
Reversing, Breaking, and Fixing the French Legislative Election
E-Voting Protocol

Alexandre Debant, Lucca Hirschi
Inria

November 28, 2022

Abstract
We conduct a security analysis of the e-voting protocol used for the largest political election using e-voting in
the world, the 2022 French legislative election for the citizens overseas. Due to a lack of system and threat
model specifications, we built and contributed such specifications by studying the French legal framework and
by reverse-engineering the code base accessible to the voters. Our analysis reveals that this protocol is affected
by two design-level and implementation-level vulnerabilities. We show how those allow a standard voting server
attacker and even more so a channel attacker to defeat the election integrity and ballot privacy due to 6 attack
variants. We propose and discuss 5 fixes to prevent those attacks. Our specifications, the attacks, and the fixes
were acknowledged by the relevant stakeholders during our responsible disclosure. Our attacks are in the process
of being prevented with our fixes for future elections. Beyond this specific protocol, we draw general conclusions
and lessons from this instructive experience where an e-voting protocol meets the real-world constraints of a
large-scale and political election.
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1 Introduction
Verifiability is a central goal in e-voting: it allows voters and auditors to verify the election result. Many
e-voting protocols achieve (individual) verifiability for the voters thanks to a receipt bound to their ballots
(e.g., [8, 13, 6, 1]). Receipts allow to track the presence of ballots in the final bulletin board and election result
and prevent a compromised or malicious voting server to drop or tamper with their cast ballots. In this paper,
we ask the question how the FLEP does so by conducting a comprehensive security analysis.

The FLEP was the e-voting protocol used to organize the French legislative election for French residents
overseas in June 2022 with 1.1 million eligible voters. This was the largest election (in terms of expressed votes)
worldwide using e-voting. In total, to elect 11 deputies, the French residents overseas have cast more than
524k ballots using FLEP.1 They massively preferred the e-voting channel using FLEP (76%) over traditional
paper-based voting (22.7%) or postal voting (0.3%)2. Due to the French legal framework, FLEP was used to
organize eleven elections, one per constituency, each electing one member of the National Assembly. Precisely,

1This number includes the first and the second round of the election. To give a comparison, the second largest such election is
the 2015 Australian state election with 280k expressed votes using iVote, that is 6% of the expressed votes, to elect 93 deputies.

2https://www.diplomatie.gouv.fr/fr/services-aux-francais/voter-a-l-etranger/resultats-des-elections/article/
elections-legislatives-resultats-du-1er-tour-pour-les-francais-de-l-etranger
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even if only the global result at the constituency level is used to elect a deputy, for each of the per-constituency
election, ballots were aggregated by consulates in order to publish more fine grained result (per consulate).

As expected, the FLEP has high security ambitions. Some of those ambitions are related to lawful require-
ments (the "Code électoral" [11], that is the electoral code) and others correspond to the recommendations of
the Commission nationale de l’informatique et des libertés (CNIL) [16]3 which are a list of requirements that
such a system is expected to meet (even if there is no legal obligation). The FLEP has undergone audits by
external auditors to assess that it meets those requirements, notably that it remains secure under strong threats
such as internal threats. A partial specification has been published that describes the verifiability mechanism
that is used in the protocol. To meet strong requirements, the election organizers have put in place a third-
party, made of independent researchers, and suggested to all voters to visit this third-party web service and
independently verify the presence of their ballots (and receipts).

Question. In this paper, we answer the following question: Does the FLEP meet its goals? We reverse-
engineered the FLEP and found flaws in the protocol and its implementation that could have been exploited
to defeat ballot privacy of target voters and verifiability under a voting server attacker (compromised voting
server) or under an even weaker channel attacker, that is: honest voting client and compromised plaintext
channel client-server (an example of concrete scenario is a compromise of the voting server certificate). That is
a strictly weaker attacker model than the standard compromised server threat model (which can be the result
of internal threats) in that: (i) an attacker in control of the server is also in control of the plaintext channel and
(ii) a channel attacker has no control over the server’s databases, bulletin board, authentication routines, etc.

Contributions. We contribute the following:

1. We reverse engineered the obfuscated JavaScript program running in the FLEP voting clients. Doing this
on two publicly deployed or tested versions (test campaign at scale and the final, election-day version), we
were able to cross-reference information in order to fill the several critical gaps in the public but partial
specification of the FLEP. We obtained this way a full specification of the voting client and the verifiability
checks. We also study the French lawful requirements and relevant recommendations and define a precise
threat model specification that we argue is in line with the French legal framework and is also supported
by the literature.

2. Analyzing this, we found two vulnerabilities that can be exploited by a channel attacker and even more
so by a compromised server, which are both included in our threat model:

(V1) A channel attacker can break the bound between voters’ ballots and their receipts due to an implemen-
tation flaw in the voting client.

(V2) We found that the sub-election identifier (associated to a consulate) is not cryptographically bound to
the ballot, but is to the receipt. Combined with (V1), this allows a channel attacker to modify the
sub-election identifier of a ballot.

3. We show how a channel attacker could have exploited those vulnerabilities to stealthily carry out the
following attacks (that is without leaving any evidence of the attacks):

(A1) Selectively drop voters’ ballots to defeat individual verifiability and thus modify the result of the election.
We show how this is possible by creating multiple malicious receipts that are bound to a single ballot,
all the voters receiving those will believe their ballot is counted while it has been dropped.

(A2) Choose the ballot that will be cast in place of the genuinely sent ballot while still providing a good
looking and valid receipt. This attack is a variant of the previous one and is more effective at modifying
the election result.

(A3) Defeat ballot privacy of target voters. We show how a channel attacker can learn how target voter(s)
voted by moving around ballots from sub-election to another and observing the per-sub-election result.
We stress that this can be done while evading all possible detection and only assuming a channel
attacker; in particular decryption trustees can all be trustworthy. In particular, voters receive receipts
that seemingly correspond to the genuine sub-election. However, the attacker needs to decide which
voters to target and attack when those cast their ballots. We also describe a variant of (A3) that is
possible under a voting server attacker and that is even easier to put in place.

3The CNIL (National Commission on Informatics and Liberty in English) is an independent French administrative regulatory
body whose mission is to ensure that data privacy law is applied.
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(We also discuss 3 other attack variants.) We do not claim that such attacks happened. We solely claim
that a malicious or compromised channel or voting server had the technical ability to perform such attacks
without leaving any evidence we could exploit now to know if they have been exploited. We responsibly
disclosed those attacks to all impacted and involved actors: the operator EFA French Ministry, the vendor
Voxaly Docaposte, and the institutional security advisor ANSSI4. We later disclosed our findings to the
3rd-party services supervisors. All of those 4 stakeholders have acknowledged and confirmed our attacks.
Note that a comprehensive risk analysis of the new threats induced by our attacks is out of the scope of
this paper.

4. We propose and discuss 5 countermeasures to those attacks. The EFA French Ministry, ANSSI, and the
vendor (Voxaly Docaposte) have confirmed to us that they have used some of our countermeasures to
fix the FLEP. They have confirmed that those fixes are expected to be implemented for future elections.
However, their deployment will be subject to development timing constraints (implementation, testing,
etc.) which may prevent the use of these fixes if new elections must be organized too soon. It is worth
noting that such elections are likely to happen: the FLEP could be re-used for potential partial re-
elections (because some elections were contested) and it could also be additionally re-used in case the
French president decides to dissolve the assembly.5

5. We found other less-impactful but still concerning weaknesses in the FLEP. For instance, we noticed
that the security of the FLEP could be improved by cryptographically enforcing the quorum rules for
decryption. Currently, they are only guaranteed by a human consensus between members of the electronic
voting committee. We also found that the FLEP is affected by known weaknesses such as ballot replay,
incomplete Zero-Knowledge Proof (ZKP) contexts, etc.

6. Note that the FLEP is derived from the state-of-the-art academic protocol Belenios [8] that is affected by
none of those weaknesses. Why is this so? To answer, we draw more general conclusions and lessons from
this instructive experience where an academic protocol meets the real-world, challenging constraints of a
large-scale and political election. Those are of a broader interest.

The partial specification published for FLEP has been used by the third-party to build their verifier service
intended to let any voter independently check that their ballot has been counted and that the final count
is correct. We show that such a partial specification and 3rd-party verification services are of no interest if
the voting client is not fully open, documented, and audited. An implementation bug in the voting client
can completely defeat (individual) verifiability and privacy as we show. The voting client should actually
be a core target of audits and analyses.

Operational constraints that are often omitted or not well-understood in our academic community are
both a challenge and a opportunity to tightly reflect them in the protocol and the cryptography. For
example, a practically relevant research question is how to cryptographically enforce the detailed rules
defining the quorum for deliberations and tally. While many of those rules are often unique to a use case,
most of them are of general interest and are worth studying from a mathematical point of view. Another
example is the requirement in the FLEP use case for multi ballot-boxes. If Belenios offered such a feature,
the FLEP would not have to add this feature itself and making the mistakes of forgetting a contextual
information in the ZKP.

We also advocate for simpler protocols and more importantly for simpler voter’s journeys and verification
tasks. Taking the FLEP as an illustration, we show how one could simplify the protocol to display 1
cryptographic data item instead of 4 and require voters to do one check instead of 4, while improving the
protocol security at the same time.

Finally, we promote transparency and openness and argue that more of those could have avoided the
FLEP vulnerabilities and attacks.

Outline In Section 2, we present how we studied the French legal framework and how we reverse-engineered
the FLEP to build a system and threat model specification. In Section 3, we present the vulnerabilities and
attacks we found and discuss our fixes. We also discuss other less-impactful concerns. In Section 4, we draw
more general lessons from this work, that go beyond the FLEP. We conclude in Section 5.

4The ANSSI is the French National Agency for the Security of Information Systems whose missions include cyber defense of
state information systems and to provide advice and support to government and operators of critical national infrastructure.

5This is rarely done, 5 times since the 60s. Note that the timeline for these elections and whether the fixes will be ready on time
is not known for now. Nevertheless, the timeline for the publication of this work has been approved by the stakeholders.

4 V1– November 28, 2022



A. Debant, L. Hirschi Reversing, Breaking, and Fixing the FLEP

2 Reverse the French Legislative E-Voting Protocol
The first step to conduct our security analysis was to gather enough information to precisely describe the FLEP
and its security objectives. We distinguish three main sources of information:

1. the lawful requirements and the recommendations expressed by the CNIL [16] to define the different
levels of security an e-voting system must satisfy depending on the importance of the elections and the
risk involved. Obviously, the French legislative elections are subject to the highest level, i.e., level 3, as
claimed on the FLEP website6.

2. the partial specification [19] published by the vendor (Voxaly Docaposte) for the explicit purpose of
enabling external auditors and voters verify their ballot and the election outcome. In particular, it enabled
the 3rd-party (i.e., a team of French researchers, see Section 2.1.2) develop an external verifier, which is
an explicit CNIL requirement.

3. the (obfuscated) JavaScript source code running in voters’ web browsers collected by us and different
voters during elections as well as in-situ observations about the election process from the voters’ point of
view collected purely passively.

By reversing the JavaScript voting client code, studying and cross-referencing the different sources, we built a
complete description of the FLEP voting client and all its interactions with the server as well as some important
server-side components (handling of errors, verifiability checks). As we shall see, this system specification is
sufficiently precise and comprehensive to unarguably claim that it suffers from our vulnerabilities. All the
impacted and involved actors (Voxaly Docaposte, ANSSI, EFA French Ministry, 3rd-party) have acknowledged
our system specification is correct. Except for an aspect we could not infer from the outside (shown in blue in
Figure 5) but that is irrelevant for our attacks, we obtained our system and threat model specification before
our discussions with the stakeholders started.

2.1 Architecture
On April 21st 2022, the vendor of the FLEP product, Voxaly Docaposte, published a partial specification of the
system [19]. Importantly, it describes how the FLEP is deployed in practice to address all of the specificities
imposed by the organization of the French legislative elections.

2.1.1 Geographical Organization

French citizens overseas are gathered in 11 electoral regions (e.g., north America, north Africa, Asia-Oceania,
etc), which are constituencies. Each of the constituencies is itself split into several consular sub-regions which
are consulates and typically represent a country or part of a country. In the French legislative elections, each
constituency elects one deputy. For each of the two rounds of the election, the n decryption authorities generate
a unique public encryption key pkE for all consulates and their corresponding private keys skE1, . . . , skEn. Each
of the 11 constituencies then run a sub-election identified by a unique election identifier eleci cryptographically
bound to each ballot.

A specificity of these sub-elections is that the results are not only published by constituency (which is anyway
required to announce the elected deputy). The French law requires that the results are also published at the
level of consulates. Therefore, it has been decided to associate different ballot-boxes, one for each consulate,
to each sub-election. Each ballot-box is identified by an identifier uj . The final election result is obtained by
aggregating all results from all ballot-boxes in a given constituency. Figure 1 sums-up the organization of these
elections for a few constituencies and consulates.

2.1.2 Protocol Roles

The FLEP is similar to well-known protocols such as Helios [1] or Belenios [8] (which itself is derived from
Helios). It thus distinguishes different roles we describe next. In the following, we will always refer to these 5
roles when detailing the threat model or the protocol itself. The 5 roles are:

• voter: they are the agent who will cast a vote. The FLEP assumes that voters own an email address and
a cellphone number to receive login/password and confirmation codes before and during the election. The
registration of these elements have been done before the election starts using services of the EFA French
Ministry.

6https://www.voxaly.com/vote-par-internet-pour-les-francais-de-letranger-dans-le-cadre-des-elections-legislatives-2022/
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North America
election id = elec1

Atlanta: ballot-box id = u1,1

Boston: ballot-box id = u1,2

Montreal: ballot-box id = u1,3

· · ·

North Africa
election id = elec2

Alger: ballot-box id = u2,1

Dakar: ballot-box id = u2,2

Tunis: ballot-box id = u2,3

· · ·

Asia-Oceania
election id = elec3

Bombay: ballot-box id = u3,1

Sydney: ballot-box id = u3,2

Tokyo: ballot-box id = u3,3

· · ·

Figure 1: Organization of the French legislative elections. 3 of the 11 constituencies are depicted. Each of them
runs its own election using FLEP to elect one deputy. The eligible voters of each constituency are grouped into
consulates (e.g., all voters in Atlanta) with their own ballot-box. Per-consulate results are also published but
only the per-constituency result elects a deputy.

• voting device: it is the device used by the voter to create and cast their vote. In the FLEP, the voting
device is a JavaScript program provided by the voting server and executed in the voter’s browser.

• voting server: it is a server operated by the EFA French Ministry whose purpose is to collect all the
ballots. This server is also in charge of authenticating voters. It runs closed-source but audited Voxaly
Docaposte software.

• decryption authorities: they are the authorities who can decrypt the ballots. More precisely in the
FLEP, they are 16 authorities sharing a decryption key based on 4-threshold encryption scheme, that is
only a group of at least 4 authorities can collude to decrypt.7

• 3rd-party: it is an external server operated by independent researchers and engineers from a French lab
(LORIA) and research institutes (CNRS, INRIA), on request of the EFA French Ministry. It provides to
the voters some verification web-services8 whose purpose is to ensure the integrity of the election: each
voter can verify that their ballot appears in the ballot-box (individual verifiability) and the 3rd-party
verifies that the tally has been correctly computed (universal verifiability)9. More details about these
services will be given in Section 2.4. The source code of those services is open-source10. (Note that it is a
CNIL requirement to propose such a third-party verification service (see CNIL Security objective n° 3-02
in Section 2.2).)

