
Blockin: Multi-Chain Sign-In Standard with Micro-Authorizations
MATT DAVISON, Virginia Tech, United States
KEN KING, Virginia Tech, United States
TREVOR MILLER, Virginia Tech, United States

The tech industry is currently making the transition fromWeb 2.0 toWeb 3.0,
and with this transition, authentication and authorization have been reimag-
ined. Users can now sign in to websites with their unique public/private key
pair rather than generating a username and password for every site. How-
ever, many useful features, like role-based access control, dynamic resource
owner privileges, and expiration tokens, currently don’t have efficient Web
3.0 solutions. Our solution aims to provide a flexible foundation for resource
providers to implement the aforementioned features on any blockchain
through a two-step process. The first step, authorization, creates an on-chain
asset which is to be presented as an access token when interacting with a
resource. The second step, authentication, verifies ownership of an asset
through querying the blockchain and cryptographic digital signatures. Our
solution also aims to be a multi-chain standard, whereas current Web 3.0
sign-in standards are limited to a single blockchain.

Additional KeyWords and Phrases: blockchain, security, authorization, smart
contracts, access control, algorand, sign-in, authentication, nft

ACM Reference Format:
Matt Davison, Ken King, and Trevor Miller. 2022. Blockin: Multi-Chain Sign-
In Standard with Micro-Authorizations. 1, 1 (November 2022), 10 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
The backbone of the Internet is based on micro-authorizations, lo-
gin details, and giving users certain permissions for websites and
servers. Web 2.0 provided us with many authorization technologies,
such as OAuth 2.0, access levels, JSON Web Tokens, and many more
ways for parties to give permissions to their users. We are entering
the period of Web 3.0 (the term for the new era of computing us-
ing blockchain technology and cryptocurrencies), and one of the
new paradigms of Web 3.0 is users now connecting and logging
in to all websites directly with their single, unique public/private
key pair rather than generating a username/password combination
for every site they visit. Because of this, many of the features of
Web 2.0 authentication technologies previously mentioned are not
directly translatable to Web 3.0 in a user-friendly or efficient man-
ner. We are particularly interested in the following features that
haven’t translated well for this paper: role-based access control,
subscriptions/expiring authorizations, and dynamic privileges for
the resource owner. These are currently not natively possible in
Web 3.0 without centralized storage defining roles and permissions
of users because the process for authenticating public/private key
pairs is the exact same for any pair (e.g. there is natively no “admin”
keys or anything similar). We also make the observation that there is
no universal, multi-chain Web 3.0 sign-in standard yet. There have
been attempts at sign-in standards for specific blockchains, such

Authors’ addresses: Matt Davison, Virginia Tech, Blacksburg, United States, mattd7@
vt.edu; Ken King, Virginia Tech, Blacksburg, United States, kking935@vt.edu; Trevor
Miller, Virginia Tech, Blacksburg, United States, trevormil2001@vt.edu.

2022. XXXX-XXXX/2022/11-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

as Sign in with Ethereum, but there isn’t a standard that natively
supports all blockchains.

2 RELATED WORKS
The best solution we have seen for role-based access tokens is the
use of non-fungible tokens (NFTs) where one grants access or proves
ownership only if a user owns a certain NFT, as proven by the public
blockchain. Some example implementations and use cases include
patents, website certificates, smart grid authorization for IoT, and
digital certifications [[Bamakan et al. 2022], [Kamboj et al. 2021],
[Al-Bassam 2017], [Zhong et al. 2021]]. However, this solution histor-
ically doesn’t performwell with regard to cost, speed, and scalability.
Costs of deploying a smart contract on Ethereum currently average
over $1000, and the time for transactions to be processed can range
from a couple of minutes to over an hour. For everyday use cases
such as logging in to a site or requesting data from a server, this is
just not good enough. As for expirations and dynamic privileges for
the resource owners, there have been implementations that have
attempted to program this logic into smart contracts themselves, but
these also run into the same scalability, cost, and speed bottlenecks
as described above.

Another interesting solution to this problem was outlined in the
OAuth 2.0 using Blockchain Tokens paper. This paper proposed a
combination of Web 2.0 and Web 3.0 authentication technologies in
order to provide role-based access and customizable permissions.
First, the resource server would create a non-fungible token (NFT)
that outlined the access permissions. When a user first requests ac-
cess to that resource, they would transfer the NFT to their Ethereum
wallet, and whenever the user requests access to that resource in
the future, they can just verify on the public blockchain that the
user owns the NFT issued by them and grant them access [[Fotiou
et al. 2020]].

Our solution does not aim to replace the public/private key stan-
dard but rather build on top of it to expand its functionality for ad-
ditional use cases. Our goal is to combine the previously mentioned
solutions, other Web 3.0 technologies (such as smart contracts and
digital assets), and the existing public/private key standard to pro-
vide a multi-chain, general interface for the functionality needed for
role-based access, expiring tokens, and dynamic resource privileges.
In particular, we hope to improve upon the speed, scalability, and
cost of the existing solutions while also introducing new features
such as freezing, expirations, and clawbacks of tokens. Our interface
also provides the ability to program logic into the token’s smart con-
tract which can open up any possibility that can be programmed into
a Turing-complete smart contract such as a subscription payment
or time-based access. In this paper, we present both the multi-chain
interface and a proof of concept implementation using the Algorand
blockchain and their native digital asset tokens, Algorand Standard
Assets (ASAs).

, Vol. 1, No. 1, Article . Publication date: November 2022.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

2 • Davison, Miller, and King

3 APPROACH OVERVIEW
Our approach can be broken down into two parts: the issuance of
an authorization asset and the authentication of a resource user and
their authorization asset. The asset defines the permissions that a
user has when accessing a resource such as the type of subscription
they have to a service, whether they can read certain data, write
certain data, etc. Issuing the asset occurs once, while the verification
of the asset occurs frequently (when obtaining a new session with
the resource).
There are multiple methods of issuing the asset but the verifica-

tion of an asset and user is almost identical for each of our proposed
methods of issuance. Common across the issuance schemes is that
they all produce an asset on a blockchain that the resource provider
will use to determine what access the user has to its resources dur-
ing the verification step. This is typically done by looking at the
asset metadata. The metadata can be formed in any way that the
asset creator would like, but note since it is stored on-chain, it is
publicly viewable to anyone. Using hash algorithms or encryption
algorithms is recommended for the metadata.

