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Abstract. Traditional notions of secure multiparty computation (MPC) allow mutually dis-
trusting parties to jointly compute a function over their private inputs, but typically do not
specify how these inputs are chosen. Motivated by real-world applications where corrupt inputs
could adversely impact privacy and operational legitimacy, we consider a notion of authenticated
MPC where the inputs are authenticated, e.g., signed using a digital signature by some certifi-
cation authority. We propose a generic and efficient compiler that transforms any linear secret
sharing based MPC protocol into one with input authentication.

Our compiler incurs significantly lower computational costs and competitive communication over-
heads when compared to the best existing solutions, while entirely avoiding the (potentially ex-
pensive) protocol-specific techniques and pre-processing requirements that are inherent to these
solutions. For n-party MPC protocols with abort security where each party has ℓ inputs, our
compiler incurs O(n log ℓ) communication overall and a computational overhead of O(ℓ) group
exponentiations per party (the corresponding overheads for the most efficient existing solution
are O(n2) and O(ℓn)). Finally, for a corruption threshold t < n/3, our compiler preserves the
stronger identifiable abort security of the underlying MPC protocol. No existing solution for
authenticated MPC achieves this regardless of the corruption threshold.

Along the way, we make several technical contributions that are of independent interest. This
includes the notion of distributed proofs of knowledge and concrete realizations of the same for
several relations of interest, such as proving knowledge of many popularly used digital signature
schemes, and proving knowledge of opening of a Pedersen commitment.

1 Introduction

Secure multiparty computation (MPC) allows two or more parties to jointly compute a function f
of their private inputs. The guarantees of such a protocol are privacy of the inputs and correctness
of the output, even in the presence of some corrupt parties. Security definitions model the behavior
of corrupt parties as either semi-honest (who follow the prescribed protocol, but might analyze the
messages received in order to learn unauthorized information), or malicious (who arbitrarily deviate
from the protocol).

Traditional security notions for MPC ensure the correctness of the output and privacy, that is,
nothing is revealed beyond the output of the computation. However, no assurance is given about
what input parties use in the protocol. The protocol does not specify how the parties choose their
private inputs, irrespective of whether they follow the protocol or not. Parties may modify their “real”
input affecting correctness and security, but this is outside the scope of MPC security and is allowed
by security definitions. However, several applications are sensitive to “ill-formed” inputs; such inputs
can either corrupt the output or reveal the output on arbitrary uncertified inputs which compromise
privacy. Such attacks are of practical concern in applications of MPC in computation on genomic
data [BB16]. Similarly, in applications of hospitals performing joint computations on patient data for
treatment efficacy, it is desirable to ensure that the data used is signed by a regulatory certification
authority.

The above examples illustrate that many real-world applications of MPC require that the inputs
used for computing the function are authentic. For such applications, the guarantees provided by
traditional MPC notion are clearly inadequate. A natural question that confronts us then is: “Which
inputs should be considered authentic? And how do we ensure that authentic inputs are used in a secure
computation?”



Input Authenticity. We first turn to the question of deciding authenticity of inputs. In real life,
data rarely originates in a “vacuum”. Almost all of the data is vetted by a relevant authority such
as universities for academic records, banks for financial transactions, accredited auditors for financial
statements, several government bodies for individual attributes such as name, age, employment status
etc. In all such cases, the data is considered authentic if it has a suitable attestation from the relevant
certifying authority. Moreover, since the certifying authority cannot be omnipresent to vouch for au-
thenticity of the data, it enables individuals to claim and verify this attestation increasingly through
digital signatures. More recently, several digital signature schemes such as [BBS04,PS16,CV02] have
been proposed which enable an individual to establish attestation by a certifying authority with mini-
mal disclosure of attributes. Further the attestation can be established in an unlinkable manner, where
several usages of the same credential cannot be linked. [Moumita: change ”credential”?] Unfortunately,
all of the above benefits, which allow authentic data to be used securely in individual context are
negated when computing securely over data from multiple data owners, if one adheres to the vanilla
security guarantees of the multiparty protocols.

In this paper, we make substantial progress to address the above shortcoming, by efficiently aug-
menting existing MPC protocols to additionally ensure that inputs have a valid attestation (in the
form of a digital signature) from a relevant certifying authority. Moreover, we illustrate our solution
with the BBS+ [BBS04,ASM06] and PS [PS16] signature schemes which efficiently support minimal
disclosure features as mentioned before.

Why näıve solutions are not satisfactory. One straightforward way to achieve this authenticity
is to run the MPC protocol on inputs that are signed by some certification authority. This can be
achieved by having the protocol first verify the signature on the inputs, and if they are validated,
proceed to compute the original functionality. In certain applications, authenticity could mean that
inputs are expected to satisfy a certain predicate or property. This can be achieved by verifying that
the inputs are consistent with global commitments, and then various properties can be proved about
the committed value. Regardless of the particular notion of authenticity, MPC on certified inputs can
be achieved in general by augmenting the function f to be computed with the verification function of a
signature or a commitment scheme. However, signature and commitment verification typically involves
hashing the message which is expensive in MPC, or expressing algebraic operations as arithmetic
circuits which blows up the size of the circuit to be computed.

Another approach is to have the certifying authority sign a commitment to the inputs, and then have
the parties prove that their inputs are those contained inside the public commitment. Using Pedersen
commitments, and customized zero-knowledge protocols, this approach can be more efficient that
authenticating inside the MPC. However, this approach does not satisfy the property of unlinkability.
Unlinkability – ensuring that (same) inputs used by a party across different protocols cannot be linked
– is an essential privacy requirement. Our approach works over the shares of the input as opposed
to identifying the input via commitments guranteeing unlinkability. Moreover, since our solution is
essentially a distributed proof of knowledge of Pedersen commitment openings, this is as efficient (or
more, with optimizations) as verifying signature on commitments.

Our goal is to lift existing MPC protocols into ones that also ensure an additional predicate (such
as possession of valid signature on inputs) is satisfied by the inputs; and we want to achieve this (i)
without changing the underlying MPC protocol, (ii) without representing the predicate as a circuit
and (iii) incurring overhead in communication that is succinct in size of the inputs (which are large for
our applications). This precludes approaches of prior works which require the authentication relation
to be expressed as a circuit [BBC+19,HVW22].

1.1 Our Contributions

In this work, we study authenticated MPC and propose a generic compiler to efficiently transform an
MPC protocol into an MPC protocol with input authentication. Towards this goal, we put forth a
notion of distributed zero-knowledge protocols that are of independent interest.

Compressed Distributed Sigma protocols. We consider a setting with multiple provers and a sin-
gle verifier where the witness is secret shared among the provers. The verifier has as input an instance
x, and each prover has as input a share wi such that (x,w) ∈ R where w = Reconstruct(w1, . . . , wn).

As discussed earlier, using generic MPC protocol to achieve this is inefficient. Moreover, participants
in our protocol communicate in restricted manner: (i) the provers do not communicate with each other,
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and (ii) the verifier communicates only via a broadcast channel and is public coin. Looking ahead, the
use of only broadcast channels and public coins also facilitate public verifiability. In our authenticated
MPC application, each party plays the prover, and all other parties are verifiers. The prover’s role itself
is then distributed among all parties. Public verifiability implies that we can go from one verifier to
many verifiers by using the Fiat-Shamir transform to non-interactively derive the verifier’s messages
from a random oracle (RO).

Our definition of distributed proof of knowledge is a natural distributed analogue of honest-verifier
public coin protocols. In Section 3, we construct a distributed proof of knowledge for the discrete
logarithm relation. We then show how to apply the compression technique from Attema et al. [AC20]
to improve the communication complexity of our protocol from being linear in the size of the witness to
logarithmic. Our techniques to construct compressed distributed zero-knowledge protocols are general
and modular. We believe that sigma protocols for algebraic languages can be distributed using similar
techniques, and our building blocks to be of independent interest in other applications.

The ideas outlined above will not prevent malicious provers from disrupting the protocol execution
by using bad shares and causing abort. We put forth a notion of robustness which additionally provides
tolerance against abort in the presence of n/3 malicious provers. That is, when the shares indeed
reconstruct a valid witness, the protocol will lead the verifier to accept even if up to n/3 provers
deviate from the protocol. To achieve this seeming error-correction over messages “in exponents”, we
leverage results from low degree testing (Lemma 2) used in constructions of efficient zkSNARKs like
[AHIV17,BCR+19]. Informally, the results state that to check that a set of k sharings of messages
s1, . . . , sk have not been tampered (by corrupt provers), it is sufficient to publicly reveal a suitably
blinded linear combination of the above sharings. The deviant positions in the revealed sharing (from a
consistent sharing) with overwhelming probability capture deviations across all the sharings. The main
technical challenge in achieving robust completeness for DPoK is to retain succinctness. While achieving
robust completeness is straightforward if we do not care about succinctness, the main technical novelty
of our constructions is to achieve both properties simultaneously via low-degree testing.

Generalization to Threshold Linear Secret Sharing. Our techniques for obtaining distributed
sigma protocols as discussed above generalize to any threshold linear secret sharing (TLSS) scheme. In
particular, for the case of robust distributed sigma protocols, we characterize the robustness threshold
in terms of the minimum distance of the linear code associated to the TLSS scheme. The general-
ized protocols appear in Appendix A. Concrete bounds are obtained for Shamir Secret Sharing and
Replicated Secret Sharing schemes.

Authenticated MPC. We consider a notion of input authenticity where the inputs possess a valid
signature from a certification authority. This is a standard notion where applications know an entity
who can certify that inputs satisfy certain properties by providing a signature on inputs3. Informally,
we give a protocol that realizes the following authenticated MPC functionality.

– The parties send their inputs xi and signature σi on xi to F for i ∈ [n].
– The functionality F checks that σi is a valid signature on xi for all i ∈ [n]. If any of the signatures

is invalid, for all invalid inputs xj , it sends (abort, Pj) to all the parties. Otherwise it computes
y = f(x1, . . . , xn) and sends y to all parties.

In Section 4, we propose a generic compiler that transforms a protocol Π based on TLSS scheme to
an authenticated protocol Π′. We describe our compiler for malicious protocols based on Shamir secret
sharing, though it can be generalized to any TLSS based protocol, using the generalized distributed
sigma protocols in Appendix A. For authentication, our techniques employ signature schemes that are
algebraically compatible: these include Camenisch-Lysyanskaya (CL) signatures [CL01], Boneh-Boyen-
Shaham (BBS) signatures (and variants) [BBS04,ASM06,CDL16], and Pointcheval-Sanders (PS) sig-
natures [PS16]. These are signature schemes that support efficient zero-knowledge proofs of knowledge
of a valid message-signature pair. We consider BBS+ signatures4 to illustrate the building blocks of
our compiler and implementation, and show the generality of our techniques by providing protocols
for PS signatures as well in Section 4.1. We believe our techniques extend to other such structured
algebraic signatures such as CL signatures [CL01]. The compiled protocol Π′ inherits the security of

3 Our techniques extend to other notions of authenticity like proving that the inputs open publicly known
commitments.

4 There are standardization efforts for a version of BBS called BBS+ that has led to a recent RFC
draft [LKWL22].
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Π. If Π guarantees security with abort for t < n/3, then the same holds for Π′; and if Π achieves
guaranteed output delivery, then so does Π′, when t < n/3, as long as the inputs are authentic (by
definition, we abort if this is not the case)5. The latter crucially uses a robustness property of our
distributed zero-knowledge protocol. Our compiler incurs negligible communication overhead over Π.

Generality: We note that our approach works in general for: (a) any (threshold linear) secret-sharing
based MPC protocol, and (b) any signature scheme such that the associated proof of knowledge can
be modelled as a proof of knowledge of the opening of a Pedersen commitment. We present specific
instances of this general approach for signature schemes that are candidates for standardization (e.g.,
[BBS04,ASM06] is a candidate standard for verifiable credentials in Web 3.0). We use a broadcast
channel in our protocols. For broadcasting ℓ bits among n parties, state-of-the-art broadcast protocols
incur a communication complexity of O(ℓn) when ℓ >> n [BLZLN21,GP16]. In our application, we
indeed expect ℓ to be Ω(λn) where λ is a security parameter.

1.2 Related Work

Certified Inputs. The works of [KMW16,Bau16,ZBB17] achieve input validation for the special
case of two-party computation using garbled circuit (GC) based techniques. The work of [BJ18] con-
structs MPC with certified inputs, albeit using techniques that are specific to certain MPC proto-
cols [DN07,DKL+13]. A recent work [ADEO21] develops techniques for computing bilinear pairings
over secret shared data, thus enabling signature verification inside MPC for the Pointcheval-Sanders
signature scheme [PS16]. Our proposed compiler uses efficient compressed distributed sigma protocol
proofs for signature verification instead of verifying signatures inside the MPC protocol, and differs
from both [BJ18] and [ADEO21] in terms of techniques used and properties achieved. In particular, our
compiler is modular, fully generic (works in a plug-and-play manner with any threshold linear secret
sharing based MPC protocol), and avoids the (potentially expensive) protocol-specific techniques and
pre-processing requirements that are inherent to [BJ18,ADEO21]. Our compiler also enables stronger
security guarantees as compared to abort security, namely identifiable abort (and even full securi-
ty/guaranteed output delivery in certain cases), which neither [BJ18] nor [ADEO21] achieves.

