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Abstract. In this paper, we examine one of the public key exchange protocols

proposed in [11] which uses max-times and min-times algebras. We discuss
properties of powers of matrices over these algebras and introduce a fast attack

on this protocol.

1. Introduction

In [28] Stickel generalized the well-known Diffie–Hellman key exchange method [8]
to non-Abelian groups. The underlying algebraic structures of the proposed schemes
were groups of invertible matrices over a finite field. Shpilrain [27] showed that
Stickel’s schemes were vulnerable to linear algebra attacks. Also, it is worth men-
tioning that in [22] Miasnikov and Roman’kov proposed a quite general linear de-
composition attack on several group-based cryptosystems, which is also applicable
to Stickel’s schemes. To prevent linear algebra attacks, Grigoriev and Shpilrain [14]
proposed a key-exchange protocol based on a min-plus matrix algebra. In [17] Ko-
tov and Ushakov analyzed this protocol and suggested an attack on it. The key
point of this attack is the fact that sequences of powers of matrices over a min-plus
matrix algebra often display some patterns. Also, in [17] an attack on the same
protocol with different restrictions on parameters was suggested. These protocol
and attacks also were analyzed by Muanalifah and Sergeev in [20].

Grigoriev and Shpilrain in [15] offered two new key-exchange protocols based
on tropical matrix algebras. They suggested using semidirect products to destroy
patterns of sequences of powers of matrices which were exploited in the attacks on
their first protocol. Three different approaches to attack one of these protocols were
proposed. Isaac and Kahrobaei [16] used the property of a sequence of matrices
to be almost linear periodic. Rudy and Monico [25] exploited the fact that the
sequences of matrices appearing in the protocol are monotonically decreasing. This
made it possible to apply a binary search. The attack suggested by Muanalifah and
Sergeev in [21] is based on the solution of the tropical discrete logarithm problem.

Also, a series of key-exchange schemes based on max-plus algebras was proposed
in the paper [12] by Durcheva and Trendafilov. In [1] Ahmed, Pal, and Mohan
combined the techniques from the aforementioned papers and showed that all these
protocols in this series are insecure.

Durcheva in [11] generalized the idea from [18] to use a two-sided action based
on semirings and proposed a key exchange protocol that uses pairs of dual tropical
structures. Two practical realizations were suggested: the first one is based on
max-plus and min-plus algebras, and the second one is based on max-times and
min-times matrix algebras. Subsequently, these two protocols were used as a part
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of an encryption scheme in [10], and as a part of a distributed secure multicast
protocol in [9].

The max-plus and min-plus realization of the protocol was analyzed by Ahmed,
Pal, and Mohan in [1], where they showed that this protocol is insecure.

There is no known attack on the max-times and min-times realization. Note that
the security of this protocol is based on the fact that there is no technique to solve
systems of equations over max-times and min-times algebras. The main purpose
of this article is to study sequences of powers of matrices over these algebras and
propose a successful attack on this protocol.

For more information on non-commutative cryptography see [23].
The remainder of this paper is structured into five parts. In Section 2 we discuss

tropical algebras, matrices, and polynomials over tropical algebras. In Section 3
we give the description of the protocol from [11] and discuss some issues of this
description. In Section 4 we study the behavior of sequences of powers of matrices
over max-times and min-times algebras. In Section 5 we introduce an attack on
the protocol, give examples of how the attack works, and give the results of tests
we ran. The final section offers a conclusion of our work.

2. Max-times and min-times algebras

In this section, we discuss tropical algebraic structures paying attention to max-
times and min-times algebras, and define matrices and polynomials over tropical
structures.

In this paper, we denote the set of non-negative real numbers by Rě0, the set of
non-negative integers by Zě0, and the set of positive integers by Zą0.

The max-plus algebra is the set RY t´8u equipped with the operations x‘ y “

maxpx, yq and x b y “ x ` y. The min-plus algebra is the set R Y t8u equipped
with the operations x ‘ y “ minpx, yq and x b y “ x ` y. These two algebras
are known as tropical algebras. These algebras are semirings, which means they
are similar to rings, but without the requirement that each element must have an
additive inverse. Moreover, they are idempotent and commutative.

