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Abstract
As end-to-end encrypted messaging services become widely adopted, law enforcement agencies

have increasingly expressed concern that such services interfere with their ability to maintain public
safety. Indeed, there is a direct tension between preserving user privacy and enabling content mod-
eration on these platforms. Recent research has begun to address this tension, proposing systems
that purport to strike a balance between the privacy of “honest” users and traceability of “malicious”
users. Unfortunately, these systems su�er from a lack of protection against malicious or coerced service
providers.

In this work, we address the privacy vs. content moderation question through the lens of pre-
constrained cryptography [Ananth et al., ITCS 2022]. We introduce the notion of set pre-constrained
(SPC) group signatures that guarantees security against malicious key generators. SPC group signatures
o�er the ability to trace users in messaging systems who originate pre-de�ned illegal content (such as
child sexual abuse material), while providing security against malicious service providers.

We construct concretely e�cient protocols for SPC group signatures, and demonstrate the real-
world feasibility of our approach via an implementation. �e starting point for our solution is the
recently introduced Apple PSI system, which we signi�cantly modify to improve security and expand
functionality.

1 Introduction

End-to-end encrypted services o�er users the ability to communicate information, with the guarantee that
even the service provider itself cannot access the raw information that it is storing or transmi�ing. Billions
of people worldwide are now using end-to-end encrypted systems such as WhatsApp and Signal.

However, the strong data privacy guarantees o�ered by end-to-end encryption (E2EE) technology have
not been universally celebrated. Law enforcement and national security agencies have argued that such
services interfere with their ability to prosecute criminals and maintain public safety [18, 41]. In particular,
E2EE appears to directly con�ict with the goals of content moderation, which refers to the ability to screen,
monitor, or trace the origin of user-generated content.

One prominent example of the use of content moderation is in �ghting the proliferation of child sexual
abuse material, or CSAM. In the United States, the proposed EARN IT act [42] would enable legal action
to be taken against internet service providers that fail to remove CSAM material from their service. It has
been argued that the proposed legislation would inhibit the use of E2EE, which prevents service providers
from detecting in the �rst place if they are hosting or transmi�ing CSAM [35]. In fact, a 2019 open le�er to
Facebook signed by then U.S. A�orney General William Barr along with international partners explicitly
requested that Facebook not proceed with its planned implementation of E2EE, due to its tension with
CSAM detection [40].
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One can imagine that this “encryption debate” polarizes to two conceivable outcomes: a world with
E2EE but without any content moderation, or a world without E2EE but with content moderation. Since
neither of these outcomes seems to be truly satisfactory, it becomes vital to explore the space in between,
or more fundamentally, to identify if any such space even exists. Indeed, the past few years have seen
researchers paying increased a�ention to this very question, as covered for example by a recent report
[29] released by the Center for Democracy and Technology, and a recent talk about the question of CSAM
detection vs. E2EE given at Real World Crypto 2022 [39].

In this work, we explore the viability of using cryptographic techniques to balance the need for both
user privacy and illegal content moderation in messaging systems. Along the way, we also study con-
tent moderation in the context of encryption systems used by cloud service providers. �is might be of
independent interest.
Prior solutions. In the se�ing of encrypted messaging systems, the principle goal of illegal content
moderation is to identify the existence of illegal content in the system and uncover the identity of the
originator of such content. �e desirable privacy goals are to (i) hide the messages exchanged in the
system, even from the server, and (ii) preserve the anonymity of the originator of any harmless content that
is forwarded through the system. Note that this la�er property is crucial in many real-world scenarios,
e.g., whistleblowers may desire to use the protection provided by E2EE without the threat of being de-
anonymized. A recent proposal [30] in this direction fails to adequately balance these goals, allowing a
malicious server to de-anonymize any user, thereby completely violating the fundamental guarantee of
E2EE.

We also note that some recent works have a�empted to address the fundamentally di�erent but re-
lated question of content moderation for misinformation, and we refer to Section 1.3 and Section 1.4 for
discussion on this.
�e problem. �e main problem with existing proposals is that they su�er from a glaring lack of protec-
tion against a server who wishes to use the system beyond its prescribed functionality. �is is a serious
problem, not only because the server itself might have malicious intent, but also because of the threat of
coercion from powerful actors that may want to use the technology for surveillance or censorship.

�is lack of built-in protection fundamentally damages the transparency of E2EE, reducing the incen-
tive for users to adopt the systems for their communication. While these works have indeed tried to strike
a balance between privacy and content moderation, we believe that, for the deterrence of pre-de�ned,1
illegal content (such as CSAM), they have over-compromised on privacy. In this work, we seek to build
systems that o�er similar content tracing functionality, while o�ering greater transparency and rigorous
cryptographic guarantees about the possible scope of server behavior.

1.1 Summary of Our Contributions

We present novel de�nitions and e�cient protocols for illegal content moderation in the se�ing of en-
crypted messaging.
Set Pre-Constrained (SPC) Group Signatures. We propose a new notion of set pre-constrained group
signatures which can be implemented in an end-to-end secure messaging application. �is allows tracing
users who send illegal content while ensuring privacy for everyone else.

• De�nition: In SPC group signatures, a database � (of illegal content) can be encoded within the
group’s public key. �e key requirement is that the signer of any message < ∈ � can be de-
anonymized by the group manager but signers of messages < ∉ � remain anonymous even to the

1By pre-de�ned, we mean any content that has been classi�ed as “illegal”, for example by a governmental body, before the
parameters of the cloud storage or messaging system are sampled. Updating parameters to include new content classi�ed as
illegal is an interesting question in this context, which we discuss further in Section 1.3.
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group manager. Our de�nitions model malicious group managers and ensure that the group’s public
key encodes a database � that is authorized by a third-party such as the US National Center for
Missing and Exploited Children (or more generally, multiple third parties). Furthermore, the public
key is publicly-veri�able, so all clients in the system can verify for themselves (without knowing �)
whether the group manager’s public key encodes an acceptable � .2

• Construction: We provide a concretely e�cient construction of SPC group signatures based on stan-
dard bilinear map assumptions, in the Random Oracle model. In this construction, we allow the
group manager’s public key to grow with the size of � . Crucially, however, the running time of
the signing algorithm (with oracle access to the public key) as well as veri�cation and tracing is
independent of the size of � .

SPC Encryption. Along the way to constructing SPC group signatures, we de�ne and construct e�cient
set pre-constrained (SPC) encryption schemes. Our construction builds and improves upon the recent
Apple PSI protocol [9]: (1) We identify a gap in their proof of security against a malicious server and
show how to e�ciently build on top of their protocol in order to close this gap. (2) Further, we augment
their construction to achieve a stronger notion of security that provides guarantees on the integrity of the
database embedded in the public key (analogous to SPC group signatures).

Our SPC encryption scheme has public keys of size linear in the database � and constant encryption
and decryption times. We demonstrate that this asymptotic e�ciency trade-o� is likely the “best-possible”
in that further improvements would imply the elusive notion of doubly-e�cient private information re-
trieval [11, 10], which is not known to exist under standard cryptographic assumptions.

Evaluation. We implement our SPC group signature scheme and provide benchmarks in Section 5. We
�nd that signing and veri�cation take tens of milliseconds, and signature size is in the order of a few
kilobytes3. When instantiated over the BN254 curve, the communication overhead for typical image sizes
of 400 KB is under 1% and the additional computation incurs a ∼ 15% overhead on top of message delivery
time. We view these results as strong initial evidence that illegal content moderation in E2EE messaging
systems – with security against malicious servers – can indeed be performed in the real world.

While our current focus is on illegal content moderation, we believe that the e�ciency properties
of our SPC group signature and encryption schemes make them a�ractive tools for other applications
that involve membership testing against a private “blocklist”. Examples include privacy-preserving DNS
blocklisting [25] where the blocklist could be proprietary, and anonymous credential systems where it is
desirable to hide revocation a�ributes.

1.2 Our Approach

In this work, we aim to build a messaging system that satis�es, at the very least, the following set of
requirements.

1. �e system is end-to-end encrypted. In particular, the server cannot learn anything at all about the
content transmi�ed in the system unless it receives some side information from a user participating
in the system.

2. �e originator of any piece of content remains anonymous to any user that receives the forwarded
content.

2In the body, we generalize our de�nition to consider general functionalities � as opposed to just the set-membership function
speci�ed by � . However, all of our constructions in this work target the special case of sets � , and we restrict our a�ention to
such functionalities in the overview.

3More precisely, for the BN254 curve, this translates to 3.5 Kilobytes per SPC group signature.
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3. If a user receives some illegal content, they can report it to the server, who can then determine the
identity of the user who originated the content. �is holds even if the content has been forwarded
an arbitrary number of times before being reported.

4. �e originator of any harmless content remains anonymous, even from the perspective of the server
who may receive a report about the content.

Naı̈ve Approaches. To demonstrate the challenges in realizing all four properties, we �rst consider some
existing approaches.

As a �rst a�empt, we could try simply using end-to-end encryption. While this may satisfy the �rst
two properties, it clearly does the support the third constraint, which we refer to as traceability.

A natural next a�empt would be to use a group signature scheme [14, 8] underneath E2EE in order to
recover this property of traceability. In a group signature scheme, there is a group manager that generates
a master public key mpk and a master secret key msk. A new client enters the system by interacting
with the group manager in order to receive a client-speci�c secret key sk. Any client can use their sk to
produce a signature f on a message <, which can be veri�ed by anyone that knows mpk. On the one
hand, the identity of the signer remains anonymous from anyone that knows f but not msk. On the other
hand, knowing msk allows the group manager to determine which client produced f . �us, we can satisfy
the �rst three goals above by having the messaging service provider additionally take on the role of the
group manager. Each user in the system would then obtain a signing key sk from the server, and then
a�ach a signature to any piece of content that they send (where the signature is also transmi�ed under
the encryption). Unfortunately, this solution does not prevent the server from colluding with a user to
identify the originator of any piece of content received by that user. �at is, this solution appears to be
fundamentally at odds with the crucial fourth requirement, or anonymity, stated above.

Despite some prior a�empts at recovering a notion of anonymity in group signature (see Section 1.3
from some more discussion), we conclude that existing frameworks are insu�cient for capturing the se-
curity that we demand. In order to address this issue, we must somehow constrain the ability of the group
manager to de-anonymize anyone in the system.

SPC group signatures: De�nitions. �is motivates our �rst contribution, which is the de�nition of a
set pre-constrained group signature, or SPC group signature. In this primitive, the group manager’s master
public key will be computed with respect to some set� of illegal content (which should remain hidden from
clients even given the master public key). �e novel security property we desire is that the anonymity of
a client who produces a signature on some message< ∉ � remains intact, even from the perspective of the
group manager.

More concretely, we ask for the following (informally stated) set of security properties.

• Traceability: the identity of a client who signs a message < ∈ � should be recoverable given the
signature and the master secret key.

• Client-server anonymity: the identity of a client who signs a message< ∉ � should be hidden, even
given the master secret key.

• Set-hiding: the master public key should not reveal the set � .4

• Unframeability: no party, not even the master secret key holder, should be able to produce a signature
that can be a�ributed to an honest client.

4Note that if we want to prevent even the group manager from seeing / storing the illegal content, we can set � to be hashes
of the content itself.
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• Client-client anonymity: the identity of a client who signs any message< should be hidden from the
perspective of any party who does not have the master secret key.

At this point, we must stop to consider the meaningfulness of the above security de�nitions as stated.
In particular: who decides �? Clearly, if � is set to be the whole universe of messages, then this is no
more secure than a standard group signature. And if an adversarial group manager is trying to break the
client-server anonymity of the above scheme, what is preventing them from generating their master public
key with respect to this “trivial” set �?

In order to constrain � in a meaningful way, we introduce a predicate P into the de�nition of client-
server anonymity. �e description of P will be �xed at setup time along with some public parameters pp
known to everybody in the system and secret parameters sp known only to the group manager (we will
discuss below the reason we include secret parameters). We will model client-server anonymity using an
ideal functionality Fanon that takes a set of items � as input from the group manager and a sequence of
pairs of identities and messages (pk1,<1), . . . , (pk: ,<: ) from the client (who represents all clients in the
system). If P(pp, sp, �) = 0, the functionality aborts, and otherwise it delivers {<8}8∈[: ], {pk8}8:<8 ∈� to
the group manager.

�is gives us a generic framework for specifying how to constrain the possible � used by the group
manager. In particular, we are able to delegate the responsibility of constraining � to a third-party (e.g.
the National Center for Missing and Exploited Children, or NCMEC), who is tasked with se�ing up the
parameters (pp, sp) for the predicate P. �at is, we can gracefully split the responsibility of implementing
/ maintaining the encrypted messaging system (by e.g. WhatsApp) and the responsibility of specifying
what constitutes illegal content (by e.g. NCMEC or a collection of such agencies).

Perhaps the most natural example of P is the “subset” predicate, which is parameterized by a set �∗ of
“allowed” messages (e.g. the entire database of illegal content as de�ned by NCMEC), and accepts only if
� ⊆ �∗. In this case, since �∗ itself represents illegal content, we do not want to make it public. �us, we
set sp = �∗, and pp = |�∗ |. We refer to security with respect to this subset predicate as authenticated-set
security.

In our full de�nition, we explicitly consider the third-party Auth as a participant in the system, who
begins by se�ing up a pp and sp of their choice. �en, we require security against an adversary that
corrupts either the client (and thus cannot learn anything about �), the group manager (and thus can only
learn {pk8}8:<8 ∈� for some “valid”�), or the third-party Auth (and thus cannot learn anything about any of
the identities pk8 ). Note that security is only vacuous if the adversary manages to corrupt both the group
manager and Auth at the very beginning of the protocol, and thus is able to set sp and � as it wishes.
While this seems like a potential limitation, our framework is general enough to support a de-centralized
Auth. �at is, we could consider many third-parties Auth1, . . . ,Authℓ who each specify a database �∗8 , and
set P to accept � only if (for example) � ⊆ �∗1 ∩ · · · ∩ �∗ℓ . �us, in order to compromise the system, an
adversary would have to corrupt the group manager and all third-party authorities simultaneously, while
the key generation procedure is occurring.

SPC group signatures: Construction. We next investigate the feasibility and e�ciency of constructing
SPC group signatures. To do so, we abstract out the basic “pre-constraining” property we need from the
group signature scheme, and re-state it in the context of an encryption scheme.

�at is, we �rst de�ne a scheme for what we call set pre-constrained encryption, or SPC encryption,
with the following properties.

• �e public key pk is generated with respect to some database � of items.