3.1 Issuance of Authorization Asset
We present three methods to distribute the authorization asset that
will each guarantee the authorization asset being used to obtain
access to resources is legitimate.

3.1.1 Resource Creates. In the case that the user does not mind
owning an asset created by the resource provider, which is indicated
in the asset, the resource provider can create the authorization asset.
This case is ideal for resource providers with many user accounts
with the same access permissions, and in this case access to the
resource should be public (i.e. the user wants to show that they have
an account with a specific resource provider).

Fig. 1. The Authorization Process when the Resource Provider Creates the
Asset

3.1.2 User Creates. In the case that the user wishes to remain
anonymous, they can create the authorization asset using access
data provided by the resource provider. This method creates a unique
asset for each user of the service and imposes the cost of creating
assets on the user. In this scenario the resource provider provides
encrypted access data for the user to put into their asset to avoid
fraud (if the data is not encrypted any user could create an asset with
access permissions to any resource they want) and improve privacy
(very difficult if not impossible to identify the resource provider or
the resources the asset gives access to).

Fig. 2. The Authorization Process when the User Creates the Asset

3.1.3 Smart Contract Creates. This case is similar to the case in
which the resource provider creates the asset but the user does not
have to trust the resource provider to issue their asset. This method
provides the same level of privacy as when a resource creates the
asset but will not require the user to trust the service provider
as much and can more closely couple a payment to the resource
provider with the receipt of the asset.

Fig. 3. The Authorization Process when a Smart-Contract Creates the Asset

3.2 Authentication Scheme
One important security consideration when granting access is to
verify the user actually knows the private key for the public key that
they claim to be. For our interface, we propose a challenge/response
step where users will sign the challenge provided by the resource
server with their private key. The signature is then checked and
verified that it is valid by the resource server before proceeding
with any other validity checks. In our interface, a mandatory valid-
ity check after validating the signature is the asset lookup on the
blockchain.

For our interface, we will use the EIP-4361 standard (Sign-In With
Ethereum Standard) which outlines important fields for the chal-
lenge such as domain, expirationDate, address, and more [[Rocco
et al. 2021]] as seen below. The challenge groups all these fields into
a formatted string message to be signed and sent back by the user.
The user will see the challenge in plaintext, so they know exactly
what they are signing and what permissions they are signing in
with.

interface EIP4361Challenge {
domain: string;

, Vol. 1, No. 1, Article . Publication date: November 2022.

Blockin: Multi-Chain Sign-In Standard with Micro-Authorizations • 3

address: string;
statement: string;
uri: string;
version: string;
chainId: string;
nonce: number;
issuedAt: string;
expirationDate?: string;
notBefore?: string;
requestId?: string;
resources?: string[];

}

3.2.1 Our Changes to EIP-4361. There are a couple of adjustments
that were made to the EIP-4361 interface in order to make it suited
for our specific implementation. First, Ethereum will not always be
used, so we need to make it multi-chain compatible. The address
field will need to be a valid address of whatever chain you are using,
not always an Ethereum address. Similarly, the native signature and
verification algorithms of the chosen blockchain will be used, not
always Ethereum’s. Second, we have decided to use the resources
string array field for the asset ids encoded as strings instead of solely
for an array of URI strings. This decision was made for the sake of
not adding anything new to an existing, time-proven standard. We
do potentially see a situation where URIs could need to be requested
as resources as well as asset IDs, so we will make this flexible so
that it supports both. We will prefix all asset IDs with ’Asset ID: ’.
Anything else not beginning with this prefix should be a validly
formatted URI as defined in EIP-4361.

3.2.2 Nonce Generation. We have decided to use the current block
(round) number as our nonce to be used within the challenge for
our specific proof-of-concept implementation. Note that the nonce
generation algorithm can be changed by any authorizing resource
if they would like.
Although a number purely used once per account would be the

most ideal, it introduces a lot of new overhead that we feel is not
necessary for our implementation. A centralized backend database
would have to keep stores of what numbers have been used and
have not been. We envision our solution can be used in a completely
decentralized way with no central server, so this data store would
not be ideal.
Our proposed solution is to use the most recent block index as

the nonce, and upon verification, we verify that a block with the
requested index has been added to the main chain within the past
minute. We do note that because technically the same block number
can be used twice to verify if they were both verified within that
minute span, it does not fully protect against man-in-the-middle
attacks. For example, Bob signs the challenge and sends it via an
insecure channel to the verifier; someone can intercept the challenge
and also send it in for verification under Bob’s address and get
granted the same privileges.
It is important to protect against man-in-the-middle attacks as

explained above. Every implementation of our interface should
have some sort of defense against this, whether it is in the nonce
generating step or the permission granting step. We argue that in
our implementation, we adequately protect against this due to the

minute time limit and our additional checks before granting per-
missions, which will only grant the first requester the permissions.
Again, other implementations can define different nonce generation
algorithms if preferred.

3.2.3 Asset Lookup. Once the user’s identity as the owner of their
public key has been verified through the digital signature of the
challenge, Blockin can inspect the blockchain to verify the user’s
requested authorization asset is actually owned by them. Also, note
that it is safe to assume that the wallet obtained this asset within
the rules of the contract outlined upon asset creation due to the
security offered by the blockchain and smart contracts.
Because authorization assets may be allowed to be transferable,

this solution allows us to decouple identity and access. For example,
if a rental car uses our proposed solution to provide fine-grained
access to the vehicle, the rental company could loan one of their
"unlock door" and "start engine" assets to a customer that has rented
the vehicle. Once the customer is done with their rental, the rental
company could retrieve their assets and the customer will no longer
be able to access the rental car. The rental car itself doesn’t consider
whose public key is presenting the asset, only that it has the specific
asset that allows access to those resources.

