
Compute, but Verify: Efficient Multiparty Computation over
Authenticated Inputs

Moumita Dutta1, Chaya Ganesh1, Sikhar Patranabis2, and Nitin Singh2

1 Indian Institute of Science
{moumitadutta,chaya}@iisc.ac.in

2 IBM Research, India
sikharpatranabis@ibm.com,nitisin1@in.ibm.com

Abstract. Traditional notions of secure multiparty computation (MPC) allow mutually dis-
trusting parties to jointly compute a function over their private inputs, but typically do not
specify how these inputs are chosen. Motivated by real-world applications where corrupt inputs
could adversely impact privacy and operational legitimacy, we consider a notion of authenticated
MPC where the inputs are authenticated, e.g., signed using a digital signature by some trusted
authority. We propose a generic and efficient compiler that transforms any linear secret sharing
based MPC protocol into one with input authentication.

Our compiler incurs significantly lower computational costs and competitive communication over-
heads when compared to the best existing solutions, while entirely avoiding the (potentially ex-
pensive) protocol-specific techniques and pre-processing requirements that are inherent to these
solutions. For n-party MPC protocols with abort security where each party has ℓ inputs, our
compiler incurs O(n log ℓ) communication overall and a computational overhead of O(ℓ) group
exponentiations per party (the corresponding overheads for the most efficient existing solution
are O(n2) and O(ℓn)). Finally, for a corruption threshold t < n/4, our compiler preserves the
stronger identifiable abort security of the underlying MPC protocol. No existing solution for
authenticated MPC achieves this regardless of the corruption threshold.

Along the way, we make several technical contributions that are of independent interest. This
includes the notion of distributed proofs of knowledge and concrete realizations of the same for
several relations of interest, such as proving knowledge of many popularly used digital signature
schemes, and proving knowledge of opening of a Pedersen commitment. We also illustrate the
practicality of our approach by extending the well-known MP-SPDZ library with our compiler,
thus yielding prototype authenticated MPC protocols.

1 Introduction

Secure multiparty computation (MPC) allows two or more parties to jointly compute a function f
of their private inputs. The guarantees of such a protocol are privacy of the inputs and correctness
of the output, even in the presence of some corrupt parties. Security definitions model the behavior
of corrupt parties as either semi-honest (who follow the prescribed protocol, but might analyze the
messages received in order to learn unauthorized information), or malicious (who arbitrarily deviate
from the protocol).

Traditional security notions for MPC ensure the correctness of the output and privacy, that is,
nothing is revealed beyond the output of the computation. However, no assurance is given about
what input parties use in the protocol. The protocol does not specify how the parties choose their
private inputs, irrespective of whether they follow the protocol or not. Parties may modify their “real”
input affecting correctness and security, but this is outside the scope of MPC security and is allowed
by security definitions. However, several applications are sensitive to “ill-formed” inputs; such inputs
can either corrupt the output or reveal the output on arbitrary uncertified inputs which compromise
privacy.

Input Authenticity. A malicious party can potentially modify its input such that all other parties
recieve incorrect output, but it can locally “undo” the modification and learn the correct result. Addi-
tionally, a modified input can reveal more information about other parties’ inputs, beyond what would
be available if the function was computed on truthful inputs. Such attacks are of practical concern in
applications of MPC in computation on genomic data [BB16]. Similarly, in applications of hospitals
performing joint computations on patient data for treatment efficacy, it is desirable to ensure that the

data used is signed by a regulatory authority such as FDA. Real-world applications of MPC require
that the inputs used for computing the function are authentic.

One way to achieve this authenticity is to run the MPC protocol on inputs that are signed by
some trusted authority. This can be achieved by having the protocol first verify the signature on the
inputs, and if they are validated, proceed to compute the original functionality. In certain applications,
authenticity could mean that inputs are expected to satisfy a certain predicate or property. This
can be achieved by verifying that the inputs are consistent with global commitments, and then various
properties can be proved about the committed value. Regardless of the particular notion of authenticity,
MPC on certified inputs can be achieved in general by augmenting the function f to be computed with
the verification function of a signature or a commitment scheme. However, signature and commitment
verification typically involves hashing the message which is expensive in MPC, or expressing algebraic
operations as arithmetic circuits which blows up the size of the circuit to be computed.

1.1 Our Contributions

In this work, we study authenticated MPC and propose a generic compiler to efficiently transform an
MPC protocol into an MPC protocol with input authentication. Towards this goal, we put forth a
notion of distributed zero-knowledge protocols that are of independent interest.

Compressed Distributed Sigma protocols. We consider a setting with multiple provers and a sin-
gle verifier where the witness is secret shared among the provers. The verifier has as input an instance
x, and each prover has as input a share wi such that (x,w) ∈ R where w = Reconstruct(w1, . . . , wn).

Note that, as stated, this is a special case of MPC and any generic MPC protocol can be used
to achieve this. However, we impose the following restrictions: (i) the provers cannot communicate
with each other, and (ii) the verifier communicates only via a broadcast channel and is public coin.
These two restrictions make the task non-trivial. Looking ahead, the use of only broadcast channels
and public coins also facilitate public verifiability. In our authenticated MPC application, each party
plays the prover, and all other parties are verifiers. The prover’s role itself is then distributed among
all parties. Public verifiability implies that we can go from one verifier to many verifiers by using the
Fiat-Shamir transform to non-interactively derive the verifier’s messages from a random oracle (RO).

Our definition of distributed proof of knowledge is a natural distributed analogue of honest-verifier
public coin protocols. In Section 3, we construct a distributed proof of knowledge for the discrete
logarithm relation. We then show how to apply the compression technique from Attema et al. [AC20]
to improve the communication complexity of our protocol from being linear in the size of the witness to
logarithmic. Our techniques to construct compressed distributed zero-knowledge protocols are general
and modular. We believe that sigma protocols for algebraic languages can be distributed using similar
techniques, and our building blocks to be of independent interest in other applications.

Robust Distributed Sigma protocols. The ideas outlined above will not prevent malicious provers
from disrupting the protocol execution by using bad shares and causing abort. In Section 5, we put
forth a notion of robustness which additionally provides tolerance against abort in the presence of n/4
malicious provers. That is, when the shares indeed reconstruct a valid witness, the protocol will lead
the verifier to accept even if up to n/4 provers deviate from the protocol. To achieve this seeming
error-correction over messages “in exponents”, we leverage results from low degree testing (Lemma 2)
used in constructions of efficient zkSNARKs like [AHIV17,BCR+19]. Informally, the results state that
to check that a set of k sharings of messages s1, . . . , sk have not been tampered (by corrupt provers), it
is sufficient to publicly reveal a suitably blinded linear combination of the above sharings. The deviant
positions in the revealed sharing (from a consistent sharing) with overwhelming probability capture
deviations across all the sharings. We leave applicability of these techniques to other relations as an
interesting future work.

Authenticated MPC. We consider a notion of input authenticity where the inputs possess a valid
signature from a trusted entity. This is a standard notion where applications know an entity who can
certify that inputs satisfy certain properties by providing a signature on inputs3. Informally, we give
a protocol that realizes the following authenticated MPC functionality.

– The parties send their inputs xi and signature σi on xi to F for i ∈ [n].

3 Our techniques extend to other notions of authenticity like proving that the inputs open publicly known
commitments.

2

Succint Signature Succinct Communication Multi-Auth Efficiency Robustness

BJ18 [BJ18] No No No No

ADEO21 [ADEO21] Yes Yes Yes∗∗ No

Πbbs-auth-opt (Sec. 4.2) Yes Yes Yes No

Πps-auth-opt (Appendix A.4) Yes Yes Yes∗ No

Πbbs-auth-rob (Sec. 5) Yes Yes No Yes

Table 1: Comparison of features embodied by authenticated MPC protocols. Succinctness refers to signature
size and communication being sublinear with respect to message size and unauthenticated communication
respectively. Multi-Auth efficiency implies protocol is efficient for authenticating inputs from several parties,
where ∗ denotes that the property holds when the signatures come from the same issuer and ∗∗ denotes that
only communication overhead is efficient, not the computational overhead.

– The functionality F checks that σi is a valid signature on xi for all i ∈ [n]. If any of the signatures
is invalid, for all invalid inputs xj , it sends (abort, Pj) to all the parties. Otherwise it computes
y = f(x1, . . . , xn) and sends y to all parties.

In Section 7, we propose a generic compiler that transforms a protocol Π from a class of secret-
sharing based protocols to an authenticated protocol Π′. The class of protocols we consider are malicious
protocols based on Shamir secret sharing (it generalizes to any linear secret sharing scheme). For
authentication, our techniques allow signature schemes that are algebraically compatible: these include
Camenisch-Lysyanskaya (CL) signatures [CL01], Boneh-Boyen-Shaham (BBS) signatures [BBS04], and
Pointcheval-Sanders (PS) signatures [PS16]. These are signature schemes that support efficient zero-
knowledge proofs of knowledge of a valid message-signature pair. We consider BBS signatures4 to
illustrate the building blocks of our compiler and implementation, and show the generality of our
techniques by providing protocols for PS signatures as well in Appendix A. The compiled protocol Π′

inherits the security of Π. If Π guarantees security with abort for t < n/3, then the same holds for Π′;
and if Π achieves guaranteed output delivery, then so does Π′, when t < n/4, as long as the inputs
are authentic (by definition, we abort if this is not the case)5. The latter crucially uses a robustness
property of our distributed zero-knowledge protocol. Our compiler incurs negligible communication
overhead over Π. We provide the concrete communication overhead incurred by our compiler and
compare it with related works in Tables 1 and 2. For further discussion on asymptotic comparison of
efficiency, see Section A.3 and Table 3.

A more detailed overview of our technical ideas is in Section 1.3, and Figure 1 highlights key
components and the roadmap for realizing the authenticated MPC functionality described in this
paper.

Implementation. We implement our protocol to illustrate the practical viability of our approach.
In Section 8, we plug our compiler to the versatile MP-SPDZ [Kel20] framework to additionally ob-
tain input authentication for computations supported by MP-SPDZ. An attractive feature of our
implementation is that existing computations for MP-SPDZ framework work essentially unchanged
with our extension. Similar extensions are also possible for other MPC frameworks such as SCALE-
MAMBA [NUH+22]. We run protocols for authenticating inputs assuming a broadcast channel. If
the underlying MPC protocol uses broadcast, then this is not an additional assumption. Otherwise,
broadcast will have to be implemented using point-to-point channels and cryptography. We report
communication complexity separately in terms of broadcast bits and point-to-point bits. For broad-
casting ℓ bits among n parties, state-of-the-art broadcast protocols incur a communication complexity
of O(ℓn) when ℓ >> n [BLZLN21,GP16]. In our application, we indeed expect ℓ to be Ω(λn) where λ
is a security parameter. Additional details on our implementation and results appear in Section 8.

1.2 Related Work

Certified Inputs. The works of [KMW16,Bau16,ZBB17] achieve input validation for the special
case of two-party computation using garbled circuit (GC) based techniques. The work of [BJ18] con-

4 There are standardization efforts for a version of BBS called BBS+ that has led to a recent RFC
draft [LKWL22].

5 In some applications, it is acceptable to continue computation on default inputs instead of aborting when
authentication fails.

3

structs MPC with certified inputs, albeit using techniques that are specific to certain MPC proto-
cols [DN07,DKL+13]. A recent work [ADEO21] develops techniques for computing bilinear pairings
over secret shared data, thus enabling signature verification inside MPC for the Pointcheval-Sanders
signature scheme [PS16]. Our proposed compiler uses efficient compressed distributed sigma protocol
proofs for signature verification instead of verifying signatures inside the MPC protocol, and differs
from both [BJ18] and [ADEO21] in terms of techniques used and properties achieved. In particu-
lar, our compiler is modular, fully generic (works in a plug-and-play manner with any linear secret
sharing based MPC protocol), and avoids the (potentially expensive) protocol-specific techniques and
pre-processing requirements that are inherent to [BJ18,ADEO21]. Our compiler also enables stronger
security guarantees such as identifiable abort for certain restricted corruption settings, which nei-
ther [BJ18] nor [ADEO21] achieves. We refer the reader to Table 1 for an overview of features provided
by our shceme in comparison to prior work.

Distributed Zero-knowledge. Various notions of distributed zero-knowledge have appeared in lit-
erature. The notion in [WZC+18] considers a distributed prover in order to improve prover efficiency,
but the witness is still held by one entity. In Feta [BJO+22], the distributed notion is a generalization
of designated verifier to the threshold setting where a set of verifiers jointly verify the correctness of the
proof. Prio [CB17] proposes secret shared non-interactive proofs where again, there is a single prover
and many verifiers.

Our formulation of distributed proofs of knowledge also differs from recent works on distributed
zkSNARKs [SVdV16,OB21,DPP+22], where the focus is on jointly computing a non-interactive pub-
licly verifiable proof (with specific focus on Groth16 [Gro16], Plonk [GWC19] and Marlin [CHM+20]).
Their constructions require additional interaction among the workers over private channels; on the
other hand, we consider distributed proofs of knowledge where all interaction with the verifier takes
place over a public broadcast channel. We also study the notion of robust completeness that guaran-
tees that the protocol runs to completion even in the presence of malicious behavior, which was not
considered in prior works.

Fully Linear PCPs. A related notion of zero-knowledge proofs on distributed data is explored
in [BBC+19] that proposes the abstraction of a fully linear PCP (FLPCP) where each verifier only
has access to a share of the statement. While techniques of [BBC+19] can indeed be used to achieve
our goals, our focus is on concrete efficiency (prover overhead, communication overhead on top of the
underlying unauthenticated MPC). In [BBC+19], the relation to be proved is expressed as an arith-
metic circuit and for the languages we consider (algebraic relations), expressing them as a circuit is
prohibitively expensive (for instance, modular exponentiation has size that is roughly cubic in the bit
size of the modulus). In addition, [BBC+19] provides sublinear communication only for special circuits
(like degree 2) and the circuits of interest for us are unlikely to have this structure.

We provide a comparison of our work with FLPCP [BBC+19] in terms of our definition, applications,
and efficiency of our constructions.

Efficiency. While techniques of [BBC+19] can indeed be used to achieve our goals, the focus of our
work is on concrete efficiency (prover overhead, communication overhead on top of the underlying
unauthenticated MPC).

– In order to use [BBC+19], one has to express the relation as an arithmetic circuit; for the lan-
guages we consider (algebraic relations), expressing them as a circuit is prohibitively expensive (for
instance, modular exponentiation has size that is roughly cubic in the bit size of the modulus).
Instead, we take advantage of the algebraic nature of the relation to design concretely efficient
distributed sigma protocols.

– In addition, [BBC+19] provides sublinear communication only for special circuits (like degree 2)
and the circuits of interest for us are unlikely to have this structure.

– Our approach allows additional efficiency gains (e.g., aggregation of multiple signature verifications
into a single proof of knowledge – see our optimized protocol in Section 3.5) which is likely to be
significantly harder (and less efficient) using the FLPCP framework due to the need to generate a
PCP over a distributed witness.

Robustness. We note that [BBC+19] does not consider the robustness property. We put forth the
robustness notion that guarantees that the protocol runs to completion even in the presence of ma-
licious workers (when the prover is honest). This property is indeed important for our applications,

4

Message Length

Protocol 102 103 104 105 106

Πbbs-auth-opt 0.5 0.9 1.2 1.6 1.9

BJ18 [BJ18] 1.5 17.5 168 1630 16300

ADEO21 [ADEO21] 0.9 0.9 0.9 0.9 0.9

Table 2: Communication overhead (in KB) for input authentication with abort for varying message lengths (re-
ported per party for two party setting). Our overhead per party does not increase with the total number of
parties, in contrast to prior work. Our overhead consists entirely of broadcast messages.

as this means that the compiled authenticated MPC protocol can identify malicious parties in the
authentication stage.

Notional Differences. Finally, we would like to point out a subtle difference between our distributed
notion and that of [BBC+19]. In [BBC+19], the witness is with a single party and the proof (oracle)
generation is centralized. In our notion, the witness is shared and the proof is generated in a distributed
way. In [BBC+19], the verification is distributed and the verifiers interact with each other. In our notion,
the verification is public. In particular, broadcast suffices and the verifiers do not have to interact with
each other. We believe that both notions of distributed zero-knowledge are complementary.

Applications. The motivating application for [BBC+19] is compiling passive security to active security,
and therefore the statements that show up -– like the next message function of the protocol -– have a
low degree circuit representation. We consider the authenticated input application where our relations
of interest are algebraic in nature and admit efficient sigma protocols. Subsequent works [BGIN20]
have used the FLPCP notion of distributed ZK on secret shared data to construct MPC protocols
with full security.

1.3 Technical Overview

Distributed Sigma protocol. Let G be a group of prime order p. Given x ∈ G, consider Schnorr’s
protocol for proving knowledge of discrete logarithm w such that x = gw for some generator g. Let
Σ = (P1,P2,V) be the protocol where we denote by P1 and P2 the algorithms that compute, the
prover’s first message a = gα for random α ∈ Zp, and the prover’s last message (response) z = α+ cw,
respectively, where c is the challenge from the space {0, 1}l for some length l. Let V be the algorithm
that takes x, transcript τ = (a, c, z) and accepts iff gz = axc.