• �e public key pk should not reveal � , since � may consist of sensitive or harmful content.
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• Any user, given pk, can encrypt a message< with respect to an item G such that the key generator
(using sk) can recover< if G ∈ � , but learns nothing about< if G ∉ � .

We note that our terminology is inspired by the recent work of Ananth et al. [3] who proposed the
notion of pre-constrained encryption. However, our de�nitions and constructions are quite di�erent; see
Section 1.4 for further discussion.

Our security de�nition for set pre-constrained encryption mirrors the anonymity de�nition explained
above, where the key generator for the encryption scheme now plays of role of the group generator. Specif-
ically, we can still parameterize security by a predicate P and parameters (pp, sp) set up by a third-party
Auth.

Now, we describe a generic construction of an SPC group signature scheme from an SPC encryption
scheme plus standard crytographic tools: a one-way function � , a digital signature scheme, and a zero-
knowledge non-interactive argument of knowledge.

�e group manager will take as input some set � and sample a public key for the SPC encryption
scheme computed with respect to � . It will also include a veri�cation key for the signature scheme in its
master public key. A client can join the system by sampling a secret B , se�ing id = � (B) to be their public
identity, and obtaining a signature on id from the group manager. Now, to sign a message<, the client �rst
encrypts their identity id with respect to item< using the SPC encryption scheme, producing a ciphertext
ct. �en, they produce a zero-knowledge proof c that

“I know some id, a signature on id, and B such that id = � (B), such that ct is an SPC
encryption of id with respect to<”

Observe that given any valid signature (ct, c) on a message< ∈ � , the group manager should be able
to recover the id that produced (ct, c) by decrypting ct. We refer to this property as traceability. One subtle
issue that emerges here is that c can only a�est that ct is in the space of valid ciphertexts encrypting id
under item<, and cannot show that ct was sampled correctly. �us, we will need to require that the SPC
encryption is perfectly correct, that is, ct is perfectly binding to id when< ∈ � .

Next, we see that any signature (ct, c) on a message < hides id from any other client, which gives
us the client-client anonymity property. More speci�c to our case, we can also show that any signature
(ct, c) on a message < ∉ � hides id, even from the server, which we capture using our simulation-based
security de�nition.

Finally, we highlight the notion of unframeability, which requires that a malicious server cannot pro-
duce a signature (ct, c) that can be opened to the id of any honest client. Intuitively, this follows because
the server will not know the pre-image B of id, and so cannot produce a valid proof c .

SPC Encryption: Construction. With this generic compiler in hand, we provide a concretely e�cient
construction of SPC encryption, and then a concretely e�cient instantiation of the generic compiler de-
scribed above. �is results in a practical proposal for SPC group signatures, which is our main constructive
result.

Our construction of SPC encryption builds on top of the Apple PSI protocol [9]. �is protocol already
satis�es the basic syntax that we require, namely, the ability to embed a set � in the public key pk of an
encryption scheme. However, their security notion is much weaker than the authenticated-set security
we desire, and described above. Nevertheless, we can capture the security they do claim to achieve using
our generic framework, and we refer to it as bounded-set security. In more detail, in their scheme, the key
generator is completely free to choose the set � , as long as the size of � is below some public bound =.
�at is, pp = =, sp is empty, and P(=, , �) = 1 if |� | ≤ =.

Building on their basic scheme, we provide three new contributions.
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• We observe that the proof of security (for bounded-set security) given in the Apple PSI paper [9]
only holds when the bound = is large enough with respect to other system parameters. �is results
in a large gap between correctness (the number of items that an honest server programs into its
public key) and security (the number of items that a malicious server can potentially program into
its public key). We show how to remedy this in a concretely e�cient manner, completely closing
this gap and achieving essentially no di�erence between the correctness and security bounds.

• We build on top of the protocol in a di�erent manner in order to establish an e�cient protocol that
satis�es our novel (and much stronger) de�nition of authenticated-set security.

• We show how to tweak these schemes in order to obtain the perfect correctness guarantee needed to
make our compiler from SPC encryption to SPC group signatures work. Interestingly, we lose an
“element-hiding” property of the scheme in this process. Luckily, we don’t require this property for
our compiler, since elements correspond to messages in the SPC group signature scheme, which we
are not worried about leaking to the server in the event of a user report.

An in-depth overview of the Apple PSI protocol and the technical ideas involved in our improved
constructions are given in Section 3.1.

Finally, we derive a concretely e�cient instantiation of the SPC encryption to SPC group signature
compiler, which makes use of structure-preserving signatures [1] and the Groth-Sahai proof system [24].
We provide an overview of the technical ideas involved in our constructions in Section 4.3. We also im-
plement the resulting SPC group signature scheme and provide further discussion and benchmarking in
Section 5.

SPC Encryption: Limitations. As a separate contribution, we investigate generic asymptotic e�ciency
properties of SPC encryption. We identify three desirable “succinctness” properties with respect to the
database size =: succinct public-key size, succinct encryption time, and succinct decryption time, where
in each case, succinctness refers to poly-logarithmic complexity in =. �e Apple-PSI-based protocols have
non-succinct public-key size, but succinct encryption and succinct decryption. A natural question is
whether it is also possible to achieve succinct public key. We observe the following, and provide more
details in Section 3.4.

• �ere are techniques in the literature [2] that can achieve succinct public key and succinct encryp-
tion with either (i) non-succinct decryption with element-hiding, or (ii) succinct decryption without
element-hiding, from standard cryptographic assumptions. However, these constructions are im-
practical and not suitable for real-world deployment.

• An “optimal” SPC encryption scheme with succinct public key, succinct encryption, succinct decryp-
tion, and element-hiding implies the elusive notion of doubly-e�cient private-information retrieval
[11, 10], which is not known to exist under any standard cryptographic assumption.

�us, while the Apple PSI paper is not explicit about why they se�led for a protocol with a non-succinct
public key, our analysis validates this choice.

1.3 Discussion

CSAM deterrence vs. misinformation. As mentioned above, CSAM deterrence and combating misin-
formation are two of the most prominent applications of online content moderation. While both applica-
tions indeed fall under the umbrella of content moderation, they each introduce unique challenges from a
cryptosystem perspective. �e pre-constraining techniques that we make use of in this paper are designed
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speci�cally for the deterrence of illegal content, such as CSAM. On the other hand, the “traceback” sys-
tems introduced in prior works such as [45, 32, 36] are arguably geared more towards the application of
combating misinformation.

Perhaps the biggest distinction between these applications from a cryptographic perspective is their
amenability to pre-de�nition. As already discussed, illegal content must be pre-de�ned in some sense,
for example by a governmental body. It is crucial to take advantage of this pre-de�nition in designing
cryptosystems for illegal content deterrence. Indeed, since the description of the illegal content itself can
be baked into the parameters of the system, we can hope to obtain rigorous guarantees aboutwhich content
is being tracked and monitored by the system administrator.

On the other hand, it is not even clear in the �rst place how to de�ne misinformation, or even who
has the authority to de�ne it. Plus, new content that could potentially be classi�ed as misinformation is
constantly being created and distributed. �us, it is less clear how to obtain rigorous security guarantees
against potentially malicious servers in the se�ing of misinformation deterrence. A potential approach
could be to allow new content (such as new misinformation or abuse) to be added to the “constrained” set,
so that the originators of prior messages containing this content could be traced. �is feature is reminiscent
of “retrospective” access to encrypted data as considered in [22] in a somewhat di�erent context. �ey
show that such access requires the use of powerful (and currently very ine�cient) cryptographic tools,
and it would be interesting to see if the same implications hold in the se�ing of tracing in end-to-end
encrypted messaging systems.
Deniability vs. unframeability. Another di�erence between illegal content and misinformation from
a cryptographic perspective is re�ected in the technical tension between the notions of deniability and
unframeability. Deniability essentially asks that messages between users can be simulated without any
user-speci�c secrets, where indistinguishability from real messages holds from the perspective of an entity
with full information, including user and even server secrets. �is can certainly be a desirable property of
encrypted messaging systems, especially when there is a threat of coercion from powerful outside sources.
However, this property con�icts with unframeability against malicious servers, since it enables servers to
produce these simulated messages [44]. While deniability has been a sought-a�er feature of encrypted
systems with traceback functionality [36], it actually appears to be counter-productive in systems that are
meant to detect originators of CSAM or other illegal content. Indeed, it is important that not only can
the server identify the originator, but also that the server can convince law enforcement of the identity of
the content originator. On the other hand, we view unframeability against malicious servers as a crucial
property of CSAM deterrence systems, since users can face dramatic consequences if framed for the gen-
eration or dissemination of illegal content. �us, our techniques are tailored to obtain the strongest notion
of unframeability and no deniability,5 while prior work [36] that focused on combating misinformation
took the opposite approach.
On security against malicious servers. In this work, we took steps towards ensuring privacy and
anonymity against malicious (or even honest-but-curious) servers in encrypted systems with support for
content moderation. As mentioned earlier in the introduction, it is absolutely vital to explore the space
of solutions to the “encrytion debate” that don’t give up fully on either end-to-end encryption or content
moderation. �ere is much more work to be done in this space, and we view our techniques as one tool
in an ever-expanding toolbox of techniques meant to address the broad question of privacy vs. content
moderation.

In particular, while we remove the need to trust service providers (think, WhatsApp), the notion of
authenticated-set security essentially moves this trust to a third party (think NCMEC). We consider this
progress, since it splits the responsibility of providing a messaging service and de�ning illegal content.

5�ough we note that one could potentially alter our group signature scheme to obtain deniability at the cost of unframeability,
by including in the zero-knowledge argument a clause along the lines of “OR I know the master secret key”.
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Moreover, as discussed earlier, our scheme would immediately extend to support multiple third parties
that can each a�est to the validity of the server’s public parameters, further spli�ing the trust. However,
we acknowledge that there is opportunity to further improve the transparency and trust in such content
moderation systems.

Additional challenges and future directions. We conclude our discussion with a few directions for
future work. First, a desirable property of encrypted illegal content moderation systems is the ability
to update public parameters to include new illegal content. As discussed in the Apple PSI paper [9], a
simple way to handle updates is to redo setup and release the updated public key as part of system update.
Achieving more e�cient updates, however, is an interesting direction for future work. For example, if an
update only corresponds to locations that are changed, it may start leaking the positions that correspond
to database elements. �is suggests the need for creative solutions, for example the use of di�erential
privacy techniques to hide this leakage.

Next, we did not consider thresholding in this work, which would protect the privacy of content or
anonymity of users until multiple matches were found in the database. While this is straightforward to
incorporate into SPC encryption, it is not as immediate for SPC group signatures, at least if the goal is to
maintain concrete e�ciency. We leave an exploration of this to future work.

Next, we chose to use Groth-Sahai proof systems in order to demonstrate that SPC group signatures
could be constructed with reasonable e�ciency. However, there are other tools available, such as e�cient
SNARGs (succinct non-interactive arguments) that may result in be�er veri�cation time at the cost of
increased signer work. We leave further investigation of this to future work.

Finally, we mention broader considerations that would come with using our system in the real world.
In the system, the actual database � would likely not consist of the actual CSAM images themselves, but
rather hashes of CSAM images computed using a perceptual hash function, such as Apple’s NeuralHash
[4]. �is introduces the possibility of adversarial use of the hash function, for example targeted collision-
�nding. We view this as an important a�ack vector to consider, especially when using these hash functions
in conjunction with cryptographic protocols meant to provide privacy against malicious servers. Explo-
ration of this topic is outside the scope of the current work, and we refer the reader to [38] and references
therein for current research on the topic.

1.4 Related Work

Pre-Constrained Cryptography. Our work borrows the terminology of pre-constrained cryptography
from Ananth et al. [3] because of sharing a similar vision – that of pu�ing pre-speci�ed restrictions on
the key generation authority. Our de�nitions and constructions, however, are di�erent from [3]. First,
we note that the notion of (set) pre-constrained group signatures is new to our work, while Ananth et al.
[3] only focus on (pre-constrained) encryption systems. In the se�ing of pre-constrained encryption, the
notion of malicious security in [3] is weaker than ours and allows the authority to choose any “constraint”
from a class of constraints. �is weaker notion is not meaningful in our se�ing, as it allows the service
provider (think, WhatsApp) to use an arbitrary set of their choice. Ananth et al. propose constructions
for di�erent �avors of pre-constrained encryption; the one that comes closest to our se�ing relies on
indistinguishability obfuscation [6], and is only of theoretical interest. In contrast, we provide concretely
e�cient constructions for our se�ing.

Traceback Systems. While our work focuses on moderation for pre-de�ned illegal content, there has
also been much recent work on the adjacent question of moderation for misinformation or abusive con-
tent. Solutions for this problem typically build “traceback” mechanisms into end-to-end encrypted sys-
tems [45, 32, 36, 28], extending the reach of so-called “message franking” systems [26, 16, 44]. �ese
solutions rely on user reporting to identify the existence of harmful content. Once a report is received
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by the server, the server and reporting user can work together to identify the originator of the harmful
message. Unfortunately, these systems su�er from various drawbacks [21]: (1) �ey allow colluding server
and users to de-anonymize the originator of any message, even if the content is harmless. (2) Initial solu-
tions in this space additionally require the help of users on the traceback path to identify the originator,
and do not maintain their anonymity. While the la�er drawback was addressed in the recent work of [36],
no known solution provides security guarantees against malicious servers. Our system addresses both of
these shortcomings, for our speci�c se�ing of illegal content moderation.

Group Signatures. Finally, we mention a related line of work on group signatures withmessage-dependent
opening (GS-MDO) [17, 31]. Here, trust is split between the group manager and an additional entity called
the “admi�er”. �e identity of a group member that produces a signature on a message< can be revealed
only if the group manager and admi�er combine their private information. Unlike SPC group signatures,
GS-MDO does not require any “commitment” to, or “pre-constraining” of, the set of messages that can
be de-anonymized. �is means that even a�er the system parameters are set up, the group manager and
admi�er can in principle work together to de-anonymize every signature while still acting “semi-honestly”
w.r.t. the protocol speci�cation. In particular, clients of the system will not have the peace of mind guaran-
teed by public parameters that are publicly “authenticated” to only allow de-anonymization of a particular
set of illegal content speci�cied by some trusted (collection of) third party(ies).

