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Abstract. A Feistel Network (FN) based block cipher relies on a Sub-
stitution Box (S-Box) for achieving the non-linearity. S-Box is carefully
designed to achieve optimal cryptographic security bounds. The research
of the last three decades shows that considerable efforts are being made
on the mathematical design of an S-Box. To import the exact crypto-
graphic profile of an S-Box, the designer focuses on the Affine Equivalent
(AE) or Extended Affine (EA) equivalent S-Box. In this research, we ar-
gue that the Robustness of surjective mappings is invariant under AE
and not invariant under EA transformation. It is proved that the EA
equivalent of a surjective mapping does not necessarily contribute to the
Robustness against the Differential Cryptanalysis (DC) in the light of
Seberry’s criteria. The generated EA equivalent S-Box(es) of DES and
other 6 × 4 mappings do not show a good robustness profile compared
to the original mappings. This article concludes that a careful selection
of affine permutation parameters is significant during the design phase
to achieve high Robustness against DC and Differential Power Analysis
(DPA) attacks.

Keywords: S-Box · Permutations · Block Ciphers · Cryptography · Dif-
ferential Cryptanalysis · Differential Uniformity · Affine Equivalence

1 Introduction

Al-Kindi cracked the thousands-year-old Ceaser cipher by exploiting the fre-
quency of occurrence problem in a natural language. The US intelligence agencies
broke the language redundancy problem aroused due to misuse of the Russian
One Time Pad (OTP) [1]. To suppress the statistics of plaintext in the resul-
tant ciphertext, Claude Shannon coined the idea of information entropy in his
landmark papers [2,3,4]. He proposed the concepts of Confusion and Diffusion
achievable by networking substitution and permutation in a block cipher. Re-
search on the design and security of the substitution layer is maturing [5,6]. The
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engineering of S-Box remains an area of focus for the cryptographic community.
A cryptanalyst intends to find the statistical vulnerabilities in its design [7,8,9],
and a side channel analyst exploits the cryptographic implementations [10]. An
S-Box is generated in multiple ways, i.e., Mathematical processing (Finite Field
Inversion [11,12,13]), random generation [14,15] and heuristic-based approach
[16,17]. The mathematical generation of S-Box needs rigorous research, but it
promises an optimum cryptographic profile, i.e., Differential Uniformity (DU)
[8] and Linearity [9]. The mathematician focuses on the Affine, or Extended
Affine (EA) equivalent, to copy the cryptographic profile of the parent candi-
date [18,19]. Seberry et al. [20,21] discussed the idea of Robustness against the
DC (later on will be called Robustness throughout the document) rather than
focusing on the highest coefficient in the Difference Distribution Table (DDT)
alone. The robustness is upper bounded by (1− 2−n+1) for (n ≡ 1 mod 2) and
(1 − 2−n+2) for (n ≡ 0 mod 2) for an n-bit (finite field inversion based) bijec-
tion. However, the Robustness of an m×n surjective S-Box is interesting in this
regard, upper bounded by 2n+m−1−2m−2n−1+1

2n+m−1 . The realistic values deviate from
the lower or upper bounds. The AE and EA equivalent S-Box retains the distri-
bution of differential probabilities at different locations in the DDT compared to
the parent profile. Evaluating Robustness in the surjective substitution layer is
crucial rather than focusing on the DU alone. This article identifies and addresses
the robustness problem in the AE and EA equivalent surjective mappings.

Paper Organization: Section 2 explains the preliminary mathematical notations
used throughout the document. In section 3, we have discussed the types and
design strategies of S-Box mappings. Section 4 outlines the robustness against
differential cryptanalysis. Our results are elaborated in 5, and the paper is con-
cluded in section 6.

2 Preliminaries

Definition 1. Given two positive integers (m,n ≥ 2), an S-Box is a vectorial
boolean function of the form β : Fm

2 → Fn
2 , mapping an m-bits to n-bits. For

m = n, S is a bijection, and m > n is a surjective mapping.

Definition 2. An S-Box is deferentially δ-uniform (δ ≡ 0 mod 2), if for all
a ∈ Fm

2 \ 0, x ∈ Fm
2 and b ∈ Fn

2 in a 2m × 2n Difference Distribution Table
(DDT), δ is the maximum number of occurrences for which Eqn 1 is satisfied.

NB(a, b) = {β(x)⊕ β(x⊕ a) = b}
δ = max

∆a̸=0∈Fm
2 ,∆b∈Fn

2

NB(∆a,∆b)
(1)

Definition 3. An m × n S-Box is differentially R Robust, if for δ, and the
frequency ψ of non-zero entries in the DDT for a ̸= 0 and b = 0.

