
Improved Universal Circuits using Lookup Tables

Yann Disser, Daniel Günther, Thomas Schneider, Maximilian Stillger, Arthur Wigandt, Hossein Yalame

Technical University of Darmstadt, Darmstadt, Germany
disser@mathematik.tu-darmstadt.de, {guenther,schneider, yalame}@encrypto.cs.tu-darmstadt.de,

maximilian.stillger@arcor.de, arthur.wigandt@protonmail.com

Abstract. A Universal Circuit (UC) is a Boolean circuit of size Θ(n logn) that can simulate any Boolean
function up to a certain size n. Valiant (STOC’76) provided the first two UC constructions of asymptotic
sizes ∼ 5n logn and ∼ 4.75n logn, and today’s most efficient construction of Liu et al. (CRYPTO’21)
has size ∼ 3n logn. Evaluating a public UC with a secure Multi-Party Computation (MPC) protocol
allows efficient Private Function Evaluation (PFE), where a private function is evaluated on private
data. Most existing UC constructions simulate circuits consisting of 2-input gates.
In this work, we study UCs that simulate circuits consisting of (ρ → ω)-Lookup Tables (LUTs) that
map ρ inputs to ω outputs. Existing UC constructions can be easily extend to (ρ → 1)-LUTs (we call
this the fixed UC construction). We further extend this to (ρ → ω)-LUTs. Unfortunately, the size of
the fixed UC construction is linear in the largest input size ρ of the LUT, i.e., even if only a single
LUT in the circuit has a large input size, the size of the whole UC is dominated by this LUT size. To
circumvent this, we design a dynamic UC construction, where the dimensions of the individual LUTs
are public. We implement the fixed and dynamic UC constructions based on the UC construction by
Liu et al., which also is the first implementation of their construction. We show that the concrete size of
our dynamic UC construction improves by at least 2× over Liu et al.’s UC for all benchmark circuits,
that are representative for many PFE applications.

Keywords: universal circuit, private function evaluation, multi-party computation

1 Introduction

A Universal Circuit (UC) U is a Boolean circuit that can simulate any Boolean function C consisting
of ni inputs, ng gates, and no outputs. The UC U takes, in addition to the function’s input x, a set of
programming bits pC defining the function C that U simulates, i.e., the UC computes U(x, pC) = C(x).
The first two UC constructions known as 2-way and 4-way split UCs with asymptotic optimal size of Θ(n log n)
and depth of O(n) were proposed by Valiant [44], where n = ni + ng + no refers to the size of the simulated
circuit C. Cook and Hover [9] designed a depth-optimized UC construction for simulating Boolean circuits of
size n and depth d that has size O(n3d/n) and depth O(d). The first practical implementation of a UC of non-
optimal asymptotic size O(n log2 n) was given by Kolesnikov and Schneider [29]. A line of work [26,30,19,4,48]
followed with the common goal to minimize the size of Valiant’s UC construction. Recently, Liu et al. [31]
provided a UC construction with today’s most efficient size of ∼ 3n log n.
All of these works designed UCs to simulate Boolean gates having at most 2 inputs and 1 output. However,
Valiant’s UC construction can easily be extended to simulate circuits consisting of (ρ→ 1)-LUT, namely Lookup-
Tables that have ρ inputs x1, . . . , xρ and one output y, and can be programmed to compute y = f(x1, . . . , xρ)
for an arbitrary function f . Our goal is to extend UCs to support (ρ → ω)-LUTs, which have in total ω
outputs y1, . . . , yω and are programmed to compute yi = f i(x1, . . . , xρ) for 1 ≤ i ≤ ρ and an arbitrary
function f i. On top of that, we analyze the size optimization of simulating LUT-based circuits on UCs
compared to simulating equivalent Boolean circuits.

1.1 Applications of Universal Circuits

The most prominent application for UCs is Private Function Evaluation (PFE) [2], which can be seen as
a generalization of Secure Multi-Party Computation (MPC) [47,17]. In MPC, a set of k parties P1, . . . ,Pk

mailto:disser@mathematik.tu-darmstadt.de
mailto:guenther@encrypto.cs.tu-darmstadt.de
mailto:schneider@encrypto.cs.tu-darmstadt.de
mailto:yalame@encrypto.cs.tu-darmstadt.de
mailto:maximilian.stillger@arcor.de
mailto:arthur.wigandt@protonmail.com

jointly compute a publicly known circuit C on their respective private inputs x1, . . . , xk and obtain nothing
but the result C(x1, . . . , xk). In PFE, the circuit C that shall be computed is private information as well,
i.e., party P1 with input C and parties P2, . . . ,Pk with inputs x2, . . . , xk run a protocol that yields nothing
but C(x2, . . . , xk) and party Pi≥2 does not learn any information about the circuit C.

PFE can be implemented via MPC by means of UCs as follows: The parties P1, . . . ,Pk run an MPC
protocol that evaluates the universal circuit U as public circuit on the secret inputs pC of party P1 and
x2, . . . , xk of parties P1, . . . ,Pk, resulting in U(pC , x2, ..., xk) = C(x2, ..., xk). In summary, PFE based on UCs
is a very generic approach. It can simply be plugged into arbitrary MPC frameworks without any modification
to the underlying MPC protocol, resulting in the same security level (semi-honest, covert, or malicious) as
the underlying MPC framework. In addition, PFE is completely compatible with the features included in
MPC like secure outsourcing [22] and non-interactive computation [30]. PFE is applicable for situations where
customers aim to use a service from companies who want to hide how they perform the computation and do
not learn the customer’s data.1 These include privacy-preserving credit checking for credit worthiness [14],
software diagnosis [8], medical diagnosis [6], and insurance tariffs [18] to name a few.
Beyond PFE, UCs have many other applications like hiding the policy circuit in attribute-based encryp-
tion [5,15], multi-hop homomorphic encryption [16], verifiable computation [13], program obfuscation [49],
and recently hardware logic locking [33].

1.2 Related Work

Universal Circuits (UCs). Valiant [44] defined universal circuits, showed that they have a lower bound
of size Ω(n log n), and proposed two asymptotically size-optimal constructions using a 2-way or a 4-way
recursive structure of sizes ∼ 5n log n and ∼ 4.75n log n, respectively. Hence, relevant research challenges
left are reducing the prefactor and the concrete UC sizes. Valiant’s constructions can easily be extended
to simulate (ρ → 1)-LUT circuit simulations (cf. fixed UC construction in §4.1) as shown by Sadeghi and
Schneider [40, App. A].
A modular UC construction of non-optimal size 1.5n log2 n+ 2.5n log n was proposed and implemented by
[29]. Their construction beats Valiant’s construction for small circuits thanks to small prefactors. Motivated
to provide more efficient PFE, Kiss and Schneider [26] implemented Valiant’s 2-way split construction. They
proposed a more efficient hybrid construction combining the 2-way split construction with the modular
construction of [29]. In a concurrent work, Lipmaa et al. [30] generalized Valiant’s construction to a k-way split
construction and proved that the optimal value for k is 3.147, i.e., k ∈ {3, 4} when k is an integer. Günther et
al. [19] modularized Valiant’s construction, implemented the more efficient 4-way split construction, gave a
generic edge-embedding algorithm for general k-way split constructions, and showed that the 3-way split
construction with Valiant’s framework is less efficient than the 2-way split construction. Zhao et al. [48]
improved Valiant’s 4-way split construction to size ∼ 4.5n log n, which is today’s most efficient asymptotic
size for UCs in Valiant’s framework. Alhassan et al. [4] proposed and implemented a scalable hybrid UC
construction combining Valiant’s 2-way and the 4-way construction with Zhao et al.’s [48] improvements.
Most recently, Liu et al. [31] reduced redundancies in Valiant’s framework and provided today’s most efficient
UC construction of size ∼ 3n log n based on Valiant’s 2-way construction, showed that k = 2-way split is
the most efficient in their new UC framework, and already almost reached their computed lower bound
of ∼ 2.95n log n. We provide the first implementation of their construction and use it as a basis for our UC
constructions for LUT-based circuits.
Private Function Evaluation (PFE). Katz and Malka [25] designed a constant-round two-party PFE
protocol with linear communication complexity based on homomorphic public-key encryption. Their scheme
was implemented in a highly efficient manner by Holz et al. [21] and that implementation outperforms the
recent hybrid UC implementation of Alhassan et al. [4] for circuit sizes with n = 1 million gates. However,
their protocol is no generic solution and not directly compatible with MPC frameworks, which makes it
less flexible. For instance, their protocol cannot easily be extended to multiple parties. In fact, recent PFE

1 In contrast to Fully Homomorphic Encryption (FHE) which can also be used for PFE, UC-based PFE can be based
on mostly symmetric encryption and requires concretely much less computation.

2

applications relied on so-called Semi-Private Function Evaluation (SPFE) where not necessarily the whole
function needs to be hidden from the other parties but selected parts of the function can be leaked. The first
SPFE construction was proposed by Paus et al. [36] who provided some general building blocks that can be
programmed with one function out of a class of functions. Recently, Günther et al. [18] developed an SPFE
framework that allows to split the function into public and private components, embed the private components
into UCs, and merge them into one Boolean circuit that is evaluated via MPC. They demonstrated their
framework on computing car insurance tariffs and observed that some information of the function is public,
e.g., that older people usually get discounts due to their experience.
MPC on LUTs. In the area of secure multi-party computation, prior work noticed that 2-input/1-output gates
can be extended into multi-input/multi-output gates to reduce the circuit evaluation overhead [34,11,32,40].
In Yao’s GC setting, Fairplay [32] implemented MPC protocols to evaluate gates with up to 3-input gates. The
TASTY framework [20] implemented ρ-input garbled gates using the garbled row reduction optimization[37].
A general UC construction to evaluate any circuit with larger gates of more than 2 inputs was proposed in [40].
Recently, [38] proposed a protocol that worked on circuits with multi-input/multi-output gates instead of
working on circuits with 2-input gates. Another line of work is the secret-sharing setting, where the motivation
is to optimize the rounds and communication of the online phase without the use of Yao’s GC protocol. [11]
extended 2-input AND gates to the general N-input case using lookup tables (LUTs). Recently, ABY2.0 [34]
extended multiplication from the 2-input to the multi-input setting with a constant online communication
complexity at the cost of exponential offline communication in the number of inputs. In addition, Syncirc [35]
handles the circuit generation with multi-input gates by using industry-grade hardware synthesis tools [46,43].

