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Abstract

The Fujisaki-Okamoto (FO) transform (CRYPTO 1999 and JoC 2013) turns any weakly (i.e., IND-
CPA) secure public-key encryption (PKE) scheme into a strongly (i.e., IND-CCA) secure key encap-
sulation method (KEM) in the random oracle model (ROM). Recently, the FO transform re-gained
momentum as part of CRISTAL-Kyber, selected by the NIST as the PKE winner of the post-quantum
cryptography standardization project.

Following Fischlin (ICALP 2005), we study the complete non-malleability of KEMs obtained via the
FO transform. Intuitively, a KEM is completely non-malleable if no adversary can maul a given public
key and ciphertext into a new public key and ciphertext encapsulating a related key for the underlying
blockcipher.

On the negative side, we find that KEMs derived via FO are not completely non-malleable in gen-
eral. On the positive side, we show that complete non-malleability holds in the ROM by assuming the
underlying PKE scheme meets an additional property, or by a slight tweak of the transformation.
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1 Introduction

Public-key encryption (PKE) allows Alice to encrypt a message under a Bob’s public key, so that Bob can
decrypt the ciphertext using the corresponding secret key. Several security notions for PKE have been
proposed in the literature. The most basic one, namely indistinguishability against chosen-plaintext attacks
(IND-CPA) requires that an adversary, given the public key, cannot distinguish between the encryption of
two messages.

Non-malleability. As noted for the first time by Dolev et al. [9],IND-CPA appears to be insufficient for
many applications. Consider for instance the setting of private auctions. Here, a bidder can sample its own
pair of public/secret keys, encrypt the bid b using the public key, and send the encryption together with the
public key to the auctioneer. After all the participants have sent their bid, the auctioneer can declare the
winner by asking each party to reveal the secret key (or the bid itself, along with the random coins used for
encryption). A malicious user, given a ciphertext c containing the bid of another party, can try to construct
a ciphertext c′ that, when decrypted, leads to a bid b′ such that b′ > b.

In light of such malleability attacks, stronger security notions for PKE schemes have been introduced.
These include the notions of non-malleability under chosen-plaintext and chosen-ciphertext attacks [9, 3, 6, 18]
(NM-CPA and NM-CCA), and indistinguishability under chosen-ciphertext attacks (IND-CCA). All of these
notions imply that the attacker, given the public key and a target ciphertext, is unable to craft a mauled
ciphertext whose underlying plaintext is related to the one contained in the target ciphertext.

Complete non-malleability. In 2005, Fischlin [12] noted that non-malleability might be still insufficient
for some applications. In fact, the above notions do not account for the possibility that the attacker may
try to maul the public key as well. For instance, consider again the setting of private auctions. A malicious
user, knowing a ciphertext c and the public key pk, may try to craft a public key pk′ and a ciphertext c′

which encrypt a bid b′ > b. To capture these attacks, Fischlin introduced complete non-malleability, which
rules out such adversaries.

As noted by Fischlin himself, completely non-malleable PKE has several useful applications, including
key-agreement protocols with security against unknown key attacks, and signature schemes with security
against strong unforgeability attacks (as needed, e.g., in e-cash systems).

Known constructions. Fischlin [12] showed that a simple variant of RSA-OAEP is completely non-
malleable in the random oracle model (ROM).1 Ventre and Visconti [22] later gave two constructions of
completely non-malleable PKE in the common reference string (CRS) model, based on non-interactive zero-
knowledge (NIZK) proofs for all of NP.

Subsequent work provided more efficient constructions of completely non-malleable PKE without random
oracles, using both pairing-based assumptions [7, 15] and lattice-based assumptions [20, 21].

1.1 Our Contributions

In practice, due to its computational overhead, PKE is never used to encrypt long messages. Rather, as
it happens in many real-world protocols (including TLS), the parties use public-key techniques in order to
establish a common secret key for a blockcipher, which can be later used in order to encrypt any subse-
quent communication of arbitrary length. In the literature this paradigm is also known as the key/data
encapsulation method (KEM/DEM), or simply hybrid encryption. This motivates our main question:

Can we get efficient constructions of completely non-malleable PKE via the KEM/DEM paradigm?

1He also proves that the original version of RSA-OAEP, as well as the Cramer-Shoup PKE [8], is not completely non-
malleable.
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Our main contribution is a positive answer to the above question. Namely, we put forward natural notions
of complete non-malleability for KEMs and show that these notions are sufficient to imply completely non-
malleable PKE with small ciphertext rate. Furthermore, we show that an already existing, widely-used,
KEM meets our notions. We elaborate on these contributions below.

Definitions. A key encapsulation method (KEM) is made of two algorithms: An encapsulation algorithm
that, given the public key pk, outputs a ciphertext c encapsulating a secret key K; and a decapsulation
algorithm that, given the secret key sk corresponding to pk, allows to recover K. Similarly to PKE, several
non-malleability properties for KEMs have been introduced.

In Section 3, we put forward three indistinguishability-based variants of completely non-malleable KEMs
(dubbed NM-CPA*, NM-CCA1* and NM-CCA2*), capturing different flavors of chosen-plaintext and chosen-
ciphertext attacks. In Section 3.1, we define the corresponding simulation-based variants (dubbed SNM-
CPA*, SNM-CCA1* and SNM-CCA2*), and show the equivalence between the NM-ATK* and SNM-ATK*
notions for ATK ∈ {CPA,CCA1,CCA2}. More specifically, we show that for NM-CPA* and SNM-CPA*
the equivalence holds for so-called complete relations, while for NM-CCA1* and SNM-CCA1*, and for NM-
CCA2* and SNM-CCA2*, the equivalence holds for a restricted set of relations called lacking relations (see
Section 3.1 for details). These findings are in line with the work by Ventre and Visconti [22], who showed
analogous results for completely non-malleable PKE.

Analysis of Fujiaski-Okamoto. As our main contribution, we analyze the complete non-malleability of
the Fujiaski-Okamoto (FO) transform [13]. Recall that the FO transform turns any IND-CPA secure PKE
into an IND-CCA secure KEM in the ROM, without affecting the ciphertext size, and at the cost of a very
small extra computation effort w.r.t. the underlying PKE scheme (when the RO is replaced with a real-world
hash function like SHA-256). Recently, the FO transform re-gained momentum as part of CRISTAL-Kyber,
selected by the NIST as the PKE winner of the post-quantum cryptography standardization project [17].
In this light, we believe that investigating further security properties of the FO transform is a very natural
research question.

Our analysis follows the modular analysis of the FO transform due to Hofheinz et al. [14]. Here, one
interprets the FO transform as a sequence of two transformations T and U:

• The transformation T starts with any IND-CPA PKE. The encryption algorithm runs the encryption
algorithm of the underlying PKE scheme but sets its randomness to G(m), where G is a RO. The
decryption algorithm runs the decryption algorithm of the underlying PKE scheme, and returns ⊥ if
the decrypted message m′ is ⊥ or if the encryption of m′ with randomness G(m′) does not equal the
ciphertext.

• The transformation U takes a PKE scheme satisfying different flavours of one-wayness (which are
achieved by the transformation T), and outputs an IND-CCA secure KEM. This transformation essen-
tially comes in 2 variants.2 Um calculates the encapsulated key K by randomly choosing a message m
from the message space of the underlying PKE scheme, encrypting m under pk, and then computing
K as H(m), where H is a RO. U instead computes the key as H(m, c).

First, in Section 4.1, we show a concrete attack against the transformation Um that works even when
considering the weakest flavour of complete non-malleability (i.e., NM-CPA*). We take the El-Gamal PKE
scheme as the base PKE scheme to be transformed by T and U into a KEM scheme. In particular, we
prove that an adversary can appropriately maul the public key pk and the ciphertext c encrypting m, and
come up with a ciphertext c′ encrypting the same message m under a different public key pk′. Since the
encapsulated key computed by Um is H(m), the key encapsulated by c and c′ will be the same. Thus,
complete non-malleability is trivially broken.

Second, in Section 4.2, we show that the transformation U is not completely non-malleable. To see this,
it suffices to take a contrived PKE scheme in which we add a dummy bit to the public key of a PKE scheme

2Each of U and Um also comes in 2 variants, but the difference is irrelevant for what follows.
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satisfying the one-wayness properties required by the transformation U. This additional bit is completely
ignored by the encryption algorithm and does not effect one-wayness. However, one can trivially break
complete non-malleability by flipping the last bit of the public key. On the positive side, we show that U
does achieve complete non-malleability assuming the underlying PKE scheme meets a natural public-key
uniqueness property, where the latter essentially means that an adversary cannot come up with different
public keys pk, pk′ for which there exist a message m and a ciphertext c such that c is a valid encryption of
m under both pk and pk′.

Indeed, we point out that uniqueness seems to be a standard property to achieve non-malleability, e.g.
quasi-unique responses for Fiat-Shamir signatures [12] and [11].

Finally, in Section 4.3, we show how to tweak the transform U in order to obtain complete non-malleability
without requiring public-key uniqueness. For this, it suffices to compute the key K as H(m, c, pk). This way,
even if the attacker can break public-key uniqueness, the random oracle will ensure that the two encapsulated
keys are independent. We notice that a similar technique was already used in [10], where regular CCA security
of the FO transform in the multi-user setting is achieved by adding just a fraction of the public key with high
min-entropy as an input to the hash function. However, it is not clear whether complete non-malleability of
FO is achievable with such a slight modification.

Relation with completely non-malleable PKE. In Section 5, we show that by combining a completely
non-malleable KEM with a non-malleable secret-key encryption (SKE) scheme we obtain a completely non-
malleable PKE using the KEM/DEM paradigm. Furthermore, we observe that one can always obtain a
completely non-malleable KEM by encrypting a random secret key via a completely non-malleable PKE.

1.2 Related Work

Nagao et al. in [16] analyze standard non-malleability in the context of key encapsulation. In particular,
they consider different flavours of non-malleable KEM, such as NM-CPA, NM-CCA1 and NM-CCA2.

Ventre and Visconti [22] note that the stronger CCA2 notion of complete non-malleability is not strictly
necessary for some of the applications proposed by Fischlin [12]. Hence, they put forward weaker flavours
of complete non-malleability, and establish the relations between the standard comparison-based notions
NM-ATK* and their simulation-based counterparts SNM-ATK* for ATK ∈ {CPA,CCA1,CCA2}. They
also give two constructions of completely non-malleable NM-CCA2* secure PKE: one in the CRS model
using NIZK proofs for all of NP, and one in the plain model using interactive encryption.