The tropical algebras have been widely studied and have a lot of applications.
For more information, we refer the reader to [4] and [19].

One can also consider other algebraic structures in which one of the operations is
min or max. Sometimes these algebras are also called tropical. For example, some
researchers studied min-times and max-times algebras, where one of the operations
is the multiplication of numbers and the other is either min or max [26, 29, 11].
Also, structures with both operations min and max were also considered [7, 13].
In [11] two different algebras are used simultaneously: one of the algebras has min,
and the other has max.

In the remainder of this paper, we will use the max-times and min-times algebras,
so we recall their definitions. The domain of the max-times algebra is Rě0 Y t8u,
and the operations are

x ‘ y “ maxpx, yq and x b y “

"

0 if x “ 0 or y “ 0,
x ¨ y otherwise.

The domain of the min-times algebra is Rě0 Y t8u and the operations are

x ‘ y “ minpx, yq and x b y “

"

8 if x “ 8 or y “ 8,
x ¨ y otherwise.
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Since the max-times and max-times algebras are commutative idempotent semir-
ings, then the following identities hold:

(1) pa ‘ bq ‘ c “ a ‘ pb ‘ cq,
(2) o ‘ a “ a ‘ o “ a,
(3) a ‘ b “ b ‘ a,
(4) pa b bq b c “ a b pb b cq,
(5) e b a “ a b e “ a,
(6) a b b “ b b a,
(7) a b pb ‘ cq “ pa b bq ‘ pa b cq,
(8) pa ‘ bq b c “ pa b cq ‘ pb b cq,
(9) o b a “ a b o “ o,
(10) a ‘ a “ a,

where o is 0 for the max-times algebra and is 8 for the min-times algebra, and e
is 1.

Let S “ xS,‘,by be a semiring. The set of all n ˆ n matrices MatnpSq with
entries in S can be equipped with addition ‘ and multiplication b as well:

paijq ‘ pbijq “ paij ‘ bijq,

paijq b pbijq “ pai1 b b1j ‘ ¨ ¨ ¨ ‘ ain b bnjq.

For example, let’s consider two matrices over max-times algebra:

A “

ˆ

1 2
0 8

˙

, B “

ˆ

3 4
5 0

˙

.

Then the product of these matrices is

A b B “

ˆ

1 2
0 8

˙

b

ˆ

3 4
5 0

˙

“

ˆ

1 b 3 ‘ 2 b 5 1 b 4 ‘ 2 b 0
0 b 3 ‘ 8 b 5 0 b 4 ‘ 8 b 0

˙

“

ˆ

3 ‘ 10 4 ‘ 0
0 ‘ 8 0 ‘ 0

˙

“

ˆ

10 4
8 0

˙

.

Multiplying a matrix by a scalar is just multiplying by the corresponding scalar
matrix.

The obtained set of matrices also in an idempotent semiring. In other words,
the following identities are true:

(1) pA ‘ Bq ‘ C “ A ‘ pB ‘ Cq,
(2) O ‘ A “ A ‘ O “ A,
(3) A ‘ B “ B ‘ A,
(4) pA b Bq b C “ A b pB b Cq,
(5) E b A “ A b E “ A,
(6) A b pB ‘ Cq “ pA b Bq ‘ pA b Cq,
(7) pA ‘ Bq b C “ pA b Cq ‘ pB b Cq,
(8) O b A “ A b O “ O,
(9) A ‘ A “ A,

where for the max-times algebra

O “

¨

˚

˚

˚

˝

0 0 ¨ ¨ ¨ 0
0 0 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ 0

˛

‹

‹

‹

‚

and E “

¨

˚

˚

˚

˝

1 0 ¨ ¨ ¨ 0
0 1 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ 1

˛

‹

‹

‹

‚

,
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and for the min-times algebra

O “

¨

˚

˚

˚

˝

8 8 ¨ ¨ ¨ 8

8 8 ¨ ¨ ¨ 8

...
...

. . .
...

8 8 ¨ ¨ ¨ 8

˛

‹

‹

‹

‚

and E “

¨

˚

˚

˚

˝

1 8 ¨ ¨ ¨ 8

8 1 ¨ ¨ ¨ 8

...
...

. . .
...