2 Preliminaries

�e security parameter is denoted by _ ∈ N. A function 5 : N → N is said to be polynomial if there
exists a constant 2 such that 5 (=) ≤ =2 for all = ∈ N, and we write poly(·) to denote such a function. A
function 5 : N→ [0, 1] is said to be negligible if for every 2 ∈ N, there exists # ∈ N such that for all = > # ,
5 (=) < =−2 , and we write negl(·) to denote such a function. A probability is noticeable if it is not negligible,
and overwhelming if it is equal to 1 − negl(_) for some negligible function negl(_). For a set S, we write
B ← S to indicate that B is sampled uniformly at random from S. For a random variable D, we write
3 ← D to indicate that 3 is sampled according to D. An algorithm A is PPT (probabilistic polynomial-
time) if its running time is bounded by some polynomial in the size of its input. For two ensembles of
random variables {D0,_}_∈N, {D1,_}_∈N, we write D0 ≈2 D1 to indicate that for all PPT A, it holds that���� Pr

3←D0,_
[A(3) = 1] − Pr

3←D1,_
[A(3) = 1]

���� ≤ 1
2 + negl(_) .

2.1 Basic cryptographic primitives and assumptions

We will use a standard symmetric-key encryption scheme (Enc,Dec) with keypspaceK that satis�es ran-
dom key robustness, which states that for any message<, Pr:,:′←K [Dec(: ′, Enc(:,<)) = ⊥] = 1−negl(_) .
We will also make use of a standard digital signature scheme (Gen, Sign,Verify) that is existentially un-
forgeable under chosen message a�ack (EUF-CMA):

De�nition 1. A signature scheme (Gen, Sign,Verify) is existentially unforgeable under chosen message at-
tacks if for any PPT adversary A,

Pr
[
< ∉ & ∧
Verify(vk,<, f) = 1 : (vk, sk) ← Gen(1_)

(<,f) ← ASign(sk, ·) (vk)

]
= negl(_),

where & is the set of message queries that A makes to Sign(sk, ·).
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One-way relation. A one-way relation consists of PPT algorithms (Gen, Sample) and a set of tuples
R. Gen(1_) outputs public parameters pp, Sample(pp) samples instance witness pairs (G,F), and R is
a set {(pp, G,F)}. For correctness, we require that for any pp ∈ Gen(1_) and (G,F) ∈ Sample(pp),
(pp, G,F) ∈ R. For security, we require that no PPT adversary, given pp ← Gen(1_) and G such that
(G,F) ← Sample(pp) can �nd anyF ′ such that (pp, G,F ′) ∈ R, except with negligible probability.

�e Di�e-Hellman problem. LetG be a group of prime order@with generator6. �e tuple (6, ℎ1, ℎ2, ℎ3) ∈
G4 is called a Di�e-Hellman tuple if there exists U ∈ Z@ such that ℎ1 = 6U and ℎ3 = ℎU2 . �e decisional
Di�e-Hellman (DDH) assumption in group G asserts that it is computationally di�cult to distinguish a
random Di�e-Hellman (DH) tuple from uniformly random group elements.

We now describe a random self-reduction for Di�e-Hellman tuples, due to [34]. Consider �xed group
elements (6, ℎ1, ℎ2, ℎ3), and uniformly random V,W ← Z@ . Let ℎ′2 = 6V · ℎW2 , and ℎ′3 = ℎ

V

1 · ℎ
W

3 �en the
following two properties hold.

1. If (6, ℎ1, ℎ2, ℎ3) is a Di�e-Hellman tuple, then (ℎ′2, ℎ′3) are uniform conditioned on (6, ℎ1, ℎ
′
2, ℎ
′
3) being

a Di�e-Hellman tuple.

2. If (6, ℎ1, ℎ2, ℎ3) is not a Di�e-Hellman tuple, then (ℎ′2, ℎ′3) are fresh uniformly random group ele-
ments.

2.2 Simulation-based security

In this work, we will sometimes prove security via simulation, following the standard real/ideal world
paradigm [20]. In this paradigm, a cryptographic scheme speci�es an interactive protocol Π that takes
place between some parties %1, . . . , %= initialized with inputs G1, . . . , G= . �e protocol Π is meant to emulate
some ideal functionality F that takes an input G1, . . . , G= from each party and delivers an output ~1, . . . , ~=
to each party.

�e real execution. In the real execution, the protocol Π is executed in the presence of an adversary
A that corrupts some subset " ⊂ [=] of = parties. A takes as input the security parameter 1_ , a set of
input {G8}8∈" , and an auxiliary input I. �e honest parties [=] \" follow the instructions of Π, while A
sends messages on behalf of parties in" . IfA is malicious, these messages may be computed following an
arbitrary polynomial-time strategy, while ifA is semi-honest, these messages must be computed following
the instructions ofΠ. �e interaction ofA in the protocolΠ de�nes a random variableREALΠ,A [1_, ®G, I,"]
that descibed the output of A, which may be an arbitrary funtion of its view.6

�e ideal execution. In the ideal execution, a simulator Sim controlling some subset " ⊂ [=] of =
parties interacts with a trusted party IF implementing the functionality F . Sim takes as input the security
parameter 1_ , a set of inputs {G8}8∈" , and an auxiliary input I. Each honest party %8 ∈ [=] \" sends their
input G8 to I, while Sim sends an input G ′8 on behalf of each party %8 ∈ " . Let G ′1, . . . , G ′= be the entire set of
inputs received by I. Next, I computes (~1, . . . , ~=) = F (G ′1, . . . , G ′=) and delivers {~8}8∈" to Sim. Finally,
Sim outputs an arbitrary function of its view, which de�nes a random variable IDEALF,Sim [1_, ®G, I,"].

De�nition 2. An =-party protocol Π securely emulates an ideal functionality F in the presence of malicious
(resp. semi-honest) adversaries corrupting a subset of parties " ⊂ [=] if for any PPT malicious (resp. semi-
honest) A corrupting parties " , there exists a PPT Sim such that for any set of inputs ®G , and auxiliary input
I,

REALΠ,A [1_, ®G, I,"] ≈2 IDEALF,Sim [1_, ®G, I,"] .
6Typically, this output would also include the outputs of the honest parties. However, we will not require correctness against

malicious parties in this work, and so do not include the honest party outputs.
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�e random oracle model. In the random oracle model (ROM), parties are given oracle access to some
function � that is sampled uniformly at random from the space of all functions � : X → Y, where X and
Y are �nite non-empty sets. �at is, parties can query their oracle on an input G ∈ X and receive in return
� (G) ∈ Y. When proving security of a protocol Π in the random oracle model, the simulator Sim is able
to “control” the oracle, observing queries made by the adversary and simulating responses.

2.3 Non-interactive arguments of knowledge

Let L be an NP language and let R be the associated binary relation, where a statement G ∈ L if and
only if there exists a witness F such that (G,F) ∈ R. A non-interactive argument system for R consists
of algorithms Setup, Prove,Verify, where Setup(1_) outputs a string crs, Prove(crs, G,F) outputs a proof
c , and Verify(crs, G, c) outputs either 1 to indicate accept or 0 to indicate reject. Completeness states that a
proof computed from any (G,F) ∈ R will verify correctly with overwhelming probability. We also consider
the following security properties.

• Knowledge extraction. �ere exists an extractor (E1, E2) such that {crs : crs← Setup(1_)} ≈2 {crs :
(crs, g) ← E1(1_)}, and for any PPT adversary A,

Pr
 Verify(crs, G, c) = 0
∨ (G,F) ∈ R :

(crs, g) ← E1(1_)
(G, c) ← A(crs)
F ← E2(g, G, c)

 = 1 − negl(_) .

• Zero-knowledge. �ere exists a simulator S such that for any (G,F) ∈ R,{
(crs, G, c) : crs← Setup(1_),

c ← Prove(crs, G,F)

}
≈2

{
(crs, G, c) : (crs, c) ← S(1_, G)

}
We say that a non-interactive argument system for a relation R that satis�es completeness, knowledge

extraction, and zero-knowledge, is a zero-knowledge non-interactive argument of knowledge (ZK-NIAoK) for
R.

We say that a ZK-NIAoK is in the common random string model, if Setup simply outputs a uniformly
random string crs. We say that a ZK-NIAoK is in the random oracle model if Setup includes the sampling
of a random oracle � , and the knowledge extractor and simulator can sample � and observe and respond
to A’s queries to � . We will use the fact that the following relations all have highly e�cient ZK-NIAoKs
in the ROM. Let G be a group of order @ with generator 6.

• �e relation RDLog = {((6, ℎ), U) : ℎ = 6U }. A ZK-NIAoK for RDLog follows from applying the
Fiat-Shamir heuristic [19] to Schnorr’s sigma protocol [43].

• �e relation RDH = {((6, ℎ1, ℎ2, ℎ3), U) : (ℎ1 = 6U ) ∧ (ℎ3 = ℎU2 )}. A ZK-NIAoK for RDH follows from
applying the Fiat-Shamir heuristic to Chaum and Pederson’s sigma protocol [13].

• For any = and : ≤ =, the relation RDLog:=
= {((6, ℎ1, . . . , ℎ=), ((, {U8}8∈( )) : ( |( | = :) ∧ (∀8 ∈ (, ℎ8 =

6U8 )}. A ZK-NIAoK for RDLog:=
follows from applying the Fiat-Shamir heuristic to the protocol of

[15]. Moreover, an e�cient succinct argument system for this language whose size is logarithmic in
=, was shown recently by [5].
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2.4 Cuckoo hashing

A cuckoo hashing scheme consists of the algorithms (Setup,Hash), and is parameterized by a universeU
of elements.

• Setup(_, =, n) → (=′, ℎ0, ℎ1) : the setup algorithm takes as input an integer parameter _, an integer
bound =, and n ≥ 0, and outputs an integer =′ and two hash functions ℎ0, ℎ1 : U → [=′], where =′
is a deterministic function of _, =, and n .

• Hash(ℎ0, ℎ1, �) → ) : the (deterministic) hashing algorithm takes hash functions ℎ0, ℎ1 : U → [=′]
and a set � ⊆ U, and outputs a table) = [)1, . . . ,)=′], where each)8 is either an element in � or ⊥.

�e correctness requirements are that

1. For every G ∈ U, ℎ0(G) ≠ ℎ1(G). We will assume that this is the case for every pair of even adver-
sarially chosen hash functions.7

2. Each non-⊥ element of ) is distinct.

3. For any =, n and set � ⊆ U of size =, it holds that with probability 1 − negl(_) over (<,ℎ0, ℎ1) ←
Setup(_, =, n), there exists a set � ′ ⊆ � such that |� ′ | ≥ (1 − n) |� | and such that for any G ∈ � ′,
either )ℎ0 (G) = G or )ℎ1 (G) = G , where ) B Hash(ℎ0, ℎ1, �).

2.5 Bilinear maps

Let G be a bilinear group generator that on input 1_ returns (?,G1,G2,T, 4, 61, 62), where

• G1,G2,T are groups of order ? , where ? is a _-bit prime.

• 61 is a generator ofG1, 62 is a generator ofG2, and 4 is a non-degenerate bilinear map. �at is, 4 (6,6)
is a generator of T, and for all 0, 1 ∈ Z? , it holds that 4 (601 , 612 ) = 4 (61, 62)01 .

• Group operations, evaluation of the bilinear map, and group membership are all e�ciently com-
putable.

• �e DDH assumption is assumed to hold in each ofG1 andG2. In other words, the SXDH (symmetric
external Di�e-Hellman) assumption is assumed to hold.

Structure-preserving signatures. Structure-preserving signatures [1] are digital signatures schemes
where the messages, veri�cation key, and signatures are group elements, and the veri�cation equation
evaluates “pairing product equations”. �e formal de�nition follows.

De�nition 3. A structure-preserving signature de�nedwith respect to a groupwith bilinearmap (?,G1,G2,T, 4, 61, 62)
satis�es the following properties.

• �e messages, veri�cation key, and signatures are all group elements in G1 or G2.

• �e Verify algorithm takes as input group elements in G1 and G2, veri�es group membership, and
evaluates pairing product equations of the form∏

8

∏
9

4 (�8 , � 9 )08,9 = 1,

where �8 ∈ G1, � 9 ∈ G2 are inputs, and 08, 9 are constants in Z? .
7For example, ℎ1 can be de�ned to �rst hash G and then check if the hash is equal to ℎ0 (G) and if so add 1.
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Groth-Sahai proofs. Groth and Sahai [24] constructed e�cient non-interactive zero-knowledge proof
systems (Setup, Prove,Verify) for statements that involve equations over bilinear maps. “GS proofs” prove
statements that consist of the following types of equations over variables -1, . . . , -< ∈ G1, .1, . . . , .= ∈
G2, G1, . . . , G<′, ~1, . . . , ~=′ ∈ Z? .

• Pairing product equations.

=∏
8=1

4 (�8 , .8)
<∏
8=1

4 (-8 , �8)
<∏
8=1

=∏
9=1

4 (�8 , � 9 )28 9 = 1T,

for constants �8 ∈ G1, �8 ∈ G2, 28 9 ∈ Z? , where 1T is the identity element in T. 8

• Multi-scalar exponentiation.
=′∏
8=1

�
~8
8

<∏
8=1

-
18
8

<∏
8=1

=′∏
9=1

-
28 9~ 9
8

= )1,

for constants �8 ,)1 ∈ G1, 18 , 28 9 ∈ Z? and analogous statements for multi-scalar exponentiation in
G2.

�ey also consider quadratic equations in Z? , but these will not be used in our work.
GS proofs are in the common random string model, and satisfy the completeness and zero-knowledge

properties described in Section 2.3. However, they only satisfy a weaker notion of knowledge extraction
which has been referred to as partial knowledge extraction [23]. �is property states that if the witness
consists of both group elements and exponents, only the group elements are extractable.

2.6 Doubly-e�cient private information retrieval

We use a slightly weaker de�nition of doubly-e�cient private information retrieval compared to that found
in the literature [11, 10] and henceforth refer to it as DEPIR. A DEPIR scheme (with preprocessing) consists
of four algorithms (KeyGen, Process,�ery,Resp,Decode).

• Gen(1_,DB) → (:2 , :B): takes as input a database DB and outputs a pair of keys (:2 , :B).

• �ery(:2 , 8) → (@, BC): takes :2 and index 8 ∈ [=] as input and outputs a query @ and local state st.

• Resp(@, :B) → 0: takes @ and :B and returns the server answer 0.

• Decode(st, 0) → 1: takes local state st and 0 and outputs a bit.

�e main di�erence in our de�nition is that the key generation procedure Gen depends on the database.
As part of our e�ciency requirements we demand that the size of :2 = poly(_, log=), Gen runs in time
poly(_, =) and�ery,Resp andDecode run in time poly(_, log=). We note that this de�nition is interesting
only when the key :2 is succinct, otherwise the entire database can be stored as part of the key.