Distributed Zero-knowledge. Various notions of distributed zero-knowledge have appeared in liter-
ature. The notion of distributed interactive proofs has appeared in [Ped91], in the context of relations
describing the verification of signatures, where the signature is public and secret key is shared among
the participants. The notion in [WZC+18] considers a distributed prover in order to improve prover
efficiency, but the witness is still held by one entity. In Feta [BJO+22], the distributed notion is a
generalization of designated verifier to the threshold setting where a set of verifiers jointly verify the
correctness of the proof. Prio [CB17] proposes secret shared non-interactive proofs where again, there
is a single prover and many verifiers.

Our formulation of distributed proofs of knowledge also differs from recent works on distributed
zkSNARKs [SVdV16,OB21,DPP+22], where the focus is on jointly computing a non-interactive pub-
licly verifiable proof (with specific focus on Groth16 [Gro16], Plonk [GWC19] and Marlin [CHM+20]).
Their constructions require additional interaction among the workers over private channels; on the
other hand, we consider distributed proofs of knowledge where all interaction with the verifier takes
place over a public broadcast channel. We also study the notion of robust completeness that guaran-
tees that the protocol runs to completion even in the presence of malicious behavior, which was not
considered in prior works.

Fully Linear PCPs and Distributed Verification. A related notion of zero-knowledge proofs on
distributed data is explored in [BBC+19] that proposes the abstraction of a fully linear PCP (FLPCP)
where each verifier only has access to a share of the statement. A similar notion based on MPC-in-the-
head paradigm is presented in a concurrent work [HVW22]. We provide below a high level comparison
of our work with aforementioned works in terms of definition, applications, and efficiency. Later in
Section 3.2, we compare more concretely after having introduced our definitions.

Efficiency. While techniques of [BBC+19] can indeed be used to achieve our goals, the focus of our
work is on concrete efficiency (prover overhead, communication overhead on top of the underlying

5 In some applications, it is acceptable to continue computation on default inputs instead of aborting when
authentication fails.
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unauthenticated MPC). In order to use [BBC+19], one has to express the relation as an arithmetic
circuit; for the languages we consider (algebraic relations), expressing them as a circuit is prohibitively
expensive. Instead, we take advantage of the algebraic nature of the relation to design concretely
efficient distributed sigma protocols. In addition, [BBC+19] provides sublinear communication only
for special circuits (like degree 2) and the circuits of interest for us are unlikely to have this structure.

Robustness. We note that [BBC+19] does not consider the robustness property. We put forth the
robustness notion that guarantees that the protocol runs to completion even in the presence of malicious
workers running the proof on behalf of the prover (when the prover is honest). This property is indeed
important for our applications, as this means that the compiled authenticated MPC protocol can
identify malicious parties in the authentication stage.

Applications. The motivating application for [BBC+19] is compiling passive security to active security,
and therefore the statements that show up – like the next message function of the protocol -– have a
low degree circuit representation. We consider the authenticated input application where our relations
of interest are algebraic in nature and admit efficient sigma protocols. Subsequent works [BGIN20] have
used the FLPCP notion of distributed ZK on secret shared data to construct MPC protocols with full
security. The concurrent work of [HVW22] also consider a setting that is subtly different from ours,
where verification is distributed and relies on a single designated prover knowing the entire secret,
and robustness holds with respect to dishonest verifiers. In contrast, our prover is distributed, the
distributed phase of our protocol only requires the provers to possess a valid sharing of the witness (no
prover needs to know the entire witness), and verification is public and only needs broadcast messages.
Our robustness notion is against dishonest provers.

Distributed witness vs Distributed statement. In general, relations with shared witness and
shared statement are equivalent via universal relations. However, our distributed witness model has
several advantages over distributed statement model in prior works. Consider modeling an algebraic
relation like knowledge of discrete logarithm in the distributed setting. If the statement were dis-
tributed, one has to materialize the circuit representing the relation (so that intermediate values act
as witness), incuring overheads of writing the algebraic relation as a circuit. Modular exponentiation,
for instance has circuit size that is roughly cubic in the bit size of the modulus. In general, the lan-
guages we consider are algebraic in nature and expressing them as a circuit is prohibitively expensive.
Our observation is that algebraic relations like discrete log is a naturally distributed witness relation.
A public statement and shared witness is better suited for algebraic relations, and our distributed
zero-knowledge definition captures such natural relations. We take advantage of the algebraic nature
of the relation to design concretely efficient distributed sigma protocols by modeling the witness as
being distributed and statement being public. In this approach, we expect rich classes of protocols
(compressed sigma protocols[AC20], Bulletproofs[BBB+18] etc., that avoid circuit representation for
several useful relations) to be amenable to be distributed under our definition.

1.3 Technical Overview

We begin by outlining ideas to distibute a Sigma protocol for proving knowledge of discrete logarithm
of a public group element. This relation will be at the core of expressive algebraic relations that we
will consider later.

Distributed Sigma protocol. Let G be a group of prime order p. Given x ∈ G, consider Schnorr’s
protocol for proving knowledge of discrete logarithm w such that x = gw for some generator g. Let
Σ = (P1,P2,V) be the protocol where we denote by P1 and P2 the algorithms that compute, the
prover’s first message a = gα for random α ∈ Fp, and the prover’s last message (response) z = α+ cw,
respectively, where c is the challenge from the space {0, 1}l for some length l. Let V be the algorithm
that takes x, transcript τ = (a, c, z) and accepts iff gz = axc.

Now, in order to distribute this Sigma protocol, we begin by assuming n provers Pi who each hold
a share wi such that w = w1+ · · ·+wn (mod p). Now, each prover runs Σ with their respective shares
in parallel. That is, Pi runs P1, broadcasts ai = gαi , receives challenge c from V, and runs P2 and
broadcasts zi(= αi + cwi). The transcript is τ = (a1, . . . , an, c, z1, . . . , zn), and the verifier accepts iff
g
∑

i zi =
∏

i aix
c. This holds since g

∑
i zi = g

∑
i(αi+cwi) =

∏
i aix

c.
This idea generalizes to any linear secret sharing scheme, and also extends to other relations. For

instance, to prove knowledge of representation of a vector of discrete logarithms with respect to public
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generators. In our final construction we use additional ideas like randomization of the first message of
each Pi via a sharing of 0 in order to ensure zero-knowledge.

Succinctness. This distributed Sigma protocol has linear communication complexity. To achieve suc-
cinctness, one could apply split-and-fold compression techniques to reduce the instance size by half
based on a random challenge, and recurse, in order to make our distributed protocol succinct. To illus-
trate the idea, consider the distributed Schnorr described above adapted for vectors, that is for proving
knowledge of w ∈ Fm

p such that x = gw, where gw =
∏m

i=1 g
wi
i . In this protocol, each Pi broadcasts

a vector zi as its third message, and this is the source of linear communication, since each prover’s
first message is still one group element, ai = gαi . We now outline the ideas to compress this commu-
nication. Let us denote component wise product by g ◦ h = (g1h1, . . . gnhn) for g and h ∈ Gn. Now,
after receiving the verifier challenge c, each Pi uses c to compute a new instance (and corresponding
witness), but of half the size, as follows: broadcast shares of the new instance Ai = g

wi,L

R , Bi = g
wi,R

L

where g = gL||gR; set new reduced instance to be g′ = gc
L ◦ gR, and x′ = xc

∏
i Ai

∏
i B

c2

i ; set new
witness share to be w′

i = wi,L + cwi,R. Recursing until the instance size is constant yields a protocol
with logarithmic communication. Here again, we take advantage of the linearity of the secret sharing
scheme in order to split and fold the shares in the exponent.

Robust Completeness. While the ideas described above result in protocols that are zero-knowledge
and sound against a malicious adversary controlling up to t parties, completeness is guaranteed only
if all the provers follow the protocol. However, in the distributed setting, a stronger, but natural
notion is a robust completeness property where completeness holds as long as the shares reconstruct
a valid witness, even if some provers are malicious. The main technical challenge in achieving robust
completeness for a distributed proof is to retain succinctness. Our key technical novelty is to achieve
both robustness and succinctness simultaneously via ideas from low-degree testing. We achieve this
by identifying and discarding corrupt shares. At a high level, the provers commit to their shares and
then reveal a certain linear form determined by the challenge over their shares. Given a challenge
c ∈ Fm

p , each Pi broadcasts zi = ⟨c,wi⟩. In the honest case, these opened linear forms are expected
to be a sharing of the same linear form on the reconstructed witness: z = (z1, . . . , zn) recombine to z
where z = ⟨c,w⟩. The verifier error-corrects the received z′ to the nearest codeword, and identifies the
erroneous positions. By assumption our corruption threshold is smaller than half the minimum distance
of the code, so the erroneous positions clearly come from corrupt provers. Can some corrupt provers
strategically introduce errors in individual shares so that they “cancel out” in the inner product with
c? We lean on coding theoretic result (Lemma 2) for linear codes to claim that such a prover only
succeeds with negligible probability. Finally, having identified the corrupt messages, we can reconstruct
the claimed commitment in the exponent using commitments of honest shares (now identified). We
need more details around this core idea to ensure the protocol is zero-knowledge.

A Generic Compiler. In order to construct an authenticated MPC protocol, our choice of signa-
ture scheme (and commitment scheme) are such that the verification can be cast as a relation for
which we can construct a distributed protocol. The BBS signature scheme [BBS04], the PS signature
scheme [PS16] and the Pedersen commitment protocol [Ped91] are some candidates for which our dis-
tributed protocol can be instantiated. Our compiler reuses the sharing that is already done as part of
an MPC protocol. Before proceeding with computation on the shares, the distributed zero-knowledge
proof is invoked to verify authenticity, and then the rest of the MPC protocol proceeds. Since the
shares of the witness come from a party in the MPC protocol, our robustness property guarantees
that if the dealer is honest (that is, a valid witness was shared), then even if some parties acting as
provers are dishonest, the authenticity proof goes through. We also introduce a modified formulation of
proof of knowledge of BBS signatures PS signatures (Section 4.1), which leads to vastly more efficient
distributed protocols.

We also note that, while we rely on broadcast for our protocols, all relevant related work on
FLPCP [BBC+19] and previous works on authenticated MPC [BJ18,ADEO21,HVW22] also make use
of a broadcast channel. A broadcast channel is not a limitation, and can be implemented using point-
to-point channels. In the setting where the number of parties is not too large (as in the applications
we consider), the communication overhead to realize broadcast is not prohibitive.

6



2 Preliminaries

Notation. We write x ←R X to represent that an element x is sampled uniformly at random from
a set/distribution X . The output x of a deterministic algorithm A is denoted by x = A and the
output x′ of a randomized algorithm A′ is denoted by x′ ←R A′. For n ∈ N, let [n] denote the set
{1, . . . , n}. For a, b ∈ N such that a, b ≥ 1, we denote by [a, b] the set of integers lying between a and
b (both inclusive). We refer to λ ∈ N as the security parameter, and denote by poly(λ) and negl(λ)
any generic (unspecified) polynomial function and negligible function in λ, respectively. A function
f : N → N is said to be negligible in λ if for every positive polynomial p, f(λ) < 1/p(λ) when λ is
sufficiently large.

Let G be a group and Fp denote the field of prime order p. We use boldface to denote vectors.
Let g = (g1, . . . , gn) ∈ Gn and x = (x1, . . . , xn) ∈ Fn

p , then gx is defined by gx = gx1
1 · · · gxn

n . For
g = (g1, . . . , gn) ∈ Gn and h = (h1, . . . , hn) ∈ Gn, g ◦ h denotes component-wise multiplication, and
is defined by g ◦ h = (g1h1, . . . , gnhn). For g = (g1, . . . , gn) ∈ Gn and x = (x1, . . . , xn) ∈ Fn

p , gL

(similarly, xL) denotes the left half of the vector g(x) and gR(xR) denotes the right half, such that
g = gL∥gR and x = xL∥xR.

2.1 Threshold Secret Sharing

For ease of exposition we define a special case of threshold linear secret sharing scheme below. For
concreteness, the reader may assume a (t, n) Shamir Secret Sharing. The more general definition
appears in Appendix A.

Definition 1 (Threshold Secret Sharing). A (t, n) threshold secret sharing over finite field F
consists of algorithms (Share,Reconstruct) as described below:

– Share is a randomized algorithm that on input s ∈ F samples a vector (s1, . . . , sn) ∈ Fn, which we
denote as (s1, . . . , sn)←R Share(s).

– Reconstruct is a deterministic algorithm that takes a set I ⊆ [n], |I| ≥ t, a vector (s1, . . . , s|I|) and
outputs s = Reconstruct((s1, . . . , s|I|), I) ∈ F. We will often omit the argument I when it is clear
from the context.

A threshold secret sharing scheme satisfies the following properties:

– Correctness: For every s ∈ F, any (s1, . . . , sn)←R Share(s) and any subset I = {i1, . . . , iq} ⊆ [n]
with q > t, we have Reconstruct((si1 , . . . , siq ), I) = s.

