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Abstract. An accountable threshold signature (ATS) is a threshold signature scheme where every
signature identifies the quorum of signers who generated that signature. They are widely used in
financial settings where signers need to be held accountable for threshold signatures they generate.
In this paper we initiate the study of proactive refresh for accountable threshold signatures. Proactive
refresh is a protocol that lets the group of signers refresh their shares of the secret key, without changing
the public key or the threshold. We give several definitions for this notion achieving different levels of
security. We observe that certain natural constructions for an ATS cannot be proactively refreshed
because the secret key generated at setup is needed for accountability. We then construct three types of
ATS schemes with proactive refresh. The first is a generic construction that is efficient when the number
of signers is small. The second is a hybrid construction that performs well for a large number of signers
and satisfies a strong security definition. The third is a collection of very practical constructions derived
from ATS versions of the Schnorr and BLS signature schemes; however these practical constructions
only satisfy our weaker notion of security.

1 Introduction

A threshold signature scheme [27] protects the secret signing key by splitting it into n shares so
that any t shares can sign. An accountable threshold signature scheme, also called an ATS, is a type
of threshold scheme where the signature identifies the quorum set that generated the signature. In
particular, there is a tracing algorithm that takes as input the public key pk, a message m, and a
valid signature on m, and outputs a quorum J ⊆ [n] of size at least t that must have participated
in generating the signature. More precisely, a set of signers J should be unable to cause the tracing
algorithm to blame a signer outside of J for a signature generated by J (see Section 3 for the
complete definition). Since every signature must encode the quorum that generated it, signature
length must be at least ⌈log2

(
n
t

)
⌉ bits. We note that a non-accountable threshold signature scheme

cannot be made accountable simply by requiring the signing quorum J to sign the pair (m,J ).
The problem is that the signing quorum could lie and sign a pair (m,J ′) for some J ̸= J ′, thereby
framing the quorum J ′ for a signature generated by J .

Accountable threshold signatures (ATS) come up often in real-world settings: if a rogue trans-
action is signed by a threshold of trustees, the signature should identify the trustees responsible.
For this reason, they are widely used in blockchain applications (e.g., [3]).

The trivial t-out-of-n ATS scheme is one where every signer locally generates a public-private key
pair for a standard (non-threshold) signature scheme. The complete public key is the concatenation
of all n local public keys. When t parties need to sign a message m, they each sign the message
using their local secret key, and the final signature is the concatenation of all t signatures. The
verifier accepts such an ATS signature if it contains t valid signatures. The tracing algorithm can
trivially determine which parties participated in generating a given valid signature. This trivial ATS
is used widely, for example in Bitcoin multisig transactions [3]. While the scheme has many benefits,
signature size and verification time are at least linear in tλ, where λ is the security parameter. Several
ATS constructions achieve much lower signature size and verification time [48, 7, 51, 14, 17, 16].



Proactive refresh. Consider an adversary that is able to corrupt one signing party every week and
learn its key share. After t weeks the adversary will learn enough key shares to forge a signature on
any message of its choice. To thwart such a dynamic adversary, Ostrovsky and Yung [52] introduced
the concept of proactive refresh. Every epoch, say once a day, the n parties will engage in a protocol
that refreshes their secret key shares without changing the public key. The requirement is that an
adversary that corrupts fewer than t parties in every epoch will not be able to forge signatures, even
though in aggregate the adversary may corrupt all n parties. Several subsequent works designed
proactive refresh protocols for specific threshold systems [40, 39, 32, 31, 54, 5, 33, 21, 2, 42, 24, 44].

Our results. In this paper we initiate the study of proactive refresh for accountable threshold
signatures (ATS). An ATS with proactive refresh, or ATS-PR, is the same as an ATS with the
addition of a share update protocol. At the beginning of every epoch all n parties participate in
this update protocol to refresh their key shares, without changing the public key. The scheme must
be unforgeable and accountable against an adversary that can corrupt a different set of parties at
every epoch. We will define this more precisely in a minute.

At first, refreshing the secret keys of parties in an ATS may seem impossible. Each party’s
secret key is used to hold that party accountable for a rogue signature. If we refresh the party’s
secret key, the tracing algorithm will no longer be able to trace a rogue signature to that party.
For example, in the trivial ATS described above it is not possible to refresh the secret keys without
changing the public key: once an adversary learns the secret key of one party, it will always be able
to forge signature shares on behalf of that party. Nevertheless, we show that by encoding a little
more information in the signature, it is possible for the tracing algorithm to work correctly despite
the fact that all the secret keys change at the beginning of every epoch.

In Section 3 we define a number of security models for an ATS-PR that capture multi-epoch
unforgeability and accountability properties. We give two natural definitions of unforgeability, de-
noted uf-0 and uf-1, that are an adaption of the threshold unforgeability definitions of Bellare et
al. [6] to the settings of proactive refresh. We next give two definitions of accountability, denoted
acc-0 and acc-1. In acc-1 the adversary can corrupt an arbitrary number of parties at every epoch,
and can issue arbitrary signature queries to the parties at every epoch. Eventually, the adversary
produces a message-signature pair (m∗, σ∗) that will trace to a signing set J ⊆ [n]. We say that the
adversary breaks accountability if in every epoch some party is incorrectly blamed for signing m∗.
In more detail, if in some epoch e′ the adversary obtained enough key shares and signature shares
to sign m∗ on behalf of the set J , then the adversary did not break accountability — the set J
effectively signed m∗ at epoch e′. Therefore, to break accountability we require the adversary to
satisfy the complementary condition: in every epoch e we require that there is some ie in the set J
for which the adversary did not corrupt party ie in epoch e and did not ask party ie to sign m∗

in epoch e. In other words, the adversary wins if in every epoch some party is incorrectly blamed
for signing m∗. The definition requires that no efficient adversary can satisfy this condition. We
discuss this further in Section 3. Definition acc-0 is weaker and requires that for some i in the set J ,
the adversary never corrupted party i nor did it ever ask it to sign m∗, across all epochs. That is,
the adversary wins under a more restricted condition: the same party i is incorrectly blamed for
signing m∗ across all epochs. We explore the differences between acc-0 and acc-1 in Appendix A. In
summary, we obtain four notions of security denoted (uf-b ∧ acc-b′) for b, b′ ∈ {0, 1}.

The security definitions in Section 3 require that the n parties honestly follow the update pro-
tocol. This captures security against an adversary that steals key shares, but does not otherwise
corrupt the parties. It lets us focus on the main ideas needed to build an ATS with proactive refresh.
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In Appendix B we consider a stronger adversary: we define security for an ATS-PR when some of
the parties participating in the system are fully malicious. We then describe a generic compiler
that lifts an ATS-PR that is only secure against semi-honest corruptions to an ATS-PR that is
secure against malicious corruptions. The compiler makes use of techniques from maliciously secure
multiparty computation. In Section 8 we discuss more efficient lifting techniques for our specific
schemes.
Constructions. Next, we present five constructions. We begin with a generic combinatorial con-
struction that performs well when

(
n
t

)
is polynomial size. The scheme is built from any generic

n-out-of-n threshold signature scheme (not necessarily accountable) that supports a proactive re-
fresh. There are many examples built from RSA [40, 39, 32, 31, 54], Schnorr [39, 43, 47, 44], and
BLS [19, 14]. It satisfies uf-1 ∧ acc-1 security, our strongest notion of security.

In Section 5 we describe a generic construction that satisfies uf-1∧ acc-1 security even when
(
n
t

)
is large. The scheme is built by combining two schemes:
– a refreshable n-out-of-n threshold scheme S1 that is not accountable, and
– a t-out-of-n accountable threshold scheme S2 that is not-refreshable.

We build a two-level ATS-PR scheme where the scheme S1 is used to sign S2 public keys, and S2
is used to sign messages. At the beginning of epoch number i the parties do: (i) refresh their S1
secret keys, (ii) run a distributed key generation (DKG) protocol to generate fresh S2 secret keys
and a public key pki; and (iii) sign the newly generated ATS public key pki using the scheme S1.
A signature on a message m is a triple (pki, σ1, σ2), where σ1 is the S1 signature on pki, and σ2 is
the S2 signature on m. To make this construction practical we need an ATS scheme S2 that has
short public keys (so that our overall signature is short) and has an efficient DKG. In Section 6 we
construct an ATS that has both properties: a constant size public key (i.e., its size is independent of t
and n) and a simple DKG. Our construction makes use of techniques used to construct cryptographic
accumulators.

We then turn to constructing a refreshable ATS from standard signature schemes such as
Schnorr [56] and BLS [19]. In Section 7 we give very practical schemes that support a proactive
refresh for a Schnorr-ATS and a BLS-ATS. This leads to practical short ATS schemes that support
proactive refresh. However, we describe an attack that shows that the schemes do not provide acc-1
security. Instead, we prove that they provide acc-0 and uf-0 security (we discuss the requirements
for proving uf-1 in Section 7).
Future work. Our security definitions capture adaptive threshold adversaries (as in [45] and the
references therein), where the adversary can choose to corrupt arbitrary parties before and after
issuing signature queries in every epoch. Our constructions in Sections 4 and 5 inherit adaptive
security from the underlying threshold schemes from which they are built. However, in Section 7, we
analyze the practical Schnorr and BLS constructions in a semi-adaptive setting where the adversary
must commit to its key queries at the beginning of every epoch, before issuing its adaptive signature
queries. The reason is that achieving security against a fully adaptive adversary often leads to
complex threshold signature schemes (as discussed in [45]). Future work can consider practical
constructions for ATS-PR in the fully adaptive settings.
Additional related work. The notion of an accountable threshold signature (ATS) is closely
related to the concept of a multisignature defined in [48] and further developed in [7, 17, 51, 41, 4, 16].
However, there are a number of differences. First, multisignatures are often viewed as a compression
mechanism, compressing multiple signatures into one, not a threshold mechanism. The threshold is
often left implicit. An ATS imposes an explicit threshold used by the verifier to decide if a signature is
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valid. Second, the syntax of an ATS allows for centralized key generation or an interactive distributed
key generation protocol (DKG). Multisignatures often only allow for local key generation where every
signer generates its key share by itself (however, there are some exceptions [16]).

Traditionally, threshold signatures come in two flavors: fully private (called PTS) where a signa-
ture reveals nothing about the threshold or the signing quorum, or fully accountable (called ATS),
as in this paper. A recent proposal called TAPS [18] provides both properties: it is fully private to
the public, but fully accountable to an authority that holds a secret tracing key.

2 Preliminaries

In this section we present the basic notions and cryptographic primitives that are used in this work.
For an integer n ∈ N we denote by [n] the set {1, . . . , n}. For a distribution X we denote by x←$ X
the process of sampling a value x from the distribution X. Similarly, for a set X we denote by
x←$ X the process of sampling a value x from the uniform distribution over X .

2.1 Threshold Signatures

For simplicity of presentation, we begin by considering non-interactive threshold signature schemes,
in which each signer can locally produce their signature shares without interacting with the other
signers. In Appendix C we will formally consider interactive schemes as well.
Syntax. A non-interactive threshold signature scheme (see [20, 28, 19, 14, 43, 6] and the references
therein) is defined with respect to some public parameters pp. Looking ahead, in our constructions
pp will include the description of some cryptographic group. This description is typically generated
as a function of the security parameter λ ∈ N by a group-generation algorithm, but in this work we
will abstract this process away and fix the group as part of pp. To avoid over-cluttering in notation,
we assume that pp are known to all algorithms without always providing it as an explicit input.
A threshold signature (TS) scheme is a 4-tuple TS = (KGen, Sign,Combine,Vf), where:

– KGen is the randomized key-generation algorithm. It takes in as input the public parameters
pp, a number n of signers, and a threshold t, and outputs a public key pk, a public signature
combination key pkc, and an n-vector of secret signing keys (sk1, . . . , skn).

– Sign is the randomized signing algorithm. It takes in as input a secret key ski and a message m,
and outputs a signature share si.

– Combine is a deterministic signature combination algorithm. It takes in as input the combination
key pkc and signature shares si1 , . . . , siℓ and outputs either a signature σ or ⊥. To simplify the
notation, we will require throughout that every signature share encodes the signer from which
it originated.

– Vf is the deterministic verification algorithm. It takes in the public key pk, a message m, and a
signature σ, and outputs either 1 (implying acceptance) or 0 (implying rejection).

We postpone defining the correctness and security of TS schemes to Section 3, where we will present
new generalizations of these definitions.
Accountable threshold signatures. An accountable threshold signature (ATS) scheme [49, 19,
4, 10, 16, 51] is a TS scheme equipped with an additional Trace algorithm. This algorithm takes
as input the public key pk, a message m, and a signature σ. It outputs either a subset J ⊆ [n] of
signers such that |J | ≥ t (where t is the threshold provided to KGen) or ⊥. Roughly speaking, the
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trace correctness property states that if a signature σ on m was produced by a subset I ⊆ [n] of the
signers, then the subset J output by Trace(pk,m, σ) is contained in I. The accountability property
asserts that no subset I of the signers can sign “on behalf” of a subset J which is not contained in I
(i.e., it cannot make Trace output such a J ). We formally define these two properties in Section 3.