Fig. 4. The Authentication Process

3.3 Asset Encoding Scheme
While the provider can implement their own scheme, we suggest
using the SecPAL authorization language [[Becker et al. 2010]].
When this is too large to store on chain, we recommend hashing
the authorization data and storing a mapping of the generated hash
to the authorization data in a database.

3.4 Hashing Authorizations for the User Creates Method
In order to prevent fraud when the user creates assets, we recom-
mend to prefix the authorization permissions with the user’s address
and a secret generated by the site before hashing it with the SHA256
algorithm. When the user creates an asset with this hash, the asset’s
unique identifier should be stored in a database with the raw per-
missions data. The inclusion of the user’s address guarantees that
they did not copy an existing user’s access permissions hash. The
inclusion of the secret guarantees that the user did not manipulate

, Vol. 1, No. 1, Article . Publication date: November 2022.

4 • Davison, Miller, and King

the permissions encoding scheme to provide themselves with access
to whatever they want. The user can still transfer this authorization
asset to any account on the chain because the original creator’s
address will always be publicly visible.

4 IMPLEMENTATION REQUIREMENTS
In this section, we will discuss the core technical requirements for
implementing our design, and then we will discuss more specific
technical aspects that are not required but highly desirable to build
the best solution. In its simplest form, our solution relies on a decen-
tralized application (dApp) and a blockchain. We will first discuss
the dApp and then the chain.

4.1 dApp
4.1.1 Required Features. The required technical aspects for the
dApp are very simple. As discussed in previous sections, the resource
provider presents the resource owner with a challenge to be signed
using the private key of thewallet holding the asset. The dApp serves
as the mechanism for the resource owner to prove their identity,
and therefore the dApp must be able to establish a connection with
the wallet in order to sign the challenge. Given a dApp that can
establish a connection with a wallet, this is enough to prove the
resource owner’s identity.

4.1.2 Desired Features. While it is enough to have a dApp that can
merely connect with a wallet to handle the challenge / response
process, there are several additional aspects that can significantly
improve the quality of the dApp as it interacts in this design.
Most obvious, the connection between the dApp and the wallet

should be as secure as possible. If the private key or any communi-
cation data between the dApp and the wallet is somehow exposed,
this could introduce attack surfaces that would compromise the
security of this design.

It would also be ideal for the dApp to support as many devices as
possible. Authorization is an aspect of practically all modern devices,
and therefore the design we propose could benefit a wide range of
technologies. However, certain approaches could greatly limit the
compatibility of our dApp with certain devices, such as if the dApp
waswritten in Swift and could only run on iOS. Similarly, if the dApp
assumed the device has access to a significant amount of resources,
this could hinder support for light-weight clients like smart watches
and other IoT devices. A great solution would be one that minimizes
resource requirements and maximizes cross-platform support so
that the dApp can support as many technologies as possible.

The dApp should also be as accessible as possible. Without access
to the dApp, there is no way for the resource owner to achieve
authorization. Therefore, denial-of-service attacks are a notable
threat to the dApp that must be addressed. Scalability is also a very
important issue. As mentioned before, a wide array of devices could
benefit from this solution, and therefore it should be anticipated
that the dApp will be responsible for facilitating in the authorization
of potentially billions of devices simultaneously. Under this same
assumption, the dApp should also be as cost-efficient as possible.

4.2 Blockchain
4.2.1 Required Features. At its core, the chain must support the
creation of assets with enough metadata to describe the permissions
associated with the access token. Furthermore, wallets on the chain
must be able to establish a connection with the dApp and support a
native message signature algorithm. Finally, recall from the previous
section the third approach in which a smart contract creates the
asset. Clearly, this approach assumes that it is possible to deploy
custom smart contracts on the chain. Therefore the third approach
also requires support for smart contracts, but this is not necessary
for the other two approaches.

4.2.2 Desired Features. First, an ideal blockchain is one that ade-
quately solves the Blockchain Trilemma of security, scalability, and
decentralization. In regards to security, if the chain is compromised
this will in turn compromise the security of our design. Therefore,
assets on the chain should be protected so that access tokens cannot
be stolen, deleted, or otherwise tampered with by unauthorized
parties. By extension, this also means that the private key of wal-
lets on the chain should never be compromised or predicted by
unauthorized parties.

As mentioned before, it should be anticipated that this approach
will service potentially billions of devices simultaneously. Conse-
quently, asset creation, lookup, and transfer should be highly scal-
able. Ideally, an asset can be transferred an unlimited number of
times and there should be no restriction on the number of assets
and smart contracts a resource creator can create and deploy, re-
spectively.
Although this approach could work in a centralized ecosystem,

we believe the greatest value of our approach stems directly from
its decentralization. Through decentralization, our approach is able
to remove trust from the authorization process. In Web 2.0, autho-
rization requires trust in some centralized database to confirm the
identity and privileges of an individual. By relying on a decentral-
ized blockchain in place of a centralized database, this shifts the
attack surface and presents an alternative approach for authoriza-
tion which we believe to be more secure.
It must also be acknowledged that certain blockchains are more

expensive than others. Greater security is worth a certain level
of cost, but ideally that cost should be minimized. Therefore, the
less expensive it is to create and transfer access tokens the better.
Similarly, if smart contracts are used in the design, the cost to deploy
and execute a smart contract should also be minimized.

Moreover, it must also be acknowledged that certain blockchains
process transactions and achieve finality at a faster rate than others.
If an access token can be created or transferred in minimal time,
this will minimize the total time required to create access tokens
and transfer them from one wallet to another. The same applies to
the deployment and execution of smart contracts. In all cases, this
contributes directly to the speed and corresponding convenience of
this authorization design.
Another important aspect is the developer ecosystem of the

blockchain. Blockchains that are open-source with strong docu-
mentation, community, and developer tools will prove superior.
This will ensure the quality, support, and longevity of our proposed
authorization approach.