R = (1− δ

2m
)(1− ψ

2m
) (2)
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Definition 4. Two m-bit S-Box(es), β and β∗ are affine equivalent (AE) if
there exists an affine permutation L ∈ An and z ∈ Fm

2 [19,18]

β∗ = L ◦ β(x)⊕ z (3)

Definition 5. Two m-bit S-Box(es), β and β⋇ are extended affine (EA) equiv-
alent, if there exists an affine permutation K,L ∈ An, for some A, x, z ∈ Fm

2

and affine function Z(x) = A · β(x)⊕ z [19,18]

β⋇ = K ◦ β(x) ◦ L⊕ Z(x) (4)

3 Design of S-Box(es)

The information-theoretic security of an FN or SPN block cipher mainly depends
upon an S-Box; therefore, heinous efforts are made on the design level strategies
[5]. Since its inception, high-end research is contributed to its optimal design.
These strategies are grouped into three (03) classes, i.e., Mathematical objects,
Random Generation and Heuristic Techniques. A cryptographer expects a pro-
file with lower δ from an S-Box. The probability distribution of differentials in a
DDT is estimated in [22,23,24] and Theorem 9.1.1, Eqn 9.1 and 9.2 in [25]. The
mathematical function-based cryptographic mappings are (not limited to) Finite
Field inversion [26,27,28,29,30,31], Finite Field exponentiation [32,33], Modular
Ring Exponentiation [34], and APN functions [35,36]. Like Finite Field inversion
[11], not all the mathematical functions are promising for optimal cryptographic
profile, δ = 128 for SAFER [34] and δ = 10 for E2 [37].
Based upon the results in (Theorem 9.1.1 and Eqn 9.1 [25]), the probability
that a random m× n mapping will be differentially 4 uniform is negligible. For
any 6 × 4 random mapping, the probability that it will be an APN is very low
compared to any other 6× 4 random mapping with δ = 12. Random mappings
available in the literature [38,39,40,41], key-dependent S-Box generation [42] lies
in this cluster as well. A randomly generated S-Box does not guarantee an opti-
mal cryptographic profile.
The heuristic-based mappings are the refined version of the pseudo-random map-
pings. A randomly generated S-Box is filtered for some set of cryptographic
properties. The S-Box is accepted if the desired profile is achieved; otherwise,
a new mapping is generated. The S-Box in Kuznyechick [43] was claimed to be
heuristically generated but turned down by Perrin in [25]. The permutation in
Anubis [44], Skipjack [45], and Kalyna [46] is the outcome of the Hill climbing
technique.
The differential uniformity [11], linearity [9], Algebraic Degree [18], balancedness
and linear structures [47] remains invariant under the affine equivalence. The
differential branch number and linear branch number [48], Differential Power
Analysis (DPA) Signal to Noise Ratio (SNR) [49], Transparency Order (TO)
[50] does not remain invariant under the affine and extended affine equivalence.
Lower values of DPA-SNR and TO guarantee the resistance of an S-Box against
DPA attacks.
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4 Robustness of Surjective S-Box(es)

Seberry explained the reasons for the weaknesses of the Data Encryption Stan-
dard (DES) against the differential Cryptanalysis [20]. The author argued that
only the largest coefficient in the DDT table does not matter, and the frequency
of non-zero entries in the first column of DDT is also important. For an n-bit
bijection, the frequency of zero entries for the first column is 2n − 1, and R is
upper bounded by 1 − 2−n+1. The number of non-zero entries is not strictly
unitary in the DDT of m× n mapping (Page 62 - [8]). For surjective mappings,
the robustness is quite interesting and bounded by (1 − 1

2m )(1 − 2−n+1). The
robustness deviates from the lower or upper bound as proposed in [20,21].

Proposition 1. Robustness against the differential cryptanalysis is invariant
under affine equivalence.

Proof: For any positive x, α ∈ F2n , the derivative of S(x) in the direction of α
is DαS(x) = S(x) ⊕ S(x ⊕ α). For an affine matrix Lover F2 and z ∈ F2n , let
S∗(x) = L · S(x) ⊕ z be the affine equivalent S-Box. The directional derivative
of S∗(x) can be computed in the following manner,

DαS
∗(x) = S∗(x)⊕ S∗(x⊕ α)

= L · S(x)⊕ z ⊕ L · S(x⊕ α)⊕ z

= L · S(x)⊕ L · S(x⊕ α)

= L · (S(x)⊕ S(x⊕ α))

= L · (DαS(x))

(5)

Since the robustness profile in Eqn 2 only considers the frequency of non-zero
entries in the first column (which is β = 0, equivalently DαS(x) = 0) of DDT,
An S-Box’s affine preserves the distribution of coefficients (with altered posi-
tions) in the DDT. The frequency of non-zero entries in the first column remains
unchanged. The affine equivalence changes the positions of coefficients in the
DDT rows according to the affine matrix . The affine constant z does not play
any role in managing DDT coefficients. The affine permutation parameters do
not affect δ and ψ, thus preserving the values of R in Eqn 2 accordingly.