2.2 The Forking Lemma

In subsequent sections, we make use of the “forking lemma” of Bellare and Neven [7] (following
Pointcheval and Stern [53]). Let q ≥ 1 be an integer, let H, X and Y be a sets such that |H| ≥ 2.
Let A be a randomized algorithm that on input (x, h⃗) ∈ X ×Hq returns either a pair (i, y) ∈ [q]×Y
or ⊥. Let FA be an algorithm that takes an input x ∈ X , and returns either an output (y, y′) ∈ Y2

or ⊥, and is defined as follows:

1. Sample random coins ρ for A.
2. Sample h1, . . . , hq ←$H and invoke out1 ← A(x, h1, . . . , hq; ρ).
3. If out1 = ⊥, return ⊥. Otherwise, let out1 = (i, y).
4. Sample h′i, . . . , h

′
q ←$H and invoke out2 ← A(x, h1, . . . , hi−1, h′i, . . . , hq; ρ).

5. If out2 = ⊥, return ⊥. Otherwise, let out2 = (i′, y′).
6. If i′ = i and hi ̸= h′i then return (y, y′). Otherwise, return ⊥.

The forking lemma (Lemma 1 below) relates the probability that FA succesfully provides an
output (other than ⊥) to the probability that A provides an output.

Lemma 1 ([7]). For all distributions D over X , it holds that

Pr [FA(x) ̸= ⊥ : x←$ D] ≥ ϵD ·
(
ϵD
q
− 1

h

)
,

where ϵD is defined as

ϵD := Pr

[
A(x, q⃗) ̸= ⊥ :

x←$ D

h⃗←$Hq

]
.

3 Accountable Threshold Signatures with Proactive Refresh

In this section we present our definitions for ATS schemes with proactive refresh (ATS-PR). We start
by providing the syntactic additions for such schemes (when compared to standard ATS schemes),
then define the correctness properties that should be satisfied by them, and finally, we present new
security notions. Recall that to simplify the presentation, we first focus on non-interactive schemes,
and then formally consider interactive schemes in Appendix C.

3.1 Syntax and Correctness

The key-update procedure. An ATS-PR scheme is an ATS scheme that is additionally equipped
with a key-update procedure, whose role is to refresh the signers’ secret keys without modifying
the public key in any way. We can envision the key-update procedure as dividing time into epochs.
An epoch starts once one execution of the key-update procedure ends (or, for the first epoch right
after the invocation key generation algorithm), and ends when the next execution of the key-update
procedure ends.
Formally, the key-update procedure is a pair Update = (Update0,Update1) of algorithms:
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– Update0 is a randomized algorithm that takes in a secret key skei of signer i in epoch e and the
public key pk, and outputs a vector (δei,1, ...., δ

e
i,n) of update messages. Each signer i sends δei,j

to the jth signer, for all j ̸= i.
– Update1 is a deterministic algorithm that takes in a secret key skei and n update messages

δe1,i, . . . , δ
e
n,i. It outputs an updated secret key ske+1

i for epoch e+ 1 for signer i.

For succinctness, we may write (ske+1
1 , . . . , ske+1

n )←$ Update(pk, ske1, . . . , sk
e
n) as a shorthand for the

random process of first invoking Update0(sk
e
i , pk) for every i ∈ [n] to randomly sample n2 update

messages {δi,j}i,j∈[n]; and then running Update1(sk
e
i , (δ

e
1,i, . . . , δn,i)) to obtain ske+1

i for every i ∈ [n].
Correctness. Informally, the basic correctness requirement for ATS-PR schemes is that Vf should
accept honestly-generated signatures in all epochs.

Definition 1 (correctness). We say that an ATS-PR scheme PRATS = (KGen,Sign,Combine,Vf,
Trace,Update) is correct if for all public parameters pp, all messages m in the associated message
spaceMpp, all positive integers n, t and e such that t ≤ n, and all subsets J ⊆ [n] of size at least t,
it holds that

Pr
[
Vf(pk,m,Combine(pkc, {Sign(skej ,m)}j∈J )) = 1

]
= 1,

where the probability is over the random variables (pk, pkc, sk11, . . . , sk
1
n) ←$ KGen(pp, n, t), and

(ski+1
1 , . . . , ski+1

n )←$ Update(pk, ski1, . . . , sk
i
n) for i = 2, . . . , e− 1, and the random coins of Sign.

In addition to the traditional correctness property, an ATS-PR scheme should also provide trace
correctness. That is, on input a public-key pk, a message m, and a signature σ, the tracing algorithm
Trace should output a subset of the set of keys used to generate σ. This should hold irrespective of
the epoch in which σ was generated.

Definition 2 (trace correctness). We say that an ATS-PR scheme PRATS = (KGen,Sign,Combine,
Vf,Trace,Update) satisfies trace correctness if for all public parameters pp, all messages m in
the associated message space Mpp, all positive integers n, t and e such that t ≤ n, and all subsets
J ⊆ [n] of size at least t, it holds that

Pr
[
Trace(pk,m,Combine(pkc, {Sign(skej ,m)}j∈J )) ⊆ J

]
= 1,

where the probability is over the random variables (pk, pkc, sk11, . . . , sk
1
n) ←$ KGen(pp, n, t), and

(ski+1
1 , . . . , ski+1

n )←$ Update(pk, ski1, . . . , sk
i
n) for i = 1, . . . , e− 1, and the random coins of Sign.

3.2 Security Notions for ATS-PR Schemes

We now turn to present our notions of security for ATS-PR schemes. We start with a brief overview
of the security notions and then provide formal definitions.

An ATS-PR scheme should satisfy two security requirements, unforgeability and accountability,
which extend the traditional security notions of ATS schemes to the setting of proactive refreshes.
Unforgeability. The traditional unforgeability requirement for threshold signatures asserts that an
adversary cannot produce a valid signature on a message m without observing either the secret key
or a signature share on m of at least t different signers. In the proactive refresh setting, we require
that this holds per epoch. That is, the adversary should not be able to produce a signature on a
message m, unless there is a specific epoch in which it observed the secret keys or signature shares
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on m of at least t signers. Note that this means that the adversary is allowed to observe t or more
secret keys or signature shares on m across epochs, and potentially even observe the secret keys of
all signers at different points in time. However, in each specific epoch, the total number of secret
keys and signature shares on m that the adversary observes should be strictly less than t. Following
[6], we consider two flavors of this unforgeability definition, denoted uf-0 and uf-1, depending on
whether or not the adversary is allowed to observe signature shares on the message m∗ for which it
forges a signature. We present constructions satisfying both notions with different trade-offs.

Accountability. The accountability property of ATS schemes states that an adversary should not
be able to produce a valid signature on a message m on behalf of a subset J of signers without
observing the secret key or signature share on m of all the signers in J . In the proactive refresh set-
ting we present a strong accountability definition that requires that this restriction on the adversary
should only hold in each epoch (thus allowing them to observe secret keys/signature shares on m of
all signers in J across different epochs). We also consider a milder accountability definition, which
requires that for some signer j ∈ J , the adversary never observes j’s secret key or a signature share
of j on m. Looking ahead, we will present different constructions of ATS-PR schemes satisfying the
two notions. Appendix A explores the differences between these two notions.

Note that even under our strong accountability definition, if the adversary learns all the secret
keys (or signature shares on m) of J in the same epoch, say epoch 1, then they can forever produce
signatures on m, even in future epochs. This is inherent, since we want the public verification key
to remain the same over time, rendering the verification algorithm oblivious to the epoch in which
the message was signed.

Game-based security definitions. We use security games to define the above security notions
for ATS-PR schemes, following the framework of Bellare and Rogaway [9]. A game G consists of
an adversary A interacting with the challenger. The game is specified by a main procedure and
possibly additional oracle procedures, which describe the manner in which the challenger replies to
oracle queries issued by the adversary. We denote by G(A) the output of G when executed with
an adversary A. This G(A) is a random variable defined over the randomness of both A and the
random choices of the game’s main procedure and oracles.

For an ATS-PR scheme PRATS and public parameters pp, the above-described requirements are
captured by the security games defined in Figure 1. All games are defined similarly, and the only
difference between them is the winning condition for the adversary (i.e., the condition that results
in the game outputting 1). In all games, the adversary first specifies the number n of overall signers,
the threshold t, and the number E of epochs. This is followed by challenger sampling keys for all
E epochs using the KGen and Update procedures of PRATS. The adversary then interacts with the
challenger using two types of queries: Secret-key queries and signature queries. A secret-key query
(e, i) reveals to the adversary the secret key of signer i in epoch e. A signature query (m, e, i) provides
the adversary with an honestly-generated signature share on m with respect to signer i’s secret key
in epoch e. Finally, in all games the adversary should produce a valid forgery; that is, a message m∗

and a signature σ∗ that passes verification. Each game has additional restrictions on the adversary
in light of our informal discussion above. Games Guf-0

PRATS[pp] and Guf-1
PRATS[pp] capture two notions

of unforgeability, whereas games Gacc-0
PRATS[pp] and Gacc-1

PRATS[pp] capture two notions of accountability.
For b, b′ ∈ {0, 1}, we also define the game Guf-b∧acc-b′

PRATS[pp] , that captures schemes that satisfy both
unforgeability and accountability. This will help us state and prove our theorem statements more
succinctly.
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Games Guf-b
PRATS[pp],G

acc-b′
PRATS[pp],G

uf-b∧acc-b′
PRATS[pp]

1 : flaguf-0, flaguf-1, flagacc-0, flagacc-1 ← 0

2 : (st, n, t, E)← A(pp)

3 : (pk, pkc, sk11, . . . , sk
1
n)←$ KGen(pp, n, t)

4 : for e = {2, . . . , E} do

5 : (ske1, . . . , sk
e
n)←$ Update(pk, ske−1

1 , . . . , ske−1
n )

6 : (m∗, σ∗)←$AskO(·,·),SignO(·,·,·)(st, pk, pkc)

7 : if Vf(pk,m∗, σ∗) = 0 then

8 : return 0

9 : if ∀e ∈ [E], |Qsk
e | < t ∧ |Qsig

e (m∗)| = 0 then flaguf-0 ← 1

10 : if ∀e ∈ [E], |Qsk
e ∪Qsig

e (m∗)| < t then flaguf-1 ← 1

11 : if Trace(pk,m∗, σ∗) ̸⊆ ∪e∈[E]

(
Qsk

e ∪Qsig
e (m∗)

)
then flagacc-0 ← 1

12 : if ∀e ∈ [E],Trace(pk,m∗, σ∗) ̸⊆ Qsk
e ∪Qsig

e (m∗) then flagacc-1 ← 1

13 : Only game Guf-b
PRATS[pp] : return flaguf-b

14 : Only game Gacc-b
PRATS[pp] : return flagacc-b

15 : Only game Guf-b∧acc-b′
PRATS[pp] : return flaguf-b ∨ flagacc-b′

Oracle skO(e, i)

1 : Qsk
e ← Qsk

e ∪ {i}
2 : return skei

Oracle SignO(m, e, i)

1 : σi ← Sign(skei ,m)

2 : Qsig
e (m)← Qsig

e (m) ∪ {i}
3 : return σi

Fig. 1. The security games Guf-b
PRATS[pp],G

acc-b′
PRATS[pp],G

uf-b∧acc-b′
PRATS[pp] for b, b′ ∈ {0, 1} for an ATS-PR scheme PRATS =

(KGen, Sign,Combine,Vf,Trace,Update) with public parameters pp. For a set X and an element x, we let X ← X ∪{x}
be a shorthand for the following operation: If X was previously defined, then set X ← X ∪{x}; if X is still undefined,
then set X = {x}.
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Three remarks regarding the games in Figure 1 are in order:

– By convention, we assume that that ⊥ ̸⊆ Q for any set Q. Hence, if the adversary successfully
outputs a valid signature σ∗ on a message m∗ such that Trace(pk,m∗, σ∗) = ⊥, then the adversary
breaks even our weak accountability notion (that is, wins the acc-0 security game).

– If we add the syntactic requirement that Trace never outputs ⊥ on a signature that passes
verification, then acc-1 security implies uf-1 security. This is because under this requirement,
Trace always outputs a subset J of size at least t on valid signatures. If in each epoch the
adversary corrupted at most t− 1 signers, then in each epoch there must be at least one signer
in J which is uncorrupted by the adversary.

– For simplicity of presentation, we start with a definition in which the challenger samples the keys
for all epochs at the beginning of the games. The adversary cannot influence the key updates
and receives no additional information about the key updates other than what is revealed by
the answers to its secret key queries and signing queries. In Appendix B we consider stronger
security notions, in which the adversary can corrupt signers (either semi-honestly or maliciously)
during the key update protocol as well.

Definition 3 below defines the advantage of an adversary A in the eight games defined in Figure 1
as the probability that the games output 1 when executed with A.

Definition 3. Let PRATS = (KGen,Sign,Combine,Vf,Trace,Update) be an ATS-PR scheme with
public parameters pp and let prop ∈ {uf-b, acc-b, uf-b∧acc-b′}b,b′∈{0,1}. The advantage of an adversary
A in Gprop

PRATS[pp] is defined as

AdvpropPRATS[pp](A)
def
= Pr

[
Gprop

PRATS[pp](A) = 1
]
.