2.2 Security Goals and Threat Model
In France, e-voting is prohibited for almost all political elections. Elections organized for citizens overseas (i.e.,
legislative and consular elections for consulates outside France) are the unique exceptions. As an immediate
consequence, it results in a lack of a precise description of the security goals, trust assumptions, and threat
model that should be considered. Fortunately, there exist requirements that the FLEP should comply with,
notably the Code électoral [11] (i.e., the French law governing elections) which defines the lawful requirements
that apply to e-voting during the legislative election, and the recommendations enacted by the CNIL [16]. As
mentioned above, the FLEP is supposed to achieve the highest level of security defined by the CNIL, i.e., level 3.

Remark 1. Even if fullfilling the CNIL recommendations is not, strictly speaking, a legal requirement, they
explicitly define the expected security of all the e-voting systems in use in France. Given the critical nature of the
French legislative election, it would be unreasonable for the FLEP to not follow all of those recommendations.
The first level corresponds to small elections with a small number of voters, a small impact, and a low risk
of attacks or compromise. These elections correspond for instance to representative election in small sports
associations. On the contrary, the third level, the highest, has been defined for elections with a large number of
voters, a large impact, and a high risk of attack attempts or compromise. This matches all the characteristics
of a political election.

7We will come back in Section 3.4.3 on this threshold and how the legal requirements for decryption could be better reflected in
the cryptography.

8https://verifiabilite-legislatives2022.fr/
9https://verifiabilite-legislatives2022.fr/informations.html

10https://gitlab.inria.fr/vvfe/vvfe
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We quote some of those requirements to consolidate a set of trust assumptions and threat models associated
with the key security goals of e-voting protocols in the literature: verifiability and ballot privacy (also called
vote secrecy). Those quotes (in gray boxes) are translated by us. (We provide the original version with their
translations in Appendix A.)

2.2.1 Ballot Privacy

First, the Code électoral and the CNIL requirements agree on the fact that the FLEP must ensure the confi-
dentiality of the votes.

"Votes must remain confidential"

—Code électoral, Article R176-3-9 [11]

"[the system must] ensure the strict confidentiality of the ballots as soon as created."

—CNIL, Security objective n° 1-04 [16]

"[The system must] ensure that the identity of the voter and the expression of his
choice can not be linked during the whole process"

—CNIL, Security objective n° 1-07 [16]

Because the notion of confidentiality of the votes may be subject to different interpretations depending on
the context (academic papers, law, public discussions...), we provide a (still informal) definition to clarify the
notion we shall refer to in this paper.

Definition 1 (Confidentiality). An e-voting protocol ensures confidentiality of the votes if an attacker is unable
to learn the (plaintext) vote of a target voter.

Remark 2. The security property of Definition 1 is strictly weaker than state-of-the-art academic definitions
such as the ballot privacy definitions of Benaloh et. al. [4] or Bernhard et. al. [5]. The latter considers that
an attacker should not be able to learn any bias about how the target voter voted for.

Since we shall show that the FLEP does not satisfy even the weak notion of confidentiality from Definition 1
for target voters under a channel attacker, we do not use a formal definition of vote secrecy in this document.

2.2.2 Verifiability

Second, the FLEP must ensure the integrity of the election outcome. The academic literature usually splits this
into three sub-properties:

• eligibility: all the ballots that are counted during the tally have been cast by legitimate voters;

• universal verifiability: the result of the election corresponds to the content of the ballot-box that has
been tallied;

• individual verifiability: each voter is able to verify that their ballot has been added into the ballot-box.

In this document we will focus on the last property, individual verifiability, that we will show the FLEP fails to
guarantee. Individual verifiability immediately relates to the Code électoral and the CNIL recommendations as
follows:11

When a voter’s vote is registered, the voter is provided with a digital receipt allowing
them to verify online that their vote has been taken into account.

—Code électoral, Article R176-3-9 [11]

ensure the transparency of the ballot-box for all the voters [...] It must be possible
for the voters to ensure that their ballot has been counted in the ballot-box.

—CNIL, Security objective n° 2-07 [16]

11Note that the CNIL has also some recommendations for the other sub-properties.
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As we shall see, the FLEP uses some hashed values over the cast ballot and some meta-data as well as a
signature as digital receipt. The protocol offers verification services, where voters enter their receipt and get
notified whether their ballot has been taken into account.

To do so, the FLEP does not rely on a public bulletin board to let the voter make these verifications. Hence,
the voter must use services proposed by the voting server itself. In order to meet the highest level of security
enacted by the CNIL (level 3, see below), the FLEP also relies on the 3rd-party role to provide these verification
services in addition to the voting server. This relates to the security objective n°3-02 [16].

The system must allow transparency of the ballot-box for all voters from third-party
tools.

—CNIL, Security objective n° 3-02 [16]

2.2.3 Threat Model

The legal requirements and CNIL recommendations do not provide a formal threat model to conduct our
security analysis. Conversely, we are not lawyers, so we will never conclude that FLEP is not compliant to
lawful regulations and requirements such as the CNIL objectives. Instead, we shall define a threat model that
we argue is in line with the legal framework. Additionally, the threat model we shall define is the de-facto
standard for most e-voting protocols from the academic literature.

Should the FLEP remain secure under a compromised voting server? Recall that due to its usage
for large-scale, political, national election, FLEP must at least fulfill the CNIL’s objectives under the CNIL
Security Level 3 defined as follows.

Security level 3: The threat actors include the voters, the election operators, out-
siders, insiders within the provider or internal staff. They can be resourceful or
highly motivated.

—CNIL, Security level 3 [16]

The fact that internal threats are considered (election operators) and that one of the objectives for this
level (Objective n°3-02) is to set up an independent third party server for verification purpose indicates that
the FLEP should remain secure under at least a partial server compromise. A trustworthy voting server would
make third-party verification services completely useless and spurious. To support this further, we also argue
that:

• the FLEP is designed to provide verifiability and is presented as such. The purpose of verifiability is
precisely to free the system from the trust assumption of a trustworthy voting server: with verifiability,
the election outcome should be trustworthy even when the voting server is entirely compromised, as it is
the case with many state-of-the-art protocols (e.g., Helios, Belenios, etc.).

• the voting server is online and subject to external attacks. Even if many operational safeguards are
implemented, making such a system uncompromisable even for resourceful or highly motivated internal
or external threats, is an extremely difficult task.

• the voting server is operated by the EFA French Ministry which is not necessarily representative of the
population. Having to entirely trust the EFA French Ministry and its officials would boil down to a
radical trust shift, compared to paper-based voting, which is the main voting method replaced by e-
voting. Indeed, in-person voting was representing 92,5% of expressed votes in the first round in 201712

(last French legislative elections where two options were offered to voters: in-person voting and voting
by mail), while, in 2022, in-person voting was only used by 22,7% and e-voting with FLEP was used by
76%13 of voters.

• the voting server is running software provided by the vendor, which is a (private law) company that may
have interests in political elections. Different audit mechanisms have been used and pen-testing campaigns
have been conducted to try to prevent such a corruption but trapdoors are hard to detect in practice [17, 2].
Again, having to trust this vendor would represent a massive trust shift for such political elections.

12https://www.diplomatie.gouv.fr/fr/services-aux-francais/voter-a-l-etranger/resultats-des-elections/article/
elections-legislatives-resultats-du-premier-tour-pour-les-francais-a-l-etranger

13https://www.diplomatie.gouv.fr/fr/services-aux-francais/voter-a-l-etranger/resultats-des-elections/article/
elections-legislatives-resultats-du-1er-tour-pour-les-francais-de-l-etranger
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Threat Model for the FLEP. In this paper, the main threat model we consider is actually even weaker
than a compromised voting server, that is it considers an even weaker attacker. Indeed, instead of considering
a (possibly) corrupted voting server, we shall assume a corrupted communication plaintext channel between
the voters and the server, we call such an attacker a channel attacker. When referring to an attacker who can
compromise a voting server, we shall explicitly write voting server attacker.

More precisely, the channel attacker can intercept and inject (plaintext) messages in-between voters under
attack and the voting server but has not necessarily access to the voting server internals, such as its databases,
the signing sheet, the authentication material, the log files, etc. Obviously a voting server attacker is also a
channel attacker, but the converse is wrong in general.

Another way to realize a channel attacker is for example for the attacker to compromise the TLS certificate
of the voting server in order to later act as a Mallory-in-the-Middle (MiM).14 (Indeed, a channel attacker should
have access to the plaintext of the exchanged messages.) Recall that the CNIL Security level 3 considers inside
threats, in particular malicious election operators, so a TLS credential theft is in scope (even more so due to
the use of 4 different servers for load-balancing and the use of middleboxes for filtering the traffic). Yet another
way to realize a channel attacker is to exploit some specific network infrastructure, for example when legit MiM,
e.g., with a TLS company proxy, has been put in place between the server and the voter.

Table 1 summarizes the assumed trustworthiness of all roles for the different properties. Note that it is
acknowledged by public authorities that the FLEP does not provide cast-as-intended (voters have no guarantee
that their voting device encrypts the intended vote). Therefore, Table 1 assumes a trustworthy voting device15.

State-of-the-art threat models. We also show in Table 2 the threat models under which the Belenios
protocol was proven secure; the FLEP claims to share a lot of similarities with Belenios [19]. (We recall that
Belenios itself is derived from Helios [1].) A quick comparison between Table 2 and Table 1 shows that our
attacks break FLEP under (even weaker) threat models for which a competitive protocol is (formally) proven
secure. To compare with other protocols, Helios shares the same threat model as Belenios for verifiability and
Civitas [?] and the Swiss Post protocol [18] are aware of the necessity to distrust a unique voting server and
implement multiple servers/components to distribute the trust.

All these elements show that a voting server attacker (and even more so a channel attacker) is a reasonable
threat model under which verifiability and vote confidentiality are expected to hold.

Voter Voting device Com. channels Voting server Dec. auth. 3rd-party

Verifiability ∗ ∗

Confidentiality ∗

= trustworthy
= compromised
∗= trustworthy (However, compromise decreases attacks complexity.)

Table 1: Threat model under which our attacks break the FLEP security goals (details in Section 3)

Voter Voting device Com. channels Voting server Dec. auth. 3rd-party

Verifiability
Confidentiality

Table 2: Standard threat model under which a state-of-the-art e-voting protocols such as Belenios was proven
secure [8]. (There is no 3rd-party role in this protocol, however it assumes an honest public bulletin board. The
latter can be achieved by a trusted 3rd-party; we thus assume the latter honest for comparison.)

14Note that the attacker would have to set up a malicious but legitimate-looking website thanks to having the valid certificate
for it and combine this with DNS poisoning for instance. We stress that we are not assuming here that the attacker performs a
phishing attack, the compromised certificate allows the attacker to "genuinely" impersonate the voting server to voters.

15We will comment on this assumption in Section 3.4.5.
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2.3 Reverse Methodology
In addition to the architecture of the system and the threat model, the element needed to conduct our security
analysis is a comprehensive description of the protocol. Unfortunately, [19] provides a partial specification only.
Indeed, the claimed purpose of this document was to comply with the CNIL requirement security objective n° 3-
02, that is to allow external auditors such as the 3rd-party role to develop verification services. We believe [19]
minimally achieves this (providing the least information possible about the system) in order to not disclose
confidential information or industrial secrets Voxaly Docaposte might want to keep. Hence, this document
focuses on the expected format of some verifiability-related messages (such as the receipts) but omits to specify
how exactly they are computed, exchanged, and which checks are performed upon reception. Moreover, a bigger
picture of the protocol is completely missing.

We describe here how we overcame this limitation in order to build a comprehensive description of the FLEP
(see Section 2.4 and Figure 5) for which, as mentioned earlier, we have later obtained formal acknowledgment
of correctness by the relevant stakeholders.

2.3.1 Obtaining Data

During the two rounds of the election, we collected all the web browser’s interactions with the voting server
during the different steps of the protocol thanks to a few eligible voters. These are gathered into HTTP Archive
format (HAR) files that can be easily generated by browsers such as Google Chrome or Firefox. They log
all the HTML, CSS, JavaScript, etc. files received by the browser together with all the HTTP requests and
responses. For instance, we collected for one typical voter’s journey 15 JavaScript files, 4 HTML files, 4 plain
data exchanges, etc.

Remark 3 (On user data). Note that the only user data we collected are data received and sent from and to the
voting server. Since vote confidentiality is supposed to hold under a compromised server, it must be impossible
to extract how voters voted from those logs.16

The voters who sent us the collected data, who are computer scientists colleagues, were informed about our
research and about the content of those logs. They gave us their informed consent.

Figure 2: All GET and POST requests of HTML and plain data of a voter’s journey. "envoiCodeActivationVote"
can be translated to "sendVoteActivationCode".

2.3.2 Reverse Engineering and Data Cross-referencing

Big picture of the flow of exchanged messages. We show in Figure 2 all the POST and GET requests in
a typical voter’s journey. We also use the description of the voter’s journey published on the government website
to help voters with the voting process (see Figure 6 in Section 2.4) to assign the different URLs and HTTP
files from Figure 2 to the process steps from Figure 6. We then inspect the different requests and responses.
One of them is depicted in Section 2.3.1. Some of the fields of those requests can be related to the partial
specification [19] (e.g., bulletin) but many are omitted (e.g., hashBulletin, bulletinTemoin) or not fully
described (e.g., hSKeySU which seems to be a public signing key after investigation).

That said, this is already enough to identify the main HTTP requests sent to the sever and associate them
to the different steps of the protocol presented in the official documentation given in Figure 6 (in Section 2.4):

1. step 1 to 2: a request to pages/identification.htm sends the login/password of the voter (and many
other metadata) for authentication;

16That is also true when taking our attacks into consideration since they require an active attacker while we only passively
collected data.
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_target3 = nothing
_finish = ok
_page = 3
bulletin = <ballot>
bulletinTemoin = <ballot’>
cryptoLibrary = tomwu
clientInfos =
idElection = 3
empreinteSuffrage = [A4cxm+tMtlQF5s/SVn4OYgetjkgVB2sfNboY/wCd1PS=]
_csrf = <CSRF>
hashBulletin = [2xbqiw23fl6y7mfwx97l9oig782bcgdsdr6ws06t2xbqiw23fl6y7mfwx97l9oic]

Figure 3: Details of the POST 200 request at https://votefae.diplomatie.gouv.fr/pages/generic_vote.
htm. Elements <foo> are replaced by placeholders such as ballot. Elements in [bar] are of the same format
and length as the original ones but have been modified for protecting the voter’s privacy.

2. step 2 to 3: this transition does not require any request to the server. Step 3 displays the voter’s choice
to the voter and ask for confirmation to improve the user experience;

3. step 3 to 4: a request to pages/envoiCodeActivationVote.htm is done to the voting server to initiate
sending the activation code by email;

4. step 4 to 5: surprisingly, two requests are made to the voting server. The fist one to the page
pages/verification_hash_bulletin.htm and the second one to pages/generic_vote.htm. We will
comment on the purpose of these two requests below, based on a better understanding of the fields of the
different requests.

Reverse engineering JavaScript voting client code. As mentioned above, some fields of the requests
were not described in detail or not described at all in [19]. Moreover, even for those fields that were spec-
ified, we needed a better understanding about how they are computed and how they are checked. For this,
we had to investigate the JavaScript programs that produce and check those fields. Excluding all-purpose
library files (such as jquery-3.1.1.msin.js or Captcha-related files), there are 4 JavaScript files that are
specific to FLEP implementing its core logic (election.bundle.js, loria.bundle.js, app.bundle.js, and
verifiabilite.bundle.js) totaling 15574 LoC when de-minimized with js-beautify17.