1.3 Outline and Our Contributions

So far, UC-based PFE research considered synthesis of the input circuit (to generate a smaller number of
2-input gates) and construction of the UC (to minimize its size) as independent tasks. In our work, we show
that using multi-input/output LUTs these two tasks can be combined to yield a better size. After giving
the preliminaries for universal circuits in §2 and summarizing the two UC constructions of Valiant [44] (§ 3.2)
and Liu et al. [31] (§ 3.3), we contribute the following:
Dynamic UC Construction (§4.1). Valiant’s UC construction can easily be extended to the so-called
fixed UC construction, which supports evaluation of (ρ → 1)-LUT-based circuits by merging for the ρ
inputs ρ instances of its basic building block [40, App. A]. This leads to a total size of 1.5ρn log n using Liu et
al.’s [31] UC construction. The leading factor contains the number of inputs of the largest LUT of the simulated
circuit. For example, suppose a circuit consists only of (3 → 1)-LUTs and only a single (8 → 1)-LUT. In that
case, the whole UC size is determined by ρ = 8. Our new dynamic UC design leaks the dimensions of the
individual LUTs and allows mixing of different LUT sizes without degrading size depending on the largest LUT.
This setting where parts of the function are leaked is called Semi-Private Function Evaluation (SPFE) [18,36].
Our new dynamic UC construction is general, can be applied to all UC constructions based on Valiant’s
framework [44] and improvements by Liu et al. [31], and fits into the definition of UCs (cf. Def. 1).
UCs for multi-output LUTs (§4.2). We provide a novel technique to extend UCs to simulate (ρ →
ω)-LUT-based functions with ρ inputs and ω outputs. This technique is applicable to all UC constructions,
including our new dynamic UC construction.
Size Improvements of UCs for LUT-based Basic Primitives (§4.3). Taking PFE as our greatest
motivation for improving UCs, we study four basic building blocks which can be used to construct more complex
functionalities for common PFE applications: We compare the asymptotic circuit sizes when evaluating our new
dynamic UC construction with UCs for equivalent binary gates and achieve improvements of factor 2× for full
adders, 2.67× for comparisons, 2× for multiplexers, and 10.45× for AES-Sboxes. Based on these observations,
we conclude that representing a functionality with LUTs and embedding it into our UC construction gains an
asymptotic improvement of at least 2× compared to the Boolean representation (cf. Tab. 1).
Implementation (§5.1 and §5.2). We provide the first implementation of today’s most efficient UC
construction of Liu et al. [31] which is of independent interest.2 Moreover, we extend it with multi-input

2 We will publish our implementation as open source upon acceptance of our paper.

3

Universal Circuit Asymptotic Size
Improvement over best previous work
Asymptotic Concrete (cf. Tab. 4)

Valiant’s 2-way [44] 5n logn -
Valiant’s 4-way [44] 4.75n logn 1.05×
Zhao et al.’s 4-way [48] 4.5n logn 1.06×
Liu et al.’s 2-way [31] 3n logn 1.5×

Our fixed UC ∼ 1.5n logn ∼ 2× 1.13− 2.18×
Our dynamic UC ≤ 1.5n logn ≥ 2× 1.05− 2.90×
Table 1: Asymptotic sizes of various UC constructions and improvements over previous works. The asymptotic
sizes of our fixed and dynamic UCs are derived from Tab. 2 and refer to the size improvement of representing
a Boolean function of size n into an equivalent LUT-based circuit of size < n.

and multi-output LUT support and integrate it into the MPC framework ABY [10] for PFE. To create
multi-input gates, we used the hardware circuit synthesis tool Yosys-ABC [46,43] and Design Compiler [1]
that allows LUT-Mapping. As discussed above, our LUT-based PFE is significantly optimized by combining
LUTs with overlapping inputs and multiple outputs. However, hardware synthesis tools do not by default
support mapping to multiple output LUTs. In order to address this, we post-process the single-output LUT
circuits produced by the synthesis tool in order to convert them to multi-output LUT circuits.
Evaluation (§5.3). We experimentally evaluate our new dynamic UC construction for various LUT sizes,
and compare it with the fixed UC construction as well as the previous best construction of Liu et al. [31].
The asymptotic UC sizes and improvements over previous works are given in Tab. 1.

2 Preliminaries

We refer to the size of a circuit n as the sum of its number of inputs ni, gates ng, and outputs no.

Definition 1 (Universal Circuit [44,4]). A Universal Circuit U for ni inputs, ng gates, and no outputs
is a Boolean circuit that can be programmed to compute any Boolean circuit C with ni inputs, ng gates and
no outputs by defining a set of programming bits pC such that U(x, pC) = C(x) for all possible input values
x ∈ {0, 1}ni .

2.1 Graph Theory

Let G = (V,E) be a directed graph and v ∈ V . The indegree (resp. outdegree) of v, the number of incoming
(resp. outgoing) edges, is denoted by deg+(v) (resp. deg−(v)). G has fanin (resp. fanout) ρ if deg+(v) ≤ ρ
(resp. deg−(v) ≤ ρ) for all v ∈ V . We denote by Γρ(n) all directed acyclic graphs with at most n nodes and
fanin/fanout ρ for ρ, n ∈ N. For U ⊂ V , G[U] := {U, {e = (u, v) ∈ E : u, v ∈ U}} denotes the subgraph
induced by U . We omit the index G in the above definitions if G is clear from the context.
Let G = (V,E) ∈ Γρ(n). A topological order for G is a map ηG : V → {1, ..., |V |} such that ∀ (u, v) ∈ E :
ηG(u) < ηG(v).
We represent Boolean circuits as directed acyclic graph G ∈ Γρ(n) for some ρ > 1. However, almost all
previous works [44,26,30,19,48,31] restricted the circuits, that are simulated via UCs, to fanin/fanout ρ = 2.
The reason for this restriction can be found in the structure of universal circuits according to Valiant’s [44]
and Liu et al.’s [31] frameworks. On a high level, a universal circuit (UC) for simulating circuits C ∈ Γρ(n) is
composed of ρ so-called Edge-Universal Graphs (EUGs) each of size O(n log n), i.e., the total size of the UC
grows linearly with the maximum fanin/fanout ρ of the gates in the simulated circuit C.

4

Definition 2 (Edge-Embedding [44,30,4,31]). Let G = (V,E, P) and G′ = (P,E′) be directed graphs
with P ⊂ V and G′ acyclic. An edge-embedding from G′ into G is a map ψ : E′ → PG, where PG denotes the
set of all paths in G, with the following properties:

– ψ(e′) is a u-v-path (in G) for all e′ = (u, v) ∈ E′,
– ψ(e′) and ψ(ẽ′) are edge-disjoint paths for all e′, ẽ′ ∈ E′ with e′ ̸= ẽ′.

Definition 3 (Edge-Universal Graph [44,30,4,31]). A directed graph G = (V,E, P), denoted as Uρ(n)
with ordered pole set P := {p1, ..., pn} ⊂ V is called an Edge-Universal Graph for Γρ(n) if:

– G is acyclic.
– Every acyclic G′ = (P,E′) ∈ Γρ(n) that is order-preserving, i.e., ∀ e = (pi, pj) ∈ E′ ⇒ i < j, can be
edge-embedded into G.

On a high level, the graph G′ = (P,E′) in Defs. 2 and 3 represents a Boolean function that is embedded
into the graph G = (V,E, P), which represents the UC, where P ⊂ V is the pole set of size |P | = n, which
represents the inputs, gates and outputs of the function represented in G′. As an EUG requires that every
G′ ∈ Γρ(n) can be edge-embedded into G, the UC built by the EUG can compute any function represented
by a graph in the set Γρ(n).

In the literature [44,26,30,19,48,4,31], EUGs for Γ2(n) graphs were constructed by merging two EUGs
for Γ1(n) graphs (cf. Def. 4 and Fig. 1). Thus, research focused on minimizing the size of general EUGs
for Γ1(n) graphs as these can be merged to EUGs for arbitrary Γρ(n) graphs by merging ρ instances of
Γ1(n) EUGs (cf. Cor. 1).

p1

p2

p3

p4

(a) Γ2(4) graph

p1

p2

p3

p4

(b) U1(4)

p1

p2

p3

p4

(c) U1(4)

p1

p2

p3

p4

(d) merged U2(4)

p1

p2

X

p3

Y

p4

X

Y

(e) UC

Fig. 1: (a) shows the Γ2(4) graph with already partitioned edge sets E1 and E2, (b) and (c) show the EUGs
in which the edge sets E1 resp. E2 are embedded, (d) shows the merged EUG with all edges embedded, (e)
shows the resulting UC, where p1 is an input, and p2, p3, p4 are translated to universal gates.

Definition 4 (Merging of EUG). Let G = (V,E, P) and Ḡ = (V̄ , Ē, P) be two EUG for Γρ(n) and Γρ̄(n)

with the same pole order and V ∩ V̄ = P . Then Ĝ = (V ∪ V̄ , E ∪ Ē, P) is called the merging of G and Ḡ.

Proposition 1. The merging of a Γρ(n) and a Γρ̄(n) EUG is a Γρ+ρ̄(n) EUG.

Proof. Let Ĝ = (V̂ , Ê, P) be the merging of the Γρ(n) EUG G = (V,E, P) and the Γρ̄(n) EUG Ḡ = (V̄ , Ē, P).

LetG′ = (P,E′) ∈ Γρ+ρ̄(n) be the order-preserving graph to be edge-embedded into Ĝ. By Kőnig’s theorem [12,
Prop. 5.3.1], we can partition E′ into disjoint E′

1 and E′
2 such that E′ = E′

1 ∪ E′
2, G

′
1 = (P,E′

1) ∈ Γρ(n)

5

and G′
2 = (P,E′

2) ∈ Γρ̄(n). Then G′
1 and G′

2 can be edge-embedded into G and Ḡ respectively. Define
ψĜ : E′ → PĜ as follows:

ψĜ(e
′) 7→

{
ψG(e

′), if e′ ∈ E′
1,

ψḠ(e
′), if e′ ∈ E′

2.

