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Abstract. This paper presents a code-based signature scheme based on the well-known syn-
drome decoding (SD) problem. The scheme builds upon a recent line of research which uses the
Multi-Party-Computation-in-the-Head (MPCitH) approach to construct efficient zero-knowledge
proofs, such as Syndrome Decoding in the Head (SDitH), and builds signature schemes from
them using the Fiat-Shamir transform.
At the heart of our proposal is a new approach to amplify the soundness of any MPC protocol
that uses additive secret sharing. An MPCitH protocol with N parties can be repeated D times
using parallel composition to reach the same soundness as a protocol run with ND parties.
However, the former comes with D times higher communication costs, often mainly contributed
by the usage of D ‘auxiliary’ states (which in general have a significantly bigger impact on
size than random states). Instead of that, we begin by generating ND shares, arranged into a
D-dimensional hypercube of side N containing only one ‘auxiliary’ state. We derive from this
hypercube D sharings of size N which are used to run D instances of an N party MPC protocol.
This approach leads to an MPCitH protocol with 1/ND soundness error, requiring ND offline
computation, only ND online computation, and only 1 ‘auxiliary’. As the, potentially offline,
share generation phase is generally inexpensive, this leads to trade-offs that are superior to just
using parallel composition.
Our novel method of share generation and aggregation not only improves certain MPCitH
protocols in general but also shows in concrete improvements of signature schemes. Specifically,
we apply it to the work of Feneuil, Joux, and Rivain (CRYPTO’22) on code-based signatures,
and obtain a new signature scheme that achieves a 3.3x improvement in global runtime, and a
15x improvement in online runtime for their shortest signatures size (8.5 kB). It is also possible
to leverage the fact that most computations are offline to define parameter sets leading to smaller
signatures: 6.7 kB for 60 ms offline, or 5.6 kB for 700 ms offline. For NIST security level 1, online
signature cost is around 3 million cycles (1 ms on commodity processors), regardless of signature
size.

1 Introduction
Zero Knowledge (ZK) proofs of knowledge have become a fundamental cryptographic tool
for modern privacy-preserving technologies and have many applications which range from
authentication to online voting to machine learning. The idea of ZK proofs is that one party
(a prover) can convince another party (a verifier) of the truth of a statement without revealing
any other information about the statement itself.

A method for constructing efficient ZK proofs is to use the so-called MPC-in-the-Head
(MPCitH) paradigm [IKO+07], in which semi-honest Multi-Party Computation (MPC) pro-
tocols are used as a basis. These protocols do not reveal any information on the secret used
to prove a statement, even if some of the parties internal execution is revealed to an attacker.
At a high-level, the MPCitH protocol has a prover which (i) secretly splits its secret input
into shares, (ii) simulates “in their head” parties using said shares for the execution of a MPC
protocol, and (iii) commits to this execution and partially reveals the internal execution of a
subset of the parties to a verifier given some challenge. These internal executions can then be
⋆ Andreas Hülsing is funded by an NWO VIDI grant (Project No. VI.Vidi.193.066).
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checked for consistency by the verifier. To ensure that the prover has a very low probability
to cheat, the verifier runs this protocol multiple times. The zero knowledge aspect of the over-
all protocol naturally inherits from a resilience to semi-honest adversaries of the underlying
MPC protocol, as the verifier will only get to see a subset of the internal executions and the
protocol will not reveal anything other than the correctness of the statement.

A recent proposal by Feneuil, Joux, and Rivain [FJR22] used this MPCitH idea to improve
signature schemes based on the syndrome decoding (SD) problem; we refer to this work as
SDitH. Previous proposals to make a signature scheme based on SD, such as those by Stern
[Ste94], suffered from a high soundness error, which aligns to a malicious prover’s probability
of cheating. Protocols with a higher soundness error require many more repetitions, compared
to a protocol with a smaller soundness error, in order to achieve a target security level.
Utilizing MPCitH in [FJR22] has enabled a low soundness error of 1/N , for a party size N ,
whilst also being able to use a conservative code-based hardness assumption. At the time of
writing, this approach makes the signature scheme the most performant code-based signature
scheme for the common “signature size + public key size” metric.

Another reason to focus on this work is due to the NIST PQC standardization process.
None of the code-based signature candidates were accepted by NIST into round 2, however,
at the time of writing, we have many promising KEM candidates in the fourth round. An
MPCitH-based signature, Picnic [ZCD+20], was part of the NIST PQC process, but NIST
ultimately decided to standardize SPHINCS+ due to some security concerns with Picnic’s
use of LowMC, but also because “future cryptosystems that evolve out of the multi-party-
computation-in-the-head paradigm may eventually prove significantly superior to the third-
round Picnic design”.

These two reasons were the motivation for this research; improving and optimizing a
promising MPCitH-based signature scheme, which utilizes a well-established and conservative
code-based hardness assumption. The contributions of this work are:

1.1 Contributions

– We propose a general geometrical hypercube approach for MPCitH that allows, from a
state that was generated and committed for N parties, to obtain the same soundness as
in a classical MPC-in-the-head by simulating the work of only log2(N) parties instead of
N .

– This approach runs multiple linked instances of MPCitH with only one masked auxiliary
state, which reduces significantly the communication on the ZK protocol (and thus sig-
nature size) with respect to running independent instances of MPCitH with one auxiliary
state for each of them.

– Applying these optimizations to SDitH, we observe a reduction of one third in signature
size, for similar computational costs and security.

– As for SDitH, the signature resulting from our construction can be split in an offline and
an online phase. But, unlike in SDitH, most of the computational cost is associated to
the offline phase. Thus the online part of the signature is extremely fast in comparison,
even for much smaller signatures.

2 Preliminaries
In this section we describe some standard cryptographic preliminaries which are similar to
those in [FJR22]. For the entirety of this paper we will denote F as a finite field. The Hamming
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weight of a vector x ∈ Fm, denoted as wt(x), is the number of non-zero coordinates of x. We
define the concatenation of two vectors x1 ∈ Fm1 and x2 ∈ Fm2 as (x1|x2) ∈ Fm1+m2 . For
any m ∈ N>0, the integer set {1, 2, . . . ,m} is denoted as [m]. For a probability distribution
D, we use the notation d ← D to denote the value d is sampled from D. For a finite set S,
the notation s← S denotes that the value s has been uniformly sampled at random from S.
For an algorithm A, out← A(in) further means that out is obtained by a call to A on input
in, using uniform random coins whenever A is probabilistic. We also abbreviate probabilistic
polynomial time as PPT.

2.1 Basic Cryptographic Definitions and Lemmas
Definition 1 (Indistinguishability). Two distributions X,Y are (t, ϵ)-indist -inguishable
if for an algorithm running in time t, and D : {0, 1}m → {0, 1}, Pr[D(X) = 1]− Pr[D(Y ) =
1]| ≤ ϵ(λ).
The distributions are: computationally distinguishable when t = poly(λ), and ϵ is a negligible
function in λ; and statistically indistinguishable when ϵ is a negligible function in λ for
unbounded t,

Definition 2 (Pseudorandom generation (PRG)). Let G : {0, 1}∗ → {0, 1}∗ and let
ℓ(·) be a polynomial such that for any input s ∈ {0, 1}λ we have G(s) ∈ {0, 1}ℓ(λ). Then, G is a
(t, ϵ)-secure pseudorandom generator if (i) Expansion: ℓ(λ) > λ and (ii) Pseudorandomness:
the distributions {G(s)|s← {0, 1}λ} and {r|r ← {0, 1}ℓ(λ)} are (t, ϵ)-indistinguishable.

The standard cryptographic notion of tree PRG (TreePRG), initially proposed by Gol-
dreich, Goldwasser, and Micali [GGM84], is used extensively in our construction. The general
idea is to extend a length-doubling PRG and consider it over a tree structure: we start with a
master seed (mseed) which is used to label the root node of a tree and expanded using a PRG
into N sub-seeds in a structured way. For each node, its label is used as the seed of the PRG
function, which generates two seeds that label the two children of the node. By proceeding
iteratively at each level, over ⌈log2(N)⌉ levels, we construct a binary tree with at least N
leaves, labeled with PRG seeds that we note (seedi)i∈[N ]. For any index i∗, someone can get
the list of the N−1 seeds (seedi)i∈[N ],i ̸=i∗ out of the sibling path of seedi∗, which contains just
⌈log2(N)⌉ seeds. This becomes a key component to efficiently generate the witness shares in
Section 3.2.

In security proofs, we make use of the following lemma, which in essence says that a large
subset A of a product space X × Y has many large areas.
Lemma 1 (Splitting Lemma [PS00]). Let A ⊂ X × Y , and Pr[(x, y) ∈ A] ≥ κ. Then
for any α ∈ [0, 1), let

B = {(x, y) ∈ X × Y |Pry′∈Y [(x, y′) ∈ A] ≥ (1− α) · κ}, (1)

Then the following are true: Pr[B] ≥ α · κ and Pr[B|A] ≥ α.

Lemma 2 (Forking Lemma for 5-pass protocols [DGV+16]). Let S be an 5-pass
signature scheme with security parameter k. Let A be a PPT algorithm given only the public
data as input. Assume that A, after querying the 2 random oracles O1,O2 polynomially
often in k, outputs a valid signature (σ0, σ1, σ2, h1, h2) for message m with a non-negligible
probability. Let us consider a replay of this machine A with the same random tape (as a
Turing machine), the same response to the query corresponding to O1 but a different output
to O2. Then running A and its reply results in two valid signatures (σ0, σ1, σ2, h1, h2) and
(σ0, σ1, σ

′
2, h1, h

′
2) for the same message m and h2 ̸= h′2 with a non-negligible probability.
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While proving equality of polynomials can be inefficient, we can say something about
the likelihood that two polynomials are different and yet are equal at certain points. This
enables one to reduce the checking of polynomial relations to instead checking simple integer
arithmetic relations, up to some well defined probabilistic error.

Lemma 3 (Multi-point Schwarz-Zippel lemma). Let P ∈ F[x] be a non zero polynomial
in one variable of degree at most d and S ⊆ F a non empty set of size at least t. For R ⊆ S
drawn uniformly from size t subsets of S,

Pr[P (r) = 0, ∀r ∈ R] ≤
(
d
t

)(|S|
t

) . (2)

Proof. Let D ⊆ Fq denote the roots of P . Clearly |D| ≤ d, since a non zero polynomial in
one variable over a field has at most as many roots as its degree. The lemma follows since R
is chosen uniformly from the

(|S|
t

)
size t subsets of S and there are at most

(
d
t

)
size t subsets

of D.

2.2 Zero-Knowledge Proofs
We define below the required properties for a Zero-Knowledge Proof of Knowledge. A proof of
knowledge for some language L ∈ NP is a two party protocol between prover P and verifier
V, denoted ⟨P ,V⟩ that should satisfy certain properties. The intention is for P to prove to V
that their common input belongs to the language, i.e. w ∈ L.

Definition 3 ((Perfect) Completeness). A proof of knowledge ⟨P ,V⟩ is complete if,
when both prover and verifier follow the protocol honestly, and the prover has knowledge of a
legitimate witness w, then for every witness w ∈ L the verifier accepts with probability 1:

Pr[⟨P ,V⟩(w) = 1] = 1. (3)

Definition 4 (Soundness). A proof of knowledge is sound, with soundness error κ, if for
a probabilistic polynomial time adversary, A, with w /∈ L, the probability of an honest verifier
accepting is less than κ:

Pr[⟨A,V⟩(w) = 1] ≤ κ. (4)

Put differently, this means that a prover without a valid witness w cannot convince the
verifier to accept with probability greater than κ.