Proposition 2. Robustness against the differential cryptanalysis is not invari-
ant under extended affine equivalence.

Proof: For two affine matrices A1, A2 over F2, let S∆ be EA equivalent S-Box
of S. The directional derivative of S∆ can be computed in the following manner,

DαS
∆(x) = S∆(x)⊕ S∆(x⊕ α)

= A1 · S(x) ·A2 ⊕A(x)⊕ z ⊕A1 · S(x⊕ α) ·A2 ⊕A(x⊕ α)⊕ z

= A1 · S(x) ·A2 ⊕A(x)⊕A1 · S(x⊕ α) ·A2 ⊕A(x⊕ α)

= A1 · ((S(x)⊕ S(x⊕ α)) ·A2 ⊕A(α)

= A1 · (DαS(x)) ·A2 ⊕A(α)

(6)
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From Eqn 6, it is evident that the directional derivative is affected by the affine
permutation parameters, thus affecting the values of the directional derivative
for α. The changing frequency of non-zero entries in the first column of DDT
results in the variation of the Robustness profile of EA equivalent mappings.
The higher values of δ and ψ lead to weakened S-Box(es) against the differential
cryptanalysis. The designer focuses on importing the exact cryptographic profile
rather than stressing the affine permutation parameters. The selection of affine
permutation parameters and functions is crucial in this regard. Those affine
permutation parameters are of the utmost importance, which can lower the
value of ψ, resulting in higher robustness. The preceding section shed some light
on the actual test cases of the real-world ciphers, and optimal mappings in the
4-bit class [51,52].

5 Results

For evaluation of robustness, the S-Box(es) from a well-known cipher DES,
analyzed in [20], are compared to the affine equivalent S-Box(es) for differ-
ent affine permutation parameters. The 4-bit S-Box(es) with optimal crypto-
graphic properties from [51] are combined to get 6-bit S-Box(es) of the form
β1 : F6

2 → F4
2. The three 5-bit non-linear mappings from [47] are combined for

achieving β2 : F6
2 → F5

2. For β1 and β2, R is upper bounded by 0.861 and 0.923
respectively. We have also randomly generated (6×5) and (6×4) mappings and
their associated affine equivalent candidates 4. The lower values of R against the
affine equivalent of the DES Substitution layer in (Table 1, from [20]) is a clear
indication of the weakness against DC. For the sake of convenience, the affine
equivalent mappings are represented as i, j ∈ [0 . . . ord(An) − 1] for an affine
matrix Mi,Mj ,∈ An, for all i ̸= j.
Following the proof in Proposition-1 and Eqn 5, the robustness profile of affine
equivalent mappings in Table 3, 2 and 1 remains invariant for all the S-Box(es)
under consideration. The results from Proposition-2 prove that the robustness
profiles for the extended affine equivalent in Table 3, 2 and 1 do not remain
invariant for the surjective mappings. For EA-S0 (EA equivalent of S0), the R
values drastically drop to 0.1289 from 0.316 in Table 1. In Table 2, the values of
R decline to 0.063 for EA-O3 and EA-O4. The R values for EA equivalence are
not promising as the parent mappings in Table 3.
According to [49], the upper bound of DPA-SNR for 6×4 S-Box is 23. The higher
values of DPA-SNR make an S-Box vulnerable to the DPA attack. DPA-SNR
of A-S0 (5.0360) is higher than the parent S-Box DPA-SNR (3.6110). Similarly,
the DPA-SNR profile of EA-S7 shows smaller values than S7 and A-7, making it
more resistant to DPA attacks. The TO profile of S-Box(es) in Table 1 is altered
by the affine parameters as compared to the parent mappings; the lower value of
TO against all the S-Box(es) is minimized to 2.0079 for EA-S2. The lower value
4 The S-Box(es), their equivalent mappings and detailed cryptographic pro-

file is available at https://drive.google.com/drive/folders/1-6DNsVdZWT_
kkdhJEpZgM-A0Pjtv8wtQ?usp=sharing

https://drive.google.com/drive/folders/1-6DNsVdZWT_kkdhJEpZgM-A0Pjtv8wtQ?usp=sharing
https://drive.google.com/drive/folders/1-6DNsVdZWT_kkdhJEpZgM-A0Pjtv8wtQ?usp=sharing
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of TO for the S3 in table 1 is maximized from 2.0634 to 2.0674 in EA-S3. The
values of DPA-SNR for EA-O1 and EA-O5 in Table 2 are drastically higher and
approaching the higher bound, making them vulnerable to DPA attacks.
For 6 × 5 mappings, the DPA and TO profiles show considerable variations in
table 3. The DPA-SNR of S54 is lowered from 5.0531 to 3.729 in A-S54. On the
other hand, the EA map amplifies the values against S51 and EA-S51. The TO
values are maximized for EA-S54, and EA-S52 are lowered accordingly.