Since E′ = E′
1 ∪E′

2, and all edges in E′
1 and E′

2 were edge-embedded into G and Ḡ, each edge is mapped to a
path. Furthermore, these paths are edge disjoint because E and Ē, in which E′

1 and E′
2 were edge-embedded,

are disjoint. ⊓⊔

Corollary 1 ([44, Corollary 2.2]). An EUG for Γρ(n) can be constructed by merging ρ EUGs for Γ1(n).

Proof. Let G = (V,E, P) be a Γ1(n) EUG. Create ρ− 1 copies of G with the same pole set and merge these
graphs successively. Correctness follows directly by applying Prop. 1 ρ times. ⊓⊔

We call the UCs that are constructed according to Cor. 1 the fixed UC construction which was also mentioned
in [40, App. A]. However, in §4.1, we introduce our so-called dynamic UC construction that is constructed by
two instances of Γ1(n) EUGs but still allows to edge-embed graphs with arbitrary fanin ρ.

2.2 Building Universal Circuits from Edge-Universal Graphs

Boolean Circuits. A Boolean circuit can be seen as a directed acyclic graph whose nodes are Boolean
inputs, (binary) gates, and outputs, and the directed edges are the wires. A Boolean gate is a function
z : {0, 1}k → {0, 1} for k ∈ N. However, we can always divide a k-input gate into O(2k) binary gates using
Shannon’s expansion theorem [41]. Unfortunately, we cannot avoid an exponential blow-up of the number of
gates by this transformation [45, Theorem 2.1]. The two most prominent minimization methods for Boolean
circuits are due to Karnaugh [24] and Quine-McCluskey [39]. As already mentioned, the UC constructions
by Valiant [44] and Liu et al. [31] are designed to embed Γρ(n) graphs, thus we possibly need to reduce the
outdegree of the gates to ρ by using so-called copy gates which just copy their inputs [44, Corollary 3.1].3

From Edge-Universal Graphs to Universal Circuits. The translation from a EUG G = (V,E, P) into a
UC is depicted in Fig. 1 and works as follows. First, the nodes of circuit C that shall be embedded into G
constitute the set of poles P of the EUG. A pole p ∈ P is translated into an input (resp. output) wire, if p
corresponds to an input (resp. output) in C, or into a so-called Universal Gate, if p corresponds to a gate
in C. Universal gates take k inputs (k = 2 in the previous works [44,4,31]), 2k programming bits, compute
one output and can be programmed to simulate any k input Boolean gate by specifying the truth table with
the programming bits. We can implement universal gates with a binary tree of 2k − 1 multiplexers (also
called Y-switches) spanned over the 2k programming bits, where the correct programming bit specified by
the k inputs is forwarded to the output (we refer to [44,26,19,48,4,31] for more details).4

The remaining nodes in the set V \ P are for connecting the routes between the poles. A node v ∈ V \ P
is translated as follows:
– if v has two incoming edges and one outgoing edge, it is translated into a multiplexer/Y-switch (cf. Fig. 2a).
A multiplexer has two inputs x0 and x1 and a programming bit p and outputs one bit, namely xp. It is
implemented with 1 AND gate and 2 XOR gates [29].

– if v has two incoming edges and two outgoing edges, it is translated into an X-switch (cf. Fig. 2b). An
X-switch has two inputs x0 and x1, one programming bit p and outputs two bits, namely (xp, x1−p). It is
implemented with 1 AND gate and 3 XOR gates [29].

– if v has one incoming wire, it is replaced by a single wire that connects all of the outgoing edges.
The programming bits of the nodes are derived from the edge-embedding.

3 Note that a Universal Circuit can also compute circuits with less than the specified number of inputs, gates, and
outputs by using dummy values with no functionality.

4 When evaluating the UC with Yao’s garbled circuit protocol [47], the universal gate can be directly implemented as
a garbled table when the function holder takes over the garbling part.

6

x2

x2x1

p = 0

x1

x2x1

p = 1

(a) Y-switch

x2x1

x2x1

p = 0

x1x2

x2x1

p = 1

(b) X-switch

Fig. 2: Switching nodes with programming bit p.

3 UC Constructions

In this section, we summarize the general guidelines for constructing edge-universal graphs (§ 3.1), present
the original idea of Valiant [44] (§ 3.2), and describe the state-of-the-art construction of Liu et al. [31] (§ 3.3).

3.1 General EUG constructions

The strategy for building UCs via EUGs is to construct Γ1(n) EUGs of smallest size, merging ρ instances of
these (cf. Cor. 1) to construct a Γρ(n) EUG (ρ = 2 for binary gates/circuits), and translating this into a
universal circuit. Valiant [44] proposed the first two constructions for Γ1(n) EUGs, today known as 2-way
and 4-way constructions, having asymptotic sizes of ∼ 2.5n log n and ∼ 2.375n log n.5 Recently, Liu et
al. [31] extended Valiant’s framework, simplified the construction, and achieved an EUG based on the 2-way
approach of asymptotically optimal size of ∼ 1.5n log n, which almost reaches their computed lower bound
of ∼ 1.475n log n. The concrete construction principle of both frameworks is the same.

Let us assume we aim to construct a Γ1(n) EUG G = (V,E, P) for a circuit of size n with a k-way
construction. First, we put k distinguished poles from the set P into a block called superpole that has k inputs
and k outputs. Within this superpole, we can route edge-disjointly between its inputs and poles, and between
its poles and outputs. In total, we have ⌈n/k⌉ superpoles built by the poles set P . The k inputs and outputs
of each superpole then can be used as poles for k instances of a Γ1(⌈n/k⌉ − 1) nested EUG, which on a high
level allows to find edge-disjoint paths between the superpoles of G.6

More formally, a superpole shall be able to edge-embed any so-called augmented k-way block (similar to
augmented DAG in [31]). An augmented k-way block is a map that defines the routes between the inputs
and poles of the superpole, and between poles and other poles and outputs.

Definition 5 (Augmented k-way Block). An augmented k-way block G = (V,E) for pole set P , superpole
inputs I, and superpole outputs O is a directed graph such that

– V = P ∪ I ∪O, P ∩ I = P ∩O = ∅ and |I| = |O| = k,
– G[P] := (P,EP) has fanin/fanout 1,
– E = EP ∪ Eio with Eio satisfying

• (Soundness) Every e ∈ Eio satisfies either e = (in, p) or e = (p, out) for p ∈ P, in ∈ I, out ∈ O,
• (Completeness) For every source (resp. sink) p ∈ P , there exists at most one in ∈ I (resp. out ∈ O)
such that (in, p) ∈ Eio (resp. (p, out) ∈ Eio).

The set of all augmented k-way blocks for P, I,O is denoted by Bk(P, I,O).

5 ∼ 2.25n logn when including the optimizations by Zhao et al. [48] for the 4-way construction.
6 We distinguish between EUGs and nested EUGs as the recursively constructed nested EUGs differ from its first
EUG in Liu et al.’s construction [31].

7

Algorithm 1: Valiant(P, k)

Input :Poles P := {p1, ..., pn}, split parameter k
Output :Γ1(n) EUG G = (V,E, P,G∗, G1, ..., Gk)

1 V ← ∅, E ← ∅, G∗ ← ∅
2 O0 ← create k dummy nodes
3 for i← 1 to ⌈n

k
⌉ do

4 Pi ← {pk(i−1)+1, ..., pki}
// Use Oi−1 as input recursion points to this superpole (cf. Fig. 3b)

5 SP (k)i = (Vi, Ei, Pi,Pi, Ii,Oi)← Createsuperpole(Pi,Oi−1, k); G
∗ ← G∗ ∪ {SP (k)i}

6 V ← V ∪ Vi, E ← E ∪ Ei

7 for i← 1 to k do
8 if n ≤ k then
9 Gi ← (∅, ..., ∅) // Recursion base

10 else
// Take the i-th output recursion point of each superpole (but the last) as the poles

for the next sub EUG

11 P i ← {O1[i],O2[i], ...,O⌈n
k
⌉−1[i]}

12 Gi = (V i, Ei, ...)← Valiant(P i, k)

13 V ← V ∪ V i, E ← E ∪ Ei

14 return G = (V,E, P,G∗, G1, ..., Gk)

Definition 6 (k-way Superpole). A k-way superpole, denoted by SP (k) is a graph G = (V,E, P,P, I,O),
where the following conditions hold:

– P = P ∪ I ∪ O with |I| = |O| = k and P ∩ I = P ∩ O = ∅.
– G can edge-embed every G′ ∈ Bk(P, I,O).

We denote the input recursion points I of a k-way superpole as {in1, in2, ..., ink} and the output recursion
points O as {out1, out2, ..., outk}. These nodes serve as the inputs and outputs to the superpole and will be
the poles of the next recursion, i.e., of the next nested EUG. We neither require the sets I and O to be
disjoint nor that the recursion points of different superpoles must be disjoint. In fact, Valiant [44] merges the
output recursion points of the i-th superpole with the input recursion points of the (i+1)-th superpole. On a
high level, a superpole in a nested EUG U1, i.e., an EUG that is derived as a recursion from a larger EUG U ,
has k entry points to an input of k distinguished superpoles in U as well as k exit points from an output
of k distinguished superpoles.

3.2 Valiant’s EUG construction [44]

Definition 7 (Valiant EUG). A Valiant EUG G = (V,E, P,G∗, G1, ..., Gk) is a graph that is created by
Alg. 1 (Valiant). We also use the notation Valiantk(n) for a Valiant EUG with n poles and split parameter
k.

Valiant’s k-way EUG construction is built recursively as depicted in Fig. 3a. A Γ1(n) EUG is a chain
of ⌈n/k⌉ superpoles SP (k)1 = (V1, E1, P1, P1, I1, O1), . . . , SP (k)⌈n/k⌉ = (V⌈n/k⌉, E⌈n/k⌉, P⌈n/k⌉,
P⌈n/k⌉, I⌈n/k⌉,O⌈n/k⌉) (lines 3-7 in Alg. 1). Note that Createsuperpole(P,O, k) creates a superpole with
poles P , input recursion points O, and split parameter k, e.g., Valiant’s k = 2-way superpole SP (2) (Fig. 3b).
The sets O1, . . . ,O⌈n/k−1⌉ each of size k then recursively build the poles of the nested EUGs in the next

recursion step (lines 8-14 in Alg. 1), i.e., we build k nested EUGs G1 = (V 1, E1, P 1), . . . , Gk = (V k, Ek, P k),
where Gi ∈ Γ1(⌈n/k⌉ − 1) and P i = (O1[i], . . . ,O⌈n/k−1⌉[i]). Note that Ii := Oi−1 for all 1 < i ≤ ⌈n/k⌉ as
the k outputs of SP (k)i are pairwise merged with the respective k inputs of SP (k)i+1. The creation of the

8

SP (2)1

SP (2)2

SP (2)⌈n
k
⌉

...