Threshold signatures without accountability or proactive refresh. In subsequent sections
we will consider threshold signature (TS) schemes with proactive refresh but without accountability
(i.e., without a Trace algorithm). These can be treated as a specific case of ATS-PR schemes in which
the Trace algorithm is trivial (returns ⊥ on all inputs). As such, games Guf-0

PRATS[pp] and Guf-1
PRATS[pp]

and Definition 3 readily captures the unforgeability property of such schemes. In addition, we will
consider ATS schemes without proactive refresh (i.e., no Update procedure). These can also be
treated as a special case of ATS-PR schemes in which the number of epochs is fixed at 1. The games
defined in Figure 1 together with Definition 3 define the unforgeability and accountability of such
schemes by having the game fix the number of epochs E to 1 (instead of receiving it from A).
Semi-adaptive adversaries. The security games as defined in Figure 1 allow for fully-adaptive
adversaries, in the sense that they do not pose any restrictions on the order in which the adversary
decides on its oracle queries. Proving security against such adversaries is known to be a challenging
task, already for non-accountable threshold signature schemes [45]. Since the problem of fully-
adaptive adversaries is not at the focus of this work, we also consider semi-adaptive adversaries. For
every epoch e, such adversaries are restricted to issuing all secret-key queries for that epoch before
issuing their signature queries for this epoch. This is captured by modifying the security games as
follows. The game will maintain a set E which will include all epochs for which a signature query
has been issued by the adversary. On input (e, i), the oracle skO will first check if e is in E . If so, it
will ignore the query, returning ⊥. Otherwise, it will continue as defined in Figure 1. This ensures
that at every epoch e the adversary must issue all of its key queries for epoch e before issuing a
signature query in epoch e.
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For a ATS-PR scheme PRATS with public parameters pp, and for a security property prop ∈
{uf-b, acc-b, uf-b ∧ acc-b′}b,b′∈{0,1}, denote by Gsa-prop

PRATS[pp] the semi-adaptive security game obtained
from Gprop

PRATS[pp] as described above. The advantage of an adversary in these games is defined simi-
larly to the adversarial advantage in the fully-adaptive security games.

Definition 4. Let PRATS = (KGen,Sign,Combine,Vf,Trace,Update) be an ATS-PR scheme with
public parameters pp and let prop ∈ {uf-b, acc-b, uf-b∧acc-b′}b,b′∈{0,1}. The advantage of an adversary
A in Gsa-prop

PRATS[pp] is defined as

Advsa-propPRATS[pp](A)
def
= Pr

[
Gsa-prop

PRATS[pp](A) = 1
]
.

Our constructions in Sections 4 and 5 will assume a (non-accountable) TS scheme with proactive
refresh as a building block. In terms of the adaptiveness of the adversary, our constructions will
inherit the security guarantees of the assumed TS scheme. Hence, in these sections we will not
address the question of adaptivity directly. In Section 7, we will present direct constructions of
ATS-PR schemes, and prove them secure against semi-adaptive adversaries (we will remind the
reader of this fact in these sections). We leave the task of extending these constructions to handle
fully-adaptive adversaries as an interesting open question for future work.
Extending the definitions to the random oracle model. All of the syntactic and security
definitions above extend to the random oracle model by granting all algorithms, including the
adversary A, oracle access to a function H chosen uniformly at random from a family H of functions.
In the correctness and security definitions (Definition 3), all probabilities are then also taken over
the choice of H.

4 A Combinatorial Construction for Few Signers

In this section we present a simple combinatorial construction of an ATS-PR scheme from any TS-PR
scheme (that is, from any threshold signature scheme with proactive refresh but no accountability
assurances). The ATS-PR scheme incurs an overhead of

(
n
t

)
in the length of the public key and the

secret keys, as well as in the running time of the key generation algorithm, where n is the total
number of potential signers and t is the threshold. Hence, this scheme is of interest in the setting
where n is relatively small.

Our combinatorial ATS-PR scheme, which we denote by CATS, uses as a building block a TS-PR
scheme PRTS = (PRTS.KGen,PRTS.Sign,PRTS.Combine,PRTS.Vf,PRTS.Update = (PRTS.Update0,
PRTS.Update1)). For ease of presentation, we assume that PRTS is a non-interactive scheme (re-
call Sections 2.1 and 3), which will result in our CATS being non-interactive as well. However, the
construction and security proof readily extend to interactive schemes as well.1

In the presentation of CATS, we rely on the following notation: Let St,n denote the collection of
all t-sized subsets of [n]. For i ∈ [n], let St,n(i) denote the collection of all such subsets that include
index i.

1 We actually only need PRTS to be an n-out-of-n threshold signature scheme, which may be simpler to construct.
To avoid introducing additional definitions, we present the construction assuming PRTS is a general TS-PR.
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CATS: a combinatorial ATS-PR scheme (built from a TS-PR scheme PRTS)

CATS.KGen(pp, n, t):

1. Set pk← ε and ski ← ε for each i ∈ [n].
2. For each J ∈ St,n:

(a) Sample (pkJ , pkcJ , (skJ1 , . . . , skJt ))←$ PRTS.KGen(pp, t, t).
(b) Update pk← pk∥pkJ and pkc← pkc∥pkcJ .
(c) For each j ∈ J , update skj ← skj∥skJj .

3. Output (pk = (n, t, pk), pkc = (n, t, pkc), (sk1, . . . , skn)).

CATS.Sign(ski,m):

1. Parse ski as
(
skJi

)
J∈St,n(i)

.

2. For all J ∈ St,n(i), compute σJ
i ←$ PRTS.Sign(skJi ,m).

3. Output σi = (σJ
i )J∈St,n(i).

CATS.Combine(pkc, σi1 , . . . , σiℓ):

1. Parse pkc as
(
pkcJ

)
J∈St,n

and σij as (σJ
ij
)J∈St,n(ij) for each j ∈ [ℓ].

2. Let J ∗ = {j1, . . . , jt} be the lexicographically first t-sized subset of {i1, . . . , iℓ}.
3. Compute σ ← PRTS.Combine(pkcJ

∗
, σJ ∗

j1
, . . . , σJ ∗

jt
).

4. Output σ′ = (J ∗, σ).

CATS.Vf(pk,m, σ′):

1. Parse pk as (n, t, pk), pk as
(
pkJ

)
J∈St,N

, and σ′ as (J ∗, σ).
2. If J ∗ < t, output 0.
3. Output 1 if PRTS.Vf(pkJ

∗
,m, σ) = 1.

Otherwise, output 0.

CATS.Trace(pk,m, σ):

1. Parse σ′ as (J ∗, σ).
2. Output J ∗.

CATS.Update:

– CATS.Update0(pk, ski):
1. Parse pk as

(
pkJ

)
J∈St,n

and ski as
(
skJi

)
J∈St,n(i)

.
2. For each J = (j1, . . . , jt) ∈ St,n(i):

Sample (δJj1 , . . . , δ
J
jt
)←$ PRTS.Update0(pk

J , skJi ).
3. For each j ∈ [n], set δi,j ← (δJj )J∈St,n(i)∩St,n(j).
4. Output (δi,1, . . . , δi,n).

– CATS.Update1(ski, δ1,i, . . . , δn,i):
1. Parse ski as

(
skJi

)
J∈St,n(i)

and parse δj,i as (δJi )J∈St,n(i)∩St,n(j) for each j ∈ [N ].
2. For each J = {j1, . . . , jt} ∈ St,n(i):

Set s̃kJi ←$ PRTS.Update1(sk
J
i , δJj1 , . . . , δ

J
jt
).

3. Output s̃ki = (s̃kJi )J∈St,n(i).

Theorem 1 below, which is proven is Appendix D.1, reduces the security of CATS to that of the
underlying scheme PRTS.
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Theorem 1. Let b ∈ {0, 1}. For any adversary A there exists an adversary B such that for every
public parameters pp it holds that

Advuf-b∧acc-1
CATS[pp] (A) ≤ binmax · Advuf-b

PRTS[pp](B),

where binmax is a bound on the binomial coefficient
(
n
t

)
for n, t chosen by A in Guf-b∧acc-1

CATS[pp] .

On the tightness of the reduction. As evident in the statement of Theorem 1, the reduction
used in its proof incurs a loss of factor binmax. This may be reasonable when the total number n of
potential signers is small, which is precisely the scenario in which one might use CATS. Nevertheless,
we stress that this loss is a matter of definitional choices. In more detail, CATS uses

(
n
t

)
independent

instances PRTS. However, we chose to define our security games in Figure 1 in a manner that only
captures single-instance security.2 This allows us to more cleanly present the main contributions
of the paper. As a result, the proof of Theorem 1 encompasses a multi-instance to single-instance
reduction for threshold signatures, resulting in a loss which is linear in the number of instances. If
we were to define multi-instance security of TS-PR schemes (by a straightforward generalization
of the games in Figure 1), then we would have a straightforward and tight reduction from the
security of CATS to the multi-instance security of PRTS. In particular, if PRTS is instantiated using
a scheme which has better-than-trivial multi-instance security, than the loss in Theorem 1 shrinks
accordingly.

5 An Efficient Construction with Strong Security Guarantees

In this section we present a generic approach for obtaining ATS-PR schemes. The benefit of this
approach over the one presented in Section 4 is that it has efficient instantiations even when

(
n
t

)
is

large. The ATS-PR scheme makes use of two basic schemes: An n-out-of-n TS-PR scheme (without
accountability) and a t-out-of-n ATS scheme (without proactive refresh). The idea is to set the TS-
PR public key as the public key of the new scheme. To refresh the secret keys of the new scheme,
we refresh the secret keys of the TS-PR scheme and generate fresh epoch-specific keys for the ATS
schemes. The epoch-specific ATS keys are then used to sign messages. To enforce consistency, in
each update the new ATS public key is signed using the n-out-of-n TS-PR scheme. The epoch-
specific ATS public key and the signature on it are then appended to signatures issued using the
epoch-specific ATS signing keys.

We now formally present our generic ATS-PR scheme. The construction relies on the following
two building blocks:

1. A threshold signature scheme with proactive refresh PRTS = (PRTS.KGen,PRTS.Sign,PRTS.Combine,
PRTS.Vf,PRTS.Update).3

2. An ATS scheme ATS = (ATS.KGen,ATS.Sign,ATS.Combine,ATS.Vf,ATS.Trace). We assume
that ATS is equipped with a distributed key generation protocol ΠATS.KGen enabling signers to
generate the keys for the scheme in a distributed manner.

2 Though we stress that our definition for interactive protocols (Appendix C) does capture concurrent executions of
the signing protocol.

3 As in Section 4, we only need PRTS to support n-out-of-n signing, which may be easier to instantiate than general
threshold signature schemes.
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When presenting our ATS scheme with proactive refresh we use the following notation. We
write σ ←$ PRTS.Sign((sk1, . . . , skn), pkc,m) to denote the process of simulating the execution of
the (potentially interactive) signing protocol PRTS.Sign, where the i-th signer runs on local input
(ski,m) and σ is the result of applying PRTS.Combine onto the local outputs of the protocol with
key pkc. When presenting the signing procedure, we do so in a general language that also captures
interactive protocols. In particular, we also provide the (potentially interactive) Sign algorithm with
the subset J of signers as input (we refer the reader to Section C for a formal definition of interactive
ATS-PR schemes).

Our ATS-PR scheme PRATS = (PRATS.KGen,PRATS.Sign,PRATS.Vf,PRATS.Update,PRATS.Trace)
is then defined as follows.4

PRATS: A generic ATS scheme with proactive refresh (built from PRTS and ATS)

PRATS.KGen(pp, n, t):

1. Sample (PRTS.pk,PRTS.pkc, (PRTS.sk1, . . . ,PRTS.skn))←$ PRTS.KGen(pp, n, n).
2. Sample (ATS.pk,ATS.pkc, (ATS.sk1, . . . ,ATS.skn))←$ ATS.KGen(pp, n, t).
3. Compute σpk ←$ PRTS.Sign((PRTS.sk1, . . . ,PRTS.skn),PRTS.pkc,ATS.pk).
4. For i = 1, . . . , n set ski ← (PRTS.ski,ATS.ski,ATS.pk, σpk).
5. Output (pk = (n, t,PRTS.pk), pkc = ATS.pkc, (sk1, . . . , skn)).

PRATS.Sign(ski,m,J ):

1. Parse ski as (PRTS.ski,ATS.ski,ATS.pk, σpk).
2. Invoke ATS.Sign(ATS.ski,m,J ) and let sm denote the output of the protocol.
3. Output si = (J ,ATS.pk, σpk, sm).

PRATS.Combine(pkc, (si1 , . . . , siℓ)):

1. Parse each si as (Ji,ATS.pki, σpk,i, sm,i).
2. Let (J ,ATS.pk, σpk)← (Ji1 ,ATS.pki1 , σpk,i1).

If for some j ∈ [ℓ] it holds that (J ,ATS.pk, σpk) ̸= (Jij ,ATS.pkij , σpk,ij ), output ⊥.
3. Invoke σm ← ATS.Combine(pkc, sm,i1 , . . . , sm,iℓ).
4. Output σ = (ATS.pk, σpk, σm).

PRATS.Vf(pk,m, σ):

1. Parse pk as (n, t,PRTS.pk) and σ as (ATS.pk, σpk, σm).
2. Output 1 if PRTS.Vf(PRTS.pk,ATS.pk, σpk) and ATS.Vf(ATS.pk,m, σm).

Otherwise, output 0.

PRATS.Trace(pk,m, σ):

1. Parse σ as (ATS.pk, σpk, σm).
2. Verify that PRTS.Vf(PRTS.pk,ATS.pk, σpk) = 1 and otherwise, output ⊥.
3. Output J = ATS.Trace(ATS.pk,m, σm).

PRATS.Update(ski, pk):

1. Parse ski as (PRTS.ski,ATS.ski,ATS.pk, σpk) and pk as (n, t,PRTS.pk).

4 Though the underlying PRTS and ATS scheme might be defined relative to a random oracle, we abstract this
fact away for simplicity of presentation. The proof of security would remain essentially unchanged without this
simplification.
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2. Run the protocol PRTS.Update with signer i running on local input (PRTS.ski,PRTS.pk) and let PRTS.sk′i
be the output of signer i.