, Vol. 1, No. 1, Article . Publication date: November 2022.

Blockin: Multi-Chain Sign-In Standard with Micro-Authorizations • 5

Finally, if the blockchain provided the ability for resource cre-
ators to freeze or revoke a resource owner’s access token, this could
further increase the potential applications of our authorization ap-
proach.

5 ALGORAND
Using the required and desired features described in the previous
section as criteria for selecting a blockchain to develop an example
implementation of our idea, we decided to build on Algorand. We
believe that Algorand’s unique features are a perfect fit for our
interface and digital authorization assets. In this section, we will
elaborate on why. However, note that this Algorand was just used
as a proof-of-concept, our interface can support any blockchain.

5.1 Algorand Standard Assets
Algorand Standard Assets (ASAs) refers to the assets on Algorand’s
network. Similar to other standard assets like Ethereum’s ERC-721
token, ASAs can be used to create NFTs. However, ASAs provide
some additional valuable features such as the ability for the ASA
creator to specify a ‘freeze’ and ‘clawback’ address, where the freeze
address can freeze and unfreeze an ASA holder’s ability to transfer
their asset and the clawback address can transfer the ASA from the
current holder to another address. ASA creators can also specify
a whitelist of permitted addresses that the asset can be sent to
and from. Conveniently, the freeze address, clawback address, and
whitelist addresses are all mutable values [[Algorand 2021c]]. As it
will be shown later in this paper, these are very attractive features
that lend themselves nicely to our approach.

5.2 Cost
Unlike Ethereum and other blockchains that are very expensive due
to poor network scalability, creating assets on Algorand is incredibly
cheap. An account’s minimum balance to create an ASA begins at 0.1
Algos (their native currency) and increases by 0.1 Algos with each
new ASA created [[Algorand 2021c]]. At the time of this writing,
0.1 Algos is approximately 8 cents in US dollars.

5.3 Speed
Traditional Proof-of-Work (PoW) blockchains such as Bitcoin and
Ethereum have proven to suffer from very slow transaction speeds,
but many PoS blockchains also suffer from reduced security. Al-
gorand uses a Pure Proof-Of-Stake (PPoS) consensus mechanism,
benefiting from the speed of PoS networks while also using Ver-
ifiable Random Functions (VRFs) and Cryptographic Sortition to
randomly and secretly select users to participate in the consensus
protocol [[Algorand 2021d]]. Additionally, Algorand’s blockchain
never forks, and as a result it achieves immediate transaction finality.
When a new block is added to the chain it is guaranteed to be perma-
nent, and this significantly reduces the total time needed to confirm
that a transaction was successfully recorded on the blockchain [[Al-
gorand 2021e]].

5.4 Scalability
Asmentioned in the previous section, it is important that the blockchain
used is highly scalable for this implementation to have a wide and

diverse range of potential applications. Aside from the fast speed
and low cost, Algorand also helps users to create assets and de-
ploy smart contracts on a large scale. Users are allowed to create
unlimited ASAs as of March 2, 2022, and the Algorand team is ac-
tively working to allow for opting into and deploying unlimited
smart contracts [[Algorand 2022]]. Additionally, through the use
of Atomic Transfers in Layer-1, ASA creators can transfer multiple
assets to multiple addresses as a group such that either all transac-
tions are processed or none are processed [[Algorand 2021a]]. This
feature improves the security and efficiency of managing the ASA
transactions at scale.

5.5 Rekeying
In many traditional blockchains, it is impossible to change the pri-
vate key of a wallet without also changing its public address. In
the future, if people rely on these assets as utilities in their daily
lives, it could be very computationally burdensome and wasteful
to have to transfer all assets to a new address in the event that the
user accidentally exposes their private key. Algorand solves this
problem by providing the ability for users to change their private
key without needing to create a new public address in Layer-1 [[Al-
gorand 2021f]]. Looking forward to the future, this will become an
increasingly important issue as a broader audience of society begins
to adopt these technologies.

5.6 Support
It is important to build with a blockchain network that has strong
documentation and strong language support. Unlike many other
blockchains, Algorand has strong documentation and supports
Turing-Complete languages (specifically Python), as well as Reach
[[Algorand 2021b]]. This will provide for a more efficient and secure
development environment.

6 IMPLEMENTATION
Our design and approach were implemented via a JavaScript library
that we plan to publish as an NPM (Node Package Manager) library.
This JavaScript library provides functions needed for both the user
and the resource server at all stages of the authorization process.
In addition to the library, we have created a demo dApp (decen-

tralized application) site that uses our library to authenticate users
on the frontend. Within this site, we also show how to use our
library to authenticate users with a backend resource server as well.

6.1 Javascript Library
As mentioned above, the JavaScript library is the core library that
handles everything. It can currently be found at https://github.com/
matt-davison/blockin/.

Our library handles the issuance of the digital authorization assets
as well as the challenge / response generation and verification. The
scope of our library was kept narrow on purpose. It focuses solely on
authorization and thus can be easily integrated with any frontend
or backend codebase.

Note that one thing that is out of scope for this library is signing
the transactions with a valid wallet provider. Our library aims to be
flexible to integrate with any codebase and across many chains. We

, Vol. 1, No. 1, Article . Publication date: November 2022.

https://github.com/matt-davison/blockin/
https://github.com/matt-davison/blockin/

6 • Davison, Miller, and King

did not want to be limited to a single wallet provider, so we decided
to leave the digital signatures with secret keys out of our library’s
functionality. For everything needing a signature while interacting
with the Blockin library, users will receive something to sign from
the Blockin library, go to any arbitrary wallet provider, sign it, and
return that signature to the Blockin library. This is to protect user
security. Blockin does not need and will never ask for your private
key. Blockin verifies everything using digital signatures which are
outsourced to wallet providers or whoever holds the users’ private
key.

