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ABSTRACT. In 1993 Bernstein and Vazirani proposed a quantum algorithm for the Bernstein-
Vazirani problem, which is given oracle access to the function f (a1, . . . ,an) = a1x1 +·· ·+anxn
(mod 2) with respect to a secret string x = x1 . . . xn ∈ {0,1}n, where a1, . . . ,an ∈ {0,1}, find x. We
give a quantum algorithm for a new problem called the oracle subset product problem, which
is given oracle access to the function f (a1, . . . ,an) = ax1

1 · · ·axn
n with respect to a secret string

x = x1 . . . xn ∈ {0,1}n, where a1, . . . ,an ∈Z, find x. Similar to the Bernstein-Vazirani algorithm,
it is a quantum algorithm for a problem that is originally polynomial time solvable by classical
algorithms; and that the advantage of the algorithm over classical algorithms is that it only
makes one call to the function instead of n calls.

1. INTRODUCTION

The earliest quantum algorithms are Deutsch’s algorithm [Deu85], the Deutsch-Jozsa
algorithm [DJ92], the Bernstein-Vazirani algorithm [BV93], Simon’s algorithm [Sim97],
Shor’s algorithms [Sho94; Sho99] and Grover’s algorithm [Gro96; Gro97]. It is generally
hard to find quantum algorithms for problems that are classically hard. Therefore in [Sho03]
Shor suggests to find faster quantum algorithms for problems already known to be classi-
cally solvable in polynomial time, and aim to provide polynomial factor speedups. This is
a less exciting goal but an enlightening strategy. A success example is the HHL algorithm
proposed by Harrow, Hassidim and Lloyd for solving linear systems of equations [HHL09],
where the authors initially aimed to achieve polynomial speedup but the resulting algorithm
turns out to have exponential speedup over the best classical algorithm. In this paper we
give quantum algorithms for new problems that are classically solvable in polynomial time.

In the series of nine papers [Li22a; Li22b; Li22c; Li22d; Li22e; Li22f; Li22g; Li22h; Li22i]
Li considered a wide range of problems that are conjecturally post-quantum hard, where
in the eighth paper [Li22h] of the series the problems are raised to a theory of discrete
exponential equations and noisy (discrete exponential equation) systems, which capture some
famous problems such as integer factorization [Gal12], ideal factorization [HM89], isogeny
factorization [CLG09], learning parity with noise (LPN) [BMT78; BFKL94], learning with
errors (LWE) [Reg09] and learning with rounding (LWR) [BPR12].

A discrete exponential equation solving problem asks to solve an equation of the form

ax1
1 · · ·axn

n = b

for a binary string x = x1 . . . xn ∈ {0,1}n, where the bases a1, . . . ,an are from a land L, which
is a monoid without the axiom of associativity [Li22h]. A typical example for L is the ring of
integers Z, over which the equation solving problem is the classical subset product problem
[GJ79, p. 224].
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A noisy system solving problem is an oracle problem that asks to solve for the secret string
x = x1 . . . xn ∈ {0,1}n given oracle access to samples of noisy discrete exponential equations of
the form

ax1
1 · · ·axn

n · e = b,

where the bases a1, . . . ,an and the noise e are sampled from two (typically high entropy)
distributions over L respectively. Note that the motivation of introducing invisible noises
into discrete exponential equation systems was to make the system hard to solve.

The problem we consider in this paper is slightly different from the above two, it is an
oracle problem but without noises, hence it is not classically hard. Also the oracle is a “best-
case oracle” rather than an “average-case oracle”, namely it is a “function oracle” which
responses with the evaluation b of the function to any requested bases a1, . . . ,an, rather
than a “sampling oracle” which outputs random subset product samples (a1, . . . ,an,b).

Specifically, let x = x1 . . . xn ∈ {0,1}n be a secret string. The subset product function with
respect to x is the function f :Zn →Z defined as

f (a1, . . . ,an)= ax1
1 · · ·axn

n .

The oracle subset product problem is given oracle access to f , find x.
A classical algorithm to solve this problem is to learn each bit xi by querying f with

(a1, . . . ,ai−1,ai,ai+1, . . . ,an) = (1, . . . ,1,2,1 . . . ,1), namely only ai is set to be ̸= 0 and ̸= 1, and
the rest are all set to be 1. Then one learns that xi = 0 if f (a1, . . . ,an) = 1, or xi = 1 if
f (a1, . . . ,an)= 2. However this algorithm calls the oracle of f for n times.

We give a quantum algorithm that makes only one call to f . The idea is to use Legendre
symbols to reduce f : Zn → Z to a Boolean function h : {0,1}n → {0,1} and handle h in a
similar way to the Bernstein-Vazirani algorithm.