Now, in order to distribute this Sigma protocol, we begin by assuming n provers Pi who each hold
a share wi such that w = w1 + · · · + wn (mod p). Now, each prover runs Σ with their respective
shares in parallel. That is, Pi runs P1, broadcasts ai = gαi , receives challenge c from V, and runs
P2 and broadcasts zi. The transcript is τ = (a1, . . . , an, c, z1, . . . , zn), and the verifier accepts iff
gΣzi =

∏
aix

c =
∏

i aix
c. This holds since gΣzi = gΣ(αi+cwi) =

∏
i aix

c.
This idea generalizes to any linear secret sharing scheme, and also extends to other relations. For

instance, to prove knowledge of representation of a vector of discrete logarithms with respect to public
generators. In our final construction we use additional ideas like randomization of the first message of
each Pi via a sharing of 0 in order to ensure zero-knowledge.

Compression. Next, we apply split-and-fold compression techniques to reduce the instance size by
half based on a random challenge, and recurse, in order to make our distributed protocol succinct.
To illustrate the idea, consider the distributed Schnorr described above adapted for vectors, that
is for proving knowledge of w ∈ Zm

p such that x = gw, where gw =
∏m

i=1 g
wi
i . In this protocol,

each Pi broadcasts a vector zi as its third message, and this is the source of linear communication,
since each prover’s first message is still one group element, ai = gαi . We now outline the ideas to
compress this communication. Let us denote component wise product by g ◦ h = (g1h1, . . . gnhn)
for g and h ∈ Gn. Now, after receiving the verifier challenge c, each Pi uses c to compute a new
instance (and corresponding witness), but of half the size, as follows: broadcast shares of the new
instance Ai = g

wi,L

R , Bi = g
wi,R

L where g = gL||gR; set new reduced instance to be g′ = gc
L ◦ gR, and

x′ = xc
∏

Ai

∏
Bc2

i ; set new witness share to be w′
i = wi,L + cwi,R. Recursing until the instance size

is constant yields a protocol with logarithmic communication. Here again, we take advantage of the
linearity of the secret sharing scheme in order to split and fold the shares in the exponent.

5

O(ℓ)-DPOK (Πd-pok)

Schnorr POK O(log ℓ)-DPOK
(Πcd-pok)

O(log ℓ)-Robust
DPOK (Πrob)

BBS Signature (or
PS Signature) POK

Input Authenti-
cation (Πbbs-auth)

Robust Input
Authentication
(Πbbs-dpok-opt-rob)

Compiler
Πampc (abort)

Compiler Πampc-rob

(id-abort)

Compression

CSP[AC20]

Lemma 2

Section 3.1 Section 4 Section 6

Section 5 Section 5 Section 7

Section 3.1

Fig. 1: Overview of the main components of our construction. The arrows denote dependence among the com-
ponents. Acronyms POK, DPOK stand for proof-of-knowledge and distributed-proof-of-knowledge respectively.
We also indicate the tools used to realize specific components.

Robust Completeness. While the ideas described above result in protocols that are zero-knowledge
and sound against a malicious adversary controlling up to t parties, completeness is guaranteed only
if all the provers follow the protocol. Can we achieve a robust property where completeness holds as
long as the shares reconstruct a valid witness, even if some provers are malicious? We show that this
can be achieved by identifying and discarding corrupt shares. At a high level, the provers commit to
their shares and then reveal a certain linear form determined by the challenge over their shares. Given
a challenge c ∈ Zm

p , each Pi broadcasts zi = ⟨c,wi⟩. In the honest case, these opened linear forms
are expected to be a sharing of the same linear form on the reconstructed witness: z = (z1, . . . , zn)
recombine to z where z = ⟨c,w⟩. The verifier error-corrects the received z′ to the nearest codeword,
and identifies the erroneous positions. By assumption our corruption threshold is smaller than half
the minimum distance of the code, so the erroneous positions clearly come from corrupt provers. Can
some corrupt provers strategically introduce errors in individual shares so that they “cancel out” in
the inner product with c? We lean on coding theoretic result (Lemma 2) for linear codes to claim
that such a prover only succeeds with negligible probability. Unfortunately, the aforementioned “error
preserving” property is provably known only for corruption bounded by a third of minimum distance
(d/3), instead of the decoding radius of d/2. For the case of Shamir secret sharing, this downgrades our
robustness threshold from n/3 corrupt provers to n/4. Finally, having identified the corrupt messages,
we can reconstruct the claimed commitment in the exponent using commitments of honest shares (now
identified). We need more details around this core idea to ensure the protocol is zero-knowledge.

A Generic Compiler. In order to construct an authenticated MPC protocol, our choice of signa-
ture scheme (and commitment scheme) are such that the verification can be cast as a relation for
which we can construct a distributed protocol. The BBS signature scheme [BBS04], the PS signature
scheme [PS16] and the Pedersen commitment protocol [Ped91] are some candidates for which our dis-
tributed protocol can be instantiated. Our compiler reuses the sharing that is already done as part of
an MPC protocol. Before proceeding with computation on the shares, the distributed zero-knowledge
proof is invoked to verify authenticity, and then the rest of the MPC protocol proceeds. Since the
shares of the witness come from a party in the MPC protocol, our robustness property guarantees that
if the dealer is honest (that is, a valid witness was shared), then even if some parties acting as provers
are dishonest, the authenticity proof goes through. We also introduce a modified formulation of proof
of knowledge of BBS signatures (Section 2.3) and proof of knowledge of PS signatures (Appendix A),
which leads to vastly more efficient distributed protocols. Figure 1 highlights key components and the
roadmap for realizing the authenticated MPC functionality described in this paper.

2 Preliminaries

Notation. We write x ←R χ to represent that an element x is sampled uniformly at random from
a set/distribution X . The output x of a deterministic algorithm A is denoted by x = A and the
output x′ of a randomized algorithm A′ is denoted by x′ ←R A′. For n ∈ N, let [n] denote the set
{1, . . . , n}. For a, b ∈ N such that a, b ≥ 1, we denote by [a, b] the set of integers lying between a and

6

b (both inclusive). We refer to λ ∈ N as the security parameter, and denote by poly(λ) and negl(λ) any
generic (unspecified) polynomial function and negligible function in λ, respectively. 6

Let G be a group and Zp denote the field of prime order p. We use boldface to denote vectors.
Let g = (g1, . . . , gn) ∈ Gn and x = (x1, . . . , xn) ∈ Zn

p , then gx is defined by gx = gx1
1 · · · gxn

n . For
g = (g1, . . . , gn) ∈ Gn and h = (h1, . . . , hn) ∈ Gn, g ◦ h denotes component-wise multiplication, and
is defined by g ◦ h = (g1h1, . . . , gnhn). For g = (g1, . . . , gn) ∈ Gn and x = (x1, . . . , xn) ∈ Zn

p , gL

(similarly, xL) denotes the left half of the vector g(x) and gR(xR) denotes the right half, such that
g = gL∥gR and x = xL∥xR.

2.1 Threshold Secret Sharing

In this section, we recall the formal definition of threshold secret sharing.

Definition 1 (Threshold Secret Sharing). A (t, n) threshold secret sharing over finite field F
consists of algorithms (Share,Reconstruct) as described below:

– Share is a randomized algorithm that on input s ∈ F samples a vector (s1, . . . , sn) ∈ Fn, which we
denote as (s1, . . . , sn)←R Share(s).

– Reconstruct is a deterministic algorithm that takes a set I ⊆ [n], |I| ≥ t, a vector (s1, . . . , s|I|) and
outputs s = Reconstruct((s1, . . . , s|I|), I) ∈ F. We will often omit the argument I when it is clear
from the context.

A threshold secret sharing scheme satisfies the following properties:

– Correctness: For every s ∈ F, any (s1, . . . , sn)←R Share(s) and any subset I = {i1, . . . , iq} ⊆ [n]
with q ≥ t, we have Reconstruct((si1 , . . . , siq), I) = s.

– Privacy: For every s ∈ F, any (s1, . . . , sn)←R Share(s) and any subset I = {i1, . . . , iq} ⊆ [n] with
q < t, the tuple (si1 , . . . , siq) is information-theoretically independent of s.

A concrete (t, n) sharing scheme over a finite field F, known as the Shamir Secret Sharing is realized by
choosing a set of distinct points η = {η1, . . . , ηn} in F\{0}. Then given s ∈ F, the Share algorithm uni-
formly samples a polynomial p of degree at most t−1 such that p(0) = s and outputs (p(η1), . . . , p(ηn))
as the shares. The Reconstruct algorithm essentially reconstructs the value s = p(0) using lagrangian
interpolation.

We canonically extend the Share and Reconstruct algorithms to vectors: For s ∈ Fm, Share(s)
samples m × n matrix S, where jth row of S is obtained as output of Share(s[j]) (Here s[j] denotes
jth component of s). Subsequently it outputs (s1, . . . , sn) as shares of s, where si denotes the i

th column
of S. Similarly, given a set I ⊆ [n] and vectors (s1, . . . , s|I|), the Reconstruct algorithm first constructs

a matrix S of size m× |I| with vector si as its i
th column. Subsequently Reconstruct outputs a vector

s ∈ Fm by reconstructing each row of S individually. We record the following useful fact regarding
Shamir Secret Sharing.

Lemma 1. Let (Share,Reconstruct) constitute a (t, n) Shamir Secret Sharing over finite field F. There
exist vectors tj ∈ Ft for j ∈ [1, (n− t+ 1)] such that:

– Scalar Version: For any s ∈ F and (s1, . . . , sn)←R Share(s), we have st−1+j = ⟨(s, s1, . . . , st−1), tj⟩.
– Vector Version: For any s ∈ Fm, m ≥ 2 and (s1, . . . , sn) ←R Share(s), we have st−1+j = Sttj,

where St = [s, s1, . . . , st−1] denotes the m× t matrix with s, s1, . . . , st−1 as its columns.

Proof. The vectors tj correspond to coefficients of Largangian Interpolation formula for interpolating
the value of a ≤ t− 1 degree polynomial at ηt−1+j in terms of its values at 0, η1, . . . , ηt−1.

Definition 2 (Linear Code). An [n, k, d]-linear code L over field F is a k-dimensional subspace of
Fn such that d = min{∆(x,y) : x,y ∈ L,x ̸= y}. Here ∆ denotes the hamming distance between two
vectors.

We say that an m × n matrix P ∈ Lm if each row of P is a vector in L. We also overload the
distance function ∆ over matrices; for matrices P,Q ∈ Fm×n, we define ∆(P,Q) to be the number of
columns in which P and Q differ. For a matrix P ∈ Fm×n and an [n, k, d] linear code L over F, we
define ∆(P,Lm) to be minimum value of ∆(P,Q) where Q ∈ Lm.

6 Note that a function f : N→ N is said to be negligible in λ if for every positive polynomial p, f(λ) < 1/p(λ)
when λ is sufficiently large.

7

Definition 3 (Reed Solomon code). For any finite field F, any n-length vector η = (η1, . . . , ηn) ∈
Fn of distinct elements of F and integer k < n, the Reed Solomon Code RSn,k,η is an [n, k, n− k+1]
linear code consisting of vectors

(
p(η1), . . . , p(ηn)

)
where p is a polynomial of degree at most k−1 over

F.

We note that shares output by (t, n) Shamir secret sharing are vectors in [n, t, n − t + 1] Reed
Solomon code.

The following coding theoretic result is used to identify malicious behaviour in the distributed
proof of knowledge protocol in Section 5. It has been previously used in construction of zero knowledge
proofs in the interactive oracle setting (e.g [AHIV17,BCR+19]), to check that the oracle represents
“low degree polynomials”.

Lemma 2. Let L be an [n, k, d]-linear code over finite field F and let S be an m×n matrix over F. Let
e = ∆(S,Lm) be such that e < d/3. Then for any codeword r ∈ L, and γ sampled uniformly from Fm,
we have ∆(r + γTS,L) = e with probability at least 1 − d/|F|. Furthermore, if E denotes the column
indices where S differs from the nearest matrix Q in Lm, with probability 1 − d/|F| over choice of γ,
the vector r+ γTS differs from the closest codeword v ∈ L at precisely the positions in E.

Variants of above Lemma are stated and proved in [AHIV17] for the bound d/4. It is also proved in
[BCR+19], and independently in [DPP+22][Lemma A.5] for the bound d/3. Any improvement in the
bound for the above Lemma implies higher tolerance for our robust protocols. For example, improving
the bound to d/2 yields a robust protocol that tolerates upto n/3 corruptions, instead of n/4 claimed
in this paper.

2.2 Arguments of Knowledge

Interactive Arguments. Let R be a NP-relation and L be the corresponding NP-language, where
L = {x : ∃ w such that (x,w) ∈ R}. Here, x is called an instance or statement and w is called a
witness. An interactive argument system consists of a pair of PPT algorithms (P,V). P, known as the
prover algorithm, takes as input an instance x ∈ L and its corresponding witness w, and V, known as
the verifier algorithm, takes as input an instance x. Given a public instance x, the prover P, convinces
the verifier V, that x ∈ L. At the end of the protocol, based on whether the verifier is convinced by
the prover’s claim, V outputs a decision bit. A stronger proof of knowledge property says that if the
verifier is convinced, then the prover knows a witness w such that (x,w) ∈ R.

Honest-Verifier Zero-Knowledge and Special-Soundness. A protocol is said to be honest-verifier
zero-knowledge (HVZK) if the transcript of messages resulting from a run of the protocol can be
simulated by an efficient algorithm without knowledge of the witness. A protocol is said to have k-
special-soundness, if given k accepting transcripts, an extractor algorithm can output a w′ such that
(x,w′) ∈ R. Furthermore, a protocol is said to have (k1, . . . , kµ)-special-soundness [BCC+16], if given
a tree of

∏µ
i=1 ki accepting transcripts, the extractor can extract a valid witness. Here, each vertex in

the tree of
∏µ

i=1 ki accepting transcripts corresponds to the prover’s messages and each edge in the
tree corresponds the verifier’s challenge, and each root-to-leaf path is a transcript.

An interactive protocol is said to be public-coin if the verifier’s messages are uniformly ran-
dom strings Public-coin protocols can be transformed into non-interactive arguments using the Fiat-
Shamir [FS87] heuristic by deriving the verifier’s messages as the output of a Random Oracle. In this
work, we consider public-coin protocols.

2.3 BBS Signatures and PoK for BBS

In this section, we recall the BBS signature scheme from [BBS04], along with the associated proof of
knowledge [CDL16].

The BBS Signature Scheme. We first recall the the BBS signature scheme from [BBS04].

Definition 4 (BBS Signature Scheme [BBS04]). The BBS Signature Scheme to sign a message
m = (m1, . . . ,mℓ) ∈ Zℓ

p consists of a tuple of PPT algorithms (Setup,KeyGen,Sign,Verify) described
as follows :

8

– Setup(1λ) : For security parameter λ, this algorithm outputs groups G1,G2, and GT of prime order
p, with an efficient bilinear map e : G1×G2 → GT as part of the public parameters pp, along with
g1 and g2, which are the generators of groups G1 and G2 respectively.

– KeyGen(pp) : This algorithm samples (h0, . . . , hℓ) ←R Gℓ+1
1 and x ←R Z∗

p, computes w = gx2 and
outputs (sk, pk), where sk = x and pk = (w, h0, . . . , hℓ).

– Sign(sk,m1, . . . ,mℓ) : This algorithm samples β, s←R Zp, computes A =
(
g1h

s
0

∏ℓ
i=1 h

mi
i

) 1
β+x

and

outputs σ = (A, β, s).
– Verify(pk, (m1, . . . ,mℓ), σ) : This algorithm parses σ as (σ1, σ2, σ3), and checks

e (σ1, wg
σ2
2) = e

(
g1h

σ3
0

ℓ∏
i=1

hmi
i , g2

)
.

If yes, it outputs 1, and outputs 0 otherwise.

PoK for BBS Signature Scheme. We now recall the proof of knowledge for BBS signatures, which
was originally proposed in [CDL16].

– Common Input: Public Key pk = (w, h0, . . . , hℓ)

– P’s inputs: Message m ∈ Zℓ
p and signature σ = (A, β, s) on m, with A =

(
g1h

s
0

∏ℓ
i=1 h

mi
i

) 1
β+x

.

1. P samples r1 ←R Z∗
p and computes A′ = Ar1 and r3 = r−1

1

2. P computes Ā = (A′)
−β · br1(= (A′)x), where b =

(
g1h

s
0

∏ℓ
i=1 h

mi
i

)
.

3. P samples r2 ←R Zp and computes d = br1 · h−r2
0 and s′ = s− r2 · r3

4. P sends A′, Ā, d to V, and they run a ZKPoK for the discrete-logarithm relation {(A′)
−β

hr2
0 =

Ā
d ∧ d−r3hs′

0

∏ℓ
i=1 h

mi
i = g−1

1 }, where (m, r2, r3, β, s
′) is the witness.