Lastly, we have currently only implemented our library to support
Algorand and Algorand Standard Assets, but as shown previously
in this paper, the Blockin interface is flexible. We have designed
the library in such a way that we have decoupled chain-specific
functions. For anyone who wishes to apply our interface to another
chain, such as Ethereum, all they will have to do is rewrite the chain-
specific functions to be handled using Ethereum’s native methods.
The functions, as explained in our Approach Overview section,

exported from our library for clients to use can be categorized
into two parts: Issuance of Authorization Assets and Challenge /
Responses. We will now dive deeper into the inner workings of
these functions.

6.1.1 Issuance of Authorization Assets. The asset authorization part
of the library provides all the functionality needed to implement the
three methods of creating authorization assets shown previously:
user creates, resource creates, and smart contract creates. Since all
blockchains will have different ways of creating and transferring
assets, we attempted tomake this as flexible for any chain as possible,
which we will explain in a later section. We attempted to abstract
everything into functionality needed by all chains. We came up with
the following functions that will be implemented by any chain. The
opt in transaction may be left blank by chains that don’t require
this (required in Algorand).

createAssetTxn
createAssetOptInTxn
createAssetNoOpTxn
createAssetTransferTxn
sendTxn

Either the user or resource will call the above functions depending
on the asset creation method choice. Note that Blockin provides this
part of the library for convenience. Assets don’t have to be created
using these functions specifically. One can create them via another
library, or if they are already created, these functions don’t need to
be used.

6.1.2 Asset Creating Smart Contract. Above, we showed how to
do the user creates and resource creates methods. For the smart
contract creates method, we provide a sample and template using a
smart contract on Algorand created using PyTeal. This can be found
in the smart-contracts folder. Again, this is provided for convenience.
Smart contracts can be created via any method a developer wishes.
Due to Algorand requiring users to opt-in to assets before they may
be transferred to them, this smart contract requires a few steps in
order for an authorization asset to be created and distributed to a
user.

(1) A user must opt-in to the smart contract. Our implementation
utilizes local state, and thus requires the user to opt-in to the
smart contract as well, but this can be replaced by using the
global state of the smart contract and storing mappings of
user address to asset ID.

(2) Second, the resource provider calls the smart contract and
provides the authorization data according to their schema
and the user’s address. The smart contract then creates the
asset and places the created asset’s ID in the user’s local state.

(3) Third, the user must opt-in to the created asset’s ID so that
they may retrieve it in the next step.

(4) Finally, The user calls the smart contract, and the smart con-
tract uses the asset ID stored in their local state to send the
matching asset from the smart contract’s holdings to the user,
completing the issuance of the user’s authorization asset.

6.1.3 Challenge Creation. Users will call createChallenge() to con-
struct the message string to be signed as explained in the Authenti-
cation Scheme Section. As a reminder, we will be using the EIP-4361
Sign In With Ethereum specifications with two minor modifications.
First, the nonce number generated will be a recent block hash / id
number. Note that this is Algorand implementation specific and
can be changed if needed. Second, the resources field will be asset
IDs encoded as strings instead of solely URIs. Below, we show the
library TypeScript code that creates a challenge. Users will call cre-
ateChallenge() and be returned a valid EIP-4361 string to sign if
the function doesn’t throw an error. They will then sign this string
using their wallet provider and send both the signature and the
message to the authorizing party, as explained in the next section.
export async function createChallenge(

domain: string,
statement: string,
address: string,
uri: string,
expirationDate?: string,
notBefore?: string,
resources?: string[]

) {
try {

const challenge: EIP4361Challenge = {
domain,
statement,
address,
uri,
version: "1",
chainId: "1",
nonce: await getChallengeNonce(),
issuedAt: new Date().toISOString(),
expirationDate,
notBefore,
resources

}

validateChallenge(challenge);

return constructMessageString(challenge);

, Vol. 1, No. 1, Article . Publication date: November 2022.

Blockin: Multi-Chain Sign-In Standard with Micro-Authorizations • 7

} catch (error: unknown) {
return `Error: ${error}`;

}
}

An example created challenge is provided below. Note that some
line breaks are applied here for formatting purposes.

https://blockin.com wants you to sign in
with your Algorand account:
NLQKOUWSN6I5I4N4W7HQAWVUIRDS5JQPHNEPQ7CO-

KR5YTAFQMHDEKIJJ4Q

Sign in to this website via Blockin.
You will remain signed in until you terminate
your browser session.

URI: https://blockin.com/login
Version: 1
Chain ID: 1
Nonce: 21262114
Issued At: 2022-04-28T20:41:26.652Z
Expiration Time: 2022-05-22T18:19:55.901Z
Resources:
- Asset ID: 85934209

6.1.4 Challenge Verification. The authorizing party is responsible
for calling verifyChallenge(). Users will submit both the challenge
generated from createChallenge() and the signed challenge to the
authorizing party. The function below will then be called by the
authorizing party. If the function returns without an error, they
can safely authenticate the user using whatever method they prefer
(JWTs, session tokens, etc.). This function has three parts to it: veri-
fying inputted challenge is well-formed, verifying the signature is
correct, and verifying the address actually owns the requested assets
in their wallet. The signature verification and asset verification are
both implementation-specific for whatever chain you are using, so
they are implemented for Algorand in our library’s case. Lastly, we
provide a grantPermissions() function where an implementation
can implement permissions such as granting cookies, JWTs, session
tokens, etc. We left this blank for our implementation, but it is there
to show how it can be used, if needed.

export async function verifyChallenge(
originalChallenge: Uint8Array,
signedChallenge: Uint8Array

