
Proofs of Proof-of-Stake with Sublinear Complexity
Shresth Agrawal

Jacobs University Bremen
s.agrawal@jacobs-university.de

Joachim Neu
Stanford University
jneu@stanford.edu

Ertem Nusret Tas
Stanford University
nusret@stanford.edu

Dionysis Zindros
Stanford University

dionyziz@stanford.edu

Abstract—Popular Ethereum wallets (e.g., MetaMask) entrust
centralized infrastructure providers (e.g., Infura) to run the
consensus client logic on their behalf. As a result, these wallets are
light-weight and high-performant, but come with security risks. A
malicious provider can mislead the wallet, e.g., fake payments and
balances, or censor transactions. On the other hand, light clients,
which are not in popular use today, allow decentralization, but
at concretely inefficient and asymptotically linear bootstrapping
complexity. This poses a dilemma between decentralization and
performance. In this paper, we design, implement, and evaluate a
new proof-of-stake (PoS) superlight client with concretely efficient
and asymptotically logarithmic bootstrapping complexity. Our
proofs of proof-of-stake (PoPoS) take the form of a Merkle tree of
PoS epochs. The verifier enrolls the provers in a bisection game,
in which the honest prover is destined to win once an adversarial
Merkle tree is challenged at sufficient depth. To evaluate our
superlight protocol, we provide a client implementation that is
compatible with mainnet PoS Ethereum: compared to the state-
of-the-art light client construction of PoS Ethereum, our client
improves time-to-completion by 9×, communication by 180×,
and energy usage by 30× (when bootstrapping after 10 years of
consensus execution). We prove that our construction is secure
and show how to employ it for other PoS systems such as Cardano
(with full adaptivity), Algorand, and Snow White.

I. INTRODUCTION

Blockchain is centralized [51]. The most popular wallet1

today, MetaMask, trusts a single infrastructure provider, Infura,
to supply the users with token and NFT balances, smart con-
tract interactions, and notifications of payment. This renders
billions of dollars susceptible to attacks such as faking pay-
ments and balances, double spending, or transaction censor-
ship, by a single malicious provider. In fact, MetaMask servers
do censor NFTs [38] and smart contract interactions [56].

To mitigate this centralization, blockchain users can run
full nodes. When a full node boots up for the first time, it
needs to download and verify all transactions that were ever
recorded by the chain throughout its history. This is expensive
and cannot be supported by a phone or browser [19]. Even a
traditional light client requires downloading and verifying the
header chain, which grows linearly as time goes by [7].

This bootstrapping problem has been successfully resolved
in the proof-of-work (PoW) setting by the proof of proof-of-
work (PoPoW) protocols, but their methods are not applicable
to proof-of-stake (PoS). In this work, we put forth the first suc-
cinct proof of proof-of-stake (PoPoS) protocol. The protocol
involves a light client verifier and multiple full node provers, at

1MetaMask has 21,000,000 monthly active users as of July 2022 [59] and
is the most popular non-custodial wallet [20].

least one of which is assumed to be honest (this is the standard
existential honesty assumption). The verifier interacts with the
provers in multiple rounds. It initially requests from each
prover a proof about the current state of the chain. After these
proofs are received, the verifier pits provers against each other
in bisection games until any adversarial claims are ruled out.
The number of interactions and communication complexity of
the bootstrapping protocol is logarithmic in the chain lifetime.
This constitutes an exponential improvement over previous
work.

The existential honesty assumption can also be expressed
as the ‘non-eclipsing assumption’, a standard assumption un-
derlying the security argument of many blockchain construc-
tions including Bitcoin and Ethereum [30], [29], [31], [55].
Although several papers analyze attacks that exploit violations
of this assumption [32], [50], our implementation and analysis
focuses on Ethereum, in which existantial honesty is assumed
for the connections of the full nodes and light clients.

Our PoPoS construction has two main applications: Su-
perlight proof-of-stake clients that can bootstrap very effi-
ciently, and trustless bridges that allow the passing of infor-
mation from one proof-of-stake chain to another.

Implementation. To demonstrate their feasibility, we imple-
ment our light client protocols for PoS Ethereum. We illustrate
our improvements in two gradual improvement steps over the
light client currently proposed for PoS Ethereum [25]. Firstly,
we perform measurements using the light client protocol cur-
rently proposed for PoS Ethereum. We find that this protocol,
while much more efficient than a full node, is likely insuffi-
cient to support communication-, computation-, and battery-
constrained devices such as browsers and mobile phones. Next,
we introduce an optimistic light client for PoS Ethereum
that leverages the existential honesty assumption to achieve
significant gains over the traditional light client. We demon-
strate this implementation is already feasible for resource-
constained devices. However, the theoretical complexity is still
linear in the lifetime of the protocol. Lastly, we introduce
our superlight client that achieves exponential asymptotic
gains over the optimistic light client. These gains are both
theoretically significant (the superlight client has logarithmic
complexity), but also constitute concrete improvements over
the optimistic light client when the blockchain system is long-
lived and has an execution history of a few years. We compare
all three clients in terms of communication (bandwidth and
latency), computation, and energy consumption.

2

Contributions. In summary, our contributions are as follows:

1) We give the first formal definition for succinct proof of
proof-of-stake (PoPoS) protocols.

2) We put forth a solution to the long-standing problem of
efficient PoS bootstrapping. Our solution is exponentially
better than previous work.

3) We implement a highly performant optimistic light
client and a complete superlight client for mainnet PoS
Ethereum. Our superlight client is the first succinct node
for PoS Ethereum. We measure and contrast the perfor-
mance of our clients against the currently proposed design
for PoS Ethereum.

4) We show our construction is secure for PoS Ethereum and
other PoS blockchains.

Overview of the optimistic light client and superlight client
constructions. PoS protocols typically proceed in epochs
during which the validator set is fixed. In each epoch, a subset
of validators is elected by the protocol as the epoch committee.
The security of the protocol assumes that the majority [4],
[44], [23], [2] or super-majority [13], [17], [9], [61] of the
committee members are honest.

In this paper, we put forth a protocol through which a
bootstrapping light client can synchronize in logarithmic time
and communication. We build our protocol ground up, starting
with a linear light client.

Consider a client that boots up in the first epoch, and wishes
to find its current balance. The client knows the initial com-
mittee at the genesis. If that committee has honest majority,
its members can sign the latest system state. Then, the client
only has to verify the committee signatures on the state and
take a majority vote. In PoS protocols, the stake changes
hands in every epoch. Hence, to repeat the same verification
at later epochs, the client needs to keep track of the current
committee. To help the client in this endeavor, the committee
members of each epoch, while active, sign a handover message
inaugurating the members of the new committee [39]. This
enables the light client to discover the latest committee by
processing a sequence of such handovers. Regrettably, the
sizes of handover messages and the committees can be large,
imposing an undue bandwidth requirement on the light client.
Moreover, the sequence of handovers grows linearly with the
lifetime of the protocol.

The client can leverage the existential honesty assumption to
reduce its communication load. Towards this goal, it connects
to multiple provers, which might provide conflicting state
claims. To discover the truthful party, the client plays the
disagreeing provers against each other. Upon observing two
conflicting provers, it asks from each prover a sequence of
hash values corresponding to its claimed sequence of past
committees. The client then finds the first point of disagree-
ment between the two returned sequences through a linear
search. Finally, it asks the provers to show the correctness
of the handover at the point of disagreement. Each prover
subsequently reveals the committee attested by the hash at
that point, the previous committee and the associated handover

messages. Upon validating these messages which can be done
locally and efficiently, the client identifies the truthful party,
and accepts its state.

Although the client at this stage is still linear, it has a
smaller communication load, as it downloads succinct hashes
of the old committees instead of the committees themselves.
This reduction in the message size demonstrates the power
of existential honesty in practical settings, and gives the
optimistic light client its name.

To make our optimistic light client asymptotically succinct
(i.e., polylog complexity), we improve the procedure to find
the first point of disagreement. To this end, our final PoPoS
protocol requires each prover to organize its claimed sequence
of committees—one per epoch—into a Merkle tree [53].
The roots of those trees are then sent over to the client,
who compares them. Upon detecting disagreement at the
roots, the client asks the provers to reveal the children of
their respective roots. By repeating this process recursively
on the mismatching children, it arrives at the first point of
disagreement between the claimed committee sequences, in
logarithmic number of steps. This process, called the bisection
game, renders the optimistic light client a superlight client with
logarithmic communication.

Related work (cf. Table I). Proof-of-work bootstrapping has
been explored in the interactive [40] and non-interactive [42]
setting using various constructions from superblocks [41], [36]
to Fiat–Shamir [27] sampling [10], and proven secure in the
Bitcoin backbone model [30], [29], [31]. Such constructions
can be adopted without forking [63], [43] and have been
deployed in practice [22]. They have also been used to deploy
one-way [37] and two-way sidechains [1], [45], [62].

The first provably secure proof-of-stake protocols were
introduced in Ouroboros [44], [23], [2], Snow White [4], and
Algorand [54]. Several attempts to improve the efficiency of
clients and sidechains have been proposed [39], [18], [46],
but they all achieve only concrete gains in efficiency and no
asymptotic improvement. For an overview of all light client
constructions, refer to Chatzigiannis et al. [19].

Our construction is based on bisection games. These first
appeared in the context of verifiable computation [16], and in
blockchains for the efficient execution of smart contracts [34],
for wallet metadata [35], and for LazyLedger light clients [57].

PoPoS constructions can also be built via recursive
SNARKs [5], [3], [52] or STARKs. For instance, Plumo [28]
has implemented a SNARK-based superlight blockchain client
with trusted setup, where each transition proof captures four
months of blockchain history. Similarly, zkSNARKS have
been used to achieve constant bootstrapping communication
complexity in Coda/Mina [52] in the trusted setup model.
Halo [8] later improved upon the existing recursive SNARKs
with a practical implementation that removes the trusted setup
requirement. Unlike many of the zkSNARK-based construc-
tions, our protocol does not require changes in the PoS
protocol to support pairing-friendly elliptic curves, and relies
on simple primitives such as collision-resistant hash functions

3

TABLE I
A COMPARISON WITH PREVIOUS WORK IN TERMS OF asymptotic Θ̃ COMMUNICATION COMPLEXITY, INTERACTIVITY, AND MODEL.

INTERACTIVITY IS THE NUMBER OF ROUNDS, IGNORING CONSTANTS. LOW COMMUNICATION AND INTERACTIVITY ARE PREFERABLE.
N : NUMBER OF EPOCHS; L: NUMBER OF BLOCKS PER EPOCH. COMMON PREFIX PARAMETER k IS CONSTANT.

SPV PoW KLS FlyClient Superblocks Full PoS Mithril Coda This work
[30] [40] [10] [42], [41] [44] [18] [52]

Communication NL log(NL) poly log(NL) log(NL) NL N + L 1 logN + L
Interactivity 1 log(NL) 1 1 1 1 1 logN
Work/stake work work work work stake stake both stake
Model RO RO RO RO standard RO CRS standard
Primitives hash hash hash hash hash, sig hash, sig, ZK hash, sig, ZK hash, sig

and cryptographic signatures. It also enables provers to update
their state within milliseconds on commodity hardware and
with minimal RAM requirements.

In the honest majority (Byzantine) setting, there is no
need for checkpointing, as the only requirement in terms of
assumptions is that the honest majority of stake, at every
point in time, remains in honest hands [44]. The approaches
here vary, but one popular approach is to use key-evolving
signatures.

In many blockchain systems such as Cosmos [47] and
Ethereum [11], bootstrapping nodes are expected to obtain
checkpoints on recent blocks from a trusted source (e.g., a
peer or a trusted website), after which it has to download only
a constant number of block headers to identify the tip of the
canonical chain. While the idea of checkpointing has becoming
increasingly popular in the community, there is no concrete
protocol to determine such checkpoints in a decentralized
manner. Indeed, our PoPoS construction can be thought of
as the first protocol that enables a light client to succinctly
verify the veracity of these checkpoints without relying on
any trusted third party.
Outline. We present our theoretical protocol in a generic
PoS framework, which typical proof-of-stake systems fit into.
We prove our protocol is secure if the underlying blockchain
protocol satisfies certain simple and straightforward axioms.
Many popular PoS blockchains can be made to fit within
our axiomatic framework. We define our desired primitive,
the proof of proof-of-stake (PoPoS), together with the axioms
required from the underlying PoS protocol in Section III. We
iteratively build and present our construction in Sections IV
and V. We present the security claims in Section VIII.

For concreteness, and because it is the most prominent
upcoming PoS protocol, we give a concrete construction of our
protocol for PoS Ethereum in Section VI. PoS Ethereum is the
next generation of Ethereum, and soon to be the most widely
adopted PoS protocol.2 Interestingly, PoS Ethereum directly
satisfies our axiomatic framework and does not require any
changes on the consensus layer at all. The applicability of our
framework to other PoS chains such as Ouroboros (Cardano),
Algorand, and Snow White are discussed in Appendix A.

We provide an open source implementation of a superlight
PoS Ethereum client following our protocol. The description

2Bitcoin, which remains the most popular cryptocurrency, does not currently
have any plans for migrating from PoW to PoS.

of our implementation and the relevant experimental measure-
ments showcasing the advantages of our implementation are
presented in Section VII. Our implementation is a complete
client that can synchronize with the PoS Ethereum network
by connecting to multiple provers and retrieve user balances
on the real mainnet chain.

II. PRELIMINARIES

Proof-of-stake. Our protocols work in the proof-of-stake (PoS)
setting. In a PoS protocol, participants transfer value and
maintain a balance sheet of stake, or who owns what, among
each other. It is assumed that the majority of stake is honestly
controlled at every point in time. The PoS protocol uses the
current stake distribution to establish consensus. The exact
mechanism by which consensus is reached varies by PoS
protocol. Our PoPoS protocol works for popular PoS flavours.