Those files are obfuscated: they were processed using obfuscation techniques such as function and variables
renaming, or control flow modifications in order to make reverse engineering more complex, as is standard with
web-development. In our case, some variable names were not obfuscated, in particular request fields were not.
This way, we were able to locate part of the JavaScript code manipulating those fields. However, the control
flow is so obfuscated that it makes it very hard to keep track where those fields are flowing. See for example
Listing 2 from line 1 to 11 (line 12-17 turned out to contain the core logic manipulating the receipt).

Fortunately, we obtained a previous version of these JavaScript files used during the first large-scale, in-
the-wild test campaign of the system conducted in September 202118. Interestingly enough, the code and the
protocol for this test phase was a bit different and most importantly for us, the code was less obfuscated and the
obfuscation was done differently. In particular, the control flow was less obfuscated. We thus decided to reconcile
the two code bases and cross-reference some of the most interesting function implementations. We improved our
understanding of the overall logic of the code by investigating the test phase code base and then by cross-checking
with the production code base. An example of such a side-by-side comparison is depicted in Figure 4.

Reverse engineering checks and errors. For obvious reasons, we have forbidden ourselves to carry out
active attacks against voting servers. Therefore, we limited ourselves to passive sniffing of the exchanged
messages. This makes it hard to understand what happens when something goes wrong (since this never
happened for the sessions for which we have the HAR). Some checks are carried out in the voting client and
we were able to reverse them. But the others are carried out in the server side. For those, our logs were not

17https://www.npmjs.com/package/js-beautify
18https://amsterdam.consulfrance.org/Elections-legislatives-2022-vote-par-internet-second-test-grandeur-nature
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1 navclientApp.controller("PageVoteController", ["$scope", "$http", "$location", "$timeout", "
breadCrumbService",

2 function(e, t, i, n, a) { // core logic computing HashClient starts next line
3 e.vote = function () { // line 234 in scripts.js (after js -beautify)
4 if (data.param.signatureEnabled && !e.aVote) {
5 e.aVote = !0, e.erreurHashVerification = !1;
6 var i = forge.md.sha256.create ();
7 i.update(e.bulletinCrypte + data.election.ordre + data.param.electeurEtOrdre);
8 var n = i.digest ().toHex(),
9 a = function(e) {

10 [...]
11 }(n),
12 o = data.election.ordre + "&" + n + a;
13 sessionStorage.setItem("HashClient", o);

Listing 1: Test Phase, scripts.js

1 function(e, t, n) {
2 function ot(e) {
3 [...]
4 function v() { // line 8980 of app.bundle.js (after js -beautify)
5 return (v = Pe()(Re.a.mark(( function t() {
6 var n, r, a, l, u, c, s;
7 return Re.a.wrap(( function(t) {
8 for (;;) switch (t.prev = t.next) {
9 case 0:

10 [...]
11 case 3: // core logic computing HashClient starts here
12 return (n = new jsSHA("SHA -256", "TEXT")).update(o.bulletinCrypte + f.idTour + d

.ordre + f.electeurEtOrdre),
13 r = n.getHash("HEX"),
14 (a = new jsSHA("SHA -256", "TEXT")).update(o.bulletinCrypte + o.voteSignature),
15 l = a.getHash("HEX"),
16 u = f.idTour + "&" + d.ordre + "&" + r + y(r),
17 sessionStorage.setItem("HashClient", u),

Listing 2: Production phase app.bundle.js

Figure 4: Snippets of code from test phase and production phase relevant to the computation of the HashClient
stored in the web browser session storage (i.e., persistent storage). (As we shall see, this will be critical
information since HashClient will act as a receipt tracking the sent ballot; that is the ballot reference Hc

described in Section 2.4.) Comments were added by us.
As we can see, the control flow of the test phase (Listing 1) is much simpler and allows to understand when
this piece of code is triggered and what happens next (not shown here). This is much harder to see in the
production phase code (Listing 2). However, only the production phase code matters in the end, notably
because the protocol has changed and notably the content of HashClient. Therefore, we had to cross-reference
both code bases.

helpful at first sight. Fortunately, some error messages are built-in in HTML pages in hidden div environment.
By locating the JavaScript logic, we were able to partially understand the conditions under which those errors
are displayed upon reception of some messages from the voting server.

The following description of the system may miss actions executed by a trustworthy voting server, but as we
shall see, it is precise enough to claim that our attacks are valid independently of those unspecified components.
Indeed, our attacks rely on sending data to the server that are indistinguishable from its point of view from
legitimate data honest voters would produce.

On dynamic analysis. So far, the presented methodology is purely based on semi-manual static analysis of
the code and of the logs. We actually tried to conduct passive, dynamic analysis of the JavaScript programs by
running them in a sandbox. However, we quickly found out that anti-sandbox mechanisms were in place and
prevented us to run the code without immediate failure. We located the anti-sandbox code but we were unable to
defeat it, which was not a problem in the end since we were able to extract the specification as explained above.
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2.4 Reversed Specification
A full description of FLEP. We can now present a full description of the FLEP. In the following, we specify
all the actions executed by the voter, the voting client, and the voting server at each step. Unlike [19], we also
explicit how messages are exchanged and computed. Those steps are summarized in Figure 5 and correspond
to the voter’s journey depicted in Figure 6.

Step 1: The voter browses to the election website URL and connects to the voting server and receives an
HTML document displaying the login page. The voter authenticates themselves using a login and password
they received before the election through two different channels, the login by email and the password by SMS. In
addition to the authentication data, the voting client also sends to the voting server client_info (some meta-data
about the voting client) and btemoin which is a dummy ballot encrypted with a dummy election public key that
serves as sanity check that the voting client will be able to correctly compute the real ballot at step 4.

Step 2: The voting client receives the HTML document generic_vote.htm displaying the different candidates
V the voter can choose. This document also contains some hidden identifiers such as the election identifier
electionId and a per-session unique identifier tokenId. The voter chooses one candidate v ∈ V for whom they
want to vote.

Step 3: The voter confirms their choice by clicking on "Confirm".

Step 4: The voting client sends a request envoiCodeActivationVote (sendVoteActivationCode in English) to the
voting server. Upon reception of this request, the voting server generates an activation code codeactiv (made of
6 random digits) and sends it to the voter using a side-channel (i.e., by email). The voter receives this code
and enters it in the voting client and clicks on the "Vote" button.

The voting client computes some cryptographic material:

• The ballot b := (c, π) that is made of the encrypted vote v (c := {v}pkE) with the election public key
(pkE) along with a series of ZKP (π) proving that v is a legitimate choice of candidate, i.e., v ∈ V. Those
proofs are also bound to tokenId, the per-session unique identifier received a step 1.

• The hash value h := hash(b‖roundId‖electionId‖ballotBoxId) where ‖ is a delimiter, roundId is the round of
the election (1 or 2), electionId is a per-election (hence per-constituency) unique identifier, and ballotBoxId
is a per-ballot-box (hence per-consulate) unique identifier.

• The ballot reference H := roundId‖electionId‖h‖errorCodes where errorCodes are error correction codes for
the whole message.

This reference is computed and exchanged at different steps of the protocol, we specifically note Hc to
refer to the ballot reference that is computed by the voting client and stored in the SessionStorage of the
voting client browser19.

• The activation hash value20 hcode := hash(b, codeactiv). This value was not described at all in the specifi-
cation [19] and was supposed to act as a proof of knowledge of the activation code codeactiv, bound to the
ballot.21 That said, the precise role of hcode is unimportant for the rest of the presentation.

The values b, hcode, and codeactiv are then sent to the voting server with the request verif_hash_bulletin.
The voting server then verifies the validity of the activation code codeactiv, recomputes the ballot reference H,
denoted by Hs1 ; indeed Hc is not sent to the voting server. The response to the above request is (ko,_) if the
activation code was invalid and (ok,Hs1) otherwise. Upon reception of the response, the voting client verifies
that the response equals (ok,Hc). Therefore, Hs1 must be equal to Hc. This test provides the voting client
evidence that it executes the protocol in the same context as the one of the voting server.

Finally, if those tests succeed, then the voting client computes the ballot fingerprint22 : hb := hash(b). The
ballot b is again sent to the voting server, along with hb and hcode.

19The SessionStorage is a storage local to the browser and associated to the current tab. It allows to store session-specific data
that persist page reloads and page redirection. See, for example, the documentation for Firefox: https://developer.mozilla.org/
en-US/docs/Web/API/Window/sessionStorage

20Called hashBulletin in the voting client code.
21We note that this is completely inefficient since the activation code codeactiv is actually sent in clear text along hcode (with the

ballot b). According to the vendor, this was a mistake and will be fixed. Once fixed, hcode provides such a proof, even though
codeactiv can be quite easily brute-forced given hcode and b.

22Called empreinte du choix in the specification [19].
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At this point, the voting server verifies that the voter never voted before (revoting is forbidden in the FLEP)
and that the ballot ZKP π are valid. If so, the voting server stores the ballot b in the ballot-box ballotBoxId
associated to the voter (one per consulate). It also adds the voter to the signing sheet containing all the voters
who voted so far. Finally, it computes and stores a seal cSU associated to this ballot, that is a signature over
the ballot and some metadata that will be part of the receipt provided to the voters in the final step (we specify
the seal cSU below).

Step 5: Finally, the voting client receives from the voting server an HTML document generic_vote.html that
displays the ballot reference H and that asks the voter to click a link to download the PDF receipt. Voters are
also encouraged to click a link to verify that their ballot is indeed included in the ballot-box.

Two occurrences of the ballot reference H are present in this HTML document, which is generated and sent
by the voting server. We thus denote those two occurrences with respectively Hs2 and Hs3 . The first occurrence
Hs2 appears in a HTML tag < pclass = ”recepisse− code” > and corresponds to the value being displayed
to the voter. The second occurrence Hs3 appears in a JavaScript script embedded in the page23 that tests
that Hs3 equals the ballot reference stored in the voting client SessionStorage, that is the ballot reference Hc

computed by the voting client at step 4. Therefore, Hs3 = Hc or an error message is displayed.

PDF receipt: The very last step occurs when the voter clicks the link to download the PDF receipt from the
previous page.24 The downloaded PDF receipt (see an example in Figure 7) contains the ballot reference H,
the seal cSU, and the ballot fingerprint hb.

Despite those values being (partially) specified in [19] to be specifically computed values and despite some of
those values having counter-part in the voting client, which has itself computed H and hb, the values displayed
in the PDF receipt are never checked by the voting client and could be arbitrary. Therefore, we note Hs4 the
ballot reference and hbs4 the ballot fingerprint that are displayed in the PDF receipt.

The seal cSU should be computed by the voting server (already at step 4) as follows:

cSU := infoSU‖σ‖pkS

where
infoSU = roundId‖electionId‖electionName‖ballotBoxId‖hbs5‖errorCodes,

electionName is the name of the election, hbs5 is supposed to be the ballot fingerprint, and σ is a digital signature
with the server’s signature private key skS (associated to the signing verification key pkS) computed as follows:

σ = signskS(hash(infoSU)).

23Surprisingly enough, this test (and an associated error handling) is the only embedded JavaScript code (it is inlined in the
HTML document, instead of being included as usually done). Also, this is the only JavaScript code that is not obfuscated at all.
This could be evidence that this piece of code went through a different production process (e.g., it could have been added later).

24In practice, for most modern browsers (Chrome, Firefox, Safari), the PDF receipt is downloaded and opened in the current
tab, hence replacing the previous page. We will come back to the implications thereof in Section 3.2.2.
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Voter Voting client Server

GET : identification.htm

Enters login/password

login, password

POST : identification.htm
data : login, password, . . .

client_info, btemoin

GET : pre_vote.htm
GET : generic_vote.htm, electionId, tokenId

Displays generic_vote.htm
and starts the 4 voting steps

Chooses candidate v
v

POST : envoiCodeActivationVote

Picks codeactiv ∈ {0, . . . , 9}6

Sends codeactiv to Voter by email
Receives codeactiv by email

ok
codeactiv

Computes ballot b for candidate v
- c = {v}pkE

- π = ZKP (bound to tokenId,
v is a valid option )

- b = (c, π)
- Hc (see above)
- hcode = hash(b, codeactiv)

POST : verif_hash_bulletin
data : b, hcode, codeactiv

- Checks codeactiv
- Computes Hs1 (see above)

ok/ko, Hs1

Checks Hc =? Hs1

POST : generic_vote.htm
data : b, hcode, hb, btemoin′,...

Checks zkp and that
this voter never voted

generic_vote.htm with Hs2 , Hs3

Displays Hs2 and
Checks Hc =? Hs3

GET : receipt.pdf
receipt.pdf

receipt.pdf

Displays Hs4 , cSU, and hbs4

Figure 5: Description of the French Legislative Election Protocol. Actions in red will be of relevant importance
in the vulnerabilities presented in Section 3. Actions in blue are elements obtained during discussions with EFA
French Ministry, ANSSI, and Voxaly Docaposte.
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Figure 6: User interface of the FLEP with the different voter’s journey steps (extracted from https://www.
diplomatie.gouv.fr/IMG/pdf/presentation_du_portail_de_vote_cle4f6e8e.pdf). Step 1 (top left) is the
login page. Step 2 (top right) is the vote selection page. Step 3 (middle right) is the vote confirmation page.
Step 4 (bottom left) is the activation code prompt page. Step 5 (bottom right) is the final page that contains
the ballot reference Hs2 and a one-use link to the PDF receipt (shown in Figure 7).

16 V1– November 28, 2022

https://www.diplomatie.gouv.fr/IMG/pdf/presentation_du_portail_de_vote_cle4f6e8e.pdf
https://www.diplomatie.gouv.fr/IMG/pdf/presentation_du_portail_de_vote_cle4f6e8e.pdf


A. Debant, L. Hirschi Reversing, Breaking, and Fixing the FLEP

Figure 7: PDF receipt obtained at the end of the voter’s journey. Red arrows were added by us. The first one
points to the ballot reference (Hs4), the second to the signed seal (cSU), and the third to the ballot fingerprint
(hbs4). The cryptographic values were modified by us to protect the voter’s privacy.

.
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3 Vulnerabilities, Attacks, and Fixes
We first present the two vulnerabilities we found (Section 3.1). We then show how these vulnerabilities can be
exploited to break verifiability and the integrity of the election (Section 3.2.1) and the confidentiality of target
voters’ votes (Section 3.3). We also propose fixes to those attacks, some of them will be deployed by the FLEP
stakeholders. We summarize all the attacks we found in Table 3. We also provide the fixes chosen by ANSSI,
EFA French Ministry, and Voxaly Docaposte to be implemented in the mid-term.

Name Attack on Threat model Impact Fix that will be deployed

Drop Indi. Verif. Channel att. Drop any cast ballot
Fix 1: display Hc

Replace Indi. Verif. Channel att. Replace any cast ballot

SwapS Ballot privacy Voting server att. Learn some target voter’s vote
Fix 4: add ballotBoxId
to the ZKPSwapC Ballot privacy Channel att. Learn some target voter’s vote

SwapCs Ballot privacy Channel att., some
voters collude

Learn any target voters’s vote

SwapID Ballot privacy Voting server att.,
some voters collude

Learn any target voters’s vote Fix 4 + Fix 3: 3rd-party
displays ballotBoxId

Table 3: Summary of the attacks found. The last column presents one of our fixes that has been chosen by the
stakeholders to be implemented in the FLEP in the mid-term.