) {
try {

const generatedEIP4361ChallengeStr: string =
await getChallengeString(originalChallenge);

const challenge: EIP4361Challenge =
createMessageFromString(

generatedEIP4361ChallengeStr
);

validateChallenge(challenge);
console.log("Success: Constructed challenge

from string and verified it is well-formed.");

const originalAddress = challenge.address;
await verifyChallengeSignature(

originalChallenge,
signedChallenge,
originalAddress

)
console.log("Success: Signature matches address

specified within the challenge.");

if (challenge.resources) {
await verifyOwnershipOfAssets(

challenge.address,
challenge.resources

);
await grantPermissions(challenge.resources);

}

return `Successfully granted access via Blockin`;
} catch (error) {

return `Error: ${error}`;
}

}

6.1.5 Library Abstraction. Because our library aims to be multi-
chain and flexible, we designed our library in a way that supports
this. We did this by designing a ChainDriver interface that defines
the functions needed by every blockchain such as sendTxn(), make-
AssetTxn(), or isValidAddress(). Anytime the library needs to do
something chain-specific such as calling the chain’s block indexer
or getting the currently recommended transaction parameters, this
is done via the implementation of the ChainDriver interface passed
into Blockin’s initialization function, setChainDriver().

For the purpose of our demo dApp, we created an AlgoDriver im-
plementation that is specific to the Algorand blockchain, which can
be viewed at https://github.com/matt-davison/blockin/blob/main/
src/ChainDrivers/AlgoDriver.ts. However, this interface allows for
the flexibility of any chain to be implemented and supported on
Blockin. For example, if a new blockchain comes along, all a devel-
oper will have to do to integrate it within Blockin is to create a class
that implements this interface for their blockchain of choice. We
plan to offer multiple chain drivers already implemented, such as
AlgoDriver, directly from the Blockin library as imports for conve-
nience.
export interface IChainDriver {

getChallengeStringFromBytesToSign:
IGetChallengeStringFromBytesToSign,

makeAssetTxn: IMakeAssetTxn,
makeAssetOptInTxn: IMakeAssetOptInTxn,
makeAssetTransferTxn: IMakeAssetTransferTxn,
sendTxn: ISendTx,
getLastBlockIndex: IGetLastBlockIndex,
getAllAssetsForAddress: IGetAssets,
getTimestampForBlock: IGetTimestampForBlock,
isValidAddress: IIsValidAddress,

, Vol. 1, No. 1, Article . Publication date: November 2022.

https://github.com/matt-davison/blockin/blob/main/src/ChainDrivers/AlgoDriver.ts
https://github.com/matt-davison/blockin/blob/main/src/ChainDrivers/AlgoDriver.ts

8 • Davison, Miller, and King

getPublicKeyFromAddress: IGetPublicKey,
getAssetDetails: IGetAssetDetails,
lookupTransactionById: ILookupTransactionById,
verifySignature: IVerifySignature,
verifyOwnershipOfAssets: IVerifyOwnershipOfAssets,

}

From the backend or frontend where you are calling Blockin from,
it is very simple to define the chain driver. Here is how we specified
which chain driver to use in our demo site implementation.
import { AlgoDriver, setChainDriver } from "blockin";

setChainDriver(
new AlgoDriver(process.env.ALGO_API_KEY)

)

If a developer has created or imported their own chain driver that
they would like to use with the Blockin library, they can simply tell
Blockin to use this new chain driver as follows.
import { setChainDriver } from "blockin";
import { CustomChainDriver } from "./customChainDriver"
// CustomChainDriver extends the IChainDriver interface

setChainDriver(
new CustomChainDriver(process.env.CHAIN_API_KEY)

);

In this way, our library provides strong flexibility for developers
to create and use chain driver implementations for other blockchain
networks not currently supported natively in the Blockin library.

6.2 Demo Site
We are also developing a demo site that can currently be found at
https://blockin.vercel.app/, with the source code located at https:
//github.com/kking935/Blockin-Demo that uses our library to au-
thenticate and authorize users. This website is a dApp (decentralized
application) which uses our library as a dApp tool to provide these
authentication and authorization features for users on the frontend.
We also show on this demo site how to authenticate and authorize
users for a backend resource server as well.

This demo site shows everything about our library from creating
the authorization asset in all three ways (resource creates, user
creates, and smart contract creates) to create / verify challenges and
responses.

6.2.1 Cookies. For our demo site, we decided to implement our
permissions in the form of a cookie called ’blockedin’. When veri-
fyChalllenge() is called and succeeds, the site will create a session
cookie called ’blockedin’ with a value of the asset ID requested and
store it in the browser’s local storage. The cookie value can then
be used to grant users access with role-based access. As shown in
the Sign In Privileges section below, different cookie values can
correspond to different access privileges. Browser cookies were just
our choice for granting permissions. Other implementations may
choose to use JWTs, HTTP-only cookies, or any other method.

6.2.2 Sign In Privileges. To demonstrate how custom asset metadata
hashes correspond to different role-based access controls, we change
the color of the navigation banner at the top of the page based on the

asset metadata. The site supports any valid HTML color. The meta-
data hash stored on chain is calculated as Base64(SHA256(HTML
color plaintext)). The site then inverts this operation when attempt-
ing to determine the color of a requested asset after verifyChallenge()
succeeds.

Fig. 5. Banner - Not Logged In

Fig. 6. Banner - Logged In with ’Orange’ Asset Metadata Encoding

6.2.3 WalletConnect. A challenge we faced when developing our
demo site was interacting with a user’s blockchain accounts. We
chose to use WalletConnect in order to facilitate initiating a connec-
tion between the user’s browser and their wallet of choice [[Wallet-
Connect 2022]].

6.2.4 Backend Demo. We use a hybrid approach in our demo site
to honor a best practice of not leaking any API keys directly in the
browser. Almost all the functions called by Blockin have to trigger
some API for a specific chain such as to get transaction parameters,
asset details, or to send a transaction. If there is no worry about API
keys leaked or if one implements the ChainDriver interface such
that it doesn’t need to call any API, then the Blockin library can be
called directly from the frontend code; however, this may introduce
other security vulnerabilities.