Definition 5 (Honest Verifier Zero Knowledge (HVZK)). A proof of knowledge is
HVZK if there exists a probabilistic polynomial time simulator S that, without knowing a wit-
ness, outputs transcripts such that its output distribution is computationally indistinguishable
from the distribution of transcripts derived from honest executions of the protocol ⟨P ,V⟩.

This means that running the protocol does not reveal any information about the witness
to an honest observer. We use Zero-Knowledge proof as a shorthand for HVZK proof of
knowledge.

The main protocol in this paper is a Zero-Knowledge proof. This protocol is built with
the MPC-in-the-Head construction, which allows to transform a Multi-Party Computation
protocol into a Zero-Knowledge proof. Before introducing the MPC-in-the-Head construction,
we will first present some building tools needed for that construction: commitments, and
additive secret sharing, a simple but efficient tool to build some MPC protocols.
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2.3 Commitments
A commitment scheme is a cryptographic primitive that allows one to publish a value C,
called commitment, associated to some other hidden value which can be revealed at a later
stage through a procedure called opening using a decommitment value D. Once a party has
committed to a hidden value, they should not be able to change the value, and no other
party should be able to glean any knowledge of the value that has been committed, until the
committing party opens the commitment.

Definition 6 (Commitment scheme). A commitment scheme consists of two PPT algo-
rithms, com,open, where

– com(M) - on input M ∈ {0, 1}∗ the commitment algorithm outputs (C,D)← com(M,ρ)
where ρ is the commitment randomness.

– open(C,D) outputs M or ⊥.

Definition 7 (Correctness). If com(M)→ (C,D), then open(C,D)→M .

A secure commitment scheme has the following two properties:

Definition 8 (Binding). A commitment scheme is perfectly binding if, for all probabilistic
polynomial time (in security parameter κ) algorithm A, the probability of finding C,D,D′

such that open(C,D) = M , open(C,D′) = M ′, and M ̸= M ′ is zero, and computationally
binding if the probability is a negligible function in κ.

Definition 9 (Hiding). A commitment scheme is perfectly, statistically, or computation-
ally (respectively) hiding if, for any two messages M,M ′, the distributions {C : (C,D) ←
com(M)}κ∈N, and {C : (C,D) ← com(M ′)}κ∈N are perfectly, statistically, or computation-
ally indistinguishable.

A commitment scheme cannot be both perfectly hiding and perfectly binding simultane-
ously. In order to see this, suppose first that the scheme is perfectly binding, and one publishes
the commitment comk(open, x), therefore no other pair (open, x) outputs comk(open, x).
Then a computationally unbounded adversary can try inputs (open′, x′) until they find the
correct inputs (open, x), which uniquely give the correct output.

2.4 Additive Secret Sharing and Computing on Shares
In order to perform multi-party computation (MPC), it is necessary to break up and then
distribute the input data of the function to be evaluated amongst multiple parties. In this
work, we use an approach to break and use this data called additive secret sharing. It is
defined by the following two routines:

– Share(x): The Share routine randomly samples the (N−1)-tuple (JxK1, JxK2,. . ., JxKN−1)
← (Fm)N−1, and then computes JxKN ← x−

∑N−1
i=1 JxKi. The final output is a tuple of N

shares JxK← (JxK1, JxK2, . . . , JxKN ).
– Reconstruct(JxK): The Reconstruct routine combines all N shares together by summation

to obtain the original value x←
∑N

i=1JxKi.
In practice, one can compress the output of Share(x) by expanding shares (JxK1, JxK2,

. . . , JxKN−1) from random seeds, however most of the terms in the final share JxKN must
be communicated in full, without compression. We call this final share aux, which is defined
explicitly in Algorithm 1.
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A secret value x can thus be distributed to N parties in a MPC scenario. Each party i in
the MPC protocol receives share JxKi. It is important to observe that the parties cannot learn
anything of x unless they have all N shares. The parties are able to perform the following
computations and obtain valid shares of a new secret-shared value:

– Addition of shares: Let JxAK, JxBK be two sets of shares distributed among parties. JxA+
xBKi := JxAKi + JxBKi.

– Addition with a constant: Jx + cK := JxK1 + c, JxK2, . . . , JxKN .
– Multiplication with a constant: Jc · xKi := c · JxKi.
– Multiplication of shares: Multiplication is possible using Beaver triples [Bea92] with ad-

ditional communication between parties (where the parties are given as additional input
a secret-shared triplet JaK, JbK, JcK where a, b are unknown to all players and c = ab). This
additional triplet is sacrificed in order to validate another triplet, which is defined in the
following.

One can evaluate an arbitrary function f over additive shares by decomposing f into an
arithmetic circuit using the four types of computation listed above.

2.5 MPC-in-the-Head paradigm
The MPC-in-the-Head (MPCitH) paradigm originated from the work of Ishai et al. [IKO+07]
and provides a path towards building zero-knowledge proofs for arbitrary circuits from secure
multi-party computation (MPC) protocols. In this work, we use a semi-honest MPC protocol
with additive shares that evaluates a Boolean decision function. The protocol has the following
properties:

– N -party decision function evaluation: The N parties P1, . . . ,PN each possess an additive
share JxKi of the input x. The parties jointly evaluate a decision function f : Zm → {0, 1}
on x.

– Semi-honest (N − 1)-Security: Assuming the parties adhere to the protocol, the additive
shares guarantee that any N − 1 parties cannot recover any information about the secret
x.

One can efficiently build a zero-knowledge proof of knowledge of a secret value x for which
f(x) = 1, for a predicate f that has either a unique solution, or is hard to fulfill. The prover
proceeds as follows:

– Generate shares of the secret JxK← Share(x) and distribute the shares among N imagi-
nary parties.

– Simulate the decision function evaluation procedure among the N imaginary parties “in
the head”.

– Commit to the view (initial share, secret random tape, and inbound/outbound commu-
nications) of each party and send commitment to the verifier.

– Send the shares of the final computed result Jf(x)K to the verifier, which should reconstruct
to 1.

The verifier performs the following steps to verify the proof:

– Randomly choose N − 1 parties, and ask the prover to reveal the views of those parties.
– Upon receiving the views, verify whether the views are consistent with an honest execution

of the MPC protocol and agree with the commitments.
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– The verifier accepts if the views are consistent and the final shares Jf(x)K indeed recon-
struct to 1.

Some challenge randomness of the decision function f will be provided by the verifier. There-
fore, the views of each party (input shares, random tape, initial message from preprocessing
phase) prior to the joint function evaluation must be committed before the prover receives
the randomness to prevent cheating.

The verifier does not learn any information about the secret value because they only see
N − 1 shares. The random selection of N − 1 parties results in a soundness error of 1

N for the
MPCitH protocol.

2.6 Syndrome Decoding
The Zero-Knowledge proof protocol we propose in this paper uses MPC-in-the-Head to prove
a solution is known to a Syndrome Decoding problem. Syndrome decoding (SD) is a problem
that is central to many code-based cryptosystems. A syndrome is the result of multiplying
a vector with a parity check matrix, which implies that being a codeword is equivalent to
having syndrome 0. The SD problem can be expressed as follows:

– Challenge: Parity-check matrix H← F(m−k)×m
q , syndrome y ∈ Fm−k

q .
– Required Output: Vector x ∈ Fm

q with wt(x) = w and Hx = y.

During challenge generation, H and x such that wt(x) = w are drawn uniformly at random,
and then y = Hx is calculated. The two most significant approaches to solving the syndrome
decoding problem are information set decoding and birthday algorithms. In order for a SD-
based cryptosystem to achieve security level λ it is necessary to select parameters such that
each approach takes more than 2λ operations to solve the underlying syndrome decoding
instance.

2.7 Syndrome Decoding in the Head
In this section we describe the methodology of generating zero knowledge proofs (ZKP) from
MPCitH applied to the syndrome decoding problem, as laid out in [FJR22]. For efficiency,
we assume that H is in standard form H = (H′|Im−k), where H′ ∈ F

(m−k)×k
q . This enables

us to express
y = Hx = H′xA + xB, (5)

so we only need to send xA to reveal the solution. The MPC protocol defined divides up xA

into shares JxAK, from which parties can reconstruct shares of JxK.
The protocol then verifies that y = Hx and that x has weight less than or equal to w by

proving polynomial relations.

2.7.1 Polynomial construction

Let FSD be the finite field over which the syndrome decoding problem is defined. Let Fpoly ⊇
FSD with |Fpoly| > m. Let ϕ : FSD → Fpoly define the inclusion of FSD in Fpoly. Let fi be the
points in Fpoly.

The prover builds three polynomials, S,Q, and P in order to prove the weight constraint.
Polynomial S ∈ Fpoly[X] is the interpolation over the points of x, with S(fi) = ϕ(xi), and
deg(S) ≤ m− 1 and Q[X] ∈ Fpoly[X] is Q =

∏
E(X − fi), where E is a subset of [m] of order

|E| = w, such that the nonzero points of x are contained in E. Accordingly, Q has degree w.
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Polynomial P is defined as P = S ·Q/F,where F =
∏

[m](X−fi). Ultimately, the polynomial
relation

S ·Q = P · F, (6)

must be satisfied in order to prove that wt(x) ≤ w. The left hand side is designed so that
SQ(fi) = 0 for all fi ∈ [m]. This is because S is zero everywhere that x is zero (by construc-
tion, as S is interpolated over x), and Q is zero everywhere that x is not zero. Polynomial S
has degree w and Q has degree m.

On the right-hand side, by construction public polynomial F is zero everywhere in [m],
and polynomial P is required because F has degree m, whereas m < deg(SQ) ≤ m+ w − 1.
If the prover can convince the verifier that they know P,Q such that S ·Q = P ·F = 0 at all
points fi ∈ [m], then at each point fi, either S(fi) = ϕ(xi) = 0, or Q(fi) = 0. But since Q
has degree w, it can be zero at at most w points, therefore S is nonzero in at most w points
fi, and so x has weight of at most w.

In order to verify the polynomial relation of Eq. 6, the polynomial S·Q−P·F is evaluated
at a series of points to check that it evaluates to zero everywhere. This is because, by the
Schwartz-Zippel lemma (Lemma 3), it is unlikely that the relation of Eq. 6 holds true at a
random point, if the polynomial relation is not true in general. Picking t points at random to
test the relation amplifies this result. Therefore the probability that the relation is satisfied
at points {rk}k∈[t] without Equation 6 being true becomes some sufficiently small probability
we call p. This event is referred to as a false positive, which we denote F . False positives affect
the soundness of a ZKP, as they represent a way to be accepted by a verifier, but without
knowledge of a valid witness. Consequently, the soundness of an MPCitH protocol based on
syndrome decoding would be

1−
(
1− 1

N

)
(1− p) =

1

N
+ p− 1

N
· p. (7)

2.7.2 Polynomial relation proof via MPC-in-the-Head

The shares that are distributed to parties are the shares of xA ∈ Fk
SD, the coefficients of

Q ∈ Fw
poly, and coefficients of P ∈ Fw+1

poly , as well as the shares of t beaver triplets (ak, bk, ck =

akbk) ∈ F3
points.

A party’s share is denoted with double square brackets and an index, such as JxKi. Shares
of polynomials are shares of the coefficients of the polynomials, and for Q, only the last
w − 1 coefficients are shared due to Q being monic. Instead of evaluating the full relation of
Equation 6, we validate that the relation holds true at t randomly selected points r ∈ Ft

points,
as explained in the previous section to reduce the probability of F . In order to further reduce
p, the points ri are sampled from a larger space Fpoints ⊃ Fpoly as this makes it even more
unlikely that an untrue polynomial relation looks correct at a given point ri.