– Privacy: For every s ∈ F, any (s1, . . . , sn)←R Share(s) and any subset I = {i1, . . . , iq} ⊆ [n] with
q ≤ t, the tuple (si1 , . . . , siq ) is information-theoretically independent of s.

A concrete (t, n) sharing scheme over a finite field F, known as the Shamir Secret Sharing is realized
by choosing a set of distinct points η = {η1, . . . , ηn} in F\{0}. Then given s ∈ F, the Share algorithm
uniformly samples a polynomial p of degree at most t such that p(0) = s and outputs (p(η1), . . . , p(ηn))
as the shares. The Reconstruct algorithm essentially reconstructs the value s = p(0) using Lagrangian
interpolation. We canonically extend the Share and Reconstruct algorithms to vectors by applying them
component-wise.

Definition 2 (Linear Code). An [n, k, d]-linear code L over field F is a k-dimensional subspace of
Fn such that d = min{∆(x,y) : x,y ∈ L,x ̸= y}. Here ∆ denotes the hamming distance between two
vectors.

We say that an m × n matrix P ∈ Lm if each row of P is a vector in L. We also overload the
distance function ∆ over matrices; for matrices P,Q ∈ Fm×n, we define ∆(P,Q) to be the number of
columns in which P and Q differ. For a matrix P ∈ Fm×n and an [n, k, d] linear code L over F, we
define ∆(P,Lm) to be minimum value of ∆(P,Q) where Q ∈ Lm.

Definition 3 (Reed Solomon code). For any finite field F, any n-length vector η = (η1, . . . , ηn) ∈
Fn of distinct elements of F and integer k < n, the Reed Solomon Code RSn,k,η is an [n, k, n− k+1]
linear code consisting of vectors

(
p(η1), . . . , p(ηn)

)
where p is a polynomial of degree at most k−1 over

F.
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We note that shares output by (t, n) Shamir secret sharing are vectors in [n, t + 1, n − t] Reed
Solomon code. We can leverage tests for membership of a vector in a linear code (based on parity-
check matrix) to check if a set of shares {si}i∈Q for Q ⊆ [n] and |Q| > t uniquely determine a shared
value s for Shamir Secret Sharing scheme. Below, we formalise the notion of consistent shares and state
a lemma to check such shares. In the interest of space, we directly state the results for general m ∈ N,
i.e. when vectors s ∈ Fm are shared.

Definition 4 (Consistent Shares). Let L be the linear code determined by a (t, n) Shamir secret
sharing scheme over finite field F. For m ∈ N, we call a set of shares {si}i∈Q for Q ⊆ [n] with
|Q| ≥ t + 1 to be Lm-consistent if there exists (v1, . . . ,vn) ∈ Lm such that si = vi for i ∈ Q. In this
case s = Reconstruct(v1, . . . ,vn) ∈ Fm is the unique shared value determined by the shares {si}i∈Q.

Lemma 1. Let L be the linear code determined by a (t, n) Shamir secret sharing scheme over finite
field F. Then for m ∈ N and all Q ⊆ [n] with q = |Q| ≥ t + 1, there exists q × (n − t) matrix HQ

over F such that shares {si}i∈Q are Lm-consistent and determine the value s ∈ Fm if and only if
XHQ = (s,0n−t−1) where X = (x1, . . . ,xq) is some canonical ordering of {si}i∈Q.

Proof. We sketch the proof. For a[Moumita: any?] matrix P ∈ Lm, we have PH = 0n−t−1 where H
is the parity check matrix for the [n, t+1, n− t] code L. Now for Q ⊆ [n] with |Q| ≥ t+1, and matrix
X determined by Lm-consistent shares (si)i∈Q, there exists a matrix TQ such that XTQ ∈ Lm, and
hence XTQH = 0n−t−1. Thus for HQ = [k,TQH] where k is the column of reconstruction coefficients
for the set Q, we have XHQ = (s,0n−t−1).

[Moumita: Change the notation to concatenation?]
The following coding theoretic result is used to identify malicious behaviour in the distributed proof

of knowledge protocol in Section 3.3. It has been previously used in construction of zero knowledge
proofs in the interactive oracle setting (e.g [AHIV17,BCR+19]), to check that the oracle represents
“low degree polynomials”.

Lemma 2 ([BCI+20], Theorem 1.2). Let L be an [n, k, d]-linear code over finite field F and let S
be an m × n matrix over F. Let e = ∆(S,Lm) be such that e < d/2. Then for any codeword r ∈ L,
and γ sampled uniformly from Fm, we have ∆(r + γTS,L) = e with probability at least 1 − n/|F|.
Furthermore, if E denotes the column indices where S differs from the nearest matrix Q in Lm, with
probability 1 − n/|F| over choice of γ, the vector r + γTS differs from the closest codeword v ∈ L at
precisely the positions in E.

2.2 Arguments of Knowledge

Interactive Arguments. Let R be a NP-relation and L be the corresponding NP-language, where
L = {x : ∃ w such that (x,w) ∈ R}. Here, x is called an instance or statement and w is called a
witness. An interactive argument system consists of a pair of PPT algorithms (P,V). P, known as the
prover algorithm, takes as input an instance x ∈ L and its corresponding witness w, and V, known as
the verifier algorithm, takes as input an instance x. Given a public instance x, the prover P, convinces
the verifier V, that x ∈ L. At the end of the protocol, based on whether the verifier is convinced by
the prover’s claim, V outputs a decision bit. A stronger argument of knowledge6 property says that if
the verifier is convinced, then the prover knows a witness w such that (x,w) ∈ R.
Honest-Verifier Zero-Knowledge and Special-Soundness. A protocol is said to be honest-verifier
zero-knowledge (HVZK) if the transcript of messages resulting from a run of the protocol can be
simulated by an efficient algorithm without knowledge of the witness. A protocol is said to have k-
special-soundness, if given k accepting transcripts, an extractor algorithm can output a w′ such that
(x,w′) ∈ R. Furthermore, a protocol is said to have (k1, . . . , kµ)-special-soundness [BCC+16], if given
a tree of

∏µ
i=1 ki accepting transcripts, the extractor can extract a valid witness. Here, each vertex in

the tree of
∏µ

i=1 ki accepting transcripts corresponds to the prover’s messages and each edge in the tree
corresponds the verifier’s challenge, and each root-to-leaf path is a transcript. An interactive protocol is
said to be public-coin if the verifier’s messages are uniformly random strings Public-coin protocols can
be transformed into non-interactive arguments using the Fiat-Shamir [FS87] heuristic by deriving the
verifier’s messages as the output of a Random Oracle. In this work, we consider public-coin protocols.

6 We sometimes use proof and argument interchangeably, but we are only concerned with arguments (proofs
with computational soundness) in this paper.
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2.3 Compressed Sigma Protocols

We recall the sigma protocol for vectors, for proving knowledge of discrete log s ∈ Fℓ
p of a vector of

group elements g, such that gs = z. Here, a prover P with knowledge of the secret vector s, samples
a random vector of scalars r ←R Fℓ

p, and sends α = gr to the verifier V. V then samples a challenge
c←R Fp and sends it to P and in the next round P replies with x = cs+r where V checks if gx = zcα.
Here, the size of the last message of P is linear in input size, and hence it makes the proof size linear.
We note that, for the proof to be succeed, it suffices to convince the verifier V that P knows x such
that gx = zcα. Here, we recall the log2 m−1 round protocol using the split and fold technique [AC20],
which has logarithmic proof size, for proving knowledge of x ∈ Fℓ

p such that gx = y where y = zcα :

– Common input : g ∈ Gm, z ∈ G
– P’s input : x ∈ Fℓ

p

1. P computes A = gxL

R , B = gxR

L and sends them to V.
2. V samples c←R Fp and sends it to P.
3. P comutes x′ = xL + cxR.

4. P and V independently computes g′ = gc
L ◦ gR ∈ Gℓ/2 and z′ = AycBc2 .

5. If size(g′) = 2, P sends x′ to V, else P and V repeat the protocol from step 1 with x = x′, g = g′

and y = z′.

where for a vector s, sL denotes the left half of the vector and sR denote the right half.

The underlying sigma protocol has perfect completeness, special honest-verifier zero-knowledge
(SHVZK) and 2-special soundness, and the later protocol has perfect completeness and 3-special sound-
ness at each step of the recursion. Hence, the overall protocol has perfect completeness, SHVZK which
comes from the underlying sigma protocol and (2, k1, . . . , k(log2 ℓ−1))-special soundness, where ki = 3
∀i ∈ [log2 ℓ − 1]. The protocol can be compiled into a non-interactive argument of knowledge using
Fiat-Shamir heuristic [FS87], which we denote by NIPK.

2.4 BBS+ Signatures and PoK for BBS

In this section, we recall the BBS+ signature scheme from [BBS04,LKWL22], along with the associated
proof of knowledge [CDL16].

The BBS+ Signature Scheme. We first recall the the BBS+ signature scheme from [BBS04,LKWL22].

Definition 5 (BBS+ Signature Scheme [BBS04,LKWL22]). The BBS+ Signature Scheme to
sign a message m = (m1, . . . ,mℓ) ∈ Fℓ

p consists of a tuple of PPT algorithms (Setup,KeyGen,Sign,Verify)
described as follows :

– Setup(1λ) : For security parameter λ, this algorithm outputs groups G1,G2, and GT of prime order
p, with an efficient bilinear map e : G1×G2 → GT as part of the public parameters pp, along with
g1 and g2, which are the generators of groups G1 and G2 respectively.

– KeyGen(pp) : This algorithm samples (h0, . . . , hℓ) ←R Gℓ+1
1 and x ←R F∗

p, computes w = gx2 and
outputs (sk, pk), where sk = x and pk = (g1, w, h0, . . . , hℓ).

– Sign(sk,m1, . . . ,mℓ) : This algorithm samples β, s←R Fp, computes A =
(
g1h

s
0

∏ℓ
i=1 h

mi
i

) 1
β+x

and

outputs σ = (A, β, s).

– Verify(pk, (m1, . . . ,mℓ), σ) : This algorithm parses σ as (σ1, σ2, σ3), and checks

e (σ1, wg
σ2
2 ) = e

(
g1h

σ3
0

ℓ∏
i=1

hmi
i , g2

)
.

If yes, it outputs 1, and outputs 0 otherwise.

9



PoK for BBS+ Signature Scheme. We now recall the proof of knowledge for BBS+ signatures,
which was originally proposed in [CDL16].

– Common Input: Public Key pk = (w, h0, . . . , hℓ)

– P’s inputs: Message m ∈ Fℓ
p and signature σ = (A, β, s) on m, with A =

(
g1h

s
0

∏ℓ
i=1 h

mi
i

) 1
β+x

.

1. P samples r1 ←R F∗
p and computes A′ = Ar1 and r3 = r−1

1

2. P computes Ā = (A′)
−β · br1(= (A′)x), where b =

(
g1h

s
0

∏ℓ
i=1 h

mi
i

)
.

3. P samples r2 ←R Fp and computes d = br1 · h−r2
0 and s′ = s− r2 · r3

4. P sends A′, Ā, d to V, and they run a ZKPoK for the discrete-logarithm relation {(A′)
−β

hr2
0 =

Ā
d ∧ d−r3hs′

0

∏ℓ
i=1 h

mi
i = g−1

1 }, where (m, r2, r3, β, s
′) is the witness.

5. V checks that A′ ̸= 1G1 , e (A
′, w) = e

(
Ā, g2

)
, verifies the ZKPoK proof and outputs 1 if all the

checks pass, and 0 otherwise.

2.5 PS Signatures and PoK for PS

We recall the Pointcheval Sanders (PS) signature scheme from [PS16], along with the associated proof
of knowledge.

Definition 6 (PS Signature Scheme [PS16]). The PS Signature Scheme to sign a message m =
(m1, . . . ,mℓ) ∈ Fℓ

p consists of a tuple of PPT algorithms (Setup,KeyGen,Sign,Verify) described as
follows :

– Setup(1λ) : For security parameter λ, this algorithm outputs groups G1,G2, and GT of prime order
p, with an efficient bilinear map e : G1 ×G2 → GT , as part of the public parameters pp. Note that
the bilinear groups are of type 3, which ensures that there are no homomorphisms between G1 and
G2 that are efficiently computable.

– KeyGen(pp) : This algorithm samples g̃ ←R G2 and (x, y1, . . . , yℓ)←R Fn+1
p , computes (X̃, Ỹ1, . . . , Ỹℓ) =

(g̃x, g̃y1 , . . . , g̃yℓ), and outputs (sk, pk), where sk = (x, y1, . . . , yℓ) and pk = (g̃, X̃, Ỹ1, . . . , Ỹℓ).

– Sign(sk,m1, . . . ,mℓ) : This algorithm samples h←R G1 \ {0}, and outputs σ = (h, hx+
∑

j yjmj ).
– Verify(pk, (,m1, . . . ,mℓ), σ) : This algorithm parses σ as (σ1, σ2), and first checks if σ1 ̸= e1. It

then proceeds to check if

e

σ1, X̃ ·
∏
j

Ỹ
mj

j

 = e(σ2, g̃).