As mentioned, we have a private Algorand API key, so the demo
site makes use of the following flow of events: the frontend (user)
will call the created backend (authorizing resource) for all sign-in
related requests. If needed, the backend will call the Blockin library,
using its private API key. We envision this will be the typical flow
for most implementations using Blockin. This also allows for the
authorizing resource more flexibility to provide specialized tokens
such as custom JWTs for different privileges or HTTP-only cookies
for access to their backend.
This API can be found in the pages/api folder of our demo code.

We abstracted it so that every time we call Blockin, it is done via the
backend server. The following routes were provided in the demo,
but note this is just for our custom implementation.

/api/createAssetTxn
/api/createOptInTxn
/api/getAssetDetails

, Vol. 1, No. 1, Article . Publication date: November 2022.

https://blockin.vercel.app/
https://github.com/kking935/Blockin-Demo
https://github.com/kking935/Blockin-Demo

Blockin: Multi-Chain Sign-In Standard with Micro-Authorizations • 9

Fig. 7. Wallet Connect Challenge Signature Mobile Example - Pera Wallet

/api/getAssets
/api/getChallenge
/api/getToken
/api/receiveToken
/api/sendTxnToNetwork
/api/verifyChallenge

7 EVALUATION
We have decided to compare our Algorand proof-of-concept im-
plementation of our interface to two other implementations that
support micro-authorizations: existingWeb 2.0 OAuth solutions and
existing Ethereum ERC-721 access token solutions. Our criteria for
comparing the solutions are cost, speed, scalability, decentralization,
and ease of use. When we use "Blockin", we are referring to our
proof-of-concept on Algorand.

Also, we would like to note that our solution inherits from and is
very similar to EIP 4361 - Sign in With Ethereum. However, Blockin
has all the functionality that Sign in with Ethereum has and more.
This is due to it supporting multiple chains natively as well as the
flexibility of requesting specific assets.

7.1 Cost
These are estimates based on network statuses and exchange rates
at the time of writing.

• Blockin
– $0.001 or 0.001 Algos fees to create asset (one-time)
– $0.001 or 0.001 Algos fees to opt in (one-time)
– $0.001 or 0.001 Algos fees to transfer asset
– 0 fees to sign challenge / response each time

• Ethereum
– Up to 0.3 ETH or $1000 fees to create asset (one-time)
– No opt in transaction
– Up to 0.2 ETH or $500 fees to transfer an asset
– 0 fees to sign challenge / response each time

• OAuth 2.0
– $100 - $200 fees per month to run a server for an average
business

7.2 Speed
• Blockin
– 4.4 seconds to create asset (one-time)
– 4.4 seconds to transfer asset
– HTTP request / response speeds for challenge / response
(every time)

• Ethereum
– 72 seconds on average to create asset (one-time)
– 72 seconds to transfer asset
– HTTP request / response speeds for challenge / response
(every time)

• OAuth 2.0
– HTTP request / response speeds plus database lookup
speeds (every time)

7.3 Scalability
• Blockin
– Up to 1300 transactions per second
– Assets are a native, lightweight feature built into Algorand
which doesn’t require any expensive smart contracts to be
created

• Ethereum
– Up to 15 transactions per second
– Requires an expensive smart contract for each asset

• OAuth 2.0
– Practically infinitely scalable with the size of the database

7.4 Decentralization
• Blockin and Ethereum
– Decentralized by many independent nodes working to-
gether to validate the state of the chain

– No tampering of data

, Vol. 1, No. 1, Article . Publication date: November 2022.

10 • Davison, Miller, and King

• OAuth 2.0
– Not decentralized at all
– Must run a central server
– Not natively compatible with Web 3.0 public / private key
pairs

– Metadata can potentially be tampered with by a centralized
party

7.5 Ease of Use
Ease of use is also important to consider in our comparison. OAuth
2.0 has been the industry standard for a while, and many are used to
it. However, you have to remember your usernames and passwords
for each website.

Ethereum and Algorand both offer wallet providers that allow you
to have a single sign-on password (your private key) for any website.
We believe that Algorand is more usable due to its transaction
finality speed and mobile compatibility.

7.6 Lightweight
We also want to acknowledge that the total size of our library is
currently only 34 KB which is lightweight and makes it easy to
integrate.

8 CONCLUSION
In this paper, we introduced Blockin. Blockin is a multi-chain, flexi-
ble sign-in standard that supports dynamic role-based access control,
expiration tokens, and micro-authorizations through the use of dig-
ital assets and their metadata stored on any blockchain.

The reason we decided a framework like Blockin was needed was
two-fold. First, we observed that OAuth 2.0 had lots of functionality
in Web 2.0 that hasn’t yet transitioned to Web 3.0 with the new
paradigm of every user owning public-private key pair. Second, we
also noted that a multi-chain standard has not been proposed for
Web 3.0 sign-ins. There have been specific chain implementations,
such as Sign-In with Ethereum. However, not every user who wants
to sign in to Netflix, for example, will have an Ethereum address.
Users will all have their own preferred chains.
Our goal was to combine the previously mentioned solutions,

other Web 3.0 technologies (such as smart contracts and digital
assets), and the existing public/private key standard to provide a
multi-chain, general interface for the functionality needed for role-
based access, expiring tokens, and dynamic resource privileges. In
particular, we showed how to improve upon the speed, scalability,
cost, and flexibility of the existing solutions while also introducing
new features such as role-based access, freezing, expirations, and
clawbacks of tokens.
To implement Blockin, we built a JavaScript library that can be

categorized into two parts. First, the asset creation can be performed
using three different methods as defined in this paper: user creates,
resource creates, and smart contract creates. Each method has its
pros and cons and different execution flows, but all result in an asset
with metadata being created on-chain that can be used with Blockin.
Second, the verification part of the library focuses on the challenges
and responses needed for authorizing resources to verify a user’s
sign-in request. For this, we decided to inherit the EIP-4361 Sign

In with Ethereum standard, with a couple of minor modifications.
Users will submit a challenge with the requested assets they want
to sign-in with. Blockin will then verify the challenge was well-
formed, signed correctly, and verify the requested user actually
owns the requested assets on-chain. If this verification challenge
check succeeds, micro-authorizations can be granted based on the
specific asset and its metadata.
We then showed why Algorand was our preferred choice for

implementing our library’s proof-of-concept due to its unique asset
features (freezing and clawbacks) and blockchain features (low cost,
high speed, high scalability). Lastly, we explored the inner workings
of the library and showed a demo example of how a site would use
Blockin.
We believe Blockin has huge potential to become a user-centric,

universal sign-on standard for Web 3.0. We plan to continue to main-
tain and expand the open-source JavaScript library functionality in
the future.