In order to verify the multiplication triple S(rk) ·Q(rk) = P · F(rk), we sacrifice a Beaver
triple ak · bk = ck. The protocol proceeds as follows:

1. Sample H ∈ F(m−k)×m
q ,x ∈ Fm

q uniformly at random and compute Hx = y ∈ F(m−k)
q

2. Sample r, ϵ ∈ Ft
points × Ft

points uniformly at random
3. Construct JxK and express it over Fpoly.
4. Interpolate the shares JS(rk)K and construct JQ(rk)K, and JF ·P(rk)K.
5. Run MPC protocol to verify the triple (JS(rk)K, JQ(rk)K, JP · F(rk)K) with sacrificed triple

(JakK, JbkK, JckK).
(a) Set JαkK = ϵj · JQ(rk)K + JakK and set JβkK = JS(rk)K + JbkK.
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(b) Parties open JαkK and JβkK on bulletin board to construct αk and βk.
(c) Parties set JvkK = ϵk · JF ·P(rk)K− JckK + αk · JbkK + βk · JakK− αk · βk.
(d) Parties open JvkK to obtain vk and check that it encodes zero.

2.7.3 False-positive probability

To evaluate the false positive probability, necessary (along with N) to compute the soundness
in Eq. 7, consider that at each point rk, either S(rk) ·Q(rk)−P · F(rk) = 0 or is nonzero, so
for i of the t challenge points to satisfy the relation (equivalently, to be roots of S ·Q−P ·F),
there are

maxl≤m+w−1

(
l
i

)(|Fpoints|−l
t−i

)(|Fpoints|
t

) , (8)

ways this can happen by Lemma 3, considering that S · Q − P · F has degree of less than
m + w, meaning it has at most m + w − 1 roots, from which i of the t challenge points
could be selected from. For the i points which are roots of the polynomial, having ck = akbk
makes the MPC protocol pass with probability 1; for the t− i cases that the challenge points
are not roots, S(rk) · Q(rk) ̸= P · F(rk). In these cases, the MPC prococol will pass iff.
ck = ak · bk + ϵk(SQ−PF)(rk), a value that depends linearly on ϵk and thus can only be
guessed correctly with probability 1/Fpoints. Since it needs to occur for all non-root positions,
this gives a probability (1/|Fpoints|)t−i.

Combining the above reasoning, the probability Pr[F ] = p of F , is

p ≤
t∑

i=0

maxl≤m+w−1

(
l
i

)(|Fpoints|−l
t−i

)(|Fpoints|
t

) ·
( 1

|Fpoints|

)t−i
. (9)

A less tight but more intuitive bound can be given by considering that each of the t
challenge points is either a root of S ·Q−P ·F which occurs with probability ≤ m+w−1

|Fpoints| , else
it is not a root, and only satisfies the relation if ϵk was guessed correctly, with probability
≤ 1

|Fpoints| . Summing these two probabilities (for a given challenge point), and considering

that this must happen for all t challenge points, we arrive at the loose bound p ≤
(

m+w
|Fpoints|

)t
.

It is necessary that p be comfortably smaller than 1/N which is the target soundness error
of the MPCitH protocol in order to preserve zero knowledge for a ZKP.

3 Batch MPC-in-the-Head on a hypercube for ZK proofs
Here we describe how to amplify the soundness afforded to us by MPCitH techniques. We
do this by using MPCitH to give a ‘proof of honesty’ of a party which remains hidden in
traditional MPCitH.

3.1 Batch MPC-in-the-Head on a hypercube
To efficiently execute the MPC-in-the-Head proof and verification, we use a geometrical
approach, illustrated in Figure 1. We split the secret input in ND shares, and place them
on a cubic lattice of dimension D, where each dimension has N slots. The lattice can be
represented as a D dimensional hypercube with N points on each side.

We use these shares to set up D MPCitH intertwined executions with N parties each.
Since we use an additive secret sharing scheme, the set of shares can be arbitrarily partitioned,
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and the shares of a given partition subset added. Each resulting sum can be associated to
a party, and the resulting MPC protocol will preserve correctness. Leveraging this property,
for each dimension k ∈ [D] of the hypercube, we run an MPCitH protocol of N parties, each
using as share the summation of the ND−1 shares that have the same index ik along the
current dimension. This is visualized in Figure 1.

The significance of this technique is that one can identify a cheating leaf party (among ND

leaf parties) with only ND parties simulating the MPC protocol, and only one auxiliary (and
thus large) share. In contrast, the original protocol of [FJR22] would require ND executions
of the MPC protocol or D parallel executions of N parties with D auxiliary shares. This
can thus be seen as a speedup of the first approach, or as a communication reduction of the
second approach.

Note that D parallel composition of an N party protocol is a trade-off (reducing computa-
tion, increasing communication) with respect to doing an ND party protocol. Our approach
is a direct improvement: we reduce the computational cost of an ND party protocol, without
increasing its communication cost. Of course, parallel composition can be applied whether our
improvement is used or not. Thus, when parallel composition is used with a vanilla MPCitH
protocol to explore different trade-offs, the vanilla N party protocol can be replaced with
⌈log2N⌉ 2-party protocols using our construction and thus improve the initial trade-off by
reducing computational costs.

x1 axis
(1, 1) (1, ...) (1, N)

x2 axis

(2, 1)

(2, ...)

(2, N)

xD axis

(D, 1)

(D,N)

(D, ...)

The D ×N main party slices

Fig. 1: A visualization of ND leaf parties arranged on a dimension 3 hypercube, where there
are only N × D main parties, including N main parties for each MPCitH run, once per
dimension k ∈ [D].

3.2 Leaf witness share generation
For SDitH [FJR22] the master seed is expanded into N party seeds. The witness shares for
parties 1, . . . , N − 1 are then generated by expanding these seeds into random JxK, JQK, andJPK in their respective domains. And the shares for party N are defined to be the difference
between the sum of the random shares for parties 1, . . . , N − 1, and the witness x,Q,P.

In our protocol, it is necessary to generate ND leaf seeds, from which the polynomial
shares and other randomness (e.g. Beaver triple shares) are generated. In practice, this part
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Algorithm 1 ZK proof from Syndrome Decoding on a hypercube in the head
Input: Both parties have H = (H ′|Im−k) ∈ F(m−k)×m

SD and the syndrome y ∈ F(m−k)
SD .

The prover knows x ∈ Fm
SD with y = Hx and wt(x) ≤ w.

Round 1 (Computation of witness):
1. Choose E ⊂ [m] such that |E| = w and the non-zero coordinates of x are in |E|.
2. Compute Q(X) =

∏
i∈E(X − γi) ∈ Fpoly(X).

3. Compute S(X) ∈ Fpoly(X) by interpolation over the coordinates of x.
4. Compute P (X) = S(X) ·Q(X)/F (X) with F (X) ∈ Fpoly(X) s.t. F (X) =

∏m
i=1(X − γi).

5. Sample a root seed: seed← {0, 1}λ.
6. Expand root seed seedi recursively using TreePRG to obtain ND leafs and (seedi′ , ρi′)
7. Initialize each main party share to zero: The index of a party is (k, j) ∈ [1, . . . , D]× [1, . . . , N ] and contains all
leaf parties whose k-th coordinate is j
for each party (k, j) ∈ [1, . . . , D]× [1, . . . , N ] do

Set JxAK(k,j), JQK(k,j), JPK(k,j), JaK(k,j), JbK(k,j), and JcK(k,j) to zero.
8. Generate polynomial shares (at leaf level):
for each leaf i′ ∈ [1, . . . , ND] do

if i′ ̸= ND then
{JaKi′ , JbKi′ , JcKi′} ← PRG(seedi′), (JxAKi′ , JQKi′ , JPKi′)← PRG(seedi′)
statei′ = seedi′

elseJaKND , JbKND ← PRG(seedND ), JcKND = ⟨a,b⟩ −
∑

i′ ̸=ND JcKi′JxAKND = xA −
∑

i′ ̸=ND JxAKi′JQKND = Q−
∑

i′ ̸=ND JQKi′ , JPKND = P−
∑

i′ ̸=ND JPKi′ ,
aux = (JxAKND , JQKND , JPKND , JcKND ), and stateND = seedND ||aux

add the leaf party’s shares to the corresponding main party share and represent the leaf party by its index on
the hypercube i′ = (i1 . . . iD), where ik ∈ [1, . . . , N ]

for each main party index p in {(1, i1), (2, i2), ..., (D, iD)} doJxAKp += JxAKi′ , JQKp += JQKi′ , and JPKp += JPKi′JaKp += JaKi′ , JbKp += JbKi′ , and JcKp += JcKi′
10. leaf parties commit to their state comi′ = Com(statei′ , ρi′).
11. Compute h = Hash(com1, . . . , comND ) and send to the verifier

Round 2 (Get evaluation points):
The verifier picks t challenge points, which we denote as vectors r ∈ Ft

points and ϵ ∈ Ft
points, and sends (r, ϵ) to

the prover.

Round 3: For each axis k ∈ [1, . . . , D] execute Algorithm 2 between the main parties
(k, 1), . . . , (k,N) → (JαKk, JβKk, JvKk). Prover builds hash h′ = Hash(H1, . . . , HD) where Hk ←
Algorithm2(JxAK, JQK, JPK, JaK, JbK, JcK, r, ϵ) and sends h′ to the verifier.

Round 4: Verifier uniformly picks (i∗1, . . . , i
∗
D)← [1, . . . , N ]D and sends it to prover.

Round 5: Prover sends (statei1,...,iD , ρi1,...,iD ) ∀ (i1, . . . , iD) ̸= (i∗1, . . . , i
∗
D).

Prover also sends com(i∗1 ,...i
∗
D

), JαK(i∗1 ,...,i∗D), JβK(i∗1 ,...,i∗D)

Verification: Verifier accepts if and only if:
1. For each i′ ̸= i∗, expand all states to get leaf party states (they have D logN seeds in the sibling path, and

each of these is expanded down to the leaf party level, giving ND − 1 leaves), and use comi∗ provided. Then
compute h and verify that it is equal to the one from Step 12, where h = Hash(com1, . . . , comi∗ , . . . comND )

2. For(k ∈ [1, . . . , D]) : Run Alg. 3 to get JαK, JβK, JvK, and each of the Hk and check that:
(a) α,β,v is the same for all D runs of Algorithm 3.
(b) H = Hash(H1, . . . , HD) agrees with h′ provided in Round 3.
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Algorithm 2 Execute Π on a full set of parties
Input: JxAK, JQK, JPK, JaK, JbK, JcK, r, ϵ.
Output: JαK, JβK, JvK, H

Parties locally set JxBK = y −H′JxAK.
Parties locally compute JSK via interpolation of JxK = (JxAK | JxBK).
Compute JαK, JβK, JvK coordinate-wise:
for l ∈ [t] do

Parties locally evaluate JS(rl)K, JQ(rl)K, JP(rl)K.
Parties set JαlK = ϵlJQ(rl)K + JalK.
Parties set JβlK = JS(rl)K + JblK.
Parties open JαlK and JβlK to get αl, βl.
Parties locally set

JvlK = −JclK + ⟨ϵlF (rl) · JP (rl)K⟩+ ⟨αl, JblK⟩+ ⟨βl, JalK⟩ − ⟨αl, βl⟩.

Compute H = Hash(JαK, JβK, JvK)

1 hidden
share

to disclose N − 1 leaf shares, we need
to reveal only log2(N) seeds
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Fig. 2: Witness generation via seed expansion for a depth 3 tree. The ND leaf party witness
shares are derived directly from their seeds, but the N · D main party witness shares are
defined as the sum of their leaf party shares. Subsequently To open all the leaf seeds except
one, we reveal only the log(ND) sibling nodes along the hidden path (which requires log(ND)
space).

is done identically to in [FJR22], whereby TreePRG is used to recursively expand the master
seed until one has ND leaf seeds.