Barbosa and Farshim [1] consider an equivalent indistinguishability-based notion of complete non-malleability
based on so-called strong CCA security, in which the (strong) decryption oracle provides decryptions under
arbitrarily chosen public keys. Duman et al. [10] analyze CCA security of the FO transform in the multi-user
setting.

2 Preliminaries

In this section we introduce some basic notation and recall a few standard definitions that will be used later
to prove some of our results.

2.1 Notation

We use calligraphic letters to denote sets, such as X , and lower-case letters for variables, such as x. We
use x←$ X to indicate that x is picked uniformly at random from X . A similar notation is used in the
presence of a randomized or probabilistic algorithm A. Indeed, x←$ A(·) means that x is the output of the
randomized algorithm A. Alternatively, when a random coin r is given as an input of A, we equivalently write
x := A(·; r). All the algorithms we will consider are PPT (Probabilistic Polynomial Time), i.e. for any input
x ∈ {0, 1}∗ and random coin r, A(x; r) terminates in at most polynomial many steps, in the size of its inputs.
When an algorithm A has access to a set of oracles {O1, . . . ,On}, we use the notation AO1,...,On , to indicate

5



that A can interact in a black-box manner with oracles O1, . . . ,On during its computation. We denote with
λ ∈ N the security parameter and we will assume that all the algorithms we will consider take λ as an input.
A function ν : N → [0, 1] is negligible if for every polynomial p(n) ∃N ∈ N s.t. ∀n0 ≥ N, ν(n0) < 1

p(n0)
.

We denote with negl(λ) any function that is negligible in λ. Given two random variables X and Y , we
denote X ≈c Y when X and Y are computationally indistinguishable, and with X ≡ Y when X and Y are
identically distributed.

2.2 Public-Key Encryption

A public-key encryption (PKE) scheme Π consists of three algorithms (Gen,Enc,Dec), together with a mes-
sage spaceM (which we assume to be efficiently recognizable) where:

• The key generation algorithm Gen takes as input 1λ and outputs a public-private key pair (pk, sk).

• The encryption algorithm Enc takes as inputs a public key pk and a message m ∈M, and outputs an
encryption c of the message m under pk.

• The deterministic decryption algorithm Dec takes as inputs a decryption key sk and a ciphertext c,
and outputs either a message m ∈M, or ⊥ (denoting failure).

Next, we define both correctness and security of PKE as needed for our purposes. Some of the definitions
below are taken verbatim from [14].

Definition 1 (γ-uniformity). Let Π = (Gen,Enc,Dec) be a PKE scheme with message space M.Given
(pk, sk)←$ Gen(1λ), a message m ∈M and a ciphertext c we define the γ-uniformity function as follows

γ(m, c) = Pr [c = Enc(pk,m)] ,

where the probability is taken over the choice of the random coins used for encrypting m under pk.
We say that Π is γ-uniform if, for any (pk, sk) ∈ Gen(1λ), any message m ∈ M, and any ciphertext

c ∈ {0, 1}∗, it holds that γ(m, c) ≤ γ.

Definition 2 (correctness). Let Π = (Gen,Enc,Dec) be a PKE scheme with message space M. A PKE
scheme Π = (Gen,Enc,Dec) is correct if ∀m ∈M,∀(pk, sk)←$ Gen(1λ)

Pr [Dec(sk,Enc(pk,m)) = m] = 1.

2.2.1 OW-PCA and OW-PCVA.

We recall the definitions of one-wayness under plaintext checking attacks (OW-PCA) and one-wayness under
plaintext and validity checking attacks (OW-PCVA).

Definition 3 (OW-ATK). Let Π = (Gen,Enc,Dec) be a public-key encryption scheme with message space
M. We define the following PKEow-atk games for atk ∈ {pca, pcva}

Experiment PKEow-atk
Π,A (λ)

(pk∗, sk∗)←$ Gen(1λ)

m∗←$M
c∗←$ Enc(pk∗,m∗)

m′←$ AO1(pk, c∗)

return PCO(sk∗,m′, c∗)

Oracle PCO(sk∗,m, c)

return 1 iff

(Dec(sk∗, c) = m) ∧ (m ̸= ⊥)

Oracle CVO(c∗)(sk∗, c)

m := Dec(sk∗, c)

return 1 iff m ̸= ⊥
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In the experiment above,

if atk = pca then O1 = PCO(sk∗, ·, ·),

if atk = pcva then O1 = PCO(sk∗, ·, ·),CVO(c∗)(sk∗; ·),

where CVO(c∗)(sk, ·) means that A is allowed to query the CVO algorithm for any ciphertext distinct from the
challenge ciphertext c∗. We say that Π is OW-ATK secure if for all PPT A,

Pr
[
PKEow-atk

Π,A (λ) = 1
]
≤ negl(λ).

2.2.2 Complete Non-Malleability.

Finally, we recall the indistinguishability-based security definition for completely non-malleable PKE as
defined by Ventre and Visconti [22].

Definition 4 (NM-CPA*, NM-CCA1*, NM-CCA2*). Let Π = (Gen,Enc,Dec) be a public-key encryp-
tion scheme, an let A = (A1,A2) be a PPT adversary. For atk ∈ {cpa, cca1, cca2} and λ ∈ N let

PKEnm-atk∗
Π,A (λ) ≈c PKE

nm-atk∗
Π,A,$ (λ),

where the experiments PKEnm-atk∗
Π,A (λ) and PKEnm-atk∗

Π,A,$ (λ) are defined as follows:

Experiment PKEnm-atk∗
Π,A (λ)

(pk∗, sk∗)←$ Gen(1λ)

(M, s)←$ AO1
1 (pk)

m∗←$M
c∗←$ Enc(pk∗,m∗)

(pk, R, c)←$ AO2
2 (M, pk∗, s, c∗)

return 1 iff ∃(m, r) s.t.

(c = Enc(pk,m; r)) ∧
(c ̸= c∗ ∨ pk ̸= pk∗) ∧
(m ̸= ⊥) ∧R(m,m∗, pk, pk∗, c)

Experiment PKEnm-atk∗
Π,A,$ (λ)

(pk∗, sk∗)←$ Gen(1λ)

(M, s)←$ AO1
1 (pk)

m∗, m̃←$M
c∗←$ Enc(pk∗,m∗)

(pk, R, c)←$ AO2
2 (M, pk∗, s, c∗)

return 1 iff ∃(m, r) s.t.

(c = Enc(pk,m; r)) ∧
(c ̸= c∗ ∨ pk ̸= pk∗) ∧
(m ̸= ⊥) ∧R(m, m̃, pk, pk∗, c)

In the experiments above

if atk = cpa then O1 = ϵ and O2 = ϵ,

if atk = cca1 then O1 = Dec(sk∗, ·) and O2 = ϵ,

if atk = cca2 then O1 = Dec(sk∗, ·) and O2 = Dec(c
∗)(sk∗, ·),

where Dec(c)(sk, ·) means that A is allowed to query Dec oracle for any ciphertext distinct from the challenge
ciphertext c∗.

2.3 Secret-Key Encryption

A secret-key encryption scheme (SKE) consists of a triple of algorithm (Gen,Enc,Dec) together with a message
spaceM and a key space K, in which:

• The key generation algorithm Gen takes as input 1λ and outputs a secret key K ∈ K.
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• The encryption algorithm Enc takes as input the secret key K ∈ K and a message m ∈M, and outputs
a ciphertext c.

• The decryption algorithm Dec takes as input the secret key K ∈ K and a ciphertext c, and outputs a
message m ∈M, or ⊥ denoting failure.

Let us consider the flavour of correctness needed for our scopes.

Definition 5 (ϵ-correctness). A SKE scheme Π = (Gen,Enc,Dec) is ϵ-correct if

Pr
[
Dec(sk, c) ̸= m | K←$ Gen(1λ); c←$ Enc(K,m)

]
≤ ϵ.

To make our security proofs go through, we use the non-malleability security definition NM-ATK with
ATK ∈ {CPA,CCA1,CCA2} introduced by Bellare et al. [2]. As highligthed in [4, 5] the original definitions
were introduced the asymmetric setting [6, 9, 19] but can be “lifted” to the symmetric setting using the
encryption oracle based template of [2]. Hence, by leveraging the results of Bellare et al [6], NM-ATK for
ATK ∈ {CPA,CCA1,CCA2} is equivalent to the indistinguishability-based counterpart IND-ATK [6, 4, 5].

Definition 6 (NM-CPA, NM-CCA1, NM-CCA2). Given a set of relations R, a SKE scheme Π is
NM-ATK secure with respect to any relation R ∈ R, if for any NM-ATK adversary A = (A0,A1),

SKEnm-atk
Π,A (λ) ≈c SKE

nm-atk
Π,A,$ (λ),

where the experiments are defined as follows

Experiment SKEnm-atk
Π,A (λ)

K∗←$K

(M, s)←$ AO1
0 (1λ)

m∗←$M
c∗←$ Enc(K∗,m∗)

(R, c′)←$ AO2
1 (M, s, c∗)

m′ := Dec(K∗, c′)

return 1 iff

(m′ ̸= ⊥) ∧ (c′ ̸= c∗) ∧R(m∗,m′)

Experiment SKEnm-atk
Π,A,$ (λ)

K∗←$K

(M, s)←$ AO1
0 (1λ)

m∗, m̃←$M
c∗←$ Enc(K∗,m∗)

(R, c′)←$ AO2
1 (M, s, c∗)

m′ := Dec(K∗, c′)

return 1 iff

(m′ ̸= ⊥) ∧ (c′ ̸= c∗) ∧R(m̃,m′)

In the experiments above

if atk = cpa then O1 = Enc(K∗, ·) and O2 = Enc(K∗, ·),
if atk = cca1 then O1 = Enc(K∗, ·),Dec(K∗, ·) and O2 = Enc(K∗, ·),

if atk = cca2 then O1 = Enc(K∗, ·),Dec(K∗, ·) and O2 = Enc(K∗, ·),Dec(c
∗)(K∗, ·),

where Dec(c
∗)(K∗, ·) means that A is allowed to query the Dec oracle for any ciphertext c distinct from the

challenge ciphertext c∗.