8 8 ¨ ¨ ¨ 1

˛

‹

‹

‹

‚

.

We denote an element of the semiring a raised to the n-th power by abn.
It is possible to define the set of polynomials over S. Also, let A P MatnpSq and

ppxq “
Àd

i“0 pi b xbi, then we denote the matrix
Àd

i“0 pi b Abi by ppAq.
In this paper, for a matrix A, we will often use aij to refer to the element at the

i-th row and j-th column of the matrix A.

3. The protocol

In this section, we discuss the key exchange protocol proposed in [11].
Let Rmax,ˆ “ xRě0 Y t8u,‘,by and Rmin,ˆ “ xRě0 Y t8u,‘,by be the max-

times and min-times algebras respectively.
The following protocol was proposed in [11].

Protocol 1. Alice and Bob agree on three matrices M,N,X P MatnpZě0q.

(1) Alice chooses polynomials ppxq P Rmax,ˆrxs and tpxq P Rmin,ˆrxs and
computes A “ ppMq b X b tpNq. The pair pppxq, tpxqq is her secret key,
and the matrix A is her public key.

(2) Bob chooses polynomials qpxq P Rmax,ˆrxs and rpxq P Rmin,ˆrxs and com-
putes B “ qpMq bX b rpNq. The pair pqpxq, rpxqq is Bob’s secret key, and
the matrix B is Bob’s public key.

(3) Alice computes kA “ ppMq b B b tpNq.
(4) Bob computes kB “ qpMq b A b rpNq.

In the original paper [11] and the subsequent papers [10, 9], the authors claimed
that Alice and Bob shared the same key. Unfortunately, this is not true. First, in
general, pM b Xq b N ‰ M b pX b Nq. For example, let

M “

ˆ

1 1
1 1

˙

, X “

ˆ

1 2
2 1

˙

, N “

ˆ

1 1
2 1

˙

,

then

pM b Xq b N “

ˆ

2 2
2 2

˙

, M b pX b Nq “

ˆ

2 1
2 1

˙

.

Therefore the expression M b X b N is not well-defined, and parentheses must be
written to define an order of operations. In the source code of the implementation of
the protocol [10], the following order of operations is implicitly used: A “ pppMq b

Xq b tpNq, B “ pqpMq b Xq b rpNq, kA “ pppMq b Bq b tpNq, and kB “ pqpMq b

Aq b rpNq. Thus, we will use this order in the remainder of the paper.
Second, in general,

pppMqbppqpMqbXqbrpNqqqbtpNq ‰ pqpMqbppppMqbXqbtpNqqqbrpNq. (1)

Indeed, let

M “

ˆ

2 1
1 3

˙

, X “

ˆ

1 3
2 1

˙

, N “

ˆ

1 1
1 1

˙

,
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and ppxq “ tpxq “ rpxq “ x, qpxq “ xb2. Then

A “

ˆ

2 2
3 3

˙

, B “

ˆ

6 6
9 9

˙

, kA “

ˆ

12 12
27 27

˙

, kB “

ˆ

9 9
27 27

˙

.

Hence this protocol cannot be implemented correctly. Our experiments show
that the inequality (1) holds only for about 2% of randomly generated instances of
the protocol, where the size of the matrices is 10, the coefficients are in r0, 1000s,
and the degrees of the polynomials do not exceed 10. Therefore the description is
not completely wrong. So, before choosing the polynomials Alice and Bob should
agree on two sets of polynomials P Ď Rmax,ˆrxs and R Ď Rmin,ˆrxs such that the
following equality is true for all ppxq, qpxq P P and rpxq, tpxq P R:

pppMqbppqpMqbXqbrpNqqqbtpNq “ pqpMqbppppMqbXqbtpNqqqbrpNq. (2)

So, the following description of the protocol should be considered.

Protocol 2. Alice and Bob agree on matrices M,X,N P MatnpZě0q and two sets
of polynomials P Ď Rmax,ˆrxs and R Ď Rmin,ˆrxs such that the equality (2) is
true for all ppxq, qpxq P P and rpxq, tpxq P R.

(1) Alice chooses two polynomials ppxq P P and tpxq P R and computes A “

pppMq b Xq b tpNq. The pair pppxq, tpxqq is her secret key, and the matrix
A is her public key.