EUG1(⌈nk ⌉ − 1)

...

EUG1(⌈nk ⌉ − 1)

...

(a) Valiant’s EUG1(n) construction.

pi

pi+1

out1 out2

in1 in2

(b) Valiant’s SP (2) construction.

Fig. 3: (a) shows Valiant’s 2-way split construction of EUG1(n) using two instances of EUG1(⌈n
k ⌉ − 1). (b)

shows the corresponding superpole SP (2) construction for the EUG.

first output recursion points O0 is a technical trick, and not needed because these nodes will never be used,
but it simplifies the definition of the algorithm by avoiding a case distinction. An advantage of this recursive
method is that we can also recursively reduce the edge-embedding problem to finding paths between poles of
the nested EUGs. Assuming we can easily edge-embed paths from inputs to poles and from poles to outputs
within the superpoles, one can reduce finding a path from a pole located in SP (k)i to a pole in SP (k)j to the
problem of finding a path from Oi[x] to Oj−1[x] for i, j ∈ [⌈n/k⌉], i < j, where x is the index of the target
output of the superpoles’ internal edge-embedding for the concrete poles. Existing UC implementations [19,4]
split the edge-embedding into two sub-tasks: (a) the superpole edge-embedding that takes care that the
paths within a superpole are defined in a correct manner, and (b) the recursion-point edge-embedding which
chooses the correct paths at the recursion points, i.e., when a path goes one recursion step above or below.

Theorem 1. Let G = (V,E, P,G∗, G1, ..., Gk) be a Valiant EUG with n poles. Then G is an EUG for Γ1(n).

We refer to [4,31] for a proof of Thm. 1.

3.3 Liu et al.’s EUG construction [31]

Definition 8 (Liu+EUG). A Liu+EUG G = (V,E, P,G∗, G1, . . . , Gk) is a graph that is created by Alg. 2
(Liu+). We also use the notation Liu+k (n) for a Liu+EUG with n poles and split parameter k.

Liu et al.’s 2-way EUG construction as defined by Def. 8 is depicted in Fig. 4b and is separated into two
part:

1. We create an intermediate construction that Liu et al. [31] call weak EUG (lines 1-13 in Alg. 2),
which slightly differs from Valiant’s construction but does not satisfy the acyclicness condition for
EUGs (cf. Def. 3). This results in the graph depicted in Fig. 4b including the gray edges and nodes, but
excluding the red edges.

9

2. We destroy the poles within the nested EUGs of the intermediate construction, which implicitly removes
the cycles and leads to an EUG of smaller size (lines 14-27 in Alg. 2). This results in the graph depicted
in Fig. 4b including the red edges, but excluding the gray edges and nodes.

Algorithm 2: Liu+(P, k)

Input :Poles P := {p1, ..., pn}, split parameter k
Output :Γ1(n) EUG G = (V,E, P,G∗, G1, ..., Gk)

1 V ← ∅, E ← ∅, G∗ ← ∅
2 for i← 1 to ⌈n

k
⌉ do

3 Pi ← {pk(i−1)+1, ..., pki}
4 SP (k)i = (Vi, Ei, Pi,Pi, Ii,Oi)← Createsuperpole(Pi, k)
5 G∗ ← G∗ ∪ {SP (k)i}
6 V ← V ∪ Vi, E ← E ∪ Ei

7 for i← 1 to k do
8 if n ≤ k then
9 Gi ← (∅, ..., ∅) // Recursion base

10 else
// Take the i-th output recursion point of each superpole as the poles for the next sub

EUG

11 P i ← {O1[i],O2[i], ...,O⌈n
k
⌉−1[i],O⌈n

k
⌉[i]}

12 Gi = (V i, Ei, ...)← Liu +P i, k

13 V ← V ∪ V i, E ← E ∪ Ei

14 foreach (u, v) ∈ E do
15 if u ∈ s and v is recursion point for some superpole s ∈ G∗ then
16 Gx ← the EUG in which v is a pole
17 E ← E \ {(u, v)}
18 w ← Γ−

Gx(v)
19 E ← E \ {(v, w)}
20 E ← E ∪ {(u,w)}
21 else if u is recursion point for some superpole s ∈ G∗ and v ∈ s then
22 Gx ← the EUG in which u is a pole
23 E ← E \ {(u, v)}
24 w ← Γ+

Gx(u)
25 E ← E \ {(w, u)}
26 E ← E ∪ {(w, v)}

27 remove all recursion points from V

28 return G = (V,E, P,G∗, G1, . . . , Gk)

As in Valiant’s construction (cf. § 3.2), Liu et al. build their EUG as a chain of ⌈n/k⌉ superpoles SP (k)1, . . . , SP (k)⌈n/k⌉ (lines
3-7 in Alg. 2). For the nested EUGs, i.e., those EUGs that are built by recursion, we use the superpole depicted
in Fig. 4a.7 Recall, in Valiant’s construction, we merge the input and output recursion points of neighboring
superpoles, namely the i-th and the (i+ 1)-st superpoles. This time, however, we merge the input and output
recursion points of each superpole individually as depicted in Fig. 4a, i.e., for SP (k)i = (Vi, Ei, Pi,Pi, Ii,Oi),
the k nested EUGs in the next recursion step are built as G1 = (V 1, E1, P 1), . . . , Gk = (V k, Ek, P k),
where Gj ∈ Γ1(⌈n/k⌉) and P j = (O1[j], . . . ,On/k[j]) = (I1[j], . . . , I⌈n/k⌉[j]) for i ∈ [⌈n/k⌉] and j ∈ [k].

7 Note that the main structure is equal to Valiant’s superpole (cf. Figure 3b), but the input and output recursion
points are merged. That is why createSuperpole in Alg. 2 does not need the second argument (cf. Alg. 1) as the
recursion points of two superpoles are disjoint.

10

pi

pi+1

(in/out)1 (in/out)2

(a) 2-way-superpole.

pi

pi+1

(in/out)jl (in/out)jr

pi+2

pi+3

(in/out)j+1
l (in/out)j+1

r

. . .

. . .
.

.

.

(b) Basic structure for the 2-way split.

Fig. 4: (a) Superpole and (b) basic structure of Liu et al.’s 2-way split construction [31].

As a consequence, this construction then yields a pole set of size |P i| = ⌈n/k⌉ (line 11 in Alg. 2) for
the k nested EUGs as each superpole needs a separate input/output recursion point, while in Valiant’s
construction two neighboring superpoles are able to share one input/output recursion point yielding a pole
set of size |PVali | = ⌈n/k⌉ − 1 (line 12 in Alg. 1), i.e., Liu et al.’s intermediate construction even has a worse
size than Valiant’s construction. On top of that, as Fig. 4b shows, this merging of input and output recursion
points within the same pole leads to cycles that are not allowed in EUGs according to Def. 3.

However, there is one key observation that allows to reduce the size of the intermediate EUG tremendously.
Note, so far we have built the construction as depicted in Fig. 4b including the gray edges and excluding
the red edges. Now, we want to remove the gray edges and introduce the red ones in order to get rid of
the cycles and turn this weak EUG into a real EUG. First, let us have a look at the node v = (in/out)jl
in Fig. 4b and ignoring the red edges first. When we translate this graph into a UC, we would implement v
as an X-switch because it has two inputs and two outputs. One input of this X-switch is the output of
superpole SP (k)i/2 (that contains the poles pi and pi+1) and one output of this X-switch is the input
of the same superpole SP (k)i/2. However, as we are not allowed to have cycles in a Boolean circuit that

11

implements combinational logic, we are not allowed to program the X-switch such that its input coming
from superpole SP (k)i/2 is forwarded to its output that is directed to the input of superpole SP (k)i/2.
Consequently, the X-switch allows only one programming, namely the one that does not lead to a cycle.
However, since the programming of this X-switch is fixed, we can replace it with two wires, i.e., we can
remove the whole X-switch and thus also the node v and connect the corresponding wires to the other input
and output of v that are not directed to/from the superpole SP (k)i/2 (cf. red lines in Fig. 4b and lines 15-26
in Alg. 2). This reduces the size of the superpole in nested EUGs to |SP (2)| = 3 (resp. |SP (4)| = 15) as the
two (resp. four) poles are removed.

Theorem 2 (cf. [31, Theorem 4]). Let G = (V,E, P,G∗, G1, ..., Gk) be a Liu EUG with n poles. Then G
is an EUG for Γ1(n) with size bounded by

|SP (k)| − k

k log2(k)
n log2(n) +O(n).

We refer to [31] for the proof of Thm. 2.

4 Evaluating LUTs with UCs

In this section, we extend the UC constructions from § 3 to be able to simulate (ρ → ω)-LUT-based circuits.
For this, we first design UCs to evaluate (ρ → 1)-LUT-based circuits, i.e., circuits that consist of LUTs
with ρ inputs and only one output. We present two constructions for this in § 4.1: firstly, Valiant’s [44]
so-called fixed UC construction that merges ρ instances of Γ1(n) EUGs, and, secondly, our new dynamic UC
construction that keeps the two instances of Γ1(n) EUGs, but merges several poles in order to collect the ρ
input wires needed for the LUT. Afterwards, in § 4.2, we extend this to a general approach applicable to all
UC constructions (including the fixed and our new dynamic UC construction) that allows the UC to simulate
(ρ → ω)-LUT-based circuits. In § 4.3, we analyze the most important building blocks for PFE applications,
describe how to implement them with LUTs, and show their theoretical improvement over evaluating the
same building blocks with Boolean circuits.

4.1 Support for multi-inputs

Fixed UC construction [44,40] The first method called fixed UC construction to integrate LUTs with
more than two inputs into our UC was already proposed by Valiant [44] and its size has been computed
in [40]. One can get a UC consisting of n copies of (ρ → 1)-LUT from a U = Γρ(n) EUG that is merged by ρ
instances of a Γ1(n) EUG according to Cor. 1. Each pole of U that is not an input or an output can then be
implemented as a LUT having ρ inputs.