As depicted in Figure 2, the master seed is expanded to generate the leaf party seeds,
which are then expanded into the leaf witness shares in the canonical way. The leaf parties
are indexed by i′ ∈ [1, . . . , ND]
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Algorithm 3 Verify a partition of parties
Input: Secret-shares JxAK, JQK, JPK, JaK, JbK, JcK, r, ϵ. These secret-shares have already been aggregated across

all disclosed leaf parties.
Index i∗ and communication α,β,v of the hidden party i∗.

Output: JαK, JβK, JvK, H
Parties locally set JxBK = y −H′JxAK.
Parties locally compute JSK via interpolation of JxK = (JxAK | JxBK).
Compute JαK, JβK, JvK coordinate-wise:
for l ∈ [t] do

if Party does not contain hidden leaf party i∗ then
Parties locally evaluate JS(rl)K, JQ(rl)K, JP(rl)K.
Parties set JαlK = ϵlJQ(rl)K + JalK.
Parties set JβlK = JS(rl)K + JblK.
The party that contains the hidden leaf party i∗ adds the contribution αl, βl

Parties open JαlK and JβlK to get αl, βl.
Parties locally set

JvlK = −JclK + ⟨ϵlF (rl) · JP (rl)K⟩+ ⟨αl, JblK⟩+ ⟨βl, JalK⟩ − ⟨αl, βl⟩.

else
The party that contains the hidden leaf party i∗ sets JvlKi∗ so that vl = 0

Compute H = Hash(JαK, JβK, JvK)

3.3 Leaf witness shares on a hypercube

A geometric mapping is necessary in order to manipulate the results in the hypercube setting
described in Section 3.1. Section 3.2 explained how to output ND leaf parties and their witness
shares. To arrange them on a hypercube, we rewrite the index i′ ∈ [1, . . . , ND] equivalently
as i′ = (i1, . . . iD) where each ik ∈ [1, . . . , N ].

To reveal the entire hypercube, except for a single leaf party, it is enough to reveal
the sibling path of the hidden leaf party. The verifier (who will eventually receive ND − 1
leaf nodes) can reconstruct the hypercube geometry themselves, using the same indexing
convention as the signer.

3.4 Main party witness shares

To construct the witness shares of the main parties in dimension k, one aggregates the shares
of all leaf parties (i1, . . . , iD) which share the same index ik. E.g., in dimension 1, the share
of Q of the jth main party, denoted (1, j), would be JQK(1,j) = ∑

i′2,...,i
′
D
JQK(j,i′2,...,i′D), which

is a sum over ND−1 of the leaf party shares of Q Figure 1 is helpful to visualize how this
aggregation is performed.

One can consider that the following high-level flow is used to generate and ultimately
aggregate the shares in order to generate the main party shares. On the left hand side the
TreePRG is used as a compression technique; in the middle, the leaf seeds are expanded into
shares and arranged in a hypercube geometry; on the right the shares are aggregated in order
to provide the MPCitH inputs. It is helpful to think of the TreePRG compression and the
hypercube arrangement/aggregation as separate techniques, which are combined here for the
purposes of generating efficient signatures.

seed
TreePRG−−−−−−→ {seedi′}i′∈[ND]

PRG−−−→ {JxKi′ , JPKi′ , JQKi′}i′∈[ND]

∑
−→ JxKk, JPKk, JQKk,
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3.5 Proofs of security
The proofs of this section closely follow those set out in [FJR22] due to the similarity of
the underlying hardness assumptions. Protocol 1 implicitly defines the interaction between
an honest prover that executes the odd rounds 1,3,5 and a honest verifier who executes the
even rounds 2,4. Throughout the security proof, a general prover, who does not necessarily
know the secret, is a party that reads and produces the same type of messages as the honest
prover, without necessarily following the algorithm.

We first show that an honest prover is accepted with certainty, and conversely, any prover
who commits to a bad witness that does not encode the SD secret in the first round has
probability lower than ϵ ≈ 1/ND of being accepted. Consequently, any prover that has a
higher rate of acceptance necessarily knows the secret. Then, we prove that the protocol is
zero knowledge, since its transcript distribution can be simulated without the secret.

Theorem 1 ((Perfect) Completeness). Protocol 1 is perfectly complete. That is to say,
a prover with knowledge of a witness w (contained in sk) who performs P(sk) correctly, will
be accepted by a verifier V(pk) with probability 1.

Proof. Proof of Theorem 1 For any choice of randomness for P,V, the computations of P
pass all of the the verification checks of V by construction.

Lemma 4. A prover P̃ that commits to a bad witness s.t. S ·Q ̸= P ·F in Round 1 of protocol
1 and is unable to find a commitment/hash collision has probability ≤ ϵ = (p+ (1− p)/ND)
of being accepted by an honest verifier V.

Proof of Lemma 4. For V to accept, given S ·Q ̸= P · F, one of two scenarios must occur:

1. the random value which JvK encodes happens to be zero with probability p, or otherwise.
2. P̃ must cheat on the communications he sends, which correspond to the MPCitH protocols

on the main parties, so that it appears that the resulting v is the zero vector.

After the initial commitment, V sends the challenge points r, ϵ. In the first scenario, with
probability p the plaintext vector v generated by the MPC protocol is the zero vector (i.e.
on all t points, it happens to be the case that δ = (S ·Q−P ·F)(r) is zero, and/or that the
beaver triplets committed in round 1 satisfy c− ab = ϵδ.)

However, with probability (1 − p), at at least one of the challenge points, S · Q(ri) ̸=
P ·F(ri), meaning at least one of the coordinates of v = c− ab− ϵδ is non zero. In this case,
the communications JαK, JβK, JvK resulting from an honest execution will not be accepted
therefore P̃ must alter some communications so that the resultant v is the zero vector.

In Round 3, P̃ commits to his communications to D independent SDitH runs (one for each
dimension on the hypercube). Let us assume that he needs to cheat on the communications
of a single run (out of D), and without loss of generality, this can be cheating on the shares
of α (cheating on β or v) are equally valid).

The JαK in this dimension consist of N main party shares JαKi. So P̃ must pick one to
cheat on, having 1/N chance of success. Each of the main party shares consists of the sum of
N (D−1) leaf shares in that particular slice, and all but one of the leaf shares will be opened.
Therefore P̃ must cheat on the share JαK of a single leaf party s, shifting its value by δ ̸= 0.
Cheating on more than one leaf party means certain detection as all but one leaf parties are
opened, and cheating on none means that v is not the zero vector so won’t be accepted.

However, leaf party s belongs to a single main share for each run of SDitH (one for each
dimension of the hypercube). In each of these other main shares, their value for JαK must
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be shifted by the same δ, as they cannot offset this value using other leaf parties, as all but
one leaf party is revealed in Round 5 so this would mean certain detection. Thus each main
share to which s belongs must cheat in their respective SDitH. No other cheating pattern is
possible, because all leaf parties bar one are revealed in Round 5, so only one leaf party can
cheat by δ, and this is exhibited in one main party for each dimension.

The only way to avoid detection using this method, is if the (uniformly random) challenge
i∗ in Round 4 gives the exact coordinates of s, as this means the main party to which s
belongs in each dimension is the one that remains hidden. This has probability (1/N)D, and
is equivalent to the challenge leaving hidden the exact leaf party s out of ND leaf parties.
Hence, in a non-false positive scenario, P̃ has ≤ 1/ND chance of cheating. This yields the
bound p+ (1− p)/ND for the prover to be accepted using a bad witness in round 1.

Theorem 2 (Soundness). If an efficient prover P̃ with knowledge of only (H,y) can
convince verifier V with probability

ϵ̃ = Pr[⟨P̃,V⟩ → 1] > ϵ =
(
p+ (1− p)

1

ND

)
, (10)

where p is bounded in Equation 9, then there exists an extraction function E that produces a
commitment collision, or a good witness x′ such that Hx′ = y and wt(x′) < w by making an
average number of calls to P̃ is bounded from above:

4

ϵ̃− ϵ
·
(
1 +

2ϵ̃ ln 2

ϵ̃− ϵ

)
(11)

Should a prover P̃ cheat with probability p ≤ ϵ then this is not an issue, as it corresponds
to ordinary vanilla cheating, i.e. cheating on a particular node, hoping that node does not
have to be revealed at challenge time, or by hoping to guess some polynomials S,Q,P,F
which do not satisfy S ·Q = P · F in general, but which are equal at the challenge points
which are subsequently selected.

Sketch of proof of Theorem 2: The proof largely follows the soundness proof for the original
SDitH [FJR22] protocol. The main difference lies in the details of witness extraction. More
specifically, in the argument why we can extract. In our case, we are running D instances of
SDitH in parallel. For each of these instances, the state of each party is secret shared. These
secret shares are arranged in a hypercube, such that every share is used as a secret share of D
different instances. The first message contains a commitment to each of these secret shares.

Regarding extraction we prove (as for SDitH) that we can extract a candidate witness (an
x s.th. Hx = y) as soon as we see two accepting transcripts that agree on the commitments,
i.e., the first message, but disagree on the second challenge. As we always open all but one
commitment, and this second challenge that decides which commitment not to open differs for
the two transcripts, we learn the openings of all commitments (assuming that the commitment
scheme is binding). It remains to argue that this is sufficient for extraction.

The soundness proof for the original SDitH protocol also shows that a candidate witness
can be extracted from two accepting transcripts that share the same commitments but differ in
the second challenge. This does not immediately imply extraction in our case as we committed
to secret shares of the state and communications of the parties. However, we can rephrase
the extraction condition shown for SDitH as the following: Extraction is possible given the
opened state and communication for all parties, so long as each party is verified in at least one
accepting transcript. As only one commitment is not opened per transcript, there is the state
and communication of exactly one party per SDitH proof that is not verified in each transcript.
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As the second challenges differ between the two transcripts per assumption, there has to be at
least one dimension, in which the unopened leaf party secret shares belong to different main
parties. In this dimension, we have obtained the openings of all main parties. Furthermore,
in this dimension, the state and communication of each main party was verified during the
verification of at least one of the transcripts. Therefore, we can apply the extraction argument
of the original SDitH protocol. Equivalently, one now has knowledge of all leaf parties which
together represent a complete sharing of the witness, and by the argument above, all leaf
parties have been verified in at least one transcript. It remains to show that the candidate
witness is a good witness, i.e., has wt(x) < w. This follows the same argument from SDitH
proof.

Proof of Theorem 2. Assume the commitment scheme is perfectly binding (as opposed to
computationally binding), as per Definition 8. For two sets of transcripts with the same
initial commitment h = Hash(com1, . . . comND), but different challenge leaf parties i∗ ̸= j∗,
either:

– JxK, JQK, JPK differ and one finds a collision in the commitment hash, or
– the openings are equal in both transcripts, and therefore the shares JxK, JQK, and JPK are

also equal in both transcripts.

In the second case, the witness can be recovered from two transcripts with i∗ ̸= j∗ where
i∗, j∗ ∈ [1, . . . ND] are the challenge indices in the first and second transcripts respectively.
This is because in the first case the verifier receives the ND − 1 leaf parties which are not i∗,
and in the second transcript they receive the ND−1 leaf parties which are not j∗. Thus with
both transcripts, the verifier knows the full set of witness shares and so can reconstruct the
full witness by summing all of the ND leaf party shares.

Now we explain why this means that the extractor function is able to learn a good
witness. Firstly, consider the hypercube geometry: i∗ ̸= j∗ means that their coordinates in
the hypercube are not equal in at least one position (i∗1, . . . , i

∗
D) ̸= (j∗1 , . . . , j

∗
D). Let the first

coordinate in which they differ be i∗k ̸= j∗k . Then for the MPCitH protocol for dimension
k, one has two transcripts with different hidden (main) parties, where the sum of witness
shares for both runs has been successfully verified. This scenario almost identically resembles
the protocol of [FJR22], thus the remainder of the proof of soundness proceeds in the same
manner.