3. Invoke ΠATS.KGen(n, t) and let (ATS.pk,ATS.sk′i) denote the output of signer i.
4. Invoke PRTS.Sign(PRTS.pk.PRTS.sk′i,ATS.pk) and let σ′

pk denote the output of the protocol.
5. Output sk′i = (PRTS.sk′i,ATS.sk

′
i,ATS.pk

′, σ′
pk).

On the efficiency of the scheme. The public key of PRATS consists solely of the public key of
the non-accountable scheme PRTS (in addition to n and t), for which we instantiations with short
public keys are known (the reader is referred to Section 1 and the references therein). Two main
efficiency measures that depend on ATS are:

– Length of signatures, which consist of a public key of ATS, an ATS signature, and a PRTS
signature. Known PRTS do enjoy short signatures.

– The complexity of updates, which is dominated by (1) The key refresh of PRTS; (2) the execution
of the distributed key generation protocol ΠATS.KGen to produce new ATS keys; and (3) invoking
the signing algorithm of PRTS to collectively sign the new ATS keys. For items (1) and (3),
existing PRTS schemes have efficient key updates and signing protocols.

In light of the above discussion, what is missing is an ATS scheme that simultaneously enjoys (1)
a short public key; and (2) an efficient distributed key generation protocol. Although ATS schemes
with short public keys are known (see for example [8]), their key generation procedures rely on
a trapdoor, and hence do not admit efficient distributed analogs. To fill in this gap, in Section 6
we present a new construction of an ATS with short public keys and an efficient key distribution
protocol.
Security. Theorem 2 below reduces the security of PRATS to that of PRTS and ATS. For con-
creteness, in the statement of the theorem and its proof we assume that PRTS and ATS satisfy
uf-1 security. If either of them only satisfies uf-0 then essentially the same proof shows that PRATS
satisfies uf-0 security.

Theorem 2. For any adversary A there exist adversaries B1 and B2 such that for every set pp of
public parameters it holds that

Advuf-1∧acc-1
PRATS[pp](A) ≤ E · Advuf-1∧acc-1

ATS[pp] (B1) + Advuf-1
PRTS[pp](B2),

where E is a bound on the number of epochs requested by A in Guf-1∧acc-1
PRATS[pp].

The proof of Theorem 2 is presented in Appendix D.2.

6 An ATS with Short Public Key and Efficient DKG

In this section we present a new ATS construction with a short public key and an efficient distributed
key generation protocol. In conjunction with our generic construction from Section 5, this yields a
concretely-efficient ATS-PR construction.

Our scheme relies on the strong RSA assumption. It is instructive to present our scheme vis-a-
vis the ATS of Bellare and Neven [8], also relying on RSA. Loosely, their scheme fixes a “global”
exponent e. The secret key of signer i is then H(nonce, i)1/e and signing with respect to a subset
J of signers is done via proving knowledge of the e-th roots of all elements {H(nonce, j)}j∈J . As
observed by Bellare and Neven, this can be done efficiently using a multi-prover variant of the GQ
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protocol [38]. The problem in our setting, however, is that deriving the secret keys in their scheme
involves computing roots of random group element, thus requiring a trapdoor.5

Our construction. To address the aforesaid issue, we draw inspiration from cryptographic accu-
mulators (see [22] as well as [11, 15] and the many references therein). Instead of associating different
secret keys with roots of different group elements, we associate different keys with different roots of
the same group element. That is, the public key consists of one group element Y , and the secret key
of signer i is Y 1/ei for some exponent ei which is determinstically derived from the index i. As we will
show, a careful generalization of the GQ protocol allows a subset J of signers to collectively prove
knowledge of the

(∏
j∈J ej

)
-th root of Y , yielding an efficient ATS scheme. Moreover, we present

an efficient 1-round (i.e., non-interactive) distributed key generation protocol for this scheme.
In detail, our construction is parameterized by a group G in which the strong RSA problem is

conjectured to be hard. Possible instantiations include the group Z∗N relative to a bi-prime modulus
N , and class groups of imaginary quadratic fields. For each security parameter λ (implied by the
description of the group G) and integer n = poly(λ), we assume an efficiently-computable injective
mapping from [n] to primes greater than 2λ, and we denote by ei the prime corresponding to i ∈ [n].
The scheme makes use of two hash functions, treated as random oracles in the security proof. The
first, Hcom maps pairs of subsets of signers and group elements to λ-bit strings. The second, Hchal,
maps 4-tuples consisting of a message, a group element, a subset of signers, and an additional group
element, to exponents.

RSAATS[G]: An RSA-based ATS scheme

KGen(G, n, t):

1. For i = 1, . . . , n: Sample Xi ←$ G.
2. Compute X ←

∏n
i=1 Xi and Y ← X

∏n
i=1 ei .

3. For each i ∈ [n], set ski ← X
∏

j∈[n]\{i} ej (so that skeii = Y ).
4. Output (pk = (n, t, Y ), pkc = ⊥, (sk1, . . . , skn)).

Sign(ski, pk,J ,m):

1. First Round:
(a) Sample Zi ←$ G, and compute Ri ← Z

∏
j∈J ej

i .
(b) Compute ci ← Hcom(J , Ri).
(c) Send ci to each signer j ∈ J \ {i}.

2. Second Round:
(a) Upon receiving a message cj from each j ∈ J \ {i}, send Ri to all j ∈ J \ {i}.
(b) For each j ∈ J \ {i}: Upon receiving Rj from signer j, verify that cj = Hcom(J , Rj). If not, abort the

execution of the protocol.
(c) Set R←

∏
j∈J Rj .

3. Third Round:
(a) Set h← Hchal(m, pk,J , R).
(b) Compute Si ← skhi · Zi.
(c) Output (h, Si).

Combine(pkc, (σi1 , . . . , σik )):

1. Parse each σij as (hj , Sj) and set h← h1. If hj ̸= h for a j ∈ [k], output ⊥.

5 Alternatively, one can settle on a long public key Y1, . . . , Yn ∈ Gn, and letting the secret key of signer i be the e-th
root of Yi. Such keys can be generated without a trapdoor, but the long public key is problematic in our setting.

15



2. Let J = {i1, . . . , ik}, and compute S ←
∏

j∈[J ] Sj .
3. Output σ = (J , h, S).

Vf(pk,m, σ):

1. Parse pk as (n, t, Y ) and σ as (J , h, S).
2. Compute R← S

∏
i∈J ei/Y h·

∑
i∈J

∏
j∈J\{i} ej .

3. Compute h′ ← Hchal(m, pk,J , R).
4. Output 1 if h = h′ and |J | ≥ t. Otherewise, output 0.

Trace(pk,m, σ):

1. Parse σ as (J , h, S).
2. Output J .

Correctness. Observe that for an honestly generated signature (J , h, S) it holds that

S
∏

i∈J ei =
∏
j∈J

(
S
∏

i∈J ei
j

)
=
∏
j∈J

((
skhj · Zj

)∏
i∈J ei

)
=
∏
j∈J

(
sk

h·
∏

i∈J ei
j ·Rj

)
=
∏
j∈J

(
Y h·

∏
i∈J\{j} ei

)
·R.

Rearranging, this implies that

R =
S
∏

i∈J ei

Y h·
∑

i∈J
∏

j∈J\{i} ej
,

and the verification goes through.
Distributed key generation. The pubic and secret keys of RSAATS can be generated via a simple
distributed protocol. Recall that this is needed to instantiate ATS in the generic construction from
Section 5. Concretely, this is done by the following steps:

1. Each signer i ∈ [n] samples a uniformly random group element Xi ←$ G, computes Yi ← Xei
i ,

and sends Yi to all other signers.
2. Upon receiving Y1, . . . , Yn from the other signers, each signer sets the pubic key as pk ←∏

i∈[n] Y

∏
j∈[n]\{i} ej

i , and its secret key as

ski ← X

∏
j∈[n]\{i} ej

i ·
∏

k∈[n]\{i}

Y

∏
j∈[n]\{k,i} ej

k ∈ G.

Observe that if we denote X =
∏

j∈[n]Xj , then pk = X
∏

j∈[n] ej and ski = X
∏

j∈[n]\{i} ej . Hence, ski
is indeed the ei-th root of pk for each i. Looking ahead, our security reduction for RSAATS will
internally simulate precisely this key generation process, while planting a strong RSA challenge Y ∗

as one of the Yi’s and simulating the role of all other signers. Hence, it will readily prove the security
of the scheme when the key generation algorithm KGen is replaced by an honest execution of the
above distributed key generation protocol.
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Security. The security of RSAATS is proven based on the hardness of the strong RSA problem,
defined in Definition 5.

Definition 5. Let G be a group and let A be an algorithm. We define the advantage of A in solving
the strong RSA problem in G as

AdvsrsaG (A) def
=

[
Xe = Y ∧ e ̸∈ {−1, 1} :

Y ←$ G
(X, e)←$A(G, Y )

]
Theorem 3 below, whose proof can be found in Appendix D.3, reduces the security of RSAATS

to the hardness of the strong RSA problem.

Theorem 3. For any adversary A there exists an algorithm B such that

AdvsrsaG (B) ≥

(
Advuf-1∧acc-1

RSSATS[G](A)
)2

n2
max · (qsign + qchal)

−
q2sign + qsign · qcom + qsign · qchal + qsign

|G|

−
2q2com + 3qsign · qcom + q2sign

2λ
,

where nmax is a bound on the number of signers, and qsign, qchal, and qcom are bounds on the number
of queries issued by A to its signing oracle, to Hchal, and to Hcom, respectively.

On the necessity of strong RSA. We stress that though the security statement for our ATS
scheme relies on the strong RSA assumption, our proof actually reduces the security of the scheme
to a somewhat milder assumption. Concretely, the adversary that we construct in the reduction is
restricted to computing the eth root of a randomly sampled group element Y , where e has to be
chosen from a small set of pre-determined exponents {e1, . . . , en} (where n is the number of signers).
This should be contrasted with the strong RSA problem, in which the adversary is free to choose e
however it pleases.

7 Shorter Signatures From BLS and Schnorr

In this Section we present very practical ATS-PR schemes in cyclic groups and in bilinear groups,
building on Schnorr [56] and BLS [19] signatures, respectively. We start by providing an overview
of the main ideas behind these constructions.
Proactive secret sharing. Ostrovsky and Yung [52] and Herzberg et al. [40] described how to
proactively refresh Shamir’s t-out-of-n secret sharing scheme [57]. Recall that in Shamir’s scheme,
to share a secret s in some finite field F, the dealer samples a random polynomial f of degree t− 1
over F such that f(0) = s. The share xi of the ith party is then f(i). Any subset of parties of size
t can reconstruct the secret using Lagrange interpolation, while any t − 1 shares are statistically
independent of the secret s. To refresh, Ostrovsky and Yung and Herzberg et al. suggested the
following procedure; the parties jointly sample a new polynomial f ′ of degree t − 1 such that
f ′(0) = 0. Then, each party updates its share by x′i ← xi + f ′(i). Observe that regardless of the
number of share refreshes, the ith party’s share is always of the form xi + f ′′(i), where f ′′ is a
polynomial of degree t − 1 satisfying f ′′(0) = 0. Hence, by the linearity of Shamir’s secret sharing
scheme, the same reconstruction procedure still yields the correct secret s. At the same time, for
any number E of epochs, and any t− 1 shares (xeie1 , . . . , x

e
iet−1

) in each epoch e, the distribution over
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{(xeie1 , . . . , x
e
iet−1

)}e∈[E] is uniformly random in F(t−1)×E . Hence, an adversary observing t− 1 shares
of its choice in each epoch learns nothing about the secret s.

As observed in a follow-up work by Herzberg et al. [39], this proactive refresh naturally carries
over to discrete-log-based (non-accountable) threshold signature schemes in which the signers’ secret
keys form a t-out-of-n Shamir secret sharing of some “global” secret key x.

From secret sharing to ATS. At first, these techniques do not seem to extend to the ATS con-
structions based on Schnorr and BLS signatures (e.g., [17, 7, 14, 16, 51]). In such constructions, the
signers’ secret keys x1, . . . , xn are sampled independently in Zp, where p is the order of the under-
lying groups. Then, each subset J of signers is naturally associated with a distinct corresponding
signing key xJ =

∑
j∈J xj ∈ Zp. The corresponding public key gxJ can be computed from the

individual public keys gx1 , . . . , gxn by gJ =
∏

j∈J gxj , which enables accountability. However, if we
now try to refresh the keys by adding a secret sharing of 0, the sum

∑
j∈J x′j of the fresh keys will no

longer correspond to the public key gxJ , and the signing procedure will produce invalid signatures.
Instead, our approach is to associate to each subset J the secret key

xJ :=
∑
j∈J

λJj · xj ∈ Zp,

where λJj is the jth Lagrange coefficient used by the subset J to reconstruct the secret in Shamir’s
secret sharing scheme. Now, suppose that at the beginning of an epoch we refresh the secret keys
{xi}i∈[n] by setting x′i ← xi + δi ∈ Zp, where {δi}i∈[n] is a random t-out-of-n secret sharing of 0.
Then, for every subset J of size t, it holds that∑

j∈J
λJj x

′
j =

∑
j∈J

λJj (xj + δj) =
∑
j∈J

λJj xj = xJ .

Hence, the “collective” secret key xJ of the subset J remains unchanged from epoch to epoch,
despite the proactive refresh. We will see how to put this to use in a minute.