3.1 Vulnerabilities
When reversing the specification, we uncovered 2 critical vulnerabilities that could be exploited by a channel
attacker (i.e., an attacker controlling the plaintext communication channel) and even more so by a voting server
attacker (i.e., compromised voting server). As we shall see, they impact the integrity of the election and the
confidentiality of the votes.

We stress that our reversed specification detailed in Section 2 was necessary to identity those vulnerabilities,
[19] only was not enough.

3.1.1 V1: Lack of Binding of Receipts with their Ballots

In the FLEP, the integrity of the election is guaranteed by the use of receipts: voters can send their receipt
(the ballot reference H or/and the seal cSU) to a server (the voting server or the 3rd-party) to verify that their
ballots have been added in the ballot-box. Moreover, the 3rd-party ensures by verifying the decryption ZKP
that the result of the election corresponds to the content of the ballot-boxes. Thanks to these two checks, an
attacker should not be able to tamper with the cast ballots and with the election result.

A subtlety we noticed in the JavaScript code of the FLEP voting client is that the ballot references that
are displayed to the voter by the voting client (Hs2 and Hs4) for later checks are not necessarily the same
as the one it computed for the ballot produced by the voting client (Hc). This is the reason why we named
those references differently. In the JavaScript code, they refer to values that are expected to be equal and
to correspond to the legitimate value Hc computed by the voting client thanks to various consistency checks
(shown in red in Figure 5). Unfortunately, those are flawed in that they fail to enforce that the displayed
references (Hs2 and Hs4) are the same as the only legitimate reference computed by the voting client Hc.

This may happen as soon as the communication channels (or even worse the voting sever) are compromised.
Indeed, as presented in Section 2.4, the voting client computes once the reference Hc that corresponds to his
ballot, and receives 4 other references from the voting server, Hs1 , Hs2 , Hs3 , and Hs4 . According to Figure 5,
the voting client performs consistency checks to ensure that:

Hs1 = Hc and Hs3 = Hc.

Despite these checks, there is no guarantee about the values of Hs2 and Hs4 , which are the only references
visible by the voters, respectively in the last web page (see Figure 6) and in the PDF receipt (see Figure 7).
An attacker who controls the communication channels can take advantage of this implementation flaw to falsify
the verifiability of the FLEP and thus modify the result of the election. We stress that the voters themselves
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are unable to recompute the genuine, honest value of H (that is Hc) since they never learn the value of their
ballot b, i.e., it is never displayed to them.

3.1.2 V2: Malleability of Sub-Election Identifiers

As presented in Section 2.1, the FLEP is deployed in a complex environment. In particular, unlike usual academic
e-voting protocols, an election is not associated to a unique ballot-box but several ones of heterogeneous sizes
which are tallied individually. In the partial specification of the system [19], Voxaly Docaposte seems to be
aware of this complexity and provides arguments to justify that this complexity is taken care of:

"The election identifier [electionId] is included in the context of the ballot (field
UUID), so that this identifier will be added in the [ZK] proofs associated to the
ballot. This allows to detect if a ballot has been moved from a ballot-box to another,
which would modify the election identifier".

—Voxaly Docaposte, Partial specification of the system [19, p.11]

Unfortunately, we found out that this statement is incorrect. Indeed, as described in Section 2.1, the election
identifier electionId does not identify a ballot-box (associated to a consulate) but only an election (associated
to a constituency). The ballots are thus cryptographically bound to an election but not to a ballot-box whose
identifier is not included in the ZKP context of the ballot. The ballot reference H does cryptographically
bind the ballot to the ballot-box identifier ballotBoxId. However, as we shall see, this ballot reference can be
recomputed by an attacker for a different ballotBoxId. An attacker who controls the communication channels
can re-organize how ballots are gathered across the different ballot-boxes to learn information about a target
voter’s choice as we shall see in Section 3.3.

3.2 Attacking and Fixing Verifiability
We now present how the first vulnerability can be exploited to break verifiability and thus the integrity of the
election. We also propose and discuss fixes.

3.2.1 Attacking Verifiability

The first vulnerability can be exploited to falsify the individual verifiability of the system under a channel
attacker. An attacker who controls the communication channels can stealthily (1) drop ballots, and (2) replace
them by ballots of his choice as explained in the two attack descriptions below.

Attack1[Drop](breaks Indiv.Verif): This scenario requires at least two voters, Alice and Bob and assumes
a channel attacker. In the following, we re-use all the notations introduced in Section 2.4 and Figure 5. We
assume that all the variables are indexed by 1 for Alice’s vote, and 2 for Bob’s. The attack proceeds as follows:

• step 1: Alice casts her vote as expected. In this first step, the attacker does not interfere in the protocol
and the voting server executes honestly, i.e., Hsi

1 = Hc
1 for all i ∈ {1, . . . , 4} and cSU is computed as

defined in Section 2.4. Hence, all the checks that Alice can do to be sure that her ballot b1 (contained in
Hc

1) has been included in the ballot-box succeed.

• step 2: Bob follows the protocol but the attacker interferes in the communications. Actually, the attacker
intercepts all Bob’s requests to the voting server after the creation of the ballot b2 and computes by itself
the responses that are normally sent by the voting server to the voting client as follows: Hs1

2 = Hs3
2 = Hc

2

but Hs2
2 = Hs4

2 = Hc
1 and σ2 = σ1. We do not assume that the attacker knows the signing private key

skS to compute σ2 since the attacker can simply replay the values obtained at step 1. to Bob. The value
Hc

2 can be computed by the attacker since it is only made of public data (e.g. electionId and ballotBoxId)
or data sent by Bob to the server such as b2.

Even if Bob receives inconsistent data (e.g., Hs2
2 6= Hc

2), these are not detected by the checks performed by
the voting client and those differences are invisible to Bob himself. Moreover, Bob can use the web services
(provided by the voting server or the 3rd-party) to be convinced that "his" ballot has been added in the
ballot-box. Indeed, Bob got Alice’s receipt which corresponds to a ballot added in the ballot-box at step
1. All the checks Bob was suggested or instructed to do succeed despite his ballot b2 has been dropped.
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There exists however a non-suggested solution to make sure that Bob detects this removal: Bob can refer to
the signing sheet and see that there is no signature next to his name. Indeed, Bob did not send any ballot
from the server point-of-view, the voting process has been stopped before its end. Bob could thus theoretically
detect that something went wrong. We do think that it is unlikely that Bob does this complex verification
(see Remark 5). Anyway, we shall present a variant of this attack below that remedies this problem and is
completely stealthily.

Therefore, at the end of this scenario, it is unlikely that somebody detects the removal of Bob’s ballot25 and
yet, the election result will not include Bob’s ballot b2 which has never been added to any of the ballot-boxes.
Alice and Bob are convinced that their ballots have been counted (Bob is wrong) and the voting or the 3rd-party
server will always receive consistent data. Therefore, the FLEP fails to guarantee individual verifiability (despite
the use of a 3rd-party).

Remark 4 (On detection using receipts). We stress that only the voting client knows the genuine and honest
cryptographic values associated to the intended cast ballot b and the reference Hc. However, those values are
freed and lost forever at the end of the session, when the voter download the PDF receipt, closes the browser
tab, or logs out. Since the voting client fails to do the checks properly and since all the checks performed from
the outside (from and with the 3rd-party, by observing data displayed to the voter, any internal checks the voting
server could perform etc.) would succeed as they cannot know which ballot Alice or Bob intended to cast, no
one can detect the manipulation based on the receipts. As we shall see, this will also be the case for the other
attacks we found. We come back to this discussion about detection at the end of Section 3.3.1.

Remark 5 (Access to the signing sheet). As mentioned above, this attack is detectable if Bob has access to the
signing sheet. This happens if he decides to come in person at the polling station to see the signing sheet or if
he does an official query to the Consulate and then goes physically visit the consulate. The signing sheets were
accessible this way only at the Consulate during a period of 10 ten days after the election.26 The voters would
thus need to come there to perform the check which is in total contradiction with the usability aim of e-voting.
After this period, the signing sheet is no longer accessible to voters27.

In practice, assuming voters can detect the attack seems unrealistic: first, a large majority of the voters
(>75%) decided to vote remotely. It is expected that they did so for convenience since consulates can be very
far away. Why would then go to the consulate to consult the signing sheet? An attacker can thus safely guess
that voters using the FLEP will not consult the signing sheet afterwards. The probability of this guess being
correct can be highly increased based on naive social analyses to guess which voters are very unlikely to request
the signing sheet.

Attack2[Replace](breaks Indiv.Verif): For the previous attack Attack1[Drop](breaks Indiv.Verif), the at-
tacker could only drop ballots. Because a ballot is not cryptographically bound to a voter, this previous attack
can be highly improved as follows: during step 2, instead of just intercepting all the messages sent by Bob and
not send anything to the voting server, the attacker can forge a new ballot batt and replace each occurrence of
b2 by batt in Bob’s messages towards the voting server.

More precisely, the attacker sends batt, hash(batt, codeactiv) and hash(batt) instead of b2, hcode, and hash(b2).
Hence, the channel attacker can not only drop ballots, but also replace them by attacker-chosen ballots. More-
over, this addition of a new ballot makes the attack undetectable: the signing sheet now contains a signature
for Bob.

Remark 6. Interestingly, Attack2[Replace](breaks Indiv.Verif) is not possible if FLEP used the ballot format
of Belenios, since those include voters’ signatures. Therefore, the removal of signatures from Belenios to FLEP
– as a mean to comply with CNIL recommendations (ballots should be anonymous)– without compensating this
loss with another security mechanism introduced a weakness in the protocol.

High level overview of the threat:
An attacker who compromises the communication channels (or even worse
the voting server) can significantly modify the outcome of the election by
dropping and replacing ballots, hence falsifying the individual verifiability
property.

25In other rare circumstances, for example when b2 was the only ballot in Bob’s ballot-box to vote for a given candidate v, Bob
can detect that b2 has been removed by observing the election result (since there is not even one vote for v). This is extremely
unlikely for large consulates (hence with many expected expressed votes in the ballot-box). Moreover, the attacker can use some
other compromised voters to vote once for each of the possible candidates to completely avoid detection, as explained in Section 3.3.

26This is by lawful requirement: https://www.legifrance.gouv.fr/codes/article_lc/LEGIARTI000027572205/
27This is by lawful requirement: https://www.legifrance.gouv.fr/loda/article_lc/LEGIARTI000023882783
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3.2.2 Fixing Verifiability

We propose 2 fixes to prevent such attacks. The first one is easy to implement but makes the voter’s journey
and verification tasks more complex, while the second would actually simplify the voter’s journey but is more
complex to implement.

Fix 1: display Hc instead of Hs2 on the last web page of the user interface (step 5). The referenceHc

is computed by the voting client. Hence, we can be sure that it corresponds to the cast ballot and the candidate
the voter intended to vote for (assuming a trusted voting client, see Section 2.2). If Hc was displayed on the last
web page of the user interface (instead of Hs2), a conscientious voter would be able to compare this reference to
the one printed in their receipt to enforce the consistency Hs1 = Hs2 = Hs3 = Hs4 = Hc. Finally, the voter can
then use the 3rd-party web service to check the presence of their ballot in the ballot-box with confidence. This
solution would fix Vulnerability 1 as well as Attack1[Drop](breaks Indiv.Verif) and Attack2[Replace](breaks In-
div.Verif). However, it complicates further the voter’s tasks, which are already quite complex (see Section 4.3.1).
Moreover, new instructions to conduct those extra checks need to be explained to voters.

Remark 7. We note that the manual consistency check between the reference Hs2 displayed on the last web
page and the reference Hs4 printed in the receipt is made difficult and error-prone: some browsers (e.g., Chrome
v.106.0, Firefox v.105.0.3) open the PDF receipt in the current tab and the FLEP system prevents the voter
from re-loading the last web page (the one displaying Hs2). A conscientious voter must carefully copy Hs2 before
opening the PDF receipt otherwise the check becomes impossible. The voter’s tasks may become too complex to
be understood and accepted in practice.

According to the discussion we had with the EFA French Ministry, ANSSI, and Voxaly Docaposte, the fact
that the last voting page cannot be reloaded is an intentional feature. They claim it is necessary to satisfy the
Security objective n°1-07:

"[The system must ensure that] the identity of the voter and the expression of his
choice can not be linked during the whole process"

—CNIL, Security objective n°1-07 [16]

We understand the compliance constraint but believe that the data associated to the last voting page could be
locally stored in the voting client for the lifetime of the session at least (for example in the SessionStorage). This
way, the voters could easily reload the page. The voters would be requested to click on a final "Log out" button
to clean up the session storage. This would also transparently happen when voters simply close the tab where
they voted.

Fix 2: make the voting client generate the PDF receipt. Another solution is to let the voting client
generate by itself the PDF receipt. Such a local computation reduces the risks related to a compromised
communication channel, or a malicious voting server.

For the voting client to do so, the voting server would still need to send the signature σ for the voting client
to compute the seal cSU. The voting client must verify the validity of this signature (with respect to pkS) and
its content before generating the PDF receipt. Moreover, the voting client would have to load some additional
JavaScript library to generate a PDF. However, loading libraries in a critical system introduce new threats. Are
the libraries secure and free of trapdoors? This aspect must be carefully studied. An alternative solution would
be to manually generate the PDF without relying on external libraries but using instead a predefined template
made of predefined bitstrings and holes which must be completed by the cryptographic data. This could be
sufficient to generate such a simple document.

We prefer this solution as it does not require extra voters’ checks. Moreover, it allows to check the signature of
the seal cSU before displaying the PDF receipt, allowing to detect potential forgery or voting server misbehavior
as early as possible and making the voting server accountable for potential misbehavior detected later.

Remark 8. ANSSI and EFA French Ministry chose Fix 1 to be implemented in the mid-term. Fix 2 seems
to be the ultimate solution chosen by ANSSI and EFA French Ministry for a future version of the system.
However we have no guarantee that it will be implemented if elections must be organized in 2023 because of
time constraints. Unlike the Swiss Post system [18] about to start the production phase for Swiss elections, the
EFA French Ministry does not make the choice of a continuous development of the e-voting solution (this can
be explained by the number of elections to organize). Instead it organizes a public call for tenders every 4 years
to choose the system that will be deployed for all the elections organized during this period. On this occasion, it
defines a list of demands and closely works with the different companies to obtain a solution which matches all
of them. Modification of the system afterwards seems too complex.

We hope that this fix will be included in the new list of requirements of the next public call for tenders.
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3.3 Attacking and Fixing Ballot Privacy
The second vulnerability can be additionally exploited to break ballot confidentiality (see Definition 1) of target
voters, who are voters the attacker decides to target and attack when they cast their ballot.

We shall see that a channel attacker can learn how a target voter voted provided that there are at least 2
ballot-boxes in the target voter’s constituency (this is the case for all the French constituencies). Intuitively,
the attack is as follows: the attacker gathers all the ballots but the target voter’s one in the same ballot-box
u1 and put the target voter’s ballot alone (or with ballots whose the attacker knows the vote) in another one,
u2 (u1, u2 are ballot-box identifiers ballotBoxId). Because the ballot-boxes are individually tallied, the attacker
will learn the plaintext vote of the target after the tally of u2. As we shall see, variants of this attack exist.
For example, the attacker can use this attack to exercise an efficient coercitive power on as many voters as he
wishes, in a fully remote way.28 Indeed, the attacker can move all the target voters’s votes to u2 and observe
the result of the tally of u2. This way, the attacker can verify that all those voters did comply to his instructions
to vote for a given candidate v ∈ V.