In the following we demonstrate that to generate two such accepted transcripts with
the same initial commitment but different challenge points, the witness must be good. CallJxK, JQK, and JPK a good witness if

S ·Q = F ·P.

Rh is the random variable for the randomness used to generate the initial commitment, with
rh being a given value of Rh.

The extractor works by simple application of the Forking lemma, lemma 2: P̃ is run with
honest V until successful transcript T1 is found, having second challenge i∗. Then rewind P̃,
using the same randomness rh as in T1 until one gets a successful transcript T2 with different
second challenge j∗. Then extract the witness. If the witness is bad, start over.

Next we estimate how many calls to P̃ the extractor E makes. Let α ∈ (0, 1) such that
(1 − α) · ϵ̃ > ϵ. We say rh is ‘good’ if Pr[succP̃ |rh] ≥ (1 − α) · ϵ̃. By the splitting lemma
(Lemma 1), Pr[rh is good|succP̃ ] ≥ α, which implies that a good randomness can be found
after gathering roughly 1/α successful transcripts. Also, by (the converse of) Lemma 4, when
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rh is good, since the probability (1 − α)ϵ̃ > ϵ, then the initial commitment provided by the
transcript necessarily encodes a good witness, that can be extracted from any other successful
transcript that starts from rh.

Given a good transcript T1 (i.e. a success in the outer loop) we now provide a lower bound
on the number of iterations of the inner loop in order to find another good transcript T2 with
the same randomness rh such that i∗ ̸= j∗.

Pr[succP̃ ∩ i∗ ̸= j∗|rh good] = Pr[succP̃ |rh good]− Pr[succP̃ ∩ i∗ = j∗|rh good]

≥ Pr[succP̃ |rh good]− 1

ND

≥ (1− α)ϵ̃− 1

ND

≥ (1− α)ϵ̃− ϵ.

(12)

Then by running P̃ for L repetitions one has a probability greater than 1/2 of obtaining
a second transcript T2 with a different challenge leaf party than T1, where both T1 and T2

are generated using the same (good) randomness rh, where

L >
ln 2

ln 1
1−((1−α)ϵ̃−ϵ)

≃ ln 2

(1− α)ϵ̃− ϵ
. (13)

Denote the expected number of calls to P̃ as E(P̃). Then E(P̃) can be written as a
recursive formula; as a function of firstly the probability of succeeding in the outer loop to
obtain T1, and secondly the probability of obtaining T2 with L calls once one has found a
successful transcript T1. Step by step, this is

1. Make an initial call to P̃.
2. If we do not find T1, with probability (1 − Pr[succP̃ ])), then repeat the procedure from

Step 1.
3. If we find a successful T1, then rh is good with probability α by the splitting lemma

(Lemma 1). Then make L calls to P̃, after which there is probability above 1/2 of success.
If successful, terminate, else return to Step 1.

4. The probability that rh is bad is 1− α. Thus, there is no guarantee on the probability of
finding T2. Make L calls to P̃ (because we do not yet know that rh is bad), then when
unsuccessful, return to Step 1.

Consequently, if a call in Step 1 to P̃ does not yield T1, then repeat Step 1. If Step 1 is
successful, giving T1, then we perform L further calls seeking to obtain T2, because we do
not know a priori whether rh is good or bad. If rh is good (with probability α), then there
is 1/2 probability that we find T2 and the algorithm terminates. With rh good, there is also
1/2 probability that we do not find T2. If rh is bad (with probability (1 − α), there is no
guarantee about finding T2 so to provide an upper bound for the number of calls to P̃ we say
that this part is always unsuccessful at finding T2. Thus

Pr[no T2|succP̃ ] = Pr[no T2|rh good] + Pr[no T2|rh bad] = α/2 + (1− α),

and in this case return to Step 1. So the expression for E(P̃) can be written

E(P̃) ≤ 1 + (1− Pr[succP̃ ])E(P̃)︸ ︷︷ ︸
Do not find T1

+Pr[succP̃ ]
(
L+

(
1− α

2

)
E(P̃)

)
︸ ︷︷ ︸

Find T1

, (14)
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which reduces to
E(P̃) ≤ 2

αϵ̃

(
1 + ϵ̃L

)
=

2

αϵ̃

(
1 +

ϵ̃ ln 2

(1− α)ϵ̃− ϵ

)
. (15)

Define (1 − α)ϵ̃ = 1
2(ϵ + ϵ̃) , i.e. halfway between ϵ and ϵ̃ in order to obtain a formula in

terms of just ϵ and ϵ̃. Then we arrive at the upper bound

E(P̃) ≤ 4

ϵ̃− ϵ

(
1 +

2ϵ̃ ln 2

ϵ̃− ϵ

)
. (16)

We now prove that the protocol is zero-knowledge. The main intuition is that any prover
who learns the challenge points r, ϵ from Round 2 challenge before committing to the state
on Round 1 can update c in the aux to force a false positive. Similarily any prover who learns
the challenge coordinates i∗ from Round 4 before committing to the MPC communications
on Round 3 can alter the communication of the hidden party such that v becomes the zero
vector. The following simulator exploits the second option.

Theorem 3 (Honest-Verifier Zero Knowledge (HVZK)). If the PRG of Algorithm
1 and commitment Com are indistinguishable from the uniform random distribution, then
Algorithm 1 is Honest-Verifier Zero Knowledge.

Proof of HVZK. To prove the HVZK property, we construct a simulator S which outputs
transcripts of Algorithm 1 which are computationally indistinguishable from real transcripts.
For this we assume that the PRG of Algorithm 1 is (t, ϵPRG)-secure and the commitment
Com is (t, ϵCom)-hiding. For ease of reading, in the following, we sometimes denote general
leaf party indices (ik1 , . . . , ikD) by i′, and the challenge party index (i∗1, . . . , i

∗
D) as simply i∗.

First consider a simulator, S, described in Algorithm 4 which produces the transcript
responses (COM,CH1,RSP1,CH2,RSP2):

Next we demonstrate that this simulator produces indistinguishable transcripts from the
distribution of real transcripts by starting with a simulator that produces ‘true’ transcripts,
and altering the outputs section-by-section until arriving at S defined above. At each simu-
lator alteration we argue why the distribution remains unchanged.

True transcripts (v0): This takes as input a witness xA as well as the honest verifier’s
challenges (r, ϵ, i∗). It then executes Algorithm 1 correctly, hence its output distribution is
the ‘correct’ distribution.

Simulator v1: In this simulator, the only difference versus v0 is that randomness in
leaf party i∗ is replaced with true randomness. If i∗ = (N, . . . , N) then JxAKND , JQKND , andJPKND are generated in the usual way. So the witness shares of all leaf parties still sum to give
the input witness (and by extension, all parties for each MPCitH run in [1, . . . , D]), therefore
only JaKND and JbKND are random (and by extension, so are the shares JaK, JbK for the D
parties [(1, N), . . . , (D,N)] which contain challenge leaf party i∗ = ND). We can see that the
difficulty in distinguishing the output of Simulator v1 from the real distribution is equal to
distinguishing ϵPRG from true randomness.

Simulator v2: Replace JxAKND , JQKND , JPKND , and JcKND with true randomness (i.e.
sample these shares randomly, and not via the protocol). This means that JxAK, JQK, and JPK
are now independent of input witness, so the inputs to S are reduced to the challenges (ch1,
ch2).

For i∗ = ND this means that only JαKi∗ , JβKi∗ are affected because in this scenario aux is
not sent in RSP2. These shares do not change in distribution from Simulator v1 to Simulator
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Algorithm 4 HVZK simulator
Sample seed←$ {0, 1}λ.
Generate (seedi′ , ρi′) for all leaf parties via TreePRG(seed).

Step 1: Sample challenges
– CH1 = {r, ϵ} ← Ft

points × Ft
points

– CH2 = i∗ ← [1, . . . , ND]
Step 2: generate ND leaf party states
Expand root seed seedi recursively using TreePRG to obtain ND leaf states and randomness (seedi′ , ρi′)

Step 3: generate leaf party commitments and witness shares
for i′ ̸= i∗ do

Compute comi′ = Hash(statei′ , ρi′)
if i′ ̸= ND then

Expand the leaf party seeds into witness shares
else

To generate aux for the last leaf party, i′ = ND, randomly draw JxAKND , JQKND , JPKND , and JcKND .
for i′ = i∗ do

Draw comi∗ at random
Compute initial commitment COM = Hash(com1, . . . , comi∗, . . . , comND )

Step 4: generate party communications
Draw JαKi∗ and JβKi∗ uniformly at random from their respective domains.
for k ∈ [1, . . . , D] do

for ik ̸= i∗k do
Get communications {JαKik , JβKik , JvKik} as stated in Algorithms 1, 2

for i∗k do
Compute party communication shares JαKi∗

k
, JβKi∗

k
, JvKi∗

k
by running Π on the sum of the witnesses

of the N − 1 revealed leaf parties in their respective slices, as described in Algorithm 1, then add onJαKi∗ and JβKi∗
Set JvKi∗ = −

∑
i′ ̸=i∗JvK.

Step 5: Output transcript (COM, CH1, RSP1, CH2, RSP2):
RSP1 = h′ = Hash(H1, . . . , HD) where Hk ← Alg. 2(JxAK, JQK, JPK, JaK, JbK, JcK, r, ϵ)
RSP2 = comi∗ , JαKi∗ , JβKi∗ , {(statei1,...,iD , ρi1,...,iD ) ∀ (i1, . . . , iD) ̸= (i∗1, . . . , i

∗
D)}.

v2 because we already have in Simulator v1 the JαKi∗ and JβKi∗ which appear to be uniformly
distributed and are unaffected by the other parties, and JvKi∗ = −

∑
i ̸=i∗JvKi.

For i∗ ̸= ND only aux is affected in the transcript. In Simulator v1, aux is computed via
the sum of true uniform randomness of leaf party i∗, and every other leaf party’s pseudo-
randomness, also generating aux via true uniform randomness does not alter the distribution
between Simulators v1 and v2.

Simulator v3: In this version, the JαKi∗ and JβKi∗ are also drawn using true randomness
(affecting communications of party i∗). However these already appear to be uniformly dis-
tributed in Simulator v2, hence the output distribution does not change between Simulator
v2 and v3. The outputs of Simulator v3 (RSP1, RSP2) are hence indistinguishable from those
of an honest execution of Algorithm 1.

To obtain a global HVZK simulator we take the simulator described in Algorithm 4 and
apply the hiding property of comi∗ , with the final simulator performing as follows:

1. Generate random challenges ch1, ch2.
2. Run Simulator v3 to get RSP1, RSP2.
3. For initial leaf party commitments i′ ̸= i∗ compute comi′ = Com(statei′ , ρi′).
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4. For leaf party i∗, draw comi∗ at random.
5. Set initial commitment to Com = Hash(com1, ..., comND)

The output of the global HVZK simulator is (t, ϵPRG + ϵCom) indistinguishable from the real
distribution.

4 Signature based on Syndrome Decoding with hypercube
MPCitH

We define the construction of an signature scheme based on the zero knowledge proofs outlined
in Section 3. In order to do this, we describe the non-interactive transformation of the proof.
The explicit construction for using many proofs in parallel to achieve sufficient soundness is
also described in Algorithm 6, as well as a proof of security for the construction.