Primitives. The participants in our PoS protocol transfer stake
by signing transactions using a secure signature scheme [49].
The public key associated with each validator is known by all
participants. The signatures are key-evolving, and honest par-
ticipants delete their old keys after signing transactions [33],
[23]3. Additionally, throughout our construction, we use a hash
function. The only assumption needed of this hash function is
collision resistance. In particular, we highlight the fact that it
does not need to be treated in the Random Oracle model, and
no trusted setup is required for our protocol (beyond what the
underlying PoS protocol may need).

Types of nodes. The stakeholders who participate in main-
taining the system’s consensus are known as validators. In
addition to those, other parties, who do not participate in
maintaining consensus, can join the system, download its full
history, and discover its current state. These are known as
full nodes. Clients that are interested in joining the system
and learning a small part of the system state (such as their
user’s balance) without downloading everything are known as
light clients. Both full nodes and light clients can join the
system at a later time, after it has already been executing
for some duration |C|. A late-joining light client or full node
must bootstrap by downloading some data from its peers. The

3Instead of key-evolving signatures, PoS Ethereum relies on a concept
called weak subjectivity [11]. This alternative assumption can also be used
in the place of key-evolving signatures to prevent posterior corruption at-
tacks [24].

4

amount of data the light client downloads to complete the boot-
strapping process is known as its communication complexity.
A light client is succinct if its communication complexity is
O(poly log(|C|)) in the lifetime |C| of the system. Succinct
light clients are also called superlight clients. The goal of this
paper is to develop a PoS superlight client.

Time. The protocol execution proceeds in discrete epochs,
roughly corresponding to moderate time intervals such as one
day. Epochs are further subdivided into rounds, which corre-
spond to shorter time durations during which a message sent
by one honest party is received by all others. In our analysis,
we assume synchronous communication. The validator set
stays fixed during an epoch, and it is known one epoch in
advance. The validator set of an epoch is determined by the
snapshot of stake distribution at the beginning of the previous
epoch. To guarantee an honest majority of validators at any
epoch, we assume a delayed honest majority for a duration
of two epochs: Specifically, if a snapshot of the current stake
distribution is taken at the beginning of an epoch, this snapshot
satisfies the honest majority assumption for a duration of
two full epochs. Additionally, we assume that the adversary
is slowly adaptive: She can corrupt any honest party, while
respecting the honest majority assumption, but that corruption
only takes place two epochs later. This assumption will be
critical in our construction of handover messages that allow
members of one epoch to inaugurate a committee representing
the next epoch (cf. Section IV).

The prover/verifier model. The bootstrapping process begins
with a light client connecting to its full node peers to begin
synchronizing. During the synchronization process, the full
nodes are trying to convince the light client of the system’s
state. In this context, the light client is known as the verifier
and the full nodes are known as the provers. We make the
standard existential honesty assumption that the verifier is
connected to at least one honest prover (otherwise, the verifier
is eclipsed and cannot hope to synchronize). The verifier
queries the provers about the state of the system, and can
exchange multiple messages to interrogate them about the truth
of their claims during an interactive protocol.

Ledgers. The consensus protocol attempts to maintain a
unified view of a ledger L. The ledger is a sequence of
transactions L = (tx1, tx2, . . .). Each validator and full node
has a different view of the ledger. We denote the ledger of
party P at round r as LP

r . Nodes joining the protocol, whether
they are validators, full nodes, or (super)light clients, can also
write to the ledger by asking for a transaction to be included.
In a secure consensus protocol, all honestly adopted ledgers
are prefixes of one another. We denote the longest among these
ledgers as L∪

r , and the shortest among them as L∩
r . We will

build our protocol on top of PoS protocols that are secure. A
secure consensus protocol enjoys the following two virtues:

Definition 1 (Consensus Security). A consensus protocol is
secure if it is:

1) Safe: For any honest parties P1, P2 and rounds r1 ≤ r2:

LP1
r1 ≼ LP2

r2 .
2) Live: If all honest validators attempt to write a transaction

during u consecutive rounds r1, . . . , ru, it is included in
LP
ru of any honest party P .

Transactions. A transaction encodes an update to the system’s
state. For example, a transaction could indicate a value transfer
of 5 units from Alice to Bob. Different systems use different
transaction formats, but the particular format is unimportant
for our purposes. A transaction can be applied on the current
state of the system to reach a new state. Given a state st and
a transaction tx, the new state is computed by applying the
state transition function δ to the state and transaction. The
new state is then st′ = δ(st, tx). For example, in Ethereum,
the state of the system encodes a list of balances of all
participants [12], [60]. The system begins its lifetime by
starting at a genesis state st0. A ledger also corresponds
to a particular system state, the state obtained by applying
its transactions iteratively to the genesis state. Consider a
ledger L = (tx1 · · · txn). Then the state of the system is
δ(· · · δ(st0, tx1), · · · , txn). We use the shorthand notation δ∗

to apply a sequence of transactions tx = tx1 · · · txn to a state.
Namely, δ∗(st0, tx) = δ(· · · δ(st0, tx1), · · · , txn).

Because the state of the system is large, the state is
compressed using an authenticated data structure (e.g., Merkle
Tree [53]). We denote by ⟨st⟩ the state commitment, which
is this short representation of the state st (e.g., Merkle Tree
root). Given a state commitment ⟨st⟩ and a transaction tx, it
is possible to calculate the state commitment ⟨st′⟩ to the new
state st′ = δ(st, tx). However, this calculation may require
a small amount of auxiliary data π such as a Merkle tree
proof of inclusion of certain elements in the state commitment
⟨st⟩. We denote the transition that is performed at the state
commitment level by the succinct transition function ⟨δ⟩.
Concretely, we will write that ⟨δ(st, tx)⟩ = ⟨δ⟩ (⟨st⟩ , tx, π).
This means that, if we take state st and apply transaction tx
to it using the transition function δ, and subsequently calculate
its commitment using the ⟨·⟩ operator, the resulting state
commitment is the same as the one obtained by applying the
succinct transition function ⟨δ⟩ to the state commitment ⟨st⟩
and transaction tx using the auxiliary data π. If the auxiliary
data is incorrect, the function ⟨δ⟩ returns ⊥ to indicate failure.
If the state commitment uses a secure authenticated data
structure such as a Merkle tree, we can only find a unique
π that makes the ⟨δ⟩ function run successfully.
Notation. We use ϵ and [] to mean the empty string and empty
sequence. By x ∥ y, we mean the string concatenation of x
and y encoded in a way that x and y can be unambiguously
retrieved. We denote by |C| the length of the sequence C;
by C[i] the ith (zero-based) element of the sequence, and by
C[−i] the ith element from the end. We use C[i:j] to mean the
subarray of C from the ith element (inclusive) to the jth element
(exclusive). Omitting i takes the sequence to the beginning,
and omitting j takes the sequence to the end. We use λ
to denote the security parameter. Following Go notation, in
our multi-party algorithms, we use m 99K A to indicate that

5

message m is sent to party A and m L99 A to indicate that
message m is received from party A.

III. THE POPOS PRIMITIVE

The PoPoS Abstraction. Every verifier V online at some round
r holds a state commitment ⟨st⟩Vr . To learn about this recent
state, the verifier connects to provers P = {P1, P2, · · · , Pq}.
All provers except one honest party can be controlled by the
adversary, and the verifier does not know which party among
the provers is honest (the verifier is assumed to be honest).
The honest provers are always online. Each of them maintains
a ledger Li. They are consistent by the safety of the underlying
PoS protocol. Upon receiving a query from the verifier, each
honest prover sends back a state commitment corresponding
to its current ledger. However, the adversarial provers might
provide incorrect or outdated commitments that are different
from those served by their honest peers. To identify the correct
commitment, the light client mediates an interactive protocol
among the provers:

Definition 2 (Proof of Proof-of-Stake). A Proof of Proof-of-
Stake protocol (PoPoS) for a PoS consensus protocol is a pair
of interactive probabilistic polynomial-time algorithms (P, V).
The algorithm P is the honest prover and the algorithm V is
the honest verifier. The algorithm P is ran on top of an online
PoS full node, while V is a light client booting up for the first
time holding only the genesis state commitment ⟨st0⟩. The
protocol is executed between V and a set of provers P . After
completing the interaction, V returns a state commitment ⟨st⟩.

Security of the PoPoS Protocol. The goal of the verifier is
to output a state commitment consistent with the view of
the honest provers. This is reflected by the following security
definition of the PoPoS protocol.

Definition 3 (State Security). Consider a PoPoS protocol
(P, V) executed at round r, where V returns ⟨st⟩. It is
secure with parameter ν if there exists a ledger L such that
⟨st⟩ = δ∗(st0,L), and L satisfies:
• Safety: For all rounds r′ ≥ r + ν: L ≼ L∪

r′ .
• Liveness: For all rounds r′ ≤ r − ν: L∩

r′ ≼ L.

State security implies that the commitment returned by a
verifier corresponds to a state recently obtained by the honest
provers.

IV. THE OPTIMISTIC LIGHT CLIENT

Before we present our succinct PoPoS protocol, we intro-
duce sync committees and handover messages, two necessary
components that we will later use in our construction. We
also propose a highly performant optimistic light client as a
building block for the superlight clients.

Sync Committees. To allow the verifier to achieve state
security, we introduce a sync committee (first proposed in the
context of PoS sidechains [39]). Each committee is elected
for the duration of an epoch, and contains a subset, of fixed
size m, of the public keys of the validators associated with

that epoch. The committee of the next epoch is determined in
advance at the beginning of the previous epoch. All honest
validators agree on this committee. The validators in the
sync committee are sampled from the validator set of the
corresponding epoch in such a manner that the committee
retains honest majority during the epoch. The exact means
of sampling are dependent on the PoS implementation. One
way to construct the sync committee is to sample uniformly at
random from the underlying stake distribution using the epoch
randomness of the PoS protocol [44], [25].

The first committee S0 is recorded by the genesis state
st0. We denote the set of public keys of the sync committee
assigned to epoch j ∈ N by Sj , and each committee member
public key within Sj by Sj

i , i ∈ N.

Handover signatures. During each epoch j, each honest
committee member Sj

i of epoch j signs the tuple (j+1, Sj+1),
where j + 1 is the next epoch index and Sj+1 is the set of
all committee member public keys of epoch j + 1. We let σj

i

denote the signature of Sj
i on the tuple (j + 1, Sj+1). This

signature means that member Sj
i approves the inauguration of

the next epoch committee. We call those handover signatures4,
as they signify that the previous epoch committee hands over
control to the next committee. When epoch j + 1 starts, the
members of the committee Sj assigned to epoch j can no
longer use their keys to create handover signatures5.

As soon as more than m
2 members of Sj have approved the

inauguration of the next epoch committee, the inauguration is
ratified. This collection of signatures for the handover between
epoch j and j + 1 is denoted by Σj+1, and is called the
handover proof. A succession S = (Σ1,Σ2, . . . ,Σj) at an
epoch j is the sequence of all handover proofs across an
execution until the beginning of the epoch.

In addition to the handover signature, at the beginning of
each epoch, every honest committee member signs the state
commitment corresponding to its ledger. When the verifier
learns the latest committee, these signatures enable him to
find the current state commitment.

A naive linear client. Consider a PoPoS protocol, where
each honest prover gives the verifier a state commitment and
signatures on the commitment from the latest sync committee
SN−1, where N is the number of epochs (and N − 1 is the
last epoch). To convince the verifier that SN−1 is the correct
latest committee, each prover also shares the sync committees
S0 . . . SN−2 and the associated handover proofs in its view.
The verifier knows S0 from the genesis state st0, and can
verify the committee members of the future epochs iteratively
through the handover proofs. Namely, upon obtaining the
sync committee Sj , the verifier accepts a committee Sj+1 as
the correct committee assigned to epoch j + 1, if there are
signatures on the tuple (j + 1, Sj+1) from over half of the

4Handover signatures between PoS epochs were introduced in the context
of PoS sidechains [39]. Some practical blockchain systems already implement
similar handover signatures [64], [48].

5This assumption can be satisfied using key-evolving signatures [33], [23],
social consensus [11], or a static honest majority assumption.

6

committee members in Sj . Repeating the process above, the
verifier can identify the correct committee for the last epoch.

After identifying the latest sync committee, the verifier
checks if the state commitment provided by a prover is signed
by over half of the committee members. If so, he accepts the
commitment.

It is straightforward to show that this strawman PoPoS
protocol (which we abbreviate as TLC) is secure (Definition 3)
under the following assumptions:

1) The underlying PoS protocol satisfies safety and liveness.
2) The majority of the sync committee members are honest.

When all provers are adversarial, the verifier might not re-
ceive any state commitment from them. In this context, the
existential honesty assumption guarantees that there will be
at least one honest prover providing the commitment signed
by the sync committee of the latest epoch. However, the
strawman protocol does not require existential honesty for the
correctness of the commitment accepted by the verifier. This
is because the verifier directly validates the correctness of each
sync committee assigned to consecutive epochs, and does not
accept commitments that were not signed by over m

2 members
of the correct latest committee. Hence, he cannot be made to
accept a commitment that does not satisfy state security.

Regrettably, the strawman protocol is O(|C|) and not suc-
cinct: To identify the lastest sync committee, the verifier has
to download each sync committee since the genesis block. In
the rest of this paper, we will improve this protocol to make
it succinct.

