomials naturally. It first uses many optimized mathematical algorithms, including
XL [CKPS00], Brickenstein’s ANF-to-CNF conversion [BD09], Gauss-Jordan elimination,
etc., to simplify ANFs and converted these highly optimized ANFs to CNFs. Afterwards,
the SAT solver Cryptominisat within Bosphorus is invoked to solve those CNFs. Hence,
the Bosphorus can be roughly seen as a SAT solver that supports the ANFs as input.

2.4 Previous Automatic Verification of Differential Characteristics
To the best of our knowledge, there are two categories of methods based on automatic
tools for verifying differentials or DCs. The main idea of the first one [LIM20, BM22] is to
independently construct three constraint models including difference and value transitions
and a connection model which is used to describe the relations between differences and
values in the non-linear layer. In this way, a DC and the conforming message pair can be
found simultaneously. In [LIM20], Liu et al. took the MILP to construct the constraint
models while in [BM22], Bellini and Makarim leveraged the SMT.

The second method [MZ06, HLJ+20, SRB21] directly traces the two encrypted values
which follow a fixed DC. In [SRB21], Sadeghi et al. tries to construct the MILP model of two
value transitions at the same time, and add some linear constraints to ensure that the XOR
of two value transitions satisfies the given differential characteristic (∆Y0, ∆Y1, . . . , ∆Yn).
Once the solution is feasible the given DC is valid. This idea has already been used by
[MZ06] to trace two input states that satisfy a fixed DC, which is the critical step to
finding a collision of the hash function. A similar strategy was ever applied in searching the
impossible differentials and impossible (s + 1)-polytopic transitions by Hu et al. [HLJ+20].

Both methods based on the MILP/SMT/SAT tools are natural and simple for most
cryptographic primitives. More work is focused on encoding cryptanalysis problems
manually in inequalities/CNF forms, including modeling the nonlinear operation of target
primitives, such as the AND-model, OR-model, and S-box model. However, it is slightly
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time-consuming to re-construct the model if one has a different representation of the
primitive. Moreover, the previous two methods cannot take advantage of the algebraic
properties of constraints, which maybe decrease the efficiency in terms of the model-solving
stage. In this paper, we aim at filling the gap in the search and verification of cryptographic
permutation. The results show our approach is more handy and efficient listed in Table 1.

3 Verification of a Differential or Differential Characteristic
from Algebraic Perspective

In this section, based on Liu et al.’s differential cryptanalysis from an algebraic perspec-
tive [LLL21], we introduce a new approach to efficiently verify a differential or DC as well
as directly find a valid DC. The basic idea is to transform Equation 1 into a SAT problem
which is handy to solve by SAT solvers.

3.1 SAT Model for Verifying a Differential or Differential Characteristic

Given a cryptographic primitive E : Fn
2 → Fn

2 , we denote its n output bits as n ANFs by
(f0, f1, . . . , fn−1). We introduce our novel method of verifying a differential in two cases
according to whether the ANFs of output bits of E are available.
Simple case. In the simple case, suppose we can derive the ANFs of all output bits of E.
According to Equation 1, to verify a given differential (∆,∇) ∈ Fn

2×Fn
2 , we need to compute

the ANFs of (f0(X ⊕ x∆), f1(X ⊕ x∆), . . . , fn−1(X ⊕ x∆)). The output difference ∇ =
(∇0,∇1, . . . ,∇n−1) ∈ Fn

2 is thus (Dxf0(X ⊕ x∆),Dxf1(X ⊕ x∆), . . . ,Dxfn−1(X ⊕ x∆)).
Verifying the differential (∆,∇) is equivalent to checking if the following equation set is
solvable. 

∇0 = Dxf0(X ⊕ x∆)
∇1 = Dxf1(X ⊕ x∆)

...
∇n−1 = Dxfn−1(X ⊕ x∆)

(2)

Note that Dxfi(X ⊕x∆), where 0 ≤ i < n− r, are the ANFs of X. Equation 2 is naturally
a SAT problem that can be solved with a SAT solver.

Example 1. Take the 5-bit Sbox of Ascon as an example (the ANFs of the Sbox is
presented later in Equation 6 in Section 4.1). Let the input value be X = (x0, x1, x2, x3, x4)
and the ANFs of the output bits are denoted by (f0, f1, f2, f3, f4). To verify whether
(∆,∇) is a valid differential where ∆ = (1, 1, 1, 0, 0) and ∇ = (1, 0, 0, 0, 0), X ⊕ x∆ =
(x0 ⊕ x, x1 ⊕ x, x2 ⊕ x, x3, x4), we compute the expressions of the 5-bit output difference
according to Equation 2 as follows.

Dxf0(X ⊕ x∆) = x0 ⊕ x2 ⊕ x4 ⊕ 1
Dxf1(X ⊕ x∆) = x1 ⊕ x2

Dxf2(X ⊕ x∆) = 0
Dxf3(X ⊕ x∆) = x3 ⊕ x4 ⊕ 1
Dxf4(X ⊕ x∆) = x0 ⊕ x1 ⊕ x4
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Since the output difference is ∇ = (1, 0, 0, 0, 0), we obtain the following five equations.

x0 ⊕ x2 ⊕ x4 ⊕ 1 = 1
x1 ⊕ x2 = 0
0 = 0
x3 ⊕ x4 ⊕ 1 = 0
x0 ⊕ x1 ⊕ x4 = 0

In Example 1, the five equations are easy to solve even by hand. But most of the
time, the equations are much more complicated. We regard them as a SAT problem and
use Bosphorus to solve these ANFs to decide whether (∆,∇) is valid or not by observing
whether a solution (x0, x1, x2, x3, x4) would be returned.
Complicated case. If the state size of a cryptographic primitive is large, it is com-
putationally infeasible to compute the exact ANFs of the output bits. Inspired by
the DATF technique [LLL21], we take advantage of the variable substitutions to sim-
plify the form of the ANFs while retaining the variable x. Suppose E consists of
E = Er−1 ◦ · · · ◦ E1 ◦ E0 where the ANFs of Ei are available, and the output bits of
Ei is denoted by (f i+1

0 , f i+1
1 , . . . , f i+1

n−1). To verify a differential (∆,∇), we first focus on E0
and compute the ANFs of (f1

0 (X ⊕ x∆), f1
1 (X ⊕ x∆), . . . , f1

n−1(X ⊕ x∆)). Subsequently,
we introduce 2n transitional variables a1

j , b1
j , where 0 ≤ j < n to perform the variable

substitutions as follows.
f1

j (X ⊕ x∆) = b1
j ⊕ a1

jx

a1
j = Dxf1

j (X ⊕ x∆)
b1

j = Dxf1
j (X ⊕ x∆)x⊕ f1

j (X ⊕ x∆)
, 0 ≤ j < n (3)

Based on Equation 3 (which are the ANFs of transitional variables a1, b1 and x), we
compute the outputs of E1, i.e., perform similar variable substitutions by introducing 2n
new transitional variables a2

j , b2
j , 0 ≤ j < n.

f2
j (b1 ⊕ a1x) = b2

j ⊕ a2
jx

a2
j = Dxf2

j (b1 ⊕ a1x)
b2

j = Dxf2
j (b1 ⊕ a1x)x⊕ f2

j (b1 ⊕ a1x)
, 0 ≤ j < n (4)

Note that we omit the subscript of a1
j and b1

j in Equation 4 for simplicity. Repeat this
process until the simplified forms of the ANFs of

(fr
0 (br−1 ⊕ ar−1x), fr

1 (br−1 ⊕ ar−1x), . . . , fr
n−1(br−1 ⊕ ar−1x)) (5)

is obtained. Likewise, we omit the subscript of fr
j , and write Equation 5 as fr(br−1⊕ar−1x).

Finally, we add constraints on the overall output difference ∇ = (∇0,∇1, . . . ,∇n−1) with

Dxfr
j (br−1 ⊕ ar−1x) = ∇j , 0 ≤ j < n.

In this way, we get a set of ANFs that determines whether (∆,∇) is a valid differential.
Obviously, it is also a SAT problem.

Verifying a differential characteristic or differential. It is easy to adapt the above
verification process for a differential or an r-round DC (∆0, ∆1, . . . , ∆r) where ∆i, 0 < i ≤ r
is the output difference of the (i− 1)-th round and ∆0 is the initial input difference. When
the output ANFs of the i-th round are obtained and the variable substitutions are finished,
extra constraints (as shown in the following) are added to the model to verify a DC.

Dxf i
j = ∆i

j
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Algorithm 1 Verification of Differential Characteristics
Require: An unknown message X = (x0, . . . , xn−1), the primitive E = Er−1 ◦ · · · ◦ E0,

the number r of rounds, a given DC (∆0, ∆1, . . . , ∆r), an auxiliary binary variable x.
Ensure: The value of X or “Invalid”.