4.1 Description of the Signature scheme
A signature scheme is a tuple of algorithms (KeyGen, Sign,Verify). KeyGen generates a public
key, secret key pair (pk, sk). Sign(m, sk) takes as input a message and secret key, and returns
a signature σ. Verify(m, pk, σ) takes as input a message, a public key, and a signature, and
outputs accept deterministically if the message m has been signed with the secret key sk
associated with pk, and reject otherwise. We apply the Fiat-Shamir transform to the 5 rounds
of Algorithm 1 in order to make it non-interactive.

The use of the hypercube method for MPCitH enables one to obtain greater soundness
in a single instantiation of the SDitH problem before the number of MPC parties makes
the protocol computationally infeasible. This therefore means that fewer repetitions of the
algorithm are required to reach the same security level.

Specifically, the expensive part of the communication is that of sending aux (that is the
correction to the randomly generated polynomials) which ensures that the overall sum of
the shares gives the correct witness. The signature that follows thus transmits fewer of the
expensive parts (i.e., aux), allowing for smaller overall communications at a given security
level.

4.2 A Non-Interactive Transformation
By application of the Fiat-Shamir transformation, we achieve non-interactivity in Rounds 1
to 5 of Algorithm 1 via the same methodology as described in [FJR22].

Explicitly, Challenges 1 and 2 are generated non-interactively by hashing the transcript
up to that point, and then expanding the hash output into Challenge 1 and 2:

– A hash is generated from the initial commitments across all τ parallel repetitions:

h2 = Hash2(m, salt, com[1], . . . com[τ ]).

The challenge is then expanded via PRG(h2) to give challenge points {r[e], ϵ[e]}e∈τ that
make up Challenge 1.

– A hash is generated from the transcript information up to the end of Round 4:

h3 = Hash4(m, salt, h2, {H [e]
1 , . . . , H

[e]
D }e∈[τ ]),

and is subsequently expanded via PRG(h4) to obtain challenge leaf parties {i∗[e]}e∈[τ ].
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It is necessary at this point to consider the attack on Fiat-Shamir-transformed schemes
[FS87; AAB+02]. The attack can be considered an improvement in the time to brute-force
a transformed protocol. The key observation is that for protocols with more than one chal-
lenge of the verifier to be transformed, the prover often only needs to guess correctly one
of the transformed challenges, so the security of each challenge can no longer be considered
independently. This means that protocols with 5 passes or more are affected.

In the forgery attack presented by Kales and Zaverucha [KZ20], the forgery is achieved
by breaking the two rounds of the protocol separately, therefore, resulting in an additive cost
rather than the expected multiplicative cost. The cost associated with forging a transcript
that passes the first 5 rounds of Algorithm 1 relies on finding an optimal τ ′ repetition rate
where we guess the first challenge that results in the lowest cost:

costforge := min
0≤τ ′≤τ

{
1∑τ

i=τ ′
(
τ
i

)
pi(1− p)τ−i

+ (ND)
τ−τ ′

}

≤ min
0≤τ ′≤τ

{(
1

p

)τ ′

+ (ND)
τ−τ ′

}
, (17)

where p is the probability of a false positive F given in Equation 9. The resulting costforge is
much lower than 1/ϵτ , therefore the parameters are necessarily adjusted to ensure that the
required security level is still met.

4.3 Key Generation

The hard problem for this signature scheme is a random syndrome decoding instance (H, y)
which has a known solution x of small weight, such that Hx = y and wt(x) ≤ w. Generation
of H is done via expansion of a pseudorandom λ-bit seed (for security level λ). The same
seed generates some random x of small weight, and then y is computed as the syndrome of
x with respect to H.

Algorithm 5 Key Generation.
Input: seed s ∈ {0, 1}λ

seedH ← PRG(s)
x← PRG(s)
H← PRG(seedH)
y = Hx
pk = (seedH ,y), sk = s
Return: (pk, sk)

For simplicity, one can write pk = (H, y) and sk = (H, y, x), removing the extra seed
expansion steps from subsequent descriptions.
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Algorithm 6 SD-based signature MPCitH on a hypercube
Input: Secret key sk = (H, y, x), message m ∈ {0, 1}∗

Sample salt←$ {0, 1}2λ
Part 1: Build proof witness
1. Choose E ⊂ [m] such that |E| = w and the non-zero coordinates of x are contained in |E|.
2. Compute Q(X) =

∏
i∈E(X − γi) ∈ Fpoly(X)

3. Compute S(X) ∈ Fpoly(X) by interpolation over the coordinates of x

Part 1.1: Construct leaf party MPCitH inputs (for each repetition e ∈ [τ ])
1. Sample a root seed: seed← {0, 1}λ
2. Generate ND leaf seeds
Expand root seed seedi recursively using TreePRG to obtain ND leaf states and randomness (seedi′ , ρi′)

Initialize each main party share to zero: The index of a party is (k, j) ∈ [1, . . . , D] × [1, . . . , N ] and contains all leaf
parties whose k-th coordinate is j
for each party (k, j) ∈ [1, . . . , D]× [1, . . . , N ] do

Set JxAK(k,j), JQK(k,j), JPK(k,j), JaK(k,j), JbK(k,j), and JcK(k,j) to zero.

Generate polynomial shares (at leaf level):
for each leaf i′ ∈ [1, . . . , ND] do

if i′ ̸= ND then
{JaKi′ , JbKi′ , JcKi′} ← PRG(salt, seedi′)
(JxAKi′ , JQKi′ , JPKi′)← PRG(salt, seedi′)
statei′ = seedi′

elseJaKND , JbKND ← PRG(salt, seedND )JcKND = ⟨a,b⟩ −
∑

i′ ̸=ND JcKi′JxAKND = xA −
∑

i′ ̸=ND JxAKi′JQKND = Q−
∑

i′ ̸=ND JQKi′JPKND = P−
∑

i′ ̸=ND JPKi′
aux = (JxAKND , JQKND , JPKND , JcKND )
stateND = seedND ||aux

add the leaf party’s shares to the corresponding main party share:
for each main party index p in {(1, i1), (2, i2), ..., (D, iD)} doJxAKp += JxAKi′ , JQKp += JQKi′ , and JPKp += JPKi′JaKp += JaKi′ , JbKp += JbKi′ , and JcKp += JcKi′

Leaf parties commit to their state: com[e]

i′ = Hash0(salt, e, i
′, state

[e]

i′ )
Commit to the full problem instance state:
for e ∈ [τ ] do

com[e] = Hash1(salt, e, com[e]
1 , . . . , com[e]

ND )

Part 2: Compute Challenge 1
Compute h2 = Hash2(m, salt, com[1], . . . , com[τ ]).
Extend hash {r[e], ϵ[e]}e∈[τ ] ← PRG(h2), where (r[e], ϵ[e]) ∈ Ft

points × Ft
points.

Part 3: On all main parties (1, 1), . . . , (D,N), obtain communications:
Note: we obtain a different split of the {Jα[e]K, Jβ[e]K, Jv[e]K} for each D
for e ∈ [τ ] do

for k ∈ [1, . . . , D] do
Algorithm 2→ {Jα[e]K, Jβ[e]K, Jv[e]K}k

→ H
[e]
k = Hash3(salt, e, {Jα[e]K, Jβ[e]K, Jv[e]K}k)

Part 4: Compute Challenge 2
Compute h4 = Hash4(m, salt, h2, {H [e]

1 , . . . , H
[e]
D }e∈[τ ])

Expand hash {i∗[e]}e∈[τ ] ← PRG(h4), with i∗ ∈ [ND], or equivalently i∗ = (i∗1, . . . , i
∗
D) ∈ [1, . . . , N ]D

Part 5: Prover sends salt|h2|h4|
(
state

[e]

i′ ̸=i∗ |com[e]
i∗ |{Jα[e]Ki∗[e] , Jβ[e]Ki∗[e]}

)
e∈[τ ]

to verifier
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Algorithm 7 Signature verification
Input: Public key pk = (H, y), signature σ, and message m ∈ {0, 1}∗

1. Read signature into component parts

σ = salt|h2|h4|
(
state

[e]

i′ ̸=i∗ |com[e]
i∗ |{Jα[e]Ki∗[e] , Jβ[e]Ki∗[e]}

)
e∈[τ ]

2. Generate Challenge 1: extend hash {r[e], ϵ[e]}e∈[τ ] ← PRG(h2)
3. Evaluate MPC on main parties:
for e ∈ [τ ] do

for i′ ̸= i∗ do
com[e]

i′ = Hash0(salt, e, i
′, state

[e]

i′ )

com[e] = Hash1(salt, e, com[e]
1 , . . . , com[e]

ND )
Simulate MPC protocol on main parties
for Dimension k ∈ [1, . . . , D] do

Get JαK, JβK, JvK, and generate the H
[e]′

k :
for Revealed main parties ik ̸= i∗k do

Aggregate shares to get JxAK, JQK, JPK, JaK, JbK, JcK for main parties
Run Alg 3. to get {JαK, JβK, JvK}k, and H

[e]′

k

Compute: h′
2 = Hash2(m, salt, com[1], . . . , com[ND ])

Compute: h′
4 = Hash4(m, salt, h′

2, {H
[e]′

1 , . . . , H
[e]′

D }e∈[τ ])
Output: Accept: if h′

2 = h2 and h′
4 = h4, else: Reject.

4.4 Proof of security
Theorem 4 (Security). Let the signature be (t, ϵPRG)-secure and with adversary of ad-
vantage at most ϵSD against the underlying syndrome decoding problem. Let Hash0, Hash1,
Hash2, Hash3, Hash4 be random oracles with output length 2λ bits. The probability of such
an adversary producing an existential forgery under chosen message attack (EU-CMA) is
bounded from above by:

Pr(forge) ≤ 3 · (q + τNDqS)
2

2 · 2λ
+

qS(qS + 5q)

2λ

+ qS · τ · ϵPRG +
(
q2 · p′τ

′
+ q4 ·

( 1

ND

)τ−τ ′)
+ ϵSD,

where the adversary makes q0, q1, q2, q3, q4, qS queries to the random oracles, and signature
scheme respectively, where q = max{q0, q1, q2, q3, q4}, and where ϵ is the soundness given in
Theorem 2.

Our security proof is largely inspired by the proof for the SDitH signatures in [FJR22]
which in turn was largely inspired by the proof for Picnic [ZCD+20]. The proof essentially
proceeds in two steps: First, we argue that we can efficiently simulate a signature oracle to the
CMA adversary using only the public key and a HVZK-simulator for the ZKP. In the second
half, we argue that if an adversary succeeds with a success probability that is not explained
by “vanilla cheating”, then we must be able to extract a solution to the SD problem from the
forgery.

The first step requires us to argue that we can simulate the signing oracle by reprogram-
ming the random oracles to match transcripts generated by the HVZK simulator. For this
we have to argue that with overwhelming probability, no (output) collisions occur for any of
the random oracles used (Game 2), and that the values on which we want to reprogram the
random oracle have not been queried before (Game 3). Afterwards, one would usually just
do a game hop using HVZK. As we are following [FJR22] this is slightly more complicated



24 Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, and Yue

as after the ZKP, we introduced a salt for the signature scheme. This salt is also used for the
pseudorandom generation of values of the ZKP when used as a subroutine of the signature
scheme. Hence, we have to argue that this is ok (Games 4-7) following exactly the same
reasoning as [FJR22].