3 Completely Non-Malleable KEMs

In this section, we formally introduce key encapsulation methods (KEMs). Then, following the work on
completely non-malleable PKE schemes of Fischlin [12], and then Ventre and Visconti [22], we extend the
notions of complete non-malleability of PKEs to the context of KEMs. We follow a similar blueprint of [22]
(that, in turn, bases its definitions on [3]) by introducing three indistinguishability-based security notions for
completely non-malleable KEMs dubbed NM-CPA*, NM-CCA1* and NM-CCA2*. We further introduce,
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in Section 3.1, three simulation-based notions dubbed SNM-CPA*, SNM-CCA1* and SNM-CCA2* and
investigate the relationship between indistuinghishability-based and the simulation-based notions.

A KEM scheme consists of a triple of algorithms Π = (Gen,Encaps,Decaps), together with a key space
K,in which:

• The key generation algorithm Gen takes as input 1λ and outputs a public-private key pair (pk, sk).

• The encapsulation algorithm Encaps takes as input a public key pk, and output a ciphertext c as well
as a key K.

• The decapsulation algorithm Decaps takes as input a private key sk and a ciphertext c and returns a
key K ∈ K or ⊥ (denoting failure).

First of all, we start by considering the flavour of correctness needed for our scopes.

Definition 7 (ϵ-correctness). A KEM scheme Π = (Gen,Encaps,Decaps) is ϵ-correct if

Pr
[
Decaps(sk, c) ̸= K | (pk, sk)←$ Gen(1λ); (c,K)←$ Encaps(pk)

]
≤ ϵ.

Before diving into the definitions complete non-malleability for KEMs, we introduce the notion of com-
plete relation for KEMs, firstly defined by Fischlin [12] in the setting of completely non-malleable PKE. A
complete relation R in the KEM setting is a probabilistic algorithm taking as inputs two public keys pk and
pk′, two encapsulation keys K and K∗, and a ciphertext c′. It outputs 1 if the relation is satisfied, and 0
otherwise. We will refer as R to be the set of complete relations.

In the indistinguishability-based notion of complete non-malleability, we ask the adversary to distinguish
between two experiments. In both of them, we let the adversary learn the challenge public key, ciphertext
and encapsulated key, and then make the adversary output a new public key pk′, a relation R and a new
ciphertext c′. If there exists a key K′ ̸= K and randomness r such that c′ and K′ can be obtained by
running the encapsulation algorithm with pk′ ̸= pk∗ and randomness r, then the experiment will output 1.
In the left-side experiment the adversary will receive the key K∗ encapsulated in c∗, while in the right-side
experiment the key K∗ is sampled randomly and hence totally unrelated from the key encapsulated in the
received ciphertext. Note that the adversary may come up with a triple (pk′, R, c′) such that there exists
a key encapsulated in c′ satisfying the relation R(K′,K∗, pk′, pk∗, c′), but the adversary may have negligible
advantage in distinguishing whether the key was encapsulated in c∗ or it was randomly chosen.

Definition 8 (NM-CPA*, NM-CCA1*, NM-CCA2*). Given a set of relations R, a key-encapsulation
mechanism Π = (Gen,Encaps,Decaps) is NM-ATK* secure with respect to any relation R ∈ R, if for any
NM-ATK* adversary A = (A1,A2) for atk ∈ {cpa, cca1, cca2} and for all λ ∈ N,

KEMnm-atk∗
Π,A (λ) ≈c KEM

nm-atk∗
Π,A,$ (λ),

where the experiments are defined as follows:

Experiment KEMnm-atk∗
Π,A (λ)

(pk∗, sk∗)←$ Gen(1λ)

st←$ AO1
1 (pk∗)

(c∗,K∗)←$ Encaps(pk∗)

(pk′, R, c′)←$ AO2
2 (pk∗, c∗,K∗, st)

return 1 if ∃(K′, r) such that

((c′,K′) = Encaps(pk′; r)) ∧
(pk′ ̸= pk∗ ∨ K′ ̸= K∗) ∧ (K′ ̸=⊥)
∧R(K′,K∗, pk′, pk∗, c′)

Experiment KEMnm-atk∗
Π,A,$ (λ)

(pk, sk)←$ Gen(1λ)

st←$ AO1
1 (pk∗)

K∗←$ {0, 1}λ

(ĉ, K̂)←$ Encaps(pk∗)

(pk′, R, c′)←$ AO2
2 (pk∗, ĉ,K∗, st)

return 1 if ∃(K′, r) such that

((c′,K′) = Encaps(pk′; r)) ∧
(pk′ ̸= pk∗ ∨ K′ ̸= K∗) ∧ (K′ ̸=⊥)
∧R(K′,K∗, pk′, pk∗, c′)
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In the experiments above,

if atk = cpa then O1 = ϵ and O2 = ϵ,

if atk = cca1 then O1 = Decaps(sk∗, ·) and O2 = ϵ,

if atk = cca2 then O1 = Decaps(sk∗, ·) and O2 = Decaps(c
∗)(sk∗, ·),

where Decaps(c
∗)(sk, ·) means that A is allowed to query Decaps algorithm for any ciphertext distinct from

the challenge ciphertext c∗.

In [12], Fischlin showed that there exist encryption and signatures schemes that are not NM-CCA2*
secure, even though they are NM-CCA2 secure, i.e. the CCA secure in standard non-malleability notion of
PKE (see [6] for the formal definition). As we show in the following theorem, this holds also in the case of
KEMs. Let ATK ∈ {CPA,CCA1,CCA2}.

Theorem 1. Assume that there exists a NM-ATK secure KEM Π = (Gen,Encaps,Decaps); then there exists
a NM-ATK secure KEM Π′ = (Gen′,Encaps′,Decaps′) which is not NM-ATK* secure.

Proof. The intuition behind the proof is to define the scheme Π′ in such a way that the adversary can
leverage its structure to succeed in the NM-ATK* experiment. In particular, we define Π′ in the following
way:

Algorithm Gen′(1λ)

(pk, sk) = Gen(1λ)

b←$ {0, 1}
pk′ := pk||b
return (pk′, sk)

Algorithm Encaps′(pk′)

Parse pk′ as pk′ := pk||b
(c,K)←$ Encaps(pk)

return (c,K)

Algorithm Decaps′(sk, c)

K := Decaps′(sk, c)

return K

We can clearly see that Π′ is not NM-ATK* secure. Indeed, an efficient adversary A receiving a public key
pk, the challenge ciphertext c and an encapsulation key K (either the real or the fake one), just have to flip
the last bit of pk denoted pk′ := pk||b̄, a relation R and the challenge ciphertext c. In this case, A will always
succeeds in breaking NM-ATK* security of Π′.

However, Π′ is still NM-ATK secure. Indeed, this is true because the adversary has to break NM-ATK
security of Π′ under the key pk, but for how Π

′
is defined, this is equivalent to break NM-ATK security of

Π. If an adversary is able to break NM-ATK security of Π′, then he can also break NM-ATK security of Π,
and this represent a contradiction to our assumption that Π is NM-ATK secure. □

3.1 Relation between NM-ATK* and SNM-ATK*

We introduce the simulation-based variant of NM-ATK* security, dubbed SNM-ATK*. The left-side of the
simulation-based experiment is identical to the left-side of the indistinguishability-based notion (Definition 8),
whereas in the right-side experiment the challenge key K∗ is sampled at random, and the adversary is replaced
with a simulator knowing only public information, i.e. the challenge public key pk∗ .

Definition 9 (SNM-CPA*, SNM-CCA1*, SNM-CCA2*). Given a set of relations R, a key-encapsulation
mechanism Π = (Gen,Encaps,Decaps) is secure in the sense of SNM-ATK* with respect to any relation
R ∈ R, if for any SNM-ATK* adversary A = (A1,A2), for atk ∈ {cpa, cca1, cca2}, there exists a simulator
S such that

KEMsnm-atk∗
Π,A (λ) ≈c KEM

snm-atk∗
Π,S (λ),

where the experiments KEMsnm-atk∗
Π,A (λ) and KEMsnm-atk∗

Π,S (λ) are defined as follows:
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Experiment KEMsnm-atk∗
Π,A (λ)

(pk∗, sk∗)←$ Gen(1λ)

st←$ AO1
1 (pk∗)

(c∗,K∗)←$ Encaps(pk∗)

(pk′, R, c′)←$ AO2
2 (pk∗, c∗,K∗, st)

return 1 if ∃(K′, r) such that

((c′,K′) = Encaps(pk′; r)) ∧
(pk′ ̸= pk ∨ K′ ̸= K∗) ∧ (K′ ̸=⊥)
∧R(K′,K∗, pk′, pk∗, c′)

Experiment KEMsnm-atk∗
Π,S (λ)

(pk∗, sk∗)←$ Gen(1λ)

K∗←$ {0, 1}λ

(pk′, R, c′)←$ S(pk∗)

return 1 if ∃(K′, r) such that

((c′,K′) = Encaps(pk′; r)) ∧
(pk′ ̸= pk ∨ K′ ̸= K∗) ∧ (K′ ̸=⊥)
∧R(K′,K∗, pk′, pk∗, c′)

In the experiments above,

if atk = cpa then O1 = ϵ and O2 = ϵ,

if atk = cca1 then O1 = Decaps(sk, ·) and O2 = ϵ,

if atk = cca2 then O1 = Decaps(sk, ·) and O2 = Decaps(c
∗)(sk, ·),

where Decaps(c
∗)(sk, ·) means that A is allowed to query Decaps algorithm for any ciphertext distinct from

the challenge ciphertext c∗.

We will now show the relationship between the indistinguisability-based definitions and simulation-based
ones.

In particular, we will show that our indistinguisability-based definition of NM-CPA* security implies the
corresponding simulation-based definition, and then argue about the restrictions we need to prove equiv-
alence between NM-CCA1*/NM-CCA2* and the simulation-based counterpart. Conversely, we show that
the simulation-based definition NM-ATK* implies the indistinguishability-based definition SNM-ATK* for
ATK ∈ {CPA,CCA1,CCA2}.

Theorem 2 (NM-CPA* =⇒ SNM-CPA*). If a KEM Π = (Gen,Encaps,Decaps) is NM-CPA* secure
(Definition 8), then Π is SNM-CPA* secure (Definition 9).