1: Initialize the input variable vector f0 = X ⊕ x∆0 and allocate a set Q = ∅;
2: for i from 0 to r − 1 do
3: Compute the output of Ei according to the ANF of Ei , f i+1 ← Ei(f i)
4: Add Dxf i+1 = ∆i+1 to Q ▷ For verifying a differential, only when i = r − 1 we

execute this step
5: Introduce transitional variables ai+1, bi+1, let f i+1 = ai+1x⊕ bi+1 ▷ The

substitution rule is used after the nonlinear operations by default.
6: Add ai+1 = Dxf i+1 and bi+1 = Dxf i+1x⊕ f i+1 to Q
7: end for
8: ANF optimization stage: simplify Q by invoking anfread() and perform ANF-to-

CNF using cnfwrite() in Bosphorus;
9: SAT solving stage: solve CNFs using solvewrite() in Bosphorus, or using other

modern SAT solver;
10: if The SAT problem is feasible then
11: return X
12: else
13: return “Invalid”
14: end if

Similarly, by ignoring the ANFs of intermediate difference, we verify the validity of a
differential that utilizes a differential (∆0, ∆r) rather than a specific DC. The process that
verifies a DC or a differential is illustrated in Figure 1 and Algorithm 1.

Figure 1: The illustration of our verification method

Searching for valid differential characteristics. In addition to verifying a given differential
(∆,∇) or a DC (∆0, ∆1, . . . , ∆r), our method can also be directly applied to search for
valid DCs and the conforming message pair simultaneously. The only distinction is that
we do not add constraints on ∇ or ∆i, i ≥ 1 and let these unknown differences be free
variables. On the other hand, if values of some inner variables are given in advance, e.g.,
when we are dealing with a conditional DC, we can fix those variables accordingly as
additional constraints. In this way, every solution to the SAT problem is a valid DC and a
conforming message pair.

This method is especially useful for scenarios where DCs of a specific form such as the
collision DCs used in collision attacks.
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3.2 Obtaining and Solving the SAT Model
We exploit SageMath [The22] to obtain the ANFs of the output bits of a cipher. SageMath
is a popular tool in cryptanalysis that has been used in some previous papers. For
example, in [SHW+14], Sun et al. took SageMath to generate inequalities for a convex
hull. SageMath also offers good support for calculating Boolean equations (represented
by ANFs) over a ring and field. By simulating the round functions of the target cipher
with variable substitutions, a set of ANFs linking the input and output differences are
established.

Rather than solve the set of ANFs straightforwardly, we first simplify them with a
simplification tool called Bosphorus. Our experiments show that the Bosphorus simplifies
the set of ANFs significantly and returns a smaller as well as compact SAT model in CNFs.
A detailed comparison of ANF size before and after optimization is provided in Appendix
A. It’s interesting to note that Bosphorus can even detect some contradictions among the
ANFs set directly. If any contradictions happen, it will return UNSAT. After simplification
and conversion, the Cryptominisat which is embedded in the Bosphorus will be invoked
to solve the set of CNFs. Finally, we observe the returned solution to the SAT problem.
If there is no solution, the target differential or DC is invalid, and some contradictions
happen in the propagation; otherwise, a confirming right pair will be derived.

Moreover, in this paper, CryptoMiniSat shows outstanding performance in SAT solving
with multi threads, compared with CaDiCaL. We solve the final CNFs using CryptoMiniSat
and CaDiCaL solver. Our results show that the CryptoMiniSat has higher efficiency in
terms of verifying DCs than CaDiCaL. The solving times of the two solvers are given in
Appendix A.

3.3 Discussion on Our New Verification Algorithm
Similar to the previous verification algorithms such as [LIM20], our new verification
algorithm also traces the propagation of both the values and differences over the target
primitive. However, there are some essential differences between our new verification
algorithms and [LIM20].

Firstly, the relations between the value transitions and difference transitions are very
different. The verification algorithm in [LIM20] manually derived the relations between
the values and differences for the nonlinear functions (the difference transitions and
value transitions are dependent only on the nonlinear operation). For example, to the
nonlinear functions of Gimli, the authors of [LIM20] derived four types of Boolean relations
between the value and difference transitions. More importantly, their manual analysis is
not universal, for different cryptographic primitives we need to analyze their nonlinear
operations separately,such as S-boxes. Instead, the fundamental theory of our algorithm is
the algebraic perspective of differential cryptanalysis proposed recently in [LLL21]. Thanks
to the new perspective, the Boolean expressions of the output difference of a cryptographic
primitive can be explicitly presented. As has been shown in Section 3.1, after setting the
initial input of the primitive (i.e., the input is X ⊕ x∆), we do not need to care about
the relations between the values and differences over any operation in the process. All we
need to do is to simulate the update function by symbolic computations which is friendly
to almost all kinds of cryptographic primitives.

Secondly, both our algorithm and [LIM20] try to find a solution for a target differential
or DC rather than prove something is optimal. Unlike their transformation of the relation
into a MILP problem6, in our algorithm, we choose to use SAT to solve this problem from
scratch. Fortunately, the relations derived from our algorithm are an inherited SAT model
with ANF forms. By invoking the Bosphorus, we can directly simplify and solve this SAT
model. As a result, we find the efficiency of our algorithm is significantly higher than

6Actually, their model can also be transformed into a SAT problem with extra works.
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Figure 2: The illustration of Ascon-AEAD and Ascon-Hash schemes.

[LIM20]. For example, Liu et al. used their MILP model to search for a valid 6-round
SFS collision DC according to a pattern in [ZDW19], this cost them about 4 hours. Our
verification algorithm is more efficient since it took only 9.74 seconds to find a valid DC.
Besides, one 8-round SFS colliding DC and the conforming colliding pair was obtained
in only 66.71 seconds using our algorithm, while any of such DCs could not be found
by [LIM20] in practical time.

4 Application to Ascon
4.1 A Brief Introduction to Ascon
Ascon [DEMS21] has been announced by NIST as one of ten finalists in the lightweight
cryptography standardization competition. The Ascon family consists of AEAD and
Hash schemes. Ascon-AEAD adopts a MonkeyDuplex [BDPA11] mode with a stronger
keyed initialization and keyed finalization phases as illustrated in Figure 2a. Ascon-Hash
takes a sponge structure [BDPVA07] and the compressing process is shown in Figure 2b7.
Both schemes operate on a state of 320 bits which they update with two permutations pa

and pb whose rounds are respectively a and b. The 320-bit state S is divided into a r-bit
rate part and a c-bit capacity part. The underlying permutations pa and pb are iterative
designs and consists of three simple steps pC , pS , and pL, denoted by p = pL ◦ pS ◦ pC .

The round function p operates on a 320-bit state S arranged into five rows, i.e.,
S = w0∥w1∥w2∥w3∥w4, each row is a 64-bit register word. In internal convention, the bits
of each 64-bit word are denoted by S[64i + k], 0 ≤ i < 5, 0 ≤ k < 64, where i is the index
of row, S[ 64i+k

8 ] indicates the most significant bit (MSB) of a byte.
Addition of Constants (pC). pC adds a round constant ci to register word w2 of the
state S in round i. The round constants ci is shown in Table 2.
Substitution Layer (pS). pS operates the state S with 64 parallel applications of the
5-bit Sbox to each bit-slice of the five registers w0, w1, w2, w3, w4. We suppose the input

7These two figures for Ascon-AEAD and Ascon-Hash are borrowed from Ascon’s website https:
//ascon.iaik.tugraz.at.

https://ascon.iaik.tugraz.at
https://ascon.iaik.tugraz.at
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Table 2: Constants ci used in the Ascon Permutation
Round i Constant ci Round i Constant ci

0 000000000000000000f0 6 00000000000000000096
1 000000000000000000e1 7 00000000000000000087
2 000000000000000000d2 8 00000000000000000078
3 000000000000000000c3 9 00000000000000000069
4 000000000000000000b4 10 0000000000000000005a
5 000000000000000000a5 11 0000000000000000004b

of single 5-bit Sbox is (x0, x1, x2, x3, x4), and the output is (y0, y1, y2, y3, y4). The ANF of
the single Sbox is given by

y0 = x4x1 ⊕ x3 ⊕ x2x1 ⊕ x2 ⊕ x1x0 ⊕ x1 ⊕ x0

y1 = x4 ⊕ x3x2 ⊕ x3x1 ⊕ x3 ⊕ x2x1 ⊕ x2 ⊕ x1 ⊕ x0

y2 = x4x3 ⊕ x4 ⊕ x2 ⊕ x1 ⊕ 1
y3 = x4x0 ⊕ x4 ⊕ x3x0 ⊕ x3 ⊕ x2 ⊕ x1 ⊕ x0

y4 = x4x1 ⊕ x4 ⊕ x3 ⊕ x1x0 ⊕ x1

(6)

Linear Diffusion Layer (pL). pL provides diffusion within each 64-bit register word
wi, 0 ≤ i < 5 as follows,

w0 ← Σ0(w0) = w0 ⊕ (w0 ≫ 19)⊕ (w0 ≫ 28)
w1 ← Σ1(w1) = w1 ⊕ (w1 ≫ 61)⊕ (w1 ≫ 39)
w2 ← Σ2(w2) = w2 ⊕ (w2 ≫ 1)⊕ (w2 ≫ 6)
w3 ← Σ3(w3) = w3 ⊕ (w3 ≫ 10)⊕ (w3 ≫ 17)
w4 ← Σ4(w4) = w4 ⊕ (w4 ≫ 7)⊕ (w4 ≫ 41)

Moreover, an r-round DC of Ascon permutation (β0, α1, β1, . . . , αr) is represented as
the following form

β0
pS◦pC−−−−→ α1

pL−−→ β1
pS◦pC−−−−→ α2

pL−−→ · · · pS◦pC−−−−→ αr, (7)

where βi is the input difference of i-th pS ◦ pC , αi+1 is the output difference of the i-th pS ,
0 ≤ i < r, and βi[j] is the j-th bit of βi, 0 ≤ j < 320.