Actually, the attack cannot be as simple because different checks are (or could be) done: the number of
ballots in each ballot-box must match the number of signatures into the signing sheet29, and a voter originally
associated to u2 should not detect that his ballot has been moved in u1. We shall see that the attacker can
mount our attack while satisfying those checks, thus completely evading detection. For sake of understandability,
in the following we first present simplified variants of our main attack Attack5[swapCs](breaks BallotPrivacy).
Before presenting our fixes, we also describe another attack Attack6[swapID](breaks BallotPrivacy) variant that
exploits a different attack vector.

3.3.1 Attacking Ballot Privacy

In order to describe how the attacks work, we first recall how the signed seals are computed. We use the
notations introduced in Section 2.4 and Figure 5 and, for the sake of simplicity, we omit the fields errorCodes
and pkS that are irrelevant to our attack. The ballot reference H and the digital signature σ are computed as
follows:

H = elecInfo‖h
cSU = infoSU‖signskS(hash(infoSU)),

infoSU = elecInfoSU‖ballotBoxId‖hb,

where:

• elecInfo = roundId‖electionId and elecInfoSU = roundId‖electionId‖electionName are election meta-data that
are equal to all ballot-boxes in the same election (constituency),

• h = hash(b‖elecInfo‖ballotBoxId),

• b = (c, π),

• hb = hash(b)

• π = zkp (v is valid with context electionId, tokenId).

Attack3[swapS](breaks BallotPrivacy), simplified variant under a voting Server attacker: In this
first attack scenario, we assume a voting server attacker, i.e., the voting server is compromised. We assume
that the election (constituency) identifier elec contains at least two ballot-boxes (consulates) identifiers u1 and
u2. Alice is the target voter whose vote will be revealed to the attacker. She is eligible to vote in consulate u1.
Alice’s cryptographic data are indexed by 1 while Bob’s, expected to vote in consulate u2, by 2. The attack
scenario is as follows:

• Alice votes as expected and produces and sends a ballot b1.

• The voting server attacker receives b1 but stores it in the ballot-box u2 (while Alice was actually eligible
to vote in u1).

28Note that the FLEP was not intended to guarantee coercion-resistance, which is usually understood as a resistance to over-
the-shoulder coercion where the attacker is physically with the voter under coercion. However, one could have reasonably expected
that it was resistant to this weak form of remote coercion.

29That said, we argue in Remark 5 why it is unlikely that voters check the signing sheet given how complex it is for them to
access this sheet.
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• In addition, the voting server attacker computes malicious receipts to make Alice get a valid receipt for
a ballot in the wrong ballot-box, without Alice being able to detect the manipulation (for the sake of
readability we use elec and elec′ to respectively refer to elecInfo and elecInfoSU for the election and
round in which Alice votes):

Hs1
1 = Hs3

1 = Hc
1 = elec‖hash(b1‖elec‖u1)

but
Hs2

1 = Hs4
1 = elec‖hash(b1‖elec‖u2)

and cSU1 = elec′‖u1‖hash(b1)‖signskS(hash(elec
′‖u2‖hash(b1)))

We can note that Hc, Hs1 and Hs3 are computed as expected but Hs2 and Hs4 are modified such that
the receipt is valid for b1 cast in u2, which is important, as we shall see, to make all 3rd-party checks
succeed and avoid detection. We will explain how after presenting Attack3[swapS](breaks BallotPrivacy).

Note that this swap of ballot from a ballot-box to another one in the same election can be repeated at will.
In particular, the voting server attacker can this way choose u2 such that there are very few eligible voters and
therefore a few expected votes and then move all honest and legitimate ballots cast in u2, e.g. Bob’s ballot, to
another ballot-box, for example u1 in addition to moving Alice’s ballot to u2. By revealing the tallied result for
u2, the attacker learns how Alice has voted. We discuss later how is this practical by analyzing data from the
real 2022 French legislative election and we shall see that such ballot-box u2 with very few eligible voters (e.g.,
23 registered voters and only one expressed vote) actually exist.

Remark 9. In order to preserve a perfect correspondence between the number of ballots in u1 (respectively
u2) and the corresponding items signing sheet, the voting server would need to balance out any swap, e.g.,
compensating a move of a ballot from u1 to u2 with a move of another ballot from u2 to u1. As we shall see
with our ultimate attack Attack5[swapCs](breaks BallotPrivacy), this can be easily done using compromised or
colluding voters. The same applies here. This way, the attack becomes completely stealthily as explained in
Remark 4.

That said, we shall see in Remark 5 that it is unlikely that voters check the signing sheet.

Attack4[swapC](breaks BallotPrivacy), simplified variant under a Channel attacker: In this sce-
nario, we assume that the attacker only controls the (plaintext) communication channel. We assume Bob is any
voter such that: he is an eligible voter in ballot-box (consulate) u2 and he casts a vote simultaneously when
Alice casts her vote. Bob’s cryptographic data are indexed by 2. The attack scenario is as follows:

• Alice votes as expected and produces and sends a ballot b1.

• The channel attacker intercepts the ballot b1 and replaces it by Bob’s ballot, i.e., b2. In addition, he
modifies the messages sent by the voting server to make Alice get a valid receipt for b2, while she intended
to cast b1 instead:

Hs1
1 = Hs3

1 = Hc
1 = elec‖hash(b1‖elec‖u1)

but
Hs2

1 = Hs4
1 = elec‖hash(b2‖elec‖u1)

and cSU1 = elec′‖u1‖hash(b2)‖signskS(hash(elec
′‖u1‖hash(b2)))

We note that Hc, Hs1 and Hs3 are computed as expected but Hs2 and Hs4 are modified such that the
ballot that will be added in u1 is Bob’s ballot.

• similarly, the attacker intercepts b2 and replaces it with Alice’s ballot b1. Again the attacker modifies
the references and the seal sent to Bob replacing b2 by b1. This swap between Alice’s and Bob’s ballots
maintain the correspondence between the number of elements in u1 (respectively u2) and the corresponding
signing sheet.

Remark 10. The scenario above describes a theoretical attack that might be difficult to exploit by an attacker who
controls only the communication channels. Indeed, it requires that Alice and Bob vote at the same time. However,
this scenario become much easier if either Bob colludes with the attacker or if the attacker controls the voting
server. In the first case, the synchronicity is no longer necessary because Bob can create his ballot b2 before Alice
starts to vote. In the second case, the simpler variant Attack3[swapS](breaks BallotPrivacy) becomes possible.

Limitation. As previously mentioned, this attack scenario can be detected in specific contexts. For instance,
if Bob is the unique voter in u2 and his plaintext vote is different from Alice’s then he will be able to detect
that something went wrong when having a look to the result of the election: Bob expects to see 100% of votes
for his candidate v2 but sees 100% of votes for Alice’s candidate v1 6= v2. We remedy this problem with our
ultimate attack on ballot privacy we present next.
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Attack5[swapCs](breaks BallotPrivacy), completely stealthily variant under a channel attacker:
We modify Attack4[swapC](breaks BallotPrivacy) to prevent such detection. If we note v1, . . . , vk the k voting
options, let us assume that:

1. there are at least k + 1 eligible voters in u2, say E is this number.

2. there exist k voters, V1, . . . , Vk, known by the attacker and different from Alice such that Vi is willing to
vote for vi (in u1 or u2). Those voters are either colluding with the attacker or are honest but the attacker
has a good guess about how they will vote.

3. there exist k other voters, Vk+1, . . . , V2k, different from Alice such that Vk+i is willing to vote for vi in u1
for all i ∈ {1, . . . k}. In contrary to V1, . . . , Vk, we do not assume that the attacker knows Vk+1, . . . , V2k,
we solely assume that they exist. In practice, the attacker can just convince himself they exist based on
statistical data (e.g., previous election results). For example, for the second round of the 2022 election,
all of the ballot-boxes of the 11 elections got at least one vote for each of the candidates.

4. the attacker knows E − 1 voters V ′1 , . . . , V ′E−1 eligible in any consulate (of the same election as Alice’s)
and how they are willing to vote. Those voters are either colluding with the attacker or are honest but
the attacker has a good guess about how they will vote.30

We modify Attack4[swapC](breaks BallotPrivacy), where two ballots are swapped between u1 and u2 (step
1. below), with the steps 2 and 3 below:

1. Alice’s ballot is swapped with Bob’s so that Alice’s ballot b1 is added to u2 and Bob’s in u1;

2. for all i ∈ {1, . . . , k}, if Vi votes in u1 then his ballot is moved to u2 with a swap with an arbitrary voter
of u2 different from Alice and Vj for all j 6= i. These swaps ensure that during the tally, u2 contains at
least one vote for each voting option v1, . . . , vk.

3. Other honest voters (maximum E− 1 voters) might want to cast a ballot in u2. Each of those ballots will
be swapped with the ballot of one of the V ′i . Because the attacker knows the votes of V1, . . . , Vk and of
V ′1 , . . . , V

′
E−1, the attacker will know the votes of all ballots in u2 except for Alice’s ballot. Therefore, the

tally of u2 will inevitably leak the Alice’s plaintext vote since it is the unique unknown vote in the result
of u2.

Thanks to the assumed existence of the voters Vk+1, . . . , V2k, the result of u1 is not inconsistent in the point of
view of Alice, who wanted to vote in u1, since at least one vote in u1 is the vote Alice intended to cast.

Impact. The impact of Attack3[swapS](breaks BallotPrivacy) and Attack4[swapC](breaks BallotPrivacy) is
maximal when we assume that u2 contains only Bob’s ballot, i.e., all the other eligible voters abstain or use
paper-based voting (since results are announced per ballot-box and per voting facility). In this case u2 will only
contain Alice’s ballot after the attack and the result of the tally will be Alice’s plaintext vote. The privacy leak
is immediate. We note that this leak is not desired: Alice’s thought she was voting in a consulate with many
voters to protect her privacy (the expected anonymity set was as large as the expected number of expressed
votes). She might have decided to abstain if she knew that she would be the unique voter to vote.

In the 2022 French legislative election, we note that some consulates have received a unique ballot. For
example, the consulate SVX-EKATERINBOURG which belongs to the 11th constituency received a unique
(electronic) ballot during the first round among the 23 eligible voters. This ballot expressed a vote for the
candidate Catya Martin31. For the sake of illustration, this unique ballot may not correspond to one of the 23
voters of the consulate SVX-EKATERINBOURG but could have been moved from one of the consulate in the
same constituency which contains 98 853 eligible voters. The attacker could have chosen this target voter.

� We do not claim that such an attack happened. We solely claim that a channel or a voting server attacker
had the technical ability to perform such an attack without leaving any evidence we could exploit now to
know if it has been exploited.

In practice, we note that many consulates received a small number of votes. For example MSQ-MINSK
during the second round (6 electronic votes among 146 eligible voters) or SVX-EKATERINBOURG during the
second round (6 electronic votes among 23 eligible voters). These two consulates belong to the same constituency

30Strictly speaking, if those voters are not colluding and are eligible in a consulate u different from u1 and u2, then a similar
assumption as 3. should be made about u, that is it is expected that all voting options will be voted for, excluding those V ′

i .
31https://www.diplomatie.gouv.fr/IMG/pdf/leg_2022_t1_-_resultats_circo_11_-_6_juin_2022_cle4c19ff.pdf
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having consulates with a large number of voters with potential targets such as SYD-SYDNEY which received
4049 electronic ballots during the second round32. Based on our attack scenario, we cannot be sure that these
2×6 votes, counted in the two first consulates, were not intended to be cast in the consulate of SYD-SYDNEY.

As shown with the more elaborate Attack5[swapCs](breaks BallotPrivacy), the attacker is not limited to
exploit consulates with a unique cast ballot. If a few voters have voted in u2, the attacker can swap all of
them using either colluding voters or voters for which the attacker can guess how they vote for (the voters
V ′i ). The unique unknown vote in the result of the ballot-box u2 will be Alice’s vote. Similarly, the attacker
could decide to target several voters instead of just Alice and gather all their ballots into u2. This attack would
give a power of coercion against those voters: the tally of u2 will reveal the vote distribution among them and
thus make the coercer able to detect that some decided to not comply with the attacker’s instructions and
how many (the attacker does not learn their identity though). Similarly, the attacker can exploit this to learn
the vote distribution of a population of voters of special interest, e.g., ambassadors or diplomats. Those votes
would normally be mixed with many other votes in their respective ballot-boxes, thus protecting their privacy.
Attack5[swapCs](breaks BallotPrivacy) shows that an attacker can isolate this population and learn their vote
distribution.

Why is Attack5[swapCs](breaks BallotPrivacy) completely stealthily? Let us review all checks that
are performed. We already addressed the voting client and voting server checks in Remark 4. In particular,
we recall that in the present attacks, all data received and processed by the voting server are genuine- and
honest-looking, the voting server does not know how voters intended to vote.33

We now reason about public information and independent verification services proposed to the voters. In
particular, we assume that the integrity of the ballot is guaranteed by the 3rd-party, independent researchers
who operate a server executing an open source program, named VVFE34. Our conclusions are as follows:

• publication of the result: unlike the two previous simplified variants, all the manipulated ballot-boxes
contain (at least) one ballot for each voting option. They are the votes cast by voters V1, . . . , Vk in u2 and
Vk+1, . . . , V2k in u1. Therefore, even if Bob’s ballot has been moved from u2 to u1 (or conversely) then he
will always see in the result at least one vote which corresponds to his intent, it could be his vote. Bob
cannot detect that his ballot has been moved away.

• universal verifiability: VVFE checks the wellformedness of the ballots. It consists in the check of the ZKP
π. Because their context does not include the consulate (i.e. ballot-box) identifier u1 or u2 but only the
constituency (i.e. election) identifier elec, the ZKP remain valid even if a ballot is moved from a consulate
to another inside the same constituency. The attack cannot be detected based on these checks.

• individual verifiability: a voter can use his receipt to verify that his ballot has been counted. To answer
these queries, VVFE recomputes all the references H and hashed values hb of the ballots provided by
the authorities. Then, when a voter inputs their reference H or their seal cSU in the web service, VVFE
looks for a reference or a hashed value that matches the entry. It is important to note that this look-up is
performed taking all the ballots of the given constituency identifier elec into account. A more accurate
look-up based on the consulate identifier u1 or u2 could be done when the voter inputs his seal but VVFE
does not implement the check this way. This design choice is consistent with the properties that VVFE
must ensure: moving a ballot from a consulate to another does not alter the (integrity of) the result of the
election. VVFE has not been designed to detect privacy attacks. Finally, both Alice and Bob can query
the 3rd-party with the receipt they own and VVFE will find a matching entry in its database. All those
checks will succeed despite the manipulations performed by the attacker. The attack cannot be detected
based on these checks either.

Finally, the voters themselves are unable to detect that their ballot reference they were shown (Hs2
1 = Hs4

1 )
are not computed with the right ballotBoxId (and the genuine, honest ballot b the voting client has had
computed). Indeed, to be able to detect this, the voters would need to recompute H and thus to know
what is hashed in H. However, voters do not know the ballot b in H since b is never displayed to the them.