An attack on accountability. The schemes resulting from this idea only satisfy the weaker
acc-0 accountability property defined in Section 3. This seems inherent to this linear key update
mechanism. To see why, we describe an attack that shows that the schemes do not satisfy acc-1.
Consider the simple case of t = 3. In the first epoch, the adversary corrupts signers 1, 2 and 4,
to learn the keys x1, x2, x4 from which it computes λ

{1,2,4}
1 x1 + λ

{1,2,4}
2 x2 + λ

{1,2,4}
4 x4 (recall that

λJi is the coefficient of xi in the Shamir secret sharing reconstruction for subset J ). In the second
epoch, the adversary corrupts signers 1, 3 and 4, and obtains the refreshed keys x′1, x

′
3, x
′
4, from

which it computes λ
{1,3,4}
1 x′1 + λ

{1,3,4}
3 x′3 + λ

{1,3,4}
4 x′4. This linear combination of refreshed keys

is equal to the linear combination λ
{1,3,4}
1 x1 + λ

{1,3,4}
3 x3 + λ

{1,3,4}
4 x4 of the keys x1, x3, x4 in the

first epoch because this linear combination causes the refresh randomness δ1, δ3, δ4 to cancel (recall
that δ1, δ3, δ4 are shares in a 3-out-of-n secret sharing of zero). The adversary now has two linear
combinations of x1, x2, x3, x4 from which it can obtain a linear combination of x1, x2 and x3. In
epoch 3 the adversary corrupts signers {1, 2, 5} and in epoch 4 it corrupts signers {1, 3, 5}. This
gives another linear combination of x1, x2, x3. Finally, in epochs 5 and 6 the adversary corrupts
signers {1, 2, 6} and then {1, 3, 6} and this gives a third linear combination of x1, x2, x3. Now, the
adversary has a full rank linear system for x1, x2, x3 which lets it find all three keys. Thus, after six
epochs the adversary can sign any message of its choice on behalf of the set {1, 2, 3}, even though
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there was never an epoch in which the adversary simultaneously corrupted all three of these signers.
This shows that the resulting schemes do not satisfy acc-1. We will show that they satisfy acc-0.

Although the schemes in this section satisfy this weaker notion of accountability, they introduce
non-trivial efficiency gains. On the face of it, acc-0 can be achieved (in conjunction with unforge-
ability) by signing a message twice: Once with a (non-accountable) TS-PR scheme and once with a
(non-refreshable) ATS scheme, as discussed in Appendix A. However, the downside of this approach
is that it essentially doubles the length of signatures and the time to sign. In contrast, the schemes
that we present in this section preserve the length and performance of their underlying schemes:
Our BLS based scheme produces standard BLS signatures (consisting of just 1 group element), and
our Schnorr-based produce standard Schnorr signatures (not counting the encoding of the subset J
of signers, which, as discussed in the introduction, cannot be avoided).
Unforgeability: uf-0 vs. uf-1. The unforgeability notion we will prove for all of our constructions
in this section is uf-0, rather than uf-1. Restricting ourselves to uf-0 allows us to reduce the security
of our constructions to the security of their underlying basic signature scheme (BLS or Schnorr). In
contrast, as observed by Bellare et al. [6], proving uf-1 requires stronger “one-more”-type assumptions
(e.g., one-more discrete-log). Moreover, focusing on uf-0 security already captures our main ideas,
and extending the proofs to handle uf-1 can be done using the ideas from [6].

7.1 A BLS-Based ATS-PR Scheme

Our BLS-Based ATS with proactive refresh is parameterized by a bilinear group G which is a
tuple (G0,G1,GT , e, g0, g1, p), where G0,G1 are cyclic groups of order p generated by g0 and g1
respectively, and e is a non-degenerate bilinear map, mapping pairs in G0 ×G1 to GT . It relies on
the existence of a hash function H : M → G0, where M is the message space. We will implicitly
assume that the number n of signers is upper bounded by the order p of the group and that all
arithmetic is over Zp.

BLSPR[G]: A BLS-based ATS-PR scheme

KGen(G, n, t):

1. For i = 1, . . . , n: Sample xi ←$ Zp, set ski ← xi, and Xi ← gxi
1 ∈ G1.

2. Output
(
pk = (t,X1, . . . , Xn), pkc = ⊥, (sk1, . . . , skn)

)
.

Sign(ski,m):

1. Compute σi ← H(m)ski ∈ G0.
2. Output σi.

Combine(pkc, (σi1 , . . . , σi|J |)):

1. For j ∈ J : Compute λJ
j ←

∏
i∈J\{j}

i
i−j
∈ Zp.

2. Compute Y ←
∏

j∈J σ
λJ
j

j ∈ G0.

// observe that Y = H(m)xJ where xJ =
∑

j∈J λJ
j xj is the “collective” secret key of subset J .

3. Output σ = (J , Y ).

Vf(pk,m, σ):

1. Parse pk as (t,X1, . . . , Xn) and σ as (J , Y ).
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2. For j ∈ J : Compute λJ
j ←

∏
i∈J\{j}

i
i−j
∈ Zp.

3. Compute XJ ←
∏

j∈J X
λJ
j

j ∈ G1.

4. Output 1 if e(Y, g1) = e(H(m), XJ ) and |J | ≥ t. Else, output 0.

Trace(pk,m, σ):

1. Parse σ as (J , Y ).
2. Output J .

Update0(ski, pk):

// Signer i samples a random polynomial fi of degree t− 1 and such that fi(0) = 0 and sends fi(j) to signer j.

1. Parse pk as (t,X1, . . . , Xn).
2. Sample a1, . . . , at−1 ←$ Zp.
3. For j = 1, . . . , n: Compute δi,j ←

∑t−1
ℓ=1 aℓ · jℓ ∈ Zp.

4. Output (δi,1, . . . , δi,n),

Update1(skj , δ1,j , . . . , δn,j):

// Signer i adds f(i) to its secret key, where f = f1 + · · ·+ fn is a random polynomial of degree t− 1 satisfying f(0) = 0.

1. Compute sk′j ← skj +
∑n

i=1 δi,j ∈ Zp.
2. Output sk′j .

Correctness. The correctness of the scheme follows from the fact that in each epoch k, the secret
key of i is of the form ski = xi + δ

(k)
i , where the values {δ(k)1 , . . . , δ

(k)
n } form a Shamir t-out-of-n

secret sharing of 0. Hence, it holds that

e(Y, g1) = e(
∏
j∈J

σ
λJ
j

j , g1) = e(H(m), g1)
∑

j∈J λJ
j ·skj

= e(H(m), g1)
∑

j∈J λJ
j ·(xj+δ

(k)
j ) = e(H(m), g1)

∑
j∈J λJ

j ·xj

=
∏
j∈J

e(H(m), Xj)
λJ
j

= e(H(m),
∏
j∈J

X
λJ
j

j ).

This means that at every epoch, a signature generated by J , where |J | ≥ t, will be accepted.
Security. We now prove the unforgeability and accountability of our BLS-based scheme. Recall
that we consider a semi-adaptive variant of our unforgeability definition, in which for each epoch
the adversary is forced to issue all of its secret key queries prior to its signing queries. Theorem 4
below reduces the security of our scheme to the unforgeability of standard (single-signer) BLS
signatures. Unforgeability for single-signer signature schemes is captured as a special case of our
security definitions, by fixing the number n of signers (and the threshold t) to be 1, and the number
E of epochs to be 1. For an adversary B, we denote by AdvufBLS[G](B) its advantage in breaking the
unforgeabilty of BLS. We refer to [20, 19] for a definition of unforgeability of signature schemes,
and a description of the BLS signature scheme.

Theorem 4. Let G be a bilinear group. Then, for every adversary A there exists an adversary B
such that

Advsa-uf-0∧acc-0BLSPR[G] (A) ≤ 2nmax · AdvufBLS[G](B),
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where nmax is an upper bound on the number of signers in the game Guf-0∧acc-0
BLSPR[G] .

Roadmap. We prove Theorem 4 by proving unforgeability and accountability seperately. Let
BLSPR-1 denote a 1-epoch variant of our BLS-based ATS-PR scheme (obtained by fixing the num-
ber E of epochs to be 1). Unforgeability is then proven in two steps. First, Lemma 2 reduces the
unforgeability of BLSPR-1 to that of BLS. Then, in Lemma 3 we reduce the unforgeability of our
(multi-epoch) scheme to the 1-epoch variant.

Lemma 2. For every adversary A there exists an adversary B1 such that

Advsa-uf-0BLSPR-1[G](A) ≤ nmax · AdvufBLS[G](B1).

Lemma 3. For every adversary A there exists an adversary B2 such that

Advsa-uf-0BLSPR[G](A) ≤ Advsa-uf-0BLSPR-1[G](B2).

The proof of Lemma 2 is similar to the proof of unforgeability for aggregated BLS signatures (see
[19, 17, 20]) and is deferred to Appendix D.4. The proof of Lemma 3 can be found in Appendix D.5.
Accountability of BLSPR is stated in Lemma 4 below, whose proof is deferred to Appendix D.6.

Lemma 4. For every adversary A there exists an adversary B such that

Advsa-acc-0BLSPR[G](A) ≤ nmax · AdvufBLS[G](B).

By definition of the Gsa-uf-0∧acc-0
BLSPR[G] security game, Theorem 4 immediately follows from lemmas 2,

3, and 4.

7.2 A 3-Round Schnorr-Based ATS-PR Scheme

Our three-round Schnorr-Based ATS with proactive refresh builds on the recent (non-accountable)
threshold Schnorr scheme of Lindell [47]. We adapt the scheme to an ATS (making it accountable)
and show how to add a proactive refresh. We first simplify Lindell’s signing protocol: In his protocol,
when each signer sends a group element R, it also provides alongside it a non-interactive zero-
knowledge proof of knowledge for the discrete log of R. This is needed to prove simulation-based
security, but (as we prove) is unnecessary to satisfy our game-based definitions. Then, we augment
the protocol with a proactive refresh via the approach discussed at the beginning of this section.
At the end of the section we explain how a similar approach can add a proactive refresh to the
two-round Schnorr ATS schemes [51, 43, 25, 6].

Our ATS with proactive refresh is parameterized by a cyclic group G = ⟨g⟩ of order p, and a pair
of hash functions: Hcom mapping pairs of subsets of signers and group elements into λ-bit strings,
and Hchal mapping 4-tuples of the form (message, public key, signers subset, group element) into
elements in Zp. We will implicitly assume that the number n of signers is upper bounded by the
order p of the group, and that all finite field elements are in Zp.

Schnorr3-PR[G] A three-round Schnorr-based ATS-PR scheme

KGen(G, n, t):

1. For i = 1, . . . , n: Sample xi ←$ Zp, set ski ← xi, and Xi ← gxi ∈ G.
2. Output

(
pk = (t,X1, . . . , Xn), pkc = ⊥, (sk1, . . . , skn)

)
.

Sign(ski, pk,J ,m):
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– First Round:
1. Sample ri ←$ Zp, and compute Ri ← gri .
2. Compute ci ← Hcom(Ri).
3. Send msgi,1 ← ci to each signer j ∈ J \ {i}.

– Second Round:
1. Upon receiving a message cj from each j ∈ J \ {i}, send msgi,2 ← Ri to all j ∈ J \ {i}.

– Third Round:
1. For each j ∈ J \ {i}: Upon receiving Rj from signer j, verify that cj = Hcom(Rj). If not, abort.
2. Set R←

∏
j∈J Rj .

3. Set h← Hchal(m, pk,J , R) ∈ Zp.
4. Compute λJ

i ←
∏

j∈J\{i}
j

j−i
∈ Zp and si ← λJ

i · h · ski + ri ∈ Zp.
5. Output si.

Combine(pkc, {sj}j∈J ,J , R):

1. Upon receiving a message sj ∈ Zp from each j ∈ J \ {i},
compute s←

∑
j∈J sj ∈ Zp.

2. Output σ = (J , R, s).

// observe that s = h · xJ + r where xJ =
∑

j∈J λJ
j xj is the “collective” secret key of subset J and r =

∑
j∈J rj .

Vf(pk,m, σ):

1. Parse pk as (t,X1, . . . , Xn) and σ as (J , R, s).
2. Compute h← Hchal(m, pk,J , R) ∈ Zp.
3. For j ∈ J : Compute λJ

j ←
∏

i∈J\{j}
i

i−j
∈ Zp.

4. Output 1 if
(∏

j∈J X
λJ
j ·h

j

)
·R = gs and |J | ≥ t. Otherwise, output 0.

Trace(pk,m, σ):

1. Parse σ as (J , R, s).
2. Output J .

Update0(ski, pk):

// Signer i samples a random polynomial fi of degree t− 1 and such that fi(0) = 0 and sends fi(j) to signer j.

1. Parse pk as (t,X1, . . . , Xn).
2. Sample a1, . . . , at−1 ←$ Zp.
3. For j = 1, . . . , n: Compute δi,j ←

∑t−1
ℓ=1 aℓ · jℓ.

4. Output (δi,1, . . . , δi,n),

Update1(skj , δ1,j , . . . , δn,j):

// Signer i adds f(i) to its secret key, where f = f1 + · · · fn is a random polynomial of degree t− 1 satisfying f(0) = 0.

1. Compute sk′j = skj +
∑n

i=1 δi,j .
2. Output sk′j .