2. PRELIMINARIES

We give minimum background knowledge needed to understand our algorithm.
We denote strings as s = s1 . . . sn. We denote vectors using Dirac’s notation |v〉. We denote

the dual vector of |v〉 by 〈v|.
Let a be a nonnegative integer and a1 . . .an ∈ {0,1}n be its binary representation. Define

|a〉 = |a1 . . .an〉 = |a1〉 · · · |an〉 := |a1〉⊗ · · ·⊗ |an〉,
where ⊗ is the Kronecker product.1 For example, when n = 1 we define

|0〉 :=
(
1
0

)
, |1〉 :=

(
0
1

)
.

When n = 2 we define

|0〉 = |00〉 = |0〉|0〉 := |0〉⊗ |0〉 =
(
1
0

)
⊗

(
1
0

)
=

1
(
1
0

)
0

(
1
0

)
=


1
0
0
0

 ;

1Note that we typically write a vector as |v〉 = (v1, . . . ,vn). But if v = v1 . . .vn is a binary string, then |v〉 ̸=
(v1, . . . ,vn) because |v1 . . .vn〉 ̸= (v1, . . . ,vn).
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|1〉 = |01〉 = |0〉|1〉 := |0〉⊗ |1〉 =
(
1
0

)
⊗

(
0
1

)
=

1
(
0
1

)
0

(
0
1

)
=


0
1
0
0

 ;

|2〉 = |10〉 = |1〉|0〉 := |1〉⊗ |0〉 =
(
0
1

)
⊗

(
1
0

)
=

0
(
1
0

)
1

(
1
0

)
=


0
0
1
0

 ;

|3〉 = |11〉 = |1〉|1〉 := |1〉⊗ |1〉 =
(
0
1

)
⊗

(
0
1

)
=

1
(
0
1

)
1

(
0
1

)
=


0
0
0
1

 .

Let A,B,C,D be matrices. The Kronecker product satisfies (A⊗B)(C⊗D)= (AC)⊗ (BD).
In contrast to a bit in a classical computer, the basic unit of a quantum computer is a

qubit. A qubit is either 0 or 1 after measurement. However it can be both 0 and 1 before
measurement. The “value” of a qubit before measurement is called its state, typically repre-
sented by a norm-1 vector |ψ〉 = α|0〉+β|1〉, where α and β are complex numbers such that
|α|2 +|β|2 = 1, and the squares |α|2 and |β|2 represent the probabilities of the qubit to be 0
and 1 respectively.

A unitary matrix is a matrix whose conjugate transpose is its inverse. A quantum gate
is a unitary matrix. A single-qubit quantum gate is a two dimensional unitary matrix. A
frequently used single-qubit gate is the Hadamard gate

H = 1p
2

(
1 1
1 −1

)
which satisfies H2 = I (identity matrix). When act on |0〉 and |1〉 it gives

H|0〉 = 1p
2
|0〉+ 1p

2
|1〉;

H|1〉 = 1p
2
|0〉− 1p

2
|1〉.

We denote |+〉 := H|0〉 and |−〉 := H|1〉.
Let a be an integer and p be an odd prime. The Legendre symbol of a above p is

(
a
p

)
= a

p−1
2

(mod p) ∈ {−1,0,1}. Legendre symbols are multiplicative, namely
(

ab
p

)
=

(
a
p

)(
b
p

)
.

3. ALGORITHM

The Bernstein-Vazirani algorithm [BV93] deals with linear functions. Our algorithm can
be seen as an extension of the Bernstein-Vazirani algorithm to deal with nonlinear func-
tions. The key question is how to transform a nonlinear function into a linear function. In
our case, it is about transforming a subset product function f (a1, . . . ,an) = ax1

1 · · ·axn
n into a

linear function h(α1, . . . ,αn)=α1x1+·· ·+αnxn (mod 2) with respect to the same secret string
x = x1 . . . xn.

Let p be a prime number and c0, c1 be positive integers such that the Legendre symbols
satisfy

(
c0
p

)
= 1 and

(
c1
p

)
= −1. Define a Boolean function h : {0,1}n → {0,1} as the following.
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It takes as input a binary string α=α1 . . .αn ∈ {0,1}n, calls f for f
(
cα1 , . . . , cαn

) ∈Z, computes

the Legendre symbol ℓ=
( f

(
cα1 ,...,cαn

)
p

)
∈ {−1,1}, and outputs the bit β= 1−ℓ

2 ∈ {0,1}.
Define a unitary operator (i.e. unitary matrix) as

Uh = ∑
α∈{0,1}n

1∑
j=0

|α, j⊕h(α)〉〈α, j|,

where ⊕ is the XOR operation.
Our algorithm is the following. It looks like the Berstein-Vazirani algorithm but the

difference is the core function h.

Algorithm 1 Quantum Algorithm For Oracle Subset Product
Input: The oracle O f of a subset product function f .
Output: The secret string x = x1 . . . xn of f (with probability 1).

1: Initialize the input qubits to the |0〉⊗n|1〉 state;
2: Apply Hadamard gates H⊗(n+1) to the state;
3: Apply Uh to the current state;
4: Apply Hadamard gates H⊗(n+1) to the current state;
5: Measure the first register |x1〉⊗ · · ·⊗ |xn〉 and output the string x1 . . . xn.