If yes, it outputs 1, and outputs 0 otherwise.

Note that given σ = (σ1, σ2), σ
′ = (σr

1, σ
r
2) is also a valid signature if σ is a valid signature. However,

it can be seen that the distribution of σ is not independent of the message m in the above scheme.

Proof of Knowledge. PS signatures support an efficient zero-knowledge proof of knowledge (ZKPoK)
wherein a prover holding a valid PS signature σ on a message vector m can efficiently prove knowledge
of the signature. A prover P who owns a PS signature σ = (σ1, σ2) on a messagem = (m1, . . . ,mℓ) ∈ Fℓ

p

can prove knowledge of such a signature using a slight modification of the signature scheme as described
above. At a high level, P generates a signature on a a pair (m, t) for uniformly sampled t←R Fp based
on the original signature σ; the usage of a random t makes the resulting signature independent of
m. [Sikhar: It might be good to motivate briefly that this property is useful to achieve unlinkability (or

something similar).] The complete protocol is as below:

– Public Key pk = (g̃, X̃, Ỹ1, . . . , Ỹℓ)
– P’s inputs: Message m ∈ Fℓ

p and signature σ = (σ1, σ2) on m
1. P samples r, t←R Fp and computes σ′ = (σr

1, (σ2 · σt
1)

r).
2. P sends the computed value σ′ = (σ′

1, σ
′
2) to V.

3. P and V run a ZKPoK of (m, t) for the relation:

e(σ′
1, X̃) ·

∏
j

e(σ′
1, Ỹj)

mj · e(σ′
1, g̃)

t = e(σ′
2, g̃).
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4. V accepts if the ZKPoK is valid.

The proof of knowledge protocol used in Step (3) is a special case of “proof of opening”, wherein we
can use a protocol for proving the knowledge of s ∈ Fℓ

p which opens the commitment z = gs where
g = (g1, . . . , gℓ) and g1, . . . , gℓ are public generators of a group G (of order p), where the discrete log
problem is hard. We describe the protocol concretely below.

– P and V’s common inputs: z ∈ G.
– P’s private inputs: s ∈ Fℓ

p.

1. P samples r←R Fℓ
p and computes α = gr.

2. P → V: α.
3. V → P: c←R Fp.
4. P → V: s′ = cs+ r.
5. V checks: gs

′
= αzc.

We also describe another variant of PS Signature Scheme, based on a stronger assumption (As-
sumption 1 in [PS16]), that leads to much more efficient distributed prover protocols. This variant
is same as the one described in Definition 6, with the exception of KeyGen algorithm which includes
additional elements in the public key (hence stronger assumption). The modified KeyGen algorithm is
described below:

Definition 7 (PS Signature: B [PS16]). The PS Signature Scheme to sign a message m =
(m1, . . . ,mℓ) ∈ Fℓ

p consists of a tuple of PPT algorithms (Setup,KeyGen,Sign,Verify) as described
in Definition 6, except KeyGen which is described below:

– KeyGen(pp): The algorithm samples g ←R G1, g̃ ←R G2, (x, y1, . . . , yℓ+1)←R Fℓ+1
p and computes

(X,Y1, . . . , Yℓ+1) = (gx, gy1 , . . . , gyℓ+1), (X̃, Ỹ1, . . . , Ỹℓ+1) = (g̃x, g̃y1 , . . . , g̃yℓ+1). It then outputs
(sk, pk) where sk = (x, y1, . . . , yℓ+1) and pk = (g, Y1, . . . , Yℓ+1, g̃, X̃, Ỹ1, . . . , Ỹℓ+1).

– Sign(sk, (m1, . . . ,mℓ)): Choose h ←R G1\{0} and output (h, hx+
∑ℓ

i=1 yi·mi). Note that Sign still
works on the ℓ-length message.

Alternate Proof of Knowledge. We describe a protocol for showing knowledge of a PS signature
(σ1, σ2) on a message m ∈ Fℓ

p while simultaneously revealing a dynamically sampled commitment C
of m. The proof of knowledge reduces to the knowledge of opening of C and a short pairing check as
described below:

– Public Key pk = (g, Y1, . . . , Yℓ+1, g̃, X̃, Ỹ1, . . . , Ỹℓ+1)
– P’s inputs: Message m ∈ Fℓ

p and signature σ = (σ1, σ2) on m

1. P samples r, t, s←R Fp and computes σ′ = (σr
1, (σ2 · σt

1)
r · Y s

ℓ+1), C = g̃t
∏l

i=1 Ỹ
mi
i ∈ G2.

2. P sends the computed value σ′ = (σ′
1, σ

′
2) and C to V.

3. P and V run a ZKPoK showing knowledge of (m1, . . . ,mℓ, t) such that C = g̃t
∏ℓ

i=1 Ỹ
mi
i and

a ZKPoK showing knowledge of s such that e(Yℓ+1, g̃)
s = e(σ′

2, g̃)e(σ
′
1, X̃)−1e(σ′

1, C)−1.
4. V accepts if the ZKPoKs are valid.

Proof. For completeness, notice that σ2 = σ
x+

∑ℓ
i=1 yimi

1 and thus we have σ′
1 = σr

1, σ′
2 = Y s

ℓ+1 ·
σ
r(x+

∑ℓ
i=1 yimi+t)

1 and C = g̃t
∏ℓ

i=1 Ỹ
mi
i . Thus we have:

e(σ′
2, g̃) = e(σr

1, g̃
x+

∑ℓ
i=1 yimi+t) · e(Yℓ+1, g̃)

s

= e(σ′
1, X̃) · e(σ′

1, C) · e(Yℓ+1, g̃)
s

The above is equivalent to the verification relation. Zero knowledge follows from the fact that σ′
1, σ

′
2

and C are distributed uniformly in their respective domains, and from the zero knowledge property of
the ZKPoKs. To show knowledge soundness, we show an extractor E which extracts a valid signature
on a message in Fℓ

p. Using the extractors for the ZKPoKs, E obtains (m1, . . . ,mℓ, t, s) such that

C = g̃t
ℓ∏

i=1

Ỹ mi
i , e(σ′

2, g̃) = e(σ′
1, X̃) · e(σ′

1, C) · e(Yℓ+1, g̃)
s
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The extractor E computes
(
σ1 = σ′

1, σ2 = σ′
2(σ

′
1)

−t(Yℓ+1)
−s
)
. To see that (σ1, σ2) is a valid signature

we verify:

e(σ2, g̃) = e(σ′
2, g̃) · e(σ′

1, g̃)
−t · e(Yℓ+1, g̃)

−s

= e(σ′
1, X̃) · e(σ′

1, C) · e(σ′
1, g̃)

−t

= e(σ′
1, X̃) · e(σ′

1,

ℓ∏
i=1

Ỹ mi
i )

= e(σ1, X̃

ℓ∏
i=1

Ỹ mi
i )

The above shows (σ1, σ2) is a valid signature for the block (m1, . . . ,mℓ) for the public key (g̃, X̃, Ỹ1, . . . , Ỹℓ).

3 Distributed Proof of Knowledge

In this section, we formalize the notion of distributed proof of knowledge (DPoK in short) in which
multiple provers, each having a share of the witness engage in an interactive protocol with a verifier to
convince it that their shares determine a valid witness. The provers do not directly interact with each
other, and all the interaction with the verifier takes place over a public broadcast channel.

3.1 Defining a DPoK

Definition 8 (Distributed Proof of Knowledge). We define n-party distributed proof of knowl-
edge for relation generator RGen and a secret-sharing scheme SSS = (Share,Reconstruct) by the tuple
DPoKSSS,RGen = (Setup,Π) where Setup is a PPT algorithm and Π is an interactive protocol between
PPT algorithms P (prover), V (verifier) and W1, . . . ,Wn (workers) defined as follows:

– Setup Phase: For relation R ←R RGen(1λ), Setup(R) outputs public parameters pp as pp ←R

Setup(R). The setup phase is required to be executed only once for a given relation R. We assume
R consists of pairs (x, s) with s ∈ Fm.

– Input Phase: The prover P receives (x, s) ∈ R as input, while the worker Wi, i ∈ [n] receives
(x, si) as input, where (s1, . . . , sn)←R Share(s). All the parties receive x as input.

– Preprocessing Phase: This is an optional phase where prover P communicates with workers and
verifier using secure private channels.

– Interactive Phase: In this phase, the parties interact using a public broadcast channel according
to the protocol Π. The protocol Π is a k-round protocol for some k ∈ N, with (pp,x, s) as P’s
input, (pp,x, si, auxi) as the input of Wi and (pp,x, auxV ) as the input of V. Here aux∗ denotes the
messages received by the parties over private communication. The verifier’s message in each round
j ∈ [k] consists of a uniformly sampled challenge cj ∈ Fℓj for ℓj ∈ N. In each round j ∈ [k], the
worker Wi (resp. the prover P) broadcasts a message mij (resp., mi) which depends on it’s random
coins and the messages received in prior rounds (including pre-processing phase).

– Output Phase: At the conclusion of k rounds, verifier outputs a bit b ∈ {0, 1} indicating accept
(1) or reject (0).

A distributed proof of knowledge DPoKSSS,RGen as described above is said to be t-private, ℓ-robust
if the following hold:

– Completeness: We say that completeness holds if for all R ←R RGen(1λ) and (x, s) ∈ R, the
honest execution of all the phases results in 1 being output in the output phase with probability 1.

– Knowledge-Soundness: We say that knowledge soundness holds if for any PPT adversary A =
(A1,A2), where A2 corrupts the prover P and subset of workers {Wi}i∈C for some C ⊆ [n], there
exists an extractor Ext with oracle access to A2 (recall that the prover and the set of corrupt Wi

are controlled by A2) such the following probability is negligible.

Pr

 VA,Π(pp,x) = 1 ∧
(x, s) ̸∈ R ∨ (s1, . . . , sn) ̸∈ Lm

R ←R RGen(λ)
pp←R Setup(R)

(x, {si}i ̸∈C)←R A1(pp)

{si}i∈C ←R ExtA2(pp,x, {si}i ̸∈C)
s = Reconstruct(s1, . . . , sn)


12



In the above, VA,Π(pp,x) denotes verifier’s output in the protocol Π with its input as (pp,x) and A
being the adversary, while L denotes the linear code associated with the secret sharing scheme. We
remark that the extractor takes as input the shares of the honest parties specified by the adversary
A1, and with all but negligible probability extracts the shares of corrupt parties which reconstruct
a valid witness.

– Zero-Knowledge: We say that a DPoK is zero-knowledge if for all R ←R RGen(1λ), (x, s) ∈ R
and any PPT adversary A corrupting a set of workers {Wi}i∈C, where |C| ≤ t, there exists a PPT
simulator Sim such that ViewA,Π(pp,x) is indistinguishable from Sim(pp,x) for pp ←R Setup(R).
Here, the view is given by ViewA,Π = {r, (Mi)i∈C} where r denotes the internal randomness of A
and Mi is the set of all messages received by Wi in Π.

– Robust-Completeness: We say that robust-completeness holds if for all R ←R RGen(1λ), (x, s) ∈
R and any PPT adversary A corrupting a set of workers {Wi}i∈C, where |C| ≤ ℓ, VA,Π(pp,x) = 1
with overwhelming probability where pp←R Setup(R).

Remark 1. We introduce the notion of robust completeness – a stronger notion of completeness for
DPoKs that is robust to the presence of some corrupt parties. Note that the standard notion of
completeness only holds if all the workers follow the protocol. This is sometimes undesirable; given
that the shares of the honest parties are sufficient to determine the secret, an honest prover should
expect to be able to “ride over” a few deviating workers – a property that is guaranteed by robust
completeness. Additionally, using a robust complete DPoK to design MPC over authenticated inputs
ensures that input authentication does not abort in the presence of malicious behavior, i.e., if the
remainder of the protocol has resilience against malicious behavior, input authentication preserves it.

Remark 2. We assume an honest verifier V in the above definition for ease of exposition. However, our
eventual goal is to have a publicly verifiable transcript.

Remark 3. Looking ahead, we define PV-DPoKSSS,RGen as the publicly verifiable version of DPoKSSS,RGen

in the Random Oracle Model, where the verifier’s challenge is computed using the Fiat-Shamir heuris-
tic [FS87]. We note that although the public-coin nature of our DPoK allows us to achieve public
verifiability, the distributed nature of our protocol may not allow us to achieve complete NIZK proofs,
as we may need all the workers messages in the prior round to use the Fiat-Shamir heuristic, however
it allows us to compress rounds and provide a publicly verifiable version of our DPoKs. [Moumita: I

hope this remark is enough for us to use the PV-DPoKSSS,RGen notation for our theorem statements.]

3.2 Comparison with Related Work on Distributed Proofs

We compare our notion of n-party distributed proofs of knowledge with recently formulated notions of
distributed zero knowledge proofs, particularly in [BBC+19] and in a concurrent work [HVW22]. Similar
to our case, both of these works also present interactive protocols for verifying an NP relation in a
distributed manner using both private channels and broadcast, however there are substantial differences
in the notion of distributed relation, approach and the guarantees of the respective protocols.