Proof. We follow a similar approach of Ventre and Visconti [22] to prove that a if PKE is NM-CPA* , then
it is also secure for SNM-CPA*. The intuition behind the proof is that, given an adversary A = (A1,A2),
the simulator S simply runs A. In particular, we define S as follows:

Simulator S(pk) :

st←$ A1(pk)

(ĉ, K̂)←$ Encaps(pk)

(pk′, R, c′)←$ A2(pk, ĉ, K̂, st)

return (pk′, R, c′)

The simulator can directly run the adversary A because A doesn’t have access to any oracle, which in turn
means that S doesn’t need to know the private key corresponding to the challenge public key pk. In order
to show that Π is secure in the sense of SNM-CPA*, we first note that the experiment KEMnm-cpa∗

Π,A (λ) is

indeed equivalent to KEMsnm-cpa∗
Π,A (λ), and thus,

KEMnm-cpa∗
Π,A (λ) ≡ KEMsnm-cpa∗

Π,A (λ).

Now, by replacing the simulator in KEMsnm-cpa∗
Π,S with the simulator given above, we get that the resulting

experiment is equivalent to that of KEMnm-cpa∗
Π,A,$ . Thus, we get that

11



KEMnm-cpa∗
Π,A,$ (λ) ≡ KEMsnm-cpa∗

Π,S (λ).

□

Extending to NM-CCA1* and NM-CCA2* security. Unfortunately, the direct approach used to
prove Theorem 3 cannot be used to show that the game-based definitions of NM-CCA1* and NM-CCA2*
imply the corresponding simulation-based counterpart. A NM-ATK* adversary A, for ATK ∈ {CCA1,
CCA2}, has access to the decapsulation oracle, and therefore the simulator S in order to perfectly simulate
the NM-ATK* experiment, must be able to simulate the queries to such oracle. However, S doesn’t have
access to any oracle, so the only way for the simulator to simulate such queries is to know the secret key
corresponding to the given public key pk. Naturally, this cannot be a realistic assumption, and therefore
we let S to generate its own pair of public-private keys (p̂k, ŝk), and use ŝk to answer the queries to the
decapsulation oracle made by A. This assumption has an effect on the set of relations that can consider.
Since the simulator sends its own public key p̂k to the adversary ignoring the challenge key pk∗, the relations
under consideration must be independent of pk∗ as well, otherwise A has no way to succeed in the SNM-
ATK* experiment without knowing the challenge public key pk∗. As introduced by Ventre and Visconti in
[22], we will consider such a special type of relations, called lacking relations. More formally, a relation R
is lacking if it is a complete relation that ignores the input of the challenge public key pk∗, i.e. R is lacking
if and only if, for all K∗,K′ ∈ K, all ciphertext c′ produced by the Encaps algorithm, all public keys pk∗, pk′

produced by the key generation algorithm, R(K′,K∗, pk′, ·, c′) = R(K′,K∗, pk′, pk∗, c′).

Theorem 3 (NM-ATK* =⇒ SNM-ATK*). Let R denote the set of lacking relations, and ATK ∈
{CCA1, CCA2}. If a KEM scheme Π = (Gen,Encaps,Decaps) is NM-ATK* secure (Definition 8) with
respect to R then Π is SNM-ATK* secure with respect to R (Definition 9).

Due to its similarity to the proof of Theorem 2, we have provided the sketch of the proof.

Proof. [Sketch] When the simulator S receives the challenge public key pk, generates a new pair of keys
and runs an adversary A in the simulation-based experiment, on input the new public key. S computes the
encapsulation using the new public key and gives the resulting ciphertext and key to A as the challenge
ciphertext and key. Next, the simulator uses the corresponding encapsulation key to answer the queries to
the decapsulation oracle made by A. At the end, when the adversary returns a public key pk′, a relation
R, and a ciphertext c′, the simulator just returns (pk′, R, c′). Since A is a NM-ATK* adversary, the final
ciphertext c′ is obtained using a public key that is different from the given one. Furthermore, since we are
considering lacking relations, it is straightforward to see that S succeeds whenever A does. □

We will now show that the converse implication holds for ATK ∈ {CPA,CCA1,CCA2}.

Theorem 4 (SNM-ATK* =⇒ NM-ATK*). If a KEM scheme Π = (Gen,Encaps,Decaps) is SNM-
ATK* secure (Definition 9) with respect to a set of relations R then Π is NM-ATK* secure with respect to
R (Definition 8).

Proof. The converse implication follows directly. Let us consider an adversary A = (A1,A2) of the NM-
ATK* experiment as follows.

Adversary AO1
1 (pk∗):

return st := ϵ

Adversary AO2
2 (pk∗, c∗,K∗, st):

(pk′, R, c′)←$ S(pk∗)

return (pk′, R, c′)

In order to show that Π is secure in the sense of NM-CPA*, we first note that the experiment KEMsnm-atk∗
Π,A (λ)

is indeed equivalent to KEMnm-atk∗
Π,A (λ), and thus,

KEMnm-atk∗
Π,A (λ) ≡ KEMsnm-atk∗

Π,A (λ).
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Now, by replacing the adversary A in KEMnm-atk∗
Π,A,$ (λ) with the one described above, it straightforward to see

that
KEMnm-atk∗

Π,A,$ (λ) ≡ KEMsnm-atk∗
Π,S (λ).

□

4 Analysis of Fujisaki-Okamoto transforms

In the following, we analyze complete non-malleability of the FO transforms. To do that, we will con-
sider the modular treatment of the FO transforms pursued by [14]. Each FO transform is an appli-
cation of two transformations, namely T and U. T takes as input an IND-CPA/OW-CPA secure PKE
scheme Π = (Gen,Enc,Dec) and a random oracle G, and outputs a deterministic OW-PCVA PKE scheme
Π1 = (Gen1,Enc1,Dec1) (when Π is OW-CPA, it should also satisfy γ-uniformity for a sufficiently large γ).
The encryption algorithm of the transformed PKE runs the encryption algorithm of the underlying IND-
CPA secure PKE scheme Π but uses G(m) as its randomness, i.e. Enc1(pk,m) := Enc(pk,m;G(m)). The
decryption algorithm runs the decryption algorithm of the underlying PKE scheme, i.e. m′ := Dec(sk, c),
and returns ⊥ if m′ = ⊥ or the re-encryption of m under public-key pk and randomness G(m) does not
match with c, i.e. if Enc(pk,m′;G(m′)) ̸= c.

Given a PKE scheme satisfying OW-PCVA or some different flavour of one-wayness (depending on the
trasformation we are going to use) and a random oracle H, four variant of the transformation U can be used
to produce an IND-CCA2 KEM scheme. In fig Fig. 1 we recall the algorithms needed to instantiate the the
U⊥ and U̸⊥ transformations. The algorithms for the U⊥

m and U̸⊥
m transformations are the same of U⊥ and U̸⊥

respectively, except that the encapsulation algorithm computes the key K as H(m), and the decapsulation
algorithm outputs K := H(m) when m ̸= ⊥.

Algorithm Gen̸⊥(1λ)

(pk′, sk′)←$ Gen1(1
λ)

s←$M
sk := (sk′, s)

return (pk′, sk)

Algorithm Decaps⊥(sk, c)

m′ := Dec1(sk, c)

if m′ = ⊥
return ⊥

return K := H(m′, c)

Algorithm Encaps(pk)

m←$M
c←$ Enc1(pk,m)

K := H(m, c)

return (K, c)

Algorithm Decaps̸⊥(sk, c)

Parse sk = (sk′, s)

m′ := Dec1(sk
′, c)

if m′ = ⊥
return K := H(m′, s)

return K := H(m′, c)

Figure 1: Algorithms needed by the transformations U⊥[Π1,H] = (Gen1,Encaps,Decaps
⊥) and U̸⊥[Π1,H] =

(Gen⊥,Encaps,Decaps ̸⊥).

In Section 4.1, we will analyze the U⊥
m/U̸⊥

m transformations and show that they are not completely
non-malleable by giving an attack that can be performed when the underlying OW-PCVA PKE scheme is
obtained by applying the transformation T to a widely known IND-CPA PKE scheme.

Then, in Section 4.2, we will analyze the U⊥/U̸⊥ transformations and show that they are not completely
non-malleable by constructing a contrived OW-PCVA PKE scheme that, when given as input to U⊥/U ̸⊥,
leads to a KEM whose NM-ATK* security can be easily broken. Then, we show that it suffices to assume a
very natural property of the underlying OW-PCVA PKE scheme, named public-key uniqueness, to achieve
complete non-malleability.
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Finally, in Section 4.3, we show that it is possible to achieve a completely non-malleable KEM without
assuming public-key uniqueness of the underlying PKE scheme with a little tweak to U⊥/U̸⊥.

4.1 Analysis of the U
⊥/̸⊥
m transformations

In the following, we will show that U⊥
m and U̸⊥

m transformations lead to a KEM that is not completely non-
malleable. In particular, we show a concrete attack that can be carried out to both Π̃⊥

m := U⊥
m[T[Π,G],H]

and Π̃ ̸⊥
m := U ̸⊥

m[T[Π,G],H] even against the weaker notion of NM-CPA*. Let Π be the El-Gamal encryption
scheme.

When running the experiment KEMnm-cpa∗
Π̃⊥

m,A
(λ) with Π̃⊥

m (resp. Π̃ ̸⊥
m), an efficient adversary A receives

as input a public key pk∗ = (params, h), the challenge ciphertext c∗, and an encapsulation key K∗. The
challenge ciphertext c∗ is computed as (c∗1 = gr, c∗2 = hr ·m∗) with r = G(m∗), params = (G, g, q), where g is
the generator of a cyclic group G of order q, h = gx for x←$ Zq, and m∗ is a randomly sampled message from
G. The challenge key K∗ is either the output of the encapsulation algorithm on input m∗ (i.e., K∗ = H(m∗)),
or it is sampled from the uniform distribution over the key space K.

Now, A can craft a new public key pk′ = (params, h ·gx′
), for x′←$ Zq, and a ciphertext c′ = (c∗1, c

∗
2 ·c∗1

x′
).