(2) Bob chooses two polynomials qpxq P P and rpxq P R and computes B “

pqpMqbXbqrpNq. The pair pqpxq, rpxqq is Bob’s secret key, and the matrix
B is Bob’s public key.

(3) Alice computes kA “ pppMq b Bq b tpNq.
(4) Bob computes kB “ pqpMq b Aq b rpNq.

The shared common secret key is kA “ kB . Now kA and kB are truly equal
because of (2).

There are at least two strategies to break the protocol. The first one is to find
two polynomials p1pxq P P and t1pxq P R such that A “ pp1pMq b Xq b t1pNq. The
second strategy is to find four polynomials p1pxq, q1pxq P Rmax,ˆrxs and t1pxq, r1pxq P

Rmin,ˆrxs such that A “ pp1pMq b Xq b t1pNq, B “ pq1pMq b Xq b r1pNq, and
pp1pMq b Bq b t1pNq “ pq1pMq b Aq b r1pNq. The second one is useful when we
have no information about P and R.

4. Behavior of matrix sequences over max-times and min-times
algebras

In this section, we study behavior of sequences tMbnu8
n“0, tNbnu8

n“0, tMbn b

Xu8
n“0, tX b Nbnu8

n“0, tp0 ‘ p1 b M ‘ . . . ‘ pn b Mbnu8
n“0, and tr0 ‘ r1 b N ‘

. . . ‘ rn b Nbnu8
n“0, where X, M and N are matrices, and pi and rj are numbers.

In this and in the following sections, for a matrix A, minpAq means mini,jpaijq,
and maxpAq means maxi,jpaijq. Also, we will use the following order of matrices:
A ě B iff aij ě bij for all i and j.

Remark 1. Let N P MatnpZě0q, and one of the entries of N be 0. Then Nb2

has a row and a column filled with 0, and Nb3 is the matrix filled with 0. Thus,
if tpxq is not linear, then pppMq b Xq b tpNq is the matrix filled with 0. If one of
the coefficients of xbi, i ą 0, of tpxq is 0, then tpNq also is the matrix filled with 0.
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Hence, to avoid trivial keys, Alice and Bob should not use N , tpxq, and rpxq with
zeros.

Remark 2. Let M P MatnpZě0q. If the number of the entries of M that are equal
to 0 is small, then often a power of the matrix M does not have zeros because every
time we compute the maximum of products. For example,

A “

¨

˝

0 1 0
0 1 1
1 0 0

˛

‚, Ab4 “

¨

˝

1 1 1
1 1 1
1 1 1

˛

‚.

Based on Remark 1 and Remark 2, we will assume that matrices do not have
zero entries in order to make our reasoning easier.

Remark 3. Let X,Y P MatnpZą0q. Then X b Y ě X and X b Y ě Y . Indeed,

X b Y “ pxi1 b y1j ‘ ¨ ¨ ¨ ‘ xin b ynjq “

maxpxi1y1j , . . . , xinynjq ě maxpxi1, . . . , xinq ě pxijq “ X.

The second inequality can be proven in the same way.

Remark 4. Let M P MatnpZą0q, X P MatnpZě0q. The sequences tMbnu8
n“0 and

tMbn b Xu8
n“0 are not decreasing.

Indeed, using the previous remark, we obtain

Mbn`1 “ M b Mbn ě Mbn,

Mbn`1 b X “ M b pMbn b Xq ě Mbn b X.

For randomly generated matrices, we can expect that these sequences are increasing
because the number of entries that are equal to 1 is small.

Remark 5. Let H,G P MatnpZě0q, then minpH bGq ě minpHq ¨minpGq. Indeed,

minpH b Gq “ min
i,j

p
à

k

hik b gkjq “ min
i,j

pmin
k

phikgkjqq “ min
i,j,k

phikgkjq ě

min
i,j

phijq ¨ min
i,j

pgijq “ minpHq ¨ minpGq.

Remark 6. Let N P MatnpZą0q, Y P MatnpZě0q, then minpNbn`1q ě minpNbnq

and minpY bNbn`1q ě minpY bNbnq. This immediately follows from the previous
remark:

minpNbn`1q “ minpNbn b Nq ě minpNbnq ¨ minpNq ě minpNbnq.