32https://www.diplomatie.gouv.fr/IMG/pdf/resultats_leg_t2_-_circo_11_cle049798.pdf
33We also note that in the stronger threat model of a voting server attacker, checks performed at the voting server, such as the

individual verification service offered by the FLEP voting server, provide no guarantee or security.
34https://gitlab.inria.fr/vvfe/vvfe
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High level overview of the threat:
An attacker who compromises the communication channels (or even more
so the voting server) can learn the plaintext vote of arbitrary target voters.
The number of voters who can be targeted is immediately related to the
number of consulates with a small number of votes cast. A large number of
voters under coercion can also be impacted as all their ballots can be moved
in order for the attacker to know if they did comply.
We stress that our attacks do not break the encryption scheme used to pro-
tect votes but rather exploit attacker-controlled leaks from the tally results.

Before discussing how to fix those main attacks, we present a last attack that we shall show can be fixed
differently (with Fix 5 and Fix 4) but that assumes a stronger attacker, i.e., voting server attacker. It relies
on the same mechanism, moving around ballots from one ballot-box to another one, but it does not directly
exploit the vulnerability V1.

Attack6[swapID](breaks BallotPrivacy), swap ballotBoxId by a voting server attacker: Note that
ballotBoxId is sent by the voting server to the voting client, right after authentication in the HTML docu-
ment generic_vote.htm, along with tokenId. Therefore, a voting server attacker can modify the honest, legit
ballotBoxId value (corresponding to the consulate where the voter is eligible) to any attacker-chosen ballotBoxId
value and accepts the ballot and ballot reference the voting client will compute using the malicious ballotBoxId.
This other attack vector can be exploited to mount the same attack scenario as Attack5[swapCs](breaks Ballot-
Privacy). As opposed to the latter, the present attack makes the voting client computes a ballot and a ballot
reference for the wrong ballotBoxId, but because its value is never displayed to the voter and because the voting
client cannot know what is the legitimate value of ballotBoxId, the attack remains stealthily.

Remark 11. One may argue that this attack is invalid under the assumption of an honest voting client. We
believe deciding what should be considered a malicious behaviors of the voting client and what is not is directly
related to the question of what can be externally audited (we discuss this notion and how FLEP is made auditable
in Section 4). If a piece of data that is received, send, or computed can be externally audited as "valid" or
"malicious", then an honest voting client would only accept valid ones. We argue ballotBoxId is not such a piece
of data since it is a voter-specific piece of data, as opposed to the public key election key, the JavaScript code,
and the HTML templates, which are the same for the whole election. External auditors would have to know in
which consulate voters are eligible and would have to test out all (or at least a significant ratio of all) voters.
We thus consider this attack in scope.

3.3.2 Fixing Ballot Privacy

We propose three solutions to prevent the privacy attacks we found. Fix 3 is the simplest and has already been
implemented by Voxaly Docaposte thanks to our findings.

Note that fixing the first vulnerability V1 with Fix 1 or Fix 2 would already prevent our first three privacy
attacks. However, our last privacy attack Attack6[swapID](breaks BallotPrivacy) remains valid under a stronger
voting server attacker and requires both Fix 4 and either Fix 3 or Fix 5. Moreover, we believe the second
vulnerability we found V2 should be addressed independently with Fix 4 as it introduces a weakness in the
protocol, even though we do not think it could be exploited on its own by a channel attacker.

Fix 3: rely on the 3rd-party to detect attacks. In this first solution, the 3rd-party party would look-up
the reference or the hash value regarding to a specific ballot-box (consulate) identifier. This piece of information
is already available in plaintext in the seal cSU and can be verified to be consistent with the one in the ballot
reference H. If Fix 4 was also implemented, the 3rd-party should also verify the ballot-box (consulate) identifier
is the same in the ZKP of the ballot and in H (and in cSU). As an alternative, the 3rd-party could display to
the voter the consulate in which his/her ballot has been cast and counted. This solution is easy to implement
but makes the voter’s journey and tasks more complex: the voter must do an extra check, either looking at the
reference/seal (that may be complex because a the use of base64 encoding of the data) or verifying an extra
information displayed by the 3rd-party.

However, this solution is of interest to show that a 3rd-party, i.e., an external auditor, can be useful not
only to ensure verifiability, but also vote privacy. This new paradigm is interesting even if it applies only to
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voters who verify. However, we prefer the next Fix 4 (in conjunction with Fix 5) that is more secure as it
cryptographically binds a ballot with a ballot-box and thus does not rely on assumptions about voters’ actions.

Fix 4: add the consulate identifier u in the context of the ZKP. A more straightforward solution is
to add the ballot-box (consulate) identifier u in the context of the ZKP. This simple modification cryptograph-
ically prevents any swap of ballots between different ballot-boxes. This way, the claim written in the partial
specification and mentioned in Section 3.1 becomes correct.

Remark 12. This fix is in line with a cryptographic good practice which consists in adding all the public
information available at the creation of the proof in its context. More on this in Section 4.

Fix 5: make the voting client display the consulate identifier u during the voting process. Even
if Fix 4 was implemented, ballot privacy would still be at risk under a stronger threat model. Indeed, a voting
server attacker could still exploit Attack6[swapID](breaks BallotPrivacy) so that the ballots honestly generated
by the voting client can be built on the wrong, attacker-chosen ballotBoxId. Therefore, we recommend coupling
Fix 4 with displaying the ballotBoxId (or better the readable name of the corresponding consulate) used for
computing the ballot. This way, the voter could notice it is computing and casting a ballot in the wrong
consulate. Attack6[swapID](breaks BallotPrivacy) is thus made detectable and voters can stop the process of
casting their ballot when under attack.

Note that Attack6[swapID](breaks BallotPrivacy) can also be fixed by implementing Fix 3 and Fix 4 in that
the voters who will verify their vote using 3rd-party will be able to detect that the voting server cheated. Since
this attack detection is only possible for voters who check their ballots, we prefer the combination of Fix 4 and
Fix 5, even though it requires to modify the UI of the voting client to implement Fix 5.

3.4 Other Concerns
We comment here different vulnerabilities or weaknesses in the FLEP. Most of them relate to attacks already
known in the academic literature about e-voting. Our aim is not to provide a detailed description and discussion
about each attack (original papers are cited for this purpose). Instead, we just want to recall that they exist and
mention fixes that could be implemented. Note that those are not always exploitable in FLEP but yet deserve
to be fixed. We discuss the challenges with implementing some of those fixes in the real-world setting of the
FLEP. All these weaknesses have been discussed with the EFA French Ministry, ANSSI, and Voxaly Docaposte.

3.4.1 Malleability of the ZKP

ZKP are complex cryptographic primitives that must be carefully used. In particular, as mentioned in Re-
mark 12, it is very important to think about which data should be included in the context of the proof to
prevent attacks relying on tampering with the ZKP context. We present two well-known attacks which do not
directly apply to the FLEP but that show weaknesses in the FLEP that are easily fixable.

Micro-ballots re-ordering. In [10], Cortier and Smyth describe a verifiability attack against the e-voting
protocol Helios (the ancestor of Belenios) which shares a lot of similarities with the FLEP. In order to understand
how this attack works, we must detail how votes are encrypted and ZKP created. We deliberately omit many
details about the FLEP which are not relevant to understand the attack.

As in Helios or Belenios, a ballot in the FLEP does not contain a unique encryption and a unique ZKP as
presented in Section 2.1. Instead, the desired functionality is obtained by the means of several micro-ballots
(one for each voting option) made of an encryption of 0/1 (chosen/not chosen) and one overall proof to ensure
that the ballot is valid (e.g., only one voting option has been chosen). Concretely, assuming a referendum with
a simple "yes/no" question, a ballot is of form b = (c1, zkp1, c2, zkp2, zkpall) where c1 and c2 are encryptions,
zkp1 and zkp2 are ZKP that ensure that c1 and c2 encrypt 0 or 1, and zkpall is a ZKP which ensures that at
most one voting option has been chosen (i.e., c1 and c2 do not both encrypt 1). The attack exploits that the
order of c1 and c2 is not included in the context of the ZKP. The ballot b′ = (c2, zkp2, c1, zkp1, zkpall) is thus
a valid ballot. This malleability weakness could be exploited by a channel attacker in combination with the
vulnerability V1 to modify the choice of a voter (if b codes for "yes" then b′ will code for no) even though the
attack Attack2[Replace](breaks Indiv.Verif) is more efficient and works under the same threat model. In [10],
this weakness was exploited to replay a ballot that is different but that votes for the same choice. This is
impossible to do in the FLEP due to the use of tokenId, see Section 3.4.2.

The FLEP is vulnerable to this malleability weakness. To remedy this problem, the order of the micro-ballots
must be reflected in the ZKP. For instance, we could include the voting option in the context of the individual
ZKP, in zkp1 and zkp2.

27 V1– November 28, 2022



A. Debant, L. Hirschi Reversing, Breaking, and Fixing the FLEP

Maliciously chosen parameters. In [9], Cortier et. al. show how it is possible to maliciously choose a group
generator and a public election key to generate a ZKP that will always be valid, regardless of the encrypted
value. This vulnerability would immediately falsify the verifiability property: given the structure of the ballots
presented above, this vulnerability enables an attacker to forge a ballot that, when tallied will actually count
as an arbitrary number of votes for a target voting option. Coming back on the previous example, this would
mean that an attacker is able to forge a ballot b = (c1, zkp1, c2, zkp2, zkpall)) in which c1 encrypts n ≥ 2. As
explained in [9], this attack can be fixed by adding the group generator and the public key of the election in
the context of all the ZKP. These are two public elements.

Impact and fixed for FLEP. Because the FLEP implements cryptography based on elliptic curves and
the curve is fixed in the voting client, it does not seem to be vulnerable to this attack. Remains the election
public key that could be maliciously chosen. Further investigations would be necessary to decide whether this
could be exploited or not. These investigations might be complex and error-prone, so we instead recommend
implementing the aforementioned fix proposed in [9] that is as easy as implement as Fix 4, which has already
been implemented by the vendor.

3.4.2 Ballot Replay Attack

Ballot replay attacks are one of the well-known attacks against ballot privacy. They have been shown applicable
to Helios by Cortier and Smyth in 2011 [10] and their concrete impacts have been recently studied by Mestel et.
al. [15].

The attack is quite simple: the attacker replays Alice’s ballot to amplify its impact on the result and thus
learn more information than expected about Alice’s plaintext vote. For instance, assume an election with 3
voters, Alice, Bob, who are honest, and Charlie who is dishonest. If Charlie can replay Alice’s ballot then he
can be sure that the winner of the election is the candidate Alice voted for.

Even if this attack seems to have a rather limited impact, Mestel et. al. [15] show that a very small number
of replays (e.g., only 10) can significantly undermine ballot privacy in real-world elections.

A fix for FLEP. The tokenId is a random number generated by the voting server and sent to the voter to
create the ballot35. We think that it could be used to perform ballot weeding : guarantee that all the tokenId

which appear in accepted ballots are unique. In practice, if the voting server receives a ballot that includes a
tokenId which is already used in another ballot, then it rejects it. The voter receives a new and fresh tokenId

and re-votes.
This check seems to be enough in the FLEP to prevent ballot replay. In the scenario presented above, the

attacker would not be able to replay Alice’s ballot. To do so, the attacker must modify the ZKP, which is not
possible since the attacker does not know the random number used to encrypt the vote.

Remark 13. This weeding process can be performed by the 3rd-party: if two ballots contain the same tokenId

then the voting server must have misbehaved. This external verification would be an interesting safeguard. This
check should be implemented in a future version of the VVFE (i.e., the open-source implementation of the
3rd-party service). Voxaly Docaposte confirmed that they have planned to implement this thanks to our findings.

3.4.3 Private Key Generation

The manipulation of the decryption keys is a security concern of main interest to avoid arbitrary decryptions
and thus preserve the confidentiality of the votes. Interestingly, the Code électoral (Article R176-3-1) precisely
defines the quorum to conduct electoral operations (which include decryption).

The electronic voting committee shall validly deliberate only when at least four of its
members are present, including at least one of the holders or substitutes mentioned
in item 5. [...]
The substitutes may take part in the deliberations of the electronic voting committee
even in the presence of the holders they are replacing. In this case, they have a
consultative vote [only].

—Code électoral, Article R176-3-1

35It would seem preferable to generate the tokenId in the voting client to prevent external manipulations but this different
implementation choice does not seem to impact the security.
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This article defines 8 full members (holders) and their corresponding substitutes. They correspond to the
16 decryption authorities mentioned in Section 2.1 who each owns a unique share of the decryption key. The
8 holders (and their respective substitutes) are respectively from: ANSSI, 1 representative of the EFA French
Ministry and its CIO (chief information officer), Ministry of the Interior (similar to the Secretary of Homeland
Security in the USA), Council of State, and 3 representatives of the French citizens abroad (including the
president of the Assembly thereof).

The EFA French Ministry interpreted this article to derive the following three operational criteria that define
the quorum:

1. there must be 4 authorities to decrypt;

2. 1 of the 3 representatives (or their substitutes) of the French citizens abroad;

3. a holder and their substitute cannot both contribute to the decryption at the same time.

Only item (1) is cryptographically ensured, thanks to the threshold encryption scheme which is implemented
with a threshold sets to 4. Items (2) and (3) are not, but operational rules are supposed to ensure those rules
are fulfilled. However, those rules can be bypassed since their satisfaction rely on the honesty of the quorum.
In particular, a dishonest quorum made of only the EFA French Ministry representative and its CIO holders
and their substitutes reaches the threshold of 4 and is able to decrypt any single ballot at will.

We thus wonder whether all the criteria, including (2) and (3) could be cryptographically guaranteed. Can
we share the decryption key among authorities to prevent any decryption if the quorum is not met. We generalize
this into a new research question that we argue is of general interest in Section 4.2.1.

3.4.4 (weak) Eligibility

The last weakness is about eligibility, a well-known difficult to ensure property. Its purpose is to guarantee
that all the accepted ballots have been cast by eligible voters. In the FLEP, this property closely relates to the
authentication mechanisms used to identify voters. Three elements are used to this purpose:

• the login, a 12 characters long string received by email;

• the password, another 12 characters long string received by SMS;

• the activation code, a 6 digits code received by email.

These random codes are sent to the voters through 2 independent communication channels (email and SMS)
as required by the Code électoral Article R176-3-7 and the security objective n°2-07 of the recommendations of
the CNIL. The independence between the two channels allows to assume that they are not both compromised
at the same time, and thus, at least one correctly authenticates the voter.

Two different subcontractors are in charge of respectively sending the logins (by email) and the passwords
(by SMS), respectively by Orange and mTarget. We have no information about how those logins and passwords
are then sent to the voting server. We stress that in the case where a single subcontractor, such as Voxaly
Docaposte, would collect both logins and passwords before sending it to the voting server, then this entity
becomes an additional single-point-of-trust for the election result integrity since it could impersonate all the
voters and vote on their behalf. This immediately falsifies eligibility under an honest voting server and channel.
In the rest of the document, we are assuming this is not the case, that is the logins and passwords are directly
sent to the voting server and that the two subcontractors Orange and mTarget do not collude.

Ballot stuffing under a voting server attacker. Assuming the channel attacker cannot eavesdrop the
side-channels used to transmit the logins and passwords to the voting server, he cannot eavesdrop on those
values and impersonate voters. However, a voting server attacker can always do so since it has the knowledge
of all logins and passwords. This is due to a lack of trust distribution for the voter authentication process: a
single entity (the voting server) is in charge of this authentication.