A DEPIR scheme Π is secure if these exists a polynomial time simulator S such that REALA,Π ≈
IDEALA,S where:

REALA,Π is the output of A in the following interaction

1. A → DB; A obtains :2 , :B ← Gen(1_,DB).
8[24] also consider pairing product equations where the target element is not the identity, but their proofs for such equations

are in general only witness indistinguishable, as opposed to zero-knowledge.
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2. A → 8 ∈ [# ] and obtains @ ←�ery(:2 , 8).
3. Repeat step 2 until A generates an output.

IDEALA,S is the output of A in the following interaction

1. A → DB; A obtains :2 , :B ← S(DB).
2. A → 8 ∈ [# ] and obtains @ ← S().
3. Repeat step 2 until A generates an output.

3 Set Pre-Constrained Encryption

In this section, we de�ne and construct set pre-constrained (SPC) encryption. We start by providing an
overview in Section 3.1. We then present formal de�nitions of SPC encryption in Section 3.2, and con-
structions in Section 3.3. In Section 3.4 we demonstrate that an optimal version of SPC encryption implies
doubly-e�cient private information retrieval.

3.1 Overview

�e basic Apple PSI protocol. We start by recalling the basic Apple PSI protocol, viewed as an encryption
scheme. “Basic” here refers to the protocol without the extra threshold or synthetic match functionalities,
which we will not consider explicitly in this work.

A key technique used in Apple’s protocol is the Naor-Reingold Di�e-Hellman random self reduction
[34]. Let G be a cyclic group of order @ with generator 6, and let ℎ1, ℎ2, ℎ3 be three other group elements.
Suppose that V,W ← Z@ are sampled as uniformly random exponents, and ℎ′2 B 6V · ℎW2 , ℎ′3 B ℎ

V

1 · ℎ
W

3 .
�en it holds that (i) if (6, ℎ1, ℎ2, ℎ3) is a Di�e-Hellman tuple (that is, there exists U such that 6U = ℎ1 and
ℎU2 = ℎ3), then (6, ℎ1, ℎ

′
2, ℎ
′
3) is a Di�e-Hellman tuple, and (ii) if (6, ℎ1, ℎ2, ℎ3) is not a Di�e-Hellman tuple,

then (ℎ′2, ℎ′3) are fresh uniformly random group elements.
Now, this self-reduction can be used to construct a set pre-constrained encryption scheme for a single-

item set {G} as follows. Let � be a hash function that hashes items to group elements (� will be treated
as a random oracle in the security proof). �e key generator, on input an item G , will sample U ← Z@ and
publish (� = 6U , � = � (G)U ) as the public key. Note that (6,�, � (G), �) is a Di�e-Hellman tuple, while
for any G ′ ≠ G , (6,�, � (G ′), �) is not a Di�e-Hellman tuple. �is suggests a natural encryption scheme.
Given the public key, an item~, and a message<, the encryption algorithm will run the Naor-Reingold self-
reduction on (6,�, � (~), �) to produce group elements (&, (), and then treat ( as a secret key for encrypting
the message <. �at is, the ciphertext will consist of (&, SEnc( (<)), where SEnc is a symmetric-key
encryption scheme. If ~ ≠ G , then ( will be uniformly random, even from the key generator’s perspective,
so< remains hidden. On the other hand, if~ = G , then (6,�,&, () is a Di�e-Helman tuple, and the element
( = &U can be computed by the key generator and used to recover<.

�is scheme can easily be extended to support larger set sizes, by having the key generator publish
(�,� (G1)U , . . . , � (G=)U ) as the public key, where G1, . . . , G= is its input set. However, the naive extensions
of the encryption and decryption algorithms described above will have running time that grows with the
size = of the set. �e authors of the Apple PSI system make use of a technique called cuckoo hashing to
signi�cantly reduce this running time. Concretely, the key generator will hash the set (G1, . . . , G=) into a
table ) of size =′ = (1 + n)= for some constant n , using randomly sampled hash keys ℎ0, ℎ1. �e guarantee
is that with high probability, for most G8 , either )ℎ0 (G8 ) = G8 or )ℎ1 (G8 ) = G8 . Note that ) will have =′ − =
empty entries, which we denote with ⊥. �e key generator will then publish (�, �1, . . . , �=′) as the public
key, where for each 8 ∈ [=′], if )8 = G then �8 = � (G)U , while if )8 = ⊥ then �8 = 6A for a random
exponent A . Now, to encrypt a message < with respect to an item ~, one only has to produce two pairs
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(&0, SEnc(0 (<)), (&1, SEnc(1 (<)), where (&1, (1) is the result of applying the Naor-Reingold self-reduction
to (6,�, � (~), �ℎ1 (~) ).

�is results in a set pre-constrained encryption scheme that can handle pre-constraining sets of size
= with a public key of about =′ = (1 + n)= group elements, and encryption and decryption algorithms
whose running times do not grow with the size of =. One can show (in the random oracle model) that this
scheme already satis�es set-hiding under the DDH assumption, and can be made to satisfy element-hiding
from DDH, as long as the two pairs (&0, SEnc(0 (<)), (&1, SEnc(1 (<)) that constitute the ciphertext are
randomly permuted, and �1, . . . , �=′ are all distinct group elements.

Achieving bounded-set and authenticated-set security. Next, we show that augmenting the above
template with simple and e�cient zero-knowledge arguments su�ces to achieve �rst bounded-set and next
authenticated-set security. While the potential utility of adding zero-knowledge arguments to Apple’s
PSI system has previously been discussed informally [12, 37], we view our formalization and e�cient
realization of rigorous security de�nitions as a necessary and important contribution in this space.

�e Apple PSI paper [9] actually already claims to achieve bounded-set security, which guarantees
that a malicious key generator can only decrypt messages that are encrypted with respect to some set of
items of size at most �. However, it is le� unclear what � is, and how it depends on other parameters
in the system. In fact, their proof completely breaks down if � < =′. In particular, their proof relies on
extracting the input set- of the key generator by observing random oracle queries, potentially adding one
item G to - for each group element �8 in the public key. If the resulting - is such that |- | > �, then the
ideal functionality aborts, and the malicious key generator would not receive encryptions from the client.
However, this behavior does not re�ect what would happen in the real world, where the client would not
be able to tell how large the key generator’s “e�ective input” actually is.

�is issue in the proof occurs with good reason, since a malicious key generator can indeed publish
(�,� (G1)U , . . . , � (G=′)U ) for =′ items G1, . . . , G=′ without being detected. However, correctness for honest
key generators is only guaranteed to hold for up to = items (due to the cuckoo hashing). �us, in the best
case, we could hope for a scheme that achieves bounded-set security with bound =.

We show how to achieve this by instructing the key generator to append to their key (�, �1, . . . , �=′) a
zero-knowledge non-interactive proof of knowledge that they know the discrete logarithm U of � and at
least =′ − = discrete logarithms {A8} of the elements �1, . . . , �=′ . Highly e�cient proofs supporting these
languages are known [15, 5]. Intuitively, the =′ − = group elements �8 for which the generator knows A8
such that �8 = 6A8 are “useless” for decrypting encrypted messages. To see why, recall that, due to the Naor-
Reingold self-reduction, �8 can only be used to decrypt with respect to an item G such that (6,�, � (G), �8)
forms a Di�e-Hellman tuple. However, if the generator knows an G, U, and A8 such that this holds, they
can break the discrete logarithm problem, since� (G) = 6A/U and� (G) can be programmed by a reduction.
�us, only at most = of the elements (�1, . . . , �=′) will actually be useful for decrypting messages, which
we leverage to show bounded-set security with a bound of =.

Next, we consider our notion of authenticated-set security, which introduces a third party that chooses
the set � . In our scheme, the third party �rst sends � to the key generator. �en, the key generator
prepares a public key (�, �1, . . . , �=′). In the honest case, for each 8 it either holds that there exists G ∈ �
such that (6,�, � (G), �8) form a Di�e-Hellman tuple, or the generator knows A8 such that �8 = 6A8 . Now,
these are claims that the generator can prove e�ciently in zero-knowledge to the third party. �e third
party will then checks these proofs, and if all verify, will sign the set of group elements (�, �1, . . . , �=′)
under its public veri�cation key. We show in Section 3.3 that this is su�cient for achieving authenticated-
set security.

16



3.2 De�nitions

A set pre-constrained encryption (SPCE) scheme ΠSPCE [U,M, =, n] consists of algorithms (Gen, Enc,Dec),
and is parameterized by a universe U of elements, a message space M, a set size =, and a correctness
parameter n .U,M, =, n may actually be in�nite families parameterized by the security parameter _, though
we suppress mention of this for ease of notation.

• Gen(1_, �) → (pk, sk): the parameter generation algorithm takes as input a security parameter 1_
and a set � ⊆ U of size at most =, and outputs a public key pk and a secret key sk.

• Enc(pk, G,<) → ct: the encryption algorithm takes as input a public key pk, an item G ∈ U, and a
message< ∈ M, and outputs a ciphertext ct.

• Dec(sk, ct) → {<,⊥}: the decryption algorithm takes as input a secret key sk and a ciphertext ct
and outputs either a message< ∈ M or a bot symbol ⊥.

We note that any SPC encryption scheme can be utilized for encrypted cloud storage as follows. �e
server initially publishes pk, and whenever the client wants to upload some content G , they would sample
an (element-hiding) SPC encryption of (G,<), where< is arbitrary “associated data” (e.g. the name of the
client). �en, if G ∈ � , the server would be able to use sk to recover the associated data <. Otherwise
(G,<) will remain hidden from the server.

E�ciency. By default, all algorithms in an SPC encryption scheme should be polynomial-time in the size
of their inputs, and =,|G |,|< | should be polynomial-size in _. However, we will want to consider a more
�ne-grained notion of e�ciency with respect to the size = of the set � , which may be a large polynomial.
We say that the scheme has succinct public-key if |pk| = poly(_, log=), succinct encryption if the running
time of Enc is poly(_, log=), and succinct decryption if the running time of Dec is poly(_, log=).
Correctness. We de�ne notions of correctness for an SPC encryption scheme. We �rst consider the
following notion of n-correctness, where the parameter n essentially determines an upper bound on the
fraction of the set � that is “dropped” by the Gen algorithm.9

De�nition 4. An SPC encryption scheme (Gen, Enc,Dec) is n-correct for some n ≥ 0 if for any _ ∈ N and
� ⊆ U, it holds that with probability 1 − negl(_) over (pk, sk) ← Gen(1_, �), there exists a � ′ ⊆ � such
that |� ′ | ≥ (1 − n) |� | and for any G ∈ � ′ and< ∈ M,

Pr[Dec(sk, Enc(pk, G,<)) =<] = 1 − negl(_) .

Next, we de�ne the stronger notion of perfect n-correctness that will be useful for our application of
SPC encryption to building SPC group signatures in Section 4.

De�nition 5. An SPC encryption scheme (Gen, Enc,Dec) is perfectly n-correct for some n ≥ 0 if for any
_ ∈ N and � ⊆ U, it holds that with probability 1 − negl(_) over (pk, sk) ← Gen(1_, �), there exists a
� ′ ⊆ � such that |� ′ | ≥ (1 − n) |� | and for any< ∈ M, it holds that

• For every G ∈ U such that G ∈ � ′,

Pr[Dec(sk, Enc(pk, G,<)) =<] = 1.

• For every G ∈ U such that G ∉ � ′,

Pr[Dec(sk, Enc(pk, G,<)) ∈ {<,⊥}] = 1.
9Traditionally, one might expect n to be negligible, and thus suppressed in the de�nition. However, our protocols will make

use of cuckoo hashing which may introduce an inverse-polynomial n .
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Security. We de�ne security using the simulation framework, via an ideal functionality described in Fig. 1.
�e ideal functionality F PSPCE takes place between a server, who runs Gen and Dec, a client, who runs Enc,
and a third partyAuth, whose role will be described below. In full generality, the server’s input is a function
� , but in our applications, we will always parse � as a description of a database � of items. �e client’s
input is a sequence of items and messages (G1,<1), . . . , (G: ,<: ). �e client should learn nothing about
� , Auth should learn nothing about the messages<1, . . . ,<: , and the server should learn only {<8}8:G8 ∈�
(and potentially the elements {G8}8∈[: ] ).

To make security against the server meaningful, we must place some restriction on � . We do this (in
a modular way) by parameterizing the functionality with a predicate P. �is predicate may depend on
some public parameters pp (known to both client and server) and some secret parameters sp (known only
to the server). It is the job of Auth to set up these parameters. We allow a malicious adversary to corrupt
either the server, the client, or Auth. We note that one could also consider collusions between any pair of
parties, but in each case security becomes vacuous, so we do not consider this in our proofs of security.

Below, we describe the instantiations of P that we will consider in this work: one will de�ne what we
call bounded-set security and the other will de�ne what we call authenticated-set security.

F PSPCE

Public information.

• Parties: server ( , client � , and authority Auth.

• Parameters: universeU, message spaceM.

�e functionality.

• Obtain input (pp, sp) from Auth. Deliver pp to both � and ( , and sp to ( .

• Obtain input � = (�( , �Auth) from ( and deliver � to Auth. Abort and deliver ⊥ to all
parties if P(pp, sp, � ) = 0.

• Obtain input (G1,<1), . . . , (G: ,<: ) from client, where each G8 ∈ U and each<8 ∈ M.

• Deliver �( ({G8 ,<8}8∈[: ]) to server and �Auth({G8 ,<8}8∈[: ]) to Auth.

Figure 1: Ideal functionality for SPC encryption. P is a predicate that takes as input some public param-
eters pp, secret parameters sp, and a pair of functions � = (�( , �Auth), and outputs a bit.

Bounded-set security. Here, we de�ne two predicatesP[BS] andP[BS-EH], whereBS stands for bounded-
set, and EH stands for element-hiding. For each, the public parameters pp are parsed as an integer =, there
are no secret parameters sp, and � is parsed as the description of a database � ⊆ U. �e predicate then
outputs 1 if and only if |� | ≤ =. For P[BS],

�( ({G8 ,<8}8∈[: ]) = {G8}8∈[: ], {<8}8:G8 ∈� , �Auth({G8 ,<8}8∈[: ]) = {G8}8∈[: ],

and for P[BS-EH],

�( ({G8 ,<8}8∈[: ]) = :, {<8}8:G8 ∈� , �Auth({G8 ,<8}8∈[: ]) = :.

Authenticated-set security. Here, we de�ne two predicates P[AS] and P[AS-EH], where AS stands for
authenticated-set. For each, the public parameters pp are parsed as an integer =, the secret parameters are
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parsed as a database �∗ ⊆ U of size =, and � is parsed as a database � ⊆ U. �e predicate then outputs 1
if and only if � ⊆ �∗. For P[AS],

�( ({G8 ,<8}8∈[: ]) = {G8}8∈[: ], {<8}8:G8 ∈� , �Auth({G8 ,<8}8∈[: ]) = {G8}8∈[: ],

and for P[AS-EH],

�( ({G8 ,<8}8∈[: ]) = :, {<8}8:G8 ∈� , �Auth({G8 ,<8}8∈[: ]) = :.