5. V checks that A′ ̸= 1G1
, e (A′, w) = e

(
Ā, g2

)
, verifies the ZKPoK proof and outputs 1 if all the

checks pass, and 0 otherwise.

2.4 Compressed Sigma Protocols

We recall the sigma protocol for vectors, for proving knowledge of discrete log s ∈ Zℓ
p of a vector of

group elements g, such that gs = z. Here, a prover P with knowledge of the secret vector s, samples
a random vector of scalars r ←R Zℓ

p, and sends α = gr to the verifier V. V then samples a challenge
c←R Zp and sends it to P and in the next round P replies with x = cs+r where V checks if gx = zcα.
Here, the size of the last message of P is linear in input size, and hence it makes the proof size linear.
We note that, for the proof to be succeed, it suffices to convince the verifier V that P knows x such
that gx = zcα. Here, we recall the log2 m−1 round protocol using the split and fold technique [AC20],
which has logarithmic proof size, for proving knowledge of x ∈ Zℓ

p such that gx = y where y = zcα :

– Common input : g ∈ Gm, z ∈ G
– P’s input : x ∈ Zℓ

p

1. P computes A = gxL

R , B = gxR

L and sends them to V.
2. V samples c←R Zp and sends it to P.
3. P comutes x′ = xL + cxR.
4. P and V independently computes g′ = gc

L ◦ gR ∈ Gℓ/2 and z′ = AycBc2 .
5. If size(g′) = 2, P sends x′ to V, else P and V repeat the protocol from step 1 with x = x′, g = g′

and y = z′.

where for a vector s, sL denotes the left half of the vector and sR denote the right half.

The underlying sigma protocol has perfect completeness, special honest-verifier zero-knowledge
(SHVZK) and 2-special soundness, and the later protocol has perfect completeness and 3-special sound-
ness at each step of the recursion. Hence, the overall protocol has perfect completeness, SHVZK which
comes from the underlying sigma protocol and (2, k1, . . . , k(log2 ℓ−1))-special soundness, where ki = 3
∀i ∈ [log2 ℓ − 1]. The protocol can be compiled into a non-interactive argument of knowledge using
Fiat-Shamir heuristic [FS87], which we denote by NI-CSP.

9

3 Distributed Proof of Knowledge

In this section, we formalize the notion of distributed proof of knowledge in which multiple provers,
each having a share of the witness engage in an interactive protocol with a verifier to convince it
that their shares determine a valid witness. The provers do not interact with each other, and all the
interaction with the verifier takes place over a public broadcast channel. These restrictions imply that
the notion does not trivially follow from general multiparty computation.

Definition 5 (Distributed Proof of Knowledge). Let R = {Rκ}κ∈N be a family of relations. An
n-worker distributed proof of knowledge for R consists of interactive adversaries P,W1, . . . ,Wn and V
where P is called the Prover, V is called the Verifier and W = {W1, . . . ,Wn} are called the workers.
Additionally we have algorithms Setup, Share, and Reconstruct where Setup generates relation specific
parameters while (Share,Reconstruct) constitute a (t, n) secret sharing scheme. The distributed proof of
knowledge Π = (Setup,Share,Reconstruct)P,W,V for R is described as below:

– Setup: The algorithm Setup takes the relation description and outputs public parameters as Setup(Rκ)→
pp.

– P’s Input: Instance x and witness s such that (x, s) ∈ Rκ.
– Wi’s Input: (x, si), where si is the ith share of the message vector s, s.t. Reconstruct(s1, . . . , sn) =

s.
– Pre-processing: P sends auxi privately to Wi for all i ∈ [n].
– Interactive Protocol: The workers W1, . . . ,Wn interact with the verifier V over a public broadcast

channel over k rounds for some k ∈ N. In round j, each worker Wi broadcasts a message mij

depending on its randomness and messages received in prior (j − 1) rounds (including the inputs
si, auxi). Similarly, in each round j ∈ [k], V broadcasts a uniformly sampled challenge cj from
appropriate domain.

– Output: At the end of k rounds, V outputs 1 (Accept) or 0 (Reject).

Let Π = (Setup,Share,Reconstruct)P,V,W be a distributed proof of knowledge for relation family
R. For an adversary A controlling a subset of parties in the protocol Π, we use Π(A,x) to denote
the output of the protocol for statement x, while we use ⟨Π(A,x)⟩ to denote the transcript of the
interactive protocol consisting of all messages broadcast by honest parties. Note that, due to the
restrictions imposed on the interaction to be over broadcast, the view of A in Π is precisely the
transcript ⟨Π(A,x)⟩ together with it’s own randomness. We define the following properties for Π:

– Completeness: For all (x, s) ∈ Rκ, when all parties follow the protocol (i.e A = ∅), we have
Π(A,x) = 1 with probability 1.

– Soundness: For any PPT adversary A controlling the parties W ∪ {P}, there exists an efficient
extractor E with rewinding access to A such that whenever Π(A,x) = 1, with overwhelming
probability EA(x) outputs s such that (x, s) ∈ Rκ.

– Zero Knowledge: For any adversary A controlling at most t parties inW, there exists a simulator
Sim which given x and inputs {(si, auxi)} for all parties i controlled by A outputs a transcript
indistinguishable from ⟨Π(A,x)⟩.

– Robust Completeness: We define a stronger notion of completeness that is robust to the presence
of some corupt parties. We say that the protocol satisfies robust completeness with threshold ℓ > 0
if for any adversary controlling at most ℓ parties inW it holds that: for (x, s) ∈ Rκ, and an honest
prover P using s as witness, with overwhelming probability Π(A,x) = 1 while identifying the
adversarial workers. Intuitively, the protocol protects an honest P from upto ℓ corrupt workers.

– Succinctness: We say that the protocol Π is succinct if the total length of all the messages
broadcast by a party

We assume an honest verifier V for ease of exposition. However, our eventual goal is to have a publicly
verifiable transcript as detailed in Section 3.1.

Remark. The notion of distributed interactive proofs has appeared in [Ped91], in the context of
relations describing the verification of undeniable signature schemes. Looking ahead, we consider dis-
tributed proofs of knowledge for the discrete log relation, which when combined with appropriate
signature scheme (e.g., BBS [BBS04] or PS [PS16]), proves knowledge of signature, where the signed
message is shared among the workers. In particular, both the message and the signature remain private,
unlike in [Ped91], where the signature is public.

10

3.1 Distributed Proof of Knowledge for Discrete Log

In this section, we provide a construction of distributed proof of knowledge for the discrete log relation.

Definition 6 (Discrete Log Relation). Let RDL
κ be a relation specified by (pκ,Gκ,gκ) where pκ is

a prime integer, Gκ is a group of order pκ and gκ = (g1, . . . , gmκ
) is a vector of generators from Gκ.

Further we have log(pκ) = O(κ) and mκ = poly(κ). The relation RDL
κ consists of pairs (z, s) with

z ∈ Gκ and s ∈ Zmκ
pκ

satisfying z = gs
κ. Let RDL =

{
RDL

κ

}
κ∈N be a family of discrete log relations.

Additionally, we assume that any efficient adversary outputs a non-trivial discrete log relationship
among gκ with probability negligible in κ.

For notational convenience, we will drop the subscript κ while specifying relations from RDL and
instead consider R ∈ RDL to consist of pairs (z, s) satisfying z = gs where s ∈ Zm

p , g ∈ Gm for group
G of prime order p, and suitable m.

Basic Distributed Protocol We first present a distributed protocol for RDL, namely Πd-pok, that
achieves soundness, completeness and zero-knowledge. We assume (Share,Reconstruct) constitute a
(t, n) Shamir Secret Sharing over Zp, where Reconstruct(s1, . . . , sn) = k1s1+ · · ·+knsn for ki ∈ Zp. The
only variation, apart from the workers running the classical Sigma protocol for the proof of knowledge
over their respective shares in parallel, is the additional randomization of the first message of each
prover using the additive share ρi of 0. This is required to ensure that the distribution of individual
workers’ messages is not dependent on their respective shares. Note that in protocol Πd-pok (and in all
other protocols described subsequently), we use the term “pre-processing” to denote any steps that
either involve purely local computation for the prover, or steps that require the usage of point-to-point
channels, and the term “interactive protocol” to denote steps that involve broadcast channels only.

Protocol Πd-pok

– Public Parameters: (p,G,g, h) where g ∈ Gℓ, h ∈ G.
– P’s inputs: s such that (z, s) ∈ RDL.
– Wi’s inputs : (z, si), where si is the ith share of the message vector s,

such that Reconstruct(s1, . . . , sn) = s.
– Preprocessing : P samples a random additive sharing (ρ1, . . . , ρn) of 0 satisfying ρ1 + · · ·+ ρn = 0.

Thereafter, P sends ρi to Wi.
– Interactive Protocol:

1. Wi (i ∈ [n]) samples ti ←R Zℓ
p and broadcasts αi = gkitihρi .

2. V chooses c←R Zp and broadcasts c.
3. Wi (i ∈ [n]) computes xi = csi + ti and broadcasts xi.

– Output: V outputs 1 if gk1xi+...+knxn = zc · α1 · · ·αn, 0 otherwise.

Theorem 1. Assuming that the discrete log assumption holds over the group G, protocol Πd-pok
achieves perfect completeness, 2-special soundness, special honest-verifier zero-knowledge, and a com-
munication complexity of ℓ elements of Zp and 1 element of G from each worker to the verifier.

Proof. Completeness. We have xi = csi + ti and s =
∑n

i=1 kisi. Thus,
∑n

i=1 kixi = c
∑n

i=1 kisi +∑n
i=1 kiti = cs+

∑n
i=1 kiti. Hence if s satisfies gs = z, then V outputs 1 with probability 1.

2-Special Soundness. Consider two accepting transcripts
(
{αi}i∈[n] , c, {xi}i∈[n]

)
and

(
{αi}i∈[n] , c

′, {x′
i}i∈[n]

)
for two distinct challenges c and c′, c ̸= c′. Then we have:

gk1x1+...+knxn = zc · α1 · · ·αn

gk1x
′
1+...+knx

′
n = zc

′
· α1 · · ·αn

Defining si = (xi − x′
i)/(c− c′), we have gs = z for s = Reconstruct(s1, . . . , sn), as desired

7.

7 We note that, here if we have that a component of si as non-zero, say (si)j ̸= 0 for some j ∈ [n], then from
si = (xi − x′

i)/(c− c′) we ensure that the two last message vectors in the transcript satisfy (xi)j ̸= (x′
i)j for

that j.

11

Special Honest-Verifier Zero Knowledge.We construct a simulator Sim that produces a transcript
indistinguishable from the transcript of the protocol given a challenge c ∈ Zp. WLOG, we assume
n /∈ C ⊊ [n]. Sim receives xi ←R Zℓ

p and αi ←R G from A, for all i ∈ C, samples xi ←R Zℓ
p, ∀

i ∈ [n], i /∈ C, samples αi ←R G, ∀ i ∈ [n− 1], i /∈ C, and sets

αn = gk1xi+...+knxn/{zc · α1 · · ·αn−1}

The transcript output by the simulator is uniform subject to the verification constraint, and is thus
distributed identically to the transcript of the protocol.

Efficiency. The workers perform O(ℓ) operations over G and Zp (total complexity of O(ℓ∥G∥ +
ℓ∥Zp∥)). The verifier performs ℓ exponentiations over G and ℓn operations over Zp (total complex-
ity of O(ℓn∥Zp∥+ ℓ∥G∥)).

Public Verifiability Looking ahead, for our eventual compiler transforming any MPC protocol into
a corresponding authenticated MPC protocol, we use (extensions of) a publicly verifiable version of
Πd-pok. Note that Πd-pok is public-coin, with multiple first round messages from different provers. As
a result, we cannot make this protocol completely non-interactive using the standard Fiat-Shamir
transformation [FS87] of Sigma protocols into NIZK proofs. However, we can compress Πd-pok by one
round while relying on the Fiat-Shamir heuristic to achieve a 2-round publicly verifiable version Πpv

d-pok
as follows:

– In the first round, each prover Wi samples ti ←R Zℓ
p and broadcasts its first message αi = gkitihρi .

– In the second round, each prover Wi computes c = RO (α1∥ · · · ∥αn) and broadcasts its second
round message xi = csi + ti.

Verification proceeds exactly as in Πd-pok, and Πpv
d-pok retains the same communication complexity as

Πd-pok. We now state the following theorem:

Theorem 2. Assuming that the discrete log assumption holds over the group G, protocol Πpv
d-pok as

described achieves perfect completeness, soundness and zero-knowledge in the random oracle model.

Proof. Perfect completeness of Πpv
d-pok follows from perfect completeness of Πd-pok. For soundness of

Πpv
d-pok, we use the forking lemma [PS96][BN06] to extract two accepting transcripts of Πd-pok from the

adversary A controlling the set of workers {Wi : i ∈ C}. Note that we fork the adversary A on behalf of
all the workers Wi, i ∈ C, as we need all the workers to respond with their respective valid last message
on different challenges. We obtain two accepting transcripts from an adversary with probability close
to ϵ2/Q, where Q is total number of random oracle queries by the adversary controlling all the workers,
and ϵ is the success probability of the adversary for providing an accepting transcript. The extraction
of the witness thereafter follows from the 2-special soundness and the forking lemma of the underlying
protocol Πd-pok.

Finally, to argue that Πpv
d-pok is zero-knowledge, we construct the following simulator Sim to provide

an accepting transcript, which only has knowledge of the relation (this simulator is essentially identical
to the simulator for Πd-pok except for Steps-1,7 and 8, which are additionally introduced):

1. Sim simulates the random oracle RO as follows: it maintains a local table consisting of tuples of
the form (x, y). On receiving a query x from the adversary A, it looks up this table to check if an
entry of the from (x, y) exists. If yes, it responds with y. Otherwise, it responds with a uniformly
sampled y, and programs the random oracle as RO(x) := y by adding the entry (x, y) to the table.

2. Sim receives xi ←R Zm
p and αi ←R G from A, for all i ∈ C. Sim also samples c ←R Zp and

xi ←R Zm
p , ∀ i ∈ [n], i /∈ C. Finally, it samples αi ←R G, ∀ i ∈ [n − 1], i /∈ C, and sets αn =

gk1xi+...+knxn/{zc · α1 · · ·αn−1}.
3. Sim aborts if A has issued a query on (α1∥ · · · ∥αn). Otherwise, Sim programs RO(α1∥ · · · ∥αn) := c

and outputs ({αi}i∈[n] , c, {xi}i∈[n]).

We note that Sim runs in polynomial time, while maintaining a uniform distribution subject to
the verification constraint for the transcript it outputs. Additionally, Sim aborts with only negligible
probability, since the adversary A guesses each of α1, . . . , αn with at most negligible probability. This
completes the proof of Theorem 2.

12

Succinct Distributed Protocol The basic protocol presented previously incurred O(ℓ) communi-
cation per worker, due to each worker sending a vector of size ℓ as the final message. To reduce this
communication, we use a distributed version of split and fold technique used earlier in [BBB+18] and
[AC20] to compress classical Sigma protocols for proof of knowledge. Instead of sending vectors xi in
the final message, the workers instead prove knowledge of vectors xi, whose reconstruction x opens the
commitment on the right hand side of verification constraint. The aforementioned (distributed) proof
of knowledge is reduced in each round to a (distributed) proof of knowledge over smaller vectors until
the vectors are succinct enough to be revealed in full (typically when they are of size 2). Our protocol
Πd-csp is detailed below. Note that this protocol is not required to be zero knowledge, as revealing xi

in the original protocol leaks no information.

Protocol Πd-csp

– Public Parameters: (p,G,g) where g ∈ Gℓ.
– P’s inputs: s such that (z, s) ∈ RDL.
– Wi’s inputs : (z, si), where si is the ith share of the message vector s,

such that Reconstruct(s1, . . . , sn) = s.
– Interactive Protocol:

1. Wi divides g = (gL,gR) where gL and gR denote the first and second halves of the vector g
respectively. Similarly, it obtains vectors si,L and si,R from the vector si. It broadcasts commit-

ments Ai = g
kisi,L
R and Bi = g

kisi,R
L .

2. V chooses c←R Zp and broadcasts c.
3. Wi computes s′i = si,L + c · si,R.
4. All the parties compute new generators g′ = gc

L ◦ gR and new commitment z′ = (A1 · · ·An) · zc ·
(B1 · · ·Bn)

c2 .
5. If size(g′) = 2: Wi, i ∈ [n] send s′i to V, else the parties repeat the steps from Step 1 with si = s′i,

z′ = z and g = g′, effectively running the interactive phase on the reduced statement (g′, z′).

– Output: V outputs 1 if g′k1s
′
1+···+kns′n = z′, else it outputs 0.

Theorem 3. The protocol Πd-csp satisfies completeness and special soundness.