It is straightforward to see that, since Enc(pk′,m′) = (gr, g(x+x′)rm∗) = c′, there exist a key K′ such that
(c′,K′) = Encaps(pk′), where c′ = Enc(pk′,m∗). Finally, since K′ := H(m′) with m′ = m∗, then K′ = K∗.

Now, A can define the relation between pk∗ and pk′ as follows:

Rpk(pk
∗ = (params, h), pk′ = (params, h′)) = 1 iff h′ = h · gx

′
, x′ ∈ Zp.

Moreover, A can define the relation between K∗ and K ′ as the identity relation, i.e. RK(K
∗,K′) = 1 iff K∗ =

K′. As shown above, A can come up with a pk′ ̸= pk satisfying the relation R(K∗,K′, pk∗, pk, c′) =

RK(K
∗,K′) ∧ Rpk(pk

∗, pk′). Such relation, when the ciphertext c′ is computed as above (i.e. c′ = (c∗1, c
∗
2·c∗1

x′
)),

leads the KEMnm-cpa∗
Π̃⊥

m,A
(λ) experiment output 1 and the KEMnm-cpa∗

Π̃⊥
m,A,$

(λ) output 0 with non-negligible proba-

bility.
In the following, we will show that the U⊥/ ̸⊥ transformations can be turned into a completely non-

malleable KEM without much effort.

4.2 Analysis of the U⊥/ ̸⊥ transformations

The U⊥ and U̸⊥ transformations do not naturally satisfy complete non-malleability. Indeed, given an OW-
PCVA PKE scheme Π = (Gen,Enc,Dec), we can construct a contrived OW-PCVA PKE scheme Π′ =
(Gen′,Enc′,Dec′) that is trivially insecure against the NM-CPA* experiment. The scheme Π′ follows:

Algorithm Gen′(1λ)

(pk, sk)←$ Gen(1λ)

b←$ {0, 1}
pk′ := pk||b
return (pk′, sk)

Algorithm Enc′(pk′,m)

Parse pk′ = (pk, b)

c←$ Enc(pk,m)

return c

Algorithm Dec′(sk,m)

m := Dec(sk,m)

return m

It is straightforward to see that the adversary of NM-CPA*, when run with Π̃⊥ := U⊥[Π′,H], distinguishes
between the two experiments with non-negligible probability. Indeed, an adversary A can come up with
a public key pk′ different of the public key generated by Π̃⊥ that leads to the same ciphertext c∗ encap-
sulating K∗ as computed in the KEMnm-cpa∗

Π̃⊥,A
experiment. To be precise, the adversary A might define a

relation R(K∗,K′, pk∗, pk, ·) = RK(K
∗,K′) ∧ Rpk(pk

∗, pk′), where RK(K
∗,K′) is the identity function and

Rpk(pk
∗, pk′) = 1 iff, given that pk∗ can be parsed as (pk, b) with b ∈ {0, 1}, then pk′ equals (pk, 1 − b). If

c∗ is the encryption of a message m∗ under pk∗, then it trivially encrypts m∗ under pk′. Hence, the key
K∗ := H(m∗, c∗) will be the same.
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An idea to avoid such an artificial attack, is to restrict the set of admitted PKE schemes to the ones for
which such attack is not possible to carry out in the first place. As we will show, this suffice to guarantee
complete non-malleability of Π̃⊥. To do that, we introduce a natural property called public-key uniqueness,
informally stating that it is infeasible for an adversary to come up with two different public keys leading
to the same ciphertext when encrypting the same message. For example, in El-Gamal, the encryption of
the same message with two different public keys will always lead to a different ciphertext for any possible
random coins and any possible message. This property, which we formalize below, is indeed achieved by
most of the known PKE schemes.

Definition 10 (Public-Key Uniqueness). A public-key encryption scheme Π = (Gen,Enc,Dec) with message
spaceM is public-key unique if, for all unbounded/PPT adversary A, there exists a negligible function negl(λ)
such that

Pr

[
∃r, r′,m :

Enc(pk,m; r) = Enc(pk′,m; r′)
∧ (pk ̸= pk′)

∣∣∣∣ (pk, pk′)←$ A(1λ)

]
≤ negl(λ).

We say that Π is perfect public-key unique if do not exist two public keys pk and pk′ with pk′ ̸= pk such that
Enc(pk,m; r) = Enc(pk′,m; r′) for any m ∈M and any randomness r, r′.

In the following, we show that the KEM Π̃⊥ = U⊥[Π1,H] is completely non-malleable when the PKE
Π1 is OW-PCVA and satisfies perfect public-key uniqueness. Note that our result trivially extends when Π1

satisfies public-key uniqueness against PPT or unbounded adversaries.

Theorem 5 (Π1 pk-unique OW-PCVA
ROM
====⇒ Π̃⊥ NM-CCA2*). Assuming the existence of a random

oracle H, if Π1 is a correct OW-PCVA secure PKE (Definition 3) satisfying perfect public-key uniqueness
(Definition 10), then Π̃⊥ defined as above is a correct NM-CCA2* secure KEM (Definition 8).

Proof. Correctness of Π̃⊥ trivially follows from the correctness of Π1. The idea behind the proof is to sim-
ulate the decapsulation oracle without using the secret key. We can do that by answering the decapsulation
queries with a random key, and next simulate the random oracle H by using the plaintext checking oracle
PCO(sk∗, ·, ·), provided by the OW-PCVA game. Furthermore, we will use the ciphertext validity oracle

CVO(c∗)(sk∗, ·) in order to reject decapsulation queries for invalid ciphertexts. Before proceeding with the
proof we need to make the following observations. Since a NM-CCA2* adversary against Π̃⊥ is allowed to
choose both the public key and the ciphertext, the decapsulation oracle can receive ciphertexts encrypted
using a public key pk′ ̸= pk∗. However, since the decapsulation oracle does not know the secret key associated
to pk′, we cannot require to it to check the validity of such ciphertexts. In other words, the decapsulation
oracle is only required to check the validity of ciphertexts encrypted using the challenge public key pk∗.
A similar observation shall be done for the oracle H. Due to the fact that also H can receive ciphertexts
encrypted using any public key distinct from pk∗, we should be able to check the validity of such ciphertexts.
In other words, given a message m and a ciphertext c, we should allow H to check whether m = Dec1(sk

′, c).
However, since H doesn’t know the secret key associated with pk′, this desired behavior cannot be achieved.

For this reason, the same approach used for Decaps
(c∗)
⊥ (sk∗, ·) applies. Let B be a PPT adversary that breaks

NM-CCA2* security of Π̃⊥ with non-negligible probability issuing a polynomially bounded number of queries
to Decaps⊥ and H. The sequence of games we are going to consider is described in Fig. 2.

Lemma 1. KEMnm-cca2∗
Π̃⊥,B

(λ) ≡ GB
0 (λ).

Proof. Let us start by noticing that in game G0 the challenger takes a uniform message m∗, computes
c∗←$ Enc1(pk

∗,m∗), K∗ := H(m∗, c∗) and outputs (pk∗, c∗,K∗). This game coincides exactly with the left
experiment of the NM-CCA2* definition. Thus, KEMnm-cca2∗

Π̃⊥,B
(λ) ≡ GB

0 (λ). □

Lemma 2. GB
0 (λ) ≡ GB

1 (λ).
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Games GB
0 (λ)−GB

3 (λ)

(pk∗, sk∗)←$ Gen1(1
λ)

st←$ B
Decaps⊥(sk∗,·),H(·,·)
1 (pk∗)

m∗←$M
c∗←$ Enc1(pk,m

∗)

K∗ := H(m∗, c∗) #G0,G1

K∗←$ {0, 1}λ #G2,G3

(pk′, R, c′)←$ B
Decaps

(c∗)
⊥ (sk∗,·),H(·,·)

2 (pk∗, c∗,K∗, st)

return 1 iff ∃(K′, r) such that

(c′,K′) := Encaps(pk′; r) ∧ (K′ ̸= ⊥)
∧ (pk′ ̸= pk∗ ∨ K′ ̸= K∗)

∧R(K′,K∗, pk′, pk∗, c′)

Oracle Decaps
(c∗)
⊥ (sk∗, c) #G0,G3

m′ := Dec1(sk
∗, c)

if m′ = ⊥
return ⊥

return K := H(m′, c)

Oracle H(m, c)

if ∃K s.t. (m, c,K) ∈ LH

return K

K←$K

if Dec1(sk
∗, c) = m #G1,G2

if c = c∗ #G2

return ⊥ #G2

if ∃K′ s.t. (c,K′) ∈ LD #G1

K := K′ #G1

else #G1

LD := LD ∪ {(c,K)} #G1

LH := LH ∪ {(m, c,K)}
return K

Oracle Decaps
(c∗)
⊥ (sk∗, c) #G1,G2

if ∃K s.t. (c,K) ∈ LD

return K

K←$K
m′ := Dec1(sk

∗, c)

if m′ = ⊥
K := ⊥

LD := LD ∪ {(c,K)}
LH := LH ∪ {(m′, c,K)}
return K

Figure 2: Sequence of games needed to prove Theorem 5 and the consequential oracle modifications.
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Proof. Differently from G0, in game G1 we have modified the oracles Decaps
(c∗)
⊥ and H in order to avoid

the usage of the secret key. In particular, G1 defines two sets LH and LD, where LH contains all entries of

the form (m, c,K) when either Decaps
(c∗)
⊥ is queried about a ciphertext c or H was queried about (m, c), and

LD contains all the entries (c,K) when either Decaps
(c∗)
⊥ is queried about c or H is queried about (m, c) for

m = Dec1(sk
′, c). Now, we want to show that the view of B in G0 and G1 is distributed exactly in the same

manner. For this purpose, let us consider a ciphertext c′ and a message m′ = Dec1(sk
′, c′) for which B has

never been queried Decaps
(c∗)
⊥ :

• Case m′ = ⊥: in game G0, Dec1(sk
′, c′) will return ⊥ to indicate that c′ is a malformed ciphertext,

which is exactly the behavior the Decaps
(c∗)
⊥ has in game G1. Regarding the behavior of H, we can see

that in both games H returns a randomly chosen key.