Finally, we de�ne the notion of security against outsiders.

De�nition 6 (Outsider-Security). An SPC encryption scheme (Gen, Enc,Dec) satis�es security against out-
siders with element-hiding if for any PPT adversary A, any pair (G0,<0), (G1,<1) ∈ U × M, and any
_ ∈ N, � ⊆ U,

Pr
A(pk, ct) = 1 :

(pk, sk) ← Gen(1_, �)
1 ← {0, 1}

ct← Enc(pk, G1,<1)

 ≤
1
2 + negl(_) .

�e scheme satis�es security against an outsider without element-hiding if the above only holds for any pair
(G,<0), (G,<1).

3.3 Construction

We begin by giving templates for SPC encryption based on Apple’s PSI protocol [9]. �ese schemes will
have succinct encryption and succinct decryption, but non-succinct public-key. We will �rst describe a
scheme ΠBasic−EH

SPCE (Protocol 2) that satis�es n-correctness and security against outsiders with element-
hiding. �en, we describe a related scheme ΠBasic−PC

SPCE (Protocol 3) that satis�es perfect n-correctness but
only security against outsiders without element-hiding, and is tailored to support encrypting messages
that are group elements. �is la�er scheme will be useful for our construction of set pre-constrained
group signatures in Section 4.

Following these basic templates, we will then show how to (e�ciently) upgrade each to obtain bounded-
set and authenticated-set security, resulting in schemes ΠBS−EH

SPCE ,ΠBS−PC
SPCE ,ΠAS−EH

SPCE ,ΠAS−PC
SPCE .

Ingredients:

• A cyclic group G of prime order @ in which the DDH problem is assumed to be hard.

• A symmetric-key encryption scheme (RobEnc,RobDec) with keyspace K that satis�es random key
robustness (Section 2.1).

• Hash functions � : U → G \ {0} and � : G → K modeled as random oracles, where � maps the
uniform distribution over G to (negligibly close to) the uniform distribution over K .

• A cuckoo hashing scheme (CH.Setup,CH.Hash) (Section 2.4).

�eorem 1 (Proof in Appendix A). ΠBasic−EH
SPCE [U,M, =, n] satis�es n-correctness and security against out-

siders with element-hiding, and ΠBasic−PC
SPCE [U,G, =, n] satis�es perfect n-correctness and security against

outsiders without element-hiding.

Achieving bounded-set security. It can in fact be shown thatΠBasic−EH
SPCE [U,M, =, n] (resp. ΠBasic−PC

SPCE [U,G, =, n])
already securely emulates F P[BS-EH]

SPCE (resp. F P[BS]SPCE ) with set size pp = =′ where =′ is such that (=′, ·, ·) ←
CH.Setup(_, =, n). However, =′ may be much larger than =, which means a large gap between correctness
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ΠBasic−EH
SPCE [U,M, =, n]

Parameters: universeU, message spaceM, set size=, correctness parameter n , and security
parameter _.
Setup: description of the group G with generator 6, and random oracles �,� .
Gen(1_, �):

• Run (=′, ℎ0, ℎ1) ← CH.Setup(_, =, n) and then ) B CH.Hash(ℎ0, ℎ1, �).

• Sample U ← Z@ and set � B 6U .

• De�ne )̃ as follows. For each 8 ∈ [=′], if)8 = ⊥ then sample A8 ← Z@ and set )̃8 B 6A8 ,
and otherwise set )̃8 B � ()8)U .

• Output pk B (ℎ0, ℎ1, �, )̃ ) and sk B U .

Enc(pk, G,<):

• Parse pk as (ℎ0, ℎ1, �, )̃ ) and abort if there are any duplicate entries in )̃ .

• For 1 ∈ {0, 1}, sample V1, W1 ← Z@ , and compute &1 B 6V1 · � (G)W1 , (1 B
�V1 · )̃W1

ℎ1 (G) , ct1 B RobEnc(� ((1),<). Sample 1 ← {0, 1} and output ct B
(&1, ct1, &1−1, ct1−1) .

Dec(sk, ct):

• Parse sk as U and ct as (&0, ct0, &1, ct1).

• For 1 ∈ {0, 1} and compute<1 B RobDec(� (&U
1
), ct1) . If exactly one of<0 or<1 is

not ⊥, then output this message, and otherwise output ⊥.

Figure 2: Basic SPC encryption with element-hiding

(an honest server would be able to decrypt with respect to (1− n)= items) and security (a dishonest server
would potentially be able to decrypt with respect to up to =′ items).

Below, we show that a simple and e�cient tweak to the basic schemes results in schemesΠBS−EH
SPCE ,ΠBS−PC

SPCE
(Protocol 4) that completely close this gap. �at is, for any =, the schemes ΠBS−EH

SPCE ,ΠBS−PC
SPCE securely emulate

F P[BS-EH]
SPCE , F P[BS]SPCE with pp = =.

Observe that the correctness properties of ΠBasic−EH
SPCE ,ΠBasic−PC

SPCE are preserved by the this transformation,
due to the completeness of the ZK-NIAoKs, and the security against outsiders properties are also preserved,
due to the zero-knowledge of the ZK-NIAoKs. We prove the following theorem in Appendix A.

�eorem 2 (Proof in Appendix A). ΠBS−EH
SPCE [U,M, =, n] securely emulates (De�nition 2) F P[BS-EH]SPCE with

pp = = in the presence of amalicious adversary corrupting either the server, the client, orAuth, andΠBS−PC
SPCE [U,G, =, n]

securely emulates F P[BS]SPCE with pp = = in the presence of a malicious adversary corrupting either the server,
the client, or Auth.

Achieving authenticated-set security. Next, we describe schemes ΠAS−EH
SPCE ,ΠAS−PC

SPCE (Protocol 5) that
satisfy authenticated set security. In order to achieve this notion, we will relax Gen to be an interactive
protocol between the server and Auth, with the following syntax.
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ΠBasic−PC
SPCE [U,G, =, n]

Parameters: same as ΠBasic−EH
SPCE , except that the message space is the set of group elements

in G.
Setup: same as ΠBasic−EH

SPCE .
Gen(1_, �): same as ΠBasic−EH

SPCE , except that ℎ0, ℎ1,) are included in sk.
Enc(pk, G,<):

• Parse pk as (ℎ0, ℎ1, �, )̃ ) and abort if there are any duplicate entries in )̃ .

• For 1 ∈ {0, 1}, sample V1, W1 ← Z@ , and compute&1 B 6V1 ·� (G)W1 , (1 B �V1 ·)̃W1
ℎ1 (G) .

Output ct B (G,&0, (0 ·<,&1, (1 ·<) .

Dec(sk, ct):

• Parse sk as (ℎ0, ℎ1,) , U) and ct as (G,&0, (
′
0, &1, (

′
1).

• If there exists exactly one 1 ∈ {0, 1} such that )ℎ8 (G) = G , then output < = ( ′
1
/&U

1
.

Otherwise, output ⊥.

Figure 3: Basic SPC encryption with perfect correctness

ΠBS−EH
SPCE [U,M, =, n],ΠBS−PC

SPCE [U,G, =, n]

Parameters: Same as ΠBasic−EH
SPCE ,ΠBasic−PC

SPCE . Note that the parameters _, =, and n determine a
maximum hash table size =′, where (=′, ·, ·) ← Setup(_, =, n).

Setup: Let (ProveDLog,VerifyDLog) be a ZK-NIAoK for RDLog and let (ProveD̃Log,VerifyD̃Log)
be a ZK-NIAoK for RDLog=′−=

=′
(Section 2.3). Both of these proof systems are in the random

oracle model and have no additional setup, so there is no additional setup required for
ΠBS−EH
SPCE ,ΠBS−PC

SPCE .

Gen(1_, �): Same as ΠBasic−EH
SPCE ,ΠBasic−PC

SPCE , except that proofs c� ← ProveDLog((6,�), U)
and c

)̃
← ProveD̃Log((6, )̃ ), {A8}8:)8=⊥) are computed and appended to the public key pk.

Enc(pk, G,<): Same as ΠBasic−EH
SPCE ,ΠBasic−PC

SPCE , except that the algorithm aborts if either
of c� or c

)̃
fails to verify, or the number of group elements in )̃ is greater than =′.

Dec(sk, ct): same as ΠBasic−EH
SPCE ,ΠBasic−PC

SPCE .

Figure 4: SPC encryption with bounded-set security

• Gen〈Server,Auth(�)〉(1_) → (pk, sk): the parameter generation protocol takes place between a
server and Auth with input a set � ⊆ U, and outputs to the server a public key pk and a secret key
sk.

Observe that the correctness properties of ΠBasic−EH
SPCE ,ΠBasic−PC

SPCE are preserved by the transformation, due
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ΠAS−EH
SPCE [U,M, =, n],ΠAS−PC

SPCE [U,G, =, n]

Parameters: same as ΠBasic−EH
SPCE ,ΠBasic−PC

SPCE .

Setup: let (Sig.Gen, Sig.Sign, Sign.Verify) be a EUF-CMA secure signature scheme
(Section 2.1). Before the protocol begins, Auth will sample (vkAuth, skAuth) ← Sig.Gen(1_)
and broadcast vkAuth to all parties. Also, let (ProveDLog,VerifyDLog) be a ZK-NIAoK for
RDLog and (ProveDH,VerifyDH) be a ZK-NIAoK for RDH (Section 2.3). Both of these
proof systems are in the random oracle model, so require no additional setup beyond
ΠBasic−EH
SPCE ,ΠBasic−PC

SPCE .

Gen〈Server,Auth(�)〉(1_):

• Auth sends � to Server.

• Server �rst runs the Gen algorithm of ΠBasic−EH
SPCE ,ΠBasic−PC

SPCE on input (1_, �) to obtain
output (ℎ0, ℎ1, �, )̃ ), U , along with table ) and randomness {A8}8:)8=⊥. Next, compute
c� ← ProveDLog((6,�), U). Finally, for each 8 ∈ [=′], where =′ is the size of ),)̃ :

– If )8 = ⊥, compute c8 ← ProveDLog((6, )̃8), A8).
– If )8 ≠ ⊥, compute c8 ← ProveDH((6,�, � ()8), )̃8), U).

Send (�,) , )̃ , c�, {c8}8∈[=′]) to Auth.

• Auth runs VerifyDLog((6,�), c�) and for each 8 ∈ [=′]: if )8 = ⊥,
runs VerifyDLog((6, )̃8), c8) and if )8 ≠ ⊥, check that )8 ∈ � and runs
VerifyDH((6,�, � ()8), )̃8), c8). If all checks pass, compute f ← Sig.Sign(sk, (�,)̃ )),
and return f .

• Server outputs pk B (ℎ0, ℎ1, �, )̃ , f) and sk B U .

Enc(pk, G,<): same as ΠBasic−EH
SPCE ,ΠBasic−PC

SPCE , except that it �rst runs
Sig.Verify(vkAuth, (�,)̃ ), f)a and aborts if the signature fails to verify. Dec(sk, ct):
same as ΠBasic−EH

SPCE ,ΠBasic−PC
SPCE .

aNote that this veri�cation only needs to be done once per user and not every time Enc is run, since the
public key does not change.

Figure 5: SPC encryption with authenticated-set security

to the completeness of the ZK-NIAoKs and correctness of Sig, and the security against outsiders properties
are also preserved, due to the zero-knowledge of the ZK-NIAoKs.

�eorem 3 (Proof in Appendix A). ΠAS−EH
SPCE [U,M, =, n] securely emulates (De�nition 2) F P[AS-EH]SPCE in the

presence of a malicious adversary corrupting either the server, the client, or Auth, and ΠAS−PC
SPCE [U,G, =, n]

securely emulates F P[AS]SPCE in the presence of a malicious adversary corrupting either the server, the client, or
Auth.
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3.4 SPC encryption with a succinct public-key

SPC encryption from laconic labeled PSI. Alamati et al. [2] construct laconic private set intersection
which allows detection of encrypted messages belonging to a set of illegal images. We believe their ap-
proach can be extended to construct succinct public-key, succinct encryption, non-succinct decryption,
element-hiding SPC encryption. Furthermore, their approach could also be tweaked to obtain succinct
public-key, succinct encryption, succinct decryption, non-element-hiding SPC encryption. We do not ex-
plore this direction as the approaches are not concretely e�cient and unsuitable for real-world deployment.

Optimal SPC encryption implies DEPIR. Recall that our constructions of SPC encryption satisfy suc-
cinct encryption and succinct decryption, but have a non-succinct public-key. If in addition, we demand a
succinct public key (while maintaining the element-hiding property), the resulting SPC encryption scheme
can used to realize doubly-e�cient private information retrieval with preprocessing (Section 2.6). Given a
database � ∈ {0, 1}= , de�ne �̃ B {� [8] | |8}8∈[=] .

• PIR.Gen on input � executes (pk, sk) ← SPC.Gen(1_, �̃) and outputs :2 = pk and :B = sk.

• PIR.�ery samples a random bit st = 1 as the local state and outputs @ = SPC.Enc(pk, 8 | |1, 0M).

• PIR.Resp computes SPC.Dec(sk, @) and outputs 0 = 0 if it obtains 0M and otherwise 0 = 1 if it
obtains ⊥.

• PIR.Decode outputs 1 ⊕ 0.

To see that this scheme is secure against semi-honest servers, note that the view of the server consists
of SPC ciphertexts, which only reveal whether or not the corresponding item exists in the database. Fur-
thermore, the query is prepared by choosing a random bit 1 as the item, which means that the output of
SPC.Dec is uniformly random and independent of the row being queried. �us the server does not learn
any information about the client’s query.

4 SPC Group Signatures

In this section, we de�ne and construct SPC group signatures. We present formal de�nition of SPC group
signatures in Section 4.1, and constructions in Section 4.2 and Section 4.3.

4.1 De�nitions

A set pre-constrained group signature (SPCGS) scheme ΠSPCGS [M,P, =, n] consists of algorithms Gen,
Sign,Verify,Open, along with an interactive protocol KeyGen. We refer to the party that runs Gen as the
groupmanager GM, and the KeyGen protocol is run by GM and a client C. It is parameterized by a message
spaceM, an identity (or public key) space P, a set size =, and a correctness parameter n .

• Gen(1_, �) → (mpk,msk). �e parameter generation algorithm takes as input a security parameter
1_ and a set � ⊆ M of size at most =, and outputs a master public key mpk and a master secret key
msk.