Proof. The protocol Πd-csp has perfect completeness, 3-special soundness. Each worker broadcasts two
elements of Zp (in the final round), and a total of 2 log(ℓ) elements of G across all the rounds. Thus the
communication incurred by each worker is 2 log(ℓ) log(|G|) + 2 log(|Zp|). We now prove the properties
satisfied by the protocol.

Completeness. The completeness follows from the following calculation which shows that if the
workers have shares (s1, . . . , sn) of the correct witness s, then the workers end up with shares (s′1, . . . , s

′
n)

whose reconstruction s′ satisfies the reduced statement g′s′ = z′.

g′k1s
′
1+...+kns

′
n = (gc

L ◦ gR)
∑

i kis
′
i = (gc

L ◦ gR)
∑

i ki(si,L+csi,R)

=
∏
i

(
g
si,L
R

)ki ·
(
g
csi,L
L g

csi,R
R

)ki ·
(
g
c2si,R
L

)ki

=
∏
i

Ai · (gkisi)c ·Bc2

i

=
∏
i

Ai · zc ·
∏
i

Bc2

i = z′

Special Soundness. We prove 3-special soundness of (a single execution of the recursive relation in
the) protocol along the lines of the same proof for the single prover version in [AC20]. We consider 3
accepting transcripts

({Ai, Bi}i∈[n], c1, {s′1i }i∈[n]), ({Ai, Bi}i∈[n], c2, {s′2i }i∈[n]),

({Ai, Bi}i∈[n], c3, {s′3i }i∈[n]).

Let a1, a2 and a3 be such that a1 + a2 + a3 = 0, c1a1 + c2a2 + c3a3 = 1 and c21a1 + c22a2 + c23a3 = 0.
Note that such (a1, a2, a3) can be computed as the associated coefficient matrix is invertible provided

13

c1, c2, c3 are distinct, which happens with overwhelming probability. Define si =
∑

j aj(cjs
′j
i , s

′j
i) and

consider s = k1s1 + · · ·+ knsn. For j ∈ [3], we have:

g′
j = g

cj
L ◦ gR, g

′k1s
′
1+···+kns

′
n

j = (A1 · · ·An) · zci · (B1 · · ·Bn)
c2i

Raising the respective equations to power ai and then multiplying, we get:

z =

3∏
j=1

g′aj(k1s
′
1+···+kns

′
n)

= g
∑

j ajcj(k1s
′
1+···+kns

′
n)

L g
∑

j aj(k1s
′
1+···+kns

′
n)

R

= gk1s1+···+knsn = gs

Thus, the vector s as constructed is a witness for the original relation.

Efficiency. The workers perform O(ℓ) operations over G (exponentiations) and Zp, giving efficiency
of O(ℓ∥G∥ + ℓ∥Zp∥). The verifier performs O(ℓ) exponentiations over G and O(n) operations over
Zp giving efficiency of O(n∥Zp∥ + ℓ∥G∥). We can further improve the concrete efficiency of verifier
by replacing the O(ℓ) exponentiations over G by a single multiexponentiation of size ℓ + 2 log(ℓ), by
directly computing the generators for the final round in terms of the initial generators (see Section
6.2 of [BBB+18]). Each worker broadcasts two elements of Zp (in the final round), and a total of
2 log(ℓ) elements of G across all the rounds. Thus the communication incurred by each worker is
2 log(ℓ) log(|G|) + 2 log(|Zp|).

Final Compressed DPoK for Discrete Log. The final compressed distributed protocol Πcd-pok for
the relation RDL is obtained by composition of protocols Πd-pok and Πd-csp in the following way: once
the workers compute the vectors xi in Step 3 of the protocol Πd-pok (3.1), instead of broadcasting xi,
they run the interactive protocol of the protocol Πd-csp using si = xi as their shares. The output of
Πd-csp on the these shares is considered the output of Πcd-pok. Finally, we can analogously achieve a
publicly verifiable version of this protocol, which we call Πpv

cd-pok, by using Πpv
d-pok as the base protocol

and compressing it using the compressed Sigma protocol Πd-csp described above.

4 Distributed PoK for BBS Signatures

The ZKPoK for BBS signatures outlined in Section ?? assumes a single prover holding a valid BBS
signature. A core technical centerpiece of this paper is a distributed version of this ZKPoK, where
(informally speaking) multiple provers, each holding a secret-share of the message and a BBS signature
on the message, can together prove knowledge of the (message, signature) pair with respect to a
public verification key. The straightforward distributed proof PoK protocol for BBS signature (protocol
Πbbs-dpok in Section 4.1, which is a simple adaptation of the BBS PoK from [CDL16]) does not lend
itself to aggregation of many proofs since the statement is not with respect to a public set of generators;
in particular, there is a witness v with respect to d where d is sent by the prover as part of randomized
signature. In order to allow for aggregation, we formulate proving knowledge of a BBS signature as
two different statements: a proof of knowledge over the generators available from the public key pk
which can be aggregated, and another proof of opening with respect to the d’s that are given by
each prover. The latter proof is constant-sized, and we compress the former aggregated statement.
The initial straightforward distributed proof PoK protocol Πbbs-dpok for BBS signature is shown below,
followed by the improved protocol Πbbs-dpok-opt.

4.1 Distributed PoK for BBS Signatures: Straightforward Version

We use the distributed protocol Πcd-pok to provide a proof of knowledge for BBS signature where a set
of distributed provers (W1, . . . ,Wn) with access to the shares of a message vector m, show proof of
knowledge of signature on m with respect to a public key pk.

14

Protocol Πbbs-dpok

– Public Key pk = (w, h0, . . . , hℓ)

– P’s inputs: Message m ∈ Zℓ
p and signature σ = (A, β, s) on m, with A =

(
g1h

s
0

∏ℓ
i=1 h

mi
i

) 1
β+x

.

– Wi’s inputs : Wi possesses the ith share mi of the message vector m, such that
Reconstruct(m1, . . . ,mn) = m

– Pre-processing : P samples u ←R Z∗
p, r ←R Zp, and computes d = bu · h−r

0 and t = s − r · v
where v = u−1, b = g1h

s
0

∏ℓ
i=1 h

mi
i . P computes (r1, . . . , rn) ←R Share(r), (v1, . . . , vn) ←R Share(v),

(β1, . . . , βn) ←R Share(β), (t1, . . . , tn) ←R Share(t). P sends the shares (ri, vi, βi, ti) to Wi, for all
i ∈ [n].

– Interactive Protocol
1. P computes A′ = Au, Ā = (A′)

−β · bu(= (A′)x), where b = g1h
s
0

∏ℓ
i=1 h

mi
i and d = bu · h−r

0 . P
broadcasts (A′, Ā, d) to each Wi, and V.

2. Each Wi locally holds the i-th share si = (vi, ti,mi, βi, ri) such that

s = (v, t,m, β, r) = Reconstruct
(
{si}i∈[n]

)
.

3. The workers Wi, i ∈ [n] and V run the protocol Πcd-pok for the relation d−vht
0

∏ℓ
i=1 h

mi
i = g−1

1 ∧
(A′)

−β
hr
0 = Ā

d
, where (v, t,m1, . . . ,mℓ) and (β, r) is secret-shared; (g = (d, h0, . . . , hℓ), z = g−1

1)

and (g′ = (A′, h0), z
′ = Ā

d
) is available to all parties.

4. V accepts if the Πcd-pok in the previous step accepts, and e (A′, w) = e
(
Ā, g2

)
holds.

Theorem 4. Assuming that the discrete log assumption holds over the groups G1 and G2, the proposed
protocol Πbbs-dpok as described above achieves perfect completeness, (2, k1, . . . , k(log2(ℓ+1)−1))-special
soundness with ki = 3 for all i = [log2(ℓ+ 1)− 1], and special honest-verifier zero-knowledge.

Proof. The proof is very similar to the proof of Theorem 1 and is omitted.

Efficiency. The protocol Πbbs-dpok inherits its communication complexity essentially from the underly-
ing protocol Πcd-pok which is O(log(ℓ) log(|G|)+ log(|Zp|)) per worker and O(n log(ℓ) log(|G|)) overall.

Protocol Πbbs-dpok-opt

– Public Key pk = (w, h0, . . . , hℓ)

– P’s inputs: Message m ∈ Zℓ
p and signature σ = (A, β, s) on m, with A =

(
g1h

s
0

∏ℓ
i=1 h

mi
i

) 1
β+x

.

– Wi’s inputs : Wi possesses the ith share mi of the message vector m, such that
Reconstruct(m1, . . . ,mn) = m

– Pre-processing Phase : P samples u ←R Z∗
p, r ←R Zp, η ←R Zp, and computes d = bu · h−r

0 and

t = s−r ·v where v = u−1, b = g1h
s
0

∏ℓ
i=1 h

mi
i . P computes (r1, . . . , rn)←R Share(r), (v1, . . . , vn)←R

Share(v), (β1, . . . , βn) ←R Share(β), (t1, . . . , tn) ←R Share(t), (η1, . . . , ηn) ←R Share(η). P sends the
shares (ri, vi, βi, ti, ηi) to Wi, for all i ∈ [n].

– Interactive Protocol:
1. P computes A′ = Au, Ā = (A′)

−β · bu(= (A′)x), where b = g1h
s
0

∏ℓ
i=1 h

mi
i and d = bu · h−r

0 . P
sets C = d−vht−η

0 , D = hη
0

∏ℓ
i=1 h

mi
i , and broadcasts (A′, Ā, d, C,D) to each Wi, and V.

2. The workers Wi, i ∈ [n] and V run the protocol Πcd-pok for the relation D = hη
0

∏ℓ
i=1 h

mi
i , where

(η,m1, . . . ,mℓ) are secret-shared; and g = (h0, . . . , hℓ), z = D is available to all parties.

3. The workers Wi, i ∈ [n] and V run the protocol Πd-pok for the relation C = d−vht−η
0 ∧(A′)

−β
hr
0 =

Ā
d
, where (v, η) and (β, r) are secret-shared; and g = ((d, h0), (A

′, h0)), z = (C, Ā
d
) is available to

all parties.
4. V accepts if C ·D = g−1

1 , e (A′, w) = e
(
Ā, g2

)
, Πcd-pok and Πd-pok accept.

Finally, we can again achieve a publicly verifiable two-round version of this protocol, which we call
Πpv

bbs-dpok-opt, by relying on the Fiat-Shamir heuristic and using a random oracle.

15

4.2 A Multi-Verifier Extension of the BBS PoK Authenticating All Inputs

In this section, we describe an extension of the original BBS PoK protocol where multiple parties issue
proofs of signatures on their own (private input) messages, and each party verifies the proof issued
by all other parties, subject to the restriction that all signatures are verified against a common public
key pk. Concretely, in the distributed setting, a party Pj acts as the prover, the parties P1, . . . ,Pn

collectively act as workers while each Pi, i ̸= j also acts as a verifier (this is possible, since the transcript
is publicly verifiable as shown in Section 3.1). The protocol Πbbs-auth is described in Figure 4.2. We use
this protocol is a building block for our eventual compiler to achieve authenticated MPC.

Protocol Πbbs-auth

– Public Key pk = (w, h0, . . . , hℓ).
– Pi’s inputs:

– Message mi ∈ Zℓ
p and signature σi on mi (under pk).

– ith share of the message mj of Pj .
– Interactive Protocol:

1. For j = 1, . . . , n:
2. Run phase j in which parties execute an instance of Πbbs-dpok-opt with Pj acting as the Prover,
P1, . . . ,Pn constituting the workers and Pi, i ̸= j acting as verifiers.

– Output: Party Pj outputs bj = 1 if it successfully verifies the transcript for phases i ̸= j.

The communication complexity of the above protocol is O(n2 log(ℓ)) corresponding to n invocations
of Πbbs-dpok-opt. The computational effort of a party is similarly O(ℓ+n log ℓ) exponentiations and O(n)
pairings.

Achieving Public Verifiability. Finally, it is straightforward to see that we can achieve a publicly
verifiable two-round version of this protocol, which we call Πpv

bbs-auth that achieves soundness and zero-
knowledge, by running n instances of the publicly verifiable protocol Πpv

bbs-dpok-opt outlined earlier as
opposed to Πbbs-dpok-opt. The resulting construction and proof techniques are very similar to that used
for our other publicly verifiable protocols, and hence we omit the details.

We now present an optimized variant of the above protocol Πbbs-auth, which we call Πbbs-auth-opt (the
corresponding publicly verifiable two-round version is called Πpv

bbs-auth-opt). This optimized protocol
reduces the overheads of Πbbs-auth further to achieve O(n log(ℓ)) computational complexity and a com-
putational overhead of O(ℓn) exponentiations and O(1) pairings per party. This is enabled by using
carefully designed optimizations that combine n instances of the sub-protocol Πcd-pok (one correspond-
ing to each instance of Πbbs-dpok-opt) into a single instance of Πcd-pok, using a random challenge. Con-
cretely, suppose that the j-th of the sub-protocol Πcd-pok allows party Pj to prove that hmj · hηj

0 = Dj

where mj is P ′
js private input, ηj is commitment randomness, and Dj is the commitment broadcast by

Pj in Step 2 of Πbbs-dpok-opt. Using a randomly sampled γ ∈ Zp, we can (with overwhelming probability)
combine the proofs for all j ∈ [n] to a single proof showing hs ·hη =

∏
j D

γj

j . The parties can compute

shares of satisfying s =
∑

j γ
jmj and η =

∑
j γ

jηj using their shares of mj , ηj for j ∈ [n]. The detailed
protocol is presented below.

Protocol Πbbs-auth-opt

– Public Key pk = (w, h0, . . . , hℓ).
– Pi’s inputs:

– Message mi ∈ Zℓ
p and signature σi = (Ai, βi, si) on mi under pk.

– ith share of the message mj of Pj .
– Pre-processing: Pi samples ui ←R Z∗

p, ri ←R Zp, η ←R Zp, and computes di = bui
i · h

−ri
0 and

ti = si−ri ·vi where vi = u−1
i , bi = g1h

si
0

∏ℓ
i=1 h

mi
i . and secret shares ri, vi, ti, ηi, βi among P1, . . . , Pn.

All parties set g = (h0, . . . , hℓ).
– Interactive Protocol

1. Pi, i ∈ [n] computes A′
i = Aui

i , Āi = (A′)
−β · bu(= (A′)x). P sets Ci = d−vi

i hti−ηi
0 , Di = gηi,mi ,

and broadcasts (A′
i, Āi, di, Ci, Di).

2. Each Pi, i ∈ [n] computes challenge γ ←R Zp by querying the Random Oracle RO on
(Ai||Āi||di||Ci||Dii), and computes yi =

∑
j∈[n] γ

j(ηij ,mij), where ηij ,mij denotes Pi’s share
of Pj ’s inputs mj , ηij .

16

3. All parties compute D =
∏

j∈[n] D
γj

j .

Parties hold shares yi of y satisfying gy = D

4. Parties run the interactive phase of the protocol Πcd-pok on statement D with g as the gener-
ator. They run the interactive phase of the protocol Πd-pok on statements Ci = d−vi

i hti−ηi
0 ∧

(A′
i)

−βi hri
0 = Āi

di
, for each i ∈ [n] with generators (di, h0) and (A′

i, h0) respectively.

5. Parties also check that e
(∏n

i=1 A
′
i, w

)
= e

(∏n
i=1 Āi, g2

)
holds.

– Output: Pj outputs bj = 1 if all the above protocols lead to accept.

We refer to the publicly verifiable two-round version of this protocol as Πpv
bbs-auth-opt.

5 Robust Complete DPoK

While the protocols of Section 3 ensured privacy against a malicious adversary controlling up to t
parties, the completeness was guaranteed only if all the workers follow the protocol. This is sometimes
undesirable as the shares of the honest parties are sufficient to determine the secret, and so an honest
prover should expect to be able to “ride over” a few deviating workers – a property that we call robust
completeness.

The technical difficulty in achieving robust completeness for our proposed proof of knowledge arises
from the fact that several messages contain the shares “in the exponent”, which makes it harder to
distinguish messages issued by corrupt parties from those issued by the honest ones. In this section,
we build upon the protocols presented so far to simultaneously achieve both succinctness and robust
completeness while withstanding corruptions of up to ℓ < (n−t)/3 workers. This is achieved by forcing
the workers to commit to their shares and then forcing them to reveal certain linear form over their
share. The revealed linear form over all the shares allows us to identify and discard corrupt messages.
Robust completeness also ensures that input authentication does not abort when the protocol is used
as part of a larger multiparty computation, i.e. if the remainder of the protocol has resilience against
malicious behavior, input authentication preserves it.

Robust Complete DPoK for Discrete Log.We first describe the key ideas of our modified protocol
for achieving robust completeness in addition to succinctness:

– Pre-processing: The prover distributes shares ri of a random element r ∈ Zp amongst the workers,
which will be used to blind the linear form over the shares that the workers will later reveal.