Corollary 2. An EUG for Γρ(n) for ρ ∈ N≥2 can be constructed with size at most 1.5ρn log2(n) +O(n).

Proof. Construct ρ instances of Liu(n)+2 and merge them. By Cor. 1, this yields an EUG for Γρ(n) with size
bounded by 1.5ρn log2(n) +O(n). ⊓⊔

Our dynamic UC construction. A bottleneck of the fixed UC construction is the merging of multiple
instances of a Γ1(n) EUG, namely ρ instances when using (ρ → 1)-LUTs. This yields a huge prefactor of our
UC, which in most cases results in a worse size than putting the equivalent Boolean representation into a UC.
In § 4.3, we show that most functionalities are composed naturally of 3-input LUTs so that the potential
of most ρ-input LUTs for ρ > 4 is not used. However, in many applications, functionalities are naturally
implemented by LUTs with higher arity, e.g., classifying a car that is insuranced by a company [18]. In this
case, we aim to put single LUTs with a higher arity (e.g., ρ = 8) into the UC. Using the fixed constuction for
this concrete example, we would need to compose the UC of 8 instances of Γ1(n) EUGs, even if we only need

12

Algorithm 3: AuxiliaryGraph(G)

Input :G = (V,E) ∈ ΓP+,2(n)

Output : Ḡ = (V̄ , Ē) ∈ Γ2(n+∆) with ∆ =
n∑

i=0

max{⌈P
+
i −2

2
⌉, 0}

1 Ḡ = (V̄ , Ē)← (V, ∅)
2 foreach vi ∈ V do
3 j ← 0
4 foreach e = (w, vi) ∈ E do
5 if j ≥ 2 then
6 if j ≡ 0 (mod 2) then
7 V̄ ← V̄ ∪ {u

i, j
2
}

8 Ē ← Ē ∪ {(w, u
i,⌈ j

2
⌉)}

9 else
10 Ē ← Ē ∪ {e}
11 j ← j + 1

the full (8 → 1)-LUT few times in the whole circuit. An alternative would be to decompose the larger LUTs
into multiple smaller ones using Shannon expansion [41].

To circumvent this additional overhead, we propose our dynamic UC construction which only leaks
the number of inputs/outputs of each each LUT and hence can still be used for semi-private function
evaluation (SPFE) [36,18]. In our dynamic UC construction, we keep building our UC from only two instances
of a Γ1(n) EUG, independent of the LUT sizes. We do this by adding so-called auxiliary poles u to the EUG
whose task are to collect up to two inputs and forwards these inputs via direct edges to a real pole v to push
the indegree of v to ρ. Def. 9 defines ΓP+,P−(n) graphs, which classify the graphs that can be edge-embedded
into our dynamic UC construction, namely, the vectors P+ and P− specify the maximum indegree and
outdegree of each LUT in our circuit that we aim to evaluate with the UC. In the specific case where we
want to fully hide the function in PFE for ρ input LUTs, we set P+ = 1ρ,8 i.e., each LUT in the circuit can
have at most ρ inputs and the resulting UC implements each universal gate as a (ρ → 1)-LUT. In the general
case for SPFE, the universal gates of the UC have different implementations and therefore leak the specific
input sizes of all LUTs.

Definition 9 (ΓP+,P−(n)). Let G = (V,E) be a directed acyclic graph with topologically ordered V :=
{v1, v2, ..., vn} and P+,P− ∈ Nn. Then G ∈ ΓP+,P−(n) if:

– |V | ≤ n,
– deg+(vi) ≤ P+

i ∧ deg−(vi) ≤ P−
i ∀ i ∈ [n].

If P+/− = 1ρ for some ρ ∈ N, we write ρ instead of 1ρ.

In this sense, Corollary 2 yields a Γρ,ρ(n) EUG. In the following, we describe our dynamic UC construction.
An example of the whole EUG creation and embedding process is depicted in Fig. 5. The explicit creation of
the used auxiliary graph is given by Alg. 3.

The key observation for our dynamic UC construction is that, when merging two instances of Γ1(n) EUGs,
each of the n poles (excluding inputs and outputs) can take two inputs, and can, but not necessarily need
to, compute one output. We can use this observation to merge poles in order to collect ρ > 2 inputs for our
LUT. For example, looking at Fig. 5, a (5 → 1)-LUT consists of the three poles p6, p7, and p8, where pole p6
(resp. p7) just collects two (resp. one) inputs, but do not compute any output. Instead, their ingoing edges
are forwarded to pole p8 (dashed lines) and the outgoing edges (gray lines) are removed. Pole p8 now has, in

8
1 denotes the vector where each entry is 1

13

v1 v2 v3 v5v4

v6

(a) Original graph

v1 v2 v3 v5v4

v6

u6,1 u6,2

(b) Corresponding auxiliary graph

p1

p2

p3

p4

p5

p6

p7

p8

(c) Edge-embedding of the original graph. First, the edges from the auxiliary graph are embedded. Then, edges in
gray are removed from the EUG, while dashed edges are added to the EUG, resp. to the edge-embedding. The result
is an edge-embedding for the original graph. Now we can replace the ingoing edges to p6 by directed edges to the
multi-input pole p8. The auxiliary pole p7 becomes a Y-Switch that only forwards the orange wire.

Fig. 5: Our dynamic UC construction for ρ = 5.

14

addition to its two regular ingoing edges, three additionel ingoing edges that come directly from poles p6
and p7. On a high level, we can merge ⌈ρ/2⌉ poles into one (ρ → 1)-LUT, while the first ⌈ρ/2⌉ − 1 so-called
auxiliary poles each collect up to two inputs for the LUT which are then directly forwarded to the last pole,
which takes the last two inputs of the LUT and computes the output.

More formally, we begin by constructing an auxiliary graph Ḡ. For each pole p that has ρ > 2 incoming
edges, we create an auxiliary pole for each two additional inputs, i.e., ⌈ρ/2− 1⌉ auxiliary poles. Then, we
replace all except two edges from pole p by edges to the auxiliary poles. The purpose of the auxiliary poles is
to forward their inputs to the original multi-input pole. The resulting EUG U then guarantees that there can
be a path from any pole with lower order to the corresponding auxiliary poles.

If there is a multi-input gate with an odd number of inputs ρ, then there will be one auxiliary pole in Ḡ
with only one input. In this case, we can share this auxiliary pole for two poles if both have an odd number
of inputs (which is always the case in the special case of PFE). This concrete auxiliary pole is then later
translated into an X-switching block so that the inputs can be forwarded to the correct LUT.

Theorem 3. Let P+ ∈ Nn. Then there exists an EUG for ΓP+,2(n) with size bounded by

3(n+∆) log2(n+∆) +O(n+∆),

where ∆ :=
n∑

i=1

max{⌈P+
i −2

2 ⌉, 0}.

Proof. Step 1: Create a Γ2(n+∆) EUG U = (V U , EU , P,U∗,U1,U2) with a topologically ordered pole set P

that has the form (..., vi−1, ui,1, ..., u
i,⌈

P
+
i

−2

2 ⌉
, vi, ...) for all i ∈ [n], i.e., the auxiliary poles ui,j for j ∈ [⌈P+

i −2

2 ⌉]

are directly preceding the original pole vi:
We do this by creating a Liu EUG U with pole set V̄ and split parameter 2. Then we merge two instances of
it. By Thm. 2 and Cor. 1, this yields a Γ2(n+∆) EUG of size at most 3(n+∆) log2(n+∆) +O(n+∆).

Step 2: Adjust U to get the final EUG Ū = (V Ū , EŪ , V, Ū∗, Ū1, Ū2):

Let ui,j be an auxiliary pole of vi for i ∈ [n], j ∈ [⌈P+
i −2

2 ⌉]. Remove all of its outgoing edges and replace
each of them with an edge connecting the auxiliary pole to the original multi-input pole, i.e., remove each
(ui,j , w) ∈ EU for w ∈ V U and replace it by (ui,j , vi). This yields two edges (ui,j , vi) per auxiliary pole ui,j .
Thus, EU becomes a multi set.
If P+

i is odd and j = 1, add only one of these edges instead of two (otherwise, vi would have too many ingoing
edges). The graph that results from modifying U in the just described way is denoted by Ū .

Step 3: Embed any graph G = (V,E) ∈ ΓP+,2(n) V := {v1, v2, ..., vn} into Ū :
For this, we construct a Γ2(n +∆) graph using auxiliary poles for nodes with indegree higher than 2 by
setting Ḡ = (V̄ , Ē) = auxiliaryGraph(G) ∈ Γ2(n+∆) (Alg. 3). Note that the ”relative topological order”
is maintained, i.e., ηḠ(vi) < ηḠ(vi+1) ∀i ∈ [n]. Edge-embedding Ḡ into Ū yields ψ : Ē → PŪ . To show that Ū
is a ΓP+,2(n) EUG, we need to define an edge-embedding ψ̄ from G into Ū :
Note that for edges e = (vi, vl) ∈ G \ Ḡ, i.e., edges whose endpoints are not auxiliary poles, ψ already yields
edge-disjoint vi-vl-paths and we can set ψ̄(e) = ψ(e) for those edges.
Now consider edges e = (vi, vl) ∈ G ∩ Ḡ, i.e., the endpoints of those edges are transformed into an auxiliary

pole in Ḡ. For each e, there is exactly one ē = (vi, ul,j) ∈ Ḡ for j ∈ [⌈deg+(vl)−2
2 ⌉] (line 8 in AuxiliaryGraph).

Now set ψ̄(e) = ψ(ē) + (ul,j , vl) for one of the possibly two edges (ul,j , vl) that were added to Ū before.
Obviously, this yields a vi-vl-path. Since there are at most two edges connecting to an auxiliary pole, we can
choose a unique last edge for each path. Because the paths in the image of ψ were already edge-disjoint, also
the paths in the image of ψ̄ are edge-disjoint. Thus, ψ̄ is an edge-embedding of G into Ū . ⊓⊔

Thm. 3 gives us an EUG that can be used to build UCs for LUTs of various sizes and can thus be used
for Semi-Private Function Evaluation (SPFE). Next, we consider full Private Function Evaluation (PFE) for
circuits just consisting of (ρ → 1)-LUTs.