Correctness. The correctness of the scheme follows from the fact that, in each epoch k, the secret
key of signer i is of the form sk

(k)
i = xi + δ

(k)
i , where the values {δ(k)1 , . . . , δ

(k)
n } form a Shamir

t-out-of-n secret sharing of 0. Hence, using h← Hchal(m, pk,J , R), for any epoch k, it holds that,
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gs = g
∑

j∈J sj = g
∑

j∈J λJ
j ·h·sk

(k)
j +rj = g

∑
j∈J rj · g

∑
j∈J λJ

j ·h·(xj+δ
(k)
j )

=
∏
j∈J

Rj · g
∑

j∈J λJ
j ·h·xj · (g

∑
j∈J λJ

j ·δ
(k)
j )h

= R ·
∏
j∈J

(gxj )λ
J
j ·h · (g

∑
j∈J λJ

j ·δ
(k)
j )h

= R ·
∏
j∈J

X
λJ
j ·h

j · (g
∑

j∈J λJ
j ·δ

(k)
j )h

Since {δk1 , . . . , δkn} form a Shamir t-out-of-n secret sharing of 0, we can use Lagrange interpolation
over all j ∈ J (where |J | = t) to get: ∑

j∈J
λj · δ(k)j = 0.

Combining this with the previous equation, we get,

gs = R ·
∏
j∈J

X
λJ
j ·h

j · (g
∑

j∈J λj ·δ
(k)
j )h = R ·

∏
j∈J

X
λJ
j ·h

j · (g0)h = R ·
∏
j∈J

X
λJ
j ·h

j

This proves that signatures produced in all epochs are correct.
Security. We now prove the unforgeability and accountability of this scheme for semi-adaptive
adversaries. Theorem 5 reduces the security of our scheme to the unforgeability of standard (single-
signer) Schnorr signatures.

Theorem 5. Let G be a cyclic group of order p. Then, for any adversary A, there exists an adver-
sary B such that

Advsa-uf-0∧acc-0Schnorr3-PR[G](A) ≤ 3nmax ·
(
AdvufSchnorr[G](B) +

q2S + qSqH
p

+
2q2C
2λ

+
qS
|M|

)
where nmax is a bound on the number of signers, M is the message space, and qS, qH , and qC are
bounds on the number of signature queries, Hchal queries, and Hcom queries issued by A.

The proof for Theorem 5 follows a similar road map to the security proof of our BLS-based
construction, and can be found in Appendix D.7.
From 3 to 2 rounds Schnorr. We believe that our 3-rounds Schnorr-based ATS-PR scheme can
be compressed into a 2-rounds scheme using ideas from the recently-proposed multisignature scheme
MuSig2 [51] (see also [43]). In detail, MuSig2 gets rid of the first commitment round (in which signer
i commits to Ri using a random oracle) by introducing additional randomness into the protocol. In
their scheme, each signers sends 4 random Ri,1 ← gri,1 , . . . , Ri,4 ← gri,4 group elements instead of
one. The “collective” R is then computed as R ← R1 · Rα

2 · Rα2

3 · Rα3

4 , where Ri ←
∏

j∈J Rj,i and
α← H(pk, R1, . . . , R4,m) for a random oracle H. In the second round, each signer i sends the sum
si ← xi · h +

∑4
j=1 α

j−1 · ri,j . The aggregate signature is then (R, s) for s =
∑

i∈J si; this can be
verified as standard Schnorr signatures.

We believe that our 3-round scheme depicted above can be transformed into a 2-round scheme
by relying on the same ideas. We leave the task of formally defining the resulting scheme and proving
its security as an interesting question for future work.
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8 Discussion and Extensions

In this section we explore several extensions and directions for future work.

Corruptions during key updates. In our security games, the adversary is oblivious to the key
update process. It is reasonable to consider a strengthening in which the adversary can observe,
and even control, some key-related information during key updates. We discuss this issue in detail
in Appendix B, and give a brief overview here.

First, consider an adversary that is given the entire transcript of the key update protocol (that
is, all messages δi,j produced by the parties using Update0). Our discussion in Section 6 shows that
the generic scheme from Section 5 remains secure under this strengthening. The situation is a bit
more involved for the constructions in Section 7. There, exposing the adversary to the δi,j values by
which the secret keys are shifted will render the key update useless. However, this is easily remedied
by having the parties privately send their update messages (i.e., δi,j sent from party i to party j is
encrypted using party j’s public key). Then, security is maintained even if the adversary learns the
update messages sent to at most t− 1 parties in each key update, assuming that parties corrupted
during an update protocol are “counted” as corrupted in both the previous and the subsequent
epochs.

To see why the constructions in Section 7 remain secure in this setting, first consider a scenario
in which the adversary corrupts at most t − 2 parties during a key update. In this case, by the
security of Shamir secret sharing, the δi,j values sent from honest to corrupted parties are just
uniformly-random field elements in the view of the adversary. In particular, they are statistically
independent of the values sent from honest parties to the other parties. Hence, since there is at least
one uncorrupted party, each honest party adds to its secret key a value that is uniformly random
in the view of the adversary. Now, if there are t − 1 corruptions during the key update, then it is
true that the adversary can completely reconstruct the values that all parties add to their secret
keys, since it also knows that they are induced by a polynomial whose free coefficient is 0. However,
this does not pose a problem, since all of these t − 1 corruptions are counted towards both the
previous and subsequent epochs. Thus, the adversarial “budget” for these epochs is exhausted and
no more parties can be corrupted within them. This means that the adversary can calculate that
some uncorrupted party i updated its secret key by a value δ, but this information is useless without
some knowledge about the secret key ski in either of the previous or subsequent epochs.

Observe that the above discussion holds just the same, even if the adversary can choose the
randomness of the parties that it corrupts during the update. In Appendix B we present formal
definitions capturing security in this setting.

An even stronger security notion might allow the adversary to fully control the update messages
of the (up to t−1) currently corrupted parties. In Appendix B.2 we formally define notions of security
in the presence of such an active adversary. Then in Appendix B.3 We present a general compiler
that takes any ATS-PR scheme which is secure against semi-honest corruptions during updates, and
lifts it using MPC techniques into a scheme that is secure against malicious corruptions during key
updates.

One can also consider more efficient techniques to immunize our specific schemes against mali-
cious corruptions during updates. Our constructions from Section 7 readily extend to this setting by
replacing the secret sharing step during key updates with a verifiable t-out-of-N linear secret sharing
scheme (e.g., using Feldman’s protocol [30, 40, 39]). As for the scheme obtained by combining our
constructions from Sections 5 and 6, adopting a commit-and-open approach might be sufficient. We
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leave the task of exploring these more optimized techniques as an interesting direction for future
work.
Distributed and local key generation. Our definitions and constructions are in a setting where
key generation is carried out by a central key generation algorithm. When the set of potential sign-
ers is a-priori known, a possible extension which has been considered in closely-related scenarios,
is to replace this algorithm with a distributed key-generation protocol. In our constructions from
Section 7, the (honestly-generated) secret keys are completely independent. Hence, for these con-
structions, one might even consider a scenario in which the set of potential signers need not be
a-priori fixed, and signers can join and locally generate their own key material over time.

An interesting direction for future research is generalizing our security notions to accommodate
both of the above extensions, and adjusting our constructions to these settings. Note that this will
require in particular employing mechanisms to fence of rouge key attacks, in which the adversary
maliciously chooses the keys of corrupted parties based on what it knows about the keys of hon-
est parties. In the simpler case where the identity of potential signers is known in advance, such
mechanisms can be incorporated already in the distributed key generation protocol. In the setting
where keys are locally and non-interactively generated by the parties, the signing protocols need to
be adjusted to disallow such attacks. For more information on rogue key attacks and how to protect
against them, see [49, 17, 14, 7, 16, 51] and the references therein.
Confirmation vs. tracing. In real-world settings it may be sufficient to use a confirmation al-
gorithm instead of a tracing algorithm. A confirmation algorithm takes as input a rogue signature
and a suspect quorum and outputs “yes” if the suspect quorum is the one that generated the given
signature. This can lead to shorter accountable signatures because now it suffices to embed a com-
mitment to the signing quorum in the signature, rather than explicitly encode the signing quorum
in the signature.
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A A Separation Between acc-0 and acc-1

In Section 3.2 we defined two notions of accountability acc-0 and acc-1. In this section, we give an
example that separates these two notions. We do so by presenting a simple ATS-PR construction
that satisfies our acc-0 definition, but is not acc-1. The construction makes use of the following two
building blocks:

– a threshold signature scheme with proactive refresh PRTS that need not be accountable, and
– an accountable threshold signature scheme ATS that need not support a proactive refresh.

Both can be constructed directly from Schnorr or BLS threshold signatures.
The proposed ATS-PR construction simply signs every message twice: once with ATS and once

with PRTS. The complete scheme, called PRATS2, is presented in Figure 2. The public key is the
concatenation of an ATS public key and a PRTS public key. Each party’s secret key is made up
of a secret key to each of the schemes. To sign a message, the signers sign it twice – once using
the accountable scheme ATS, and once using the non-accountable scheme PRTS. Verification checks
that both signatures are valid. The main point is that to refresh the keys, the parties refresh their
PRTS keys, leaving their ATS keys unchanged.
Correctness. Correctness of PRATS2 follows directly from the correctness of the two underlying
schemes PRTS and ATS.
Security. The scheme clearly inherits the same notion of unforgeability (uf-0 or uf-1) as the un-
derlying PRTS scheme. We next study its accountability properties. We show in Theorem 6 that
PRATS2 is acc-0 if the (non-refreshable) ATS scheme is accountable. Recall that a non-refreshable
ATS scheme is accountable if it satisfies our acc-0 definition when there is only one epoch. We then
show in Theorem 7 that PRATS2 does not satisfy acc-1. This separation shows that acc-0 is much
easier to achieve than acc-1. We also note that our practical acc-0 schemes in Section 7 are much
more efficient than the generic PRATS2 construction in Figure 2.

Theorem 6. PRATS2 is acc-0 secure assuming ATS is acc-0 secure. In particular, for every adver-
sary A, there exists another adversary B, such that for every set pp of public parameters it holds
that

Advacc-0
PRATS2[pp]

(A) = Advacc-0
ATS[pp](B),

Proof. Consider the following adversary B playing the game Gacc-1
ATS[pp]. B invokes A(pp) and simulates

Gacc-0
PRATS2[pp]

as follows:

1. Receive (n, t, E) from A. Forward (n, t) to the challenger in Gacc-1
ATS[pp].

2. Receive ATS.pk∗ from the challenger in Gacc-1
ATS[pp].

Sample (PRTS.pk,PRTS.pkc, (PRTS.sk11, . . . ,PRTS.sk
1
n))←$ PRTS.KGen(n, t) and send the pub-

lic key PRATS2.pk = (n, t,PRTS.pk,ATS.pk∗) to A.
3. For e ∈ 2, .., E, run (PRTS.ske1, . . . ,PRTS.sk

e
n)← PRTS.Update(PRTS.pk, {PRTS.ske−1i }i∈[n]).

4. Answer A’s signing and secret key queries as follows:
– skO(e, i) : B forwards the query skO(i) to its challenger and gets the response ATS.ski. Then
B sends (PRTS.skei ,ATS.ski) to A.

– SignO(m, e, i) : B forwards the query SignO(m, i) to its challenger and gets back sacc
i . It then

runs spr
i ← PRTS.Sign(PRTS.skei ,m) and sends (sacc

i , spr
i ) to A.
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PRATS2: A simple ATS with proactive refresh

PRATS2.KGen(pp, n, t):

1. Sample (PRTS.pk, PRTS.pkc, (PRTS.sk1, . . . ,PRTS.skn))←$ PRTS.KGen(pp, n, t).
2. Sample (ATS.pk, ATS.pkc, (ATS.sk1, . . . ,ATS.skn))←$ ATS.KGen(pp, n, t).
3. For i = 1, . . . , n set ski ← (PRTS.ski,ATS.ski).
4. Output (pk = (n, t,PRTS.pk,ATS.pk), pkc = (ATS.pkc,PRTS.pkc), (sk1, . . . , skn)).

PRATS2.Sign(ski,m):

1. Parse ski as (PRTS.ski,ATS.ski).
2. Invoke ATS.Sign(ATS.ski,m) and PRTS.Sign(PRTS.ski,m) and let sacc, spr denote the outputs respectively.
3. Output si ← (sacc, spr).

PRATS2.Combine(pkc, {si}i∈J ):

1. Parse pkc as ATS.pkc,PRTS.pkc and each si as (sacc
i , sacc

i ) for i ∈ J .
2. Invoke σacc ← ATS.Combine(ATS.pkc, {sacc

i }i∈J ) and σpr ← PRTS.Combine(PRTS.pkc, {spr
i }i∈J ).

3. Output σ ← (σacc, σpr).

PRATS2.Vf(pk,m, σ):

1. Parse pk as (n, t,PRTS.pk,ATS.pk) and σ as (σacc, σpr).
2. Output 1 if PRTS.Vf(PRTS.pk,m, σpr) and ATS.Vf(ATS.pk,m, σacc). Otherwise, output 0.

PRATS2.Trace(pk,m, σ):

1. Parse σ as (σacc, σpr) and pk as (n, t,PRTS.pk,ATS.pk).
2. Verify that PRATS2.Vf(pk,m, σ) = 1 and otherwise, output ⊥.
3. Output J ← ATS.Trace(ATS.pk,m, σacc).

PRATS2.Update(ski, pk):

1. Parse ski as (PRTS.ski,ATS.ski) and pk as (n, t,PRTS.pk,ATS.pk).
2. Run PRTS.Update(PRTS.ski,PRTS.pk) and let PRTS.sk′i be the output of signer i.
3. Output sk′i ← (PRTS.sk′i,ATS.ski).