Distributed Relation: The formulation of distributed relation in above works is subtly different
from ours: In the aforementioned works, the relation R(x,w) is described by an arithmetic circuit
C(x,w) and the statement x is shared as vector (x1, . . . , xn) among the parties with ith party knowing
the piece xi. In contrast, we consider statement to be public, and witness to be distributed among
the provers. For example, in the natural representation of the discrete log relation RDL as pairs
((g, z), s) satisfying gs = z, s is not part of the statement. The relation can be transformed into a
circuit-based relation C((g∗, z∗, s∗), w) where (g∗, z∗, s∗) denotes the transformed statement involving
s and w denotes the witness required to check the discrete-log relation in an arithmetic circuit. This
introduces obvious inefficiencies. Since, our focus is on relations described algebraically, we formulate
our notion as distributed witness, with multiple provers sharing the witness.

Approach. Our approach used to verify the distribued relation also differs significantly. In [BBC+19],
the designated prover computes a fully linear PCP proof for C(x,w) = 1 which it shares with other
(verifying) parties. The verifiers then verify the proof generating a random query, querying the local
shares of the proof and then combining them (using linearity) to learn the output bit. In [HVW22],
the designated prover with entire statement and witness runs a threshold n-party MPC protocol in
its head, and shares the respective views with other parties (acting as verifiers). The verifiers then
communicate over broadcast channel to determine if the output bit follows from correct execution
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of the MPC protocol with sufficient honest parties. In contrast, in our approach requires distributed
provers to execute a sigma protocol over their shares, similar to folklore sigma protocols, with novel
error-correction involving messages in the exponents to ensure only honest messages are used by the
verifier. We detail our approach in the next section.

Guarantees and Efficiency. The distributed proofs in [BBC+19,HVW22] are constant round pro-
tocols secure against unbounded adversaries. The security is achieved in the standard model assuming
helper functionalities like broadcast and ideal coin tossing. Both the related works achieve sound-
ness assuming honest majority. While the FLPCP based approach in [BBC+19] achieves completeness
assuming fully honest setting, the MPC in the head based approach of [HVW22] achieves strong com-
pleteness, ensuring completeness holds against a small (n/6) number of corrupt parties. Both the
methods incur an initial O(|C|) communication from designated prover to distributed verifiers over
private channels. In contrast, we only assume efficient adversaries (indeed, our relations of interest are
based on computational hardness assumptions) and achieve security with constant number rounds in
the random oracle model. Our soundness holds for arbitrary corruption threshold, while completeness
holds for a corruption threshold of n/3. Our communication is O(log ℓ) over both the private and the
broadcast channels.

3.3 Robust Complete DPoK for Discrete Log

In this section, we provide a DPoKSSS,DlogGen for the discrete log relation based on Shamir Secret
Sharing (SSS) [Sha79]. Let DlogGen be a relation generator that on input (1λ, 1ℓ) outputs (G,g, p)
where p is a λ-bit prime, G is a cyclic group of order p and g = (g1, . . . , gℓ) ←R Gℓ is a uniformly
sampled set of generators. The associated relation RDL is defined by (z, s) ∈ RDL if gs = z. Let
SSS = (Share,Reconstruct) denote (t, n) Shamir secret sharing over Fp. Our protocol Πdlog realizing
DPoKSSS,DlogGen is as below.

Protocol Πdlog

1. Public Parameters: Let (G,g, p) ←R DlogGen(1λ, 1ℓ). Let RDL denote the relation consisting of
pairs (z, s) such that gs = z. Let (h1, h2)←R Setup(RDL) be two independent generators of G.

2. Input Phase: The prover gets (z, s) while workersWi,i ∈ [n] are given (z, si) where (s1, . . . , sn)←R

Share(s).
3. Pre-processing: The prover sends ri to Wi for i ∈ [n] where (r1, . . . , rn)←R Share(r) for r ←R Fp.
4. Commit to Shares: In the interactive phase, the workers first commit to their respective shares by

boradcasting Ai = gsi and Bi = hri
1 hωi

2 for ωi ←R Fp. The workers also broadcast associated proofs
of knowledge πi1 and πi2 as:

πi1 = NIPK {(si) : gsi = Ai} , πi2 = NIPK {(ri, ωi) : h
ri
1 hωi

2 = Bi}

5. Reveal Linear Form over Shares: The verifier sends a challenge vector γ ←R Fℓ
p, and the workers

broadcast the linear form vi = ⟨γ, si⟩+ ri. To ensure that corrupt workers use si, ri consistent with
earlier commitments Ai, Bi we additionally require them to broadcast proof πi3 as:

πi3 = NIPK {(si, ri, ωi) : g
sihri

1 hωi
2 = AiBi ∧ ⟨γ, si⟩+ ri = vi} .

The NIPKs used in above steps can be instantiated with O(log ℓ) communication complexity using
compressed sigma protocols (CSPs) of Attema et al. [AC20], made non-interactive using Fiat-Shamir
transformation.

6. Verifier Determines Honest Commitments: Let v′ = (v′1, . . . , v
′
n) be the purported values of

(v1, . . . , vn) received in the previous step. If one of the proofs πi1, πi2 or πi3 is invalid, the verifier set
bi = 0 else it sets bi = 1. Here we use v = (v1, . . . , vn) defined by vi = ⟨γ, si⟩+ri to denote the vector
of honestly computed values. Since ∆(v′,v) ≤ d < (n− t)/2, V can compute v from v′ by decoding
algorithm (e.g. Berlekamp-Welch) for Reed-Solomon codes. Set C = {i ∈ [n] : vi ̸= v′i ∨ bi = 0} and
let HQ = (hij) denote the matrix guaranteed by Lemma 1 for Q = [n]\C = {i1, . . . , iq} for q ∈ N.

7. Output using honest messages: V outputs (1,C) if
(∏

j∈[q] A
hjk

ij

)
k=1,...,n−t

= (z,0n−t−1), and

(0, {P}) otherwise.
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Theorem 1. Assuming that NIPK satisfies completeness, knowledge-soundness and zero-knowledge
with O(log ℓ)-communication overhead, Πdlog is a DPoKSSS,DlogGen for relation generator DlogGen and
(t, n)-SSS with the following properties:

– Security: t-private and d-robust, for d < dist/2, where dist = (n− t) is the minimum distance of
the Reed-Solomon code induced by (t, n)-SSS.

– Efficiency: O(n) communication over point-to-point channels and O(n log ℓ) communication over
broadcast channels.

Proof. In order to prove security, we prove robust completeness, soundness and zero-knowledge. [Moumita:

check the definition for consistency.]

Robust Completeness. We show that when the prover is honest, and has a correct witness s, the
verifier outputs 1 and identifies the corrupt workers with overwhelming probability. Let A be an
adversary corrupting set C′ of workers with |C′| = d < (n − t)/2. Let S denote the matrix with ith

column as (si, ri) for i ∈ [n]. Clearly S ∈ Lm for m = ℓ + 1. We construct a matrix S′ as follows: for
i ∈ C′ where the adversary’s proofs πi1, πi2 and πi3 are valid, we extract s′i and ri from the proofs πi1

and πi2 respectively, and set (s′i, r
′
i) as the ith column of S′. For i ∈ C′ where one of the proofs is not

valid, we set ith column of S′ as (s′i, r
′
i) for s

′
i, r

′
i sampled uniformly. Finally for i ̸∈ C′, we set the ith

column of S′ as (si, ri) (i.e. it is identical to the corresponding column in S). Intuitively, the matrix S′ is
the corrupted version of honest matrix S in which columns corresponding to corrupt provers consist of
shares (s′i, r

′
i) the adversary had in its “head”. Looking ahead, we force the adversary to reveal a linear

combination over the shares in its “head”, and if they are inconsistent with S, the resulting message
v′i will differ from honestly computed vi (Lemma 2), which will identify the corrupt messages. We
now proceed with the formal proof. Let E denote the set of column indices where S and S′ differ. Let
v′ = (v′1, . . . , v

′
n) be the vector where v

′
i is sent byWi in Step (5). Clearly, as∆(v′,L) ≤ |C′| < (n−t)/2,

we can decode v′ to vector v = (v1, . . . , vn) ∈ L. By uniqueness of decoding, we must have v′i = vi
for i ̸∈ C′. We will prove that with overwhelming probability we must have (s′i, r

′
i) = (si, ri) for all

i ∈ Q, which from Lemma 1 will imply that verifier outputs 1 (this is because verifier simply checks
matrix relation in Lemma 1 over exponents). For sake of contradiction, assume that (s′i, r

′
i) ̸= (si, ri)

for i ∈ Q. We can assume that the proofs πi1, . . . , πi3 were valid, for otherwise bi = 0, which would
imply i ̸∈ Q, a contradiciton. Now from soundness of the proofs and binding property of the Pedersen
commitments, with overwhelming probability we must have v′i = ⟨γ, s′i⟩+ r′i. By assumption we have
i ∈ E and thus from Lemma 2, with overwhelming probability we have v′i ̸= vi. Thus i ̸∈ Q, which is
again a contradiction. This proves that s′i = si for i ∈ Q, and thus the vector (s′i)i∈Q is Lm-consistent.
From Lemma 1, we conclude that the verifier outputs 1.

Knowledge-Soundness. To prove knowledge-soundness, we describe the extractor Ext which is pro-
vided the shares si, i ̸∈ C with C denoting the indices of workers corrupted by adversary A. The
extractor Ext runs the adversary A. When A succeeds, for each j ∈ [q] in Step (6) the extractor Ext
sets s′ij = sij if ij ̸∈ C; otherwise it invokes the extractor for NIPK proof πij1 to extract s′ij satisfying

g
s′ij = Aij . The verification check in Step (7) implies that the tuple

(
s′ij
)
j∈[q]

is Lℓ-consistent. The

extractor outputs the columns of the unique matrix S ∈ Lℓ determined by the tuple
(
s′ij
)
j∈[q]

This

completes the proof of knowledge-soundness for Πdlog.

Zero-Knowledge. For proving zero-knowledge, we assume WLOG that C = {1, . . . , ϵ} for ϵ ≤ t. The
simulator Sim runs the adversary to obtain messages {Ai, Bi}i∈C. It then simulates messages of the
honest parties as follows: Choose A′

i ←R G for 1 ≤ i ≤ t. Set a = (z,A′
1, . . . , A

′
t). Next, Sim sets

A′
t+j = atj where tj ∈ Ft+1

p is the interpolation vector such that f(t + j) = ⟨(f(0), . . . , f(t)), tj⟩ for
all polynomials f(x) of degree ≤ t. The simulator picks B′

i, i > ϵ uniformly at random from G. It
simulates messages {A′

i, B
′
i}i>ϵ towards A. The intuition behind simulation of Aj ’s is as follows: In

the real protocol, the vector of shares for party j is of the form (f1(j), . . . , fℓ(j), where fi : i ∈ [ℓ]
are the polynomials used to share the values si : i ∈ [ℓ] respectively. Let f = (f1, . . . , fℓ) denote
the vector of sharing polynomials and let f(j) to denote the vector (f1(j), . . . , fℓ(j)). Then for j >
ϵ in the real protocol, (Aj)j>ϵ are distributed as (gf(j))j>ϵ, subject to constraint that gf(0) = z.
Sampling such a polynomials fi, i ∈ [ℓ] corresponds to choosing fi(1), . . . , fi(t) uniformly and then
determining fi(t + j) = ⟨(fi(0), . . . , fi(t)), tj⟩ using the interpolation vector tj . Thus f(t + j) is a
tj-linear combination of f(0), . . . , f(t), which dictates simulator’s computation of At+j from vector
a. Next, the simulator simulates the challenge γ ←R Fℓ

p . Then, on receiving v1, . . . , vϵ from A,
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the simulator computes (v′1, . . . , v
′
n) ←R Share(v′) for v′ ←R Fp, computes simulated NIPK proofs

{πi1, πi2, πi3}i>ϵ. Finally, the simulator simulates (v′i, πi1, πi2, πi3)i>ϵ towards A. This completes the
proof of zero-knowledge for Πdlog.

Proof of Efficiency/Succinctness. Assuming that NIPK has O(log ℓ)-communication overhead (such an
instantiation of NIPK follows from the Fiat-Shamir transformed CSPs of [AC20]), it follows by inspec-
tion that Πdlog incurs O(n) communication over point-to-point channels (where the prover distributes
additional randomness to the workers) and O(n log ℓ) communication over broadcast channels (for n
instances of NIPK). This completes the proof of efficiency/succinctness for Πdlog, and hence the proof
of Theorem 1. ⊓⊔

The following corollary of Theorem 1 follows immediately and yields the concrete bounds on the
corruption threshold tolerated by Πdlog.

Corollary 1. Setting d = t < n/3, Πdlog is n/3-private and n/3-robust.