The second inequality can be proven in the same way.

Remark 7. Let H,G P MatnpZě0q, then minpH ‘ Gq ě minpminpHq,minpGqq.
Indeed,

minpH ‘ Gq “ min
i,j

pminphij , gijqq ě

min
i,j

pminpminpHq,minpGqq “ minpminpHq,minpGqq.

Remark 8. Let M P MatnpZą0q, and ppxq P Rmax,ˆrxs. We can expect that often

ppMq “ pd b Mbd, (3)

where d “ degpppxqq. Indeed, let us consider the sum of two consecutive monomials:
pi`1 bMbi`1 ‘pi bMbi “ ppi`1 bM ‘pi bEq bMbi. The condition pi`1 bM ‘
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pi bE “ pi`1 bM means that pi`1mjj ě pi for all j P r1, ns. Since the coefficients
of polynomials and the entries of matrices are chosen from an interval r0, Bs, then
we can expect that the probability of this event is high. To check this, we randomly
generated pairs of a matrix and a polynomial, where the size of the matrices is 10,
the coefficients and the entries are in r0, 1000s, and the degrees of the polynomials
are in r5, 20s. The equality (3) holds for about 99.9% of the generated pairs.

Remark 9. Let N P MatnpZą0q. Our experiments show that a polynomial rpxq P

Rmin,ˆrxs often is equal to its beginning:

rpNq “ r0 ‘ r1 b N ‘ . . . ‘ rd0
b Nbd0 , (4)

where d0 ă d “ degprpxqq. We randomly generated pairs of a matrix and a poly-
nomial, where the size of the matrices is 10, the coefficients and the entries are in
r0, 1000s, and the degrees of the polynomials is 20. For about 99% of the generated
pairs and d0 “ 10, the equality (4) holds. If the coefficients and the entries are
from r0, 10000s, then the rate is about 99.9%.

Remark 10. A sequence of matrices tAiu
8
i“0 is called almost linear periodic if

there exist a period ρ, a factor c, and a defect δ such that for all i ą δ the following
equation holds:

Ai`ρ “ c ` Ai.

For sequences of powers of a matrix over tropical algebras, this property is well
studied [2, 5, 6, 24]. It is used in [16] to analyze the protocol from [15].

Since we study the max-times and min-times structures, there is an isomorphism,
x ÞÑ ex, between max-plus and max-times algebras, and between min-plus and min-
times algebras, we will consider the following property.

We say that a sequence of matrices tAiu
8
i“0 is almost multiplicatively periodic if

there exist a period ρ, a factor c and a defect δ such that for all i ą δ the following
equation holds:

Ai`ρ “ c ¨ Ai.

Let’s consider two examples.

A “

¨

˝

2 5 3
5 0 4
4 3 5

˛

‚, Ab2 “

¨

˝

25 10 20
16 25 20
20 20 25

˛

‚, Ab3 “

¨

˝

80 125 100
125 80 100
100 100 125

˛

‚,

Ab4 “

¨

˝

625 400 500
400 625 500
500 500 625

˛

‚, Ab5 “

¨

˝

2000 3125 2500
3125 2000 2500
2500 2500 3125

˛

‚“ 25 ¨ Ab3,

Ab6 “

¨

˝

15625 10000 12500
10000 15625 12500
12500 12500 15625

˛

‚“ 25 ¨ Ab4.

B “

¨

˝

5 3 3
4 3 1
2 2 5

˛

‚, Bb2 “

¨

˝

6 6 3
2 2 3
8 6 2

˛

‚, Bb3 “

¨

˝

6 6 6
6 6 2
4 4 6

˛

‚,

Bb4 “

¨

˝

12 12 6
4 4 6
12 12 4

˛

‚, Bb5 “

¨

˝

12 12 12
12 12 4
8 8 12

˛

‚“ 2 ¨ Bb3,

Bb6 “

¨

˝

24 24 12
8 8 12
24 24 8

˛

‚“ 2 ¨ Bb4.
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We performed the following experiments. We randomly generated matrices of
size 10ˆ10, the entries of them were chosen from an interval r0, 1000s, and computed
the sequences tAbiu1000i“1 . We checked the following restricted property: if there
are a number ρ, a factor c and a defect δ ă 100 such that for all δ ă i ď 1000 the
following equations hold:

Abi`ρ “ c ¨ Abi.