The optimistic light client (OLC). To reduce the communica-
tion complexity of the verifier, the PoPoS protocol can further
utilize the existential honesty assumption. In this version of the
protocol, instead of sharing the sync committees S0 . . . SN−2

and the associated handover proofs, each honest prover P
sends a sequence of hashes h1 . . . hN−1 corresponding to
the sync committees S0 . . . SN−1. Subsequently, to prove the
correctness of the state commitment, the prover P reveals
the latest sync committee SN−1 assigned to epoch N − 1
and the signatures by its members on the commitment. Upon
receiving the committee SN−1, the verifier checks if the hash
of SN−1 matches hN−1, and validates the signatures on the
commitment.

Unfortunately, an adversarial prover P ∗ can claim an incor-
rect committee S∗,N−1, whose hash h∗,N−1 disagrees with
hN−1 returned by P . This implies a disagreement between
the two hash sequences received from P and P ∗. The verifier
can exploit this discrepancy to identify the truthful party
that returned the correct committee. Towards this goal, the
verifier iterates over the two hash sequences, and finds the
first point of disagreement. Let j be the index of this point
such that hj ̸= h∗,j and hi = h∗,i for all i < j. The
verifier then requests P to reveal the committees Sj and Sj−1

at the preimage of hj and hj−1, and to supply a handover
proof Σj for Sj−1 and Sj . He also requests P ∗ to reveal
the committees S∗,j and S∗,j−1 at the preimage of h∗,j and
h∗,j−1, and to supply a handover proof Σ∗,j for S∗,j−1 to S∗,j .

As hj−1 = h∗,j−1 by definition, the verifier is convinced that
the committees Sj−1 and S∗,j−1 revealed by P and P ∗ are
the same.

Finally, the verifier checks whether the committees S∗,j and
Sj were inaugurated by the previous committee Sj−1 using the
respective handover proofs Σj and Σ∗,j . Since Sj−1 contains
over m

2 honest members that signed only the correct committee
Sj assigned to epoch j, adversarial prover P ∗ cannot create a
handover proof with sufficiently many signatures inaugurating
S∗,j . Hence, the handover from Sj−1 to S∗,j will not be
ratified Σ∗,j , whereas the handover from Sj−1 to Sj will be
ratified by Σj . Consequently, the verifier will identify P as
the truthful party and accept its commitment.

In the protocol above, security of the commitment obtained
by the prover relies crucially on the existance of an honest
prover. Indeed, when all provers are adversarial, they can
collectively return the same incorrect state commitment and
the same incorrect sync committee for the latest epoch. They
can then provide over m

2 signatures by this committee on the
incorrect commitment. In the absence of an honest prover to
challenge the adversarial ones, the verifier would believe in
the validity of an incorrect commitment.

The optimistic light client reduces the communication load
of sending over the whole sync committee sequence by rep-
resenting each committee with a constant size hash. However,
it is still O(|C|) as the verifier has to do a linear search on
the hashes returned by the two provers to identify the first
point of disagreement. To support a truly succinct verifier, we
will next work towards an interactive PoPoS protocol based
on bisection games.

V. THE SUPERLIGHT CLIENT

Trees and Mountain Ranges. Before describing the succinct
PoPoS protocol and the superlight client, we introduce the data
structures used by the bisection games.

Suppose the number of epochs N is a power of two. The
honest provers organize the committee sequences for the past
epochs into a Merkle tree called the handover tree (Figure 1).
The jth leaf of the handover tree contains the committee
Sj of the jth epoch. A handover tree consisting of leaves
S0, . . . , SN−1 is said to be well-formed with respect to a
succession S if it satisfies the following properties:
1) The leaves are syntactically valid. Every jth leaf contains

a sync committee Sj that consists of m public keys.
2) The first leaf corresponds to the known genesis sync

committee S0.
3) For each j = 1 . . . N−1, Σj consists of over m

2 signatures
by members of Sj−1 on (j, Sj).

Every honest prover holds a succession of handover signa-
tures attesting to the inauguration of each sync committee in its
handover tree after S0. These successions might be different
for every honest prover as any set of signatures larger than m

2
by Sj can inaugurate Sj+1. However, the trees are the same
for all honest parties, and they are well-formed with respect
to the succession held by each honest prover.

7

π

S 0
 S 1

 S
 2

 S
 3

σj signs
 S

 j
 S

 j+1

genesis keys
 S

 N-2
 S N-1

current epoch keys

hash

 S
 j-1

jj-1 j+1

h0 h1

h000

h0000 h0001

h00000 h00001 h00010 h00011 h11110 h11111

h1111

Fig. 1. The handover tree, the central construction of our protocol. The root of the Merkle tree is the initial proof π. During the bisection game, the signatures
between the challenge node j and its neighbours j − 1 and j + 1 are validated.

When the number N of epochs is not a power of two,
provers arrange the past sync committees into Merkle moun-
tain ranges (MMRs) [58], [26]. An MMR is a list of Merkle
trees, whose sizes are decreasing powers of two. To build an
MMR, a prover first obtains a binary representation 2q1 +
. . . + 2qn of N , where q1 > . . . > qn. It then divides the
sequence of sync committees into n subsequences, one for
each qi. For i ≥ 1, the ith subsequence contains the committees
S
∑i−1

n=1 2qi , . . . , S(
∑i

n=1 2qi)−1. Each ith subsequence is orga-
nized into a distinct Merkle tree Ti, whose root, denoted by
⟨Ti⟩, is called a peak. These peaks are all hashed together to
obtain the root of the MMR. We hereafter refer to the index
of each leaf in these Merkle trees with the epoch of the sync
committee contained at the leaf. (For instance, if there are
two trees with sizes 4 and 2, the leaf indices in the first tree
are 0, 1, 2, 3 and the leaf indices in the second tree are 4 and
5.) The MMR is said to be well formed if each constituent
tree is well-formed (but, of course, only the first leaf of the
first tree needs to contain the genesis committee). To ensure
succinctness, only the peaks and a small number of leaves,
with their respective inclusion proofs, will be presented to the
verifier during the following bisection game.

Different state commitments. We begin our construction of the
full PoPoS protocol (which we abbreviate SLC) by describing
the first messages exchanged between the provers P and the
verifier. Each honest prover first shares the state commitment
signed by the latest sync committee at the beginning of the last
epoch N−1. If all commitments received by the verifier are the
same, by existential honesty, the verifier can rest assured that
this commitment is correct, i.e., it corresponds to the ledger
of the honest provers at the beginning of the epoch. If not,
the verifier requests from each prover in P: (i) the MMR
peaks ⟨T ⟩i, i ∈ [n] held by the prover, where n is the number
of peaks, (ii) the latest sync committee SN−1, (iii) a Merkle
inclusion proof for SN−1 with respect to the last peak ⟨T ⟩n,
and (iv) signatures by the committee members in SN−1 on
the state commitment given by the prover.

Upon receiving these messages, the verifier first checks if
there are more than m

2 valid signatures by the committee

members in SN−1 on the state commitment. It then verifies
the Merkle proof for SN−1 with respect to ⟨T ⟩n. As the
majority of the committee members in SN−1 are honest, it
is not possible for different state commitments to be signed
by over half of SN−1. Hence, if the checks above succeed for
two provers P and P ∗ that returned different commitments,
one of them (P ∗) must be an adversarial prover, and must
have claimed an incorrect sync committee S∗,N−1 for the
last epoch. Moreover, as the Merkle proofs for both S∗,N−1

and SN−1 verify against the respective peaks ⟨T ⟩n and ⟨T ⟩∗n,
these peaks must be different. Since the two provers disagree
on the roots and there is only one well-formed MMR at any
given epoch, therefore one of the provers does not hold a
well-formed MMR. This reduces the problem of identifying
the correct state commitment to detecting the prover that has
a well-formed MMR behind its peaks.

Bisection game. To identify the honest prover with the well-
formed MMR, the verifier (Algorithm 1) initiates a bisection
game between P and P ∗ (Algorithm 2). Suppose the number
of epochs N is a power of two. Each of the two provers claims
to hold a tree with size N (otherwise, since the verifier knows
N by his local clock, the prover with a different size Merkle
tree loses the game.) During the game, the verifier aims to
locate the first point of disagreement between the alleged sync
committee sequences at the leaves of the provers’ Merkle trees,
akin to the improved optimistic light client (Section IV).

The game proceeds in a binary search fashion similar to
refereed delegation of computation [16], [15], [34]. Starting
at the Merkle roots ⟨T ⟩ and ⟨T ⟩∗ of the two trees, the verifier
traverses an identical path on both trees until reaching a leaf
with the same index. This leaf corresponds to the first point
of disagreement. At each step of the game, the verifier asks
the provers to reveal the children of the current node, denoted
by hc and h∗

c on the respective trees (Algorithm 2 Line 6).
Initially, hc = ⟨T ⟩ and h∗

c = ⟨T ⟩∗ (Algorithm 1 Line 2).
Upon receiving the alleged left and right child nodes h∗

0 and
h∗
1 from P ∗, and h0, h1 from P , he checks if hc = H(h0 ∥h1)

and h∗
c = H(h∗

0 ∥h∗
1), where H is the collision-resistant

hash function used to construct the Merkle trees (Algorithm 1

8

Algorithm 1 The algorithm ran by the verifier during the
bisection game to identify the first point of disagreement
between the provers’ leaves. Here, P and P ∗ denote the honest
and adversarial provers, whereas ⟨T ⟩ and ⟨T ⟩∗ denote the
roots of their respective Merkle trees with size ℓ.

1: function FINDDISAGREEMENT(P, ⟨T ⟩, P ∗, ⟨T ⟩∗, ℓ)
2: hc, h

∗
c ← ⟨T ⟩, ⟨T ⟩∗

3: while ℓ > 1 do
4: (h0, h1) L99 P
5: (h∗

0, h
∗
1) L99 P ∗

6: if hc ̸= H(h0 ∥h1) then
7: return ▷ P loses.
8: if h∗

c ̸= H(h∗
0 ∥h∗

1) then
9: return ▷ P ∗ loses.

10: if h0 ̸= h∗
0 then

11: h∗
c ← h∗

0

12: hc ← h0

13: (open, 0) 99K P
14: (open, 0) 99K P ∗

15: else
16: h∗

c ← h∗
1

17: hc ← h1

18: (open, 1) 99K P
19: (open, 1) 99K P ∗

20: ℓ← ℓ//2

21: S L99 P
22: S∗ L99 P ∗

23: return S, S∗

Algorithm 2 The algorithm ran by the honest prover during
the bisection game to reply to the verifier V ’s queries. The
sequence S0, . . . , SN−1 denotes the sync committees in the
prover’s view.

1: function REPLYTOVERIFIER(S0, . . . , SN−1)
2: T ← MAKEMT(S0, . . . , SN−1)
3: T .root 99K V
4: j ← 0
5: while T .size > 1 do
6: (T .left.root, T .right.root) 99K V
7: (open, i) L99 V
8: if i = 0 then
9: T ← T .left

10: else
11: T ← T .right
12: j ← 2j + i

13: Sj 99K V

Lines 6 and 8). The verifier then compares h0 with h∗
0, and

h1 with h∗
1 to determine if the disagreement is on the left

or the right child (Algorithm 1 Lines 10 and 15). Finally, he
descends into the first disagreeing child, and communicates
this decision to the provers (Algorithm 2 Line 7); so that they
can update the current node that will be queried in the next
step of the bisection game (Algorithm 2 Lines 9 and 11).

Upon reaching a leaf at some index j, the verifier asks
both provers to reveal the alleged committees Sj and S∗,j

at the pre-image of the respective leaves. If j = 1, he inspects
whether Sj or S∗,j matches S0. The prover whose alleged
first committee is not equal to S0 loses the game.

If j > 1, the verifier also requests from the provers (i) the

Algorithm 3 The algorithm ran by the verifier to identify the
first different peak in the MMRs of the two provers. Here,
⟨T ⟩1,...,n and ⟨T ⟩∗1,...,n denote the peaks of the honest and
adversarial provers respectively.

1: function PEAKSVSPEAKS(P , ⟨T ⟩1,...,n, P
∗, ⟨T ⟩∗1,...,n)

2: for i = 1 to n do
3: if ⟨T ⟩i ̸= ⟨T ⟩

∗
i then

4: ℓ← size of the ith Merkle Tree
5: return FINDDISAGREEMENT(P , ⟨T ⟩i, P

∗, ⟨T ⟩∗i , ℓ)

committees at the (j−1)th leaves, (ii) their Merkle proofs with
respect to ⟨T ⟩ and ⟨T ⟩∗, and (iii) the handover proofs Σj and
Σ∗,j . The honest prover responds with (i) Sj−1 assigned to
epoch j − 1, (ii) its Merkle proof with respect to ⟨T ⟩, and
(iii) its own view of the handover proof Σj (which might
be different from other provers). Upon checking the Merkle
proofs, the verifier is now convinced that the committees Sj−1

and S∗,j−1 revealed by P and P ∗ are the same, since their
hashes match. The verifier subsequently checks if Σj contains
more than m

2 signatures by the committee members in Sj−1

on (j, Sj), and similarly for P ∗.
The prover that fails any of checks by the verifier loses the

bisection game. If one prover loses the game, and the other
one does not fail any checks, the standing prover is designated
the winner. If neither prover fails any of the checks, then the
verifier concludes that there are over m

2 committee members in
Sj−1 that signed different future sync committees (i.e., signed
both (j, Sj) and (j, S∗,j), where (j, Sj) ̸= (j, S∗,j)). This
implies Sj−1 is not the correct sync committee assigned to
epoch j − 1, and both provers are adversarial. In this case,
both provers lose the bisection game. In any case, at most one
prover can win the bisection game.