The second half of the proof is traditionally done using a forking lemma argument. How-
ever, like [FJR22] and [ZCD+20], we exploit that the commitments are implemented using
random oracles. Hence, we can simulate these for the adversary and inspect their internal
database after a forgery is submitted. If the adversary used a valid SD solution, this allows
us to extract the solution. It then remains to argue that an adversary that succeeds with a
success probability that is greater than what vanilla cheating allows must have committed to
a valid SD solution. Vanilla cheating here refers to the tactic that exactly achieves the success
probability possible according to the soundness error of the parallel-composed protocol. At
this point we correct a minor imprecision of the SDitH proof, which used q4ε

τ as the search
bound for vanilla cheating the τ -times parallel-composition of SDitH which has soundness
error ε. The correct bound is q2 · p′τ

′
+ q4 · ( 1

ND )τ−τ ′ , with p′τ
′
=

∑τ
i=τ ′

(
τ
i

)
pi(1− p)τ−i ≥ pτ

′ .
This takes into account that one has two different ways to cheat per instance, controlled by
the different challenges, computed as outputs of Hash2 and Hash4.

Proof of Security. In this proof of security, we detail the occurrences in which the true distri-
bution of the signature scheme varies from the modelled distribution in the HVZK simulator,
and we thus quantify each of the events in which the two may differ. Giving an upper bound
on the cumulative probability of these events is required to demonstrate zero knowledge.
In general, these events correspond to collisions in the input to the hash functions, which
in the simulator gives uniformly random output, but for random oracles will give the same
output deterministically, thus differing from the HVZK distribution. For input queries to be
repeated, it is necessary (but not sufficient) that the salt must be the same, therefore we
eventually replace the probability of looking for input collisions with the probability of find-
ing repeated salt, which is strictly larger and easier to analyse. For each event, we consider a
new game, and denote the probability of producing a forgery in game i as Pri(forge). Finally
we demonstrate that if a signer has generated signatures with sufficiently low computation,
then they must indeed know a valid witness. From here we use the same rewinding argument
from the proof of soundness to extract the witness.

Game 1: The adversary A interacts with the true signature. A is able to make queries
to the signing oracle in order to get a valid message, signature pair (m,σ). For A to generate
a forgery, they must produce a valid message, signature pair for a message which has not yet
been queried to the signing oracle. We now seek to upper bound Pr1(forge).

Game 2: Now consider the event of collisions in the output of random oracles Hash0,
Hash1, or Hash3. This changes the probability, respectively, of successfully cheating at either
the leaf party layer, at the commitment to the overall problem instance, or at the commitment
to main party communications. In the case of a collision of the outputs of Hash0, Hash1, or
Hash3, we abort. The number of queries to Hash0, Hash1, or Hash3 is bounded from above
by (q + τ · ND · qS), where q = max{q0, q1, q2, q3, q4}. This is due to qi queries directly to
Hashi, plus the queries which are present from the queries directly to the signing oracle. A
single query to the signing oracle contains τ · ND queries to Hash0 and τ queries to Hash1.
It also contains a single query to Hash2, τ ·D queries to Hash3, and a single query to Hash4.
Thus the probability of a hash collision in Hash0, Hash1, or Hash3 is bounded from above by

|Pr1(forge)− Pr2(forge)| ≤ 3 · (q + τNDqS)
2

2 · 2λ
. (18)
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Game 3: Now consider collisions on input queries. We abort if on any signing query, the
inputs to any of Hashi have been queried previously, either in a prior signing query, or in a
query to any of Hash0,Hash1,Hash2,Hash3,Hash4. For an input query to be duplicated, we
must have at least that the sampled salt must be the same. Therefore we can bound this
probability by

|Pr2(forge)− Pr3(forge)| ≤ qS(qS + q0 + q1 + q2 + q3 + q4)

2λ
≤ qS(qS + 5q)

2λ
, (19)

as in each signing query, the sampled salt could collide with that of any of the queries to any
of the Hashi, or with any of the other queries to the signing oracle.

Game 4: Now replace the hashes h2, h4 with uniform randomness (thus compute the
challenges CH1,CH2 via expansion of the random h2, h4). Then the difference in forgery
probability versus Game 3 is due to collisions in the input to hashes, which happens only
when salt’s collide, and so in these scenarios Game 3 aborts. Thus the forgery probability is
the same

Pr4(forge) = Pr3(forge) (20)

Game 5: In this game we replace com[e]
i∗ with uniform randomness. This only differs

from Game 4 if state[e]i∗ was queried before. But com[e]
i∗ = Hash0(salt, e, i

∗, state[e]i∗ ) includes
the tuple of indices (e, i) which is unique within a query, and so cannot happen in the same
signing query. If this has happened in a previous signing query, or in another Hash0 query,
then the game is aborted due to Game 3 criteria (of a duplicated salt), thus the probability
of aborting Game 5 is the same as for Game 4

Pr5(forge) = Pr4(forge). (21)

Game 6: Next replace com[e] with uniform randomness. The only difference versus Game
4 is if in a previous signing query, Hash1 has received the same input (salt, e, com[e]

1 , . . .,
com[e]

ND). It is not possible to duplicate this input in the same signing query, as the index e
is unique. However in the event that the same input query is registered in a previous signing
query, or Hash1 query, there is a duplicated salt and so the game aborts due to Game 3, thus
the probability of a forgery remains the same

Pr6(forge) = Pr5(forge). (22)

Game 7: In this experiment the signer uses the Simulator v3 (in the proof of HVZK) to
generate views of the parties, over which A has an advantage of at most ϵPRG. In Simulator
v3, the states of the parties no longer sum up to give the correct witness. The probability of
forgery versus Game 6 is

|Pr7(forge)− Pr6(forge)| ≤ τ · qS · ϵPRG. (23)

Game 8: An execution e∗ of a query to Hash4

h4 = Hash4(m, salt, h2, {H [e]
1 , . . . , H

[e]
D }e∈[τ ]), (24)

is said to define a correct witness if the following criteria are satisfied:

– Each of the H
[e]
k are the output of a query to Hash3

H
[e]
k = Hash3(salt, e, {JαK[e], JβK[e], JvK[e]}k)
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– h2 is the output of a query to Hash2

h2 = Hash2(m, salt, com[1], . . . , com[τ ]).

– each com[e] input to h2 was generated by a prior query to Hash1

com[e] = Hash1(salt, e, com[e]
1 , . . . , com[e]

ND).

– each com[e]
i′ input to an above instance of com[e] was generated by a prior query to Hash0

com[e]
i′ = Hash0(salt, e, i

′, state[e]i′ ).

– the vector x defined by the leaf party states {statei}i∈[ND], has small weight wt(x) ≤ w
and syndrome y, i.e. Hx = y.

In the event (we call solve) that such an execution exists, where the message m has not
already been queried to the signing oracle, it is possible to extract the correct witness x from
{state[e]i }i∈[ND], which implies solving the underlying hard problem, so Pr7(solve) ≤ ϵSD.

We claim that finding a forgery without solving the underlying problem means that Game
8 gives

Pr8(forge ∧ solve) ≤ q2 · p′τ
′
+ q4 ·

( 1

ND

)τ−τ ′

, (25)

with p′τ
′
=

∑τ
i=τ ′

(
τ
i

)
pi(1− p)τ−i ≥ pτ

′ , and τ ′ being the optimal number of false positives to
find to minimize the cost of forgery as described in Eq 17. In this case, solve does not happen,
so there is no successful execution e∗ which gives a correct witness. Then to have obtained a
forgery via query to Hash4, the adversary must have either:

– found a false positive polynomial and challenge point combination

S ·Q ̸= F ·P, but S ·Q(rk) = F ·P(rk), k ∈ [t]

at challenge points rk, which happens with probability p.
– else (with probability 1−p) successfully cheat on a leaf party i′ which will be successfully

be challenged with probability 1/ND,
– (also with probability 1 − p) or equivalently, cheat on one out of N main parties, inde-

pendently in each of the D protocols, with probability (1/N)D, which is equivalent to
cheating on one of the ND leaf parties.

and this has to have happened independently for each of the τ iterations of the protocol.

5 Performance and analysis
In this section we will analyse the protocol with respect to the communication cost. We first
provide costs for the zero-knowledge protocol, in order to compare with the other protocols
using syndrome decoding, and then provide parameters and costs for the signature scheme. In
the original SDitH work, the authors present a variant of the underlying SD problem known
as the d−split problem, and explain how their signature scheme can be adapted to be based
on this variant of the SD problem. We do not present the same adaptations to this problem
for our signature scheme. However, the difference presented by the d−split problem affects
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only the underlying hardness assumptions, and so it is still instructive to present parameter
sets for the d−split variants for comparison with the previous signature schemes.

There are a few points in the protocol which we do not include as their impact is arbitrarily
small compared to the main communication cost, these being the challenges from the verifier.
The communication cost is then calculated from the following:

– Com: the hash, h, of the ND commitments.
– Res1: the hash, h′, of the D hashes output from the MPC simulation.
– Res2: the (statei1,...,iD , ρi1,...,iD) ∀ (i1, . . . , iD) ̸= (i∗1, . . . , i

∗
D), com(i∗1,...i

∗
D),JαK(i∗1,...,i∗D), JβK(i∗1,...,i∗D).

If we consider each leaf (i′ = (i1, · · · , iD) ∈ {1, · · · , ND}) of the hypercube, for all but the
final leaf (i′ ̸= ND) the cost of each statei′ is the size of a seed of λ bits. For the case of the
final leaf (i′ = ND), the statei′ consists of seedND , as well as the auxiliary which consists of (i)
the share JxAKND of the plaintext, (ii) the shares JQKND and JPKND being two polynomials
of degree w − 1, and (iii) the shares JcKND of the t points of Fpoints.

The only parts within the commitment and responses that are affected by the hypercube
component, D, is the number of, and thus size of, the seed and commitment randomness. This
in essence becomes a sibling path, of length D, from (statei∗1,...,i∗D , ρi∗1,...,i∗D) to the tree root,
which will cost at most D ·λ · log2(N) bits. For the remaining costs, we have the commitment
com(i∗1,...i

∗
D) of 2λ bits and JαK(i∗1,...,i∗D), JβK(i∗1,...,i∗D) are elements of Fpoints. We then calculate

the size of the communication cost (in bits) of a single round of the protocol as:

Total Size = 4λ size of h and h′.
+ k · log2(|FSD|) size of JxAKND .
+ 2w · log2(|Fpoly|) sizes of JQKND and JPKND .
+ (2 · d+ 1) · t · log2(|Fpoints|) sizes of JαK(i∗1,...,i∗D), JβK(i∗1,...,i∗D), JcKND .
+D · λ · log2(N) size of the seeds.
+ 2λ size of com(i∗1,...i

∗
D).

In order to achieve the target security level and soundness, 2−λ, we can perform τ parallel
repetitions of the protocol. Using the definition of the forgery cost in Equation 17 and using
predefined values for false positivity, we can find the minimum number of repetitions, τ ,
that satisfies Equation 17. Additionally, we do not need to repeat this process for the entire
communication costs, the values for h and h′ can be merged for each τ . Thus, the total
communication cost (in bits) of the overall protocol with τ repetitions is:

Size = 4λ+ τ · (k · log2(|FSD|) + 2w · log2(|Fpoly|)
+(2d+ 1) · t · log2(|Fpoints|) +D · λ · log2(N) + 2λ).

Using Equation 10 we have the obtained soundness error as (p+ (1− p) 1
ND )τ .