Fig. 2. The ATS-PR PRATS2
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5. Finally B receives a forgery (m∗, σ∗) from A where σ∗ = (σ∗acc, σ
∗
pr). Our B outputs (m∗, σ∗acc).

Observe that whenever the output of the simulated Gacc-0
PRATS2[pp]

game is 1, the forgery outputted
by A is a valid one, and in particular σ∗acc is a valid ATS signature on m∗ with respect to ATS.pk∗.
Hence, the forgery output by B is a valid ATS message-signature pair with respect to ATS.pk∗.

Next, since (m∗, σ∗) is a valid acc-0 forgery with respect to PRATS2, there exists an index i∗

in PRATS2.Trace(pk,m
∗, σ∗), but i∗ is not in ∪e∈[E]

(
Qsk

e ∪Qsig
e (m∗)

)
. This means that i∗ is in

ATS.Trace(ATS.pk,m∗, σ∗acc), but B never forwards any query of the form skO(i∗) or SignO(m∗, i∗)
to its challenger. Hence, B produces a valid acc-0 forgery for the ATS scheme. ⊓⊔

Theorem 7. The construction PRATS2 is not acc-1 secure. In particular, there is a PPT adversary
A such that

Advacc-1
PRATS[pp](A) = 1.

Proof. We construct A as follows. A chooses some 0 < t < n and sets the number of epochs E to
E = 2. Next, A chooses an arbitrary message m∗, and in the first epoch, asks signers 1, . . . , t for
their signature shares on m∗. In the second epoch, A asks signer t+1 for its signature share on m∗.
It then constructs the signature forgery σ∗ = (σ∗acc, σ

∗
pr) as follows:

– A calls PRTS.Combine on the t partial PRTS signatures it obtained in the first epoch, to get a
valid PRTS signature on m∗.

– Since ATS is not refreshed across epochs, A calls ATS.Combine on t − 1 ATS signature shares
from the first epoch, say shares 2, . . . , t, along with the single signature share from the second
epoch. This gives A a valid ATS sign on m∗, combined over the set of signers {2, . . . , t, t+ 1}.

Hence, A obtains a valid PRATS2 signature: verification succeeds for both halves of the signature σ∗.
Now, PRATS2.Trace(m

∗, σ∗) calls ATS.Trace(m∗, σ∗acc) which returns the set {2, . . . , t, t + 1}. This
set is not a subset of Qsk

e ∪ Qsig
e (m∗) for either one of the two epochs e = 1 or e = 2. Therefore,

(m∗, σ∗) is a valid acc-1 forgery. ⊓⊔

B Handling Malicious Corruptions During Key Refreshes

In this section, we generalize our security definitions from Section 3.2 to capture malicious corrup-
tions during key updates. We then present a generic compiler that lifts a construction from the
semi-honest updates setting to the malicious updates setting.
The communication model. Following previous works that considered malicious corruptions
during key updates [52, 40, 39, 32, 31, 54, 5, 33, 21, 2, 42, 24, 44], we assume that all signers are
connected by an authenticated and synchronous broadcast channel. As observed, for example, by
[24], the use of authenticated communication is necessary for obtaining proactive security. In the
absence of authenticated communication, an adversary that formally “left” a previously corrupted
party and controls all the communication between that party and the rest of the network can
continue to impersonate that party indefinitely.

We assume for simplicity that all communication is public, and every message that is sent will
be received by all parties in the next round, or not at all. Note that secret point-to-point channels
can still be emulated by encrypting messages to their intended receivers. In more detail, at the
beginning of the update protocol, each party i samples a fresh key pair (eki, dki) for a semantically-
secure public-key encryption scheme, to be used solely during this execution of the update protocol.
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They then broadcast the encryption key eki to all other parties. When party j wishes to send
a private message to i, it simply encrypts it under eki and broadcasts the ciphertext. Note that
semantic security is sufficient because the broadcast channel is authenticated.
Updated syntax for Update0. We need to slightly change the syntax of the update protocol from
Section 3 to accommodate the fact that all communication is now done via a broadcast channel. The
update protocol is still specified by a pair (Update0,Update1) of algorithms that are defined as in
Section 3 except that now, Update0 outputs a single update message δei . Each signer i broadcasts δei
to all other signers, and each signer computes their new secret key by invoking Update1 on skei and
δe1, . . . , δ

e
n. As explained in the previous paragraph, point-to-point communication is still possible

with appropriate use of encryption.

B.1 Security in the Face of Semi-Honest Corruptions

Before presenting our security definition that accommodates maliciously corrupting parties during
updates, we first present an intermediate definition that considers semi-honest corruptions during
key updates. By semi-honestly corrupting a subset of the parties during the update protocol, the
adversary learns their secret state, and can determine their randomness for the update protocol (that
is, their randomness for Update0, which without loss of generality is the only randomized algorithm
specifying the update protocol). Note that if the update protocol uses private communication via
the use of public-key encryption as described above, then this allows the adversary to know their
decryption keys and hence observe all (decrypted) incoming communication to these parties.

The security definitions of unforgeability and accountability in the face of semi-honest corrup-
tions during updates are a natural generalization of the definitions found in Section 3. The difference
is this – recall that in our earlier definitions, the challenger honestly generated the secret signing
keys of all signers for all epochs in the beginning of the game. Instead, we now provide the adversary
with an additional oracle for incrementing the current epoch, while choosing a subset C of signers
to corrupt during the key update and choosing their random coins for the update protocol. The
challenger then emulates the update protocol conditioned on these random coins, resulting in secrets
for the next epoch and a transcript for the protocol. The latter is given to the adversary.

As typical in the setting of proactive security, we treat all signers in C as corrupted for both the
preceding and subsequent epochs. This is necessary since, given their secret key from the previous
epoch, their randomness for the update protocol, and the transcript of the update protocol, the
adversary can compute their secret key for the subsequent epoch. To make sure that signers in C
are “counted” as corrupted in the preceding epoch, we enforce that the adversary has asked for the
secret keys of all signers in C before it queries the update oracle on C. Note that this does not
restrict the power of the adversary since they can always request the secret keys of all signers in C
before querying the new update oracle. Finally, the signers in C are “marked” as corrupted for the
subsequent epoch as well.

The security games capturing this updated definition are presented in Fig. 3. For simplicity
of presentation, the games in Fig. 3 consider only non-interactive updates (per the syntax from
Section 3), but they naturally generalize to consider interactive update protocols as well.

Observe that our constructions remain secure even in the face of semi-honest corruptions, with
essentially the same proofs of security. We discuss this fact in more detail in Section 8.

Allowing for skewed randomness. Note that our notion of semi-honest security gives more leeway to
the adversary than what is typical when considering semi-honest security: It allows the adversary
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Games Gshu,uf-b
PRATS[pp],G

shu,acc-b′

PRATS[pp] ,G
shu,uf-b∧acc-b′

PRATS[pp]

1 : flagshu,uf-0, flagshu,uf-1, flagshu,acc-0, flagshu,acc-1 ← 0

2 : (st, n, t, E)← A(pp)

3 : (pk, pkc, sk11, . . . , sk
1
n)←$ KGen(pp, n, t)

4 : ecurr ← 1 // the current epoch number

5 : for e ∈ [E] ∧ x ∈ [n] ∧ y ∈ [n] do

6 : δex,y,0 ← ⊥, δex,y,1 ← ⊥

7 : (m∗, σ∗)←$AskO(·,·),SignO(·,·,·),UpdateO(·,·)(st, pk, pkc)

8 : if Vf(pk,m∗, σ∗) = 0 then

9 : return 0

10 : if ∀e ∈ [E], |Qsk
e | < t ∧ |Qsig

e (m∗)| = 0 then flagshu,uf-0 ← 1

11 : if ∀e ∈ [E], |Qsk
e ∪Qsig

e (m∗)| < t then flagshu,uf-1 ← 1

12 : if Trace(pk,m∗, σ∗) ̸⊆ ∪e∈[E]

(
Qsk

e ∪Qsig
e (m∗)

)
then flagshu,acc-0 ← 1

13 : if ∀e ∈ [E],Trace(pk,m∗, σ∗) ̸⊆ Qsk
e ∪Qsig

e (m∗) then flagshu,acc-1 ← 1

14 : Only game Gshu,uf-b
PRATS[pp] : return flagshu,uf-b

15 : Only game Gshu,acc-b
PRATS[pp] : return flagshu,acc-b

16 : Only game Gshu,uf-b∧acc-b′

PRATS[pp] : return flagshu,uf-b ∨ flagshu,acc-b′

Oracle skO(e, i)

1 : if e > ecurr then

2 : return ⊥

3 : Qsk
e ← Qsk

e ∪ {i}
4 : return skei

Oracle SignO(m, e, i)

1 : if e > ecurr then

2 : return ⊥
3 : σi ← Sign(skei ,m)

4 : Qsig
e (m)← Qsig

e (m) ∪ {i}
5 : return σi

Oracle UpdateO(C, {ri}i∈C)

1 : if C ̸⊆ Qsk
ecurr ∨ ecurr = E then

2 : return ⊥
3 : for i ∈ C do

4 : δi ← Update0(pk, sk
ecurr
i ; ri)

5 : for i ∈ [n] \ C do

6 : δi ←$ Update0(pk, sk
ecurr
i )

7 : for i ∈ [n] do

8 : skecurr+1
i ← Update1(sk

ecurr
i , {δj}j∈[n])

9 : ecurr ← ecurr + 1

10 : Qsk
ecurr ← Qsk

ecurr ∪ C

11 : return {δj}j∈[n]\C

Fig. 3. The security games Gshu,uf-b
PRATS[pp],G

shu,acc-b′

PRATS[pp] ,G
shu,uf-b∧acc-b′

PRATS[pp] for b, b′, b′′ ∈ {0, 1} for an ATS-PR scheme PRATS =

(KGen, Sign,Combine,Vf,Trace,Update) with public parameters pp. For a set X and an element x, we let X ← X ∪{x}
be a shorthand for the following operation: If X was previously defined, then set X ← X ∪{x}; if X is still undefined,
then set X = {x}.
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to maliciously choose the randomness used to generate its messages during the protocol. Typically,
semi-honest adversaries are assumed to honestly sample their randomness. We choose to define semi-
honest security this way since it enables us to use a simpler and more efficient compiler to handle
malicious corruptions (starting from a more secure protocol means less work for the compiler).
We can do that since our bare-bones protocols remain secure even under this stronger notion of
semi-honest security. It is worth mentioning, though, that the compiler can be augmented to handle
protocols that assume the adversary also honestly samples the randomness for corrupted parties
using standard techniques [34, 35].

B.2 Maliciously-Corrupted Updates

We now define security in settings where the adversary can maliciously corrupt signers during key
updates.

Two-round key updates. The syntax from Section 3 considered non-interactive updates. Looking
ahead, our generic compiler will add one round of interaction to the key update protocol. Hence, in
our security definitions considering maliciously-corrupted updates, we restrict ourselves to two-round
update protocols. However, our definitions readily extend to capture arbitrary update protocols with
more rounds.

Concretely, a two-round update protocol is specified by a tuple of three algorithms, Update =
(Update0,Update1,Update2):

– Update0(sk
e
i , pk)→ (sti,0, δ

e
i,0) is a randomized algorithm that takes in a secret key skei of signer i

in epoch e and the public key pk, and outputs a state sti,0 and a first message δei,0. Each signer i
broadcasts δei,0 to all other signers.

– Update1
(
sti,0, {δei,0}i∈[n]

)
→ (sti,1, δ

e
i,1) is a deterministic algorithm, that takes in a state sti,0

and n update messages δe1,0, . . . , δ
e
n,0, and outputs an updated state sti,1 and a second message

δei,1. Each signer i broadcasts δei,1 to all other signers. Note that a randomized Update1 can be
always made deterministic by including its randomness as part of sti,0.

– Update2
(
sti,1, {δei,1}i∈[n]

)
→ ske+1

i is a deterministic algorithm that takes in a state sti,1 and n

update messages δe1,1, . . . , δen,1. It outputs an updated secret key ske+1
i for epoch e+1 for signer i.

The definitions of correctness and trace correctness are straightforward generalizations of the
definitions found in Section 3, and are obtained by replacing the honest executions of the non-
interactive update protocol with honest executions of the two-round update protocol.

Security. Unforgeability and accountability in the face of malicious corruptions during key updates
are defined through the security games in Fig. 4. These games are obtained by endowing the ad-
versary with the ability to arbitrarily choose the messages of corrupted parties during the update
protocol. We assume the adversary is rushing; that is, in each round, they can choose the messages
of corrupted parties after observing the messages of the honest parties for that round.

Concretely, the security games in Fig. 4 are obtained by augmenting the semi-honest corruption
security games with oracles that allow the adversary to observe the messages of honest parties and
then choose the message of the corrupted parties in a round-by-round manner.

The following definition extends the notion of adversarial advantage to the setting where the
adversary can corrupt signers during key updates, either semi-honestly or maliciously. The relevant
games are defined in Figures 3 and 4.
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Definition 6. Let PRATS = (KGen,Sign,Combine,Vf,Trace,Update) be an ATS-PR scheme with
public parameters pp, let type ∈ {shu,mu}, and let prop ∈ {uf-b, acc-b′, uf-b ∧ acc-b′}b,b′∈{0,1}. The
advantage of an adversary A in Gtype,prop

PRATS[pp] is defined as

Advtype,propPRATS[pp](A)
def
= Pr

[
Gtype,prop

PRATS[pp](A) = 1
]
.