Bisection games on Merkle mountain ranges. When the
number of epochs N is not a power of two, the verifier
first obtains the binary decomposition

∑n
i=1 2

qi = N , where
q1 > . . . > qn. Then, for each prover P , he checks if there
are n peaks returned. If that is the case for two provers P and
P ∗ that returned different commitments, the verifier compares
the peaks ⟨T ⟩i of P with ⟨T ⟩∗i of P ∗, and identifies the first
different peak (Algorithm 3). It then plays the bisection game
as described above on the identified Merkle trees. The only
difference with the game above is that if the disagreement is
on the first leaf j of a later Merkle tree, then the Merkle proof
for the previous leaf j − 1 is shown with respect to the peak
of the previous tree.

Tournament. When there are multiple provers, the verifier
interacts with them sequentially in pairs, in a tournament
fashion. It begins by choosing two provers P1 and P2 with dif-
ferent state commitments from the set P (Algorithm 4, line 9).
The verifier then pits one against the other, by facilitating a
bisection game between P1 and P2, and decides which of the
two provers loses (Algorithm 4, line 10). (There can be at
most one winner at any bisection game). He then eliminates
the loser from the tournament, and chooses a new prover with
a different state commitment than the winner’s commitment

9

Algorithm 4 The tournament administered by the verifier
among provers P to identify the correct state commitment
⟨st⟩. He uses BISECTIONGAME to initiate a bisection game
between two provers and deduce at most one winner. The pop
function removes and returns an arbitrary element of a set.

1: function TOURNAMENT(P)
2: P ← pop(P)
3: good← {P}
4: ⟨st⟩ ← P. ⟨st⟩
5: for P ∈ P do
6: if ⟨st⟩ = P. ⟨st⟩ then
7: good← good ∪ {P}
8: continue
9: for P ∗ ∈ good do

10: if BISECTIONGAME(P, P ∗) = P then
11: good← {P}
12: ⟨st⟩ ← P. ⟨st⟩
13: break
14: return ⟨st⟩

honest
prover

adversary

honest
verifier

open right

open right

σ?

 ,

Fig. 2. Honest and adversarial prover in the PoPoS bisection game.

from the set P to compete against the winner. In the event
that both provers lose, the verifier eliminates both provers,
and continues the tournament with the remaining ones by
sampling two new provers with different state commitments.
This process continues until all provers left have the same
state commitment. This commitment is adopted as the correct
one. A tournament started with q provers terminates after O(q)
bisection games, since at least one prover is eliminated at the
end of each game. In Appendix A, we prove the security of
the tournament by showing that an honest prover never loses
the bisection game and an adversarial prover loses against an
honest one.

Past and future. Now that the verifier obtained the state
commitment signed for the most recent epoch, and confirmed
its veracity, the task that remains is to discern facts about
the system’s state and its history. To perform queries about
the current state, such as determining how much balance one
owns, the verifier simply asks for Merkle inclusion proofs into
the proven state commitment.

One drawback of our protocol is that the state commitment
received by the verifier is the commitment at the beginning
of the current epoch, and therefore may be somewhat stale.
In order to synchronize with the latest state within the epoch,
the verifier must function as a full node for the small duration

of an epoch. This functionality does not harm succinctness,
since epochs have a fixed, constant duration. For example,
in the case of a longest-chain blockchain, the protocol works
as follows. In addition to signing the state commitment, the
sync committee also signs the first stable block header of its
respective epoch. The block header is verified by the verifier
in a similar fashion that he verified the state commitment.
Subsequently, the block header can be used as a neon genesis
block. The verifier treats the block as a replacement for the
genesis block and bootstraps from there6.

One aspect of wallets that we have not touched upon con-
cerns the retrieval and verification of historical transactions.
This can be performed as follows. The verifier, as before,
identifies the root of the correct handover tree. Using a
historical sync committee, attested by an inclusion proof to
the reference root, it detects the first stable block header of
the epoch immediately following the transaction of interest. He
downloads and verifies the committee signatures on the first
stable block header of that epoch. Subsequently, he requests
the short blockchain that connects the block containing the
transaction of interest to the reference stable block header. As
blockchains contain a hash of all their past data, this inclusion
cannot be faked by an adversary.

VI. PROOF-OF-STAKE ETHEREUM LIGHT CLIENTS

The bisection games presented in Section V can be applied
to a variety of PoS consensus protocols to efficiently catch up
with current consensus decisions. In this section we present an
instantiation for PoS Ethereum. We also detail how to utilize
the latest epoch committee obtained from bisection games to
build a full-featured Ethereum JSON-RPC. This allows for
existing wallets such as MetaMask to use our construction
without making any changes. Our implementation can be
a drop-in replacement to obtain better decentralization and
performance.

Our PoPoS protocol for PoS Ethereum does not require
any changes to the consensus layer, as PoS Ethereum already
provisions for sync committees in the way we introduced in
Section IV.

A. Sync Committee Essentials

Sync committees of PoS Ethereum contain m = 512
validators, sampled uniformly at random from the validator
set, in proportion to their stake distribution. Every sync
committee is selected for the duration of a so-called sync
committee period [25] (which we called epoch in our generic
construction). Each period lasts 256 PoS Ethereum epochs
(these are different from our epochs), approximately 27 hours.
PoS Ethereum epochs are further divided into slots, during
which a new block is proposed by one validator and signed
by the subset of validators assigned to the slot. At each slot,
each sync committee member of the corresponding period
signs the block at the tip of the chain (called the beacon

6While bootstrapping, the verifier can update the state commitment by ap-
plying the transactions within the later blocks on top of the state commitment
from the neon genesis block via the function ⟨δ⟩.

10

chain [25]) according to its view. The proposer of the next slot
aggregates and includes within its proposal the aggregate sync
committee signature on the parent block. The sync committees
are determined one period in advance, and the committee for
each period is contained in the block headers of the previous
period. Each block also contains a commitment to the header
of the last finalized block that lies on its prefix.

B. Linear-Complexity Light Client

Light clients use the sync committee signatures to detect the
latest beacon chain block finalized by the Casper FFG finality
gadget [13], [14]. At any round, the view of a light client
consists of a finalized header, the current sync committee
and the next committee. The client updates its view upon
receiving a LightClientUpdate object (update for short), that
contains (i) an attested header signed by the sync committee,
(ii) the corresponding aggregate BLS signature, (iii) the slot
at which the aggregate signature was created, (iv) the next
sync committee as stated in the attested header, and (v) a
finalized header (called the new finalized header for clarity)
to replace the one held by the client.

To validate an update, the client first checks if the aggregate
signature is from a slot larger than the finalized header in its
view, and if this slot is within the current or the next period.
(Updates with signatures from sync committees that are more
than one period in the future are rejected.) It then verifies
the inclusion of the new finalized header and the next sync
committee provided by the update with respect to the state of
the attested header through Merkle inclusion proofs. Finally,
it verifies the aggregate signature on the attested header
by the committee of the corresponding period. Since the
signatures are either from the current period or the next one,
the client knows the respective committee.

After validating the update, the client replaces its
finalized header with the new one, if the attested header was
signed by over 2/3 of the corresponding sync committee. If
this header is from a higher period, the client also updates
its view of the sync committees. Namely, the old next sync
committee becomes the new current committee, and the next
sync committee included in the attested header is adopted as
the new next sync committee.

C. Logarithmic Bootstrapping from Bisection Games

The construction above requires a bootstrapping light client
to download at least one update per period, imposing a linear
communication complexity in the life time of the chain. To
reduce the communication load and complexity, the optimistic
light client and superlight client constructions introduced in
Sections IV and V can be applied to PoS Ethereum.

A bootstrapping superlight client first connects to a few
provers, and asks for the Merkle roots of the handover trees
(cf. Section V). The leaf of the handover tree at position j
consist of all the public keys of the sync committee of period
j concatenated with the period index j. If all the roots are the
same, then the client accepts the sync committee at the last
leaf as the most recent committee. If the roots are different, the

SERVER CLIENT

Superlight
client prover

Full node
Ethereum

JSON-RPC

Superlight
client verifier

Ethereum
JSON-RPC
shim/proxy W

al
le

t

E
th

er
eu

m

P2
P

ne
tw

or
k

JS
O

N
-R

PC

Bisection
games

New txs.

getProof

Sync info. Consensus tip

Fig. 3. PoS Ethereum superlight client architecture: On server side, an
Ethereum full node feeds sync information to a bisection game prover sidecar.
On client side, a bisection game verifier feeds the consensus tip into an
Ethereum JSON-RPC shim/proxy, which forwards transactions coming from
the wallet to the Ethereum full node, and resolves state queries with reference
to the established consensus tip using Ethereum’s getProof RPC endpoint.

client facilitates bisection games among conflicting provers.
Upon identifying the first point of disagreement between two
trees (e.g., some leaf j), the client asks each prover to provide
a LightClientUpdate object to justify the handover from the
committee Sj−1 to Sj . For this purpose, each prover has to
provide a valid update that includes (i) an aggregate signature
by 2/3 of the set Sj−1 on an attested header, and (ii) the set
Sj as the next sync committee within the attested header.
Upon identifying the honest prover, and the correct latest
sync committee, the client can ask the honest prover about
the lastest update signed by the latest sync committe and
containing the tip of the chain.

D. Superlight Client Architecture

On the completion of bootstrapping, the client has identified
the latest beacon chain blockheader. The blockheader contains
the commitment to the state of the Ethereum universe that
results from executing all transactions since genesis up to and
including the present block. Furthermore, this commitment
gets verified as part of consensus. The client can perform query
to the fullnode about the state of Ethereum. The result of the
query can be then verified against the state commitment using
Merkle inclusion proofs. This allows for the client to access
the state of the Ethereum universe in a trust-minimizing way.

Figure 3 depicts the resulting architecture of the superlight
client. In today’s Ethereum, a user’s wallet typically speaks
to Ethereum JSON-RPC endpoints provided by either a cen-
tralized infrastructure provider such as Infura or by a (trusted)
Ethereum full node (could be self-hosted). Instead, the cen-
terpiece in a superlight client is a shim that provides RPC
endpoints to the wallet, but where new transactions and queries
to the Ethereum state are proxied to upstream full nodes,
and query responses are verified w.r.t. a given commitment to
the Ethereum state. This commitment is produced using two
sidecar processes, which implement the prover and verifier of
the bisection game. For this purpose, the server-side sidecar
obtains the latest sync information from a full node, using what
is commonly called ‘libp2p API’. The client-side sidecar feeds
the block header at the consensus tip into the shim.

11

VII. EXPERIMENTS

To assess the different bootstrapping mechanisms for PoS
Ethereum (traditional light client = TLC; optimistic light client
= OLC; superlight client = SLC), we implemented them in
≈ 2000 lines of TypeScript code (source code available on
Github7). We demonstrate an improvement of SLC over TLC
of 9× in time-to-completion, 180× in communication band-
width, and 30× in energy consumption, when bootstrapping
after 10 years of consensus execution. SLC improves over
OLC by 3× in communication bandwidth in this setting.

A. Setup

Our experimental scenario includes seven malicious provers,
one honest prover, and a verifier. All provers run in different
Heroku ‘performance-m’ instances located in the ‘us’
region. The verifier runs on an Amazon EC2 ‘m5.large’
instance located in ‘us-west-2’. The provers’ Internet ac-
cess is not restricted beyond the hosting provider’s limits.
The verifier’s down- and upload bandwidth is artificially rate-
limited to 100 Mbit/s and 10 Mbit/s, respectively, using ‘tc’.
We monitor to rule out spillover from RAM into swap space.

In preprocessing, we create eight valid traces of the sync
committee protocol for an execution horizon of 30 years.
For this purpose, we create 512 cryptographic identities per
simulated day, as well as the aggregate signatures for handover
from one day’s sync committee to the next day’s. In some
experiments, we vary how much simulated time has passed
since genesis, and for this purpose truncate the execution
traces accordingly. One of the execution traces is used by the
honest prover and understood to be the true honest execution.
Adversarial provers each pick a random point in time, and
splice the honest execution trace up to that point together
with one of the other execution traces for the remaining
execution time, without regenerating handover signatures, so
that the resulting execution trace used by adversarial provers
has invalid handover at the point of splicing. We also vary the
internal parameters of the (super-)light client protocols (i.e.,
batch size b of TLC and OLC, Merkle tree degree d of SLC).

B. Time-To-Completion & Total Verifier Communication

The average time-to-completion (TTC) and total commu-
nication bandwidth (TCB) required by the different light
client constructions per bootstrapping occurrence is plotted in
Figure 4 for varying internal parameters (batch sizes b for
TLC and OLC; Merkle tree degrees d for SLC) and varying
execution horizons (from 5 to 30 years). Pareto-optimal TTC
and TCB are achieved for b and d resulting ‘at the tip’ of the
‘L-shaped’ plot. For instance, for 10 years execution, TLC,
OLC and SLC achieve Pareto-optimal TTC/TCB for b ≈ 200,
b ≈ 500, and d ≈ 100, respectively. Evidently, across a wide
parameter range, OLC and SLC vastly outperform TLC in
both metrics; e.g., for 10 years execution and Pareto-optimal

7The superlight client prototype is at https://github.com/lightclients/poc-
superlight-client. The optimistic light client implementation is at https:
//github.com/lightclients/kevlar and https://kevlar.sh/. The RPC shim is at
https://github.com/lightclients/patronum.

0 50 100 150 200
0

50

100

150

200
5

20

200 500

100

200 500

100

200 500

TLC OLC SLC 5 y
10 y 15 y 20 y 30 y

0 1 2 3 4 5
0

20

40

60

20

50

200

500 3650

50

200

50

200
500

10950

2

5

100
200

3650

5000

Total communication [Mbytes]

Ti
m

e-
to

-c
om

pl
et

io
n

[s
ec

on
ds

]
Fig. 4. Time-to-completion and total communication (averaged over 5 trials)
incurred by different light clients for varying internal parameters (marker
labels; TLC/OLC: batch size b, SLC: Merkle tree degree d) and varying
execution horizon. Pareto-optimal tradeoffs are at ‘tip’ of resulting ‘L-shape’:
for 10 years execution, at b ≈ 200, b ≈ 500, and d ≈ 100, respectively.
OLC and SLC vastly outperform TLC, e.g., for 10 years execution: 9× in
time-to-completion, 180× in bandwidth. In this setting, SLC has similar time-
to-completion as OLC, and 3× lower communication.