4.2 Verification of the DCs in Forgery and Collision attacks
In this section, we show how to leverage our verification method introduced in Section 3
to verify some differentials or DCs proposed in previous forgery and collision attacks on
Ascon-AEAD and Ascon-Hash, respectively.
Nonexistence of a category of DCs for 2-round Ascon-Hash in [ZDW19].
In [ZDW19], a 2-round collision attack on Ascon-Hash was proposed that is based
on a 2-round DC. In order to construct this DC, they firstly found a 1-round DC (β1, β2)
with the output difference β2 active only in the rate part. Then, they used the target
differential algorithm (TDA) [DDS12] to link this DC to the initial state of the internal
permutation. In this way, they derived a 2-round DC (β0, β1, β2) and its input difference
β0 is nonzero only in the rate part. Unfortunately, this DC was proved invalid by [LIM20].

In this paper, we are interested in whether we can find an alternative and valid DC
which satisfies the setting of [ZDW19] which the capacity parts of both the input and
output differences be zero, with the same output difference β2.
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Figure 3: Our search and verification process

First of all, we fix the capacity part of the input difference β′
0 to be zero and let its

64-bit rate part be free variables. The input of the 2-round Ascon is set as X⊕β′
0x, where

X = (x0, x1, · · · , x319) is a 320 binary variable representing one value of the input message,
x is an auxiliary Boolean variable. Next, we compute the intermediate states including the
first pS denoted by f1

pS
and the output state of the first round and second round, denoted

by f1 and f2, respectively. Figure 3 shows the detailed search and verification process.
Under these conditions, we take SageMath to obtain all corresponding ANFs and the

verification problem is converted to a SAT problem. Finally, we invoke Bosphorus to
solve this SAT problem, the result shows this SAT model was infeasible, which means all
2-round DCs satisfying the above restrictions do not exist.
Verify a DC for 2-round Ascon-Hash in [GPT21]. In [GPT21], Gerault, Peyrin,
and Tan used the CP tool to find a new 2-round DC which also could be used in collision
attack on 2-round Ascon-Hash. Since the DC proposed in [ZDW19] has been proved
invalid, a similar case may also happen to this DC. Therefore, it is necessary to check its
validity of it.

With the SageMath, the SAT model is constructed easily based on Algorithm 1. A
right pair following this DC is returned in less than one second, this right pair is presented
in Table 11. Therefore, we confirm that this characteristic is valid. Note the probability of
this DC is 2−156, so it requires 2156 tempts to search for the right pair in a random setting.
Check the differential and DCs in forgery attacks on Ascon-128 and Ascon-
128A. In [GPT21], the authors proposed several forgery attacks against the finalization
as well as the iteration phases of Ascon-AEAD. Firstly, they constructed a CP model to
search for forgery DCs with different constraints for different phases. These forgery DCs
can be found in Appendix C of this paper. Using these DCs, they improved the forgery
attacks against the finalization phase of 3-round Ascon-128 as well as the iteration phase
of 3-round Ascon-128A. Again, we need to check these DCs to see whether they are valid.

We apply Algorithm 1 to these forgery DCs. For forgery attacks against the finalization
phase of 3-round Ascon-128 and Ascon-128A (see Table 16 and Table 12) and 4-round
Ascon-128 in Table 21, we prove that all of these DCs are valid. The corresponding
right pairs are given in Tables 17, Table 13 and Table 22. For forgery attacks against the
iteration phase of 3-round Ascon-128 and Ascon-128A (see Table 18 and Table 14), we
confirm that this characteristic is valid too and the corresponding conforming right pairs
are shown in Tables 19 and 15.

In addition, we apply our algorithm to check the 4-round forgery DC in the iteration
phase (see Table 20), and our program immediately returns “Invalid”. That means this
4-round DC is invalid. We are interested in what results in its invalidity. To find the
contradictions hidden among the DC and message value, we separate the whole 4-round
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DC into two parts (every part contains 2 rounds) and apply Algorithm 1 to both of them
separately. In the first two rounds, we can obtain the right message pair, but in the second
two rounds, our program immediately returns “Invalid” in less one second. Therefore,
there are some contradictions hidden in the third and fourth rounds. We show why the
4-round forgery DC in the iteration phase is invalid in Section 4.3.

Finally, we are curious about whether the corresponding 4-round forgery differential
(rather than the DC) is valid. To check it, we remove the restrictions on the internal
differences while fixing the input and output difference and run our algorithm again.
Surprisingly, the loose model is still “Invalid”, which means this 4-round differential is
impossible for any right pairs, i.e., it is invalid.
5-round results. We verified one 6-round truncated collision-producing DC for Ascon-
128 identified in [DEMS21]. However, we are not able to find any solution in a limited
time (15 days). Therefore, we only checked the first 5 rounds of 6-round truncated DC.
The result shows that Bosphorus can return a valid 5-round DC (see Table 23) and a
conforming right pair (see Table 24) simultaneously in about one hour.

4.3 Explaining the Contradictions

In this section, we discuss about why the 4-round forgery DC in the iteration phase is
invalid. To find the contradictions hidden among the DC and value, we separate the whole
4-round DC into two parts (every part contains 2 rounds) and apply Algorithm 1 to both
of them separately. In the first two rounds, we can obtain the right message pair, but in
the second two rounds, Bosphorus returns “UNSAT“ immediately. Therefore, there are
some contradictions hidden in the last two rounds.

Thanks to that Bosphorus could directly detect contradictions among our ANF sets so
that we can find the reasons of the contradiction. For a better understanding of what causes
the contradiction, we extract all the set ANFs of the last two rounds based on Algorithm 1.
Denote the last two round DC by (β2, α3, β3, α4), we could obtain the following set of
ANFs, where fr

S [i] is the ANF of i-th output bit after the r-th nonlinear operation pS :



Dxf3
S [i] = α3[i]

Dxf4
S [i] = α4[i]

a1
i = Dxf3

S [i]
b1

i = Dxf3
S [i]x⊕ f3

S [i]
x320+i = a1

i

x640+i = b1
i

, 0 ≤ i < 320 (8)

The value of some bits of input state X and intermediate state b1 can be deduced according
to the ANFs of Dxf3

S [i] = α3[i] and b1
i = Dxf3

S [i]x⊕ f3
S [i], 0 ≤ i < 320 which is displayed

in Figure 4.
Moreover, we are able to get the simplified ANFs of b1

664 = Dxf3
S [24]x ⊕ f3

S [24] and
b1

856 = Dxf3
S [216]x⊕ f3

S [216] based on this figure,{
x24x88 ⊕ x24 ⊕ x88x152 ⊕ x88x280 ⊕ x88 ⊕ x152 ⊕ x216 ⊕ x664 = x152 ⊕ x664 = 0
x24x216 ⊕ x24x280 ⊕ x24 ⊕ x88 ⊕ x152 ⊕ x216 ⊕ x280 ⊕ x856 = x152 ⊕ x856 ⊕ 1 = 0

Based on the above conditions, we could explain one of the contradiction. A set of
ANFs is extracted using Dxf4

S = α4 that leads to a contradiction as follows,
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Figure 4: Propagation of input value before and after pS ◦ pC



Dxf4
S [216] = α4[216] = 0

Dxf4
S [216] = x645 ⊕ x664 ⊕ x700 ⊕ 1

Dxf4
S [152] = α4[152] = 0

Dxf4
S [152] = x839 ⊕ x846 ⊕ x856 ⊕ 1

Dxf4
S [197] = α4[197] = 0

Dxf4
S [197] = x645 ⊕ x681 ⊕ x690

Observe the above equation, if we set the 152-th bit of the input value, i.e., x152 is
1, then x664 is 1 according to x152 ⊕ x664 = 0, x645 is 1 computed using Dxf4

S [216] ⊕
x664 ⊕ x700 ⊕ 1. However, Dxf4

S [197], which is derived from our formula for the 197-th
bit of the output difference can be calculated from x645 ⊕ x681 ⊕ x690 and determine the
value of Dxf4

S [197] as 1. Therefore, there is a contradiction. On the other hand, if we set
x152 is 0, then x856 is 1 according to x152 ⊕ x856 ⊕ 1 = 0. However x856 is 0 computed
using Dxf4

S [152]⊕ x839 ⊕ x846 ⊕ 1, so there is also a contradiction. Therefore, the above
conditions cannot hold simultaneously that means there is no right pair following the last
two DC, the 4-round forgery DC in [GPT21] is invalid as well.