– Workers Commit to Shares: In the interactive phase, the workers first commit to their respec-
tive shares by sendng Ai = gsi and Bi = hri

1 hωi
2 for uniformly sampled ωi. Here h1 and h2 are

additional generators of G.

– Reveal Linear Form over Shares: The verifier sends a challenge vector γ ∈ Zℓ
p, and the workers

reveal the linear form vi = ⟨γ, si⟩ + ri. Here ri is used to blind the contribution of the vector si.
Observe that the honest tuple (v1, . . . , vn) forms a valid secret sharing of v = ⟨γ, s⟩+r. Using results
from “low degree testing” (Lemma 2), we show that if ith party deviates from the protocol, with
overwhelming probability, the received tuple (v′1, . . . , v

′
n) differs from the honest tuple at position

i. This allows us to identify corrupt parties.

– Determine Honest Commitments: Using error correction, we identify the setH = {i1, . . . , iq}of
honest parties. Let k′1, . . . , k

′
q denote the reconstruction coefficients corresponding to this set H.

– Output: V outputs 1 if
∏

j∈[q] A
k′
j

ij
= z, and 0 otherwise.

The detailed protocol, called Πrob is presented below. We note that standard (non-robust) com-
pleteness is straightforward to verify, while succinctness follows immediately from the use of NI-CSP
in Step 4.

17

Protocol Πrob

– Public Parameters: (p,G,g, h1, h2) where g ∈ Gℓ and hi ∈ G for i = 1, 2.
– P’s inputs: s ∈ Zℓ

p such that (z, s) ∈ RDL

– Wi’s inputs : Wi possesses the ith share si of the message vector s,
such that Reconstruct(s1, . . . , sn) = s

– Pre-processing : P samples r ←R Zp, computes (r1, . . . , rn)←R Share(r). P sends the shares ri to
Wi, for all i ∈ [n].

– Interactive Protocol:
1. Wi computes Ai = gsi , Bi = hri

1 hωi
2 for ωi ←R Zp, and broadcasts the tuple (Ai, Bi).

2. V broadcasts γ ←R Zℓ
p.

3. Wi broadcasts vi = ⟨γ, si⟩+ ri.
4. Wi broadcasts following NI-ZKPoKs: (i) NI-CSP πi1 for showing knowledge of opening for Ai,

(ii) NI-CSP πi2 showing knowledge of opening for Bi and (iii) NI-CSP πi3 showing knowledge of
opening wi for Ai ·Bi over generators (g, h1, h2) which satisfies the linear form vi = ⟨wi, (γ, 1, 0)⟩.
An honest worker uses wi = (si, ri, ωi) as its private input in the above protocol.

– Output: V performs following checks:
• Construct vector v′ = (v′1, . . . , v

′
n) of v-values broadcast by the workers.

• Error correct v′ to obtain v = (v1, . . . , vn) ∈ RSn,t,η.
• Output (0, {P}) if ∆(v,v′) ≥ (n− t)/3, else proceed to next steps.
• Determine the set E1 ⊆ [n] of workers who provide an incorrect proof in Step (4).
• Determine the set E2 ⊆ [n] of positions where the vectors v and v′ differ.
• Set C = E1 ∪ E2 and H = [n]\C. Let H = {i1, . . . , iq}.
• Compute reconstruction coefficients k′

1, . . . , k
′
q for the set H.

• Output (1, C) if
∏

j∈[q] A
k′
j

ij
= z, and (0, {P}) otherwise.

Theorem 5. Assuming that the discrete log assumption holds over the group G, protocol Πrob achieves
robust-completeness, soundness, honest-verifier zero-knowledge, and a communication complexity of
O(log ℓ) elements of G from each worker to verifier.

Proof. Soundness. To prove soundness, we describe an extractor E that extracts a valid witness with
overwhelming probability, whenever the protocol accepts. Since each worker is a successful adversary
with respect to the zero knowledge protocols in Step (4), E uses the extractors for the compressed
sigma protocols to extract witnesses si, ri and ωi such that Ai = gsi and Bi = hri

1 hωi
2 . For an

accepting transcript, we also have indices i1, . . . , iq and reconstruction coefficients k′1, . . . , k
′
q such that∏q

j=1 A
k′
j

ij
= z which implies gs = z for s =

∑q
j=1 k

′
jsij . The extractor thus outputs s.

Zero Knowledge. Without loss of generality, we assume that the adversary A controls workers
W1, . . . ,Wλ where λ ≤ t. We describe a simulator Sim that takes the statement x = (g, z) and inputs

of corrupted parties {(si, ri)}λi=1 as inputs, and produces a transcript indistinguishable from Π(A,x).
Let H = {λ+ 1, . . . , n} denote the set of honest parties. Then,

Π(A,x) =
(
γ, {Ai, Bi, πi1, πi2, πi3, vi}i∈H , b

)
where πi1, πi2 and πi3 denote the three zero knowledge arguments in Step (4) and b ∈ {0, 1} denotes
the output of the protocol. The operation of the simulator Sim is described below:

1. Sim receives {(si, ri)}λi=1 as input.
2. Compute Ai = gsi for 1 ≤ i ≤ λ. Choose Ai, λ < i ≤ t−1 uniformly from G. Computes At+j = atj

where a = (z,A1, . . . , At−1). Here the vectors tj are as guaranteed by Lemma 1.
3. Sample Bi, λ+ 1 ≤ i ≤ n uniformly and independently from G.
4. Choose γ ←R Fm uniformly.
5. Compute vi = ⟨γ, si⟩ + ri for 1 ≤ i ≤ λ. Choose vi uniformly and independently from Zp for

i ∈ {0} ∪ {λ+ 1, . . . , t− 1}. Compute vt−1+j = ⟨(v0, . . . , vt−1), tj⟩.
6. Invoke simulators for the NI-ZKPoKs to obtain πi1 ←R Simzk(g, Ai), πi2 ←R Simzk(h, Bi) and

πi3 ←R Simzk((g,h,γ), Ai ·Bi).
7. Set b = (1, {1, . . . , λ}).

18

To prove indistinguishability, we employ a hybrid argument where H1 = Π(A,x) denotes the tran-
script in the real protocol. We define H2 to be the hybrid, where the proofs {πi1, πi2, πi3}ni=λ+1 are
replaced by the simulated proofs, as computed by the simulator. Finally we obtain H3 by generating
{Ai, Bi, vi}ni=λ+1,γ, b according to the simulator. This makes H3 identical to the simulator output.

The first two hybrids are indistinguishable due to the zero knowledge property of the respective
sigma protocols. To show indistinguishability ofH2 andH3 we need to show that ({Ai, Bi, vi}ni=λ+1,γ, b)

are distributed identically in the real protocol and simulator output, conditioned on {si, ri}λi=1. In an
honest prover’s sharing of s as (s1, . . . , sn), si is distributed uniformly in Zℓ

p conditioned on s, s1, . . . , sλ
for i ∈ (λ, t). Therefore, gsi for i ∈ (λ, t) is distributed uniformly in G conditioned on s, s1, . . . , sλ, and
thus the vector a = (gs,gs1 , . . . ,gst−1) is distributed identically in H2 and H3. Since, At−1+j = atj for
j ∈ [1, n− t+ 1] in both H2 and H3 we conclude that (Aλ+1, . . . , An) has identical distribution across
both hybrids. Similar argument also shows that the vector (vλ+1, . . . , vn) is identically distributed
across the two hybrids. Finally, (Bλ+1, . . . , Bn) are distributed independently and uniformly over G in
both hybrids, due to blinding using ωi. As we show in the proof of “robust completeness” below the
real protocol outputs (1, {1, . . . , λ}) (i.e it identifies the adversarial set) with overwhelming probability,
and hence b output by Sim is distributed statistically close to that output by the real protocol. This
completes the indistinguishability of the hybrids, and by transitivity, shows that Π(A,x) ≈ H3.

Robust Completeness. We show that when the prover is honest, and has a correct witness s, the
protocol accepts with overwhelming probability, identifying the corrupt workers. Again, let A be an
adversary corrupting λ < (n − t)/3 workers. A corrupt worker can deviate from the protocol in two
ways:

1. It supplies an incorrect proof in Step 4. We call this set of workers as I1.

2. All its proofs in Step 4 are correct, but it uses incorrect inputs (s′i, r
′
i) ̸= (si, ri) to compute the

proofs. We call this set of workers as I2.

We show that any worker in I = I1 ∪ I2 is identified with overwhelming probability. Let E1 and E2

be the sets of corrupt workers as identified by the verifier in the protocol Πrob. Then, we need to show
that I1 ∪ I2 = E1 ∪ E2. It is clear that E1 ∪ E2 ⊆ I1 ∪ I2. This is so because honest workers cannot
be identified as corrupt due to perfect completeness of zero knowledge arguments, and the fact that
the bound ℓ < (n − t)/3 < (n − t + 1)/2 on the number of corruptions ensures that the decoded
codeword v is the same as honestly computed codeword. Next, we show I1 ∪ I2 ⊆ E1 ∪ E2 with
overwhelming probability. Let S denote the “ideal” matrix with (si, ri) as its i

th column. Similarly, let
v = (v1, . . . , vn) denote the correct vector with vi = ⟨γ, si⟩+ ri. Let v

′ = (v′1, . . . , v
′
n) denote the real

vector of v-values in the transcript. We will construct a matrix S′ corresponding to the real execution.
For i ∈ I1 we set ith column of S′ arbitrarily. For i ∈ I2 we set ith column of S′ as (s′i, r

′
i), where

(s′i, r
′
i) are extracted inputs corresponding to the valid arguments of knowledge supplied by Wi. Due to

binding property of the commitment scheme, and the soundness of zero knowledge arguments, we also
note that v′i = ⟨γ, s′i⟩+ r′i for i ∈ I2 with overwhelming probability. For i ̸∈ I1 ∪ I2, we set ith column
of S′ to honest inputs (si, ri). Notice that I1 = E1 ⊆ E1 ∪E2. Let E denote the column indices where
S and S′ differ. Clearly I2 ⊆ E and moreover |E| ≤ λ < (n− t)/3. From Lemma 2, it follows that with
overwhelming probability E = {i ∈ [n] : ⟨(γ, 1),S′

i⟩ ≠ vi}. Since v′i = ⟨(γ, 1),S′
i⟩ for i ∈ I2, it follows

that v′i ̸= vi for i ∈ I2 and hence I2 ⊆ E2 ⊆ E1 ∪ E2. Thus I1 ∪ I2 = E1 ∪ E2 with overwhelming
probability as needed to be shown.

Efficiency. Each worker communicates O(log ℓ) elements of G, most of them as part of NI-CSP proofs
in Step 4. This gives an overall communication complexity of O(n log ℓ log |G|). Computationally, the
workers incur O(ℓ) exponentiations as part of generating the NI-CSP proofs. The verifier incurs O(ℓ)
exponentiations (which can be combined into O(1) multiexponentiations of size O(ℓ) each) and addi-
tionally Reed Solomon Decoding to identify corrupt messages.

Publicly Verifiable Version of Protocol Πrob. We now state a publicly verifiable version of Πrob;
once again, we rely on the Fiat-Shamir heuristic [FS87] and a random oracle RO : {0, 1}∗ → Zℓ

p. We call
this publicly verifiable version of the protocol Πpv

rob. Note that, similar to Πd-pok, Πrob is also a public-coin
protocol with multiple first rounds messages from distributed provers. As a result, similar to Πd-pok,
Πrob cannot be made completely non-interactive using the standard Fiat-Shamir transformation [FS87]
of interactive protocols into NIZK proofs. Instead, we transform Πrob into Πpv

rob as follows:

19

– In the first round, each prover Wi computes Ai = gsi , Bi = hri
1 hωi

2 for ωi ←R Zp and broadcasts
{Ai, Bi}

– In the second round, each prover Wi does the following:
1. Query the random oracle RO on the concatenation of all first round messages to compute

γ = RO (A1∥B1∥A2∥B2∥ . . . ∥An∥Bn) ∈ Zℓ
p.

2. Broadcast the second round message vi = ⟨γ, si⟩+ ri.

3. Simultaneously, broadcast NI-ZKPoKs of openings of Ai, Bi and an NI-ZKPoK of wi, which
opens the commitment Aγ

i ·Bi and the (publicly computable) linear form vi = ⟨(γ, 1, 0),wi⟩.

Note that the protocol already satisfies succinctness and robust completeness (this is immediate from
the corresponding properties of the underlying Πrob protocol). We argue special soundness and zero-
knowledge for the modified protocol below.

Soundness and Zero-Knowledge. The arguments of soundness and zero-knowledge for Πpv
rob follow

in a straightforward way. In particular, we argue soundness by invoking the extractors for the NI-
ZKPoKs. We argue zero-knowledge by allowing the simulator to program the random oracle to the
challenge vector γ (the rest of the simulation is as described earlier for Πrob).

Robust Complete DPoK for BBS. We build upon Πrob to propose a distributed proof of knowl-
edge achieving robust completeness for BBS signatures. The protocol is called Πbbs-dpok-opt-rob, and is
essentially identical to its non-robust counterpart Πbbs-dpok-opt (Figure 4.1), but additionally achieves
robust completeness by using the robust complete protocol Πrob as opposed to the non-robust protocols
Πcd-pok and Πd-pok, in steps 2 and 3 of the interactive phase of Πbbs-dpok-opt. The detailed protocol is
described below, with the changes from Πbbs-dpok-opt highlighted in red.

Protocol Πbbs-dpok-opt-rob

– Public Key pk = (w, h0, . . . , hℓ)
– P’s inputs: Message m = (m1, . . . ,mℓ) ∈ Zℓ

p and signature σ = (A, β, s) on m, with A =(
g1h

s
0

∏ℓ
i=1 h

mi
i

) 1
β+x

.

– Wi’s inputs : Wi possesses the ith share mi of the message vector m,
such that Reconstruct(m1, . . . ,mn) = (m)

– Pre-processing : P samples u←R Z∗
p, r ←R Zp, η ←R Zp, and computes d = bu ·h−r

0 and t = s−r ·v
where v = u−1, b = g1h

s
0

∏ℓ
i=1 h

mi
i . P computes (r1, . . . , rn) ←R Share(r), (v1, . . . , vn) ←R Share(v),

(β1, . . . , βn) ←R Share(β), (t1, . . . , tn) ←R Share(t), (η1, . . . , ηn) ←R Share(η). P sends the shares
(ri, vi, βi, ti, ηi) to Wi, for all i ∈ [n].

– Interactive Protocol:
1. P computes A′ = Au, Ā = (A′)

−β · bu(= (A′)x), where b = g1h
s
0

∏ℓ
i=1 h

mi
i and d = bu · h−r

0 . P
sets C = d−vht−η

0 , D = hη
0

∏ℓ
i=1 h

mi
i , and broadcasts (A′, Ā, d, C,D) to each Wi.

2. The workers Wi, i ∈ [n] and V run the protocol Πrob for the relation D = hη
0

∏ℓ
i=1 h

mi
i , where

(η,m1, . . . ,mℓ) are secret-shared; and g = (h0, . . . , hℓ), z = D is available to all parties.

3. The workersWi, i ∈ [n] and V run the protocol Πrob for the relation C = d−vht−η
0 ∧(A′)

−β
hr
0 = Ā

d
,

where (v, η) and (β, r) are secret-shared; and g = ((d, h0), (A
′, h0)), z = (C, Ā

d
) is available to all

parties.
4. V accepts if C ·D = g−1

1 , e (A′, w) = e
(
Ā, g2

)
and Πrob accept.

We can again construct a publicly verifiable two-round version of this protocol, which we call
Πpv

bbs-dpok-opt-rob, by relying on the Fiat-Shamir heuristic and using a random oracle.

Extension for Authenticating All Inputs. The robust complete protocol Πbbs-dpok-opt-rob works
in a setting where a designated prover P proves authenticity of its input by sharing it among the
workers W1, . . . ,Wn. We can again extend this protocol for usage in an MPC protocol where all the
parties need to establish authenticity of their inputs to each other. The simple extension, involving
n parallel invocations of Πbbs-dpok-opt-rob, is called Πbbs-auth-rob. This protocol is very similar in flavor
to its non-robust counterpart Πbbs-auth, and we avoid explicitly detailing it for brevity. As in all prior
protocols, we can also construct a publicly verifiable two-round version of Πbbs-auth-rob, which we call
Πpv

bbs-auth-rob.

20

We do not have a counterpart of the optimized variant Πbbs-auth-opt in the case of robust com-
pleteness. By definition, a protocol with robust completeness should identify the set of malicious
parties, which is seemingly difficult to achieve if we combine n instances of the underlying protocol
Πbbs-dpok-opt-rob into a single instance using a random challenge.

6 Our (Non-Robust) Compiler for Authenticated MPC

In this section, we build upon the above distributed POKs for PS signatures to present a non-robust
version of our compiler that (informally speaking) takes as input any secret-sharing-based MPC pro-
tocol Πmpc and outputs a corresponding secret-sharing based MPC protocol Πampc. We begin by fixing
some notation, and then present a formal description of our compiler.