• Case m′ ̸= ⊥: in game G0, Decaps
(c∗)
⊥ returns K := H(m′, c′) which is either a fresh key randomly

chosen from the key space if (m′, c′) has never been queried to H, or taken from LH if (m′, c′) was
already stored in LH . In game G1 we need to consider two sub-cases:

– B first queries H about (m′, c′) and then queries Decaps
(c∗)
⊥ about c′: In this case, H returns a key

K which is either a fresh key randomly chosen from the key space, or it is already stored in LH .

Since Decaps
(c∗)
⊥ has not been queried about c′ yet, H will add (c,K) to LD. Next, when Decaps

(c∗)
⊥

will be queried about c′, it will return a key K stored in LD that coincides with the key stored in
LH , as in game G0.

– B first queries Decaps
(c∗)
⊥ about c′ and then queries H about (m′, c′): In this case, Decaps

(c∗)
⊥ re-

turns a randomly chosen K, which is added to both LD and LH . Subsequently, when H is queried
about (m′, c′), the oracle will return the key K stored in LH that coincides with the key K stored

in LD. This ensures that Decaps
(c∗)
⊥ (c′) = H(m′, c′) = K, as in game G0.

Therefore, we have that GB
1 (λ) ≡ GB

0 (λ) □

Lemma 3. GB
1 (λ) ≈c G

B
2 (λ).

Proof. In game G2 we make the following two modifications. First, the challenger takes a uniformly
sampled key rather than the real key output by the oracle H, and second we make the oracle H output ⊥
when queried about (m∗, c∗). By denoting the latter event QUERY, we notice that G1 and G2 are identically
distributed conditioned to the event QUERY not happening. Thus, the only hope for the adversary to
distinguish between the G1 and G2 is to trigger the QUERY event in G2. It is easy to see that when B
queries H in game G1 about (m∗, c∗), H will return the challenge encapsulation key K∗. Instead, in game G2,
the game returns ⊥ when B queries H about (m∗, c∗). Let us now assume that QUERY is not triggered. Since
K∗ is either an output of H or a randomly chosen value, the adversary can only try to distinguish by guessing
the plaintext m∗ of c∗, calculate K′ := H(m∗, c∗) and then check whether K′ is equal to K∗. However, this
coincides with the QUERY event. Alternatively, the adversary might try to distinguish by making G1 always
output 1, i.e. B may try to come up with a tuple (pk′, R, c′) for which the relation R(K′,K∗, pk′, pk∗, c′)
holds for a key K∗ produced by the encapsulation algorithm under pk′ (as in G1), but does not hold when
such key is randomly chosen (as in G2). Note that H is a random oracle, so the set of possible relations is
restricted to the ones having K′ = K∗ = H(m∗, c∗), otherwise even a single bit different than (m∗, c∗) in the
input of H leads to an independent output. For such a relation the adversary may try to find a public key
pk′ for which the encapsulation of K∗ under pk′ leads to c∗. However, for the perfect public-key uniqueness
property of Π1, such public key does not exist. Since K′ can be computed only by giving as input to H a
pair (m′, c′) in which either m′ ̸= m∗ or c′ ̸= c∗, such a key is independent from the challenge key. Hence,
the distribution of the adversary’s view in both games is identical given that QUERY does not happen.
Now, to estimate Pr [QUERY] we construct an efficient adversary A breaking OW-PCVA of Π1 when QUERY
occurs. In particular, we define A in Fig. 3. Notice that A perfectly simulates G1. Indeed, the occurrence
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Adversary APCO(sk∗,·,·),CVO(c∗)(sk∗,·)(pk, c∗)

K∗←$K

(pk′, R, c′)←$ B
Decaps

(c∗)
⊥ (·),H(·,·)

2 (pk∗, c∗,K∗)

if ∃(m, c∗) ∈ LH s.t. PCO(sk∗,m, c∗) = 1

return m

return ⊥

Oracle Decaps
(c∗)
⊥ (sk, c)

if ∃c s.t. (c,K) ∈ LD

return K

if CVO(c∗)(sk∗, c) = 0

return ⊥
K←$K
LD := LD ∪ {(c,K)}
return K

Oracle H(m, c)

if ∃K s.t. (m, c,K) ∈ LH

return K

K←$K
if PCO(sk∗,m, c) = 1

if ∃K′ s.t. (c,K′) ∈ LD

K := K′

else

LD := LD ∪ {(c,K)}
LH := LH ∪ {(m, c)}

return K

Figure 3: Adversary A breaking security of the underlying OW-PCVA PKE.

of QUERY implies that B has queried H about (m, c), in which (m, c) ∈ LH for m = m∗ and c = c∗. A
will return m = m∗ and win the OW-PCVA experiment. Since such condition coincides with the QUERY
event, we get that the probability of B of triggering QUERY coincides with the probability of A in winning
the OW-PCVA experiment, i.e.

Pr [QUERY] = Pr
[
PKEow-pcva

Π1,A
(λ)

]
.

□

Lemma 4. GB
2 (λ) ≈c G

B
3 (λ).

Proof. Notice that game G3 is identically distributed to G0, except that the challenge encapsulation key is
randomly chosen from the key space. We will show that the view of B in G2 and G3 is identically distributed,
under the condition that the QUERY event does not occur.

Let us fix a ciphertext c′ and a message m′ = Dec2(sk
∗, c′). We consider two cases:

• Case m′ /∈ M: in game G3, when Decaps
(c∗)
⊥ is queried about c′, it will return ⊥, which is exactly

what Decaps
(c∗)
⊥ returns in G2.

• Case m′ ∈M. Here, we need to consider two sub-cases:

– B first queries Decaps
(c∗)
⊥ and then H: assume that neither Decaps

(c∗)
⊥ nor H have been queried

before about c′ and (m′, c′) respectively. In G2, when B queries Decaps
(c∗)
⊥ , Decaps

(c∗)
⊥ will return

a uniform key K, add an entry of the form (c′,K) to LD and an entry of the form (m′, c′,K) to

LH . Next, when B queries H about (m′, c′, pk′), H will return the same key returned by Decaps
(c∗)
⊥

since (m′, c′,K) ∈ LH . In G3, Decaps
(c∗)
⊥ will return a uniform key K = H(m′, c′). Next, when

B queries H about (m′, c′), H will return the same key K. Therefore, in both games we have

Decaps
(c∗)
⊥ = K = H(m′, c′).

– B first queries H and then Decaps
(c∗)
⊥ : As before, let us assume that neither Decaps

(c∗)
⊥ nor H have

been queried before about c′ and (m′, c′) respectively. In G2, when B queries H, H will return
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a uniform key K and add an entry of the form (c′,K) to LD. Next, when Decaps
(c∗)
⊥ is queried

about c′, Decaps
(c∗)
⊥ will return the same key returned by H, since (c′,K) ∈ LD. In game G3 when

B queries H, H will return a uniform key K and add an entry of the form (m′, c′,K) to LH . Next,

when Decaps
(c∗)
⊥ is queried about c′, Decaps

(c∗)
⊥ will return the same key K, due to the fact that

(m′, c′,K) ∈ LH . Thus, in both games we have H(m′, c′) = K = Decaps
(c∗)
⊥ .

Since the only hope for the adversary is to trigger the QUERY event inG3, the probability for B to distinguish
between G2 and G3 is bounded by the probability of winning the OW-PCVA game of the underlying PKE
scheme. □

Lemma 5. GB
3 (λ) ≡ KEMnm-cca2∗

Π̃1,B,$
(λ).

Proof. Since G3 is similar to G0, with the only difference that the encapsulation key K∗ is uniform and
independent from the one obtained by querying H, for the same considerations that we did for G0, it holds
that the two distributions are identically distributed. □

Combining the above lemmas, we get that KEMnm-cca2∗
Π̃⊥,B

(λ) ≡ GB
0 (λ) ≡ GB

1 (λ) ≈c GB
2 (λ) ≈c GB

3 (λ) ≡
KEMnm-cca2∗

Π̃⊥
1 ,B,$

(λ), thus

KEMnm-cca2∗
Π̃⊥

1 ,B
(λ) ≈c KEM

nm-cca2∗
Π̃⊥

1 ,B,$
(λ).

□

4.3 Modified transformation Û⊥

In the following, we leverage the idea of prefix hashing introduced by Duman et al. [10], to construct a com-
pletely non-malleable KEM without requiring public-key uniqueness of the underlying PKE. In particular,
our Û⊥ is identical to U⊥, except that now the encapsulation algorithm gives as input to the random oracle
H also the public key pk together with the message m and the ciphertext c from the underlying PKE scheme,
i.e. K := H(m, c, pk). Note that now the decapsulation oracle must take as input also the challenge public
key together with the challenge secret key in order to recompute H(m, c, pk). The theorem below states that

Π̃⊥
1 := Û⊥[Π1,H] is completely non-malleable. Since the techniques used to prove the theorem below are

similar to the ones used to prove Theorem 5, we will only highlight the changes in the sequence of games
w.r.t. the proof of Theorem 5, and the changes needed to prove some lemma when required.

Theorem 6 (Π1 OW-PCVA
ROM
====⇒ Π̃⊥

1 NM-CCA2*). Assuming the existence of a random oracle H, if Π1

is a correct OW-PCVA secure PKE (Definition 3), then Π̃⊥
1 defined above is a correct NM-ATK* secure

KEM (Definition 8).

Proof. The sequence of games and the consequential differences in the oracles are described in Fig. 4.

Lemma 6. KEMnm-cca2∗
Π̃⊥

1 ,B
(λ) ≡ GB

0 (λ).

Proof. The proof is identical to the one of Lemma 1. □

Lemma 7. GB
0 (λ) ≡ GB

1 (λ).