• KeyGen〈GM(msk),C〉 → (pk, sk). �e KeyGen protocol is run by the group manager GM with
input msk and a client C. It delivers an identity pk ∈ P to both GM and C, and an identity signing
key sk to C.

• Sign(mpk, sk,<) → f . �e signing algorithm takes as input the master public key mpk, an identity
signing key sk, and a message< ∈ M, and outputs a signature f .

23



• Verify(mpk,<, f) → {>,⊥}. �e veri�cation algorithm takes as input the master public key mpk, a
message< ∈ M, and a signature f , and outputs either > or ⊥, indicating accept or reject.

• Open(msk, f) → {pk,⊥}. �e opening algorithm takes as input the master secret key msk and a
signature f , and outputs either an identity pk ∈ P or ⊥.

We imagine using an SPC group signature scheme for encrypted messaging as follows. We assume that
there is already a standard end-to-end encrypted messaging system in place, and the server additionally
publishes mpk for the SPCGS scheme. Each client runs a KeyGen protocol with the server in order to
obtain their identity pk and their secret key sk. �en, whenever they want to send a message <, they
additionally compute a signature f on <, and send the message (<,f) under the end-to-end encryption.
Any message received that does not have a properly verifying signature is immediately discarded by the
client algorithm. Finally, if an honest client receives a pair (<,f) for some illegal content <, they can
report this to the server, who can run the Open algorithm in order to determine which identity produced
the signature f .

We now port the de�nitions of bounded-set and authenticated-set security against malicious servers
(as previously de�ned for SPC encryption) to the group signature se�ing. Further, we follow standard
de�nitions of traceability, anonymity, and unframeability for group signatures.

De�nition 7 (Correctness). An SPC group signature scheme (Gen,KeyGen, Sign,Verify,Open) is correct
if for any _ ∈ N, � ⊆ M, and message< ∈ M, it holds with probability 1 − negl(_) over (mpk,msk) ←
Gen(1_, �), (pk, sk) ← KeyGen〈GM(msk),C〉, and f ← Sign(mpk, sk,<) that Verify(mpk,<, f) = 1.

Security. We formulate several notions of security for an SPC group signature scheme. First, we de�ne
a notion of traceability, which ensures that any signature on a message < ∈ � that is accepted by the
veri�cation algorithm will leak the identity of the signer to the master secret key holder.

De�nition 8 (Traceability). An SPC group signature scheme (Gen,KeyGen, Sign,Verify,Open) is n-traceable
for some n ≥ 0 if for any PPT adversary A, _ ∈ N, and � ⊆ M, it holds that with probability 1 − negl(_)
over (mpk,msk) ← Gen(1_, �), there exists a � ′ ⊆ � with |� ′ | ≥ (1 − n) |� |, such that

Pr

IsValid[mpk] (<,f, pk) = 1
∧ (< ∈ � ′)
∧ (pk ∉ IAdv)

: (<,f) ← A
OAKG,OOpen,OHKG,OSign

pk← Open(msk, f)

 = negl(_),

where the oracles OAKG,OOpen,OHKG,OSign, set IAdv and predicate IsValid[mpk] are de�ned as follows.

• OAKG (KeyGen initiated by the Adversary) hasmsk hard-coded and, when initialized, acts as the group
manager in the KeyGen protocol. De�ne IAdv to be the set of identities obtained byGM(msk) as a result
of the interactions between A and OAKG.

• OOpen has msk hard-coded, and on input a signature f , outputs Open(msk, f).

• OHKG (KeyGen initiated by anHonest party) hasmsk hard-coded and, when queried, runsKeyGen〈GM(msk),C〉 →
(pk, sk), and returns pk (and not sk). De�ne IHon to be the set of pk’s output by OHKG.

• OSign takes a message< and an identity pk as input. If pk ∉ IHon, return nothing, and otherwise let
sk be the secret key associated with pk and return Sign(mpk, sk,<). De�ne J to be the set of (<, pk)
queried to OSign.

• IsValid[mpk] (<,f, pk) outputs (Verify(mpk,<, f) = 1) ∧ ((<, pk) ∉ J). �at is, it accepts if the
adversary produced a valid message signature pair that was not a query to its signing oracle.
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Next, we de�ne the notion of unframeability, which ensures that an adversary cannot produce a veri-
fying signature with respect to some identity pk for which they do not hold the corresponding sk, even if
they know the master secret key.

De�nition 9 (Unframeability). An SPC group signature scheme (Gen,KeyGen, Sign,Verify,Open) satis�es
unframeability if for any PPT adversary A, _ ∈ N, and � ⊆ M,

Pr

Verify(mpk,<, f) = 1
∧ ((<, pk) ∉ J)
∧ (pk ∈ IHon)

:
(mpk,msk) ← Gen(1_, �)
(<,f) ← AOHKG,OSign (msk)

pk← Open(msk, f)

 = negl(_),

where the oracles OHKG,OSign and sets IHon,J are de�ned as in De�nition 8.

Now, we consider the notion of anonymity, which protects the identity of any signer who produces a
signature on a message< ∉ � , even against the group manager. Here, we will follow our simulation-based
notion of security for SPC encryption. �e ideal functionality F Panon takes place between a group manager
GM who runs Gen, interacts in KeyGen, and runs Open, a client, who interacts in KeyGen and runs Sign,
and an authority Auth, whose role will be described below. In full generality, the group manager’s input is
a function � , but in our applications, we will always parse � as a description of a database � of messages.
�e client’s input is a sequence of identities and messages (pk1,<1), . . . , (pk: ,<: ). �e client should learn
nothing about � , Auth should learn nothing about the identities {pk8}8∈[: ] , and the group manager should
learn nothing about the identities {pk8}8:<8∉� , except perhaps how many “repeats” there are (if we don’t
require the property of unlinkability).

To make security against the server meaningful, we must place some restriction on � . We do this (in a
modular way) by parameterizing the functionality with a predicate P. �is predicate may depend on some
public parameters pp (known to both client and group manager) and some secret parameters sp (known
only to the group manager). It is the job of Auth to set up these parameters.

Below, we describe the instantiations of P that we will consider in this work: one will de�ne what we
call bounded-set security and the other will de�ne what we call authenticated-set security.

Bounded-set security. Here, we de�ne two predicates P[BS] and P[BS-link], where link stands for link-
ability. For each, the public parameters pp are parsed as an integer =, there are no secret parameters sp,
and � is parsed as a description of a database � ⊆ M. �e predicate then outputs 1 if and only if |� | ≤ =.
For P[BS],

�GM({pk8 ,<8}8∈[: ]) = {pk8}8:<8 ∈� , {<8}8∈[: ], �Auth({pk8 ,<8}8∈[: ]) = {<8}8∈[: ],

and for P[BS-link],

�GM({pk8 ,<8}8∈[: ]) = {pk8}8:<8 ∈� ,Aux({pk8}8:<8∉� ), {<8}8∈[: ],

where for any multiset ( , Aux(() consists of the number of distinct elements in ( along with how many
times each appears, and

�Auth({pk8 ,<8}8∈[: ]) = {<8}8∈[: ] .

Authenticated-set security. Here, we de�ne two predicates P[AS] and P[AS-EH]. For each, the public
parameters pp are parsed as an integer =, the secret parameters are parsed as a database �∗ ⊆ M of size
=, and � is parsed as a database � ⊆ M. �e predicate then outputs 1 if and only if � ⊆ �∗. For P[AS],

�GM({pk8 ,<8}8∈[: ]) = {pk8}8:<8 ∈� , {<8}8∈[: ], �Auth({pk8 ,<8}8∈[: ]) = {<8}8∈[: ],
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F Panon

Public information.

• Parties: Group manager and client.

• Parameters: message spaceM, identity space I

�e functionality.

• Obtain input (pp, sp) from Auth. Deliver pp to both group manager and client, and
sp to group manager.

• Obtain input � = (�GM, �Auth) from group manager and deliver � to Auth. Abort and
deliver ⊥ to all parties if P(pp, sp, � ) = 0.

• Obtain input (pk1,<1), . . . , (pk: ,<: ) from client, where each pk8 ∈ I and each<8 ∈
M.

• Deliver �GM({pk8 ,<8}8∈[: ]) to group manager and �Auth({pk8 ,<8}8∈[: ]) to Auth.

Figure 6: Ideal functionality for SPC group signatures with anonymity. P is a predicate that takes as input
some public parameters pp, and a pair of functions � = (�( , �Auth), and outputs a bit.

and for P[AS-link],

�GM({pk8 ,<8}8∈[: ]) = {pk8}8:<8 ∈� ,Aux({pk8}8:<8∉� ), {<8}8∈[: ],

where for any multiset ( , Aux(() consists of the number of distinct elements in ( along with how many
times each appears, and

�Auth({pk8 ,<8}8∈[: ]) = {<8}8∈[: ] .

Finally, we consider “client-client” anonymity and unlinkability, which considers the security of signa-
tures against other clients. Here, we can hope for stronger security properties, since clients do not hold the
master secret key and thus might not be able to de-anonymize signatures even on messages< ∈ � . �us,
we give separate (game-based) de�nitions of anonymity and unlinkability against adversarial clients.

De�nition 10 (Anonymity). An SPC group signature scheme (Gen,KeyGen, Sign,Verify,Open) satis�es
client-client anonymity if for any PPT adversary A, _ ∈ N, � ⊆ M, and < ∈ M, it holds that with
probability 1 − negl(_) over (mpk,msk) ← Gen(1_, �), (pk0, sk0) ← KeyGen〈GM(msk),C〉, (pk1, sk1) ←
KeyGen〈GM(msk),C〉,

Pr
[
AOAKG,OHKG,OSign

(
mpk, pk0,
pk1, f

)
= 1 : 1 ← {0, 1}

f ← Sign(mpk, sk1,<)

]
≤ 1

2 + negl(_),

where the oracles OAKG,OHKG, and OSign are de�ned as in De�nition 8.

De�nition 11 (Unlinkability). An SPC group signature scheme (Gen,KeyGen, Sign,Verify,Open) satis�es
client-client unlinkability if for any PPT adversaryA, _ ∈ N,� ⊆ M, andmessages<0,<1 ∈ M, it holds that
with probability 1−negl(_) over (mpk,msk) ← Gen(1_, �), (pk0, sk0) ← KeyGen〈GM(msk),C〉, (pk1, sk1) ←
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KeyGen〈GM(msk),C〉,

Pr
 AOAKG,OHKG,OSign

(
mpk, pk0,
pk1, f0, f1

)
= 1 :

f0 ← Sign(mpk, sk0,<0)
1 ← {0, 1}

f1 ← Sign(mpk, sk1,<1)

 ≤
1
2 + negl(_),

where the oracles OAKG,OHKG, and OSign are de�ned as in De�nition 8.

4.2 Generic construction

We show how to construct an SPC group signature scheme generically from an SPC encryption scheme
that satis�es certain properties, plus a few standard cryptographic tools. Our construction is given in the
random oracle model, though we note that if we were willing to assume an additional simulation-soundness
property of the ZK-NIAoK, then we would not require a random oracle. It is presented in Protocol 7.

Ingredients:

• An SPC encryption schemeΠSPCE = (SPCE.Gen, SPCE.Enc, SPCE.Dec) that satis�es perfect n-correctness,
security against outsiders, and either bounded-set security or authenticated-set security (Section 3).

• A one-way relation (R,R .Gen,R .Sample) (Section 2.1). Let P denote the set of instances.

• An EUF-CMA secure signature scheme Sig = (Sig.Gen, Sig.Sign, Sig.Verify) with message space P
(Section 2.1).

• A ZK-NIAoK scheme ZK = (ZK.Setup,ZK.Prove,ZK.Verify) in the common random string model
for general NP relations (Section 2.3).

• A random oracle � .

�eorem 4 (Proof in Appendix A). ΠSPCGS [M,I, =, n] satis�es correctness, n-traceability, unframeability,
client-client anonymity, and client-client unlinkability. Moreover, if ΠSPCE satis�es bounded-set security, then
ΠSPCGS securely emulates F P[BS]anon , and if ΠSPCE satis�es authenticated-set security, then ΠSPCGS securely
emulates F P[AS]anon .

4.3 An e�cient instantiation

We now describe a concretely e�cient instantiation of the above generic template, based on constructions
of SPC encryption schemes from Section 3.

Note that we will need a concretely e�cient instantiation of a zero-knowledge argument system that
can be used to prove statements that involve verifying signatures and the correctness of SPC encryption.
Our goal here is to avoid non-black-box use of the cryptography needed for signatures and SPC encryption.
�us, we use bilinear maps, and make use of the Groth-Sahai proof system [24], which can e�ciently prove
statements that involve certain operations in pairing groups.10 We combine the GS proof system with
the use of structure-preserving signatures [1], which support messages, veri�cation keys, and signatures
that consist solely of group elements. Details about the resulting scheme follow, and we also provide
implementations and benchmarking, which we cover in Section 5.

10We remark that, although GS proofs only satisfy partial knowledge extraction (see Section 2.5), this is su�cient for our
construction. Indeed, the signatures extracted in order to show n-traceability and unframeability only consist of group elements,
and the one-way relation witness extracted during the proof of unframeability is also a group element.
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ΠSPCGS [M,P, =, n]

Parameters: message spaceM, identity space P, set size =, correctness parameter n , and
security parameter _.

Setup: pp← R .Gen(1_) and a random oracle � .

Gen(1_, �): run (pkSPCE, skSPCE) ← SPCE.Gen(1_, �)a and (vkSig, skSig) ← Sig.Gen(1_).
Set mpk B (pkSPCE, vkSig) and msk B (skSPCE, skSig).

KeyGen〈GM(msk),C〉: the client C samples random coins B , computes (pk,F) B
R .Sample(pp; B), and sends pk to GM. GM parses msk as (skSPCE, skSig) and then com-
putes and sends fid ← Sig.Sign(skSig, pk). C sets sk B (B, fid).

Sign(mpk, sk,<): parse mpk as (pkSPCE, vkSig) and sk as (B, fid), com-
pute (pk,F) B R .Sample(pp; B), sample random coins A , and compute
ct B SPCE.Enc(pkSPCE,<, pk; A ). Let crs B � (<, ct), and compute c ←
ZK.Prove(crs, (pp, pkSPCE, vkSig,<, ct), (pk, B,F, fid, A )) for the relation that checks
that

• ct = SPCE.Enc(pkSPCE,<, pk; A ),

• (pk,F) = R .Sample(pp; B),

• and Sig.Verify(vkSig, pk, fid).

Output f B (ct, crs, c).

Verify(mpk,<, f) : parse mpk as (pkSPCE, vkSig) and f as (ct, crs, c), check that
� (<, ct) = crs and if so output ZK.Verify(crs, (pp, pkSPCE, vkSig,<, ct), c).