1.875 3.75 7.5 15 30
0

50

100

150

Execution horizon [years]

Ti
m

e-
to

-c
om

pl
et

io
n

[s
ec

on
ds

] OLC (b = 20) SLC (d = 2)

Fig. 5. Time-to-completion (averaged over 5 trials) of OLC/SLC increase
linearly/logarithmically with the execution horizon, respectively.

parameters, 9× in TTC, and 180× in TCB. In this setting,
SLC has similar TTC as OLC, and 3× lower TCB (5× lower
TCB for 30 years).

The fact that both TLC and OLC have TCB linear in the
execution horizon, is readily apparent from Figure 4. The
linear TTC is visible for TLC, but not very pronounced for
OLC, due to the concretely low proportionality constant. In
comparison, SLC shows barely any dependence of TTC or
TCB on the execution horizon, hinting at the (exponentially
better) logarithmic dependence. To contrast the asymptotics,
we plot average TTC as a function of exponentially increasing
execution horizon in Figure 5 for OLC and SLC with internal
parameters b = 20 and d = 2, respectively. Note that these are

https://github.com/lightclients/poc-superlight-client
https://github.com/lightclients/poc-superlight-client
https://github.com/lightclients/kevlar
https://github.com/lightclients/kevlar
https://kevlar.sh/
https://github.com/lightclients/patronum

12

Idle TLC OLC SLC
0

20

40

60

80 ≈ 82

≈ 12.2 ≈ 11.7Ti
m

e-
to

-
co

m
pl

et
io

n
[s

]

0

5

10

15

≈ 1.66

≈ 13.3

≈ 2.81 ≈ 2.94

Po
w

er
[W

]

0

0.1

0.2

0.3
≈ 0.30

≈ 0.01 ≈ 0.01E
ne

rg
y

[W
h

]

Fig. 6. Energy required to bootstrap after 10 years of consensus execution
using different light client constructions (averaged over 5 trials for TLC,
25 trials for OLC and SLC; internal parameters b = 200, b = 500,
d = 100, respectively); also disaggregated into power consumption and
time-to-completion. Energy required by OLC/SLC is 30× lower than TLC.
Contributions ≈ 4× and ≈ 7× can be attributed to lower power consumption
and lower time-to-completion, respectively.

not Pareto-optimal parameters, but chosen here for illustration
purposes. Clearly, TTC for OLC is linear in the execution
horizon (plotted in Figure 5 on an exponential scale), while
for SLC it is logarithmic.

C. Power & Energy Consumption

A key motivation for superlight clients is their application
on resource-constrained platforms such as browsers or mo-
bile phones. In this context, computational efficiency, and as
a proxy energy efficiency, is an important metric. We ran
the light clients on a battery-powered System76 Lemur Pro
(‘lemp10’) laptop with Pop! OS 22.04 LTS, and recorded
the decaying battery level using ‘upower’ (screen off, no
other programs running, no keyboard/mouse input, WiFi con-
nectivity; provers still on Heroku instances). From the energy
consumption and wallclock time we calculated the average
power consumption. As internal parameters for TLC, OLC,
and SLC, we chose b = 200, b = 500, and d = 100,
respectively (cf. Pareto-optimal parameters in Figure 4).

The energy required to bootstrap 10 years of consensus
execution, averaged over 5 trials for TLC, and 25 trials for
OLC and SLC, is plotted in Figure 6. We disaggregate the
energy consumption into power consumption and TTC for
each light client, and also record the power consumption of the
machine in idle. (Note, discrepancies in Figures 4 and 6 are
due to the light clients running on Amazon EC2 vs. a laptop.)

OLC and SLC have comparable TTC and power con-
sumption, resulting in comparable energy consumption per
bootstrap occurrence. The energy required by OLC and SLC
is 30× lower than the energy required by TLC per bootstrap

occurrence (top panel in Figure 6). This can be attributed to a
≈ 4× lower power consumption (middle panel in Figure 6) to-
gether with a ≈ 7× lower TTC (bottom panel in Figure 6). The
considerably lower energy/power consumption of OLC/SLC
compared to TLC is due to the lower number of signature
verifications (and thus lower computational burden).

Note that a sizeable fraction of OLC’s/SLC’s power con-
sumption can be attributed to system idle (middle panel in
Figure 6). When comparing light clients in terms of excess
energy consumption (i.e., subtracting idle consumption) per
bootstrapping, then OLC and SLC improve over SLC by 64×.

VIII. ANALYSIS

The theorems for succinctness and security of the PoPoS
protocol are provided below. Security consists of two compo-
nents: completeness and soundness.

Theorem 1 (Succinctness). Consider a verifier that invokes
a bisection game at round r between two provers that pro-
vided different handover tree roots. Then, the game ends in
O(log(r)) steps of interactivity and has a total communication
complexity of O(log(r)).

Theorem 2 (Completeness). Consider a verifier that invokes a
bisection game at round r between two provers that provided
different handover tree roots. Suppose one of the provers is
honest. Then, the honest prover wins the bisection game.

Theorem 3 (Soundness). Let Hs be a collision resistant hash
function. Consider a verifier that invokes a bisection game
executed at round r of a secure underlying PoS protocol
between two provers that provided different handover tree
roots. Suppose one of the provers is honest, and the signature
scheme satisfies existential unforgeability. Then, for all PPT
adversarial provers A, the prover A loses the bisection game
against the honest prover with overwhelming probability in λ.

Theorem 4 (Tournament Runtime). Consider a tournament
ran at round r with |P| provers one of which is honest. The
tournament ends in O(|P| log(r)) steps of interactivity, and
has total communication complexity O(|P| log(r)).

Theorem 5 (Security). Let Hs be a collision resistant hash
function. Consider a tournament executed between an honest
verifier and |P| provers at round r. Suppose one of the
provers is honest, the signature scheme satisfies existential
unforgeability, and the PoS protocol is secure. Then, for all
PPT adversaries A, the state commitment obtained by the
verifier at the end of the tournament satisfies state security
with overwhelming probability in λ.

Proofs of these theorems are given in Appendix A.

ACKNOWLEDGMENT

The authors thank Kostis Karantias for the helpful discus-
sions on bisection games, and Daniel Marin for reading early
versions of this paper and providing suggestions. The work of

13

JN was conducted in part while at Paradigm. JN is supported
by the Protocol Labs PhD Fellowship. ENT is supported by
the Stanford Center for Blockchain Research. The work of DZ
was supported in part by funding from Harmony.

REFERENCES

[1] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A. Miller,
A. Poelstra, J. Timón, and P. Wuille, “Enabling blockchain innovations
with pegged sidechains,” 2014, https://blockstream.com/sidechains.pdf.

[2] C. Badertscher, P. Gaži, A. Kiayias, A. Russell, and V. Zikas, “Ouroboros
genesis: Composable proof-of-stake blockchains with dynamic availabil-
ity,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, 2018, pp. 913–930.

[3] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Scalable zero
knowledge via cycles of elliptic curves,” in CRYPTO (2), ser. Lecture
Notes in Computer Science, vol. 8617. Springer, 2014, pp. 276–294.

[4] I. Bentov, R. Pass, and E. Shi, “Snow white: Provably secure proofs
of stake,” IACR Cryptology ePrint Archive, vol. 2016, p. 919, 2016.
[Online]. Available: http://eprint.iacr.org/2016/919

[5] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “Recursive com-
position and bootstrapping for snarks and proof-carrying data,” in
Proceedings of the forty-fifth annual ACM symposium on Theory of
computing, 2013, pp. 111–120.

[6] D. Boneh and V. Shoup, A Graduate Course in Applied Cryptography,
2020.

[7] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.
Felten, “SoK: Research Perspectives and Challenges for Bitcoin and
Cryptocurrencies,” in Security and Privacy (SP), 2015 IEEE Symposium
on. IEEE, 2015, pp. 104–121.

[8] S. Bowe, J. Grigg, and D. Hopwood, “Halo: Recursive proof compo-
sition without a trusted setup,” IACR Cryptol. ePrint Arch., p. 1021,
2019.

[9] E. Buchman, J. Kwon, and Z. Milosevic, “The latest gossip on BFT
consensus,” arXiv preprint arXiv:1807.04938, 2018.

[10] B. Bünz, L. Kiffer, L. Luu, and M. Zamani, “Flyclient: Super-light
clients for cryptocurrencies.” 2020.

[11] V. Buterin, “Proof of Stake: How I Learned to Love Weak Subjectivity,”
Nov 2014. [Online]. Available: https://blog.ethereum.org/2014/11/25/
proof-stake-learned-love-weak-subjectivity/

[12] V. Buterin et al., “A next-generation smart contract and decentralized
application platform,” white paper, 2014.

[13] V. Buterin and V. Griffith, “Casper the friendly finality gadget,” arXiv
preprint arXiv:1710.09437, 2017.

[14] V. Buterin, D. Hernandez, T. Kamphefner, K. Pham, Z. Qiao, D. Ryan,
J. Sin, Y. Wang, and Y. X. Zhang, “Combining ghost and casper,” arXiv
preprint arXiv:2003.03052, 2020.

[15] R. Canetti, B. Riva, and G. N. Rothblum, “Practical delegation of
computation using multiple servers,” in Proceedings of the 18th ACM
conference on Computer and communications security, 2011, pp. 445–
454.

[16] ——, “Refereed delegation of computation,” Information and Compu-
tation, vol. 226, pp. 16–36, 2013.

[17] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in OSDI.
USENIX Association, 1999, pp. 173–186.

[18] P. Chaidos and A. Kiayias, “Mithril: Stake-based threshold multisigna-
tures,” 2021.

[19] P. Chatzigiannis, F. Baldimtsi, and K. Chalkias, “Sok: Blockchain light
clients,” in International Conference on Financial Cryptography and
Data Security. Springer, 2022.

[20] ConsenSys, “MetaMask Surpasses 10 Million MAUs, Making It The
World’s Leading Non-Custodial Crypto Wallet,” Aug 2021. [Online].
Available: https://consensys.net/blog/press-release/metamask-surpasses-
10-million-maus-making-it-the-worlds-leading-non-custodial-crypto-
wallet/

[21] R. Dahlberg, T. Pulls, and R. Peeters, “Efficient sparse merkle trees,” in
Nordic Conference on Secure IT Systems. Springer, 2016, pp. 199–215.

[22] S. Daveas, K. Karantias, A. Kiayias, and D. Zindros, “A Gas-Efficient
Superlight Bitcoin Client in Solidity,” in Proceedings of the 2nd ACM
Conference on Advances in Financial Technologies, 2020, pp. 132–144.

[23] B. David, P. Gazi, A. Kiayias, and A. Russell, “Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain,” in
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, ser. LNCS, J. B. Nielsen and V. Rijmen,
Eds., vol. 10821. Springer, Apr–May 2018, pp. 66–98.

[24] E. Deirmentzoglou, G. Papakyriakopoulos, and C. Patsakis, “A survey
on long-range attacks for proof of stake protocols,” IEEE Access, vol. 7,
pp. 28 712–28 725, 2019.

[25] E. Developers. (2022) Altair – Minimal Light Client. Available
at: https://github.com/ethereum/consensus-specs/blob/dev/specs/altair/
sync-protocol.md. [Online]. Available: https://github.com/ethereum/
consensus-specs/blob/dev/specs/altair/sync-protocol.md

[26] G. Developers. Merkle Mountain Ranges (MMR). [Online]. Available:
https://docs.grin.mw/wiki/chain-state/merkle-mountain-range/

[27] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to
identification and signature problems,” in Conference on the theory and
application of cryptographic techniques. Springer, 1986, pp. 186–194.

[28] A. Gabizon, K. Gurkan, P. Jovanovic, G. Konstantopoulos, A. Oines,
M. Olszewski, M. Straka, E. Tromer, and P. Vesely, “Plumo: Towards
scalable interoperable blockchains using ultra light validation systems,”
2020.

[29] J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone protocol:
Analysis and applications (revised 2019),” Cryptology ePrint Archive,
Report 2014/765, 2014, https://eprint.iacr.org/2014/765.

[30] ——, “The bitcoin backbone protocol: Analysis and applications,” in
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, ser. LNCS, E. Oswald and M. Fischlin, Eds.,
vol. 9057. Springer, Apr 2015, pp. 281–310.

[31] ——, “The bitcoin backbone protocol with chains of variable difficulty,”
in Annual International Cryptology Conference, ser. LNCS, J. Katz and
H. Shacham, Eds., vol. 10401. Springer, Aug 2017, pp. 291–323.

[32] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks
on bitcoin’s peer-to-peer network,” in USENIX Security Symposium.
USENIX Association, 2015, pp. 129–144.

[33] G. Itkis and L. Reyzin, “Forward-secure signatures with optimal sign-
ing and verifying,” in Annual International Cryptology Conference.
Springer, 2001, pp. 332–354.

[34] H. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W. Felten,
“Arbitrum: Scalable, private smart contracts,” in 27th USENIX Security
Symposium (USENIX Security 18), 2018, pp. 1353–1370.

[35] K. Karantias, “SoK: A Taxonomy of Cryptocurrency Wallets,” vol. 2020,
p. 868, 2020.

[36] K. Karantias, A. Kiayias, N. Leonardos, and D. Zindros, “Compact
storage of superblocks for nipopow applications,” in The 1st Interna-
tional Conference on Mathematical Research for Blockchain Economy.
Springer Nature, 2019.