Notations. Let Πmpc = (Πsh,Πon) be a secret-sharing based MPC protocol that guarantees UC security
with abort against malicious corruptions of a dishonest majority of the parties {P1, . . . , Pn}, where:

– Πsh denotes the secret-sharing phase of Πmpc and consists of the steps used by each party Pi for
i ∈ [n] to secret-share its input xi ∈ Zℓ

p to all of the other parties (throughout, we assume that
this sharing is done using a linear secret-sharing scheme (Share,Reconstruct).

– Πon denotes the remaining steps of the protocol Πmpc where the parties interact to compute y =
f(x1, . . . ,xn).

In the description of our compiler, we additionally assume that each party Pi holds a PS signature
σi on its input xi with respect to a common public verification key pk. Let Πpv

bbs-auth denote the publicly
verifiable version of our protocol allowing the parties to prove authenticity of their inputs to each other
by proving knowledge of a valid PS signature under pk on their inputs (recall that this protocol runs
n underlying instances of Πpv

bbs-dpok-opt, where for instance i, party Pi acts as the prover and all of the
other parties Pj for j ̸= i act as a verifier; see Section A.3 for details). For simplicity, we first present
a version of our compiler using the un-optimized protocol Πpv

bbs-auth for simplicity of exposition. Our
compiler can be easily extended to use the significantly more optimized Πpv

bbs-auth-opt. We discuss the
optimized version subsequently.

Our Compiler. Given Πmpc = (Πsh,Πon) and Πpv
bbs-auth as defined above, we design an authenticated

MPC protocol Πampc = (Πsh,Πon) as described below.

Protocol Πampc = (Πsh,Πon)

– Πsh: This phase is identical to Πsh, i.e., each party Pi shares its input xi to all other parties exactly
as in Πsh.

– Πon: In this phase, the parties do the following:

• The parties jointly execute the interactive phase of Πpv
bbs-auth. If any party outputs 0 at the end of

this phase, the protocol aborts.
• Otherwise, the parties jointly execute Πon.

The Ideal Functionality. We formally describe below the ideal functionality Fauth,abort
MPC , which is

a weaker version of the desired ideal functionality for authenticated MPC in the sense that it only
captures abort security (as opposed to id-abort/GOD security).

Functionality Fauth,abort
MPC

Inputs

The ideal functionality receives from each party Pi an input-signature pair of the form (xi, σi)
under the public verification key pk.

Verify Authenticity

1. If Ver(pk, xi, σi) ̸= 1 for some party Pi, then abort.

21

2. Otherwise, proceed to computation.

Computation

Invoke the ideal functionality FMPC for Πmpc on inputs (x1, . . . ,xn).

We now state and prove the following theorem for the security of Πampc.

Theorem 6 ((Non-Robust) Security of Πampc). Assuming that: (a) the MPC protocol Πmpc se-
curely emulates the ideal functionality FMPC, and (b) Πpv

bbs-auth satisfies soundness and zero-knowledge,

our compiled authenticated MPC protocol Πampc securely emulates the ideal functionality Fauth,abort
MPC .

To prove this theorem, we first construct a simulator for the Πampc protocol, and then prove the
indistinguishability of the simulation from a real-world execution of Πampc. Let Sim = (Simsh,Simon)
be a non-uniform PPT simulator that securely emulates an ideal-world execution of Πmpc in a man-
ner that is computationally indistinguishable from a real-world execution of Πmpc. Also, we denote
by ExtΠbbs-dpok-opt and SimΠbbs-dpok-opt the extraction and ZK simulation algorithms corresponding to the

underlying Πpv
bbs-dpok-opt protocol.

Simulator for Πampc.We now describe the simulator Sim for the authenticated MPC protocol Πampc =(
Πsh,Πon

)
. Let Sim = (Simsh,Simon) be the simulator for Πmpc, and let ExtΠbbs-dpok-opt and SimΠbbs-dpok-opt

be the extraction and ZK simulation algorithms corresponding to the underlying Πpv
bbs-dpok-opt protocol.

Also, let H ⊆ [n] and C ⊂ [n] denote the set of honest and corrupt parties, respectively. The simulator
Sim proceeds as follows:

– Simulate the sharing phase Πsh by invoking Simsh (note that Simsh does not expect any inputs).

– For each corrupt party Pi s.t. i ∈ C, let
(
Πpv

bbs-dpok-opt

)
i
denote the instance of the protocol

Πpv
bbs-dpok-opt used by the parties to prove authenticity of the input xi (with corrupt party Pi

acting as the prover, and all of the remaining parties acting as both workers and verifiers). Use the

extractor Ext to extract from
(
Πpv

bbs-dpok-opt

)
i
the input xi of the corrupt party Pi.

8

– If there exists some corrupt party Pi s.t. i ∈ C for which extraction fails, abort. Otherwise proceed
to the next step.

– For each honest party Pj s.t. j ∈ H, simulate a (distributed) proof of knowledge of a PS signature

by using SimΠbbs-dpok-opt to simulate an instance
(
Πpv

bbs-dpok-opt

)
j
of the protocol Πpv

bbs-dpok-opt (where

Pj acts as the prover, and all of the remaining parties act as both workers and verifiers).9

– Finally, simulate the online phase Πon by invoking Simon with the extracted inputs of the corrupt
parties {xi}i∈C .

Completing the Security Proof. We now prove the UC security of Πampc by using a sequence of
hybrids described as follows (for simplicity of exposition, we assume w.l.o.g. that parties P1, . . . , P|C|
are corrupt and parties P|C|+1, . . . , Pn are honest):

– Hyb0: This hybrid is identical to the real-world execution of Πampc.

– Hyb1: This hybrid is identical to Hyb0 except that we simulate the sharing phase Πsh of the
underlying Πmpc protocol by invoking Simsh.

– {Hyb2,i}i∈[0,|C|]: Hybrid 2, 0 is identical to hybrid 1, while for each i ∈ [1, |C|], hybrid Hyb2,i is
identical to Hyb2,(i−1) except that we use extracted input for corrupt party Pi s.t. i ∈ C during of

the protocol. More concretely, for corrupt party Pi, let
(
Πpv

bbs-dpok-opt

)
i
denote the instance of the

protocol Πpv
bbs-dpok-opt used by the parties to prove authenticity of the input xi (with corrupt party

8 Recall that the extractor Ext relies on the forking lemma to extract xi by forking each party acting as a

worker as part of
(
Πpv

bbs-dpok-opt

)
i
.

9 Recall that SimΠbbs-dpok-opt allows simulating the corresponding messages on behalf of all of the honest parties
{Pj}j∈H upon receipt of the messages from the corrupt parties {Pi}i∈C using the random oracle RO).

22

Pi acting as the prover, and all the other parties acting as both workers and verifiers). We use the

extractor Ext to extract from
(
Πpv

bbs-dpok-opt

)
i
the input xi of the corrupt party Pi, and use this

extracted input for the rest of the protocol. If extraction fails, we abort.

– {Hyb3,j}j∈[0,n−|C|: Hybrid 3, 0 is identical to hybrid Hyb2,|C|, while for each j ∈ [1, n− |C|], hybrid
Hyb3,j is identical to Hyb3,(j−1) except that we use a simulated distributed proof of knowledge corre-
sponding to the input of honest party P|C|+j . More concretely, for each honest party P|C|+j , instead
of using the real input x|C|+j and the real PS signature σ|C|+j , we simulate a (distributed) proof

of knowledge of a PS signature by using SimΠbbs-dpok-opt to simulate an instance
(
Πpv

bbs-dpok-opt

)
|C|+j

of the protocol Πpv
bbs-dpok-opt.

– Hyb4: This hybrid is identical to Hyb3,n−|C| except that we simulate the online phase Πon of the
underlying Πmpc protocol by invoking Simon with the extracted inputs of the corrupt parties {xi}i∈C .

Hyb0 ≈c Hyb1. This follows from a simple argument based on the UC security of the underlying Πmpc

protocol. Suppose that there exists a PPT adversary A that can distinguish between Hyb0 and Hyb1.
It is easy to use A to construct a PPT adversary A′ that can distinguish between a real and simulated
execution of Πsh, thus breaking the UC security of the underlying Πmpc protocol.

Hyb2,i−1 ≈c Hyb2,i. This follows from the soundness of the Πbbs-dpok-opt protocol. Again, suppose
that there exists a PPT adversary A that can distinguish between Hyb2,(i−1) and Hyb2,i for some
i ∈ [1, |C|]. It is easy to see that A can be used to construct a PPT adversary A′ that breaks the
soundness guarantees of the Πbbs-dpok-opt protocol.

Hyb3,j−1 ≈c Hyb3,j. This follows from the ZK property of the Πbbs-dpok-opt protocol. Again, suppose
that there exists a PPT adversary A that can distinguish between Hyb3,(j−1) and Hyb3,j for some
j ∈ [1, n− |C|]. It is easy to see that A can be used to construct a PPT adversary A′ that breaks the
ZK property of the Πbbs-dpok-opt protocol.

Hyb4 ≈c Hyb3,n−|C|. This again follows from a simple argument based on the UC security of the
underlying Πmpc protocol. Suppose that there exists a PPT adversary A that can distinguish between
Hyb4 and Hyb3,n−|C|. It is easy to use A to construct a PPT adversary A′ that can distinguish between
a real and simulated execution of Πon, thus breaking the UC security of the underlying Πmpc protocol.

This completes the proof of Theorem 6.

Optimized Version of Our Compiler. In the above description, we presented a version of our
compiler using the un-optimized protocol Πpv

bbs-auth for simplicity of exposition. Our compiler can be
easily extended to use the significantly more optimized Πpv

bbs-auth-opt for proving authenticity of inputs.
We omit a formal description and proof as they are conceptually very similar to our un-optimized
compiler described above.

Performance and Efficiency. We now summarize the overheads incurred by (the optimized version
of) our non-robust compiler and compare it with the overheads incurred by existing approaches for
achieving MPC protocols with authenticated inputs [BJ18,ADEO21] (the comparison is also summa-
rized in Table 3). The method in [BJ18] incurs a broadcast of O(ℓ) to authenticate each input (as
the signature scheme used is not succinct). Computationally the prover incurs O(ℓn) exponentiations
and O(ℓ) pairings, while the verifiers incur O(ℓ) exponentiations and O(ℓ) pairings. Thus cumulatively
(over all authentications), the communication overhead is O(ℓn), while the computational overhead is
O(ℓn) exponentiations + O(ℓn) pairings. The work [ADEO21] substantially improves upon [BJ18] by
using a succinct signature scheme (Pointcheval-Sanders), and leveraging linear secret sharing isomor-
phisms between the scalar field F and elliptic curve groups to verify signatures in MPC. They realize
input authentication by computing scalar products over shares and reconstructing the final shares to
all parties. This approach incurs ≈ n2 + 8n communication for each authentication. However, using a
random linear combination, one reconstruction also suffices for n input authentications, thus yeilding
a total communication complexity of ≈ 9n2. Computational overhead is O(ℓn) exponentiations and
O(n) pairings due to n invocations of scalar multiplication protocol.

23

Protocol Communication Complexity Computational Complexity

Πbbs-auth (our work) O(n2 log ℓ log |G|) O(ℓn) exp. + O(n) pairings.

Πbbs-auth-opt (our work) ≈ 2n log ℓ log |G| O(ℓ+ n) exp + O(1) pairings.

BJ18 [BJ18] O(ℓn log |G|) 9ℓn exp + 2ℓn pairings.

ADEO21 [ADEO21] ≈ 9n2 log |G| O(ℓn) exp + O(n) pairings

Table 3: Overhead for input authentication with abort for different protocols. The communication reported is
total communication across all parties. The computational overhead is per party. The complexities are reported
for authenticating each participant’s input of size ℓ, whereas n denotes the number of parties. As before, our
communication overhead consists entirely of broadcast messages.

7 Compiler for Authenticated MPC

In this section, we present our compiler for authenticated MPC that builds upon our distributed (robust
complete) proofs of knowledge for BBS signatures. We define below our stronger ideal functionality
Fauthid

MPC for authenticated MPC.

Functionality Fauth
MPC

Inputs

The ideal functionality receives from each party Pi an input-signature pair of the form (xi, σi) under the
public verification key pk.

Verify Authenticity

1. If Ver(pk, xi, σi) ̸= 1 for some party Pi, then output a set of corrupted parties C and abort.
2. Otherwise, proceed to computation.

Computation Invoke the ideal functionality FMPC for Πmpc on inputs (x1, . . . ,xn).

Our Compiler.Our compiler takes as input any secret-sharing-based MPC protocol Πmpc = (Πsh,Πon),
where Πsh denotes the secret-sharing phase of Πmpc and consists of the steps used by each party Pi

for i ∈ [n] to secret-share its input (we assume that this sharing is done using a linear secret-sharing
scheme), and Πon denotes the remaining steps of the protocol Πmpc. We assume that each party Pi

holds a BBS signature σi on its input xi with respect to a common public verification key pk. Let
Π ∈ {Πpv

bbs-auth-opt,Π
pv
bbs-auth-rob} denote a DPoK for BBS signatures. Our compiler outputs an authen-

ticated MPC protocol Πampc = (Πsh,Πon), where Πsh is identical to Πsh, and where Πon is as follows:

1. The parties jointly execute the interactive phase of the DPoK protocol Π. If any party outputs 0
at the end of this phase, the protocol Πampc aborts.

2. Otherwise, the parties jointly execute Πon.

Non-Robust Compiler. When Π = Πpv
bbs-auth-opt, we achieve a non-robust version of our compiler.

The corresponding construction and the security theorem is in Section 6 (Theorem 6).

Robust Compiler. For the case where Π = Πpv
bbs-auth-rob, the security theorem is as follows.

Theorem 7 (Security of Robust Πampc). Assuming that: (a) the MPC protocol Πmpc securely em-
ulates the ideal functionality FMPC, and (b) Πpv

bbs-auth-rob satisfies soundness, zero-knowledge and robust
completeness for a maximum corruption threshold of t < n/4, our compiled authenticated MPC protocol
Πampc securely emulates the ideal functionality Fauth

MPC for the same corruption threshold of t < n/4.

The description and security proof of our robust compiler are very similar to that of the non-robust
case, and are hence not detailed.

Remark. In the robust case, the compiled protocol could either abort after identifying malicious
parties with non-authenticated inputs (thus preserving the id-abort security guarantees of the un-
derlying MPC protocol), or substitute some default authenticated inputs for the identified malicious
parties (thus preserving the full/GOD security guarantees of the underlying MPC protocol).

24

Fig. 2: Component diagram illustrating integration of our scheme with existing MPC frameworks.

n = 3 n = 5

650MB/11sec 2113MB/11sec
N = 125

7KB/0.16sec 11KB/0.18sec

1367MB/19sec 4326MB/20sec
N = 250

7KB/0.3sec 11KB/0.3sec

Table 4: Computational and communication overhead for verifying signature on the biometric database for
database sizes of 125 and 250, for 3 and 5 parties respectively. The numbers in blue denote overall communi-
cation and time for unauthenticated computation, while that in black denotes the corresponding overhead due
to input authentication.

8 Implementation and Experiments

We leverage the modularity of our compiler to obtain a modular prototype implementation of authen-
ticated MPC. Our implementation easily extends to support any existing MPC framework that sup-
ports linear secret-sharing based protocols, such as MP-SPDZ [Kel20] and SCALE-MAMBA [NUH+22]
among others. Here, we present an instance of authenticated MPC by augmenting the popular MP-
SPDZ [Kel20] library with our DPoK for BBS+ signatures. Our implementation allows any existing
computations expressed using MP-SPDZ tooling to additionally support input authentication essen-
tially unchanged. We only depend on the underlying framework to expose interface to access shares
of the parties inputs. In MP-SDPZ, this interface is natively supported using write to file() call,
which dumps the shares of a secret value into a file.

Our extension consists of a binary (written in C++) implementing our DPoK for BBS signatures
using the libff library for elliptic curve operations [lib]. At a high level, we: (i) run the sharing phase
of the underlying MPC protocol using MP-SPDZ, (ii) provide the input shares from the MP-SPDZ
interface to our binary, (iii) run the DPoK over broadcast channels on the input-shares, and (iv) either
abort (if the signature verification fails for any of the inputs), or (iv) we resume the computation on
the shared inputs using MP-SPDZ. To share the auxiliary inputs during the preprocessing phase of
our DPoK, we leverage the point-to-point communication infrastructure of the underlying MP-SPDZ
library by augmenting the protocol input with these auxiliary inputs. Note that we could equivalently
build point-to-point channels into our binary, but leveraging the existing framework for this purpose
simplifies the implementation.

While the components of the underlying library interact over point to point channels as usual,
our extension can be configured with a broadcast functionality when available. When broadcast is not
available, we will need to realize it cryptographically (with associated communication overhead). The
overall architecture of our implementation is illustrated in Figure 2.