This attack can be detected in theory, even if hard to do in practice. Indeed, in order to maintain a strict
correspondence between the signing sheet and the number of accepted ballots, the attacker needs to add a voter
in the signing sheet for each ballot he casts, and thus have a guess and commit on who will not vote by using
the FLEP or in-person at the polling station. In practice, the attacker strategy could be as follows:

• regularly during the election, the attacker commits on a voter who will not vote and signs the sheet on his
name without adding a ballot for now. It is important to regularly commit because, unlike the ballot-box,
the signing sheet is timestamped to monitor the participation rate. A significant increase just before the
end of the election would look suspicious.
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Even though the voting server is in charge of writing in this signing sheet, some operational safeguards
are in place to ensure its integrity. We are assuming here that the attacker is unable to tamper with the
signing sheet, except for normal operations.

• if a commit appears to be wrong, i.e., if a voter decides to electronically vote, then the attacker accepts
the voter’s ballot. The timestamp of the signature does not match with the date when the ballot has been
cast but nobody can detect this inconsistency. Indeed, even if the signing sheet is timestamped in the
database, it is not published online (we discuss later how voters can access the signing sheet and we shall
see that it is fairly complex to do).

• if at the end of the election a commit appears to be true, i.e., if the voter did not vote, then the attack
can add an arbitrary ballot in the ballot-box right before the end of the election (the ballot-box is not
timestamped and remains private until the end of the election, when it is finally transmitted to the
3rd-party). Ballot stuffing is thus possible.

Fixes are challenging to deploy. A simple theoretical solution to fix this weakness is to distribute the
generation and the verification of the different codes (login, password, activation code). For instance, we could
imagine that the EFA French Ministry sends the login, the 3rd-party the passwords, and the service provider
the activation codes. The 3rd-party then offers an API to the voting server allowing password verification.

Unfortunately, deploying such an infrastructure is difficult. The EFA French Ministry and ANSSI are aware
of this problem but did not found a satisfactory solution to overcome this single-point-of-trust problem. This
weakness will probably not be addressed in the future version of the FLEP.

Based on this observation, it seems that academic research is still needed to develop solutions that match
real-world constraints of deployments.

3.4.5 Honest Voting Device Assumption

Cast-as-intended is a well-known sub-property of verifiability. It ensures that a voter can be sure that her ballot
contains her intended plaintext vote even if the voting device is compromised. The FLEP does not guarantee
this property and thus considers verifiability properties with respect to an honest voting device.

Even if this assumption is standard in the literature (see for example [8, 6, 13]), we think it deserves to be
discussed: in the FLEP, the voting device executes with the browser a JavaScript program sent by the voting
server. Therefore, on the surface, it seems contradictory to assume an honest voting client but a compromised
communication channel or even worse a compromised voting server. Indeed, as far as we know, there is no
built-in functionality in the browsers to check the integrity of a JavaScript file dynamically loaded.

This apparent contradiction is resolved in the literature with the notion of "auditability" of the code sent
by the voting server to the voting client (see for example [3]). Indeed, this code is sent to anyone connecting
to the election website and any cheating (a voting server sending a malicious JavaScript program) could be
detected by comparing the received code with the honest, legitimate one. It is unlikely that voters are able to
do such checks. For doing such checks, state-of-the art protocols assume a role of auditors, who are external
auditors anyone (including tech-savvy voters) can execute. The idea is that if enough auditors are checking the
consistency of the code sent by the voting server and if they are hidden enough among the voters, the voting
server can no longer cheat since the risk of being caught becomes too high. As discussed in Remark 11, this
assumption requires that the "voting client" is composed of static files only, i.e. files that are independent from
the voter. This may make the design of the voting client more complex.

Auditability of the FLEP and recommendations. In the context of the FLEP, such external audits were
made complex to conduct and never specified. We can provide a few insights to reduce the risk of attacks:

• unlike the current implementation choice, the system could decide to distribute the JavaScript program
through a secure platform. This way, the integrity of the code would be protected by the platform. The
platform could be a well-established web site of a public authority or an application store. However, such
a design choice has serious weaknesses: first, it requires that voters install a standalone software which
severely impacts the usability of the system, and is quite expensive because development and maintenance
costs.36 Moreover, it puts an important trust assumption on the authority in charge of the distribution
(public government, Google, Apple, etc.).

36That said, there exist technologies such as Electron https://www.electronjs.org/ that dramatically lower the cost of deploying
web applications as standalone software.
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• if deploying the FLEP voting client as a standalone software is not an option, the voting client will be
inherently vulnerable to integrity flaws. Fortunately, it is possible to dramatically increase the attack cost
by improving the voting client auditability, as explained next. First, unlike the current FLEP implemen-
tation, the main voting client program logic and items to display must be included in static files that
are easily comparable to honest, files of reference. Specifically for the HTML documents, they should be
made of an uniform, static template in which holes correspond to a restricted set of user-dependent data.
The system must then ensure all of the expected security properties regardless of how those holes are
filled37. Ideally, the code would be distributed in the form of a Single-page Application (SPA)38 as done
by Belenios. This way, the voting client is made truly auditable.

Moreover, unlike the current implementation, the data to be audited (JavaScript code and HTML tem-
plates) must be distributed prior to authentication (this is for free with the SPA framework). Indeed, to
make the audits useful, the voting server should not be able to adapt the JavaScript code and the HTML
templates it sends depending on the voter who is authenticating and who is trying to cast a ballot (or to
audit the voting client).

We recommend to at least implement these two proposals to improve the security of the FLEP. Similarly,
we recommend the EFA French Ministry and ANSSI to include them in the requirement lists for the next
public call for tenders.

4 Lessons Learned
We presented our security analysis and its outcomes. Some important findings and discussions are relevant
beyond the FLEP. In this Section, we step back and draw some lessons that are of general interest.

4.1 Voting Client as a Critical Component to be in Audit and Analyses Scope
The partial specification [19] has been used by the third-party to build their verifier service intended to let any
voter independently check individual verifiability (i.e., their ballot has been counted) and universal verifiability
(i.e., that the final count is correct). However, the voting client is not specified in [19]. Neither the design nor
the implementation of the voting client are made amenable to analysis, even less accessible for public scrutiny.
(We recall that the voting client code is obfuscated, see Section 2.3.)

Why the voting client is the most critical component for verifiability? Verifiability is a security
mechanism that allows to dispense an e-voting system to having to trust the voting server, its administrators,
the code it runs, etc. This is sometimes called software independence. As discussed in Section 2.2, the underlying
relevant threat model when it comes to analyze verifiability is therefore a voting server attacker; more precisely,
verifiability is supposed to make an e-voting protocol secure even when the voting server is fully compromised.
This is the usual point of view in the e-voting literature and explains why the voting server attacker is the
standard threat model for the election integrity (see Section 2.2).

From that point of view, the most important component of the protocol that should be the main target of
audits and analyses is the voting client. If the voting client is securely designed and implemented, the protocol
should ensure the election integrity under this threat model (see Table 2).

A very good illustration of this is that we have shown with our attacks that the partial specification and
3rd-party verification services are of no interest if the voting client is flawed as it was the case for the 2022
French legislative election (assuming a channel or voting server attacker). An implementation weakness in the
voting client can completely defeat verifiability and privacy as we have shown. Therefore, the voting client must
be fully open, documented, and audited.

That said, this does not dispense to make effort to secure the voting server, which seems to have been the
main focus of the audits made on the FLEP. Indeed, securing the voting server from external threats reduce
the attack surface and is beneficial to the overall system security. Our point remains: this is insufficient and
misses the point of verifiability and software independence.

37Continuing Remark 11, it is now clear why checking the validity of ballotBoxId cannot be considered to be external auditors’
tasks since it is a user-dependent piece of data. Hence the need for Fix 3 (or, better, of Fix 5).

38https://developer.mozilla.org/fr/docs/Glossary/SPA
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4.2 Reflect the Use Case Specificities in the Cryptography
4.2.1 Operational and Lawful Constraints

We have shown in Section 3.4.3 that some lawful requirements governing when a quorum is met to e.g., decrypt
a ballot-box are not cryptographically enforced in the FLEP. In theory, fewer people than what is prescribed
by the law can collude and decrypt a ballot-box, even though it does not constitute a valid quorum by law. To
prevent such scenarios, some operational procedures (key storage in safes, use of secure envelops, etc) were put
in place and are expected to be enforced by human safeguards (checks before openings).

Therefore, we ask the following question: is it possible to cryptographically enforce such operational con-
straints to prevent any human misbehavior? Are there solutions that are generic enough to be suitable for
practically relevant constraints seen in real-world use cases?

Cryptographically enforcing quorum rules. More formally, we ask the following interesting research
question:

Open question. Given a set of authorities A and a valuation ρ : P(A) → {>,⊥}, is it possible to share a
decryption key among A’s members such that for all B ⊆ A, B’s members are able to decrypt if, and only if,
ρ(B) = >.

This question is partly answered in Belenios specification [12] for specific quorum rules. The system allows to
define mandatory authorities whose participation is necessary to decrypt. Regarding the quorum rules presented
in Section 3.4.3, this approach could be used, for instance, to cryptographically ensure item (2), i.e., at least
1 of the 3 representatives of the French citizens abroad is present. Item (3), i.e., holder and substitute cannot
contribute at the same time, could also be cryptographically guaranteed based on a different approach: instead
of creating 16 shares, the system could simply create 8 shares: one for each pair of holder/substitute member.
Using the same share, a holder and their substitute cannot both contribute to the decryption at the same time.

These are two concrete solutions to reflect the quorum rules of the FLEP but are not generic enough to
encode any arbitrary rule. The theoretical question remains open.

Remark 14. Perfectly encoding the quorum rules in the cryptography would not seem appealing for the EFA
French Ministry and ANSSI in the short-term. They would like to conduct further risk evaluations and organize
internal debates about the impact of the solution on the availability of the system. The EFA French Ministry and
ANSSI do not want to reach a situation in which results cannot be published on the d-day because the quorum is
not met. Instead, they would like to keep the possibility of publishing the result and acknowledge that the quorum
was not met in a public official document. They argue that the legality of this decision would then be contestable
against the Court.

Even if we think that this solution would be an improvement of the system, whether this should be implemented
or not is a political decision.

4.2.2 Put the Whole Public Context in ZKP, Again

We have shown in Section 3.1 that a critical contextual information (ballotBoxId) was missing from the ballot
ZKP. We also explained in Section 3.4.1 that known weaknesses with missing contextual information in the
ZKP possibly also impact the FLEP. This is has become a recurrent patterns of weaknesses with practical
deployments of e-voting [9, 10, 14]. It is now recommended to include by default in the ZKP any public,
contextual information about the election.

Our work shows that this pattern and the recommendation are still practically relevant in 2022.

4.3 Simpler is Better
We now argue why simplifying e-voting protocols are also beneficial to their security.

4.3.1 Defining and Simplifying the Voter’s Journey

Beside coming up with a threat model specification, another challenge we had to solve was to determine what
the voters should do and what they could do, especially for verification purposes. This distinction is important
to assess if an attack will be detected, could be detected, or is actually undetectable. To resolve this, we argue it
is crucial to precisely define the voter’s journey and the system expectations about them. Ideally this description
should be as precise as the protocol description. Before the election starts, the voters should receive a public
document precisely defining what they are supposed to do and what are the guarantees they get if they do so.

Conversely, the system and its security analyses should not assume voters will do things they are not explicitly
asked to do.
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Cryptographic data and checks versus human voters. Taking the case of the FLEP as illustration, the
voters receive different (confusing) information about the verification process:

• displayed on the last step voting web page:

(1) a first clickable link to "check the presence of the ballot in the ballot-box",

(2) a sentence informing the voter that, after the tally, the receipt can be used to check that their ballot
has been taken into account.

• displayed in the PDF receipt:

(3) a clickable link to "control the reference of the ballot";

(4) a clickable link to the web service proposed by the 3rd-party.

The voter may be confused by all these elements: what should I do? Which link should I use? What are the
differences? Do I always get the same guarantees? Similarly, many different intimidating cryptographic data
items are shown to the voters:

(a) the ballot reference Hs2 on the last step voting page, with no instruction to what to do with that,

(b) the ballot reference Hs4 on the PDF receipt "in order to control that your ballot is in the ballot-box",

(c) the seal cSU on the PDF receipt "in order to also check that your proof [the seal] of vote has correctly
been produced by the system [...]",

(d) the ballot fingerprint hbs4 on the PDF receipt "in order to check that the content of your ballot is the
same throughout the election. This value should be checked against the one obtained when checking the
presence of your ballot in the ballot-box".

Again, as a voter, what should I do with all that? What are the differences? Even if a FAQ is available39, none
of the these questions are precisely answered. We explain below how this voter’s journey can be considerably
simplified with only displaying the seal on the PDF receipt (c) asking to do the check (4).

Signing sheet. Another important aspect is the access for the voters to the signing sheet discussed in Re-
mark 5. Indeed, even if this document is in theory accessible to each voter, the likelihood that a voter accesses
this document is more questionable. Therefore, it appears as a key element for the security analysis to define
whether the voter is requested to examine this document, is encouraged to access it, or is not supposed to check
it. As we have seen, this impacts the security (more attacks are possible if the check of the signing sheet is
not requested to voters). We stress that, to be on the safe side, we shall not assume voters will do what is not
explicitly requested from them.

Simplifying the FLEP voter’s journey. Related to the necessity of describing the voter’s journey, it seems
important to define it as simple as possible. The more complex the journey is, the less likely and the less often
the voters will entirely follow it because of misunderstanding or discouragement.

Regarding verifiability for the case of the FLEP, it seems very important to use the 3rd-party web services
to check the presence of the ballot in the ballot-box (check (4)). However, a voter may be confused and think
that using the voting server services is enough (checks (1) and (3)). Moreover, even if the voter decides to use
the 3rd-party services, he may be muddled by the fact that he can do a first check during the voting phase
(where only the validity of the signature of the seal cSU is checked) but he actually needs to come back after the
election closed to check that his ballot has been tallied by entering their ballot receipt H. These two verification
steps at the 3rd-party, which add up to the two similar verification steps the voting server also offers, are highly
confusing. They could be easily merged into a single one in which the 3rd-party logs all the seals it receives when
voters verify during the voting phase. Once the voting phase ends and the 3rd-party receives the ballot-boxes
from the voting server, the 3rd-party can verify that the ballots of all the seals received so far are indeed in
the (right) ballot-boxes. As a result, we propose a modification of the FLEP that considerably simplifies it so
that voters only have to store one cryptographic item (the seal cSU stored on the PDF receipt) and conduct
one check, at any time they want. This simplification does not weaken the security of the protocol. On the
contrary, it strengthens the security due to the simpler voter’s journey (more voters would probably correctly
perform the required check(s)).

39https://www.diplomatie.gouv.fr/fr/services-aux-francais/voter-a-l-etranger/elections-legislatives-2022/
presentation-du-vote-par-internet/article/faq-du-vote-par-internet
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Moreover, the simpler the voter’s journey is, the easier the security analysis will be and less likely flaws
occur. For instance, the first vulnerability is partly due to the redundancy between the different ballot references
displayed to the voter. The vulnerability might have been easier to spot and prevent if only one reference was
available in the PDF receipt generated by the server and on which no check is performed.

4.3.2 Simplify the Protocol

Related to the simplicity of the voter’s journey, it seems also important to make the system as simple as possible
to avoid flaws. In particular, it seems important to dissociate security and safety elements. The safety ones
could be removed without altering the execution of the protocol.

Concretely, following this advice could have prevented the first vulnerability. Indeed, all the references but
Hc are data that have been added for safety or robustness only. Indeed, they should only be used to check that
the voting device and the server execute in the same context to detect early invalid ballots. In the FLEP, if the
references Hs1 , Hs2 , Hs3 , and Hs4 are removed, then the protocol is no longer executable; the voter no longer
receives a valid final web page nor receipt. It is likely that the vendor would have detected that the protocol
implementation was flawed.