Also, we did the same for tAbiu1000i“1 . It turned out that for the max-times case
the restricted property is true for 99.6% of the randomly generated matrices, and
for the min-times case the restricted property is true for 97.9% for the randomly
generated matrices.

Also, for the same set of parameters, our experiments show the following prop-
erties of the distributions of δ and ρ. For the min-times case, average δ is 11.51,
average ρ is 2.24, median δ is 7, median ρ is 2, maximal δ is 242, and maximal ρ
is 8. For the max-times case, average δ is 26.42, average ρ is 2.13, median δ is 11,
and median ρ is 2, maximal δ is 772, and maximal ρ is 8. (We counted only those
matrices for which δ and ρ were found.)

Remark 11. If a matrix A has this property, then ppAq “
Àn

i“0 pibAbi is equal to
Àn1

i“0 p
1
ibxbi, where n1 ď δpAq`ρpAq. The same is true for tpNq “

Àn
i“0 tibNbi.

5. Attack

In this section, we present our attack as well as the results of our experiments.
We will try to find polynomials p1pxq, q1pxq, t1pxq, and r1pxq such that

A “ pp1pMq b Xq b t1pNq, B “ pq1pMq b Xq b r1pNq, and

pp1pMq b Bq b t1pNq “ pq1pMq b Aq b r1pNq.

Let’s describe how we will try to find p1pxq and t1pxq. The procedure to find
q1pxq and r1pxq is the same.

Taking into account Remark 8, we can try to find the polynomial p1pxq of the
form pi b xbi. Because

pppi b Mbiq b Xq b t1pNq “ pMbi b Xq b ppi b t1pNqq, (5)

it is enough to find the polynomial p1pxq of the form xbi. In order to do this, we
will enumerate degrees i from 0 to a bound up. We will describe how to find this
bound below.

Next, taking into account Remark 9, we will find t1pxq of the form t1pxq “

t0 ‘ t1 b x ‘ t2 b xb2 ‘ . . . ‘ tj b xbj trying degrees j from 0 to a bound ut. We
will describe how to find this bound below as well.

Let p1pxq be known. Since pp1pMq b Xq b t1pXq “ A, we have

pp1pMq b Xq b

˜

j
à

k“0

tk b Nbk

¸

“ A.

Therefore,
j

à

k“0

tk b pp1pMq b Xq b Nbk “ A.

Let Ck “ pp1pMq b Xq b Nbk. We have the following system of equations:

min
k

ptkcklmq “ alm.
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In other words,

minpt0c011, t1c111, . . . , tkck11q “ a11,
minpt0c012, t1c112, . . . , tkck12q “ a12,

. . .
minpt0c0nn, t1c1nn, . . . , tkcknnq “ ann.

If the system is solvable, then a solution to this system is

tk “

"

maxl,mpalm{cklmq if this number is an integer,
8 otherwise.

Next, since A “ pp1pMq b Xq b t1pNq, we have

minpAq ě minpp1pMq b Xq ¨ minpt1pNqq ě minpp1pMq b Xq.

By Remark 4, the sequence Mbi b X is not decreasing. Therefore, we can stop
our search and say that our algorithm failed when

minpMbi b Xq ą minpAq.

Also, minppp1pMq b Xq b t1pNqq “ minppp1pMq b Xq b
`
À

k tk b Nbk
˘

q “

min
`
À

kptk b pp1pMq b Xq b Nbkq
˘

“ minp
À

kppp1pMq b Xq b Nbkqq.

By Remark 6 and 7, minp
À

kppp1pMq bXq bNbkqq ď minpp1pMq bXq bNbjq.
Therefore we should search until

minpp1pMq b Xq b Nbjq ą maxpAq.