[37] K. Karantias, A. Kiayias, and D. Zindros, “Proof-of-burn,” in Interna-
tional Conference on Financial Cryptography and Data Security, 2019.

[38] L. Keller, “Does content moderation on platforms like OpenSea
amount to censorship?” Dec 2021. [Online]. Available: https:
//forkast.news/does-opensea-censor-nft-content/

[39] A. Kiayias, P. Gaži, and D. Zindros, “Proof-of-stake sidechains,” in IEEE
Symposium on Security and Privacy, IEEE. IEEE, 2019.

[40] A. Kiayias, N. Lamprou, and A.-P. Stouka, “Proofs of proofs of work
with sublinear complexity,” in International Conference on Financial
Cryptography and Data Security, Springer. Springer, 2016, pp. 61–78.

[41] A. Kiayias, N. Leonardos, and D. Zindros, “Mining in Logarithmic
Space,” in Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, 2021, to appear.

[42] A. Kiayias, A. Miller, and D. Zindros, “Non-Interactive Proofs of Proof-
of-Work,” in International Conference on Financial Cryptography and
Data Security. Springer, 2020.

[43] A. Kiayias, A. Polydouri, and D. Zindros, “The Velvet Path to Superlight
Blockchain Clients,” 2020.

[44] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
Provably Secure Proof-of-Stake Blockchain Protocol,” in Annual Inter-
national Cryptology Conference, ser. LNCS, J. Katz and H. Shacham,
Eds., vol. 10401, Springer. Springer, Aug 2017, pp. 357–388.

[45] A. Kiayias and D. Zindros, “Proof-of-work sidechains,” in International
Conference on Financial Cryptography and Data Security: Workshop
on Trusted Smart Contracts, Springer. Springer, 2019.

[46] E. Kissling, “Altair Light Client – Light Client,” Jul 2022. [Online].
Available: https://github.com/ethereum/consensus-specs/blob/dev/specs/
altair/light-client/light-client.md

https://blockstream.com/sidechains.pdf
http://eprint.iacr.org/2016/919
https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity/
https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity/
https://consensys.net/blog/press-release/metamask-surpasses-10-million-maus-making-it-the-worlds-leading-non-custodial-crypto-wallet/
https://consensys.net/blog/press-release/metamask-surpasses-10-million-maus-making-it-the-worlds-leading-non-custodial-crypto-wallet/
https://consensys.net/blog/press-release/metamask-surpasses-10-million-maus-making-it-the-worlds-leading-non-custodial-crypto-wallet/
https://github.com/ethereum/consensus-specs/blob/dev/specs/altair/sync-protocol.md
https://github.com/ethereum/consensus-specs/blob/dev/specs/altair/sync-protocol.md
https://github.com/ethereum/consensus-specs/blob/dev/specs/altair/sync-protocol.md
https://github.com/ethereum/consensus-specs/blob/dev/specs/altair/sync-protocol.md
https://docs.grin.mw/wiki/chain-state/merkle-mountain-range/
https://eprint.iacr.org/2014/765
https://forkast.news/does-opensea-censor-nft-content/
https://forkast.news/does-opensea-censor-nft-content/
https://github.com/ethereum/consensus-specs/blob/dev/specs/altair/light-client/light-client.md
https://github.com/ethereum/consensus-specs/blob/dev/specs/altair/light-client/light-client.md

14

[47] J. Kwon and E. Buchman, “Cosmos whitepaper,” https://v1.cosmos.
network/resources/whitepaper.

[48] R. Lan, G. Upadhyaya, S. Tse, and M. Zamani, “Horizon: A Gas-
Efficient, Trustless Bridge for Cross-Chain Transactions,” arXiv preprint
arXiv:2101.06000, 2021.

[49] Y. Lindell and J. Katz, Introduction to Modern Cryptography. Chapman
and Hall/CRC, 2014.

[50] Y. Marcus, E. Heilman, and S. Goldberg, “Low-resource eclipse attacks
on ethereum’s peer-to-peer network,” IACR Cryptol. ePrint Arch., p. 236,
2018.

[51] M. Marlinspike, “My first impressions of web3,” 2022. [Online].
Available: https://moxie.org/2022/01/07/web3-first-impressions.html

[52] I. Meckler and E. Shapiro, “Coda: Decentralized cryptocurrency at
scale,” 2018.

[53] R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Conference on the Theory and Application of Crypto-
graphic Techniques. Springer, 1987, pp. 369–378.

[54] S. Micali, “ALGORAND: the efficient and democratic ledger,” CoRR,
vol. abs/1607.01341, 2016. [Online]. Available: http://arxiv.org/abs/
1607.01341

[55] R. Pass, L. Seeman, and A. Shelat, “Analysis of the blockchain
protocol in asynchronous networks,” in Advances in Cryptology -
EUROCRYPT 2017 - 36th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Paris, France,
April 30 - May 4, 2017, Proceedings, Part II, 2017, pp. 643–673.
[Online]. Available: https://doi.org/10.1007/978-3-319-56614-6 22

[56] Z. Sun, “Alchemy and Infura block access to Tornado Cash
as Vitalik Buterin weighs in on debate,” Aug 2022. [Online].
Available: https://cointelegraph.com/news/alchemy-and-infura-block-
access-to-tornado-cash-as-vitalik-buterin-weighs-in-on-debate

[57] E. N. Tas, D. Zindros, L. Yang, and D. Tse, “Light Clients for Lazy
Blockchains,” Cryptology ePrint Archive, 2022.

[58] P. Todd, “Merkle mountain ranges,” October 2012, https://github.
com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-
mountain-range.md.

[59] J. Wise, “Metamask Statistics 2022: How Many People use Metamask?”
Jul 2022. [Online]. Available: https://earthweb.com/metamask-statistics/

[60] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, pp. 1–32, 2014.

[61] M. Yin, D. Malkhi, M. K. Reiter, G. Golan-Gueta, and I. Abraham,
“Hotstuff: BFT consensus with linearity and responsiveness,” in PODC.
ACM, 2019, pp. 347–356.

[62] A. Zamyatin, M. Al-Bassam, D. Zindros, E. Kokoris-Kogias, P. Moreno-
Sanchez, A. Kiayias, and W. J. Knottenbelt, “SoK: Communication
across distributed ledgers,” in International Conference on Financial
Cryptography and Data Security. Springer, 2021.

[63] A. Zamyatin, N. Stifter, A. Judmayer, P. Schindler, E. Weippl, W. Knot-
tenbelt, and A. Zamyatin, “A wild velvet fork appears! inclusive
blockchain protocol changes in practice,” in International Conference
on Financial Cryptography and Data Security. Springer, 2018.

[64] M. Zavershynskyi, “ETH-NEAR Rainbow Bridge,” Aug 2020. [Online].
Available: https://near.org/blog/eth-near-rainbow-bridge/

APPENDIX

The following assumptions ensure the security of the opti-
mistic light client and superlight client on PoS Ethereum:
1) The honest Ethereum validators constitutes at least 2

3 + ϵ
fraction of the validator set at all times.

2) The sync committee for each period is sampled uniformly
at random from the validator set.

3) The underlying PoS consensus protocol satisfies security.
4) The attested header of a beacon block containing a

finalized header is signed by a sync committee member
only if the finalized header is the header of a Casper FFG
finalized PoS block in the view of the sync committee
member.

5) Honest block proposers include the latest Casper FFG
finalized block in their view as the finalized header of
their proposal blocks.

The assumptions (a) and (b) ensure that the honest sync
committee members constitute a supermajority of the sync
committee at all periods. Assumption (d) ensures that any
header obtained by a light client belongs to a Casper FFG
finalized block, whereas assumption (e) ensures that upon
being finalized, these blocks are soon adopted by the light
clients through the light client updates. Together with (c),
these assumptions and Theorem 5 imply the security of our
optimistic light client and superlight client constructions for
PoS Ethereum per Definition 3.

Security under Adversarial Network Conditions.
Due to network delays or temporary adversarial majorities,

there might be extended periods during which the light client
does not receive any updates. In this case, if the client observes
that UPDATE TIMEOUT number of slots have passed since
the slot of the last finalized header in its view, it can do a
force update. Prior to the force update, the client replaces the
finalized header within the best valid light client update in
its view with the attested header of the same update. Note
that the finalized header of the best valid update must have
had a smaller slot than the finalized header in the client’s
view, as it could not prompt the client to update its view
during the last UPDATE TIMEOUT slots. Hence, treating
the attested header within the best valid update, which is by
definition from a higher slot, as a finalized header can enable
the client to adopt it as the latest finalized header block, and
facilitate the client’s progression into a later sync committee
period.

The current Ethereum specification [25] also recommends
using other use-case dependent heuristics for updates, in
lieu of checking signatures, if the light client seems stalled.
However, heuristics such as swapping the attested and finalized
headers as described above might cause the light client to
adopt block headers that are not finalized by Casper FFG.
Hence, in this work, we assume that the underlying consensus
protocol is not subject to disruptions like network delays,
and focus on the regular update mechanism described in
Section VI.

Proof of Theorem 1. Let N ∈ Θ(r) be the number of epochs
at round r. When the handover trees have N leaves, there
can be at most logN ∈ Θ(log r) steps of interactivity during
the bisection game. In case an adversarial prover attempts to
continue beyond logN steps of interactivity, the verifier aborts
the interaction early, as the verifier expects to receive sync
committees after logN queries, and the number N is known
by the verifier.

At each step of the bisection game until the sync committees
are revealed, the verifier receives two children (two constant
size hash values) of the queried node from both provers. At
the final step, the verifier receives the sync committees Sj and
S∗,j from the provers at the first point of disagreement j, and
the sync committees Sj−1 and S∗,j−1 at the preceding leaf
along with their Merkle proofs. As each committee consists
of a constant number m of public keys with constant size, and
each Merkle proof contains logN constant size hash values,

https://v1.cosmos.network/resources/whitepaper
https://v1.cosmos.network/resources/whitepaper
https://moxie.org/2022/01/07/web3-first-impressions.html
http://arxiv.org/abs/1607.01341
http://arxiv.org/abs/1607.01341
https://doi.org/10.1007/978-3-319-56614-6_22
https://cointelegraph.com/news/alchemy-and-infura-block-access-to-tornado-cash-as-vitalik-buterin-weighs-in-on-debate
https://cointelegraph.com/news/alchemy-and-infura-block-access-to-tornado-cash-as-vitalik-buterin-weighs-in-on-debate
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://earthweb.com/metamask-statistics/
https://near.org/blog/eth-near-rainbow-bridge/

15

the total communication complexity of the bisection game
becomes Θ(logN) = Θ(log(r)).

Proof of Theorem 2. To show that the honest prover wins the
bisection game, we will step through the conditions checked
by the verifier during the bisection game.

At the start of the game, the honest prover and verifier both
agree on the number of past epochs N . By synchrony, the
honest prover does not time out and replies to all of the open
queries sent by the verifier. As the honest prover’s handover
tree is well-formed, at each open query asking the honest
prover to reveal the children of a node hc on its tree, the
left and the right children hl and hr returned by the honest
prover satisfy the relation hc = H(hl ∥hr). Thus, the replies
are always syntactically valid and accepted by the verifier.
Subsequently, upon reaching a leaf, the honest prover supplies
a sync committee, as expected by the verifier.

Suppose the first point of disagreement between the leaves
of the honest and the adversarial prover is identified at some
index j. If j = 0, the honest prover returns S0, which is
validated by the verifier as the correct sync committee supplied
by the genesis state st0.

If j > 0, the honest prover reveals the sync committee Sj

at leaf j, the committee Sj−1 at leaf j − 1, and the Merkle
inclusion proof for Sj−1, which is validated by the verifier
with respect to the root. By the well-formedness of the honest
prover’s handover tree, the prover holds a handover proof
Σj that contains over m/2 signatures on (j, Sj) by unique
committee members within Sj−1. The honest prover sends
this valid handover proof to the verifier. Consequently, the
honest prover passes all of the verifier’s checks, and wins the
bisection game.

Let VERIFY be the verification function for Merkle proofs.
It takes a proof π, a Merkle root ⟨T ⟩, the size of the tree
ℓ, an index for the leaf 0 ≤ i < ℓ and the leaf v itself. It
outputs 1 if π is valid and 0 otherwise. We assume that the
well-formed Merkle trees built with a collision-resistant hash
function satisfy the following collision-resistance property:

Proposition 1 (Merkle Security [57]). Let Hs be a col-
lision resistant hash function used in the binary Merkle
trees. For all PPT A: Pr[(v,D, π, i) ← A(1λ) : ⟨T ⟩ =
MAKEMT(D).root∧D[i] ̸= v∧VERIFY(π, ⟨T ⟩ , |D|, i, v) =
1] ≤ negl(λ).

The following lemma shows that the sync committees at
the first point of disagreement identified by the verifier are
different, and the committees at the previous leaf are the same
with overwhelming probability.

Lemma 1 (Bisection Pinpointing). Let Hs be a collision
resistant hash function. Consider the following game among
an honest prover P , a verifier V and an adversarial prover
P ∗: The prover P receives an array D of size N from P ∗,
and calculates the corresponding Merkle tree T with root ⟨T ⟩.
Then, V mediates a bisection game between P ∗ claiming root
⟨T ⟩∗ and P with ⟨T ⟩. Finally, V outputs (1, D∗[j−1], D∗[j])

if P ∗ wins the bisection game; otherwise, it outputs (0,⊥,⊥).
Here, D∗[j−1] and D∗[j] are the two entries revealed by P ∗

for the consecutive indices j − 1 and j during the bisection
game. (D∗[−1] is defined as ⊥ if j = 0.) Then, for all PPT ad-
versarial provers A, Pr[D ← A(1λ); (1, D∗[j − 1], D∗[j])←
(V (|D|) ↔ (P (D),A)) ∧ (D∗[j − 1] ̸= D[j − 1] ∨D∗[j] =
D[j])] ≤ negl(λ).