S-Box S0 S1 S2 S3 S4 S5 S6 S7
ψ 37 33 37 24 31 33 35 36
δ 16
R 0.316 0.363 0.316 0.469 0.387 0.363 0.340 0.328

DPA-SNR 3.6110 4.503 0.316 3.855 3.855 3.0836 4.6618 4.2188
TO 2.063492

Affine Equivalent S-Box(es) of DES
S-Box A-S0 A-S1 A-S2 A-S3 A-S4 A-S5 A-S6 A-S7
ψ 37 33 37 24 31 33 35 36
δ 16
R 0.316 0.363 0.316 0.469 0.387 0.363 0.340 0.328

DPA-SNR 5.0360 4.3813 4.3787 4.7819 4.3120 3.4148 4.8906 4.0236
TO 2.063492

Extended Affine Equivalent S-Box(es) of DES
S-Box EA-S0 EA-S1 EA-S2 EA-S3 EA-S4 EA-S5 EA-S6 EA-S7
ψ 53 44 52 44 49 45 48 44
δ 16
R 0.1289 0.2344 0.1406 0.2344 0.1758 0.2227 0.1875 0.2344

DPA-SNR 4.57711 4.3813 4.9506 3.3795 4.2350 4.7970 3.9806 3.05629
TO 2.03571 2.0555 2.0079 2.0674 2.05158 2.0238 2.0555 2.04761
Table 1. Robustness Profile of DES and its Equivalent S-Box(es)

6 Conclusion

An S-Box is designed to achieve specific cryptographic properties to satisfy the
notions of information-theoretic security. The affine equivalent mappings im-
port the desired cryptographic profile. During the importing process, the crypto-
graphic engineer may overlook the robustness of surjective mappings. The affine
permutation choices drastically affect the robustness of a surjective mapping. In
our analysis, none of the 6 × 4 and 6 × 5 EA equivalent S-Box achieved good
robustness compared to the parent mapping. Neglecting affine parameters may
lead to a weakened mapping against the differential cryptanalysis irrespective
of the parent differential uniformity. The choice of affine parameters also affects
the security of an S-Box against DPA attacks. Therefore, a careful selection of
affine equivalence parameters is as essential as the cryptographic profile.



Title Suppressed Due to Excessive Length 7

S-Box O1 O2 O3 O4 O5
ψ 18 11 15 21 21
δ 46 54 54 48 44
R 0.2021 0.1294 0.1196 0.168 0.210

DPA-SNR 3.1459 3.2825 2.8857 3.1067 3.2356
TO 2.063492

Affine Equivalent 6× 4 S-Box(es) in Appendix-B
S-Box A-O1 A-O2 A-O3 A-O4 A-O5
ψ 18 11 15 21 21
δ 46 54 54 48 44
R 0.2021 0.1294 0.1196 0.168 0.210

DPA-SNR 4.4216 4.0 2.5217 2.3717 3.3288
TO 2.063492
Extended Affine Equivalent 6× 4 S-Box(es)
S-Box EA-O1 EA-O2 EA-O3 EA-O4 EA-O5
ψ 46 38 38 45 46
δ 46 54 54 48 44
R 0.079 0.063 0.063 0.0742 0.0879

DPA-SNR 7.3292 5.8362 5.2277 5.0695 6.2719
TO 2.0436 2.01984 2.05157 4.0 2.0198

Table 2. Robustness Profile of 6× 4 Equivalent S-Box(es)

S-Box S51 S52 S53 S54
ψ 18 21 25 21
δ 34 32 32 32
R 0.3369 0.3359 0.3042 0.2734

DPA-SNR 4.1367 4.8013 4.5584 5.0531
TO 4.06394 4.0555 4.0158 4.0834

Affine Equivalent 6× 5 S-Box(es)
S-Box A-S51 A-S52 A-S53 A-S54
ψ 18 21 25 21
δ 34 32 32 32
R 0.3369 0.3359 0.3042 0.2734

DPA-SNR 5.0800 4.2156 3.8318 3.7290
TO 5.0000 4.0198 5.0000 4.0119

Extended Affine Equivalent 6× 5 S-Box(es)
S-Box EA-S51 EA-S52 EA-S53 EA-S54
ψ 31 27 37 29
δ 34 32 32 32
R 0.2417 0.2891 0.2109 0.2734

DPA-SNR 5.3692 5.0838 5.4433 4.9637
TO 4.0158 4.0079 4.0476 5.0000

Table 3. Robustness Profile of 6× 5 Equivalent S-Box(es) of Appendix-B
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