15

Corollary 3. Let P+ = 1ρ ∈ Nn for ρ > 2. Then there exists a EUG for ΓP+,2(n) with size bounded by

3⌈ρ
2
n⌉ log2(⌈

ρ

2
n⌉) +O(⌈ρ

2
n⌉).

Proof. Following the proof of Thm. 3, we do the same steps and highlight the differences.
Step 1: Create a Γ2(⌈ρ

2n⌉) EUG U with topologically ordered pole set P that has the form (..., vi−1, ui,1,
..., ui,⌈ ρ−2

2 ⌉, vi, ui+1,1, ..., ui+1,⌊ ρ−2
2 ⌋, vi+1, ...) as described in step 1 in the proof of Thm. 3.

Step 2: Adjust U to get the final EUG Ū = (V Ū , EŪ , V, Ū∗, Ū1, Ū2) as described in step 1 in the proof of
Thm. 3 with one difference: If ρ is odd, we share one auxiliary pole ui,1 for two consecutive original poles vi
and vi+1, i.e., we add the two edges (ui,1, vi) and (ui,1, vi+1).

Step 3: Edge-embed G into Ū as described in step 3 in the proof of Thm. 3 with one difference: If ρ
is odd, the auxiliary graph Ḡ = (V̄ , Ē) shares on auxiliary pole ui,1 for two consecutive original poles vi
and vi+1, i.e., ui+1,1 is removed from V̄ and the edge (w, ui+1,1) is replaced by the edge (w, ui,1). As ui,1
and ui+1,1 both have indegree 1, ui,1 now has indegree 2. ⊓⊔

4.2 Support for multi-outputs

In order to support (ρ → ω)-LUTs with ω > 1 outputs, we propose a general solution that can be combined
with the fixed and the dynamic UC constructions (cf. § 4.1), and is even compatible with the original
constructions of Valiant [44] and Liu et al. [31].9 The high level idea is as follows: For a (ρ → ω)-LUT, take
ω poles and let each of these poles compute and output one of the LUT’s output. Concretely, the first pole
takes the ρ inputs of the LUT using the fixed or dynamic UC construction and computes the first output of
the LUT. The remaining poles copy the ρ inputs of the first poles by direct connections and compute the
remaining outputs of the LUT. This results in a chain of ω poles each outputting one of the LUT’s outputs.

An auxiliary graph that represents multi-output LUTs is a ΓP+,P−,Ω−(n) graph as defined in Def. 10.
As before, P+ and P− represent the indegree resp. outdegree of each node in the auxiliary graph. Ω− now
describes the number of distinguished outputs of the LUTs. As later, when embedding G into the EUG, each
output of a LUT represents a separate value, i.e., we need to put each output into an individual pole. As the
poles of the EUG are the nodes of the auxiliary graph, we need to add for each additional output of the i-th
LUT in total Ω−

i − 1 additional poles. In Def. 10, we denote the outputs of the i-th LUT with vi,1, . . . , vi,Ω−
i
.

Definition 10 (ΓP+,P−,Ω−(n)). Let G = (V,E) be a directed acyclic graph with topologically ordered
V := {v1,1, . . . , v1,Ω−

1
, v2,1, . . . , v2,Ω−

2
, . . . , vn,1, . . . , vn,Ω−

n
} and P+,P−, Ω− ∈ Nn. Then G ∈ ΓP+,P−,Ω−(n) if:

– |V | ≤
n∑

i=1

Ω−
i ,

– |{vi,j ∈ V }| ≤ Ω−
i ∀i ∈ [n],

– deg+(vi,1) ≤ P+
i ∧ deg+(vi,2) = · · · = deg+(vi,Ω−

i
) = 0,

– deg−(vi,j) ≤ P−
i ∀ i ∈ [n]∀j ∈ [Ω−

i].

To easily build an EUG with only marginal modifications, we show that a ΓP+,P−,Ω− is also a ΓP+,P−

graph:

Proposition 2. Let G ∈ ΓP+,P−,Ω−(n). Then G ∈ ΓP+,P−(n+∆), where

∆ :=
n∑

i=1

Ω−
i − 1.

Proof. Let G = (V,E) ∈ ΓP+,P−,Ω−(n). Obviously, it holds that |V | ≤
n∑

i=1

Ω−
i = n + ∆ where ∆ =

n∑
i=1

Ω−
i − 1 (condition 1 in Def. 10). Further, for all v ∈ V it holds that deg+(v) ≤ P+

i and deg−(vi,j) ≤ P−
i

from condition 3 and 4 in Def. 10. ⊓⊔
9 Valiant’s [44] and Liu et al.’s [31] construction corresponds to the fixed UC construction for (2 → 1)-LUTs.

16

Now, we can build EUGs for varying multi-input and multi-output LUTs in the SPFE setting using Cor. 4,
as well as in the PFE setting where all LUTs have the same number of inputs and outputs using Cor. 5.

Corollary 4. Let P+, Ω− ∈ Nn. Then there exists a EUG for ΓP+,2,Ω−(n) with size bounded by

3(n+∆) log2(n+∆) +O(n+∆),

where ∆ :=
n∑

i=1

(max{⌈P+
i −2

2 ⌉, 0}+Ω−
i − 1).

Proof. Let G = (V,E) ∈ ΓP+,2,Ω−(n) be the graph to be embedded in an EUG with V = {v1,1, . . . , v1,Ω−
1
,

v2,1, . . . , v2,Ω−
2
, . . . , vn,1, . . . , vn,Ω−

n
}. We can transform G into a ΓP+,2(n+∆′) graph where ∆′ :=

n∑
i=1

Ω−
i − 1

. Using Thm. 3, we get an EUG for ΓP+,2(n+∆′) that is bounded by

3(n+∆′ +∆′′) log2(n+∆′ +∆′′) +O(n+∆′ +∆′′),

where ∆′′ :=
n∑

i=1

max{⌈P+
i −2

2 ⌉, 0} and ∆ := ∆′ +∆′′ follows.

We need to add some more edges to the resulting EUG Ū = (V Ū , EŪ , V, Ū∗, Ū1, Ū2) with pole set V ,
namely the inputs of the first pole associated with the LUT need to be forwarded to all remaining output
poles of the same LUT as follows:

∀i ∈ [n] : ∀vi,1 ∈ V : ∀(u, vi,1) ∈ EŪ : ∀vi,j ∈ V, j > 1 : EŪ = EŪ ∪ (u, vi,j). ⊓⊔

Corollary 5. Let P+ = ρ ∈ Nn for ρ > 2 and Ω− = ω ∈ Nn for ω > 1. Then there exists an EUG for
ΓP+,2(n) with size bounded by

3(⌈(ρ
2
+ ω − 1)n⌉) log2(⌈(

ρ

2
+ ω − 1)n⌉) +O(⌈(ρ

2
+ ω − 1)n⌉).

Proof. Follows directly from Cor. 3 and Cor. 4. ⊓⊔

4.3 Improvement

In this subsection, we show the improvement of our LUT-based dynamic UC constructions for several
basic building blocks such as full adder (FA), comparator (CMP), multiplexer (MUX), and AES-Sbox. As
summarized in Tab. 2, our basic building blocks are smaller than the previous constructions [19,26,31,4]
in UC size by up to factor 10×. Note that we compute the improvement factors using only the prefactor,
so actual improvements will be larger as also the logarithmic term is improved. This UC size reduction is
achieved by merging smaller 2-input gates into larger multi-input look-up-tables (LUT).
Full Adder (FA): The optimized implementation of a FA uses four 2-input XOR gates and one 2-input AND
gate (cf. [27, Fig. 2]). We can implement a FA using only one (3 → 2)-LUT, resulting in an improvement by
≥ 2× in UC size (cf. Tab. 2).
Comparator (CMP): The 1-bit comparator consists of three 2-input XOR gates and a single 2-input AND
gate (cf. [27, Fig. 6]). Our improved LUT-based instantiating for CMP uses only one (3 → 1)-LUT, resulting
in an improvement of ≥ 2.7× in UC size (cf. Tab. 2).
Multiplexer (MUX): The MUX block can be instantiated with one 2-input AND gate and two 2-input XOR
gates (cf. [28]). In our approach, MUX can be instantiated with only one (3 → 1)-LUT, resulting in an
improvement of ≥ 2× in the UC size (cf. Tab. 2).
AES-Sbox: The most optimized AES-Sbox presented in [7] consists of 32 2-input AND gates and 83 2-input
XOR gates. Our LUT-based AES-Sbox needs only one (8 → 8)-LUT resulting in an improvement of ≥ 10.4×
in UC size (cf. Tab. 2). Note that also other ciphers that use Sboxes such as LowMC [3] benefit from our
approach. 17

Table 2: UC Size of efficient constructions for basic building blocks which can be used to construct more
complex functionalities. The asymptotic UC sizes for LUT-based circuits apply to both the fixed and dynamic
construction.

Building

Block (BB)
Boolean Circuit LUT-based Circuit

Improvement
Gates Asympt. UC Size # LUTs Asympt. UC Size

4 XOR
FA

1 AND
15n log 5n+O(n) (3 → 2)-LUT 7.5n log 2.5n+O(n) ≥ 2×

3 XOR
CMP

1 AND
12n log 4n+O(n) (3 → 1)-LUT 4.5n log 1.5n+O(n) ≥ 2.7×

2 XOR
MUX

1 AND
9n log 3n+O(n) (3 → 1)-LUT 4.5n log 1.5n+O(n) ≥ 2×

83 XOR
AES-Sbox

32 AND
345n log 115n+O(n) (8 → 8)-LUT 33n log 11n+O(n) ≥ 10.5×

Complex Building Blocks. We now present several motivating examples that benefit from improvements of
our basic building blocks. More complex functionalities can be built based on these building blocks which occur
naturally in PFE applications such as calculating car insurance tariffs [18], credit worthiness checking [14],
and medical diagnosis [6].
Addition and Subtraction. An l-bit addition is composed of a chain of l Full Adders (FA) (cf. [27, Fig. 1]. An
l-bit subtraction is defined as x−y = x+y+1 and can be constructed similarly to an addition circuit using l FAs
(cf. [27, Fig. 3]. Using our FA construction, the UC size of the addition and subtraction is improved by ≥ 2×.
Multiplication. Multiplication of two l-bit numbers can be composed of l2 of 2-input AND gates ((2 →
1)-LUT) and (l − 1) l-bit adders [27]. Using the efficient implementation for LUT-based adders, the UC size
of the multiplication circuit is improved by ≥ 1.7×.
Multiplexer. An l-bit multiplexer circuit can be composed of l parallel MUX (cf. [28, Fig. 9]) to select one
of the l-bit inputs. So, using our LUT-based MUX has ≥ 2× improvement for an l-bit multiplexer.
Comparison. An l-bit comparison circuit can be composed of a chain of l CMPs (cf. [27, Fig. 5]). Thus,
deploying our CMP construction improves the UC size of the comparison circuit by ≥ 2.7×. A minimum
circuit which selects the minimum value of a list of m l-bit values is composed of l-bit comparison and
multiplexer circuits (cf. [27, Fig. 8]) and hence is improved by ≥ 2.3×.