To some extent, the second vulnerability is also related to a safety element that is not correctly handled:
the publication of the result per consulate. If these detailed results were needed for practicality and verifiability
in paper-based voting systems, it seems useless for e-voting: the tally is now computable for a large number of
ballots and verifiability is now achieved thanks to cryptographic data and no longer requires small ballot-boxes.
Hence, the use of the per-consulate tally appears as an outdated feature that makes the system unnecessarily
complex and introduces flaws. From an academic point-of-view, and based on the advice to make the system
as simple as possible, we question the rationale of this legal basis for e-voting in France. However, it remains a
political decision to allow or forbid this.

4.4 Transparency and Specification
We explain why e-voting systems should be made as open as possible with clear system and threat model
specifications.

4.4.1 Need to Clarify the Threat and Trust Models

Based on our experience, it appears that there was no official document presenting the threat model and the
security properties that the FLEP was expected to ensure. However, we think that it is a must-have for any
e-voting system.

First, as shown in this work, such a threat model specification is required to conduct meaningful security
analyses. In this work, we have defined a reasonable threat model that we argue is in line with the legal frame-
work in France (Section 2.2). However, it would be more satisfactory that the FLEP designers or the responsible
for the public call for tenders (EFA French Ministry) provided such a specification themselves. Ideally, it could
be made a lawful requirement as it is the case in Switzerland (see Remark 15), where clear security objectives
and threat models are defined in Swiss law, as well as the requirement to provide cryptographic and symbolic
proofs thereof.

As it is meaningless to assess the security of a system without a clear threat model definition, the lack of
public specification of the FLEP is problematic. For instance, it is of little interest for the public to know that
the FLEP has undergone audits without having access to the scope and the objectives of this audit. Since there
seems to be no official threat specification, we wonder what was the considered threat model in this audit?
Did the auditors have to do subjective interpretations as us? We believe that the absence of a threat model
specification makes the audits (and the security analyses) more complex and error-prone. The auditors or the
experts first need to interpret the informal and incomplete requirements before analyzing the system. As shown
before, this interpretation is somewhat subjective and may depend on the people doing it (politics, experts,
vendors, etc). This is a source of misunderstandings and confusions (e.g., ambiguities about compromise of
the communication channels and the server, or the definition of ballot privacy). These can be resolved through
discussions with authorities, which, however, is time-consuming and does not scale. Overall, this lack of threat
model specification is detrimental to the quality of the audits, security analyses by experts, and public scrutiny
in general.

Second, the definition of the threat model and the security objectives are useful to the politics and the citizens
to understand the security expectations of the system they shall use. We stress that publishing such a document
can be done without disclosing industrial secrets about the system internals such as how the voting server is
coded. Moreover, in the case of a call for tenders, the politics would be able this way to precisely compare the
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different solutions proposed by the different companies. This would make their choice more well-informed and
objective.

Third, the vendors should be interested in a clear description of what their system must ensure to meet the
expectations of the organizers of the call for tenders. This would give competitive advantages to the solutions
that are the most well-thought in terms of security, which eventually incentivize the vendors to improve their
products.

Remark 15. As an illustration, consider the Swiss example. The Federal Chancellery has made the effort to
formally define the threat model and the security properties that an e-voting system must ensure to be considered
for political elections. This information is provided in the Federal Chancellery Ordinance on Electronic Voting
(OEV)40.

Even if these requirements are too specific to immediately apply to the FLEP, this ordinance shows the
feasibility of our advice for the French authorities. We hope that the next public tender, or better, a revision of
the Code électoral will progress toward this direction.

4.4.2 Need of Transparency for Public Scrutiny

Last but not least, we generalize the above: transparency is a key criterion to choose an e-voting system for
political elections. The FLEP has been reviewed by many entities (Voxaly Docaposte experts, ANSSI experts,
external auditors, 3rd-party, etc.) and none of them found the vulnerabilities we disclosed in this document.
Most likely because the scope of their intervention was too limited, the well-recognized experts in the academic
e-voting community who run 3rd-party did not find them either, despite their privileged access to the system.
Different factors can explain this.

First, an unsought lack of transparency between the vendor, ANSSI, and the auditors. We discussed the lack
of a threat model specification. There might also be a lack of a system specification. While we stress that the
publication of the partial specification [19] is an appreciated step towards openness, it is not enough to convince
the system is secure. Its scope is too narrow (no description of the voting client) and it lacks key components
(e.g., threat model and security objectives specification). Most notably, as discussed in Section 4.1, a complete
specification of the voting client is lacking. As we have seen in Section 2.3, despite [19], the cost to obtain a
complete description of the system is fairly high. All the information was somewhat accessible but hidden in a
labyrinth of corridors and rooms.

From an academic point-of-view, security by obscurity is a no-go. We thus encourage the EFA French
Ministry and all the authorities who want to promote or deploy e-voting to push for more transparency. A
good example is what happened in Switzerland after the discontinuation of e-voting in 2019: an e-voting system
must be open access to match the legal requirements and the Federal Chancellery push for public scrutiny (see
Remark 15). In the French context, the helpful discussions we had with the EFA French Ministry and ANSSI
are very encouraging and we believe in their good will to improve this state of affairs.

To conclude, we mention some concrete improvements that come with greater openness and transparency:

• prevent that the system is vulnerable to well-known attacks of the literature thanks to public scrutiny. A
single team of experts cannot be aware of all the existing attacks but many different experts can. A full
transparency of the system would encourage different experts to have a look to the system. Ideally, way
before deployment, the organizers could launch programs like Public Intrusion Test that promote public
scrutiny with incentives like Bug Bounty and good communication for a general call for analysis to all
experts (academia, hacking sphere, etc.). This has been done in 2019 and 2022 in Switzerland.

• increase the confidence that voters can have in the system. Full transparency allows to distribute the trust
between many more experts, each owning a different expertise. For instance, we conducted a security
analysis at the protocol level, but we cannot assert there is no other attack: we might have missed a
vulnerability inside the scope of this analysis, and we have not looked for attacks outside the scope and
from a different perspective (network-level vulnerabilities, implementation of the cryptographic primitives,
etc.).

• discover new attacks and/or better understand the practical impact of recent ones. For instance, the
privacy attacks presented in this document is similar to a recent type of attacks firstly presented in
2021 [7] against the Swiss Post e-voting system. Whether variants of those attacks also break other
e-voting systems remains an open question.

40https://www.fedlex.admin.ch/eli/cc/2022/336/fr
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• help the academic community to focus on the most practically relevant expected security goals and threat
models and develop solutions which could be transferred from academia to the real-world (see for exam-
ple Section 4.2). This would promote communication between the two communities (practitioners and
academia).

In summary, transparency is a win-win: vendors, politics, and voters with more secure systems and weaker
trust assumptions and academic researchers to identify new practically relevant open research questions.

5 Conclusion
We conduct a comprehensive security analysis of the FLEP for two central goals of e-voting protocols: verifi-
ability and ballot privacy. Analyzing the French legal framework and relevant recommendations, we define a
precise threat model specification that we argue is in line with the French legal framework and which is also
supported by the literature. Due to a lack of specification of the protocol and most notably of the voting client,
we had to reverse engineer the protocol to build a complete specification of the FLEP. To do so, we notably
had to overcome the obfuscation of the voting client JavaScript code and cross-reference multiple code bases
and sources. We thus contribute the first complete public specification of the FLEP.

We then report on the results of our analysis of the FLEP we could conduct thanks to the above specification.
We report on two major vulnerabilities: one implementation-level flaw in the voting client which defeats the
purpose of ballot references of achieving verifiability and one design-level flaw in the ballot construction for
which we show a contextual information is missing from the ZKP. We then describe and discuss 6 concrete
attacks exploiting those two main vulnerabilities and other flaws that break verifiability and ballot privacy in
the FLEP. Those attacks, the threat model under which they are possible, their impact, and how they will be
fixed are summarized in Table 3. The first most important attack stealthily breaks verifiability and the election
integrity under a channel attacker, i.e., an attacker who is able to compromise the secure channel which is a
weaker attacker than a compromised voting server. The second most important attack stealthily breaks ballot
privacy of target voter(s) under a channel attacker, that is a channel attacker can learn how some targeted
voters voted. The detailed description of the attacks, their threat model assumptions, and their impact, are
discussed in Section 3. We responsibly disclosed those attacks to the relevant stakeholders, who acknowledged
our specification and attacks. We respected a 3 month embargo period (starting months after the end of the
actual election) to discuss 5 different fixes we suggested to them to prevent our attacks and secure the FLEP in
the future. 3 fixes, which resolve the most critical threats, are expected to be deployed soon and are summarized
in the same table.

Moving forward. Our findings are interesting beyond the specific case of the FLEP and we draw more
general lessons and recommendations from this experience.

Indeed, the FLEP case study is especially relevant as it shows how things can go bad with the excessively
challenging real-world deployment at scale of e-voting solutions. To do so, many aspects that are very often
omitted in the academia have to be taken into account such as the legal requirements and recommendations that
come with political elections, compliance to a competitive public call for tenders, etc. This could explain why,
despite being derived from the state-of-the-art academic protocol Belenios [8], the FLEP had to be instantiated
and modified to comply with those additional constraints and some of those modifications introduced the
vulnerabilities and attacks we found, which were inexistent in Belenios. From this FLEP experience, we discuss
interesting factors that could explain why is this so and we draw more general lessons and recommendations
that are relevant both for academic researchers but also for election organizers and vendors to better secure
political elections in the future.

First, it appears that organizers should clarify and specify their expectations regarding the security objectives
and threat model. This will certainly help academic researchers to identify and address practically relevant
problems, incentivize more secure solutions in calls for tenders, and allow more relevant audits and security
analyses. For example, we have shown the critical importance of the voting server attacker model.

Second, the academic solutions can do better at offering enough modularity and generality to adapt to
real-world constraints. For example, if Belenios included a multi ballot-boxes (for the same election) option,
the FLEP would not have to add ballot-box identifiers while forgetting to include it in the ZKP (second
vulnerability). Similarly, if Belenios did offer PDF receipts then the FLEP would not have to introduce new
receipts while forgetting to verify that they are all consistent (first vulnerability).

We also explain why complex protocol and notably voter’s journey and verification tasks are detrimental
to the overall protocol security. In the case of FLEP, we show that those could have been simplified a lot and
would have make the first vulnerability much more obvious.
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Finally, because we all know that designing a secure system is a difficult task, we would like to promote
transparency and advocate for more public scrutiny from different communities (academic researchers, hackers,
etc..). This could be incentivized with public intrusion test and bug bounty programs. Moreover, while great
care has been put in securing the voting server against internal and external attacks, which seems to usually
be a strong expertise of large companies, auditors, and certification authorities, the voting client has seemingly
received much less attention. Yet, our analysis sheds light on the critical role of the voting client provided to
the voters that must be considered a primary analysis target. This piece of code is indeed the keystone for
the verifiability of the system. We advocate for making the voting client fully public and amenable to public
scrutiny and external audits (with a public specification and open-sourced code, ideally FLOSS).

In conclusion, FLEP is an instructive example of a real world deployment of a variant of an academic protocol
(Belenios) that introduces design-level and implementation-level weaknesses. The latter opened up the 1.1 mil-
lion eligible voters overseas of the 2022 French legislative election to integrity and privacy attacks under a voting
server attacker or a weaker channel attacker. There is hope though. We had very insightful discussions with
the different stakeholders and we strongly believe more of such communication between academia and e-voting
practitioners is for the better. We are confident that the FLEP stakeholders will take our recommendations
into account for the design, the choice, and the analysis of the next e-voting system to be used in France. We
expect a public call for tenders with a clearer threat model and security objectives, a better transparency, and
hope for concrete solutions proposed by the academic community to solve open questions raised in this work.
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A Translations of the Main References
Almost all the quotes presented in this document have been translated from French documents and these
translations would like to be as impartial as possible. However, to avoid subjectivity due to unconscious bias,
we recall here the official French versions and our English versions.

Translations from the Code électoral [11].

Source Original French version Translated English version
Article R176-3-1, §9, §10 Le bureau du vote électronique ne

délibère valablement que si quatre au
moins de ses membres sont présents,
dont au moins l’un des membres titu-
laires ou suppléants mentionnés au 5°.
[...]
[...] Les suppléants peuvent participer
aux délibérations du bureau du vote
électronique même en présence des
membres titulaires qu’ils ont vocation
à remplacer. Ils disposent alors d’une
voix consultative.

The electronic voting committee shall
validly deliberate only when at least
four of its members are present, includ-
ing at least one of the holders or sub-
stitutes mentioned in item 5. [...]
[...] The substitutes may take part
in the deliberations of the electronic
voting committee even in the presence
of the holders they are replacing. In
this case, they have a consultative vote
[only].

Article R176-3-9, §3 Le vote est protégé en confidentialité
[et en integrité]

Votes must remain confidential

Article R176-3-9, §4 L’enregistrement du vote de l’électeur
donne lieu à l’affichage d’un récépissé
électronique sur le système de vote lui
permettant de vérifier, en ligne, la prise
en compte de son vote.

When a voter’s vote is registered, the
voter is provided with a digital re-
ceipt allowing them to verify online
that their vote has been taken into ac-
count.
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Translations from the CNIL recommendations [11].

Source Original French version Translated English version
Security objective n° 1-04 assurer la stricte confidentialité du bul-

letin dès sa création sur le poste du
votant.

[the system must] ensure the strict con-
fidentiality of the ballots as soon as
created.

Security objective n° 1-07 assurer l’étanchéité totale entre
l’identité de votant et l’expression de
son vote pendant toute la durée du
traitement.

[The system must] ensure that the
identity of the voter and the expression
of his choice can not be linked during
the whole process"

Security objective n° 2-07 assurer la transparence de l’urne pour
tous les électeurs. [...] Il s’agit de per-
mettre aux électeurs de s’assurer que
leur bulletin a été pris en compte dans
l’urne et que les bulletins de vote sont
construits de manière correcte.

ensure the transparency of the ballot-
box for all the voters. [...] It must be
possible for the voters to ensure that
their ballot has been counted in the
ballot-box.

Security objective n° 3-02 permettre la transparence de l’urne
pour tous les électeurs à partir d’outils
tiers.

The system must allow transparency of
the ballot-box for all voters from third-
party tools.

– Niveau 3 : Les sources de menace,
parmi les votants, les organisateurs du
scrutin, les personnes extérieures, au
sein du prestataire ou du personnel in-
terne, peuvent présenter des ressources
importantes ou de fortes motivations.

Security level 3: The threat actors
include the voters, the election oper-
ators, outsiders, insiders within the
provider or internal staff. They can be
resourceful or highly motivated.

Translations from the Voxaly Docaposte specification [19].

Source Original French version Translated English version
– Le numéro d’ordre de l’élection est ajouté à la

configuration du bulletin (champ UUID), afin
que ce numéro soit également pris en compte
dans la preuve associée au bulletin. Cela per-
met ainsi de détecter éventuellement un bulletin
qui aurait été déplacé d’une urne à une autre,
ocasionnant alors un changement du numéro
d’ordre de l’élection.

The election identifier [electionId] is included in
the context of the ballot (field UUID), so that
this identifier will be added in the [ZK] proofs
associated to the ballot. This allows to detect
if a ballot has been moved from a ballot-box to
another, which would modify the election iden-
tifier.
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