5.1 Comparison of code-based zero-knowledge protocols
The SDitH protocol is not the first proposal for a zero-knowledge protocol using syndrome
decoding. There have been other proposals for identity schemes and signature schemes, we
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Table 1: Communication sizes of ZK protocols using syndrome decoding.
Protocol Year Instance 1 Instance 2 Proved Statement

Stern [Ste94] 1993 37.4 kB 46.1 kB y = Hx,wt(x) = w

Véron [Vér97] 1997 31.7 kB 38.7 kB message decoding
CVE11 [CVE11] 2010 - 37.4 kB y = Hx,wt(x) = w

AGS11 [AGS11] 2011 24.8 kB - y = Hx,wt(x) = w

GPS22 [GPS22] (short) 2021 - 15.2 kB y = Hx,wt(x) = w

GPS22 [GPS22] (fast) 2021 - 19.9 kB y = Hx,wt(x) = w

FJR21 [FJR21] (short) 2021 12.9 kB 15.6 kB y = Hx,wt(x) = w

FJR21 [FJR21] (fast) 2021 20.0 kB 24.7 kB y = Hx,wt(x) = w

SDitH [FJR22] (short) 2022 9.7 kB 6.9 kB y = Hx,wt(x) ≤ w

SDitH [FJR22] (fast) 2022 14.4 kB 9.7 kB y = Hx,wt(x) ≤ w

Ours (shortest) 2022 6.0 kB 4.5 kB y = Hx,wt(x) ≤ w

Ours (shorter) 2022 7.5 kB 5.5 kB y = Hx,wt(x) ≤ w

Ours (short) 2022 9.7 kB 6.9 kB y = Hx,wt(x) ≤ w

Ours (fast) 2022 14.4 kB 9.7 kB y = Hx,wt(x) ≤ w

can compare these protocols on different instances of syndrome decoding for 128-bit security.
Table 1 shows this comparison which is also given in [FJR22], which also provides further cal-
culation costs and parameters. Each scheme in Table 1 utilizes the same parameters (m, k,w);
either Instance 1 [FJR21] which is SD on F2 for (1280, 640, 132) or Instance 2 [CVE11] which
is SD on F28 for (208, 104, 78), for the given communication costs.

In order to directly compare with [FJR22], we utilize the same parameters for (N , τ ,
|Fpoly|, |Fpoints|, t), which only differ in (N, τ), in which our protocol optimizes. Our protocol
also differs slightly in the calculation of the soundness error, ε, which affects the security level
being attained; with SDitH using (p+ 1

N − p · 1
N ) whereas we use (p+ 1

ND − p · 1
ND ).

SDitH ZKP parameters:
Instance 1:
Short: (256, 16, 211, 222, 2); ετ = 2−128

Fast: (32, 26, 211, 222, 1); ετ = 2−129.6

Instance 2:
Short: (256, 16, 28, 224, 2); ετ = 2−128

Fast: (32, 26, 28, 224, 1); ετ = 2−130.0

Our ZKP parameters:
Instance 1:
Shorter: (212, 11, 211, 222, 2); ετ = 2−132

Shortest: (216, 8, 211, 222, 2); ετ = 2−128

Instance 2:
Shorter: (212, 11, 28, 224, 2); ετ = 2−132

Shortest: (216, 8, 28, 224, 2); ετ = 2−128

For Instance 1 and Instance 2, and using a target soundness of 2−128, Table 1 provides the
corresponding communication costs for the different zero-knowledge protocols using syndrome
decoding. We reuse the parameters used in SDitH for the Short and Fast variants, thus we
achieve similar costs for these. We also extended these parameters for a large number of
simulated parties to achieve Shorter and Shortest variants. Details on the communication
costs for the other protocols can be found in the full version of [FJR22, Appendix B]. Also,
it is worth noting that there are some differences between the proved statements; i.e. either
proving the equality or inequality for the Hamming weight of w.
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Table 2: The SD and MPC parameters used in our protocol, originally from [FJR22].

Scheme SD Parameters MPC Parameters
q m k w d |Fpoly| |Fpoints| t p

Variant 1 2 1280 640 132 1 211 222 6 ≈ 2−69

Variant 2 2 1536 888 120 6 28 224 5 ≈ 2−79

Variant 3 28 256 128 80 1 28 224 5 ≈ 2−78

5.2 Parameter Selection
Here we derive the parameters we use for our proposed signature scheme. Due to similarities
with SDitH we utilize the same values for many of the parameters; this also makes it simpler
to compare the two protocols in terms of efficiency and communication costs. As with SDitH,
the parameters chosen are for attaining at least 128 bits of security.

5.2.1 Syndrome Decoding and MPC Parameters

To estimate the security levels of cryptographic schemes based on the hardness of solving
a syndrome decoding instance for a random linear code over F2, we use algorithms which
perform the best practical attacks. Currently this is a version of the Information-Set De-
coding (ISD) algorithm [MMT11], based on previous work by Finiasz and Sendrier [FS09].
Recently an argument was made that the lower bound cost of the attack can be calculated
by considering the cost of its topmost recursion step [FJR21].

The details of the algorithm will be omitted since the SD parameters will be reused
from SDitH, however we provide a description of each parameter set (or variant) and their
differences below. Each variant listed will have associated parameters for (q,m, k, w, d) which
define its hardness.

– Variant 1: based on the standard binary syndrome decoding problem with some parame-
ters used from [FJR21].

– Variant 2: based on the d-split binary syndrome decoding problem, where d is chosen such
that m/d ≤ 28, meaning that Fpoly = F28 .

– Variant 3: based on the syndrome decoding problem defined over F28 with some parame-
ters used from [CVE11].

The choice of the MPC parameters will also follow from the suggestions in SDitH. The
MPC parameters are chosen such that the resulting communication cost is small, thus the
smallest possible field for Fpoly is used as the communication includes polynomials in this
field. The SD and MPC parameters for the three variants are provided in Table 2.

5.2.2 Signature Scheme Parameters

Now with SD and MPC parameters we can propose parameters for our signature scheme
and provide costs. The parameters of the signature scheme that primarily contribute to the
communication cost are (N,D, τ, |Fpoly|, |Fpoints|, t). Again, we fix many of these parameters
for comparison reasons, these being the SD and MPC parameters shown in Table 2.

Table 3 shows the parameters proposed for SDitH. The parameters are derived using the
three different variations, as well as having two different values for the party size, N , with
the aim of producing a fast computation version, for N = 32, and a short communication
cost version, for N = 256. Once the party size is defined, the number of repetitions, τ can
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Table 3: SDitH [FJR22] parameters (N, τ) with key and signature sizes in bytes.

λ Scheme Aim Parameters Sizes
N τ pk sk Sign

128 Variant 1 Fast 32 27 96 16 16 422
128 Short 256 17 96 16 11 193
128 Variant 2 Fast 32 27 97 16 17 866
128 Short 256 17 97 16 12 102
128 Variant 3 Fast 32 27 144 16 12 115
128 Short 256 17 144 16 8 481

thus be calculated such that they gain the target security level, which in this work is at least
128 bits of security.

The parameters in which our protocol primarily optimizes over SDitH are the party size,
being N or in our case ND, and the resulting repetitions required, τ . A large part of the
signature scheme in SDitH is the auxiliary, being made up of (JxAKN , JQKN , JPKN , JcKN ),
which is then repeated for each τ . Being able to significantly reduce τ means we drastically
reduce this cost. In Figure 3, we show the relationship between τ and D and how this affects
the size of the signature.

In our parameter selection, we decided to fix the value for N = 2 and adapt for different
dimension sizes, D. It is possible for parameters to become equivalent, for example (N =
216, τ = 9) produces the same communication costs and computations as (N = 2562, τ =
9), however the former parameters require significantly less (potentially expensive) MPC
computations and in turn require (probably less expensive) hash calculations. This quality
in the flexibility we gain with parameters is particularly coveted when its applications on a
variety of hardware is considered; which can range from CPUs with dedicated instructions for
field arithmetic, to mid-range devices with AES-NI and SHA extension support, to low-end
constrained devices with limited ISA support for cryptographic operations.

A complete summary of the parameters of our protocol are given in Table 4. Similarly
to SDitH we provide parameters for the three SD and MPC variants, and those parameters
with the aim of having short communication costs (for N = 216 and N = 212) and fast
computations (N = 28 and N = 25). The associated public-key and secret-key values are
unchanged compared to SDitH parameters, the major differences are seen in the signature
sizes and computation costs. We use similar nomenclature to SDitH, but due to the savings
we make in performance, we can ‘upgrade’ their previous parameters from Fast and Short,
to Faster and Fast, respectively. The latter parameters we propose increase the dimension
size, thus the party size in the MPC protocol, which finally results in Short and Shorter
parameters.

5.3 Implementation
In the previous sections we provided parameter sets which, as well as providing key and signa-
ture sizes, can give estimates on runtime performance; based on the number of computations
required and then the expected performances of randomness generation and hash functions.
However, it is still important to realize exact performance figures and thus we describe this
information here and compare this to the current state-of-the-art.

We focus on the implementation of the Variant 3 parameter sets, since these are the most
interesting as they provide the fastest and smallest signatures. Moreover, our optimizations
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Fig. 3: The relationship between the size of the dimension, D, and the number of repetitions
within the signature scheme, τ , using N = 2. Parameters and signature sizes provided for
Variant 3.

do not have an effect on key generation since the secret and public keys are identical, both
seeded and expanded. We also expect verification to have the same performance as signing,
thus we omit these from the results. We provide the benchmark results of our signature
runtime as well as SDitH in Table 5. In order to simplify and fairly benchmark on the same
processor the authors of SDitH kindly shared their code used for the experiments in this
section upon request. For comparison, we also ran the SDitH implementation for the Shorter
parameter set, however the Shortest parameters gave issues and have thus been omitted from
the table.

In both implementations, the offline phase uses the AES native instructions for seed ex-
pansion and SHAKE for hash and commitments purposes. Both implementations also rely on
a fast gf256 library3, which utilizes AVX2 instructions. Our processor does not support the
newer Galois Field New Instructions (GFNI) opcodes. For the same number of leaf shares, N
for SDitH and ND for our protocol, the performance of both signature schemes in the offline
phase are more or less the same as the one in their implementation, which confirms our ex-
pectations, and highlights that both software implementations are equivalent in performance,
the performance differences observed come from the protocol differences. Our online phase
however is largely accelerated compared to the reference implementation, which confirms the
expected ND → N · D algorithmic speedup. Again, we can verify that the gain is roughly
N · D/ND as we would expect from comparable implementations. In fact, our online costs
are more-or-less constant for a given security level as they are in N ·D · τ and the security is
roughly in log2N ·D · τ (and N is constant). Besides being roughly constant, they are also
very small, around 1 ms, and can probably be further optimized.

3 https://github.com/catid/gf256.

https://github.com/catid/gf256
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Table 4: Our parameters with related key and signature sizes in bytes.

λ Scheme Aims Parameters Sizes
N D τ pk sk sign

128

Variant 1

Fast 2 5 27 96 16 16 386
128 Short 2 8 17 96 16 11 157
128 Shorter 2 12 12 96 16 8 662
128 Shortest 2 16 9 96 16 7 089
128

Variant 2

Fast 2 5 27 97 16 17 830
128 Short 2 8 17 97 16 12 066
128 Shorter 2 12 12 97 16 9 304
128 Shortest 2 16 9 97 16 7 570
128

Variant 3

Fast 2 5 27 144 16 12 079
128 Short 2 8 17 144 16 8 445
128 Shorter 2 12 12 144 16 6 748
128 Shortest 2 16 9 144 16 5 653

Table 5: Benchmarks of reference implementations of our scheme and SDitH [FJR22]. Both
schemes were run using a single CPU core of a 3.1 GHz Intel Core i9-9990K.

λ Scheme Aim Parameters Sign Time (ms)
N D τ Offline Online Total

128 Fast 32 - 27 0.87 5.03 5.96
128 SDitH [FJR22] Short 256 - 17 4.33 18.95 23.56
128 (Variant 3) Shorter 212 - 12 59.24 251.14 313.70
128 Shortest 216 - 9 - - -
128 Fast 2 5 27 1.14 1.62 3.78
128 Ours Short 2 8 17 5.06 1.23 7.17
128 (Variant 3) Shorter 2 12 12 59.68 1.22 60.63
128 Shortest 2 16 9 734.82 1.10 736.85
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