REFERENCES
Mustafa Al-Bassam. 2017. Scpki. Proceedings of the ACM Workshop on Blockchain,

Cryptocurrencies and Contracts (2017). https://doi.org/10.1145/3055518.3055530
Algorand. 2021a. Algorand Atomic Transfers. https://developer.algorand.org/docs/get-

details/atomic_transfers/
Algorand. 2021b. Algorand Smart Contracts. https://developer.algorand.org/docs/get-

details/dapps/smart-contracts/
Algorand. 2021c. Algorand Standard Assets (ASAs). https://developer.algorand.org/

docs/get-details/asa/
Algorand. 2021d. Frequently Asked Questions. https://www.algorand.com/technology/

faq
Algorand. 2021e. Immediate transaction finality. https://www.algorand.com/

technology/immediate-transaction-finality
Algorand. 2021f. Rekeying. https://developer.algorand.org/docs/get-details/accounts/

rekey/
Algorand. 2022. Algod : Merge Unlimited Assets to master. https://github.com/

algorand/go-algorand/pull/3652
Seyed Mojtaba Bamakan, Nasim Nezhadsistani, Omid Bodaghi, and Qiang Qu. 2022.

Patents and intellectual property assets as non-fungible tokens; key technologies
and challenges. Scientific Reports 12, 1 (2022). https://doi.org/10.1038/s41598-022-
05920-6

Moritz Y. Becker, Cédric Fournet, and Andrew D. Gordon. 2010. SecPAL: Design and
semantics of a decentralized authorization language. Journal of Computer Security
18, 4 (2010), 619–665. https://doi.org/10.3233/jcs-2009-0364

Nikos Fotiou, Iakovos Pittaras, Vasilios A. Siris, Spyros Voulgaris, and George C. Polyzos.
2020. OAuth 2.0 authorization using blockchain-based tokens. Proceedings 2020
Workshop on Decentralized IoT Systems and Security (2020). https://doi.org/10.14722/
diss.2020.23002

Priyanka Kamboj, Shivang Khare, and Sujata Pal. 2021. User authentication using
blockchain based smart contract in role-based access control. Peer-to-Peer Networking
and Applications 14, 5 (2021), 2961–2976. https://doi.org/10.1007/s12083-021-01150-1

Gregory Rocco, Wayne Chang, Nick Johnson, and Brantly Millegan. 2021. EIP-4361:
Sign-in with Ethereum. https://eips.ethereum.org/EIPS/eip-4361

WalletConnect. 2022. WalletConnect. https://walletconnect.com/
Yuxin Zhong, Mi Zhou, Jiangnan Li, Jiahui Chen, Yan Liu, Yun Zhao, and Muchuang

Hu. 2021. Distributed blockchain-based Authentication and Authorization Protocol
for Smart Grid. Wireless Communications and Mobile Computing 2021 (2021), 1–15.
https://doi.org/10.1155/2021/5560621

, Vol. 1, No. 1, Article . Publication date: November 2022.

https://doi.org/10.1145/3055518.3055530
https://developer.algorand.org/docs/get-details/atomic_transfers/
https://developer.algorand.org/docs/get-details/atomic_transfers/
https://developer.algorand.org/docs/get-details/dapps/smart-contracts/
https://developer.algorand.org/docs/get-details/dapps/smart-contracts/
https://developer.algorand.org/docs/get-details/asa/
https://developer.algorand.org/docs/get-details/asa/
https://www.algorand.com/technology/faq
https://www.algorand.com/technology/faq
https://www.algorand.com/technology/immediate-transaction-finality
https://www.algorand.com/technology/immediate-transaction-finality
https://developer.algorand.org/docs/get-details/accounts/rekey/
https://developer.algorand.org/docs/get-details/accounts/rekey/
https://github.com/algorand/go-algorand/pull/3652
https://github.com/algorand/go-algorand/pull/3652
https://doi.org/10.1038/s41598-022-05920-6
https://doi.org/10.1038/s41598-022-05920-6
https://doi.org/10.3233/jcs-2009-0364
https://doi.org/10.14722/diss.2020.23002
https://doi.org/10.14722/diss.2020.23002
https://doi.org/10.1007/s12083-021-01150-1
https://eips.ethereum.org/EIPS/eip-4361
https://walletconnect.com/
https://doi.org/10.1155/2021/5560621

	Abstract
	1 Introduction
	2 Related Works
	3 Approach Overview
	3.1 Issuance of Authorization Asset
	3.2 Authentication Scheme
	3.3 Asset Encoding Scheme
	3.4 Hashing Authorizations for the User Creates Method

	4 Implementation Requirements
	4.1 dApp
	4.2 Blockchain

	5 Algorand
	5.1 Algorand Standard Assets
	5.2 Cost
	5.3 Speed
	5.4 Scalability
	5.5 Rekeying
	5.6 Support

	6 Implementation
	6.1 Javascript Library
	6.2 Demo Site

	7 Evaluation
	7.1 Cost
	7.2 Speed
	7.3 Scalability
	7.4 Decentralization
	7.5 Ease of Use
	7.6 Lightweight

	8 Conclusion
	References