The public parameters of our BBS+ scheme are generated over BN254 [PSNB10] curve, which
supports a prime order group of 254 bits. We compile the MP-SPDZ circuits against the same prime
modulus. To illustrate the practical viability of our approach, we use a moderately complex compu-
tation provided with the MP-SPDZ distribution on determining the closest biometric match for a
given sample, in a given biometric database. The computation involves a party supplying the database
of N samples, modelled as N × 4 matrix. Another party supplies a target sample (a, b, c, d) and the

25

computation outputs the squared euclidean distance to the closest sample. In our experiments with
3 and 5 parties respectively, we introduce remaining parties without any inputs to the computation,
while signature verification is performed for the biometric database. We make no changes to the orig-
inal specification of the computation, except adding a library call to export the shares of the inputs
corresponding to the database.

The overheads over the vanilla (unauthenticated) computation using malicious shamir secret shar-
ing are summarized in Table 4. It highlights that our overheads of our approach are negligible for
moderately complex computations. To obtain the results of Table 4, we only recurse in the compressed
sigma protocol till the size of the witness vector is ≥ 64. This saves us some rounds of communication
and computation time, at the cost of slightly larger communication. We also compare our approach with
prior works in Tables 1, 2 and 3. In conclusion, our approach presents a comprehensive progress over
existing works on authenticated MPC in terms of ease of integration with existing tooling, asymptotic
considerations as well as practical performance.

References

AC20. Thomas Attema and Ronald Cramer. Compressed Σ-protocol theory and practical application
to plug & play secure algorithmics. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part III, volume 12172 of LNCS, pages 513–543. Springer, Heidelberg, August
2020.

ADEO21. Diego F. Aranha, Anders P. K. Dalskov, Daniel Escudero, and Claudio Orlandi. Improved threshold
signatures, proactive secret sharing, and input certification from LSS isomorphisms. In Patrick
Longa and Carla Ràfols, editors, LATINCRYPT 2021, volume 12912, pages 382–404, 2021.

AHIV17. Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero:
Lightweight sublinear arguments without a trusted setup. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 2087–2104. ACM Press,
October / November 2017.

Bau16. Carsten Baum. On garbling schemes with and without privacy. In Vassilis Zikas and Roberto
De Prisco, editors, SCN 16, volume 9841 of LNCS, pages 468–485. Springer, Heidelberg, Au-
gust / September 2016.

BB16. Marina Blanton and Fattaneh Bayatbabolghani. Efficient server-aided secure two-party function
evaluation with applications to genomic computation. PoPETs, 2016(4):144–164, October 2016.

BBB+18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell.
Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE Symposium on
Security and Privacy, pages 315–334. IEEE Computer Society Press, May 2018.

BBC+19. Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Zero-knowledge
proofs on secret-shared data via fully linear PCPs. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 67–97. Springer, Heidelberg, August
2019.

BBS04. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew Franklin,
editor, CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer, Heidelberg, August 2004.

BCC+16. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. Efficient
zero-knowledge arguments for arithmetic circuits in the discrete log setting. In Marc Fischlin and
Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 327–357.
Springer, Heidelberg, May 2016.

BCR+19. Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and
Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS. In Yuval Ishai and Vincent
Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 103–128. Springer,
Heidelberg, May 2019.

BGIN20. Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Efficient fully secure computation via dis-
tributed zero-knowledge proofs. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020,
Part III, volume 12493 of LNCS, pages 244–276. Springer, Heidelberg, December 2020.

BJ18. Marina Blanton and Myoungin Jeong. Improved signature schemes for secure multi-party com-
putation with certified inputs. In Javier López, Jianying Zhou, and Miguel Soriano, editors, ES-
ORICS 2018, Part II, volume 11099 of LNCS, pages 438–460. Springer, Heidelberg, September
2018.

BJO+22. Carsten Baum, Robin Jadoul, Emmanuela Orsini, Peter Scholl, and Nigel P. Smart. Feta: Efficient
threshold designated-verifier zero-knowledge proofs. Cryptology ePrint Archive, Paper 2022/082,
2022. https://eprint.iacr.org/2022/082.

BLZLN21. Amey Bhangale, Chen-Da Liu-Zhang, Julian Loss, and Kartik Nayak. Efficient adaptively-secure
byzantine agreement for long messages. Cryptology ePrint Archive, Paper 2021/1403, 2021. https:
//eprint.iacr.org/2021/1403.

26

https://eprint.iacr.org/2022/082
https://eprint.iacr.org/2021/1403
https://eprint.iacr.org/2021/1403

BN06. Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and a general
forking lemma. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors,
ACM CCS 2006, pages 390–399. ACM Press, October / November 2006.

CB17. Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable computation of aggregate
statistics. In NSDI 2017, pages 259–282. USENIX Association, 2017.

CDL16. Jan Camenisch, Manu Drijvers, and Anja Lehmann. Anonymous attestation using the strong diffie
hellman assumption revisited. In TRUST 2016, volume 9824, pages 1–20. Springer, 2016.

CHM+20. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas P.
Ward. Marlin: Preprocessing zkSNARKs with universal and updatable SRS. In Anne Canteaut
and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 738–768.
Springer, Heidelberg, May 2020.

CL01. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous cre-
dentials with optional anonymity revocation. In Birgit Pfitzmann, editor, EUROCRYPT 2001,
volume 2045 of LNCS, pages 93–118. Springer, Heidelberg, May 2001.

DKL+13. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P. Smart.
Practical covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In Jason
Crampton, Sushil Jajodia, and Keith Mayes, editors, ESORICS 2013, volume 8134 of LNCS, pages
1–18. Springer, Heidelberg, September 2013.

DN07. Ivan Damg̊ard and Jesper Buus Nielsen. Scalable and unconditionally secure multiparty computa-
tion. In Advances in Cryptology - CRYPTO, pages 572–590, 2007.

DPP+22. Pankaj Dayama, Arpita Patra, Protik Paul, Nitin Singh, and Dhinakaran Vinayagamurthy. How to
prove any NP statement jointly? efficient distributed-prover zero-knowledge protocols. Proc. Priv.
Enhancing Technol., 2022(2):517–556, 2022.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–194.
Springer, Heidelberg, August 1987.

GP16. Chaya Ganesh and Arpita Patra. Broadcast extensions with optimal communication and round
complexity. In George Giakkoupis, editor, 35th ACM PODC, pages 371–380. ACM, July 2016.

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326.
Springer, Heidelberg, May 2016.

GWC19. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over lagrange-
bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report
2019/953, 2019. https://eprint.iacr.org/2019/953.

Kel20. Marcel Keller. MP-SPDZ: A versatile framework for multi-party computation. In Jay Ligatti,
Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 1575–1590.
ACM Press, November 2020.

KMW16. Jonathan Katz, Alex J. Malozemoff, and Xiao Wang. Efficiently enforcing input validity in secure
two-party computation. Cryptology ePrint Archive, Report 2016/184, 2016. https://ia.cr/2016/
184.

lib. libff: C++ library for finite fields and elliptic curves. https://github.com/scipr-lab/libff. https:

//github.com/scipr-lab/libff.
LKWL22. Tobias Looker, Vasilis Kalos, Andrew Whitehead, and Mike Lodder. The bbs signature

scheme. Internet Engineering Task Force, 2022. https://identity.foundation/bbs-signature/
draft-irtf-cfrg-bbs-signatures.html.

NUH+22. NigelSmart, Idoia Gamiz Ugarte, Ben Hamlin, Asif Mallik, and Dragos, Rotaru. idoiagamiz/scale-
mamba: v1.0.0, 2022.

OB21. Alex Ozdemir and Dan Boneh. Experimenting with collaborative zk-SNARKs: Zero-knowledge
proofs for distributed secrets. Cryptology ePrint Archive, Report 2021/1530, 2021. https://

eprint.iacr.org/2021/1530.
Ped91. Torben Pryds Pedersen. Distributed provers with applications to undeniable signatures. In Don-

ald W. Davies, editor, EUROCRYPT’91, volume 547 of LNCS, pages 221–242. Springer, Heidelberg,
April 1991.

PS96. David Pointcheval and Jacques Stern. Security proofs for signature schemes. In Ueli M. Maurer,
editor, EUROCRYPT’96, volume 1070 of LNCS, pages 387–398. Springer, Heidelberg, May 1996.

PS16. David Pointcheval and Olivier Sanders. Short randomizable signatures. In Kazue Sako, editor,
CT-RSA 2016, volume 9610 of LNCS, pages 111–126. Springer, Heidelberg, February / March
2016.

PSNB10. Geovandro C. C. F. Pereira, Marcos A. Simpĺıcio Jr., Michael Naehrig, and Paulo S. L. M. Bar-
reto. A family of implementation-friendly BN elliptic curves. Cryptology ePrint Archive, Report
2010/429, 2010. https://eprint.iacr.org/2010/429.

SVdV16. Berry Schoenmakers, Meilof Veeningen, and Niels de Vreede. Trinocchio: Privacy-preserving out-
sourcing by distributed verifiable computation. In Mark Manulis, Ahmad-Reza Sadeghi, and Steve

27

https://eprint.iacr.org/2019/953
https://ia.cr/2016/184
https://ia.cr/2016/184
https://github.com/scipr-lab/libff
https://github.com/scipr-lab/libff
https://identity.foundation/bbs-signature/draft-irtf-cfrg-bbs-signatures.html
https://identity.foundation/bbs-signature/draft-irtf-cfrg-bbs-signatures.html
https://eprint.iacr.org/2021/1530
https://eprint.iacr.org/2021/1530
https://eprint.iacr.org/2010/429

Schneider, editors, ACNS 16, volume 9696 of LNCS, pages 346–366. Springer, Heidelberg, June
2016.

WZC+18. Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa, and Ion Stoica. DIZK: A
distributed zero knowledge proof system. In William Enck and Adrienne Porter Felt, editors,
USENIX Security 2018, pages 675–692. USENIX Association, August 2018.

ZBB17. Yihua Zhang, Marina Blanton, and Fattaneh Bayatbabolghani. Enforcing input correctness via cer-
tification in garbled circuit evaluation. In Simon N. Foley, Dieter Gollmann, and Einar Snekkenes,
editors, ESORICS 2017, Part II, volume 10493 of LNCS, pages 552–569. Springer, Heidelberg,
September 2017.

A Authentication using PS Signatures

In this section we show the generality of techniques shown above by providing distributed protocols for
another pairing-based signature scheme, whose proof of knowledge of signature also reduces to discrete
logarithm relation. We begin by recalling the Pointcheval Sanders (PS) signature scheme from [PS16],
along with the associated proof of knowledge. For our authenticated MPC protocol, we use to use a
distributed version of the PS signature-based proof of knowledge to allow a set of distributed provers
Wi, i ∈ [n] holding shares si ∈ Zℓ

p of a secret input vector s ∈ Zℓ
p to prove knowledge of a PS signature

on s (here, the jth component of si contains the i
th share of the jth component of s). We first describe

the non-distributed proof of knowledge, and then show how to design a distributed version of the same.

PS Signatures. At a high level, the (multi-message version of) the Pointcheval-Sanders (PS) signature
scheme [PS16] works as follows. Let (q,G1,G2,GT , e) be the description of an efficiently computable
non-degenerate bilinear map where G1, G2 and GT are groups of prime order q (q being a λ-bit
prime for security parameter λ). The PS signature scheme uses a signing and verification key pair

(sk, pk) where sk = (x, y1, . . . , yℓ), pk =
(
g̃, X̃ := g̃x, Ỹ1 := g̃y1 , . . . , Ỹℓ := g̃yℓ

)
for x, y1, . . . , yℓ ←R

Zp and g̃ ←R G1. The signing algorithm takes as input the signing key sk and a message vector

m = (m1, . . . ,mℓ) ∈ Zℓ
p, and outputs a signature σ =

(
σ1 := h, σ2 := hx+

∑
j yjmj

)
, where h ←R Zp.

Finally, the verification algorithm takes as input the public verification key pk, a signature σ, and a
message vector m, and outputs 1 if σ1 ̸= e1 (where e1 is the identity element for the group G1) and

e
(
σ1, X̃ ·

∏
j Ỹ

mj

j

)
= e(σ2, g̃). Otherwise it outputs 0.

Note that PS Signatures are re-randomizable since given a valid signature σ = (σ1, σ2) on a message
vector m under a key-pair (sk, pk), we can publicly compute a re-randomized valid signature on the
same message m under the same key-pair (sk, pk) as σ′ = (σr

1, σ
r
2) for r ←R Zp. We refer to Appendix A

for a more formal exposition.

Definition 7 (PS Signature Scheme [PS16]). The PS Signature Scheme to sign a message m =
(m1, . . . ,mℓ) ∈ Zℓ

p consists of a tuple of PPT algorithms (Setup,KeyGen,Sign,Verify) described as
follows :

– Setup(1λ) : For security parameter λ, this algorithm outputs groups G1,G2, and GT of prime order
p, with an efficient bilinear map e : G1 ×G2 → GT , as part of the public parameters pp. Note that
the bilinear groups are of type 3, which ensures that there are no homomorphisms between G1 and
G2 that are efficiently computable.

– KeyGen(pp) : This algorithm samples g̃ ←R G2 and (x, y1, . . . , yℓ)←R Zn+1
p , computes (X̃, Ỹ1, . . . , Ỹℓ) =

(g̃x, g̃y1 , . . . , g̃yℓ), and outputs (sk, pk), where sk = (x, y1, . . . , yℓ) and pk = (g̃, X̃, Ỹ1, . . . , Ỹℓ).

– Sign(sk,m1, . . . ,mℓ) : This algorithm samples h←R G1 \ {0}, and outputs σ = (h, hx+
∑

j yjmj).
– Verify(pk, (,m1, . . . ,mℓ), σ) : This algorithm parses σ as (σ1, σ2), and first checks if σ1 ̸= e1. It

then proceeds to check if

e

σ1, X̃ ·
∏
j

Ỹ
mj

j

 = e(σ2, g̃).

If yes, it outputs 1, and outputs 0 otherwise.

Note that given σ = (σ1, σ2), σ
′ = (σr

1, σ
r
2) is also a valid signature if σ is a valid signature. However,

it can be seen that the distribution of σ is not independent of the message m in the above scheme.

28

A.1 Proof of Knowledge.

PS signatures support an efficient zero-knowledge proof of knowledge (ZKPoK) wherein a prover hold-
ing a valid PS signature σ on a message vector m can efficiently prove knowledge of the signature.
A prover P who owns a PS signature σ = (σ1, σ2) on a message m = (m1, . . . ,mℓ) ∈ Zℓ

p can prove
knowledge of such a signature using a slight modification of the signature scheme as described above.
At a high level, P generates a signature on a a pair (m, t) for uniformly sampled t←R Zp based on the
original signature σ; the usage of a random t makes the resulting signature independent of m. The
complete protocol is as below:

– Public Key pk = (g̃, X̃, Ỹ1, . . . , Ỹℓ)
– P’s inputs: Message m ∈ Zℓ

p and signature σ = (σ1, σ2) on m
1. P samples r, t←R Zp and computes σ′ = (σr

1, (σ2 · σt
1)

r).
2. P sends the computed value σ′ = (σ′

1, σ
′
2) to V.

3. P and V run a ZKPoK of (m, t) for the relation:

e(σ′
1, X̃) ·

∏
j

e(σ′
1, Ỹj)

mj · e(σ′
1, g̃)

t = e(σ′
2, g̃).

4. V accepts if the ZKPoK is valid.

The proof of knowledge protocol used in Step (3) is a special case of “proof of opening”, wherein we
can use a protocol for proving the knowledge of s ∈ Zℓ

p which opens the commitment z = gs where
g = (g1, . . . , gℓ) and g1, . . . , gℓ are public generators of a group G (of order p), where the discrete log
problem is hard. We describe the protocol concretely below.

– P and V’s common inputs: z ∈ G.
– P’s private inputs: s ∈ Zℓ

p.

1. P samples r←R Zℓ
p and computes α = gr.

2. P → V: α.
3. V → P: c←R Zp.
4. P → V: s′ = cs+ r.
5. V checks: gs

′
= αzc.

We also describe another variant of PS Signature Scheme, based on a stronger assumption (As-
sumption 1 in [PS16]), that leads to much more efficient distributed prover protocols. This variant
is same as the one described in Definition 7, with the exception of KeyGen algorithm which includes
additional elements in the public key (hence stronger assumption). The modified KeyGen algorithm is
described below:

Definition 8 (PS Signature: B [PS16]). The PS Signature Scheme to sign a message m =
(m1, . . . ,mℓ) ∈ Zℓ

p consists of a tuple of PPT algorithms (Setup,KeyGen,Sign,Verify) as described
in Definition 7, except KeyGen which is described below:

– KeyGen(pp): The algorithm samples g ←R G1, g̃ ←R G2, (x, y1, . . . , yℓ+1)←R Zℓ+1
p and computes

(X,Y1, . . . , Yℓ+1) = (gx, gy1 , . . . , gyℓ+1), (X̃, Ỹ1, . . . , Ỹℓ+1) = (g̃x, g̃y1 , . . . , g̃yℓ+1). It then outputs
(sk, pk) where sk = (x, y1, . . . , yℓ+1) and pk = (g, Y1, . . . , Yℓ+1, g̃, X̃, Ỹ1, . . . , Ỹℓ+1).