5 Application to Gimli

5.1 A Brief Introduction to Gimli

Gimli [BKL+17] is one of the second-round candidates of the NIST lightweight cryptog-
raphy standardization process [NIS18], including an authenticated cipher Gimli-Cipher
and a hash function Gimli-Hash. Both of them are built upon the Gimli permutation
that applies 24 rounds to a 384-bit state. The state of Gimli permutation is organized as
a 3× 4 matrix of 32-bit words denoted by Si,j , 0 ≤ i < 3, 0 ≤ j < 4.The j-th column is a
sequence of 96 bits such as Sj = {S0,j , S1,j , S2,j}, the i-th row is a sequence of 128 bits
such that Si = {Si,0, Si,1, Si,2, Si,3} (see Figure 5). In internal convention, the bits of each
32-bit word are denoted by S[32(j + 4i) + k], 0 ≤ k < 32, where S[ 32(j+4i)+k

8 ] indicates
the least significant bit (LSB) of a byte. Each round is a sequence of three operations
including a non-linear layer which is a 96-bit SP-box (SP ) applied to each column, a linear
mixing layer including Small-Swap (S SW ) and Big-Swap (B SW ) in every second round,
and a constant addition (AC) in every fourth round. The details of components in Gimli
include:
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Figure 5: The matrix and indexes of the Gimli state.

SP-boxes (SP ). Each SP-box operates on each column, i.e., 96 bits as follows,

x←S0,j ≪ 24 y ← S1,j ≪ 9 z ← S2,j

S2,j ← x⊕ (z ≪ 1)⊕ ((y ∧ z)≪ 2)
S1,j ← y ⊕ x⊕ ((x ∨ z)≪ 1)
S0,j ← z ⊕ y ⊕ ((x ∧ y)≪ 3)

Small-Swap (S SW ). In the i-th round satisfying i mod 4 = 0, we apply Small-Swap
operation as follows,

S0,0, S0,1, S0,2, S0,3 ← S0,1, S0,0, S0,3, S0,2

Big-Swap (B SW ). In the i-th round satisfying i mod 4 = 2, we apply Big-Swap
operation as follows,

S0,0, S0,1, S0,2, S0,3 ← S0,2, S0,3, S0,0, S0,1

Addition of Constant (AC). When i ∈ {0, 4, 8, 12, 16, 20}, AC adds the round constant
0x9e377900⊕ (24− i) to the first state word S0,0.

Let the input state and the intermediate state after i rounds be Si and Si+1, 0 ≤ i < 24,
respectively. The 24-round Gimli permutation can be represented with the following
sequence of operations 6 times,

S4k SP →S SW →AC−−−−−−−−−−−→ S4k+1 SP−−→ S4k+2 SP →B SW−−−−−−−−→ S4k+3 SP−−→ S4k+4, 0 ≤ k < 6.

In addition, the input difference and the intermediate difference after i rounds be ∆Si and
∆Si+1, 0 ≤ i < 24, respectively.
Gimli-Hash. The Gimli-Hash scheme is built upon the Gimli using a sponge construction
illustrated in Figure 6. Firstly, Gimli-Hash initializes a 48-byte Gimli state to all-zero,
then reads sequentially through a variable-length input as a series of 16-byte input blocks
after padding, i.e., m0, m1, . . . , mn. The block size is the so-called absorbing rate, i.e.,
128 bits. The remaining c bits of the state are called the capacity which is not directly
affected by message bits, nor are they taken as output. After all message blocks are fully
processed, a 32-byte hash value h can be obtained. More details of Gimli-Hash are given
in [BKL+19].

Figure 6: The illustration of the Gimli-Hash
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5.2 A Practical SFS Collision Attack on 8-Round Gimli-Hash
The Semi-Free-Start (SFS) collision attack is one of the four types of collision attacks,
where the cryptanalyst can choose the initial chain value, i.e., IV as well as a pair of
different messages, i.e., M1, M2 such that H(IV, M1) = H(IV, M2) [SKP16]. For the first
step of the SFS collision attack on Gimli-Hash, we need to find a special DC whose input
and output differences are both active only in the rate part. In other words, we need to
achieve an inner collision in the capacity part of the Gimli-Hash state. In the second step,
by introducing one more pair of message blocks that has the same difference in the rate
part, a real SFS collision is successfully converted.

In [LIM20], Liu et al. proposed an SFS collision attack on the intermediate 8 rounds of
Gimli-Hash. In this attack, they firstly gave a conditional 8-round DC pattern illustrated
in Figure 7. The input difference is only injected in ∆S1

0,3 and the difference of several
internal state words is conditioned. Later, they constructed a MILP model and expect to
search for a specific 8-round DC instance according to the conditional differential pattern,
and make an inner collision in the capacity simultaneously. However, their MILP model is
difficult to search for such an 8-round DC instance. The Gurobi solver does not output
“INFEASIBLE” or any solution for an acceptable time. Thus, their SFS collision attack is
in fact unsuccessful.

Figure 7: Semi-free-Start collision attack on the intermediate 8-round Gimli-Hash

In our attack, we aim to search for a valid 8-round DC instance according to the
conditional DC in [LIM20]. Once we obtain such a valid DC as well as a right pair, we
can naturally amount the SFS collision attack. Our verification algorithm introduced in
Section 3 can be simply adapted for this job. Based on the given conditioned 8-round DC
pattern in Figure 7, we present a SFS collision attack model shown in Figure 8.

Firstly, we let active input difference bits be free variables. In [LIM20], the difference
∆S1

0,3 of the conditional DC is active, which means at least one of the 32 bits of ∆S1
0,3

is nonzero. Therefore, in our attack model, ∆S1
0,3 is represented by 32 unknown binary

variables, denoted by d0, . . . , d31, where the rest of the difference bits of ∆S1
i,j are zero.

For the rest of the round difference, we only add exact ANFs of inactive bits. For example,
if ∆S2

i,j = 0, the following 32 ANFs can be obtained

Dxf1
32(j+4i)+k = 0, 0 ≤ k < 32

where f1
32(j+4i)+k is the ANF of 32(j + 4i) + k-th output bit of the first round function.

Next, we take SageMath to generate all related ANFs that satisfy the condition of this
attack model. We use Bosphorus to solve these ANFs. Consequently, a valid 8-round
DC (see Table 9) and an inner collision (see Table 10) are successfully found at the same
time. Finally, a real collision can be found by introducing one more pair of message blocks
(M, M ⊕∆S9) to absorb the difference in the rate part. Compared with the algorithm in
[LIM20], our method shows a much higher efficiency. The SAT solver returns a feasible
solution in about one minute.



Huina Li, Guozhen Liu, Haochen Zhang, Kai Hu, Jian Guo and Weidong Qiu 19

Figure 8: Our SFS collision attack model on the intermediate 8-round Gimli-Hash

Applications to 6-round Gimli-Hash. Liu et al. used their MILP model to search
for a valid 6-round SFS collision DC according to the DC pattern in [ZDW19], which cost
them about 4 hours. Our verification algorithm is more efficient than their MILP model
since it took only 24.11 seconds for us to find a colliding DC (see Table 7) as well as a
right pair (see Table 8) that satisfies the same DC pattern.

6 Application to Xoodoo
6.1 A Brief Introduction to Xoodoo
Xoodyak has been announced by NIST as one of ten finalists for LWC algorithms.
Xoodoo presented by Daemen et al. [DHAK18] in ToSC 2018, is a 384-bit underlying
permutation of Xoodyak, the differential nature of the former directly influences the
strength of the latter against differential attacks. The state of Xoodoo is organized
as a 3-dimensional array. Each bit of the array is located by (x, y, z) coordinate where
0 ≤ x < 4, 0 ≤ y < 3 and 0 ≤ z < 32. The state can be broken down into lanes or columns,
or planes as shown in Figure 9.

Figure 9: Illustration of the Xoodoo state (toy version)

A lane is a 32-bit word, denoted by Sy,x. A column is operated on 3 bit of y coordinate,
indexed by (x, z). A plane is represented as Ay. A state is made up of 12 lanes or 128
columns or 3 planes. Similar to Gimli, in its internal convention, the bits of each 32-bit
lane are denoted by S[32(x + 4y) + z], where S[ 32(x+4y)+z

8 ] indicates the LSB of a byte.
Xoodoo consists of the iteration of a round function R with 12 rounds, which has

the similar design approach as Keccak-p with five step mappings i.e., the linear steps θ,
ρwest, ι, ρeast, and the non-linear step χ, denoted by R = ρeast ◦ χ ◦ ι ◦ ρwest ◦ θ.
Mixing Layer θ. θ is a column parity mixer if the parity of a column is 1, we call it an
odd (resp. even) column that operates as follows. Moreover, ≪, + represent the logic
operations rotate left, XOR, respectively.

P ← A0 + A1 + A2 E ← P ≪ (1, 5) + P ≪ (1, 14)
Ay ← Ay + E for y ∈ {0, 1, 2}
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Diffusion Layer ρwest and ρeast. ρwest and ρeast operate plane A1 and A2 by cyclic
shift with offsets (1, 0) and (0, 11) (resp. (0, 1) and (2, 8)), respectively.