5 Implementation and Evaluation

We implement our proposed UC constructions described in §4 using the MPC framework ABY [10]. We
benchmark our fixed and dynamic UC constructions and compare them with Liu et al.’s [31] UC that simulates
circuits with binary gates. All results in this section use the EUG construction proposed by Liu et al. [31] to
construct the underlying Γ1 EUGs. Our implementation is available as open-source under the MIT license
at https://...10. We discuss the LUT generation in § 5.1, the UC compilation in § 5.2, and give experimental
results in § 5.3.

5.1 LUT generation

As we move away from 2-input Boolean gates, we need LUT-based circuit representations of the functions.
However, it takes significant engineering and modification to expand hardware synthesis tools beyond their
intended uses and adapt their output to our LUT-based UC representation. Instead, we provide a toolchain that

10 URL removed for anonymous submission

18

converts high level function descriptions into LUT representations. Similar to [11, Section 5], we use hardware
synthesis tools to automatically and effectively generate multi-input/multi-output LUT representations. For
this, we make use of Yosys [46] and the ABC mapping [43]. We further use integrated Intellectual Property
(IP) libraries in the Synopsys Design Compiler (DC) [1], a commercial ASIC synthesis tool, to generate
circuit netlists containing more complicated functionality, such as floating-point operations. These circuits
are created as Boolean netlists by Synopsys DC, which we then remap to LUT-based representations using
the Yosys-ABC toolchain.

5.2 UC Compilation

Let C denote the circuit to be embedded and ρ the maximum fan-in of the circuit. We implement UC
compilation as follows:
1. Parsing the circuit: The circuit is input in the Secure Hardware Definition Language (SHDL) [32] and
parsed into the internal graph representation. If the fan-out of the graph is higher than the allowed fan-in
(ρ for the fixed UC construction and 2 for the dynamic UC construction), the fan-out is reduced by copy
gates. G denotes the resulting graph. If we want to use dynamic multi-input gates, then the auxiliary graph
as in Theorem 3 is generated (cf. Alg. 3). In this case, we denote the auxiliary graph by G and the former
graph with possibly reduced fan-out by Ḡ.
2. Splitting G into Γ1 graphs and creating Γ1 EUGs: If we use the dynamic UC construction, we get
two Γ1 graphs. Using the fixed UC construction yields ρ Γ1 graphs. For each Γ1 graph, we create a Γ1 EUG.
Possible EUGs are Valiant’s EUG [44] and the 2-way split EUG of Liu et al. [31].
3. Edge-embedding the Γ1 graphs and merging them: Each Γ1 graph is edge-embedded into the
corresponding Γ1 EUG. This edge-embedding is coded directly into the control bits of the X- and Y-Switches
of the EUG. We do not construct an explicit edge-embedding map ψ because we only need the control bits
to create the UC and the programming bits. The concrete algorithm uses a slightly modified version of
the edge-embedding algorithm in [19]. Then, the Γ1 EUGs are merged into a Γρ EUG (for the fixed UC
construction) or into a Γ2 EUG (for the dynamic UC construction).
4. Doing basic optimizations and checking the correctness of the edge-embedding: We remove
edges connecting to an input pole as they will never be used and replace copy gates with wires. Then we
remove isolated nodes or change X- to Y-Switching nodes if one edge was removed before. We check the
correctness of the edge-embedding by checking for each edge (u, v) in G, if there is a path leading from u
to v.
5. Setting the gates of the EUG: In the dynamic UC construction, we replace the auxiliary poles with
wires connecting directly to the actual pole or a Y-Switch if only one input is forwarded. Analogously to
step 4, we check the correctness of the edge-embedding to Ḡ. For each node in G, we set the function bits
of the corresponding EUG pole. We determine the order of inputs and then set the function bits accordingly.
This also involves padding the function bits if the gate has more inputs. Note that these additional inputs are
likely to occur since each Universal Gate outputs ρ (fixed UC construction) or 2 (dynamic UC construction)
wires, independent of whether they are used in G or not. We pad the function bits such that additional and
undesired inputs are ignored.
6. Transforming the EUG into an ABY compatible UC: As a final step, we topologically order the
EUG and output it in the UC format compatible with ABY [10]. Then, each node, along with its ongoing
and outgoing wires, is written into a circuit file. At the same time, the programming bits are written into
a separate programming bits file.

5.3 Experimental Results

Setup. Like previous works [19,26,31], we benchmark a set of real-world circuits from [42]. In addition we
consider other useful functions like Karatsuba multiplication [23], Manhattan and Euclidean distance [11],
and floating-point operations [11]. For each functionality, we give the sizes of the resulting circuit, as well as

19

Table 3: Number of AND and XOR gates per building block in our UCs.

Building block AND gates XOR gates

X-Switching block [28] 1 3
Y-Switching block [28] 1 2

Universal Gate with k ≥ 2 inputs 2k − 1 2k+1 − 2

Table 4: Comparison of the sizes of our UCs and the best previous UC constructions of Liu et al. [31] as
baseline (in number of AND gates). The smallest size is marked in bold and always achieved by our UCs.
The sizes for the fixed and dynamic UC are the best combinations for (ρ → ω)-LUT for ρ ∈ {2, ..., 8} inputs
and ω ∈ {1, . . . , 8} outputs for the benchmarked circuit.

Circuit
Circuit size (# AND gates) Improvement (×) LUT sizes (ρ→ ω)

Baseline [31] Fixed UC Dynamic UC Fixed/Baseline Dyn/Baseline Dyn/Fixed Fixed Dynamic

AES 1721094 1519149 1640651 1.13 1.05 0.93 2→ 1 2→ 3
DES 1275338 1130037 974733 1.13 1.31 1.16 3→ 1 2→ 3
MD5 3286150 1724221 1191566 1.91 2.76 1.45 3→ 1 3→ 3
SHA-1 4872501 2559602 2831839 1.90 1.72 0.90 3→ 1 2→ 3
SHA-256 10652234 5351972 4591982 1.99 2.32 1.17 3→ 1 4→ 3

add 32 6926 3907 4446 1.77 1.56 0.88 3→ 2 4→ 3
add 64 17006 8963 10238 1.90 1.66 0.88 3→ 2 3→ 1
comp 32 2519 1278 1188 1.97 2.12 1.08 3→ 1 4→ 1
mult 32x32 347274 177081 130053 1.96 2.67 1.36 3→ 3 8→ 8
karatsuba 32x32 286933 156888 112829 1.83 2.54 1.40 3→ 3 4→ 1

Manhattan dist 327203 150046 112829 2.18 2.90 1.33 3→ 2 4→ 1
Euclidean dist 1852419 947679 1386695 1.95 1.34 0.68 3→ 3 4→ 2

fp-add 32 113620 90964 94297 1.25 1.20 0.96 3→ 1 3→ 1
fp-mul 32 293125 247859 185968 1.18 1.58 1.33 3→ 1 4→ 2
fp-exp2 32 2008269 1548079 1265869 1.30 1.59 1.22 3→ 1 4→ 4
fp-div 32 372101 236300 181904 1.57 2.05 1.30 3→ 1 4→ 4
fp-sqrt 32 176176 118873 89311 1.48 1.97 1.33 3→ 1 4→ 4
fp-comp 32 6387 5628 5269 1.13 1.21 1.07 4→ 4 8→ 8
fp-log 32 1936813 1499538 1230530 1.29 1.57 1.22 3→ 1 4→ 4

communication and runtime complexity when the UC is evaluated with an MPC protocol.
As we have Universal Gates of different sizes, we cannot just count the number of nodes in the EUG to
compare the implementations. Therefore, we count the number of AND gates that are necessary to instantiate
the building blocks of the UC (cf. Table 3). As underlying MPC protocol for UC-based PFE we use Yao’s
protocol [47] using free XORs [28], so XOR gates can be evaluated without communication. We experimentally
compared our implementations with the best existing UC-based PFE construction of [31]. In order to show
the improvement of our work, we use two identical machines with a LAN connection of 10 Gbit/s bandwidth
and a round-trip time of 1 ms. Each machine is equipped with an Intel Core i9-7960X@2.8 GHz with 128GB
DDR4 RAM. All measurements are averaged over 10 executions.

Experimental Results. We provide our results for our UC constructions in Tab. 4. In our circuit generation,
we vary possible choices for (ρ → ω)-LUTs and select the ones with highest improvement. We can see from
Tab. 4 that our fixed UC construction is always smaller than that of Liu et al.’s [31] by 1.13− 2.18× while
also fully hiding the function. Our dynamic UC construction which leaks the fanin of the individual LUTs is
even 1.05− 2.90× smaller than Liu et al.’s.
For a more comprehensive evaluation, we also evaluate our generated UCs with the GMW-based SP-LUT

20

Table 5: Running time and communication for our UC construction implemented with ABY compared
to state-of-the-art UC construction [31]. We include the LAN evaluation time (in seconds) and the total
communication (in Megabytes) between the parties in LUT-based [11] as well as in Yao sharing [29] for fixed
and dynamic UC constructions. The best values are marked in bold.