– Sign(sk, (m1, . . . ,mℓ)): Choose h ←R G1\{0} and output (h, hx+
∑ℓ

i=1 yi·mi). Note that Sign still
works on the ℓ-length message.

A.2 Alternate Proof of Knowledge.

We describe a protocol for showing knowledge of a PS signature (σ1, σ2) on a message m ∈ Zℓ
p while

simultaneously revealing a dynamically sampled commitment C of m. The proof of knowledge reduces
to the knowledge of opening of C and a short pairing check as described below:

– Public Key pk = (g, Y1, . . . , Yℓ+1, g̃, X̃, Ỹ1, . . . , Ỹℓ+1)
– P’s inputs: Message m ∈ Zℓ

p and signature σ = (σ1, σ2) on m

1. P samples r, t, s←R Zp and computes σ′ = (σr
1, (σ2 · σt

1)
r · Y s

ℓ+1), C = g̃t
∏l

i=1 Ỹ
mi
i ∈ G2.

2. P sends the computed value σ′ = (σ′
1, σ

′
2) and C to V.

29

3. P and V run a ZKPoK showing knowledge of (m1, . . . ,mℓ, t) such that C = g̃t
∏ℓ

i=1 Ỹ
mi
i and

a ZKPoK showing knowledge of s such that e(Yℓ+1, g̃)
s = e(σ′

2, g̃)e(σ
′
1, X̃)−1e(σ′

1, C)−1.
4. V accepts if the ZKPoKs are valid.

Proof. For completeness, notice that σ2 = σ
x+

∑ℓ
i=1 yimi

1 and thus we have σ′
1 = σr

1, σ′
2 = Y s

ℓ+1 ·
σ
r(x+

∑ℓ
i=1 yimi+t)

1 and C = g̃t
∏ℓ

i=1 Ỹ
mi
i . Thus we have:

e(σ′
2, g̃) = e(σr

1, g̃
x+

∑ℓ
i=1 yimi+t) · e(Yℓ+1, g̃)

s

= e(σ′
1, X̃) · e(σ′

1, C) · e(Yℓ+1, g̃)
s

The above is equivalent to the verification relation. Zero knowledge follows from the fact that σ′
1, σ

′
2

and C are distributed uniformly in their respective domains, and from the zero knowledge property of
the ZKPoKs. To show knowledge soundness, we show an extractor E which extracts a valid signature
on a message in Zℓ

p. Using the extractors for the ZKPoKs, E obtains (m1, . . . ,mℓ, t, s) such that

C = g̃t
ℓ∏

i=1

Ỹ mi
i , e(σ′

2, g̃) = e(σ′
1, X̃) · e(σ′

1, C) · e(Yℓ+1, g̃)
s

The extractor E computes
(
σ1 = σ′

1, σ2 = σ′
2(σ

′
1)

−t(Yℓ+1)
−s
)
. To see that (σ1, σ2) is a valid signature

we verify:

e(σ2, g̃) = e(σ′
2, g̃) · e(σ′

1, g̃)
−t · e(Yℓ+1, g̃)

−s

= e(σ′
1, X̃) · e(σ′

1, C) · e(σ′
1, g̃)

−t

= e(σ′
1, X̃) · e(σ′

1,

ℓ∏
i=1

Ỹ mi
i)

= e(σ1, X̃

ℓ∏
i=1

Ỹ mi
i)

The above shows (σ1, σ2) is a valid signature for the block (m1, . . . ,mℓ) for the public key (g̃, X̃, Ỹ1, . . . , Ỹℓ).

A.3 Distributed PoK for PS Signatures

The ZKPoK for PS signatures outlined in Section 2 assumes a single prover holding a valid PS sig-
nature. A core technical centerpiece of this paper is a distributed version of this ZKPoK, where (in-
formally speaking) multiple provers, each holding a secret-share of the message and a PS signature
on the message, can together prove knowledge of the (message, signature) pair with respect to a pub-
lic verification key. We then use this distributed protocol to design our final compiler for upgrading
any secret-sharing-based MPC protocol into an authenticated version of the same protocol, where the
(secret-shared) inputs are authenticated using PS signatures, and the parties prove knowledge of the
same.

Concretely, we use the distributed protocol Πcd-pok to provide proof of knowledge for PS signature
over an efficient bilinear map e : G1×G2 → GT , where a set of distributed provers (W1, . . . ,Wn) with
access to the shares of a message vector m, show proof of knowledge of signature on m with respect
to a public key pk. The solution essentially follows from casting the proof of knowledge of a signature
as proof of opening of commitment and leveraging the protocol Πcd-pok. The details of reformulating
knowledge of a PS signature as proof of opening of a commitment appears in Appendix A.1. The
protocol is detailed below.

Protocol Πps-dpok

– Public Key pk = (g̃, X̃, Ỹ1, . . . , Ỹℓ)
– P’s inputs: Message m = (m1, . . . ,mℓ) ∈ Zℓ

p and signature σ = (σ1, σ2) on m
– Wi’s inputs : Wi possesses the ith share mi of the message vector m,

such that Reconstruct(m1, . . . ,mn) = m

30

– Pre-processing : P samples t ←R Zp, computes (t1, . . . , tn) ←R Share(t). P sends the shares ti to
Wi, for all i ∈ [n].

– Interactive Protocol
1. P samples r ←R Zp and computes σ′ = (σr

1 , (σ2 · σt
1)

r).
2. P broadcasts the computed value σ′ = (σ′

1, σ
′
2) to V.

3. Each Wi and V locally computes g = (g1, . . . , gℓ, gℓ+1), z where g1 = e(σ′
1, Ỹ1), . . . , gℓ =

e(σ′
1, Ỹℓ), gℓ+1 = e(σ′

1, g̃) and z = e(σ′
2, g̃)/e(σ

′
1, X̃).

4. Each Wi locally holds the i-th share si = (mi, ti) such that

s = (m, t) = Reconstruct
(
{si}i∈[n]

)
.

5. The workers Wi, i ∈ [n] and V run the protocol Πcd-pok for the relation gs = z, where s is
secret-shared and (g, z) is available to all parties.

6. V accepts if the Πcd-pok in the previous step accepts.

Theorem 8. Assuming that the discrete log assumption holds over the groups G1 and G2, the proposed
protocol Πps-dpok as described above achieves perfect completeness, (2, k1, . . . , k(log2(ℓ+1)−1))-special sound-
ness with ki = 3 for all i = [log2(ℓ+ 1)− 1], and special honest-verifier zero-knowledge.

Proof. The proof is very similar to the proof of Theorem 1 and is omitted.

Efficiency. The protocol Πps-dpok inherits its communication complexity essentially from the underlying
protocol Πcd-pok which is O(log(ℓ) log(|G|) + log(|Zp|)) per worker and O(n log(ℓ) log(|G|)) overall.
Computationally, each worker in Πps-dpok incurs additional overhead of computing ℓ+ 1 pairings over
the computational complexity of the protocol Πcd-pok.

Optimized Version. The previous protocol suffers from the computational expense of computing
ℓ + 1 pairings as the generators for the sub-protocol Πcd-pok need to be computed by all the workers
based on the first message. To mitigate this computational burden, we consider another formutation
of proving knowledge of a PS signature where proof of knowledge is over the generators available from
the public key pk. This formulation is detailed in Appendix A.2. The improved protocol Πps-dpok-opt
appears in Figure A.3. As we shall see, the improved protocol also leads to a vastly more efficient
protocol when multiple parties need to show knowledge of signatures on their inputs.

Protocol Πps-dpok-opt

– Public Key pk = (g, Y1, . . . , Yℓ+1, g̃, X̃, Ỹ1, . . . , Ỹℓ+1)
– P’s inputs: Message m = (m1, . . . ,mℓ) ∈ Zℓ

p and signature σ = (σ1, σ2) on m
– Wi’s inputs : Wi possesses the ith share mi of the message vector m,

such that Reconstruct(m1, . . . ,mn) = m
– Pre-processing : P samples t, v ←R Zp, computes (t1, . . . , tn) ←R Share(t), (v1, . . . , vn) ←R

Share(v). P sends the shares (ti, vi) to Wi, for all i ∈ [n]. All the parties set g = (g̃, Ỹ1, . . . , Ỹℓ)
and h = e(Yℓ+1, g̃).

– Interactive Protocol
1. P samples r, v ←R Zp and computes σ′ = (σr

1 , (σ2 ·σt
1)

r ·Y v
ℓ+1), C = g̃t

∏ℓ
i=1 Ỹ

mi
i . P also generates

a NI-ZKPoK π showing knowledge of v such that e(σ′
1, X̃) · e(σ′

1, C) · e(Yℓ+1, g̃)
v = e(σ′

2, g̃).
2. P broadcasts the computed value σ′ = (σ′

1, σ
′
2), C and π to V.

3. Each Wi and V locally compute z = e(σ′
2, g̃)e(σ

′
1, X̃)−1e(σ′

1, C)−1.
Parties hold shares of s = (m, t) and v satisfying gs = C and hv = z

4. All Wi for i ∈ [n] and V run ZKPoK protocol Πcd-pok for the relation gs = C and protocol Πd-pok
for the relation hv = z.

5. V accepts if both the protocols accept.

Finally, we can again achieve a publicly verifiable two-round version of this protocol, which we call
Πpv

ps-dpok-opt that achieves soundness and zero-knowledge, by relying on the Fiat-Shamir heuristic and
using a random oracle.

31

A.4 Extensions for Authenticating All Inputs

The protocols thus far have been described in a setting where a designated prover P proves authen-
ticity of its input m by sharing it among the workers W1, . . . ,Wn. Looking ahead, in a multiparty
computation involving parties P1, . . . ,Pn, with mi as P ′

is input; all the parties can establish authen-
ticity of their inputs to each other by running n invocations of the protocols Πcd-pok or Πps-dpok-opt. In
an invocation a party Pj acts as the Prover, the parties P1, . . . ,Pn collectively act as workers while
each Pi, i ̸= j also acts as a Verifier (this is possible, since the transcript is publicly verifiable as
shown in Section 3.1). Typically, the input authentication will be followed by computation phase to
compute a function f on the inputs. We defer those details to Section 6. For now we describe a protocol
that authenticates inputs of all parties (against a common public key pk for simplicity). The protocol
Πps-auth is described in Figure A.4.

Protocol Πps-auth

– Public Key pk = (g, Y1, . . . , Yℓ+1, g̃, X̃, Ỹ1, . . . , Ỹℓ+1).
– Pi’s inputs:

– Message mi ∈ Zℓ
p and signature σi on mi (under pk).

– ith share of the message mj of Pj .
– Interactive Protocol:

1. For j = 1, . . . , n:
2. Run phase j in which parties execute an instance of Πps-dpok-opt with Pj acting as the Prover,
P1, . . . ,Pn constituting the workers and Pi, i ̸= j acting as verifiers.

– Output: Party Pj outputs bj = 1 if it successfully verifies the transcript for phases i ̸= j.

The communication complexity of the above protocol is simply O(n2 log(ℓ)) corresponding to n
invocations of Πps-dpok-opt. The computational effort of a party is similarly O(ℓn) exponentiations and
O(n) pairings.

Finally, it is straightforward to see that we can achieve a publicly verifiable two-round version of this
protocol, which we call Πpv

ps-auth that achieves soundness and zero-knowledge, by running n instances

of the publicly verifiable protocol Πpv
ps-dpok-opt outlined earlier as opposed to Πps-dpok-opt.

Optimized Version. We now present an optimized variant of the protocol Πps-auth which reduces the
communication complexity to O(n log ℓ) and exponentiations to O(ℓ+n). We achieve this by combining
n instances of the sub-protocol Πcd-pok (one corresponding to each instance of Πps-dpok-opt) into a single
instance of Πcd-pok, using a random challenge. Observe that in phase j of the above protocol, the parties
run an instance of Πcd-pok to prove gmj · g̃tj = Cj where mj is P ′

js private input, tj is commitment
randomness, and Cj is the commitment broadcast by Pj in Step 2 of Πps-dpok-opt. Using a randomly
sampled γ ∈ Zp, we can (with overwhelming probability) combine the proofs for all j ∈ [n] to a
single proof showing gs · g̃t =

∏
j C

γj

j . The parties can compute shares of satisfying s =
∑

j γ
jmj and

t =
∑

j γ
jtj using their shares of mj , tj for j ∈ [n].

Protocol Πps-auth-opt

– Public Key pk = (g, Y1, . . . , Yℓ+1, g̃, X̃, Ỹ1, . . . , Ỹℓ+1).
– Pi’s inputs:

– Message mi ∈ Zℓ
p and signature σi on mi (under pk).

– ith share of the message mj of Pj .
– Pre-processing: Pi, i ∈ [n] samples ti, vi ←R Zp and secret shares (ti, vi) among P1, . . . , Pn. All

parties set g = (Ỹ1, . . . , Ỹn, g̃), h = e(Yℓ+1, g̃).
– Interactive Protocol

1. Pi, i ∈ [n] computes σ′
i = (σri

i,1, (σi,2 · σti
i,1)

ri · Y vi
ℓ+1) for ri ←R Zp, and Ci = g(mi,ti).

2. Each Pi, i ∈ [n] broadcasts σ′
i, Ci.

3. Each Pi, i ∈ [n] computes (z1, . . . , zn) where zj = e(σj,2, g̃) · e(σj,2, X̃)−1 · e(σj,1, Cj)
−1.

4. Each Pi, i ∈ [n] computes challenge γ ←R Zp by querying the Random Oracle RO using the mes-
sage (C1||σ′

1|| · · · ||Cn||σ′
n). Subsequently Pi computes yi =

∑
j∈[n] γ

j(mij , tij), wi =
∑

j∈[n] vijγ
j

where mij , tij and vij denote Pi’s share of Pj ’s inputs mj , tj and vj respectively.

32

5. All parties compute C =
∏

j∈[n] C
γj

j , z =
∑

j∈[n] zjγ
j Parties hold shares yi, wi of y, w satisfying

gy = C and hw = z

6. Parties run the interactive phase of the protocol Πcd-pok on statement C and protocol Πd-pok on
statement z with g and h as the respective generators.

– Output: Pj outputs bj = 1 if both protocols Πcd-pok and Πd-pok accept.

It is again straightforward to see that we can achieve a publicly verifiable two-round version of this
optimized protocol, which we call Πpv

ps-auth-opt, that achieves soundness and zero-knowledge.

A.5 Distributed PoK of PS Signatures with Robust Completeness

In this section, we build upon Πrob to propose a distributed proof of knowledge achieving robust
completeness for PS signature over an efficient bilinear map e : G1×G2 → GT , where a set of distributed
provers (W1, . . . ,Wn) with access to the shares of a message vector m, along with a signature σ on m,
proves knowledge of σ. The protocol is called Πps-dpok-opt-rob, and is conceptually similar to its variant
Πps-dpok-opt with non-robust completeness described in Section A.3 (including similar optimizations
for efficiency improvement), but additionally achieves robust completeness by using Πrob as its base
protocol.

Protocol Πps-dpok-opt-rob

– Public Key pk = (g, Y1, . . . , Yℓ+1, g̃, X̃, Ỹ1, . . . , Ỹℓ+1)
– P’s inputs: Message m = (m1, . . . ,mℓ) ∈ Zℓ

p and signature σ = (σ1, σ2) on m
– Wi’s inputs : Wi possesses the ith share mi of the message vector m,

such that Reconstruct(m1, . . . ,mn) = (m)
– Pre-processing : P samples t ←R Zp, computes (t1, . . . , tn) ←R Share(t). P sends the shares ti to

Wi, for all i ∈ [n].
– Interactive Protocol

1. P samples r, v ←R Zp and computes σ′ = (σr
1 , (σ2 ·σt

1)
r ·Y v

ℓ+1), C = g̃t
∏ℓ

i=1 Ỹ
mi
i . P also generates

a NI-ZKPoK π showing knowledge of v such that e(σ′
1, X̃) · e(σ′

1, C) · e(Yℓ+1, g̃)
v = e(σ′

2, g̃).
2. P broadcasts the computed value σ′ = (σ′

1, σ
′
2), C and π to V.

3. Each Wi and V locally set g = (g̃, Ỹ1, . . . , Ỹℓ).
4. Each Wi locally holds the i-th share si = (mi, ti) such that s = (m, t) = Reconstruct

(
{si}i∈[n]

)
.

5. All Wi for i ∈ [n] and V run ZKPoK protocol Πrob for the relation gs = C
6. V accepts if π is valid and Πrob accepts.

Finally, we can again construct a publicly verifiable two-round version of this protocol, which we
call Πpv

ps-dpok-opt-rob, that achieves soundness and zero-knowledge by relying on the Fiat-Shamir heuristic
and using a random oracle.

33

	Compute, but Verify: Efficient Multiparty Computation over Authenticated Inputs