ρwest :A1 ← A1 ≪ (1, 0) A2 ← A2 ≪ (0, 11)
ρeast :A1 ← A1 ≪ (0, 1) A2 ← A2 ≪ (2, 8)

Addition of Constants ι. ι adds a constant to lane S0,0 for each round, which is a
critical step in the round function. It can be used to remove symmetry of Xoodoo state.
The round constants ci in hexadecimal notation (see Table 26), i.e., the least significant
bit is at z = 0.
Non-linear Layer χ. χ operates in parallel on 3-bit columns and as such forms a layer
of 4 × 32 3-bit Sboxes. For 3-bit units, χ is involutive and hence this also holds for its
inverse. χ has algebraic degree two and the ANF of the 3-bit Sbox is given by

b0 = a0 ⊕ (1⊕ a1)a2

b1 = a1 ⊕ (1⊕ a2)a0

b2 = a2 ⊕ (1⊕ a0)a1

(9)

6.2 Verification of the DCs for Xoodoo
In [The21], the designers updated all 3-round differential trail cores up to weight 50, and a
total of 122 trail cores were found. In [BDKA21], Bordes et al. proved that all 3-round
DCs extended from trail cores with the weight less than and equal to 50 are all valid since
the differential propagations over any consecutive two rounds are independent.

However, this method is still based on some specific conditions such as the sets of
input values and the sets of output values following the given differential over Sboxes are
affine subspaces, while our verification algorithm is generic and does not require any such
conditions.

In this section, we use our algorithm to examine these 3-round DCs again trying to
find at least one right pair for each of them. Although in [BDKA21], Borders et al. have
proved that any 3-round DCs with the weight up to 50 are valid, our verification provides
interesting experimental confirmation for their theory. What’s more, our algorithm presents
the corresponding right pairs for the optimal DCs, which gives us more insights into the
differential property of Xoodoo.

The verification algorithm for Xoodoo’s DCs is basically similar to those for Ascon
and Gimli, where we also need to simulate the update round function of Xoodoo.

Given an r-round DC, since the linear layers before and after the χ operations in the
first and last rounds, respectively, do not influence its validity, we omit these linear layers
in our verification. Consequently, r rounds of Xoodoo can be represented as

Rr = χ ◦ (ι ◦ ρwest ◦ θ ◦ ρeast ◦ χ)r−1 = χ ◦ (λ ◦ χ)r−1

where λ = ι◦ρwest ◦θ ◦ρeast represents the linear operation in the Xoodoo round function.
Let (β0, α1, . . . , αr) be an r-round DC of Xoodoo where βi, αi+1 is the input and

output differences of the χ operation of the i-th round, 0 ≤ i < r. Our verification
process for (β0, α1, . . . , αr) can be illustrated in Figure 10, where we only do r− 1 variable
substitutions.

Firstly, the input of the r-round Xoodoo is set as X⊕xβ0, where X = (x0, x1, · · · , x383)
is a 384 binary variable representing one value of the input pair, x is an auxiliary Boolean
variable, and β0 is the input difference. From the symbolic computation, we will accordingly
obtain the intermediate states before and after the i-th χ, denoted by f i and f i

χ, respectively.
Secondly, we add constraints like Dxf i = βi and Dxf i

χ = αi to regulate the differential
transmission as our predefined DC (β0, α1, . . . , βr). After all, these constraints are collected
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Figure 10: Verification of r-round differential trails for Xoodoo

as a SAT model. If this SAT model is solvable, a solution will be returned. (X, X ⊕ β0) is
thus a right pair for the DC. Otherwise, this DC is invalid.

As we mentioned, in [DHAK18], the designers have determined all 3-round DCs up to
the weight of 50 and the four optimal DCs of weight 36. Naturally, we want to apply our
verification algorithm to these DCs to check their validity. However, since the χ operation
is actually 128 parallel 3-bit Sboxes and all differential propagations over these 3-bit Sboxes
have the same weight, i.e., 2, their search algorithm omitted the first and last χ. In other
words, the weight of an r-round DC (β0, α1, . . . , βr−1, βr) is totally determined by the
inner state differences, i.e., (α1, . . . , βr−1). (α1, . . . , βr−1) is named the differential trail
core of (β0, α1, . . . , βr−1, βr). Since every nonzero input difference of the Xoodoo 3-bit
Sbox or its inverse has 4 kinds of output differences, if the input and output differences
of a differential trail core activate respectively wi and wo Sboxes, this differential trail
core can be extended at most to 22(wi+wo) DCs. It is too costly to examine all of these
extended 3-round DCs, so we randomly select 214 3-round DCs from each of the four
differential trail cores with the optimal weight of 36 and use our verification algorithm
to check them. Finally, these 4 × 214 3-round DCs are all valid. This implies that the
dependence between the rounds of differential propagations of Xoodoo is relatively small.
Finally, our verification algorithm is not limited by the number of rounds, so we continue
to check the 4-round DCs.

Similar to the 3-round cases, 4-round DC can also be determined by their differential
trail core. Although the designers [DHP+20] have given the theoretical lower bound of
4-round DC with weight greater than or equal to 74 (not necessarily tight), they did not
provide any concrete 4-round DCs in the literature. Recently, the authors in [DMA22]
proved that the minimum weight of any 4-round differential trail core is 80.

To obtain some 4-round DC instances, we independently construct a SAT-based
automatic differential trail cores search toolkit, called XoodooSat (the SAT model will
be introduced later in Section D.1, as an independent interest). We successfully find two
4-round trail cores of weight 80. To apply our verification algorithm, again, we verify two
4-round DCs extended from two 4-round trail cores(see Table 35, 37), and all these two
4-round DCs are also valid. The corresponding right pairs are provided in Table 36, 38.
Applications to Keccak. Since Xoodoo and Keccak share lots of similarities, it is
smooth for us to adapt the verification algorithm to examine the differentials for Keccak.
We verify one 4-round DC of Keccak-f [1600] and one 4-round DC of Keccak-f [800]
(see Table 8 and Table 9 in [GLST22]) with the weight of 133 and 95, respectively, and
confirm that all of them are valid.

7 Conclusion
In this paper, we presented an automatic search and verification method from an algebraic
perspective. Our method is handy and efficient for the target primitives with low algebraic
degree round functions. We applied our approach to verify DCs the validity of Gimli,
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Ascon, Xoodoo, and Keccak and directly search for a valid DC of Gimli. We successfully
mounted a SFS collision attack on the intermediate 8-round Gimli-Hash by searching
for a valid DC as well as an inner message pair only in about one minute. We found
that the published forgery attacks of Ascon-128 are invalid because the 4-round forgery
characteristic in the iteration phase is invalid. Further, our verification approach could
easily explain why this 4-round forgery DC is an invalid one. It is noted that our tool is
not only suitable for permutations but also many other cryptographic primitives such as
block ciphers, as long as the Boolean expression of the target primitives can be successfully
obtained. As future works, we consider verifying longer DC and trying to apply it to other
primitives. Besides, we developed a SAT-based automatic search toolkit called XoodooSat
to search for the differential trail cores of any rounds and any weights. We also verify tens
of thousands of 3-round DCs and two 4-round DCs extended from these differential trail
cores, and find all of these DCs are valid, which well demonstrates the sound independence
of the differential propagation over Xoodoo’s round functions.
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A Detailed experimental results
To clearly illustrate the higher efficiency of our new verification method, we test the solving
time in different settings with two different SAT solvers CryptoMiniSat and CaDiCaL. All
the experiments in this paper are implemented on a server with Inter(R) Xeon(R) CPU
E5-4650 v3 @ 2.10GHz 12 Core. The following notations are exploited to distinguish the
number of ANFs , CNFs, and solving time in different cases.

• #ANFSage: The number of ANFs generated by SageMath before Bosphorus opti-
mization.

• #ANFBos: The number of ANFs highly optimized by Bosphorus.

• #CNFBos: The number of CNFs converted by Bosphorus.

• Tcms: Solving time using CryptoMiniSat with single thread by default. Note that †
in here represents 20 threads we use.

• Tcad: Solving time using CaDiCaL.

Table 3: Experimental results of Gimli
Rnd DC #ANFSage #ANFBos #CNFBos Tcms Tcad Pair

6 Tab.7 6298 2916 39908 9.74s† 511s Tab.8
8 Tab.9 8352 3734 49757 66.71s† 6454s Tab.10

Table 4: Experimental results of Xoodoo
Rnd DC #ANFSage #ANFBos #CNFBos Tcms Tcad Pair

3 Tab.27 2308 806 232984 1.37s 1.91s Tab.28
3 Tab.29 2316 781 223258 0.12s 0.23s Tab.29
3 Tab.31 2308 802 232384 1.62s 1.97s Tab.32
3 Tab.33 2308 804 232517 1.08s 1.76s Tab.34
4 Tab.35 3488 1209 425558 1.31s 2.24s Tab.36
4 Tab.37 3464 1280 465456 343s† 28098s Tab.38

Table 5: Experimental results of Keccak
Rnd DC #ANFSage #ANFBos #CNFBos Tcms Tcad Pair

4 [GLST22] Table 8 14400 4809 4656168 21.59s† 3.52s Tab.40
4 [GLST22] Table 9 7200 2429 2267668 7.78s† 4.44s Tab.39
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Table 6: Experimental results of Ascon
Rnd DC #ANFSage #ANFBos #CNFBos Tcms Tcad Pair

2 [GPT21] 1334 465 12296 0.02s 0.02s Tab.11
3 Tab.16 2370 707 97135 0.08s 0.12s Tab.17
3 Tab.18 2572 1204 123651 81.98s 22.41s Tab.19
3 Tab.12 2372 663 93695 0.07 0.11s Tab.13
3 Tab.14 2568 835 96940 0.31s 1.20s Tab.15
4 Tab.21 3650 1209 191994 194s† 650s Tab.22
5 Tab.23 3265 1759 355408 3894s† - Tab.24
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B Gimli