The advantage of our algorithm over classical algorithms is similar to the advantage of the
Berstein-Vazirani algorithm. That is, by applying Uh we make only one call to the function
f for 2n input vectors (cα1 , . . . , cαn) ∈ {c0, c1}n simultaneously, which exhausts all 2n possible
inputs (α1, . . . ,αn) ∈ {0,1}n to h. We will show in Theorem 1 that h(α1, . . . ,αn) = α1x1 +·· ·+
αnxn (mod 2) and thus the 2n inputs (α1, . . . ,αn) ∈ {0,1}n fix the solution x = x1 . . . xn.

4. ANALYSIS

To prove the correctness of the algorithm, we need the following two well-known lemmas,
whose proofs can be found in [Por22].

LEMMA 1. Let g : {0,1}n → {0,1} be any Boolean function and

Ug =
∑

α∈{0,1}n

1∑
j=0

|α, j⊕ g(α)〉〈α, j|.

Then
Ug(|α〉⊗ |−〉)= (−1)g(α)|α〉⊗ |−〉.

LEMMA 2. Let x ∈ {0,1}n be an n-bit string x0 . . . xn−1. Then

H⊗n|x〉 = 1p
2n

2n−1∑
α=0

(−1)α·x|α〉,

where α · x =α1x1 +·· ·+α1x1 (mod 2).

Now we are ready to prove the correctness of the algorithm.

THEOREM 1. Algorithm 1 outputs x with probability 1.
4



Proof. 1. After the first step, the state of the qubits is

|ψ0〉 = |0〉⊗n|1〉.
2. After the second step, the state of the qubits is

|ψ1〉 = (H⊗n|0〉)⊗ (H|1〉)= 1p
2n

2n−1∑
α=0

|α〉⊗ |−〉.

3. After the third step, the state of the qubits is

|ψ2〉 =Uh|ψ1〉 = 1p
2n

2n−1∑
α=0

Uh|α〉⊗ |−〉.

By Lemma 1, we can replace Uh by (−1)h(α) for any Boolean function h : {0,1}n → {0,1}. We
therefore have

|ψ2〉 = 1p
2n

2n−1∑
α=0

(−1)h(α)|α〉⊗ |−〉.

Now define the characteristic number of a Legendre symbol ℓ ∈ {−1,1} to be ℓ̄= 1−ℓ
2 ∈ {0,1}.

Namely the “bar” notation turns 1 into 0 and −1 into 1. Also denote αi :=
(

ai
p

)
. Then

h(α)=
( f

(
cα1 , . . . , cαn

)
p

)

=
(

cx1
α1 · · · cxn

αn

p

)

=
(

cα1

p

)x1

· · ·
(

cαn

p

)xn

=
(

cα1

p

)
x1 +·· ·+

(
cαn

p

)
xn (mod 2)

=α1x1 +·· ·+αnxn (mod 2),

where the forth line is from the fact that
(

a1
p

)x1 · · ·
(

an
p

)xn = 1 if there is an even number of

terms
(

ai
p

)xi
equals −1; and

(
a1
p

)x1 · · ·
(

an
p

)xn = −1 if there is an odd number of terms
(

ai
p

)xi

equals −1. Denote α · x :=α1x1 +·· ·+αnxn (mod 2). Then h(α) =α · x. I.e., the functionality
of h is essentially mod 2 inner product.2 It follows that

|ψ2〉 = 1p
2n

2n−1∑
α=0

(−1)α·x|α〉⊗ |−〉.

4. After the forth step, the state of the qubits is

|ψ3〉 = H⊗(n+1)|ψ2〉 = H⊗n

(
1p
2n

2n−1∑
α=0

(−1)α·x|α〉
)
⊗ (H|−〉).

2Note that h does not need to know x for computing α · x. It accomplishes the task by calling f .
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By Lemma 2, we have that

H⊗n|x〉 = 1p
2n

2n−1∑
α=0

(−1)α·x|α〉.

Plug this in the previous equation, and notice that H⊗nH⊗n = I (identity matrix) and H|−〉 =
|1〉, we have that

|ψ3〉 = |x〉⊗ |1〉.
5. Since |x〉 = |x1〉⊗ · · ·⊗ |xn〉, the fifth step returns x = x1 . . . xn with probability 1. □

5. GENERALIZATION

Note that the key to go with the Bernstein-Vazirani scenario is the transformation from
the subset product function f to the Boolean function h. Hence our algorithm can be gen-
eralized to work with any function f that can be efficiently transformed into a Boolean
function h. In particular, it works for oracle problems of more general subset product func-
tions f (a1, . . . ,an)= ax1

1 · · ·axn
n with a1, . . . ,an in the order OK of a number fields K such that

the second power residue symbol is defined in OK and that it can be efficiently computed.
To achieve a quantum algorithm for oracle subset product over an order OK , all we need to
do is to replace the Legendre symbols everywhere in this paper by appropriate second power
residue symbols. Then all the arguments in this paper still hold.
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