Note that up and ut can be found using the almost multiplicatively periodic
property. We should check i while i ď δpMq ` ρpMq and check j while j ď δpNq `

ρpNq. Indeed, if i ą δpMq ` ρpMq, then M i “ c b Mbi1

, where i1 ď δpMq ` ρpMq.
Using 5, we obtain the result. The second inequality follows from Remark 11. Note
that if we have reasonable enough bounds up and ut we do not have to find these
periods and defects before the loops, and can find them during the search process.
To check the almost multiplicatively periodic property, we perform the element-by-
element division M i{Mk for k ă i and check if all the elements of the result matrix
are the same.

Putting it together, we obtain the following procedure to find p1pxq and t1pxq.

for i “ 0, 1, . . . , up do
if there exist k ă i and c s. t. M i{Mk “ pcq then

return FAIL
end if
p1pxq Ð xbi

if minpp1pMq b Xq ą minpAq then
return FAIL

end if
for j “ 0, 1, . . . , ut do

if there exist k ă j and c s. t. N j{Nk “ pcq then
break

end if
if minppp1pMq b Xq b Nbjq ą maxpAq then

break
end if
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tj Ð

"

maxpA{ppMbi b Xq b Nbjqq if this number is an integer,
8 otherwise.

t1pxq Ð t1pxq ‘ tj b xbj

if pp1pMq b Xq b t1pNq “ A then
return p1pxq, t1pxq

end if
end for

end for
return FAIL

So, the attack looks like

(1) Find p1pxq and t1pxq using the algorithm described above.
(2) Find q1pxq and r1pxq using the algorithm described above.
(3) Check that pp1pMq b Bq b t1pNq “ pq1pMq b Aq b r1pNq. If it is true, then

return K “ pp1pMq b Bq b t1pNq. Otherwise, return FAIL.

Let’s consider the example from [11].

M “

¨

˝

5 7 1
4 2 3
2 5 6

˛

‚, N “

¨

˝

2 1 3
7 5 4
3 1 9

˛

‚, X “

¨

˝

5 2 8
6 7 4
3 1 5

˛

‚,

ppxq “ xb3 ‘ 5 b xb2 ‘ 10 b x, tpxq “ 3 b xb2 ‘ x,

qpxq “ xb2 ‘ 5 b x, rpxq “ 10 b xb4 ‘ xb2.

The key is

K “

¨

˝

263424 125440 263424
188160 94080 188160
311040 155520 311040

˛

‚.

The attack finds the following p1pxq, t1pxq, q1pxq and r1pxq:

p1pxq “ xb3, t1pxq “ x, q1pxq “ xb2, r1pxq “ xb2 ‘ 4.

For these polynomials, we have

pp1pMq b Bq b t1pNq “ pq1pMq b Aq b r1pNq “ K.

The described attack was implemented in Python and can be found in [3]. The
tests were performed on the workstation of Omsk Regional Supercomputer Center of
SB RAS with AMD EPYC 7502, 32 cores at 2.5GHz with 512GB of RAM, Ubuntu
20.04 Server. We generated 100 random instances for every set of parameters
presented in Table 1.

6. Conclusion

In this paper, we showed that the protocol described in [11] is not correctly
defined. We could have finished our analysis here, but using the implementation
from [10], we suggested how the description of the protocol can be corrected. We
analyzed the corrected protocol and showed that it is insecure. The success rate of
our attack is 100%. Therefore using the max-times and min-times structures instead
of the max-plus and min-plus structures does not make the protocol more secure.
Our analysis can further be used to analyze other protocols based on max-times
and min-times matrix algebras.
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Size of ma-
trices

Degrees of
polynomials

Coefficients Success Rate Avg. Time

10 r1, 10s r1, 100s 100% 0.51 sec
10 r1, 10s r1, 1000s 100% 0.57 sec
10 r1, 20s r1, 100s 100% 1.18 sec
10 r1, 20s r1, 1000s 100% 1.02 sec
20 r1, 10s r1, 100s 100% 7.07 sec
20 r1, 10s r1, 1000s 100% 4.64 sec
20 r1, 20s r1, 100s 100% 10.88 sec
20 r1, 20s r1, 1000s 100% 9.60 sec
50 r1, 10s r1, 100s 100% 186.27 sec
50 r1, 10s r1, 1000s 100% 110.34 sec
50 r1, 20s r1, 100s 100% 303.33 sec
50 r1, 20s r1, 1000s 100% 234.78 sec

Table 1. Experimental results of the attack
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