The above lemma resembles [57, Lemma 4] and its proof
is given below:

Proof of Lemma 1. Consider an adversary A(1λ) such that
(1, D∗[j−1], D∗[j])← (V (|D|)↔ (P (D),A))∧(D∗[j−1] ̸=
D[j−1]∨D∗[j] = D[j]). We next construct an adversary Am

that uses A as a subroutine to break Merkle security.
The verifier starts the bisection game by asking the provers

to reveal the children of the roots ⟨T ⟩ and ⟨T ⟩∗ of the
respective handover trees, where ⟨T ⟩ ≠ ⟨T ⟩∗. Subsequently,
at every step of the bisection game, the verifier asks each
prover to reveal the two children of a previously revealed
node, where the queried nodes have the same position, yet
different values in the respective trees. Hence, for the index
j identified by the verifier as the first point of disagreement,
it holds that D∗[j] ̸= D[j]. Since D∗[−1] = D[−1] = ⊥, for
j = 0, Pr[D ← A(1λ); (1, D∗[j − 1], D∗[j]) ← (V (|D|) ↔
(P (D),A)) ∧ (D∗[j − 1] ̸= D[j − 1] ∨D∗[j] = D[j])] = 0.

If j > 0, there exists a step in the bisection game, where
the verifier asks the provers to open the right child of the
previously queried node. Concretely, there exists a node h̃c

on T , queried by the verifier, and a node h̃∗
c , alleged by P ∗ to

be at the same position as h̃c, such that for the two children h̃l

and h̃r of h̃c and the two children h̃∗
l and h̃∗

r of h̃∗
c revealed

to the verifier, the following holds: h̃∗
l = h̃l and h̃∗

r ̸= h̃r.
Let’s consider the last such nodes h̃e

c and h̃e,∗
c after which,

the verifier asks the provers to open only the left children
of the subsequent nodes. Let h̃e

l denote the left child of h̃e
c,

which by definition equals the left child of h̃e,∗
c alleged by

the adversary. Let D′ denote the sequence of leaves that lie
within the subtree T ′ rooted at h̃e

l . Note that the honest verifier
knows the number of leaves, i.e., |D′|, within the subtree T ′.

Consider the Merkle proofs π and π∗ revealed for D[j− 1]
and D∗[j − 1] with respect to ⟨T ⟩ and ⟨T ⟩∗ respectively.
Let ba, ba−1, . . . , b2, b1 denote the binary representation of
j − 1 from the most important bit to the least (The index
of the first leaf is zero). Given a := log (|D|), the verifier can
parse the Merkle proofs as π = (h1, h2, . . . , ha) and π∗ =
(h∗

1, h
∗
2, . . . , h

∗
a). Since (1, D∗[j − 1], D∗[j]) ← (V (|D|) ↔

(P (D),A)), π∗ verifies with respect to ⟨T ⟩∗:
• h∗,f

1 := H(D∗[j − 1]).
• h∗,f

a+1 := ⟨T ⟩∗.
• For i = 1, . . . , a; h∗,f

i+1 := H(h∗,f
i , h∗

i) if bi = 0, and
h∗,f
i+1 := H(h∗

i , h
∗,f
i) if bi = 1.

Now, consider the prefix of the Merkle proof π∗ consisting
of the first log(|D′|) entries: π∗

p = (h1, . . . , hlog(|D′|). By
definition of j, the indices blog(|D′|), . . . , b1 are all 1, and;

• h∗,f
1 = H(D∗[j − 1]).

16

• h∗,f
log(|D′|)+1 = h̃e

l .
• For i = 1, . . . , log(|D′|); h∗,f

i+1 = H(h∗
i , h

∗,f
i).

Hence, it holds that VERIFY(π∗
p , h̃

e
l , |D′|, |D′| − 1, D∗[j −

1]) = 1. Moreover, h̃e
l = MAKEMT(D′).root and D′[|D′| −

1] = D[j − 1] ̸= D∗[j − 1].
Finally, Am uses A as a subroutine to generate D, π∗

and D∗[j − 1], and outputs (D∗[j − 1], D′, π∗
p, |D′| − 1),

which implies that h̃e
l := MAKEMT(D′).root, D′[|D′|−1] =

D[j−1] ̸= D∗[j−1] and VERIFY(π∗
p, h̃

e
l , |D′|, |D′|−1, D∗[j−

1]) = 1. Consequently, by Proposition 1, for all PPT adver-
sarial provers A, Pr[D ← A(1λ); (1, D∗[j − 1], D∗[j]) ←
(V (|D|)↔ (P (D),A))∧ (D∗[j−1] ̸= D[j−1])] ≤ negl(λ).
As D∗[j] ̸= D[j], this implies that for all PPT adversar-
ial provers A, Pr[D ← A(1λ); (1, D∗[j − 1], D∗[j]) ←
(V (|D|) ↔ (P (D),A)) ∧ (D∗[j − 1] ̸= D[j − 1] ∨D∗[j] =
D[j])] ≤ negl(λ).

Definition 4 (Definition 13.1 of Boneh & Shoup [6]). A signa-
ture scheme S = (G,S, V) is a triple of efficient algorithms,
G, S and V , where G is called a key generation algorithm, S
is called a signing algorithm, and V is called a verification
algorithm. Algorithm S is used to generate signatures and
algorithm V is used to verify signatures.
• G is a probabilistic algorithm that takes no input. It outputs

a pair (pk, sk), where sk is called a secret signing key and
pk is called a public verification key.

• S is a probabilistic algorithm that is invoked as σ
R←−

S(sk,m), where sk is a secret key (as output by G) and
m is a message. The algorithm outputs a signature σ.

• V is a deterministic algorithm invoked as V (pk,m, σ). It
outputs either accept or reject.

• We require that a signature generated by S is al-
ways accepted by V (valid for short). That is, for all
(pk, sk) output by G and all messages m, we have
Pr[V (pk,m, S(sk,m)) = accept] = 1.

We say that messages lie in a finite message space M, signa-
tures lie in some finite signature space Σ, and S = (G,S, V)
is defined over (M,Σ).

Definition 5 (Attack Game 13.1 of Boneh & Shoup [6]). For a
given signature scheme S = (G,S, V), defined over (M,Σ),
and a given adversary A, the attack game runs as follows:

• The challenger runs (pk, sk)
R←− G() and sends pk to A.

• A queries the challenger several times. For i = 1, 2, . . .,
the ith signing query is a message mi ∈M. Given mi, the
challenger computes σi

R←− S(sk,mi), and then gives σi

to A.
• Eventually A outputs a candidate forgery pair (m,σ) ∈
M× Σ.

We say that the adversary wins the game if the following two
conditions hold:
• V (pk,m, σ) = accept, and
• m is new, namely m /∈ {m1,m2, . . .}.

We define A’s advantage with respect to S, denoted by
SIGadv[A,S], as the probability that A wins the game.

Definition 6 (Definition 13.2 of Boneh & Shoup [6]). We say
that a signature scheme S satisfies existential unforgeability
under a chosen message attack (existential unforgeability
for short) if for all efficient adversaries A, the quantity
SIGadv[A,S] is negligible.

Proof of Theorem 3. Consider the following game among an
honest prover P , a verifier V and an adversarial prover A:
The prover P receives an array D = (S0, . . . , SN−1) of sync
committees from the underlying PoS protocol, and calculates
the corresponding Merkle tree T with root ⟨T ⟩. Similarly,
the prover P receives a succession of handover proofs S =
(Σ1,Σ2, . . . ,ΣN−1), where for all j = 1, . . . , N − 1, Σj

consists of over m/2 valid signatures on (j + 1, Sj+1) by
unique honest sync committee members assigned to epoch
j. Then, V mediates a bisection game between A claiming
root ⟨T ⟩∗ and P claiming root ⟨T ⟩. Finally, A wins the
bisection game. In the subsequent proof, we will construct
an adversary As that uses A as a subroutine to break the
existential unforgeability of the signature scheme under a
chosen message attack.

Let j denote the first point of disagreement between the
leaves of the honest and the adversarial provers P and A. If
j = 0, let S0 and S∗,0 denote the committees returned by the
honest and adversarial provers respectively for the first leaf.
By Lemma 1, S0 ̸= S∗,0. As the honest prover’s tree is well-
formed, S0 is the sync committee within the genesis state st0.
Thus, in this case, A loses the bisection game, which implies
j > 0.

During epoch j−1, the honest committee members assigned
to epoch j − 1 constitute over m/2 of the members within
Sj−1, and create only a single handover signature on (j,Σj).
After epoch j−1 ends, no PPT adversary can access the secret
signing keys of the honest members of the committee Sj−1

due to the use of key-evolving signatures.
Let S∗,j−1 and S∗,j denote the sync committees revealed by

A for the consecutive indices j−1 and j during the bisection
game. Suppose Sj ̸= S∗,j and Sj−1 = S∗,j−1. Since A wins
the bisection game, it provides a handover proof Σ∗,j that
contains over m/2 signatures on (j, S∗,j) by unique committee
members within S∗,j−1 = Sj−1. Thus, there exists at least one
committee member Sj−1

i∗ with the smallest index such that
• There is a signature sigma∗,j−1

i∗ within the handover proof
Σ∗,j such that given the public verification key pk of Sj−1

i∗ ,
V (pk, (j, S∗,j), σ∗,j−1

i∗) = accept.
• During epoch j−1, Sj−1

i∗ was an honest committee member
assigned to epoch j − 1.

• Sj−1
i∗ has created only a single handover signature σj−1

i∗ on
(j, Sj) during epoch j − 1.

• After epoch j − 1 ends, no PPT adversary can access the
secret signing key of Sj−1

i∗ .
Consequently, A provides a signature sigma∗,j−1

i∗ on (j, S∗,j)
that verifies with respect to the public verification key of Sj−1

i∗ .
Given the array of sync committees D = (S0, . . . , SN−1)

from the underlying PoS protocol, we next construct an exis-
tential forgery adversary As that has access to the adversarial

17

prover A as a subroutine. During As’s interaction with A,
it receives signing queries from the adversarial and honest
sync committee members within S0 . . . SN−1, and passes these
queries to the challenger, which replies with the queried
signatures. It then passes the signatures back to A, and the
succession of handover proofs S = (Σ1,Σ2, . . . ,ΣN−1) to
the honest prover P as specified at the beginning of the proof.
Finally, As obtains the handover proofs Σj and Σ∗,j from
A, and identifies Sj−1

i∗ . It subsequently outputs sigma∗,j−1
i∗

on the message (j, S∗,j), for which the following conditions
hold:

• Given the public verification key pk of Sj−1
i∗ , it holds that

V (pk, (j, S∗,j), sigma∗,j−1
i∗) = accept, and

• (j, S∗,j) ̸= (j, Sj), where unlike (j, Sj), the message
(j, S∗,j) was not sent as a query to the challenger.

Thus, As wins the attack game in Definition 5.
Finally, if there is a PPT adversary A such that A wins

the bisection game against the honest prover and the sync
committees received by the verifier satisfies Sj ̸= S∗,j and
Sj−1 = S∗,j−1, As described above wins the attack game.
By Lemma 1, for all PPT adversaries A, Sj ̸= S∗,j and
Sj−1 = S∗,j−1 with overwhelming probability. Moreover,
as the signature scheme satisfies existential unforgeability,
for all PPT adversaries A, the adversary A loses the attack
game with overwhelming probability. Consequently, for all
PPT adversarial provers A, the prover A loses the bisection
game against the honest prover with overwhelming probability
in λ.

Proof of Theorem 4. Consider a tournament started at round
r with |P| provers, one of which is honest. At each step of the
tournament, the verifier facilitates a bisection game between
two provers with different state commitments. (Honest provers
hold the same state commitment.) At the end of the game,
at least one prover is designated as a loser and eliminated
from the set of provers. The tournament continues until all
remaining provers hold the same state commitment. Hence, it
lasts at most |P|−1 steps. By Theorem 1, each bisection game
at round r ends in O(log(r)) steps of interactivity, and has a
total communication complexity of O(log(r)). Consequently,
the tournament consists of O(|P| log(r)) steps of interactivity,
and has a total communication complexity of O(|P| log(r)).

Proof of Theorem 5. Consider a tournament step that involves
an honest prover P and an adversarial prover P ∗ that have
provided different state commitments ⟨st⟩ and ⟨st⟩∗ respec-
tively, for the state of the blockchain at the beginning of
the epoch containing round r. Let N denote the number
of past epochs at round r (starting at epoch 0), and SN−1

denote the committee assigned to epoch N − 1. Define n
as the number of Merkle trees within the MMRs of the
honest provers at epoch N , and let Di denote the sequence
of leaves within the ith tree of the honest prover. Let ⟨T ⟩∗i
and ⟨T ⟩i, i ∈ [n], denote the sequence of peaks revealed
by P ∗ and P to the verifier before the bisection game. By

definition, P returns SN−1 as the latest sync committee in
its view, and let S∗,N−1 denote the latest sync committee
alleged by P ∗. The prover P sends over m/2 signatures on
⟨st⟩ by unique committee members within SN−1, whereas
P ∗ sends over m/2 signatures on ⟨st⟩∗ by unique commit-
tee members within S∗,N−1. Similarly, the prover P sends
a Merkle proof π such that VERIFY(π, ⟨T ⟩n , |Dn|, |Dn| −
1, SN−1) = 1, whereas P ∗ sends a Merkle proof π∗ such that
VERIFY(π∗, ⟨T ⟩∗n , |Dn|, |Dn|−1, S∗,N−1) = 1. We first show
that S∗,N−1 ̸= SN−1 with overwhelming probability. We will
then prove that if S∗,N−1 ̸= SN−1, then ⟨T ⟩∗n ̸= ⟨T ⟩n, with
overwhelming probability.