Publicly Verifiable Version of Protocol Πdlog. Looking ahead, we use a publicly verifiable version
of Πdlog to design more advanced protocols. This publicly verifiable version which we call Πpv

dlog uses the

well-known Fiat-Shamir heuristic [FS87] and a random oracle RO : {0, 1}∗ → Fℓ
p. We briefly outline

the changes from Πdlog for completeness. In Step 5 of Πdlog (revealing linear form over shares), instead
of receiving the challenge γ from the verifier, each worker Wi computes it as

γ = RO (z∥A1∥B1∥A2∥B2∥ . . . ∥An∥Bn) ∈ Fℓ
p.

The verification is also modified accordingly. Note that the above transformation does not affect robust
completeness and succinctness. It also does not affect soundness because the proof of soundness relies
purely on invoking the extractor for NIPK, and hence works identically for Πdlog and Πpv

dlog. Finally, we

argue zero-knowledge for Πpv
dlog by allowing the simulator to program the random oracle to the challenge

vector γ (the rest of the simulation is as described earlier for Πdlog).

Generalization to Threshold Linear Secret Sharing Scheme. Finally, we can generalize the
above protocol to work with any threshold linear secret sharing scheme(TLSS). The following results
appear in Appendix A along with other relevant details.

Theorem 2 (Robust Distributed Proof of Knowledge for Discrete Log for TLSS). Assuming
that the discrete log assumption holds over the group G, the above protocol is a DPoKTLSS,DlogGen for
relation generator DlogGen and (t, n, r)-TLSS scheme which satisfies t-privacy and d-robustness, for
d < dist/3, where dist is the minimum distance the linear code induced by the TLSS scheme. Moreover
the protocol incurs O(rn) communication over point-to-point channels and O(rn+log ℓ) communication
over broadcast channels.

Note that the exact corruption threshold depends on the exact distance of the linear code induced
by the TLSS scheme. As an example, we provide concrete bounds for Replicated Secret Sharing in the
corollary below:

Corollary 2 (Robust Distributed Proof of Knowledge for Discrete Log for Replicated
Secret Sharing). Assuming that the discrete log assumption holds over the group G, protocol Πrob-rss
is a DPoKRSS,DlogGen for relation generator DlogGen and (t, n,

(
n−1
t

)
)-RSS scheme which satisfies t-

privacy and d-robustness, for d = t < dist/3, where dist = (n− t) is the minimum distance of the linear
code induced by the TLSS scheme.

4 Compiler for MPC with Input Authentication

In this section, we present our compiler for MPC with input authentication based on algebraic signa-
tures. We start with providing our building blocks, and then we proceed with the compiler description
and its proof of security and efficiency.
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4.1 PoK for Algebraic Signatures over Secret-Shared Inputs

In this section, we build upon our (publicly verifiable) DPoK for the discrete log relation to design a
protocol that allows a prover P to prove knowledge of a BBS+ (or PS) signature on a secret-shared
input. Concretely, suppose that the prover P holds a BBS+ (or PS) signature σ on a message m under
a public key pk, where m is secret-shared across n parties W1, . . . ,Wn (i.e. each worker Wi holds a
share mi). The goal of the protocol is to allow the prover P to convince a designated verifier V that
σ is a valid signature on m under pk, without revealing σ in the clear (this helps realize the desired
property of signature unlinkability, as explained subsequently).

Looking ahead, we use these protocol as a building block to design our compiler for upgrading
any secret-sharing based MPC protocol into an authenticated version of the same protocol, where the
(secret-shared) inputs are authenticated using BBS+( or PS) signatures as above. We use the variant
of BBS+ signature scheme from [CDL16], which was adapted from earlier schemes in [BBS04,ASM06],
followed by a construction using PS signatures [PS16].

PoK for BBS+ Signatures over Secret-Shared Inputs. We now present a PoK for BBS+
signatures for secret-shared inputs. We refer the reader to Section 2.4 for the description of the BBS+
signature scheme and its proof of knowledge (in the non-distributed setting) from [BBS04,ASM06].

Our Protocol Πbbs+. Our protocol Πbbs+ is described below, to be invoked from our compiler with
input authentication based on BBS+ signatures for modularity. It builds upon the known BBS+ PoK
[BBS04,ASM06] in the non-distributed setting. Recall that this PoK involved the following steps: (i)
the prover randomly chooses some auxiliary inputs, and combines them with the signature to output
a randomized first message (this randomization ensures unlinkability), and then (ii) the prover shows
knowledge of these auxiliary inputs and components of the signature satisfying discrete-log relations
determined by the first message.

Our BBS+ PoK over secret-shared inputs follows a similar blueprint, where the prover similarly
randomizes the first message using certain auxiliary inputs. In our case, the prover: (i) secret-shares
the auxiliary inputs to the workers using point-to-point channels (this step is unique to our protocol
and is designed to facilitate distributed proving in the subsequent steps), and (ii) broadcasts the first
message to the workers and the verifier (this step uses broadcast channels and is conceptually similar
to the PoK over non-distributed inputs). At this point, the problem reduces to a DPoK for the discrete
log relation, with the workers holding the shares of the witness (message + auxiliary inputs) and the
verifier holding the public statement (public key pk + first round message). We handle this using our
robust complete DPoK Πdlog for discrete log.

Protocol Πbbs+

– Public Key pk = (w, h0, . . . , hℓ)
– P’s inputs: Message m = (m1, . . . ,mℓ) ∈ Fℓ

p and signature σ = (A, β, s) on m, with A =(
g1h

s
0

∏ℓ
i=1 h

mi
i

) 1
β+x

.

– Wi’s inputs : Wi possesses the ith share mi of the message vector m,
such that Reconstruct(m1, . . . ,mn) = m

– Pre-processing : P samples u←R F∗
p, r ←R Fp, η ←R Fp, and computes d = bu ·h−r

0 and t = s−r ·v
where v = u−1, b = g1h

s
0

∏ℓ
i=1 h

mi
i . P computes (r1, . . . , rn) ←R Share(r), (v1, . . . , vn) ←R Share(v),

(β1, . . . , βn) ←R Share(β), (t1, . . . , tn) ←R Share(t), (η1, . . . , ηn) ←R Share(η). P sends the shares
(ri, vi, βi, ti, ηi) to Wi, for all i ∈ [n].
In other words, each Wi locally holds the i-th share si = (mi, ri, vi, βi, ti, ηi) such that

s = (m, r, v, β, t) = Reconstruct
(
{si}i∈[n]

)
.

– Interactive Protocol:
1. P computes A′ = Au, Ā = (A′)

−β · bu(= (A′)x), where b = g1h
s
0

∏ℓ
i=1 h

mi
i and d = bu · h−r

0 . P
sets C = d−vht−η

0 , D = hη
0

∏ℓ
i=1 h

mi
i , and broadcasts (A′, Ā, d, C,D) to each Wi and V.

2. The workers Wi, i ∈ [n] and V run the DPoK Πdlog for the relation D = hη
0

∏ℓ
i=1 h

mi
i , where

(η,m1, . . . ,mℓ) are secret-shared across the workers; and g = (h0, . . . , hℓ), z = D is available to
all parties.

3. Simultaneously, the workersWi, i ∈ [n] and V run the DPoK Πdlog for the relation C = d−vht−η
0 ∧

(A′)
−β

hr
0 = Ā

d
, where (v, η) and (β, r) are secret-shared; and g = ((d, h0), (A

′, h0)), z = (C, Ā
d
)

is available to all parties.
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4. V accepts if C ·D = g−1
1 , and e (A′, w) = e

(
Ā, g2

)
, and both instances of Πdlog accept.

PoK for PS Signatures over Secret-Shared Inputs. We now present a PoK for PS signatures for
secret-shared inputs. We refer the reader to Section 2.5 for the description of the PS signature scheme
and its proof of knowledge (in the non-distributed setting) from [PS16].

Our Protocol Πps. Our protocol Πps is described below, which can be invoked from our compiler with
input authentication based on PS signatures (instead of BBS+). It builds upon the known PS PoK
[PS16] in the non-distributed setting. The PoK involved the following steps: (i) the prover randomizes
the signature using some auxiliary inputs and broadcasts the randomized signature to all other parties
(this randomization ensures unlinkability), and then (ii) the prover shows knowledge of these auxiliary
inputs and secret-shares of the message satisfying discrete-log relations determined by the first message.

Our PS PoK over secret-shared inputs follows the same blueprint, where the prover similarly ran-
domizes the first message using certain auxiliary inputs. In our case, the problem reduces to a DPoK for
the discrete log relation, with the workers holding the shares of the witness (message) and the verifier
holding the public statement (public key pk + the randomized signature). We handle this using our
robust complete DPoK Πdlog for discrete log.

Protocol Πps

– Public Key pk = (g, Y1, . . . , Yℓ+1, g̃, X̃, Ỹ1, . . . , Ỹℓ+1)
– P’s inputs: Message m = (m1, . . . ,mℓ) ∈ Fℓ

p and signature σ = (σ1, σ2) on m
– Wi’s inputs : Wi possesses the ith share mi of the message vector m,

such that Reconstruct(m1, . . . ,mn) = (m)
– Pre-processing : P samples t ←R Fp, computes (t1, . . . , tn) ←R Share(t). P sends the shares ti to
Wi, for all i ∈ [n].

– Interactive Protocol
1. P samples r, v ←R Fp and computes σ′ = (σr

1 , (σ2 ·σt
1)

r ·Y v
ℓ+1), C = g̃t

∏ℓ
i=1 Ỹ

mi
i . P also generates

a NIPK π showing knowledge of v such that e(σ′
1, X̃) · e(σ′

1, C) · e(Yℓ+1, g̃)
v = e(σ′

2, g̃).
2. P broadcasts the computed value σ′ = (σ′

1, σ
′
2), C and π to V.

3. Each Wi and V locally set g = (g̃, Ỹ1, . . . , Ỹℓ).
4. Each Wi locally holds the i-th share si = (mi, ti) such that s = (m, t) = Reconstruct

(
{si}i∈[n]

)
.

5. All Wi for i ∈ [n] and V run DPoK protocol Πdlog for the relation gs = C
6. V accepts if π is valid and Πdlog accepts.

We note that any instantiation of Πps ensures robust completeness, knowledge-soundness and zero-
knowledge. The proof is straightforward from the existing proof of knowledge of PS signatures and
robust completeness, knowledge-soundness and zero-knowledge properties of our DPoK protocol Πdlog

for discrete log.

Remark 4 (Unlinkability). Note that, in both the protocols Πbbs+ and Πps, the signatures are part
of the secret witness. In particular, the protocols not reveal any additional information about σ to
the verifier V beyond its validity. This property ensures unlinkability across multiple proofs using
the same signature. We note that the original PoK for BBS+ [BBS04,ASM06] and PS [PS16] satisfies
unlinkability, albeit in the non-distributed setting. We ensure that our PoK for BBS+ and PS signature
over distributed inputs also satisfies this property.

Remark 5 (Public Verifiability). The protocol Πbbs+ (resp., Πps) was presented and analyzed assuming
an honest designated verifier for simplicity. By replacing Πdlog with its publicly verifiable version Πpv

dlog

in steps (2) and (3) of the Interactive Phase, we obtain a publicly verifiable version of the protocol,
which we call Πpv

bbs+ (resp., Πpv
ps ). Observe that Πpv

bbs+ (resp., Πpv
ps ) requires one less round of interaction,

as compared to Πbbs+ (resp., Πps).

Remark 6. We also remark that while the protocols Πbbs+ and Πps (and their publicly verifiable versions
Πpv

bbs+ and Πpv
ps respectively) resemble DPoK, we do not formally model them as DPoKs. Observe that
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these protocols require the prover to send to the workers a part of the witness in a non-secret-shared
form (concretely, the prover sends randomized versions of the signature, which is part of the witness
instead of secret-sharing it to the workers). This departs from our formal definitions of DPoK. Hence,
we do not explicitly prove properties, such as robust completeness, knowledge-soundness and zero-
knowledge for these protocols. We primarily use them as building blocks in the description of our
compiler for modularity.

Remark 7. Recall that Πdlog has O(n) communication over point-to-point channels and O(n log ℓ)-
communication overhead over broadcast channel. It follows by inspection that both Πbbs+ and Πps also
inherit the same communication overheads from Πdlog.

4.2 Compiler for MPC with Input Authentication using BBS+ signatures

In this section we present our compiler for MPC with input authentication that builds upon our PoK
for BBS+ signatures over secret-shared inputs. In particular, the compiler outputs an MPC protocol
where each input is authenticated using a BBS+ signature under a common (public) verification key.
Note that similar techniques can be used to provide a compiler for MPC with input authentication
based on PS signatures.

As described subsequently, our compiler allows identification of all (malicious) parties with non-
authenticated inputs (this is a consequence of the robust completeness property of Πdlog used in-
side Πbbs+). The compiled protocol could either abort after identifying malicious parties with non-
authenticated inputs (thus preserving the id-abort security guarantees of the underlying MPC proto-
col), or substitute some default authenticated inputs for the identified malicious parties (thus preserving
the full/GOD security guarantees of the underlying MPC protocol). For simplicity of exposition, we
present the id-abort secure version of our compiler.

We further note that our protocol Πdlog tolerates a maximum corruption threshold of t < n/3 (as-
suming that the secret-sharing used is Shamir’s secret sharing). Hence, our compiled MPC protocol
also tolerates a maximum corruption threshold of t < n/3.