Proof. The proof is identical to the one of Lemma 2. □

Lemma 8. GB
1 (λ) ≈c G

B
2 (λ).
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Games GB
0 (λ)−GB

3 (λ)

(pk∗, sk∗)←$ Gen1(1
λ)

st←$ B
Decaps

(c∗)
⊥ (sk∗,·),H(·,·,·)

1 (pk∗)

m∗←$M
c∗←$ Enc1(pk,m

∗)

K∗ := H(m∗, c∗, pk∗) #G0,G1

K∗←$ {0, 1}λ #G2,G3

(pk′, R, c′)←$ B
Decaps

(c∗)
⊥ (sk∗,·),H(·,·,·)

2 (pk∗, c∗,K∗, st)

return 1 iff ∃(K′, r) such that

(c′,K′) := Encaps(pk′; r) ∧ (K′ ̸= ⊥)
∧ (pk′ ̸= pk∗ ∨ K′ ̸= K∗)

∧R(K′,K∗, pk′, pk∗)

Oracle Decaps
(c∗)
⊥ (sk∗, pk∗, c) #G0,G3

m := Dec1(sk
∗, c)

if m′ = ⊥
return ⊥

return K := H(m′, c, pk∗)

Oracle H(m, c, pk)

if ∃K s.t. (m, c, pk,K) ∈ LH

return K

K←$K

if Dec1(sk
∗, c) = m #G1,G2

if c = c∗

return ⊥ #G2

if ∃K′ s.t. (c,K′) ∈ LD #G1

K := K′ #G1

else #G1

LD := LD ∪ {(c,K)} #G1

LH := LH ∪ {(m, c, pk,K)}
return K

Oracle Decaps
(c∗)
⊥ (sk∗, pk∗, c) #G1,G2

if ∃K s.t. (c,K) ∈ LD

return K

K←$K
m′ := Dec1(sk

∗, c)

if m′ = ⊥
K := ⊥

LD := LD ∪ {(c,K)}
LH := LH ∪ {(m′, c, pk∗,K)}
return K

Figure 4: Sequence of games needed to prove Theorem 6 and the consequential modifications of the oracles.
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Proof. The proof is identical to Lemma 3, except that now we do not use public key uniqueness of the
underlying PKE scheme to argue that the G1 and G2 are identically distributed conditioned to the fact
that the event QUERY does not happen. In this case, the adversary can try to distinguish between G1

and G2 by guessing the plaintext m∗ of c∗, calculate K′ := H(m∗, c∗, pk∗) and then check whether K′ is
equal to K∗ or not. However, this coincides with the QUERY event. Alternatively, the adversary might try
to distinguish making G1 always output 1, i.e. B tries to come up with a tuple (pk′, R, c′) for which the
relation R(K′,K∗, pk′, pk∗, c′) holds for a key K∗ encapsulated by c∗ under pk′ (as in G1), but does not hold
when such key is randomly chosen (as in G2). However, for the random oracle assumption, since pk′ is part
of the input of H, the key K′ := H(m∗, c∗, pk′) will be independent from K∗ := H(m∗, c∗, pk∗). Thus, the
distribution of G1 and G2 is identical when QUERY is not triggered.

As in Lemma 3, to estimate Pr [QUERY] we construct an efficient adversary A breaking OW-PCVA of
PKE1 when QUERY occurs. We define A in Fig. 5. Notice that A perfectly simulates G1. Indeed, the

Adversary APCO(sk∗,·,·),CVO(c∗)(sk∗,·)(pk∗, c∗)

K∗←$K

(pk′, R, c′)←$ B
Decaps

(c∗)
⊥ (·),H(·,·,·)

2 (pk∗, c∗,K∗)

if ∃(m, c∗, pk∗) ∈ LH s.t. PCO(sk∗,m, c∗) = 1

return m

return ⊥

Oracle Decaps
(c∗)
⊥ (c)

if ∃(c,K) ∈ LD

return K

if CVO(c∗)(sk∗, c) = 0

return ⊥
K←$K
LD := LD ∪ {(c,K)}
return K

Oracle H(m, c, pk)

if ∃K s.t. (m, c, pk,K) ∈ LH

return K

K←$K
if PCO(sk∗,m, c) = 1

if ∃K′ s.t. (c,K′) ∈ LD

K := K′

else

LD := LD ∪ {(c,K)}
LH := LH ∪ {(m, c, pk,K)}

return K

Figure 5: Adversary A breaking security of the underlying OW-PCVA PKE.

occurrence of QUERY implies that B has queried H about (m, c, pk), in which (m, c, pk) ∈ LH for m = m∗,
c = c∗ and pk = pk∗. A then returns m = m∗. Since such event coincides with QUERY, we get that
the probability of B of triggering QUERY coincides with the probability of A in winning the OW-PCVA
experiment, i.e.

Pr [QUERY] = Pr
[
PKEow-pcva

Π1,A
(λ)

]
≤ negl(λ).

□

Lemma 9. GB
2 (λ) ≈c G

B
3 (λ).

Proof. The proof is identical to the one of Lemma 4. □

Lemma 10. GB
3 (λ) ≡ KEMnm-cca2∗

Π̃1,B,§ (λ).

Proof. Since G3 is similar to G0, with the only difference that the encapsulation key K∗ is uniform it is
independent from the one obtained by querying H, for the same considerations that we did for G0, it holds
that the two distributions are identically distributed. □
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Combining the above lemmas, we get that KEMnm-cca2∗
Π̃⊥

1 ,B
(λ) ≡ GB

0 (λ) ≡ GB
1 (λ) ≈c GB

2 (λ) ≈c GB
3 (λ) ≡

KEMnm-cca2∗
Π̃⊥

1 ,B,$
(λ), thus

KEMnm-cca2∗
Π̃⊥

1 ,B
(λ) ≈c KEM

nm-cca2∗
Π̃⊥

1 ,B,$
(λ).

□

5 Relation with Completely Non-Malleable PKE

In the following, we will show which kind of relationships exist between a NM-ATK* PKE schemes and
NM-ATK* KEM schemes. We will proceed by first showing that a NM-ATK* PKE scheme is intrinsically a
NM-ATK* KEM scheme, and next we will introduce a construction to prove that a NM-ATK* KEM can be
used together with a NM-ATK SKE scheme to construct a NM-ATK* PKE scheme by using the KEM/DEM
paradigm.

5.1 NM-ATK* PKE =⇒ NM-ATK* KEM

Wlog, we can assume thatM = K. Let Π = (Gen,Enc,Dec) be a PKE scheme, and Π′ = (Gen,Encaps,Decaps)
be a KEM scheme defined as follows:

Algorithm Encaps(pk)

K←$K
c←$ Enc(pk,K)

return (c,K)

Algorithm Decaps(sk, c)

K := Dec(sk, c)

return K

Theorem 7 (NM-ATK* PKE =⇒ NM-ATK* KEM). If Π is a NM-ATK* secure PKE (Definition 4)
with respect to a set of relations R, then Π′ is a NM-ATK* secure KEM (Definition 8) with respect to R.

Proof. Let us assume that there exists a PPT adversary A that breaks NM-ATK* security of Π′ with
non-negligible probability, then we can build an efficient distinguisher D that breaks NM-ATK* security of
Π. The intuition behind the proof is that D will choose a distribution over the message space in such a way
that only two messages, say K and K′, can be sampled by the the challenger playing NM-ATK* of the PKE
scheme Π. In particular, D does the following:

1. Takes as input a public key pk and chooses a message distributionM from which only two messages
can be chosen, which we call K and K′.

2. Takes as input a challenge ciphertext c which is either an encryption of K under pk or an encryption
of K′ under pk.

3. Run A(pk, c,K). When A asks a decapsulation-oracle query for a ciphertext ĉ do the following:

(a) Query the decryption oracle Dec(sk∗, ·) about ĉ to obtain a key K̂.

(b) Return K̂ to A.

4. When A returns (pk′, R, c′), return (pk′, R, c′) as well.

Let us analyze the behavior of D. First, notice that, independently from c, D will always send the tuple
(pk, c,K) to A. Recall also that the message space of c is restricted to messages K and K′. In particular:

• when c is an encryption of K under pk, D the view of A when run as a subroutine of D is identically
distributed to its view in KEMnm-atk∗

Π′,A (λ).
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• When c is an encryption of K′ under pk, since K′ is uniform and independent from K, the view of A
when run as a subroutine of D is distributed identically to its view in KEMnm-atk∗

Π′,A,$ (λ).

To summarize, the probability that D distinguishes between PKEnm-atk∗
Π,D (λ) and PKEnm-atk∗

Π,D,$ (λ) is the same

of A distinguishing between KEMnm-atk∗
Π′,A,$ (λ) and KEMnm-atk∗

Π′,A,$ (λ), that we assumed to be non-negligible. This
leads to a contradiction due to the NM-ATK* security of Π. □

5.2 NM-ATK* KEM + NM-ATK SKE =⇒ NM-ATK* PKE

It is well known that a KEM scheme alone doesn’t allow to build a PKE scheme, due to the fact that an
encapsulation algorithm can be instantiated by encrypting a uniformly chosen message. To solve this issue,
a secret-key encryption scheme can be used along with a key-encapsulation mechanism.

Let Πkem = (Genkem,Encaps,Decaps) be a NM-ATK* KEMwith key spaceK, and Πske = (Genske,Enc,Dec)
be a NM-ATK SKE scheme with message spaceM and the same key space K of Πkem, we can construct a
hybrid PKE scheme Πhy = (Genhy,Enchy,Dechy) as defined below.

Algorithm Genhy(1λ)

(pk, sk)←$ Genkem(1λ)

return (pk, sk)

Algorithm Enchy(pk,m)

(c,K)←$ Encaps(pk)

c′←$ Enc(K,m)

return (c, c′)

Algorithm Dechy(sk, c)

K := Decaps(sk, c)

return m := Dec(K, c)

We prove that if Πkem is a completely non-malleable KEM and Πske is a non-malleable SKE, then Πhy

is a completely non-malleable PKE.

Theorem 8. If Πkem is an NM-ATK* secure KEM (Definition 8) with respect to a set of relations R and
Πske is an NM-ATK secure SKE (Definition 6) with respect to a set of relations R′ ⊆ R, then the scheme
Πhy described above is a NM-ATK* secure PKE scheme (Definition 4) with respect to R.

Proof. Correctness of the obtained PKE follows from the ϵ-correctness of the underlying KEM and SKE
schemes. The idea behind the proof is that, given the challenge ciphertext c∗ = (c∗1, c

∗
2), we can use NM-

ATK* security of Πkem to decouple the key encapsulated in c∗1 from the key used in c∗2 to encrypt the message
with the underlying SKE scheme Πske. At this point, since the encapsulated key is randomly chosen and
independent from the encryption key, it is not possible to for A to distinguish between a correct encryption
(i.e., where the encapsulated key and the encryption key are the same) and an encryption where the key
encapsulated in c∗ is randomly chosen and independent from the one used to encrypt c∗2. This holds even
if A is allowed to maul pk∗ into some related public key pk′. The next step is to use the NM-ATK security
of Πske to decouple m∗ from the relation R, i.e. given a ciphertext c∗2 encrypting m∗, it is infeasible for an
adversary to distinguish between the experiment where the relation R was checked by using either m∗ or m̃.
Finally, NM-ATK* security of Πkem can be used to re-join together the key encapsulated in c∗1 with the key
used to encrypt m in c∗2. Let A = Ahy, the sequence of games is described in Fig. 6. The part of the proof
required for a specific flavour of NM-ATK* will be highligthed with a tag [NM-ATK*].