To show that S∗,N−1 ̸= SN−1, we construct an existential
forgery adversary As that uses the adversarial prover P ∗ as
a subroutine to break the existential unforgeability of the
signature scheme under a chosen message attack. Suppose
S∗,N−1 = SN−1. At the beginning of epoch N−1, the honest
committee members assigned to epoch N − 1 constitute over
m/2 of the members within SN−1, and create only a single
signature on a state commitment, namely ⟨st⟩. Since P ∗ sends
over m/2 signatures on ⟨st⟩∗ by unique committee members
within SN−1, there is at least one committee member SN−1

i∗

within SN−1 with the smallest index such that
• There is a signature sigma∗ such that given the public ver-

ification key pk of SN−1
i∗ , it holds that V (pk, ⟨st⟩∗ , σ∗) =

accept.
• During epoch N−1, SN−1

i∗ is an honest committee member
assigned to epoch N − 1.

• SN−1
i∗ has created only a single signature σ on a state

commitment during epoch N − 1, and that is on ⟨st⟩.
Consequently, P ∗ provides a signature sigma∗ on ⟨st⟩∗ that
verifies with respect to the public verification key of SN−1

i∗ .
we next construct the adversary As that has access to the

adversarial prover P ∗ as a subroutine. During As’s interaction
with P ∗, it receives signing queries on state commitments from
the adversarial and honest sync committee members within
SN−1, and passes these queries to the challenger, which replies
with the queried signatures. It then passes the signatures back
to P ∗ and P . Finally, As obtains m/2 signatures on the
commitments ⟨st⟩ and ⟨st⟩∗ from A, and identifies SN−1

i∗ . It
subsequently outputs sigma∗ on the message ⟨st⟩∗, for which
the following conditions hold:
• Given the public verification key pk of SN−1

i∗ , it holds that
V (pk, ⟨st⟩∗ , σ∗) = accept, and

• ⟨st⟩∗ ̸= ⟨st⟩, where unlike ⟨st⟩, the message ⟨st⟩∗ was not
sent as part of a signing query to the challenger.

Thus, As wins the attack game in Definition 5.
Finally, if there is a PPT adversary P ∗ such that it gives

m/2 signatures on ⟨st⟩∗ by unique committee members within
SN−1, As described above wins the attack game. However,
as the signature scheme satisfies existential unforgeability,
for all PPT adversaries A, the adversary A loses the attack
game with overwhelming probability. Consequently, for all
PPT adversarial provers P ∗, it holds that S∗,N−1 ̸= SN−1

with overwhelming probability.

18

Next, we show that if S∗,N−1 ̸= SN−1, then ⟨T ⟩∗n ̸= ⟨T ⟩n
with overwhelming probability. Towards this goal, we con-
struct an adversary Am that uses P ∗ as a subroutine to break
Merkle security. Suppose S∗,N−1 ̸= SN−1 and ⟨T ⟩∗n = ⟨T ⟩n.
In this case, Am receives from P ∗, the set S∗,N−1, the se-
quence of leaves Dn within the last tree of the honest prover’s
MMR, the proof π∗ and the index |Dn| − 1. It then outputs
(S∗,N−1, Dn, π

∗, |Dn|−1), for which it holds that Dn[|Dn|−
1] = SN−1 ̸= S∗,N−1 and VERIFY(π∗, ⟨T ⟩∗n , |Dn|, |Dn| −
1, S∗,N−1) = VERIFY(π∗, ⟨T ⟩n , |Dn|, |Dn| − 1, S∗,N−1) =
1, where ⟨T ⟩n is the root of the last Merkle tree (that has
the leaves Dn) within the honest prover’s MMR. However,
by Proposition 1, we know that for all PPT adversaries A:
Pr[(v,D, π, i) ← A(1λ) : ⟨T ⟩ = MAKEMT(D).root ∧
D[i] ̸= v ∧ VERIFY(π, ⟨T ⟩ , |D|, i, v) = 1] ≤ negl(λ). Hence,
for all PPT adversarial provers P ∗ with state commitment
⟨st⟩∗ ̸= ⟨st⟩, S∗,N−1 ̸= SN−1, and the sequence of peaks
⟨T ⟩∗i revealed to the verifier by the adversarial prover is dif-
ferent from the sequence ⟨T ⟩i, i ∈ [n], revealed by the honest
prover with overwhelming probability. Thus, there exists an
index d ∈ [n] such that ⟨T ⟩∗d ̸= ⟨T ⟩d and ⟨T ⟩∗i = ⟨T ⟩i for all
i ∈ [n], i < d, with overwhelming probability. In this case, the
verifier mediates a bisection game between P and P ∗ on the
two alleged trees with the roots ⟨T ⟩∗d and ⟨T ⟩d. By Theorem 2,
P wins the game, and by Theorem 3, P ∗ loses the game with
overwhelming probability. As a result, P ∗ is eliminated at this
tournament step with overwhelming probability.

At each step of the tournament, at least one prover is
eliminated, and the tournament continues until all remaining
provers hold the same state commitment, with overwhelming
probability. By assumption, there is at least one honest prover
P . This prover emerges victorious from every tournament step
against other provers with a different state commitment, except
with negligible probability. Consequently, with overwhelming
probability, P remains in the tournament until all remaining
provers hold the same state commitment ⟨st⟩ as P .

Let L be the ledger held by P at round r0 corresponding to
the beginning of the epoch of round r. By definition, r0 ≤ r
and r − r0 ≤ C for some constant epoch length C. By the
safety of the PoS protocol, for any honest parties P1, P2 and
rounds r1 ≥ r2: LP2

r2 ≼ LP1
r1 . Thus, for any honest party P ′

and rounds r′ ≥ r ≥ r0, it holds that L ≼ LP ′

r′ , Similarly, for
any honest party P ′, it holds that LP ′

r0−1 ≼ L. Consequently,
there exists a latency parameter ν = K, and a ledger L such
that ⟨st⟩ = δ∗(st0,L), and L satisfies the following properties:
• Safety: For all rounds r′ ≥ r + ν: L ≼ L∪

r′ .
• Liveness: For all rounds r′ ≤ r − ν: L∩

r′ ≼ L.
Thus, ⟨st⟩ satisfies state security. As the verifier accepts ⟨st⟩
as the correct commitment at the end of the tournament with
overwhelming probability, the commitment obtained by the
verifier at the end of the tournament satisfies state security
with overwhelming probability in λ.

We have presented our construction in a generic PoS
model, and instantiated it concretely for Ethereum PoS. Our
construction is quite general and can be adopted to virtually

any PoS system. Many PoS systems are split into (potentially
smaller) epochs in which some sampling from the underlying
stake distribution is performed according to some random
number. The random number generation can be performed in
multiple ways. For example, all of Ouroboros [44], Ouroboros
Praos [23], and Ouroboros Genesis [2] use a verifiable secret
sharing mechanism, while Algorand [54] uses a multiparty
computation. The stake distribution from which the sampling
is performed could also have various nuances such as del-
egation, might require locking up one’s funds, may exclude
people with very small stake, or may give different weights
to different stake ownership. In all of these cases, a frozen
stake distribution from which the final sampling is performed
is determined.

Our scheme can be generalized to any PoS scheme in which
the leader can be verified from a frozen stake distribution and
some randomness, no matter how it is generated, as long as
the block associated with a particular slot can be uniquely
determined after it stabilizes (a property that follows in any
blockchain system as long as it observes the common prefix
property). In the scheme we described throughout the paper,
the sequence of signatures σj+1 that are generated in an epoch
j and vouch for the leaders of the next epoch sign the public
key set Sj+1 of the next epoch. To generalize our scheme to
any PoS system with randomness and a stake distribution, the
signatures Sj+1 need not sign the public key sequence any
more; instead, they can sign:

1) the epoch randomness ηj+1 of the next epoch, and
2) the frozen stake distribution SDj of the current epoch that

will be used for sampling during the next epoch.

Of course, in such a scheme, a succinctness problem arises:
The stake distribution SDj might be large. However, this
problem can be overcome by organizing the stake distribution
SDj into a Merkle tree. This Merkle tree contains one leaf for
every satoshi (the smallest cryptocurrency denomination). The
leaf’s value is the public key who owns this satoshi. When
sampling from SDj according to the randomness ηj+1, the
prover can provide a proof that the correct leader was the
one that happened to be elected by opening the particular
Merkle tree path at a particular index. That way, the verifier
can deduce the last slot leaders of each epoch. Because the
number of satoshis can be large, this Merkle tree can have a
large (potentially an exponential) number of leaves. However,
its root and proofs can be efficiently computed using sparse
Merkle tree techniques [21] (or Merkle tries [60]) because the
tree contains a polynomial number of continuous ranges in
which many consecutive leaves share the same value. Even
better, Merkle–Segment trees [10]) can be used. These trees
are similar to Merkle trees, except that each node (internal or
leaf) is also annotated with a numerical value, here the total
stake under the subtree rooted at the particular node. Each
internal node has the property that its annotated value is the
sum of the annotated values of its children.

The above technique is quite generic, but each system has
its nuances that must be accounted for.

19

Ouroboros/Cardano. Our construction can be implemented in
Cardano/Ouroboros [44] as presented by electing a committee,
but the underlying longest chain rule lends itself to better im-
plementations for committee election and signature inclusion.
One way to make use of the Cardano protocol is to extend the
epoch duration R by 2k slots. In this manner, the randomness
and leaders of the next epoch are known during the last 2k
slots of the previous epoch (in the vanilla Cardano protocol,
the leaders and randomness of the next epoch only become
known at the end of the epoch). The last 2k slots of each
epoch are then used to determine the sync committee. The
committee is the leaders of these 2k slots, and no separate
process is required to elect it. In each of the last 2k slots of
an epoch, we add the extra requirement to the block validity
rules that the block producer has included a handover signature
to the correct next epoch committee; otherwise the block is
rejected as invalid by full nodes.

These small changes mean that the Ouroboros protocol can
be used almost as-is to support our PoPoS and do not require
any additional mechanisms for electing committees or any
off-chain mechanism for exchanging committee succession
signatures, as the blocks themselves are used as carriers of this
information. The critical property of the Ouroboros protocol
that allows us to prove security in this setting is the following
lemma:

Lemma 2 (Honest Subsequence). Consider any continuous
window of 2k slots within an epoch. If any k+1 keys among
these 2k are chosen, then at least one of them is guaranteed
to be honest, except with negligible probability in k.

Using the above lemma, we see that the last 2k slots will
necessarily contain k + 1 honest leaders who will produce
correct committee signatures, and so our PoPoS assumption
that the committee has honest majority during its epoch is
satisfied. The security of the protocol then follows from
Theorem 5.

Ouroboros Praos and Genesis. These two protocols have
some similarities to Ouroboros, but also significant differences.
As Ouroboros Praos and Genesis are designed to be resilient
to fully adaptive adversaries, the actual slot leader of each slot
is not known a priori. However, a party can himself determine
whether he is eligible to be the slot leader by evaluating a VRF
on the epoch randomness and the current slot index using his
private key. If the VRF output is below a certain threshold,
determined by the candidate leader’s stake, then the party is
elegible to be a leader for this slot. The party’s public key
can then be used by others to verify a proof that the VRF
computation was correct, and that he is indeed a rightful leader.

Because we cannot determine the leaders of the j + 1st

epoch at the end of epoch j, we cannot hope to have the
leaders of the jth epoch sign off the public keys of the leaders
of epoch j + 1. However, the above technique, in which
signatures sign the randomness and a Merkle–Segment tree of
the stake distribution, together with the VRF proof, suffices.
In this construction, the signatures of epoch j sign off the

randomness for epoch j+1 and stake distribution Merkle tree
for epoch j. At a later time, when it is revealed who is leader,
the honest prover can provide the VRF proof to the verifier,
and the verifier can check that the leader was indeed rightful.
To obtain the VRF threshold, the prover can open the Merkle–
Segment tree to the depth required to illustrate the total sum
of the stake of the leader. Once the leader’s stake is revealed,
the threshold used in the VRF inequality is validated.

These protocols have several advantages, including security
in the semi-synchronous setting as well as resilience to adap-
tive adversaries [23], [2].
Snow White. This protocol uses epochs and every epoch
contains a randomness and a stake distribution from which
leaders are sampled [4]. Therefore, our protocol can be readily
adapted to it.
Algorand. Contrary to Ouroboros, Algorand offers immediate
finality [54]. Once a block is broadcast, any transactions
contained within are confirmed and can no longer be reverted.
In other words, its common prefix property holds with a
parameter of k = 1. To achieve this, Algorand runs a full
Byzantine Agreement protocol for the generation of every
block before moving to the next block. One way to look
at it is to think of Algorand as a coin in which the epoch
duration is R = 1. Our construction can therefore create a
handover tree in which the leaves are exactly the blocks in the
Algorand chain. The Algorand private sortition mechanism can
be used to elect a committee large enough to ensure honest
supermajority (a property required for Algorand’s security).
This committee, whose members can be placed in increasing
order by their public key to ensure determinism, can then be
used in place of our sequence of public keys, to sign off the
results of the next block. Even though our handover tree now
becomes slightly larger, with its number of leaves equal to the
chain length |C|, our protocol is still O(log |C|).

	Introduction
	Preliminaries
	The PoPoS Primitive
	The Optimistic light client
	The Superlight Client
	Proof-of-Stake Ethereum Light Clients
	Sync Committee Essentials
	Linear-Complexity Light Client
	Logarithmic Bootstrapping from Bisection Games
	Superlight Client Architecture

	Experiments
	Setup
	Time-To-Completion & Total Verifier Communication
	Power & Energy Consumption

	Analysis
	References
	Appendix