The Desired Ideal Functionality. We define below the desired ideal functionality Fauthid
MPC for MPC

with input authentication.

Functionality Fauth
MPC

Inputs

The ideal functionality receives from each party Pi an input-signature pair of the form (xi, σi) under the
public verification key pk.

Verify Authenticity

1. If Ver(pk, xi, σi) ̸= 1 for some party Pi, then output a set of corrupted parties C and abort.
2. Otherwise, proceed to computation.

Computation Invoke the ideal functionality FMPC for Πmpc on inputs (x1, . . . ,xn).

We now present a formal description of our compiler.

Notations. Let Πmpc = (Πsh,Πon) be a secret-sharing based MPC protocol that guarantees security
with abort against malicious corruptions of a dishonest majority of the parties {P1, . . . , Pn}, where:

– Πsh denotes the secret-sharing phase of Πmpc and consists of the steps used by each party Pi for
i ∈ [n] to secret-share its input xi ∈ Fℓ

p to all of the other parties (throughout, we assume that this
sharing is done using a linear secret-sharing scheme (Share,Reconstruct).

– Πon denotes the remaining steps of the protocol Πmpc where the parties interact to compute y =
f(x1, . . . ,xn).

In the description of our compiler, we assume that each party Pi holds a BBS+ signature σi on its
input xi with respect to a common public verification key pk. The compiler runs n instances of Πbbs+,
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where for instance i, party Pi acts as the prover and all other parties Pj for j ̸= i act as verifiers. Given
Πmpc = (Πsh,Πon), our robust compiler outputs an authenticated MPC protocol Πampc = (Πsh,Πon).
The compiler Πampc is as below:

Protocol Πampc = (Πsh,Πon)

– Inputs: All parties hold public parameters and the verification key pk of a BBS+ signature scheme.
Party Pi has input xi ∈ Fℓ

p, together with a signature σi, such that (pk, (xi, σi)) ∈ Rbbs.
– Πsh: This phase is identical to Πsh, i.e., each party Pi shares its input xi to all other parties exactly

as in Πsh.

– Πon: In this phase, the parties do the following:

• For each j = 1, . . . , n, the parties execute an instance of Πbbs+ for (pk, (xj , σj)) ∈ Rbbs with Pj

acting as the Prover, P1, . . . ,Pn constituting the workers and Pi, i ̸= j acting as verifiers, . If
any party outputs 0 at the end of this phase, the protocol aborts.

• Otherwise, the parties jointly execute Πon.

Theorem 3 (Security of Πampc). Assuming that: (a) the MPC protocol Πmpc securely emulates the
ideal functionality FMPC, and (b) Πdlog is a DPoKSSS,DlogGen for relation generator DlogGen and (t, n)-
SSS our compiled MPC protocol with input authentication Πampc securely emulates the ideal function-
ality Fauth

MPC for the same corruption threshold of t < n/3.

Proof Overview. We first provide an informal overview of our proof. Our proof uses certain properties
of Πbbs+ informally outlined below. These properties hold equivalently for its publicly verifiable version
Πpv

bbs+.

– Consider an adversary that corrupts a t-sized subset of the workers in Πbbs+. By inspection, for
t < n/3, an honest verifier detects the corrupt subset of workers, since the underlying protocol
Πdlog satisfies d-robust completeness for d < n/3.

– Consider an adversary A = (A1,A2) which corrupts P and Wi, i ∈ C. We show that, given an
extractor Ext for Πdlog, it is possible to design an extraction algorithm Ext′ that given {mi}i ̸∈C,
where mi is the share of m provided to Wi, extracts a signature σ on m. First Ext runs the
adversary A to obtain the messages (ri, vi, βi, ti, ηi) for i ̸∈ C. The extractor Ext′ also obtains the
message (A′, Ā, d, C,D) from A. Next it sets s′i = (ηi,mi) and s′′i = (vi, yi, βi, ri) for i ̸∈ C where
yi = ti − ηi for i ̸∈ C. It then invokes the extractor Ext for DPoK sub-protocol Πdlog in steps (2)
and (3) respectively and computes the extracted signature as:

(s′i)i∈C = (ηi,mi)i∈C ←R ExtA({s′i}i̸∈C)

(s′′i )i∈C = (vi, yi, βi, ri)i∈C ←R ExtA({s′′i }i̸∈C)

η = Reconstruct(η1, . . . , ηn), m = Reconstruct(m1, . . . ,mn)

v = Reconstruct(v1, . . . , vn), y = Reconstruct(y1, . . . , yn)

β = Reconstruct(β1, . . . , βn), r = Reconstruct(r1, . . . , rn)

From knowledge-soundness of the DPoK sub-protocol Πdlog and verifier’s checks, with overwhelming

probability we have: D = hη
0

∏ℓ
i=1 h

mi
i , C = d−vhy

0, (A
′)−βhr

0 = Ā/d, C ·D = g−1
1 and Ā = (A′)x.

We first note that v ̸= 0, otherwise substituting C,D in the relation C ·D = g−1
1 yields a non-trivial

discrete-log relation between the generators g1, h0, . . . , hℓ. From the preceding equations, we can
derive:

(A′v)β+x = g1h
y+η+vr
0

ℓ∏
i=1

hmi
i

which shows that (A′v, β, y+ η+ vr) is a valid signature on m. Looking ahead, in the formal proof
of security for our compiled MPC protocol, we use this extraction algorithm Ext′ to extract the
signatures on the inputs of the corrupt parties.
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– Finally, consider an adversary A that corrupts workers Wi,i ∈ C where |C| ≤ t. We show that,
given a ZK-simulator Simzk

1 for Πdlog and a ZK-simulator Simzk
2 for the single-prover proof of

knowledge for BBS+ signatures from [CDL16] (recalled in Section 2.4 ), we construct a simulation
algorithm Sim′ that output a simulated view of an honest verifier in the protocol Πbbs+ without
the knowledge of the witness (m, σ). Using the simulator Simzk

2 , the simulator Sim′ generates the
message (A′, Ā, d, C,D). As the statements for the DPoKs in steps (2) and (3) depend entirely
on the public parameters and the preceding message, the simulation follows by invoking simulator
Simzk

1 to simulate the transcript for respective DPoKs on the statements derived from the simulated
first message. Looking ahead, in the formal proof of security for our compiled MPC protocol, we
use this simulation algorithm Sim′ to simulate proofs of knowledge of BBS+ signatures on the
inputs of the honest parties.

We now use the above ideas to formally prove Theorem 3.

Proof. We construct a simulator for the Πampc protocol, and prove indistinguishability of the simulation
from a real-world execution of Πampc. The underlying MPC protocol Πmpc secure emulates FMPC, and
let Sim = (Simsh,Simon) be the corresponding simulator.

Simulator for Πampc.We now describe the simulator Sim for the authenticated MPC protocol Πampc =(
Πsh,Πon

)
. Let H ⊆ [n] and C ⊂ [n] denote the set of honest and corrupt parties, respectively. The

simulator Sim proceeds as follows:

1. Simulate the sharing phase Πsh of the underlying MPC Πmpc by invoking Simsh (note that Simsh

does not expect any inputs). Sim receives the ith share {sji}i∈H from the adversary corresponding
to the input sj of each corrupt party Pj , j ∈ C.

2. For each Pj s.t. j ∈ C, let (Πbbs+)j denote the instance of the protocol Πbbs+ used by the parties
where Pj acts as the prover, and all of the remaining parties acting as both workers and verifiers.
The simulation of the online phase proceeds as follows.

(a) The first step in the simulation of the online phase is to simulate the proofs of knowledge of
BBS+ signatures on the inputs of the honest parties. The simulator proceeds as the algorithm
Sim′ that was outlined informally in the proof overview. Using the simulator for the single-
prover proof of knowledge for BBS+ signatures from [CDL16], the simulator generates the
message (A′, Ā, d, C,D). As the statements for the DPoKs in steps (2) and (3) depend entirely on
the public parameters and the preceding message, the simulation follows by invoking simulators
for the respective DPoKs on the statements derived from the simulated first message.

(b) For each instance Πbbs+, where a corrupt party Pi is acting as the prover, invoke the extraction
algorithm Ext′ described in the proof overview on (sij)j∈H to extract the witness (xi, σi) from
Pi.

(c) Invoke Simon to simulate the online phase of the underlying MPC Πmpc.

3. Send {(xi, σi)}i∈C to Fauth,abort
MPC . If Fauth,abort

MPC aborts, abort; otherwise output whatever Fauth,abort
MPC

outputs.

Completing the Security Proof. We now prove the security of Πampc by using a sequence of hybrids
described as follows (for simplicity of exposition, we assume w.l.o.g. that parties P1, . . . , P|C| are corrupt
and parties P|C|+1, . . . , Pn are honest):

– Hyb0: This hybrid is identical to the real-world execution of Πampc.

– Hyb1: This hybrid is identical to Hyb0 except that we simulate the sharing phase Πsh of the
underlying Πmpc protocol by invoking Simsh.

– {Hyb2,j}j∈[0,n−|C|]: Hybrid Hyb2,0 is identical to hybrid Hyb1, and for each j ∈ [1, n− |C|], hybrid
Hyb2,j is identical to Hyb2,(j−1) except that proof of knowledge corresponding to the input of honest

party P|C|+j is simulated using Sim′ as described in Step 2(a) of the simulator. More concretely,
for each honest party P|C|+j , instead of using the real input x|C|+j and the real BBS+ signature
σ|C|+j , proof of knowledge of a BBS+ signature is simulated instead of running an instance of the
protocol Πbbs+ where party P|C|+j is the prover.
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– {Hyb3,j}j∈[0,|C|]: Hybrid Hyb3,0 is identical to hybrid Hyb2,n−|C|, while for each j ∈ [1, |C|], hybrid
Hyb3,j is identical to Hyb3,(j−1) except that we abort if the following bad event occurs: For the

instance of Πbbs+ where Pj is the prover, invoke the extractor Ext′ (as mentioned in Step 2(b) of

the simulator and described in the proof overview) on (sji )i∈H to extract the witness (xj , σj). If
(pk, (xj , σj)) ̸∈ Rbbs, then abort.

– Hyb4: This hybrid is identical to Hyb3,|C| except for the following: invoke Simon of the underlying

Πmpc protocol to simulate the online phase Πon, and output whatever Simon outputs.
– Hyb5: This hybrid is identical to Hyb4 except that after invoking Simon to simulate Πon, we query

Fauth,abort
MPC with the extracted inputs {(xi, σi)}i∈C .

Hyb0 ≈c Hyb1. This follows from the security of the underlying Πmpc protocol. Suppose that there exists
a PPT adversary A that can distinguish between Hyb0 and Hyb1. It is easy to use A to construct a
PPT adversary A′ that can distinguish between a real and simulated execution of Πsh, thus breaking
security of the underlying Πmpc protocol.

Hyb2,j−1 ≈c Hyb2,j. This follows from the ZK property of Πdlog and the PoK for single-prover version
of BBS+ signatures. In particular, suppose that there exists a PPT adversary A that can distinguish
between Hyb2,(j−1) and Hyb2,j for some j ∈ [1, n − |C|]. Then A can be used to construct one of the
following algorithms: (a) either an adversary A′ that breaks the ZK property of the Πdlog protocol,
or (b) an adversary A′′ that breaks the ZK property of the PoK for single-prover version of BBS+
signatures.

Hyb3,j−1 ≈c Hyb3,j. This follows from knowledge soundness of Πdlog. The two hybrids differ only when

the bad event occurs, i.e., the extractor Ext′ in Step 2(b) of the simulator fails to output a valid witness
(m, σ). However, as described in the proof overview, assuming the knowledge-soundness of Πdlog, the
extractor Ext′ outputs a valid witness. Hence, assuming knowledge-soundness of Πdlog, the probability
of the bad event occurring must be negligible.

Hyb4 ≈c Hyb3,|C|. This follows from the security of the underlying Πmpc protocol. At the end of Πsh, if

abort did not occur, then for each i ∈ [n], all honest parties hold shares ⟨x′
j⟩j∈H of some x′

i ∈ Fℓ. In

Hyb3,|C|, the extractor succeeds in outputting a valid witness xi, and this is the unique x′
i determined

at the end of Πsh. Suppose that there exists a PPT adversary A that can distinguish between Hyb4
and Hyb3,|C|. It is easy to use A to construct a PPT adversary A′ that can distinguish between a real
and simulated execution of Πon, thus breaking the security of the underlying Πmpc protocol.

Hyb5 ≡ Hyb4. Hyb5 and Hyb4 are identical. In Hyb4, the output is given by the output of Simon, which
by the security of Πmpc is f(x

′
1, . . . ,x

′
n) where x

′
i is the input determined at the end of Simsh. In Hyb5,

the output is given by Fauth,abort
MPC which is f(x1, . . . ,xn) where xi, given by the knowledge extractor is

the unique x′
i determined at the end of Πsh. We also note that Hyb5 is identical to Sim. This completes

the proof of Theorem 3. ⊓⊔
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A Generalization to Threshold Linear Secret Sharing Scheme

In this section, we provide generalization of our technique shown for Shamir Secret Sharing [Sha79]
to any Threshold Linear Secret Sharing Scheme. Here we present the definition of Threshold Linear
Secret Sharing (TLSS) Scheme, which is a restriction of the definition of Linear Secret Sharing Scheme
provided in [CDN15, Chapter 6] to the case when each party receives same number of shares.