Lemma 11. G0(λ) ≈c G1(λ).

Proof. Let us assume that Ahy can distinguish between G0 and G1 with non-negligible probability. We
can construct an adversary Anm breaking NM-ATK* security of Πkem. Anm behaves as follows:

1. Take as input a public key pk∗, a ciphertext c and a key K̂, where either K̂ = K∗ (the key encapsulated
in c) or K̂←$K.
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Game GA
0 (λ)

(pk∗, sk∗)←$ Gen(1λ)

(M, s)←$ AO1
1 (pk)

m∗←$M
(c∗1,K

∗)←$ Encaps(pk∗)

c∗2←$ Enc(K∗,m∗)

(pk, R, c)←$ AO2
2 (M, pk∗, s, c∗)

return 1 iff ∃(m, r) s.t.

(c = Enchy(pk,m; r)) ∧
(c ̸= c∗ ∨ pk′ ̸= pk) ∧
(m ̸= ⊥) ∧R(m,m∗, pk, pk∗, c)

Game GA
2 (λ)

(pk∗, sk∗)←$ Gen(1λ)

(M, s)←$ AO1
1 (pk)

m∗, m̃←$M

K̂←$K
(c∗1,K

∗)←$ Encaps(pk∗)

c∗2←$ Enc(K̂,m∗)

(pk, R, c)←$ AO2
2 (M, pk∗, s, c∗)

return 1 iff ∃(m, r) s.t.

(c = Enchy(pk,m; r)) ∧
(c ̸= c∗ ∨ pk′ ̸= pk) ∧
(m ̸= ⊥) ∧R(m, m̃, pk, pk∗, c)

Game GA
1 (λ)

(pk∗, sk∗)←$ Gen(1λ)

(M, s)←$ A
O1(·)
1 (pk)

m∗←$M

K̂←$K
(c∗1,K

∗)←$ Encaps(pk∗)

c∗2←$ Enc(K̂,m∗)

(pk, R, c)←$ A
O2(·)
2 (M, pk∗, s, c∗)

return 1 iff ∃(m, r) s.t.

(c = Enchy(pk,m; r)) ∧
(c ̸= c∗ ∨ pk′ ̸= pk) ∧
(m ̸= ⊥) ∧R(m,m∗, pk, pk∗, c)

Game GA
3 (λ)

(pk∗, sk∗)←$ Gen(1λ)

(M, s)←$ A
O1(·)
1 (pk)

m∗, m̃←$M
(c∗1,K

∗)←$ Encaps(pk∗)

c∗2←$ Enc(K∗,m∗)

(pk, R, c)←$ A
O2(·)
2 (M, pk∗, s, c∗)

return 1 iff ∃(m, r) s.t.

(c = Enchy(pk,m; r)) ∧
(c ̸= c∗ ∨ pk′ ̸= pk) ∧
(m ̸= ⊥) ∧R(m, m̃, pk, pk∗, c)

Figure 6: Sequence of games needed to prove Theorem 8.
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2. Run Ahy(pk∗).
[NM-CCA*1/NM-CCA2*] When Ahy asks a decryption-oracle query about a ciphertext (c1, c2) query
Decaps(sk∗, ·) about c1 to obtain a key K′ and return m := Dec(K′, c2).
When Ahy outputs a message distributionM, take a uniform messagem←$M, compute c←$ Enc(K,m)
and return c∗ = (c, c′) to Ahy.

3. [NM-CCA2*] When Ahy asks a decryption-oracle query about a ciphertext (c1, c2) do the following:

• if c1 = c and c2 = c′ then return m := ⊥ (i.e the query is not admissible).

• if c1 = c and c2 ̸= c′ then return m := Dec(K̂, c2).

• else, query Decaps(c
∗)(sk∗, ·) about c1 to obtain a key K′ and return m := Dec(K′, c2).

4. When Ahy outputs (pk, R, (c1, c2)), output (pk, R
′, c1), where R′(·, ·, pk, pk∗, c) = R(·, ·, pk, pk∗, c).

Notice that, since the only difference between G0 and G1 is that in G1 the key is chosen at random, the only
hope for he adversary Ahyb to distinguish between the two hybrids is by finding a relation holding between pk,
pk∗, and c that is satisfied in G0 but not in G1 (or vice-versa). Hence, R′(·, ·, pk, pk∗, c) = R(·, ·, pk, pk∗, c)
is indeed a suitable relation for Anm. When K̂ taken as input by Anm is K∗, then Anm perfectly simulates
G0. When K̂ taken as input by Anm is randomly chosen, Anm perfectly simulates G1. If Ahy distinguishes
between G0 and G1 with non-negligible probability, then Anm breaks NM-ATK* security of the underlying
KEM scheme with non-negligible probability. This leads to a contradiction. □

Lemma 12. G1(λ) ≈c G2(λ).

Proof. Let us assume that Ahy can distinguish between G1 and G2 with non-negligible probability, we
construct an adversary Aatk breaking NM-ATK security of Πske. Aatk behaves as follows:

1. Receive as input a key K.

2. Generate a pair (pk∗, sk∗)←$ Genkem(1λ).

3. Run Ahy(pk∗).
[NM-CCA*1/NM-CCA2*] When Ahy asks a decryption-oracle query about a ciphertext (c1, c2), query

the decryption oracle Dec(K̂, ·) of the NM-CCA experiment about c2 to obtain a message m.

4. When Ahy outputs a message distributionM, outputM to the challenger.

5. When receiving a ciphertext c′ from the challenger, compute (c∗1,K
∗)←$ Encaps(pk∗), and output (c∗1, c

′)
to Ahy.

6. [NM-CCA2*] When Ahy asks a decryption-oracle query about a ciphertext (c1, c2) do the following:

• if c1 = c∗1 and c2 = c′ then return m := ⊥ (i.e the query is not admissible).

• else, query Dec(c
′)(K̂, ·) about c2 to obtain m := Dec(K′, c2). Then, outputs m to Ahyb.

7. When Ahy outputs (pk, R, (c1, c2)), A
atk output (R′, c2) to the challenger, whereR

′(m0,m1) = R(m0,m1, ·, ·, ·).
The challenger either checks R′(m,m∗) = 1 where m∗ := Dec(K̂, c′) if Aatk is in SKEnm-atk

Πske,Aatk or checks
if R′(m, m̃) = 1 if m̃ is an randomly chosen message independent from c∗. Note that the only difference
between G1 and G2 is that the game checks that m∗ given as an input to R is encrypted in c∗2, whereas
in G2 the relation R takes as an input a random m̃. Thus, the only hope for Ahyb in distinguishing
between the two hybrids is by finding a relation holding between m and m∗ but not between m and
m̃ (or vince-versa). Thus, we are allowed to cast R′(m0,m1) as R(m0,m1, ·, ·, ·). When the relation R
takes m∗ in input, then Aatk perfectly simulates G1. When the relation R takes a random m̃ in input,
Aatk perfectly simulates G2.
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If Ahy distinguishes between G1 and G2 with non-negligible probability, then Aatk breaks NM-ATK security
of the underlying SKE scheme with non-negligible probability. This leads to a contradiction. □

Lemma 13. GA
2 (λ) ≈c G

A
3 (λ)

Proof. Let us assume that Ahy can distinguish between G2 and G3 with non-negligible probability, we
construct an adversary Anm breaking NM-ATK* security of Πkem. Anm behaves as follows:

1. Takes as input a public key pk∗, a ciphertext c and a key K̂, where either K̂ = K∗ (the key encapsulated
in c) or K̂←$K.

2. Run Ahy(pk∗).
[NM-CCA*1/NM-CCA2*] When Ahy asks a decryption-oracle query about a ciphertext (c1, c2) query
Decaps(sk∗, ·) about c1 to obtain a key K′ and return m := Dec(K′, c2).

3. When Ahy outputs a message distribution M, take two uniform messages m, m̃←$M, compute
c←$ Enc(K,m) and return c∗ = (c, c′) to Ahy.

4. [NM-CCA2*] When Ahy asks a decryption-oracle query about a ciphertext (c1, c2) do the following:

• if c1 = c and c2 = c′ then return m := ⊥ (i.e the query is not admissible).

• if c1 = c and c2 ̸= c′ then return m := Dec(K̂, c2).

• else, query Decaps(c
∗)(sk∗, ·) about c1 to obtain a key K′ and return m := Dec(K′, c2).

5. When Ahy outputs (pk, R, (c1, c2)), output (pk, R
′, c1), where R′(·, ·, pk, pk∗, c) = R(·, ·, pk, pk∗, c).

Notice that, since the only difference between G2 and G3 is that in G2 the key is chosen at random, the only
hope for he adversary Ahyb to distinguish between the two hybrids is by finding a relation holding between
pk, pk∗, and c that is satisfied in G2 but not in G3 (or vice-versa). Hence, R′ is a suitable relation for Anm.

When the kehy K̂ taken as input by Anm is randomly chosen, it perfectly simulates G2. When the key K̂
taken as input by Anm is K∗, then Anm perfectly simulates G3. If Ahy distinguishes between G2 and G3

with non-negligible probability, then Anm breaks NM-ATK* security of the underlying KEM scheme with
non-negligible probability. This leads to a contradiction. □

It is easy to see that GA
0 (λ) ≡ PKEnm-atk∗

Πhy,A (λ) and that GA
3 (λ) ≡ PKEnm-atk∗

Πhy,A,$ (λ). by combining

the above lemmas, PKEnm-atk∗
Πhy,A (λ) ≡ GA

0 (λ) ≈c GA
1 (λ) ≈c GA

2 (λ) ≈c GA
3 (λ) ≡ PKEnm-atk∗

Πhy,A,$ (λ). Hence,

PKEnm-atk∗
Πhy,A (λ) ≈c PKE

nm-atk∗
Πhy,A,$ (λ). □
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