Table 7: The differential characteristic for SFS 6-round Gimli-Hash
∆S0

00000000 c803ec98 00000000 c803ec98
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

∆S1

00000000 00000000 00000000 00000000
00000000 a9580034 00000000 a9580034
00000000 98c803ec 00000000 98c803ec

∆S2

00000000 a8c8203e 00000000 a8c8203e
00000000 a0106912 00000000 a0106912
00000000 319026b0 00000000 319026b0

∆S3

00000000 800100f0 00000000 800100f0
00000000 000ae000 00000000 000ae000
00000000 9bc00080 00000000 9bc00080

∆S4

00000000 00000080 00000000 00000080
00000000 00400000 00000000 00400000
00000000 80000000 00000000 80000000

∆S5

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 80000000 00000000 80000000

∆S6

00000000 80000000 00000000 80000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

Table 8: Collision message pair for SFS 6-round Gimli-Hash
X

e06d07af 445efb01 1a06fc49 47fefb01
46e37879 00d119d0 807e0345 00d11880
33682fd3 03332212 7e8d4676 8334b212

X ⊕∆S0

e06d07af 8c5d1799 1a06fc49 8ffd1799
46e37879 00d119d0 807e0345 00d11880
33682fd3 03332212 7e8d4676 8334b212
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Table 9: The differential characteristic for intermediate 8-round Gimli-Hash: Round 1 to 9
∆S1

00000000 00000000 00000000 81c18ba0
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

∆S2

00000000 00000000 00000000 00000c50
00000000 00000000 00000000 e182408d
00000000 00000000 00000000 a081c18b

∆S3

00000000 00000000 00000000 00000000
00000000 00000000 00000000 b4821adb
00000000 00000000 00000000 13068d32

∆S4

00000000 00000000 00000000 361f001b
00000000 00000000 00000000 0035a72d
00000000 00000000 00000000 3a9b6b80

∆S5

00000000 00000000 99e74180 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

∆S6

00000000 00000000 004c0800 00000000
00000000 00000000 808967c3 00000000
00000000 00000000 8099e741 00000000

∆S7

00000000 00000000 00000000 00000000
00000000 00000000 13ed158b 00000000
00000000 00000000 03101f8a 00000000

∆S8

00000000 00000000 186bb8bd 00000000
00000000 00000000 dc0b0437 00000000
00000000 00000000 4e8c65a4 00000000

∆S9

00000000 00000000 00000000 0806669c
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

Table 10: Collision message pair for intermediate 8-round Gimli-Hash: Round 1 to 9
X

8e57bfca da90441d 9134941b 3a78650c
cd0c5da0 576ee7cd 7081c41a df260717
2a98b7a5 02fd11bb 21954066 8e042b58

X ⊕∆S1

8e57bfca da90441d 9134941b bbb9eeac
cd0c5da0 576ee7cd 7081c41a df260717
2a98b7a5 02fd11bb 21954066 8e042b58
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C Ascon
C.1 Differential characteristics for Ascon-Hash and Conforming mes-

sage pair for Forgery characteristics

Table 11: Conforming pair of 2-round differential characteristic for Ascon-Hash
DC X X ⊕ β0

[GPT21]

5c41069d791c645a e70405b8a01771db
bf65e7a5df0e6f0d bf65e7a5df0e6f0d
f2ced15c537c9796 f2ced15c537c9796
36dcef2e451453f9 36dcef2e451453f9
89b3344098ab8458 89b3344098ab8458

Table 12: Forgery characteristics for round-reduced Ascon-128A with a 3-round finalization
in [GPT21]

β0 α1 α2 α3
0000000000000001 0000000000000000 0000000000000000 ????????????????
0000000000000001 0000000000000000 0000000000000000 ????????????????
0000000000000000 0000000000000001 8400000000000001 ????????????????
0000000000000000 0000000000000000 8400000000000001 4010000000000000
0000000000000000 0000000000000000 0000000000000000 8461c20000000001

Table 13: Conforming pair of 3-round differential characteristic in Ascon-128A finalization
phase [GPT21]

DC X X ⊕ β0

Table 12

30f78a1b80841d90 30f78a1b80841d91
749dc43f87b6928d 749dc43f87b6928c
a87e64223e33d3d3 a87e64223e33d3d3
99e546e5528e8c4f 99e546e5528e8c4f
67794a4a79d44a79 67794a4a79d44a79
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Table 14: Forgery characteristics for round-reduced Ascon-128A with a 3-round permuta-
tion in [GPT21]

β0 α1 α2 α3
0040000400001004 0000000000000000 0240000402001004 2655811c3605b004
0000000000000000 0040000400001004 020080080a002024 2445011424009000
0000000000000000 0000000000000001 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0040000400001004 0a00800800002004 0000000000000000

Table 15: Conforming pair of 3-round differential characteristic in Ascon-128A permutation
phase [GPT21]

DC X X ⊕ β0

Table 14

7c5db1d57b1562b1 7c1db1d17b1572b5
c4ff06bf3619df87 c4ff06bf3619df87
40078ce677be3196 40078ce677be3196
7148974d0af4a995 7148974d0af4a995f
6f85f592f9f630f0 6f85f592f9f630f0

Table 16: Forgery characteristics for round-reduced Ascon-128 with a 3-round finalization
in [GPT21]

β0 α1 α2 α3
0000000000000001 0000000000000000 0000000000000000 ????????????????
0000000000000000 0000000000000001 0200000000800000 ????????????????
0000000000000000 0000000000000000 0000000002000009 ????????????????
0000000000000000 0000000000000000 0000000002000008 b6010000050c0005
0000000000000000 0000000000000001 0200000000800000 0000000002008108

Table 17: Conforming pair of 3-round differential characteristic in Ascon-128 finalization
phase [GPT21]

DC X X ⊕ β0

Table 16

df63a162860c7ade df63a162860c7adf
18201fba224f0c6d 18201fba224f0c6d
a742e064fcafe921 a742e064fcafe921
644c3786e3445133 644c3786e3445133
06692cbc49174b50 06692cbc49174b50

Table 18: Forgery characteristics for round-reduced Ascon-128 with a 3-round permutation
in [GPT21]

β0 α1 α2 α3
04000a0080014000 0000000000000000 80405826050100c0 f34a5fa78bdbc6dc
0000000000000000 04000a0080014000 054802b6010142c1 0000000000000000
0000000000000000 0000000000000000 a108588200010000 0000000000000000
0000000000000000 0000080000014000 a10858b6010142c0 0000000000000000
0000000000000000 04000a0080014000 a0081a9684034255 0000000000000000

Table 19: Conforming pair of 3-round differential characteristic in Ascon-128 iteration
phase [GPT21]

DC X X ⊕ β0

Table 18

e3cd5bcd10216032 e7cd51cd90202032
bed0df80d77d704a bed0df80d77d704a
704250acfea562a6 704250acfea562a6
bc1556cc98493d47 bc1556cc98493d47
404461840a57a8e8 404461840a57a8e8
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Table 20: Forgery characteristics for round-reduced Ascon-128 with a 4-round permutation
in [GPT21]

β0 β1 β2 β3
0000028000000000 0000000000000000 40008a4400402004 c1868824c0ca3030
0000000000000000 0000168000000005 4a00902d0280002b 8584d48c4ae22035
0000000000000000 0000000000000000 10001d5800000006 8082d4a448e20035
0000000000000000 0000000000000000 010214050a000004 40022a3085081140
0000000000000000 4000028500000001 4a8016a80800000f 0504729c47602140

β4
7d0b515048524344
0000000000000000
0000000000000000
0000000000000000
0000000000000000

Table 21: Forgery characteristics for round-reduced Ascon-128 with a 4-round finalization
in [GPT21]

β0 α1 α2 α3
0000000000000001 0000000000000001 0000201000000000 0200000000008000
0000000000000000 0000000000000001 0000201002000008 2000009004000000
0000000000000000 0000000000000000 0000000002000009 840120900308000d
0000000000000000 0000000000000000 0000000002000008 8605008005080005
0000000000000000 0000000000000000 0000000000000000 0200000004008100

α4
????????????????
????????????????
????????????????
6011b00846802008
856042820100c081

Table 22: Conforming pair of 4-round differential characteristic in Ascon-128 finalization
phase [GPT21]

DC X X ⊕ β0

Table 21

bd2445510dbd4c88 bd2445510dbd4c89
5896c3af6f2ad294 5896c3af6f2ad294
17f30c7ea871c0b0 17f30c7ea871c0b0
e615b4b418a723b3 e615b4b418a723b3
ce94413027760a9c ce94413027760a9c

Table 23: The first 5 rounds differential characteristic (see Table 14-(a) in [DEMS21])
β0 α1 α2 α3

8000000000000000 0000000000000000 0000000000000000 0002000001824082
0000000000000000 8000000000000000 0100000000400000 9802a00000c64004
0000000000000000 0000000000000000 0000000001000004 1802800002c60006
0000000000000000 0000000000000000 0000000001000004 1800800002c60082
0000000000000000 8000000000000000 8100000000400000 8900200003004084

α4 α5
2884024003c2a856 5a82d45841828c2a
a4a4e8e000e0c182 c302ce434f290881
74a062800e68cd21 1b2476214c4304cf
1473caa04e4a3d61 9ba0b61b010c84c9
a8f024000e847094 d2a2781b054708e6
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Table 24: Conforming pair of the first 5 rounds differential characteristic [DEMS21]
DC X X ⊕ β0

Table 23

f9434e1234f7d97e 79434e1234f7d97e
acaebc0c445d988a acaebc0c445d988a
f5e5b6cc63c44934 f5e5b6cc63c44934
d7c6c281c4dadfd3 d7c6c281c4dadfd3
499d7613b65f59be 499d7613b65f59be
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D Xoodoo
D.1 SAT-based Differential Trail Cores Search for Xoodoo
SAT-based automatic search has long been introduced to evaluate security bounds of
cryptographic primitives. However, it’s not the case of Xoodoo. In this subsection, we
show how to construct a SAT-based automatic search toolkit for searching Xoodoo DCs
called XoodooSat. The tool is used to search for differential trail cores of any rounds and
any weight.