Definition 9 (Threshold Linear Secret Sharing Scheme). A (t, n, r) threshold linear secret-
sharing (TLSS) scheme over a finite field F consists of algorithms (Share,Reconstruct) as described
below:

– Share is a randomized algorithm that is defined by a m × (t + 1) matrix M (for some m ≥ n)
and a labeling function ϕ : [m] → [n] such that |ϕ−1(i)| = r for all i ∈ [n]. On input s ∈ F,
Share samples r1, . . . , rt ←R F uniformly and independently and sets rs = (s, r1, . . . , rt). It sets
si = {(Mrs)j : ϕ(j) = i} as the ith share for all i ∈ [n]. We denote the output as (s1, . . . , sn)←R

Share(s), where si ∈ Fr is the share sent to ith party.
– Reconstruct is a deterministic algorithm that takes a set I ⊆ [n], |I| > t, a vector of shares

(s1, . . . , s|I|) and outputs s = Reconstruct((s1, . . . , s|I|), I) ∈ F. Specifically, for all sets I ⊆ [n]
with |I| > t, there exists a vector kI = (k11, . . . , knr) ∈ Fnr such that s =

∑n
i=1

∑r
j=1 kijsij. Here

si = (si1, . . . , sir) for i ∈ [n].
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A TLSS scheme satisfies the following properties:

– Correctness: For every s ∈ F, any (s1, . . . , sn)←R Share(s) and any subset I = {i1, . . . , iq} ⊆ [n]
with q > t, we have Reconstruct((si1 , . . . , siq ), I) = s.

– Privacy: For every s ∈ F, any (s1, . . . , sn)←R Share(s) and any subset I = {i1, . . . , iq} ⊆ [n] with
q ≤ t, the tuple (si1 , . . . , siq ) is information-theoretically independent of s.

Remark 8. We focus on Threshold Linear Secret Sharing schemes in this section, and we denote
it as TLSS. As before we can extend a TLSS scheme to secret-share vectors s ∈ Fℓ by applying
Share,Reconstruct algorithms component-wise.

A.1 Robust DPoK for Discrete Log for TLSS

In this section we generalize the construction of robust complete protocol for discrete-log relation
presented in Section 3.3 to the case when (Share,Reconstruct) can be an arbitrary TLSS scheme. We
also characterize the robustness threshold for the same in terms of minimum distance of linear code
associated with the TLSS scheme. The proof of robust completeness now depends on Lemma 3 (below),
which generalizes Lemma 2 to the case when linear code is over an extension field Fpr ∼= Fr

p of the field
F = Fp.

Let DlogGen be a relation generator that on input (1λ,m) outputs (G,g, p) where p is a λ-bit prime,
G is a cyclic group of order p and g = (g1, . . . , gm) ←R Gm is a uniformly sampled set of generators.
The associated relation RDL is defined by (z, s) ∈ RDL if gs = z. Let TLSS = (Share,Reconstruct)
denote (t, n, r) threshold linear secret sharing over finite field of order p F = Fp. We follow the frame-
work presented for DlogGen; namely Πdlog (Figure 3.3), that is t-private, d-robust and incurs O(n)
communication over point-to-point channels and O(n log ℓ) communication over broadcast channels.
We present our generalized protocol with the similar guarantees.

Additional Preliminaries and Notation. We setup some useful notation and preliminaries specific
to this section to ease the presentation. For s ∈ F, we will view the output (s1, . . . , sn) ←R Share(s)
to consist of n-shares each over Fpr , i.e. we view si ∈ Fr as an element of Fpr . Applying the sharing
component-wise, for a vector s ∈ Fℓ, we view the output (s1, . . . , sn) ←R Share(s) to consist of n-
shares, each in (Fpr )ℓ, i.e an ℓ-length vector over Fpr . We also veiw a vector s = (s1, . . . , sℓ) ∈ (Fpr )ℓ

as ℓ× r matrix over F, where ith row of the matrix corresponds to si ∈ Fpr viewed as a vector in Fr.
We also introduce the linear code LTLSS, which is induced by the sharings under the TLSS scheme.

Definition 10 (TLSS induced code). For an (n, t, r)-TLSS scheme over F given by algorithms
(Share,Reconstruct), we define linear code LTLSS over the field Fpr as

LTLSS = {(s1, . . . , sn) : Pr [(s1, . . . , sn)←R Share(s), s←R F] > 0},

consisting of all possible sharings output by the Share algorithm.

We now state the generalization of Lemma 2 to fields of the form Fpr . The lemma is proved in
[DPP+22][Lemma A.5]. We recall that for an [n, k, ∗] linear code L over F, Lm denotes the set of m×n
matrices over F whose rows are codewords in L.

Lemma 3. Let L be an [n, k, d]-linear code over finite field Fpk and let S be an m × n matrix over
Fpk . Let e = ∆(S,Lm) be such that e < d/3. Then for any codeword r ∈ L, and γ sampled uniformly
from Fm, we have ∆(r+ γTS,L) = e with probability at least 1− d/|F|. Furthermore, if E denotes the
column indices where S differs from the nearest matrix Q in Lm, with probability 1−d/|F| over choice
of γ, the vector r+ γTS differs from the closest codeword v ∈ L at precisely the positions in E.

We now proceed with the description of the generalised protocol, where we highlight key differences
from the protocol Πdlog for the case of Shamir Secret Sharing.

1. Public Parameters: The public parameters, as before consists of (G,g, p)←R DlogGen(1λ, ℓ). Addi-
tionally we have h1, h2 ←R G. The relation RDL consists of (z, s) satisfying gs = z.

2. Input Phase: The prover gets (z, s) while workers Wi,i ∈ [n] are given (z, si) where (s1, . . . , sn)←R

Share(s).
3. Pre-processing: The prover sends δi to Wi for i ∈ [n] where (δ1, . . . , δn)←R Share(δ) for δ ←R Fpr .
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4. Commit to Shares: In the interactive phase, the worker Wi proceeds as follows: The worker veiws
the share si as ℓ× r matrix Mi over F. Then for each j ∈ [r], it computes Aij = gMi[j], where Mi[j]
denotes the jth column of the matrix. Similarly it views the input δi as vector (δi1, . . . , δir) over F.
It then computes commitments Bij for j ∈ [r] as Bij = h

δij
1 h

ωj

2 for ωj ←R F. Finally Wi broadcasts
Ai = (Ai1, . . . , Air) and Bi = (Bi1, . . . , Bir).

5. Reveal Linear Form over Shares: The verifier sends a challenge vector γ ←R Fℓ, and the workers
broadcast the linear form vi = ⟨γ, si⟩+ δi. In the preceding inner-product, we consider si as a vector
over Fpr and vi, δi are considered as elements in the field Fpr . To ensure that corrupt workers use
si, δi consistent with earlier commitments Ai,Bi we additionally require them to provide proofs for
the following relations (viewing si as ℓ× r matrix Mi over F):

πi1 = NIPK
{
(Mi) : g

Mi[j] = Aij ∀ j ∈ [r]
}
,

πi2 = NIPK
{
(δi, ω1, . . . , ωr) : h

δij
1 h

ωj

2 = Bij ∀ j ∈ [r]
}
,

πi3 = NIPK
{
(Mi, δi, ω1, . . . , ωr) :

gMi[j]h
δij
1 h

ωj

2 = AijBij ∧ ⟨γ,Mi[j]⟩+ δij = vij ∀ j ∈ [r]
}
.

The NIPK used above can be instantiated with O(log ℓ) communication complexity using compressed
sigma protocols (CSPs) of Attema et al. [AC20], made non-interactive using Fiat-Shamir transfor-
mation. We observe that each proof asserts r constraints, which can be reduced to one constraint
each using a random challenge. We skip the details here.

6. Verifier Determines Honest Commitments: Let v′ = (v′1, . . . , v
′
n) be the purported values of (v1, . . . , vn)

received in the previous step. If one of the proofs πi1, πi2 or πi3 is invalid, he verifier sets v′i ←R Fpr

(randomly). Here we use v = (v1, . . . , vn) defined by vi = ⟨γ, si⟩+ri to denote the vector of honestly
computed values. We recall that we consider v to be a vector over Fn

pr . Since ∆(v′,v) ≤ d < dist/2,
with dist being the minimum distance of the code induced by the TLSS, V can compute v from v′

by using error correction. Let C denote indices of corrupt workers (who actually deviate from the
protocol). From Lemma 3 we conclude C = {i ∈ [n] : vi ̸= v′i} with overwhelming probability. Let
k′1, . . . , k

′
q denote the reconstruction coefficients for the set [n]\C where each k′i = (k′i1, . . . , k

′
ir) ∈ Fr

for each i.

7. Output using honest messages: V outputs (1,C) if
∏

j∈[q],t∈[r] A
k′
jt

ij ,t
= z, and (0, {P}) otherwise.

Theorem 4 (Robust Distributed Proof of Knowledge for Discrete Log for TLSS). Assuming
that the discrete log assumption holds over the group G, the above protocol is a DPoKTLSS,DlogGen for
relation generator DlogGen and (t, n, r)-TLSS scheme which satisfies t-privacy and d-robustness, for
d < dist/3, where dist is the minimum distance the linear code induced by the TLSS scheme. Moreover
the protocol incurs O(rn) communication over point-to-point channels and O(rn+log ℓ) communication
over broadcast channels.

The proof of the above theorem is similar to that for the protocol Πdlog, except that we use Lemma 3
instead of Lemma 2 to identify corrupt messages, and appropriately omit them from the verification
check. We now discuss implications of the above theorem for specific threshold secret sharing schemes.

A.2 (Corollary) Distributed Proof of Knowledge using Replicated Secret Sharing

Our earlier results obtained for Shamir Secret Sharing [Sha79] in Theorem 1 can be seen as special
case of Theorem 4 for r = 1 and dist = (n− t). Here we additionally specialise Theorem 4 to the case of
replicated secret sharing. We recall the definition of Replicated Secret Sharing (RSS) Scheme provided
in [Esc22].

Definition 11 (Replicated Secret Sharing Scheme). A (t, n,
(
n−1
t

)
) replicated linear secret-sharing

(RSS) scheme over a finite field F consists of algorithms (Share,Reconstruct) as described below:

– Share is a randomized algorithm that on input s ∈ F, samples sA ∈ F for all A ∈ [n], |A| = t, such
that

∑
A sA = s, and sets si = {sA : i /∈ A}. We denote the output as (s1, . . . , sn) ←R Share(s),

where sj ∈ F(
n−1

t ) is the share sent to party Pj.
– Reconstruct is a deterministic algorithm that takes a set I ⊆ [n], |I| ≥ t, a vector (s1, . . . , s|I|) and

outputs s = Reconstruct((s1, . . . , s|I|), I) ∈ F.
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A RSS scheme satisfies the following properties:

– Correctness: For every s ∈ F, any (s1, . . . , sn)←R Share(s) and any subset I = {i1, . . . , iq} ⊆ [n]
with q ≥ t, we have Reconstruct((si1 , . . . , siq ), I) = s.

– Privacy: For every s ∈ F, any (s1, . . . , sn)←R Share(s) and any subset I = {i1, . . . , iq} ⊆ [n] with
q < t, the tuple (si1 , . . . , siq ) is information-theoretically independent of s.

Remark 9. We note that RSS scheme is a specific instance of TLSS scheme discussed in the prior
section.

Let DlogGen be a relation generator that on input (1λ,m) outputs (G,g, p) where p is a λ-bit prime,
G is a cyclic group of order p and g = (g1, . . . , gm) ←R Gm is a uniformly sampled set of generators.
The associated relation RDL is defined by (z, s) ∈ RDL if gs = z. Let RSS = (Share,Reconstruct)
denote (t, n,

(
n−1
t

)
) replicated secret sharing over Fp. In this section, we state the theorems and the

threshold bounds for RSS as a specific case of TLSS (Theorem 4).

Theorem 5 (Robust Distributed Proof of Knowledge for Discrete Log for Replicated Se-
cret Sharing). Assuming that the discrete log assumption holds over the group G, protocol Πrob-rss is a
DPoKRSS,DlogGen for relation generator DlogGen and (t, n,

(
n−1
t

)
)-RSS scheme which satisfies t-privacy

and d-robustness, for d = t < dist/3, where dist = (n − t) is the minimum distance of two valid
codewords of the linear code induced by the TLSS scheme.

Remark 10. We note that the corruption threshold of t < n/3 attainable for Shamir Secret Sharing
(SSS) Scheme and Replicated Secret Sharing (RSS) Scheme follows from the fact that the underlying
linear code defined by both sharing schemes attain a minimum distance of dist = n−t between any two
valid codewords. We note that the linear codes considered for SSS scheme lies in Fp (Reed-Solomon
Codes), whereas the linear codes considered for RSS lies in Fpk .
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