UC construction Liu et al. [31] Our UC constructions (Fixed|Dynamic)

MPC protocol Yao [47] Yao [47] SP-LUT [11]

Circuit Time (s) Comm. (MB) Time (s) Comm. (MB) Time (s) Comm. (MB)

AES 1.926 83.170 1.608|1.724 69.343|78.170 13.187|16.570 28.427|35.110
DES 1.282 57.271 1.124|0.983 50.570|43.442 9.233|8.617 24.311|22.297
MD5 3.471 148.348 1.832|1.220 76.638|52.895 26.642|23.017 46.013|42.773
SHA-1 5.184 220.065 2.756|3.051 113.859|127.482 27.268|38.216 58.641|75.939
SHA-256 11.571 481.412 5.878|4.908 238.364|201.989 54.082|52.226 123.045|108.431

add 32 0.018 0.314 0.009|0.010 0.177|0.202 0.224|0.397 0.148|0.213
add 64 0.026 0.017|0.019 0.404|0.463 0.770 0.452|0.705 0.319|0.458
comp 32 0.008 0.117 0.004|0.00387 0.062|0.057 0.139|0.047 0.055|0.048
mult 32x32 0.350 15.626 0.212|0.144 7.300|5.511 4.144|1.427 4.531|4.063
karatsuba 32x32 0.292 12.901 0.191|0.130 6.469|5.003 3.685|1.414 4.021|3.413

md256 0.337 14.801 0.193|0.135 6.592|5.003 4.234|1.375 4.544 |4.093
ed64 1.924 83.552 1.046|1.409 39.704|61.802 17.524|19.608 24.572|48.132

FP-Add 32 0.164 5.105 0.139|0.149 4.003|4.163 2.903|3.172 2.426|2.779
FP-Mul 32 0.350 13.178 0.308|0.188 10.949|8.107 6.217|2.048 4.579|3.654
FP-Exp2 32 2.292 90.555 1.612|1.350 68.651|55.729 21.531|19.387 38.330|25.167
FP-Div 32 0.458 16.743 0.296|0.188 10.443|7.892 5.918|1.917 6.528|5.275
FP-Sqrt 32 0.223 7.915 0.168|0.102 5.237|3.847 3.417|1.071 3.442|2.703
FP-comp 32 0.014 0.290 0.012|0.009 0.235|0.224 0.226|0.113 0.118|0.094
FP-log 32 2.083 87.330 1.600|1.311 66.510|54.168 20.198|16.175 36.287|24.692

protocol [11] in addition to Yao’s GC protocol [47]. In Tab. 5, we show the runtime and communication of our
UC constructions compared to the most recent UC construction of Liu et al. [31] as baseline. Our new UC
constructions are the fastest implementation: Compared to the baseline using Yao [47], the total runtime for
our sample circuits is faster by a factor of 1.14− 2× for our fixed UC construction and a factor of 1.1− 2.85×
for our dynamic UC construction. The communication improvements over the baseline using Yao [47] are
1.13−2.25× for the fixed UC construction and 1.06−2.96 for the dynamic construction. The runtime of Yao’s
protocol is 3.83− 11.5× faster than that of the LUT-based protocols which can be explained by the constant
round complexity of Yao’s protocol. From Tab. 5, we can observe that the SP-LUT protocol [11] always has
the lowest communication, achieving up to factor 1.19− 2.44× less communication than Yao’s protocol.
Evaluation Summary. Our new UC constructions outperform the state-of-the-art UC-based PFE of [31] in
terms of circuit sizes, communication, and total runtime. Our Evaluations confirm that our UCs improve over
Liu et al.’s UC [31] by up to 3.6× in circuit size and up to 3.7× in runtime.

References

1. Synopsys Inc. design compiler. http://www.synopsys.com/Tools/Implementation/RTLSynthesis/

DesignCompiler (2010)
2. Abadi, M., Feigenbaum, J.: Secure circuit evaluation. JoC 2(1), 1–12 (1990)
3. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for MPC and FHE. In: EURO-

CRYPT (2015)

21

http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler

4. Alhassan, M.Y., Günther, D., Kiss, Á., Schneider, T.: Efficient and scalable universal circuits. JoC 33(3), 1216–1271
(2020)

5. Attrapadung, N.: Fully secure and succinct attribute based encryption for circuits from multi-linear maps (2014),
https://ia.cr/2014/772

6. Barni, M., Failla, P., Kolesnikov, V., Lazzeretti, R., Sadeghi, A., Schneider, T.: Secure evaluation of private linear
branching programs with medical applications. In: ESORICS (2009)

7. Boyar, J., Peralta, R.: A new combinational logic minimization technique with applications to cryptology. In:
International Symposium on Experimental Algorithms (2010)

8. Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote diagnostics. In: CCS (2007)
9. Cook, S.A., Hoover, H.J.: A depth-universal circuit. SIAM J. Computing 14(4), 833–839 (1985)

10. Demmler, D., Schneider, T., Zohner, M.: ABY - A framework for efficient mixed-protocol secure two-party
computation. In: NDSS (2015)

11. Dessouky, G., Koushanfar, F., Sadeghi, A., Schneider, T., Zeitouni, S., Zohner, M.: Pushing the communication
barrier in secure computation using lookup tables. In: NDSS (2017)

12. Diestel, R.: Graph Theory, Graduate Texts in Mathematics, vol. 173. Springer, Heidelberg; New York, fourth edn.
(2010)

13. Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on encrypted data. In: CCS (2014)
14. Frikken, K.B., Atallah, M.J., Zhang, C.: Privacy-preserving credit checking. In: ACM conference on Electronic

Commerce (2005)
15. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption for circuits from multilinear

maps. In: CRYPTO (2013)
16. Gentry, C., Halevi, S., Vaikuntanathan, V.: i-Hop homomorphic encryption and rerandomizable Yao circuits. In:

CRYPTO (2010)
17. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness theorem for protocols

with honest majority. In: STOC (1987)
18. Günther, D., Kiss, Á., Scheidel, L., Schneider, T.: Poster: Framework for semi-private function evaluation with

application to secure insurance rate calculation. In: CCS (2019)
19. Günther, D., Kiss, Á., Schneider, T.: More efficient universal circuit constructions. In: ASIACRYPT (2017)
20. Henecka, W., Kögl, S., Sadeghi, A., Schneider, T., Wehrenberg, I.: TASTY: tool for automating secure two-party

computations. In: CCS. ACM (2010)
21. Holz, M., Kiss, Á., Rathee, D., Schneider, T.: Linear-complexity private function evaluation is practical. In:

ESORICS (2020)
22. Kamara, S., Raykova, M.: Secure outsourced computation in a multi-tenant cloud. In: IBM Workshop on

Cryptography and Security in Clouds (2011)
23. Karatsuba, A.A., Ofman, Y.P.: Multiplication of many-digital numbers by automatic computers. In: SSSR Academy

of Sciences (1962)
24. Karnaugh, M.: The map method for synthesis of combinational logic circuits. Transactions of the American

Institute of Electrical Engineers, Part I: Communication and Electronics 72(5), 593–599 (1953)
25. Katz, J., Malka, L.: Constant-round private function evaluation with linear complexity. In: ASIACRYPT (2011)
26. Kiss, Á., Schneider, T.: Valiant’s universal circuit is practical. In: EUROCRYPT (2016)
27. Kolesnikov, V., Sadeghi, A.R., Schneider, T.: Improved garbled circuit building blocks and applications to auctions

and computing minima. In: CANS (2009)
28. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and applications. In: ICALP (2008)
29. Kolesnikov, V., Schneider, T.: A practical universal circuit construction and secure evaluation of private functions.

In: FC (2008)
30. Lipmaa, H., Mohassel, P., Sadeghian, S.S.: Valiant’s universal circuit: Improvements, implementation, and

applications (2016), https://ia.cr/2016/017
31. Liu, H., Yu, Y., Zhao, S., Zhang, J., Liu, W., Hu, Z.: Pushing the limits of Valiant’s universal circuits: Simpler,

tighter and more compact. In: CRYPTO (2021)
32. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party computation system. In: USENIX Security

(2004)
33. Masserova, E., Garg, D., Mai, K., Pileggi, L., Goyal, V., Parno, B.: Logic locking-connecting theory and practice

(2022), https://ia.cr/2022/545
34. Patra, A., Schneider, T., Suresh, A., Yalame, H.: ABY2.0: Improved mixed-protocol secure two-party computation.

In: USENIX Security (2021)
35. Patra, A., Schneider, T., Suresh, A., Yalame, H.: SynCirc: Efficient synthesis of depth-optimized circuits for secure

computation. In: HOST (2021)

22

https://ia.cr/2014/772
https://ia.cr/2016/017
https://ia.cr/2022/545

36. Paus, A., Sadeghi, A.R., Schneider, T.: Practical secure evaluation of semi-private functions. In: ACNS (2009)
37. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is practical. In: ASIACRYPT.

Lecture Notes in Computer Science, vol. 5912. Springer (2009)
38. Pohle, E., Abidin, A., Preneel, B.: Poster: Fast evaluation of S-boxes in MPC. In: NDSS (2022)
39. Quine, W.V.: The problem of simplifying truth functions. The American Mathematical Monthly 59(8), 521–531

(1952)
40. Sadeghi, A.R., Schneider, T.: Generalized universal circuits for secure evaluation of private functions with

application to data classification. In: ICISC (2008)
41. Shannon, C.E.: The synthesis of two-terminal switching circuits. Bell Syst. Tech. J. 28(1), 59–98 (1949)
42. Smart, N., Tillich, S.: Bristol Fashion MPC circuits. https://homes.esat.kuleuven.be/~nsmart/MPC/

old-circuits.html

43. Synthesis, B.L., Group, V.: ABC: A system for sequential synthesis and verification, release 1.01, http://www.
eecs.berkeley.edu/~alanmi/abc/

44. Valiant, L.G.: Universal circuits (preliminary report). In: STOC (1976)
45. Wegener, I.: The Complexity of Boolean Functions. John Wiley; Sons, Inc., USA (1987)
46. Wolf, C., Glaser, J., Kepler, J.: Yosys – a free verilog synthesis suite. In: Austrian Workshop on Microelectronics

(2013)
47. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: FOCS (1986)
48. Zhao, S., Yu, Y., Zhang, J., Liu, H.: Valiant’s universal circuits revisited: An overall improvement and a lower

bound. In: ASIACRYPT (2019)
49. Zimmerman, J.: How to obfuscate programs directly. In: EUROCRYPT (2015)

23

https://homes.esat.kuleuven.be/~nsmart/MPC/old-circuits.html
https://homes.esat.kuleuven.be/~nsmart/MPC/old-circuits.html
http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.eecs.berkeley.edu/~alanmi/abc/

	Improved Universal Circuits using Lookup Tables