Open(msk, f) : parse msk as (skSPCE, skSig) and f as (ct, crs, c), and output
SPCE.Dec(skSPCE, ct).

aIf the SPC encryption scheme satis�es authenticated-set security, this will be an interactive procedure
between GM and Auth.

Figure 7: Generic construction of SPC group signatures.

Formally, our construction will make use of a bilinear map G = (?,G1,G2,T, 4, 61, 62) where the SXDH
assumption is assumed to hold, as described in Section 2.5. �e group signature schemeΠSPCGS [M,G1, =, n]
will have an arbitrary message spaceM and identities consisting of group elements in G1. �e four ingre-
dients are instantiated as follows.

• SPC encryption: Either the scheme ΠBS−PC
SPCE [M,G1, =, n] or ΠAS−PC

SPCE [M,G1, =, n] from Section 3.

• One-way relation: �e Di�e-Hellman relation in G1, where R is the set of tuples (6,6U , 6V , 6U ·V ) ∈
G4

1. R .Gen outputs (6,6U ) = (6, ℎ), and R .Sample chooses randomness V and outputs (6V , ℎV ). �is
relation is one-way from the hardness of the computational Di�e-Hellman problem in G1.
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• Signature scheme: �e structure-preserving signature scheme (Section 2.5) from [1].

• ZK-NIAoK: �e Groth-Sahai proof system (Section 2.5).

�e full details of our concretely e�cient SPCGS scheme can be found in Protocol 8. We can use either
of the two SPC encryption schemes – ΠBS−PC

SPCE [M,G1, =, n] or ΠAS−PC
SPCE [M,G1, =, n]. For ease of exposition,

we suppress mention of the generation and veri�cation of the proofs in pkSPCE that are used to obtain
bounded-set and authenticated-set security.

In order to write out all of the constraints that will be proved, we will need to describe details of the
structure-preserving signature. For a formal description see [1]. �e public parameters are three group
elements (�,  ,) ) ∈ G3

1 and the veri�cation key is a group element . ∈ G2. A valid signature is �ve group
elements (f�, f� , f', f� , f( ) ∈ G3

1 × G2
2 that satisfy the following equations,

• 4 (f�, . · f� ) = 4 ( ·",62) · (), f( )

• 4 (f� , 62) = 4 (�, f� )

• 4 (f', 62) = 4 (61, f( ).

Importantly, observe that all three veri�cation equations can be cast as pairing product equations (see
Section 2.5).

�e group signature consists of two parts – an SPCE ciphertext and a GS proof showing that the client
encrypted its identity. Since a malicious client can encrypt arbitrary identities, we also require a proof that

1. �e client knows a signature on its identity pk that veri�es under the server’s veri�cation key.

2. �e client knows sk and hpk such that pk = 6sk and hpk = ℎsk, where ℎ is a random public element
in G1.

Intuitively, the former prevents a malicious client from using a public key that has not been registered
with the server. �e la�er prevents the server from forging messages on behalf of the client, provided
the computational Di�e-Hellman assumption holds. �e group signatures are veri�ed by verifying the
a�ached GS proofs and the signatures can be opened by the GM using the decryption algorithm of SPCE.

5 Implementation

We evaluate the performance of our SPC group signature scheme using a prototype implementation in
C++ which can be found at h�ps://github.com/guruvamsi-policharla/pc-sigs. Internally, our construction
implements an SPC encryption scheme allowing us to also infer the performance of SPC encryption. Our
�nite �eld and group arithmetic is implemented using the mcl library for pairing-based cryptography
[27]. We use the BN curve ? (I) = 36I4 + 36I3 + 24I2 + 6I + 1 over 3 di�erent primes to highlight the
trade-o� between performance and the number of bits of security. For details on the BN curve, see [7].
�e parameters used can be found in the README �le of the mcl github repository [27], and [33] contains
a discussion about the security levels o�ered by di�erent parameter values.

Benchmarks. Our experiments were performed using single threaded execution on a machine with a
1.8 GHz Intel Core i7 Processor and 8 GB of RAM. As alluded to earlier, we focus on benchmarking the
SPCGS scheme which internally uses an SPCE scheme along with Groth-Sahai proofs to handle malicious
senders. For a comparison of the SPCGS scheme across di�erent security parameters, see Table 1. We
emphasize that in our SPCGS scheme the Sign, Verify and Open algorithms can be computed in constant
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ΠSPCGS [M,G1, =, n]

Public information: Description of bilinear groups, hash functions � : U → G1 \ {0} and
� : G1 → K , crs← GS.Setup for GS proofs, and ℎ ← G1.
Gen:

• GM runs (pkSPCE, skSPCE) ← SPCE.Gen and publishes pkSPCE = (ℎ0, ℎ1, �, )̃ ).

• GM runs (vkB = ., skB) ← Sig.Gen and publishes vkB .

KeyGen:

• Client obtains a signature from GM on its identity pk ∈ G1 as (f�, f� , f', f( , f( ) ←
Sig.SignskB (pk).

Sign:

• Encrypt identity with respect to a message< ∈ M as ct B (<,&0, (0 ·pk, &1, (1 ·pk) =
SPCE.Enc(pkSPCE,<, pk).

• Compute a ZK-NIAoK for the following constraints:

– {pk, V0, W0 : ((0 · pk) = pk · �V0 · )̃W0
ℎ0 (<) }.

– {pk, V1, W1 : ((1 · pk) = pk · �V1 · )̃W1
ℎ1 (<) }.

– {pk, V0, W0 : &0 = 6
V0
1 · � (<)W0}.

– {pk, V1, W1 : &1 = 6
V1
1 · � (<)W1}.

– {pk, hpk, sk : pk = 6sk1 ∧ hpk = ℎsk}.
– {f� , f� : 4 (f� , 62) = 4 (�, f� )}.
– {f�, f� , f( , pk :
4 (f�, . · f� ) = 4 ( · pk, 62) · 4 (), f( )}.

– {f', f( : 4 (f', 62) = 4 (61, f( )}.

• Output the signature (ct, c), where c denotes the GS proofs.

Verify:

• If GS.Verify(c, crs) passes, accept.

• Else output ⊥.

Open:

• Output SPCE.Dec(skSPCE, ct).

Figure 8: E�cient instantiation of SPC group signatures.

time, independent of database size. �is is re�ected in the benchmarks which remain invariant to changes
in the database size.
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Fig. 9 breaks down the time taken by various components of the SPCGS scheme on the BN254 curve.
Encrypt (∼ 200`B), and Open (∼ 80`B), correspond to the Encryption, and Decryption times respectively
of our SPCE scheme over the BN254 curve. As expected, these are very small in comparison to the overall
time, con�rming that a majority of time is spent in the creation (Create in Fig. 9) and veri�cation (Verify
in Fig. 9) of Groth-Sahai proofs.

Integration overhead. Any end-to-end encrypted messaging system can incorporate traceability of il-
legal content by having its users a�ach SPC group signatures on images they originate. All honest users
that receive images check if the signature is valid using SPCGS.Verify. If the content is harmful, then any
user who receives the message, even if forwarded, can report the image to the server who will then trace
the user by executing SPCGS.Open. A report consists of the SPC group signature along with the image.
All clients using the messaging service store the master public key locally on their device.

�e algorithms SPCGS.Sign and SPCGS.Verify are called every time an image is sent and both of these
can be executed in tens of milliseconds. In practice, these operations will likely be performed on weaker
mobile devices. However, we note that both of these algorithms can be trivially parallelized. Since the
proof construction and veri�cation consists of independent equations for each constraint, with a total of 9
constraints, we expect close to an order of magnitude improvement in Sign and Verify on latest consumer-
grade hardware supporting multi-threading. Even a�er allowing for a 5x slowdown on mobile platforms,
our constructions remain practical as images are sent sporadically by the average user and the overhead
introduced is imperceptible in such cases.

Note that, in the context of secure messaging, message delivery typically takes a few hundred millisec-
onds on cellular networks11. �erefore, the additional latency introduced in our system is ≈ 15% (when
using BN254). In terms of communication, our protocols incur an additional overhead of ≈ 3.5 kilobytes
(< 1%) for a typical image ≈ 400 KB when using BN254. If the database has 10 million entries when using
BN254, the public key is ≈ 320 MB in size but only has to be downloaded once by clients at the beginning
of the protocol. Although, the public-key size is large, it is identical to that of the PSI system proposed by
Apple [9] and should be viewed through the lens of system updates.

Re-using proofs. One can also consider a weaker anonymity notion that allows any party looking at two
SPC group signatures to identify whether they were sent by the same client (Protocol 6). In this se�ing,
clients can reuse some commitments and proofs thereby achieving a 2-5x reduction in prover and veri�er
times. More speci�cally, only the �rst 4 constraints in Protocol 8 change every time a new message is sent.
As a result, the proofs prepared for the remaining constraints can be reused. �e anonymous SPC group
signature uses 34 elements each of G1 and G2, whereas the anonymous linkable SPC group signature only
uses 8 elements each of G1 and G2.

Curve Scheme Sign (<B) Verify (<B) Open (`B)
Anon 9.0 ± 0.3 35.5 ± 0.3 81 ± 2BN254 Anon-Link 1.69 ± 0.05 8.9 ± 0.1 46 ± 6
Anon 21.7 ± 0.2 94.2 ± 0.4 194 ± 3BN381 Anon-Link 4.0 ± 0.1 24.3 ± 0.1 104 ± 4
Anon 71.1 ± 0.5 300.2 ± 5.2 622 ± 18BN512 Anon-Link 13.1 ± 0.2 75.6 ± 0.3 323 ± 10

Table 1: Benchmarks of SPCGS algorithms implemented on di�erent curves.

11We use the same latency as related work [32] where they assume a network latency of 80ms on an 8 Mbps connection. For
reference, a typical image ≈ 400 KB in size takes 200-300ms to be delivered.
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A Proofs

�eorem 1. ΠBasic−EH
SPCE [U,M, =, n] satis�es n-correctness and security against outsiders with element-

hiding, andΠBasic−PC
SPCE [U,G, =, n] satis�es perfect n-correctness and security against outsiders without element-

hiding.

Proof. First, for correctness, note that the elements of )̃ will be distinct with overwhelming probability, by
the second correctness property of cuckoo hashing (Section 2.4), and the randomness of the oracle� . Now,
n-correctness ofΠBasic−EH

SPCE [U,M, =, n] follows from the correctness of cuckoo hashing (Section 2.4), the two
properties of the Di�e-Hellman self reduction described in Section 2.1, and the random key robustness
of (RobEnc,RobDec), while perfect n-correctness of ΠBasic−PC

SPCE [U,G, =, n] follows from the correctness of
cuckoo hashing (Section 2.4) and the �rst property of the Di�e-Hellman self reduction described in Sec-
tion 2.1.

Next, we show the security of ΠBasic−EH
SPCE [U,M, =, n] against outsiders with element-hiding. �e se-

curity of ΠBasic−PC
SPCE [U,G, =, n] against outsiders without element-hiding follows from essentially the same

argument. Fix any (G0,<0), (G1,<1), and consider the following distributions.

• D0: the distribution over (pk, ct) = (ℎ0, ℎ1, �, )̃ ,&0, ct0, &1, ct1) where ct is an encryption of<0 with
respect to item G0.

• D1: same as D0 except that if)8 = G0 for some 8 , then )̃8 = � (G0)U is replaced with a uniformly ran-
dom group element. D0 ≈2 D1 follows from a reduction to the DDH assumption. In the reduction,
all � (G) for G ≠ G0 are set to a random group element 6A , where A is sampled by the reduction. �is
enables the reduction to simulate the rest of pk without knowing U .

35

https://www.justice.gov/opa/pr/attorney-general-barr-signs-letter-facebook-us-uk-and-australian-leaders-regarding-use-end
https://www.justice.gov/opa/pr/attorney-general-barr-signs-letter-facebook-us-uk-and-australian-leaders-regarding-use-end
https://www.justice.gov/opa/pr/international-statement-end-end-encryption-and-public-safety
https://www.judiciary.senate.gov/press/rep/releases/graham-blumenthal-hawley-feinstein-introduce-earn-it-act-to-encourage-tech-industry-to-take-online-child-sexual-exploitation-seriously
https://www.judiciary.senate.gov/press/rep/releases/graham-blumenthal-hawley-feinstein-introduce-earn-it-act-to-encourage-tech-industry-to-take-online-child-sexual-exploitation-seriously


• D2: same as D1 except that if )8 = G1 for some 8 , then )̃8 = � (G1)U is replaced with a uniformly
random group element. D1 ≈2 D2 follows from DDH via the same reduction as above.

• D3: same asD2 except that ct0, ct1 are sampled as encryptions of<1 with respect to itemG1. D2 ≈ D3
follows from property 2 of the Di�e-Hellman self reduction described in Section 2.1, along with
semantic security of (RobEnc,RobDec).

• D4: same as D3 except that if )8 = G0 for some 8 , then )̃8 = � (G0)U . D3 ≈ D4 follows from DDH via
the same reduction as above.

• D5: same as D4 except that if )8 = G1 for some 8 , then )̃8 = � (G1)U . D4 ≈ D5 follows from DDH via
the same reduction as above. D5 is (pk, ct) where ct is an encryption of<1 with respect to item G1,
completing the proof.

�eorem 2. ΠBS−EH
SPCE [U,M, =, n] securely emulates (De�nition 2) F P[BS-EH]SPCE with pp = = in the presence of a

malicious adversary corrupting either the server, the client, or Auth, and ΠBS−PC
SPCE [U,G, =, n] securely emulates

F P[BS]SPCE with pp = = in the presence of a malicious adversary corrupting either the server, the client, or Auth.

Proof. Below, we show that ΠBS−EH
SPCE [U,M, =, n] securely emulates F BS-EH

SPCE with a set size bound of pp = =.
�e corresponding claim for ΠBS−PC

SPCE [U,G, =, n] follows from a similar argument.

Security against malicious server. First, we describe the simulator for a malicious server S∗.

• ObserveS∗’s queries to the random oracle� , and lazily sample the responses by choosing uniformly
random group elements. Record the set of queries as (~1, � (~1) = 6B1, B1), . . . , (~@, � (~& ) = 6B@ , B@),
where B1, . . . , B@ are uniformly random exponents chosen by the simulator.

• Obtain pk = (ℎ0, ℎ1, �, )̃ , c�, c)̃ ) from S∗. Abort if either of c� or c
)̃

fails to verify, if the number of
group elements in )̃ is greater than =′, or if )̃ contains any duplicate group elements. Next, initialize
� as the empty set. For each tuple (~ 9 , 6B 9 , B 9 ), check if either )̃ℎ0 (~ 9 ) = �

B 9 or )̃ℎ1 (~ 9 ) = �
B 9 . If so, add

~ 9 to � . If at the end of this process |� | > =, then abort.