Based on this tool, we re-search for all 2- and 3-round differential trail cores whose
weights are less and equal to 8 and 50, respectively, and search for all 4-round trail cores
below weight 82. For 3-round Xoodoo, we identify two missing trail cores of weight 48
ignored by XooTools [DHAK21] which is a search tool designed by [DHAK18]. We reported
our findings to the Keccak team. They found that the missing was caused by a bug in
their search code. After fixing this bug, they have confirmed that the two tools produce
exactly the same set of trail cores, independently. Afterward, they extended their complete
search for all 3-round trail cores of weight up to 52 [The21]. For 4-round Xoodoo, we
only find two trail cores of weight 80, which has been verified by our verification algorithm
in Section 6.2.

D.1.1 Modeling the round function of Xoodoo

An r-round DC is represented with the following form that αi and βi are the input
differences of λ and χ, respectively. The linear layer of the round function is re-phased and
defined as λ = ρwest ◦ θ ◦ ρeast to better describe the differential propagation properties,
more details can be found in [DHAK18].

α0
λ−→ β0

χ−→ α1
λ−→ β1

χ−→ α2
λ−→ β2

χ−→ α3 · · ·
χ−→ αn. (10)

The weight of n-round DC is fully determined by the sequence α1, . . . , αn−1. Such a
sequence is called a differential trail core. Compared to the above redundant representation
of a DC, the n-round differential trail core in Equation (11) depends only on 2(n − 1)
differences. In this way, we only describe the four differences rather than six, which
simplifies the generation of CNFs for our SAT problem.

α1
λ−→ β1

χ−→ α2
λ−→ β2 · · ·

χ−→ αn−1. (11)

The weight of n-round DC is given by

W = w(α1) +
n−1∑
i=1

w(βi) or
n−1∑
i=1

w(αi) + w(βn−1). (12)

Modeling the propagation properties of the linear layer. The three linear operations
of the linear layer λ, i.e., ρeast, ρwest and θ, consist of a large number of XORs. Thanks
to the XOR compatibility of the solver CryptoMiniSat, we do not have to convert linear
equations into CNFs.

In order to show the relationship between indexes of the input and output bits clearly,
each linear operation is expressed with a n× n binary matrix M , where n is the width of
Xoodoo, i.e., 384. Hence the XOR clauses of each input and the corresponding output
bit are described through the following Equation (13).

n−1⊕
j=o

Mi,j · xj ⊕ yi = 0, 0 ≤ i, j ≤ n− 1 (13)
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Modeling non-linear operation. For the nonlinear layer χ, each column is treated
as a 3-bit Sbox. Inspired by [AST+17, SWW18], we introduce a SAT-based method to
accurately generate CNFs to describe the difference distribution table (DDT for short) of
Xoodoo (see Table 25).

According to the DDT, we construct a Boolean function F of 2n-bit input, where n is
the bitwise size of each input difference (i.e., a = (a0, a1, . . . , an−1)) and output difference
(i.e., b = (b0, b1, . . . , bn−1)).

F (a∥b) =
∧

â∥b̂∈(0,1)2n

(F (â∥b̂) ∨
n−1∨
i=0

(ai ⊕ âi) ∨
n−1∨
i=0

(bi ⊕ b̂i)) (14)

As shown in Equation (14) where (â, b̂) denotes an incompatible differential pattern, if (a, b)
is a compatible differential pattern in DDT, F (a∥b) returns true. Otherwise, it returns
false.

In this way, 35 CNFs are generated to describe the DDT of each Sbox. An off-the-shelf
software called Logic Friday could be introduced to further optimize these CNFs. After
implementing this simplification, we only need 14 CNFs to describe the DDT.

D.1.2 Objective function

Since the weight of a difference over χ can be replaced by twice the number of active
columns in Xoodoo, we suppose the weight of DCs is no greater than 2N are searched,
which is equal to the number of active columns of those 3-round trails are less and equal to
N . More properties of χ refer to [DHAK18]. We introduce binary variables ASi,j , where
0 ≤ i < 3, 0 ≤ j < 128, i is the index of rounds, and j is the index of columns of a Xoodoo
state. If a column which is indexed by i and j is active, ASi,j = 1. Otherwise, ASi,j = 0.

The boolean cardinality constraint is expressed as:
2∑

i=0

127∑
j=0

ASij ≤ N, ASij ∈ {0, 1}.

The sequential encoding method proposed by Sinz in 2005 [Sin05] which has been
implemented in the PySAT toolkit [IMM18] can transform the cardinality constraint into
SAT problem with O(n ·k) CNFs, where n is the number of columns and k is the maximum
number of active columns.

D.1.3 Results

A SAT-based automatic search tool, called XoodooSat, is developed to generate trail
cores of Xoodoo. With the SAT-based tool, we verify the lower bounds on the weight of
2/3-round trail cores which are 8 and 36 respectively. As a result of independent interest,
we re-search all 2/3-round trail cores up to weight 8/50.

Although the designers [DHP+20] has given the theoretical lower bound of 4-round
DC with weight greater than or equal to 74, they did not provide any concrete 4-round
DCs in the literature. For the exhaustive search of 4-round trail cores below weight 82,
XoodooSat cannot sustain the enormous search space in a limited time (15 days). Only
two trail cores of weight 80 are found (see Table 35,37). To the best of our knowledge, it
is the first presented two 4-round trail cores of weight 80 in the literature.
Remark 1. With the SAT-based tool, we identify two missing trail cores of weight 48
in [DHAK18] and report to the Keccak team. They find that the missing is caused by a
program bug. By fixing it, they confirm that the two tools produce exactly the same set
of trail cores, independently. Afterward, they extend their complete search for all 3-round
trail cores up to weight 52 [The21].
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D.2 Properties of χ

Non-linear operations is a key component for generating differential and correlation weight,
which leading certain input/ output difference to appear in a non-random way. χ is
non-linear operation in the round function of Xoodoo as well as Keccak-p permutation.
Noted that there are three differences between them. Firstly, the size of input is 3 in
Xoodoo rather than 5, which can be as a 3-bit S-box. Secondly, for Xoodoo (resp.
Keccak-p), χ operates on each column(resp. row) independently. Thirdly, in Xoodoo,χ is
involutive due to its 3-bit input, which leads its DDT and linear approximation table(LAT)
has the same weight for each possible differential as well as linear approximation.

The value of the input difference α run down the first column, while the value of
output difference β run across the first row. Each valid pattern (α, β) has a non-zero
value,denoted by N(α,β). We can calculate the differential weight of each compatible
pattern, i.e. ,w = −log2

N(α,β)
8 .

Table 25: DDT of χ operation in Xoodoo
Input
diff.(α)

Output diff.(β)
0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x07

0x0 8 0 0 0 0 0 0 0
0x1 0 2 0 2 0 2 0 2
0x2 0 0 2 2 0 0 2 2
0x3 0 2 2 0 0 2 2 0
0x4 0 0 0 0 2 2 2 2
0x5 0 2 0 2 2 0 2 0
0x6 0 0 2 2 2 2 0 0
0x7 0 2 2 0 2 0 0 2

Table 26: Constants ci used in the Xoodoo
Round i Constant ci Round i Constant ci Round i Constant ci

-11 00000058 -7 00000120 -3 00000380
-10 00000038 -6 00000014 -2 000000f0
-9 000003c0 -5 00000060 -1 000001a0
-8 000000d0 -4 0000002c 0 00000012

D.3 Xoodoo: 3/4-round Optimal Differential characteristics and Con-
forming message pair
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Table 27: No.1 Optimal differential characteristic for 3-round Xoodoo
β0

00000002 00000000 00000000 00000000
00000001 00000000 00000000 00000000
00000000 00000000 00000000 00000000

α1
00000002 00000000 00000000 00000000
00000001 00000000 00000000 00000000
00000000 00000000 00000000 00000000

α2
00000002 00000000 00000000 00000000
00000000 00000002 00000000 00000000
00000000 00000000 00000000 00000000

α3
00000002 00008040 00010080 00000000
00000000 00000000 00008044 00010080
00000000 04020000 08040000 00000000

Table 28: Conforming pair for No.1 Optimal 3-round differential characteristic of Xoodoo
X

da809d9d 3c7886f7 2eda462a d60e0b26
210da579 a33b2733 c476e74e 1ce39c19
080e8bee 78a93341 f523e2b0 ff95b517

X ⊕ β0
da809d9f 3c7886f7 2eda462a d60e0b26
210da579 a33b2733 c476e74e 1ce39c19
080e8bee 78a93341 f523e2b0 ff95b517

Table 29: No.2 Optimal differential characteristic for 3-round Xoodoo
β0

04000000 00000000 00000000 00000100
02000000 00000000 00000040 00000000
80000000 00000001 00000000 00000000

α1
04000000 00000000 00000000 00000100
02000000 00000000 00000040 00000000
80000000 00000001 00000000 00000000

α2
04000000 00000000 00000000 00000100
00000000 04000000 00000000 00000080
00000000 00000000 00040000 00080000

α3
04000000 00000000 00000000 00000100
00000100 00000000 08000000 00000000
00000020 00000040 00000000 00000000
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Table 30: Conforming pair for No.2 Optimal 3-round differential characteristic of Xoodoo
X

02003012 c70546a6 93480448 143ac404
80001012 00420009 41080000 20050401
04102000 c74546a6 d2401408 143fc107

X ⊕ β0
06003012 c70546a6 93480448 143ac504
82001012 00420009 41080040 20050401
84102000 c74546a7 d2401408 143fc107

Table 31: No.3 Optimal differential characteristic for 3-round Xoodoo
β0

00000000 00000000 00000100 00000000
00000000 00000000 00000000 00000000
00000001 00000000 00000000 00000000

α1
00000000 00000000 00000100 00000000
00000000 00000000 00000000 00000000
00000001 00000000 00000000 00000000

α2
00000000 00000000 00000100 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00080000 00000000

α3
00000000 00000201 00000100 00402000
00402000 00000000 00000201 00000000
00000040 00100800 00000000 01000002

Table 32: Conforming pair for No.3 Optimal 3-round differential characteristic of Xoodoo
X

563794c2 088415d9 29a33b86 40abecb4
d37ced1f ead842d6 b6782c9e 5473208f
98dfd793 087c4616 950b8157 c0f590d1

X ⊕ β0
563794c2 088415d9 29a33a86 40abecb4
d37ced1f ead842d6 b6782c9e 5473208f
98dfd792 087c4616 950b8157 c0f590d1
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Table 33: No.4 Optimal differential characteristic for 3-round Xoodoo
β0

00000000 00000000 00000000 00000000
00000000 00000000 00000080 00000000
00000001 00000000 00000000 00000000

α1
00000000 00000000 00000000 00000000
00000000 00000000 00000080 00000000
00000001 00000000 00000000 00000000

α2
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000100
00000000 00000000 00080000 00000000

α3
00804000 00000201 00000000 00000000
00000200 00804000 00000201 00000000
02000044 00100800 00000000 00000000

Table 34: Conforming pair for No.4 Optimal 3-round differential characteristic of Xoodoo
X

fe518252 bd8ce600 ff7524d7 0a250b5e
ee299823 b23e3283 ecd1ba1d 6db528a5
cd66b57e 5c846c0a 11017b10 fa114ef8

X ⊕ β0
fe518252 bd8ce600 ff7524d7 0a250b5e
ee299823 b23e3283 ecd1ba9d 6db528a5
cd66b57f 5c846c0a 11017b10 fa114ef8

Table 35: No.1 Differential characteristic for 4-round Xoodoo
β0

0000000e 0000000a 0000000e 0000000a
00000001 00000005 00000001 00000005
00000000 00000000 00000000 00000000

α1
0000000e 0000000a 0000000e 0000000a
00000007 00000005 00000007 00000005
00000000 00000000 00000000 00000000

α2
0000000c 0000000c 0000000c 0000000c
00000006 00000006 00000006 00000006
00000000 00000000 00000000 00000000

α3
00000008 00000008 00000008 00000008
00000004 00000004 00000004 00000004
00000000 00000000 00000000 00000000

α4
00000008 00000008 00000008 00000008
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
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Table 36: Conforming pair for No.1 4-round differential characteristic of Xoodoo
X

a2cd7e45 cd20443d dc07ec29 f54c2747
7bf33691 b3816090 e7a24d70 8fa6c550
5fb494b8 76f2590a 26a4b278 bb762ada

X ⊕ β0
a2cd7e4b cd204437 dc07ec27 f54c274d
7bf33690 b3816095 e7a24d71 8fa6c555
5fb494b8 76f2590a 26a4b278 bb762ada

Table 37: No.2 Differential characteristic for 4-round Xoodoo
β0

01000100 00000000 00010001 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

α1
01000100 00000000 00010001 00000000
00000000 00000000 00000000 00000000
01000100 00000000 00010001 00000000

α2
01080108 00000000 08010801 00000000
00000000 00000000 00000000 00000000
01080108 00000000 08010801 00000000

α3
41084108 00000000 00410041 00000000
00000000 00000000 00000000 00000000
41004100 00000000 08410841 00000000

α4
41084108 00000000 00410041 00000000
00000000 00000000 00000000 00000000
02000200 00000000 08020802 00000000

Table 38: Conforming pair for No.2 4-round differential characteristic of Xoodoo
X

75bb818b 566f2118 19861633 020c4018
b165f93e 007bd8f6 c2b3a741 fe8eb1b6
a52299b9 44a359d1 1c1dca29 c3f32077

X ⊕ β0
74bb808b 566f2118 19871632 020c4018
b165f93e 007bd8f6 c2b3a741 fe8eb1b6
a52299b9 44a359d1 1c1dca29 c3f32077
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E Keccak

Table 39: Conforming pair for 4-round differential characteristic of Keccak-f[800]
[GLST22]

X
6e0afffe fd800d8a 4022d287 b3537a30 d6b65c78
be9ede92 f5464b9a 6cedf67b 38a53a33 0ed777f9
7b0a0f76 680cd690 bba798b6 349ffde5 7e57d84a
f45f264a 41a1e30f c9101439 a10a3fb2 07e3ba49
a532921a 611a224e e027aa10 36804867 fc42e2e6

X ⊕ β0
2e0afffe d9800d8a 4022d287 b3537a30 d6b65c78
fe9ede92 f5464b9a 4cedf67b 78a53a33 0ed777f9
3b0a0f76 680cd690 9ba798b6 349ffde5 7e57d84a
f45f264a 45a1e30f e9101439 a10a3fb2 07e3ba49
e532921a 611a224e c027aa10 36804867 fc42e2e6

Table 40: Conforming pair for No.1 4-round differential characteristic of Keccak-f[1600]
[GLST22]

X

315671d0d0071602 42fd1c41f82b838b 889cdc68f9955a8a 09687aad0335ab19 22c4588ab8ff3e66
3b9e4c0062cdcfc0 5cf91c118a6b9d29 6a02da273a3c06eb f4a05ed9a49cae3a aec18c639c6f7a8e
0aec05b00e3d51c0 5e6993b7cab8dc03 98fea95e6a2fb529 05058568b40ea8cf cd8777e845686eae
9b85ebd1b9ab6716 fd65f99a6f278aa0 3c55b89a8c46af0f 050fad93c11d356c 2baf07920fdec3af
dfe99de2b880f360 55e35833d55f5c2a f5b1745d702e2291 2db565d2c98140cd 29e6612766e261d6

X ⊕ β0
315671d0d0071606 42fd1c41f82b838b 889cdc68f9955a8a 09687aad0335ab1b 22c4588ab8ff3e6e
3b9e4c0062cdcfc4 5cf91c118a6b9d29 6a02da273a3c06eb f4a05ed9a49cae38 aec18c639c6f7a86
0aec05b00e3d51c4 5e6993b7cab8dc03 98fea95e6a2fb529 05058568b40ea8cd cd8777e845686ea6
9b85ebd1b9ab6712 fd65f99a6f278aa0 2c55b89a8c46af0f 050fad93c11d356e 2baf07920fdec3af
dfe99de2b880f364 55e35833d55f5c2a e5b1745d702e2293 2db565d2c98140cd 29e6612766e261de


	Introduction
	Preliminaries 
	Differential Cryptanalysis
	Algebraic Perspective on Differential(-Linear) Cryptanalysis
	SAT-based Cryptanalysis
	Previous Automatic Verification of Differential Characteristics

	Verification of a Differential or Differential Characteristic from Algebraic Perspective 
	SAT Model for Verifying a Differential or Differential Characteristic
	Obtaining and Solving the SAT Model
	Discussion on Our New Verification Algorithm

	Application to Ascon
	 A Brief Introduction to Ascon
	Verification of the DCs in Forgery and Collision attacks
	Explaining the Contradictions

	Application to Gimli
	A Brief Introduction to Gimli
	A Practical SFS Collision Attack on 8-Round Gimli-Hash

	Application to Xoodoo
	A Brief Introduction to Xoodoo
	Verification of the DCs for Xoodoo

	Conclusion
	Detailed experimental results
	Gimli
	 Ascon
	Differential characteristics for Ascon-Hash and Conforming message pair for Forgery characteristics

	Xoodoo
	SAT-based Differential Trail Cores Search for Xoodoo
	Properties of 
	Xoodoo: 3/4-round Optimal Differential characteristics and Conforming message pair

	Keccak