• �ery � to the ideal functionality and receive :, (<1, . . . ,<:′), for some : ′ ≤ : .

• We will de�ne two ways of generating a pair of group elements (&, (). (&, () ← R means that both
& and ( are sampled as uniformly random and independent group elements, while (&, () ← DH
means that& and ( are sampled uniformly at random conditioned on (6,�,&, () being a a DH tuple.
�at is, & = 6V and ( = �V for a uniformly sampled exponent V .

• For each 8 ∈ [: ′], sample 18 ← {0, 1}, (&8,1, (8,1) ← DH , (&8,1−1, (8,1−1) ← R, and then ct8,1 ←
RobEnc(� ((8,1),<8), ct8,1−1 ← RobEnc(� ((8,1−1), 0), and set ct8 B (&8,0, ct8,0, &8,1, ct8,1).

• For each 8 ∈ [: ′ + 1, . . . , :], sample (&8,0, (8,0), (&8,1, (8,1) ← R, ct8,0 ← RobEnc(� ((8,0), 0), ct8,1 ←
RobEnc(� ((8,1), 0), and set ct8 B (&8,0, ct8,0, &8,1, ct8,1).

• Deliver {ct8}8∈[: ] to S∗, and output whatever S∗ outputs.

Now, we argue directly that S∗’s simulated view is computationally indistinguishable from its real
view. We will argue this in two steps.
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• Claim 1: the probability ?abort that the extracted � is such that |� | > = (which would cause the
simulator to abort) is negligible.

• Claim 2: the simulated ciphertexts are indistinguishable from the real ciphertexts conditioned on
the simulator not aborting.

Proof of Claim 1: Assume that ?abort is noticeable. Note that ?abort will still be noticeable when running
the extractors for the two ZK-NIAoKs. In this case, the extractor will obtain U such that � = 6U and an
A such that there exists indices 8, 9 such that )̃ = 6A = �B 9 = 6U ·B 9 , which implies that A · U−1 = B 9 mod @.
However, such an extractor (along with S∗) can be used to break the hardness of the discrete logarithm
problem, via a reduction that programs the challenge group element 6B 9 as an output of the random oracle
� .

Proof of Claim 2: Consider any item, message pair (G,<) encrypted by the client. Suppose �rst
that G ∈ � , where � is the input extracted by the simulator. In this case, one of (6,�, � (G), )̃ℎ0 (G) ) or
(6,�, � (G), )̃ℎ1 (G) ) is a DH tuple and the other is not, since ℎ0(G) ≠ ℎ1(G) and there are no duplicate en-
tries in )̃ (if Enc does not abort). �us, by the two properties of the Di�e-Hellman self-reduction given
in Section 2.1, and the semantic security of (RobEnc,RobDec), the simulator’s encryption described above
is computationally indistinguishable from the real encryption of (G,<). Next, suppose that G ∉ � . If
G was one of the queries obtained by the simulator prior to receiving pk, then we know that neither
of (6,�, � (G), )̃ℎ0 (G) ) or (6,�, � (G), )̃ℎ1 (G) ) is a DH tuple. Otherwise, � (G) is sampled a�er pk is �xed,
meaning that with overwhelming probability, neither of (6,�, � (G), )̃ℎ0 (G) ) or (6,�, � (G), )̃ℎ1 (G) ) is a DH
tuple. �us, by the second property of the Di�e-Hellman self-reduction, and the semantic security of
(RobEnc,RobDec), the simulator’s encryption described above is computationally indistinguishable from
the real encryption of (G,<).

Security against malicious client. �e simulator for a malicious client samples �,)̃ as =′ + 1 = (1 + n)= + 1
uniformly random group elements, and runs the ZK-NIAoK simulators to obtain simulated proofs c�, c�̃ .
To show that this is indistinguishable from the real pk produced from the set � , we �rst simulate the ZK-
NIAoK proofs. �en, for each G ∈ � , if G is inserted into ) as position ℎ1 (G), switch )̃ℎ1 (G) to a uniformly
random group element. Each of these switches is computationally indistinguishable by reduction to the
DDH assumption.

Security against a malicious Auth. �is follows immediately from the security against outsiders with element-
hiding (De�nition 6) of ΠBasic−EH

SPCE [U,M, =, n] and the zero-knowledge of the ZK-NIAoK.

�eorem 3. ΠAS−EH
SPCE [U,M, =, n] securely emulates (De�nition 2) F P[AS-EH]SPCE in the presence of a malicious

adversary corrupting either the server, the client, or Auth, and ΠAS−PC
SPCE [U,G, =, n] securely emulates F P[AS]SPCE

in the presence of a malicious adversary corrupting either the server, the client, or Auth.

Proof. Below, we show that ΠAS−EH
SPCE [U,M, =, n] securely emulates F AS-EH

SPCE . �e corresponding claim for
ΠAS−PC
SPCE [U,G, =, n] follows from a similar argument.

Security against malicious server. First, we describe the simulator for a malicious server S∗.

• Sample (vkAuth, skAuth) ← Sig.Gen(1_)

• Obtain input (pp, sp) = (=, �∗) from the ideal functionality.

• Run S∗ on input �∗ until it outputs a message (�,) , )̃ , c�, {c8}8∈[=′]).
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• Run the honest Auth algorithm and abort if Auth aborts. Otherwise, let f be the output of Auth.

• Run S∗ on input f until it outputs a public key (ℎ0, ℎ1, �, )̃ , f). Abort if there are any duplicate
entries in )̃ or if any f fails to verify. Let � be the set of elements G such that there exist (8, 1) such
that )8 = G and ℎ1 (G) = 8 , and query � to the ideal functionality. If � * �∗ the ideal functionality
will abort, and the experiment ends.

• Receive :, (<1, . . . ,<:′) for some : ′ ≤ : .

• For each 8 ∈ [: ′], sample 18 ← {0, 1}, (&8,1, (8,1) ← DH , (&8,1−1, (8,1−1) ← R, where R,DH are as
de�ned in the proof of �eorem 2, and then ct8,1 ← RobEnc(� ((8,1),<8), ct8,1−1 ← RobEnc(� ((8,1−1), 0),
and set ct8 B (&8,0, ct8,0, &8,1, ct8,1).

• For each 8 ∈ [: ′ + 1, . . . , :], sample (&8,0, (8,0), (&8,1, (8,1) ← R, ct8,0 ← RobEnc(� ((8,0), 0), ct8,1 ←
RobEnc(� ((8,1), 0), and set ct8 B (&8,0, ct8,0, &8,1, ct8,1).

• Deliver {ct8}8∈[: ] to S∗, and output whatever S∗ outputs.

Now, we argue directly that S∗’s simulated view is computationally indistinguishable from its real view.
First, we can condition on the event �same that the elements (�,)̃ ) in the public key that S∗ eventually
outputs are equal to those in S∗’s previous message to Auth. If the client does not abort, this event occurs
with overwhelming probability due to the EUF-CMA security of Sig.

Now, consider any item, message pair (G,<) encrypted by the client. Suppose �rst that G ∈ � . In this
case, one of (6,�, � (G), )̃ℎ0 (G) ) or (6,�, � (G), )̃ℎ1 (G) ) is a DH tuple and other is not. Indeed, we know that
one of the tuples is a DH tuple by the conditioning on �same and the soundness of the ZK-NIAoK proof
system for RDH, and the other is not since ℎ0(G) ≠ ℎ1(G) and there are no duplicate entries in )̃ . �us, by
the two properties of the Di�e-Hellman self-reduction given in Section 2.1, and the semantic security of
(RobEnc,RobDec), the simulator’s encryption described above is computationally indistinguishable from
the real encryption of (G,<).

Next, suppose thatG ∉ � . In this case, it holds with overwhelming probability that neither of (6,�, � (G), )̃ℎ0 (G) )
or (6,�, � (G), )̃ℎ1 (G) ) is a DH tuple. Indeed, if G = )8 for some 8 , where ) was the table included in S∗’s
message to Auth, then we know that neither is a DH tuple since ℎ0(G), ℎ1(G) ≠ 8 , and there are no du-
plicate entries in )̃ . Otherwise, say that G was not in the table ) but (6,�, � (G), )̃ℎ1 (G) ) is a DH tuple for
some 1 ∈ {0, 1}. In this case, by running the extractors for the two ZK-NIAoKs, we can extract U such
that � = 6U and A such that )̃ℎ1 (G) = 6A from S∗. As in the proof of �eorem 2, these can be used to
obtain the discrete logarithm of � (G), breaking the hardness of the discrete logarithm problem. �us, by
the second property of the Di�e-Hellman self-reduction, and the semantic security of (RobEnc,RobDec),
the simulator’s encryption described above is computationally indistinguishable from the real encryption
of (G,<).

Security against a malicious client. �is follows from the same argument as that given in the proof of �e-
orem 2.

Security against a malicious Auth. �is follows immediately from the security against outsiders with element-
hiding (De�nition 6) of ΠBasic−EH

SPCE [U,M, =, n] and the zero-knowledge of the ZK-NIAoK.

�eorem 4. ΠSPCGS [M,I, =, n] satis�es correctness, n-traceability, unframeability, client-client anonymity,
and client-client unlinkability. Moreover, if ΠSPCE satis�es bounded-set security, then ΠSPCGS securely emu-
lates F P[BS]anon , and if ΠSPCE satis�es authenticated-set security, then ΠSPCGS securely emulates F P[AS]anon .
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Proof. First, it is easy to see that the bounded-set and authenticated-set anonymity properties follow di-
rectly from the corresponding security properties of SPCE, plus zero-knowledge of the ZK-NIAoK. Next,
we show each additional property separately.
Traceability. Consider a hybrid experiment where the random oracle � is lazily sampled as follows. �e
oracle OSign will respond with a signature (ct, crs, c) that is computed by running the zero-knowledge sim-
ulator on instance (pp, pkSPCE, vkSig,<, ct) to produce (crs, c). �en, � (<, ct) is set to crs. Any other fresh
query (<, ct) to � will be answered by running the knowledge extraction simulator to produce (crs, g),
recording (crs, g), and se�ing � (<, ct) = crs. Note that the knowledge extraction and zero-knowledge
properties of the ZK-NIAoK imply that this hybrid is indistinguishable from the real experiment, as long
as each (<, ct) queried by OSign is a fresh query. However, if a ct produced by OSign has been previously
queried by the adversary, then this would contradict the semantic security (security against an outsider)
of SPCE, since it would imply the ability to predict a ciphertext output by the encryption algorithm with
noticeable probability.

Now, we show that any adversary that succeeds with noticeable probability in this hybrid experiment
can be used to break the security of the one-way relation. Consider a reduction that obtains (pp, pk∗) from
the one-way relation challenger, picks a uniformly random OHKG query to answer with pk∗, and then if
the adversary outputs a winning (<,f) B (<, (ct, crs, c)) according to De�nition 8, runs the knowledge
extractor on (g, (pp, pkSPCE, vkSig,<, ct), c), where g is the trapdoor recorded along with crs, to produce
a witness (pk, B,F, fid, A ), and returns F to the challenger. We claim that, conditioned on (<,f, pk B
Open(msk, f)) satisfying the conditions of De�nition 8, it holds that (i) (pp, pk,F) ∈ R with overwhelming
probability, and (ii) pk ∈ IHon. Observe that this would complete the proof, since pk∗ ∈ IHon, which is a
polynomial size set, so pk = pk∗ with noticeable probability.

We �rst argue that, conditioned on the above, g must exist and thus (pk, B,F, fid, A ) must be a valid
witness with overwhelming probability. By the description of the hybrid game, this follows if (<, ct) was
at some point queried to � by the adversary. Now, we know that (<, ct) must have been queried at some
point during the experiment, otherwise the crs associated with (<, ct) would be uniformly random and
independent of the adversary’s view. So it remains to show that (<, ct) could not have been queried to
� by the OSign oracle. Indeed, note that ct ∉ SPCE.Enc(pkSPCE,<, pk′) for any pk′ ≠ pk, by the perfect
n-correctness of SPCE, and pk = SPCE.Dec(skSPCE, ct). But we know that any query (<′, pk′) to OSign
must be such that (<′, pk′) ≠ (<, pk), since (<, pk) ∉ J . �is establishes point (i). Next, we can claim
that pk ∈ IHon. �is follows because pk ∉ IAdv, and by the EUF-CMA security of the signature scheme,
since the knowledge extractor must have produced a valid signature on pk with noticeable probability, and
the adversary only has access to signatures under vkSig via OAKG or OHKG.

Unframeability. �is proof is similar to the proof of traceability. We consider the same hybrid experiment,
where� is lazily sampled, and each crs is computed by running the knowledge extraction simulator except
for those crs that result from queries by OSign, which are computed by running the zero-knowledge simu-
lator. We also consider the same reduction to the hardness of the one-way relation, where the reduction
obtain (pp, pk∗), picks a uniformly random OHKG query to answer with pk∗, and then extracts a witness
F from the adversary’s proof c in (<,f) B (<, (ct, crs, c)). Here, it just su�ces to show that conditioned
on (<,f, pk B Open(msk, f)) satisfying the conditions of De�nition 9, it holds that (pp, pk,F) ∈ R with
overwhelming probability. Indeed, condition (ii) in the previous proof, that pk ∈ IHon, is already enforced
by the conditions of De�nition 9. �is �rst condition again holds due to the perfect n-correctness of SPCE,
which implies that (<, ct) could not have been queried to � by OSign, and the knowledge extraction of the
ZK-NIAoK.

Client-client anonymity and unlinkability. Consider a hybrid experiment where� is lazily sampled as fol-
lows. �e signature f = (ct, crs, c) computed on< using sk1 in the description of the game will be com-
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puted by running the zero-knowledge simulator on instance (pp, pkSPCE, vkSig,<, ct) to produce (crs, c).
�en � (<, ct) is set of crs. �e adversary’s queries to the OSign oracle will be answered in the same way.
Every other fresh query (<, ct) to� will just be answered with a uniformly random string crs. �is hybrid
is indistinguishable from the real experiment by the zero-knowledge property of the ZK-NIAoK, as long
as each (<, ct) queried by OSign is a fresh query. We saw in the proof of traceability that this follows from
the security against outsiders of SPCE. Moreover, in this hybrid, client-client anonymity (De�nition 10)
follows directly from the security against outsiders of SPCE, and client-client unlinkability (De�nition 11)
follows directly from the security against outsiders with element-hiding of SPCE.
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