Detecting deviation. We assume that whenever an honest party detects a deviation from the protocol
during the update protocol, it updates its secret key to ⊥. Hence, in this case, the output of the
security game is 0. The question of what to do upon such a detection may depend on the system
within which the ATS-PR scheme is used, and is orthogonal to this work. However, looking ahead,
it is worth mentioning that our compiler will enjoy the property that if one honest party identifies
another party as malicious, then so do all other honest parties.

B.3 The General Compiler: Construction & Security

We now present the general compiler. The compiler transforms any ATS-PR scheme that is secure
facing semi-honest corruptions during updates into a scheme which is secure against malicious
corruptions. The compiler is based on two building blocks: A commitment scheme and a zero-
knowledge proof system. We briefly present our requirements of these primitives here. For readability,
we defer the formal definitions to the end of this appendix. Concretely, our compiler makes use of:

1. An extractable statistically-binding non-interactive commitment scheme [23, 50, 1] COM =
(COM.Setup,COM.Commit,COM.Verify,COM.Ext). That is, with overwhelming probability over
the choice of crsCOM ←$ COM.Setup, there are no values com,m,m′, decom, decom′ such that
m ̸= m′, COM.Verify(crsCOM, com,m, decom) = 1 and COM.Verify(crsCOM, com,m′, decom′) = 1.
By “extractable”, we mean that it is possible to generate a CRS for COM in a way that endows
the generator with a trapdoor. Knowledge of this trapdoor can be used in order to extract
committed values.

2. A non-interactive zero-knowledge proof system [13, 12, 29, 55, 26, 46, 36, 37] NIZK = (NIZK.Setup,
NIZK.P,NIZK.V) for the language L = {Lλ}λ∈N defined as:

Lλ =

(pp, crsCOM, pk, com, δ) :
∃(sk, r, decom) s.t.

COM.Verify(crsCOM, com, decom, (sk, r)) = 1 and
δ = SHU-ATS-PR.Update0(sk, pk; r)

 .

We require that the scheme provides adaptive zero knowledge and simulation soundness. Adap-
tive zero knowledge states that zero-knowledge should be preserved even for (true) statements
that are chosen as a function of the common reference string. Informally speaking, simulation
soundness guarantees that a prover cannot produce a valid proof for a false statement, even after
observing many simulated proofs (on statements of their choice).
Note that even though our ATS-PR constructions are in the random-oracle model, our update
protocols (and in particular, our constructions for the Update0 algorithm) are not. Hence, the
language L is indeed in NP.

The compiler takes in an ATS-PR scheme SHU-ATS-PR[pp] that is secure against semi-honest
updates. It builds an ATS-PR secure against malicious updates by utilizing the ideas behind the
GMW compiler [34, 35]. At the beginning of each update protocol, all signers commit to their current
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Games Gmu,uf-b
PRATS[pp],G

mu,acc-b′

PRATS[pp],G
mu,uf-b∧acc-b′

PRATS[pp]

1 : flagmu,uf-0, flagmu,uf-1, flagmu,acc-0, flagmu,acc-1flagdetected ← 0

2 : (st, n, t, E)← A(pp)

3 : (pk, pkc, sk11, . . . , sk
1
n)←$ KGen(pp, n, t)

4 : ecurr ← 1 // the current epoch number

5 : ind-upd← 0

6 : for e ∈ [E] ∧ x ∈ [n] ∧ y ∈ [n] do

7 : δex,y,0 ← ⊥, δex,y,1 ← ⊥

8 : (m∗, σ∗)←$AskO(·,·),SignO(·,·,·),UpdateO0(·),UpdateO1(·,·),UpdateO2(·,·)(st, pk, pkc)

9 : if Vf(pk,m∗, σ∗) = 0 then return 0

10 : if flagdetected = 1 then return 0

11 : if ∀e ∈ [E], |Qsk
e | < t ∧ |Qsig

e (m∗)| = 0 then flagmu,uf-0 ← 1

12 : if ∀e ∈ [E], |Qsk
e ∪Qsig

e (m∗)| < t then flagmu,uf-1 ← 1

13 : if Trace(pk,m∗, σ∗) ̸⊆ ∪e∈[E]

(
Qsk

e ∪Qsig
e (m∗)

)
then flagmu,acc-0 ← 1

14 : if ∀e ∈ [E],Trace(pk,m∗, σ∗) ̸⊆ Qsk
e ∪Qsig

e (m∗) then flagmu,acc-1 ← 1

15 : Only game Gmu,uf-b
PRATS[pp] : return flagmu,uf-b

16 : Only game Gmu,acc-b
PRATS[pp] : return flagmu,acc-b

17 : Only game Gmu,uf-b∧acc-b′

PRATS[pp] : return flagmu,uf-b ∨ flagmu,acc-b′

Oracle skO(e, i)

1 : if e > ecurr then

2 : return ⊥

3 : Qsk
e ← Qsk

e ∪ {i}
4 : return skei

Oracle SignO(m, e, i)

1 : if e > ecurr then

2 : return ⊥
3 : σi ← Sign(skei ,m)

4 : Qsig
e (m)← Qsig

e (m) ∪ {i}
5 : return σi

Oracle UpdateO0(C)

1 : if C ̸⊆ Qsk
ecurr ∨ ecurr = E ∨ ind-upd ̸= 0 then

2 : return ⊥
3 : ind-upd← 1

4 : for i ∈ [n] \ C do

5 : (stecurr
i,0 , δecurr

i,0 )←$ Update0(pk, sk
ecurr
i )

6 : return {δecurr
i,0 }i∈[n]\C

Oracle UpdateO1({δ
ecurr
i,0 }i∈C)

1 : if ind-upd ̸= 1 then

2 : return ⊥
3 : ind-upd← 2

4 : for i ∈ [n] \ C do

5 : (stecurr
i,1 , δecurr

i,1 )←$ Update1(st
ecurr
i,0 , {δecurr

j,0 }j∈[n])

6 : return {δecurr
i,1 }i∈[n]\C

Oracle UpdateO2({δ
ecurr
i,1 }i∈C)

1 : if ind-upd ̸= 2 then

2 : return ⊥
3 : for i ∈ [n] do

4 : skecurr+1
i ← Update2(st

ecurr
i,1 , {δecurr

j,1 }j∈[n])

5 : if skecurr+1
i = ⊥ then flagdetected ← 1

6 : ecurr ← ecurr + 1

7 : Qsk
ecurr ← Qsk

ecurr ∪ C

8 : ind-upd← 0

Fig. 4. The security games Gmu,uf-b
PRATS[pp],G

mu,acc-b′

PRATS[pp],G
mu,uf-b∧acc-b′

PRATS[pp] for b, b′, b′′ ∈ {0, 1} for an ATS-PR scheme PRATS =

(KGen, Sign,Combine,Vf,Trace,Update) with public parameters pp.
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secret key and the randomness to be used during the update protocol. Then, they append to each
message sent during the protocol a NIZK proof certifying that this message is indeed consistent with
the committed values and previously-transmitted messages. The compiled scheme MU-ATS-PR[pp]
is defined below. We specify only the KGen algorithm and Update protocol, since all other algorithms
remain unchanged.

MU-ATS-PR[pp]: An ATS-PR scheme supporting malicious updates

KGen(pp, n, t):

1. Invoke (pk′, pkc, (sk1, . . . , skn))←$ SHU-ATS-PR.KGen(pp, n, t).
2. Sample crsCOM ←$ COM.Setup(1λ) and crsNIZK ←$ NIZK.Setup(1λ).
3. Set pk← (pk′, crsCOM, crsNIZK).
4. Output (pk, pkc, (sk1, . . . , skn)).

Update0(ski, pk):

1. Parse pk as (pk′, crsCOM, crsNIZK)
2. Sample random coins r for SHU-ATS-PR.Update0.
3. Compute (com, decom)←$ COM.Commit(crsCOM, (ski, r)).
4. Set sti,0 ← (r, ski, pk, decom) and δi,0 ← com.
5. Output (sti,0, δi,0).

Update1(sti,0, {δj,0}j∈[n]):

1. Parse sti,0 as (r, ski, pk, decom), pk as (pk′, crsCOM, crsNIZK), and δj,0 as comj for every j ∈ [n].
2. Compute (st′i,1, δ

′
i,1)← SHU-ATS-PR.Update0(ski, pk; r).

3. Compute a proof π ←$ NIZK.P(crsNIZK, (pp, crsCOM, pk
′, comi, δ

′
i,1), (ski, r, decom)).

4. Set δi,1 ← (δ′i,1, π) and sti,1 ← (pk, {comj}j∈[n], st
′
i,1).

5. Output (sti,1, δi,1).

Update2(sti,1, {δj,1}j∈[n]):

1. Parse sti,1 as (pk, {comj}j∈[n], st
′
i,1), pk as (pk′, crsCOM, crsNIZK), and δj,1 as (δ′j,1, πj) for every j ∈ [n] \ {i}.

2. For every j ∈ [n]\{i}: Assert that NIZK.Vf(crsNIZK, (pp, crsCOM, pk
′, comj , δ

′
j,1), πj) = 1. If for any j ∈ [n]\{i}

this check fails, set ski ← ⊥, outputs ⊥, and terminate.
3. Compute ski ← SHU-ATS-PR.Update1(st

′
i,1, {δ′j,1}j∈[n]).

4. Output ski.

The security of the compiled protocol is captured by the following theorem, which states that if
SHU-ATS-PR is secure against semi-honest corruptions during updates, then MU-ATS-PR is secure
against malicious corruptions.

Theorem 8. Let b, b′ ∈ {0, 1}. For any adversary A there exist an adversary B and a negligible
function ν(·), such that for every set pp = {ppλ}λ of public parameters it holds that

Advmu,uf-b∧acc-b′
MU-ATS-PR[pp](A) ≤ Advshu,uf-b∧acc-b′

SHU-ATS-PR[pp](A) + ν(λ),

for all sufficiently large λ ∈ N.

As our compiler can be seen as a restricted application of the general GMW compiler [34],6

Theorem 8 follows from the security of the latter. A detailed description of the GMW compiler and
6 We apply the ideas from the GMW compiler to the specific case of key update protocols, whereas the GMW

compiler can generally be applied to any semi-honest secure MPC protocol. Moreover, the full-fledged GMW
compiler includes a randomness generation component which we do not need.
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a proof of its security can be found in [35]. Nevertheless, for completeness, we briefly sketch the
proof of Theorem 8 below.

Proof sketch. Let G0 = Gmu,uf-b∧acc-b′
MU-ATS-PR[pp]. Consider the game G1 obtained from G0 by the follow-

ing revision revision: When replying to Update1 queries by A, the challenger swaps the honestly
generated NIZK proofs with simulated proofs. We argue that the probability that A wins in G1

is negligibly close to the probability that it wins in the G0 game. This is due to adaptive zero-
knowledge property of NIZK. On input crsNIZK that is either honestly generated or simulated, the
distinguisher D in the reduction will simulate either G0 or G1 to A. It will forward crsNIZK as part
of the public key, generating all other components of the public key on its own. It will reply to
all queries by A honestly, with the exception of generating the NIZK proofs as part of the replies
to Update1 queries: For that, it will query its oracle on the corresponding instance-witness pairs,
and will obtain either honestly-generated proofs or simulated proofs. Finally, the distinguisher will
output 1 if A wins in the simulated game and 0 otherwise. The probability that D outputs 1 given
access to honestly-generated proofs is equal to the probability that A wins in G0, while the proba-
bility that D outputs 1 given access to simulated proofs is equal to the probability that A wins in
G1.

Now consider the game G2 which is obtained from G1 by the following modification: When
replying to Update0 queries by A, the challenger replies with commitments to the all-zero strings
as the first message of the honest parties. This is instead of honestly generating the commitments
as commitments to the actual secret keys of the parties and randomness used for computing their
SHU-ATS-PR.Update0 messages. We claim that the probability that A wins in this revised game is
negligibly close to the probability that it wins in G1. This follows from a standard reduction to the
hiding property of the commitment scheme.

The proof is concluded by presenting an adversary B that breaks the security of SHU-ATS-PR[pp]
with respect to semi-honest updates, with essentially the same probability as A wins in G2. The
adversary B simulates the game G2 to A. To do so, it adds to the public key an honestly-generated
CRS for COM and a simulated CRS for the NIZK proof system. To simulate oracle responses, B
can forward A’s queries to its own oracles, but it needs to add the commitments and NIZK proofs
to the update messages returned to A. To this end, in each such commitment, B first commits to
the all-zero string. Then, it uses the simulator of NIZK in order to produce the NIZK proofs. Note
that even though the simulator is used to produce potentially false statements, a standard argument
shows that this should go undetected by A, due to the hiding property of the commitment scheme.

Suppose that the CRS for COM is such that COM is perfectly binding (this is the case with
overwhelming probability). Further, assume that all NIZK proofs produced by A are accepted by
the verifier; otherwise, the output of the game is 0. Now, consider two cases: Either A produces a
NIZK for a false statement, or it does not.

– Case I: Assume A produces a NIZK for a false statement. In this case, by the simulation
soundness of NIZK, the probability that A wins in G2 is negligible.

– Case II: Assume A never produces a NIZK for a false statement. This means that message
sent by the signers corrupted by B during updates can be explained by the secret keys and
randomness to which these signers have committed (note that these are uniquely defined by
the commitments since we are assuming a scenario in which COM is perfectly binding). We
would like for B to use A’s choice of randomness for the corrupted parties’ update messages as
randomness for their messages in the game Gshu,uf-b∧acc-b′

SHU-ATS-PR[pp]. To do that, we use the fact that
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B generated the CRS for COM. Hence, B knows a trapdoor to this CRS and can extract the
randomness to which A has committed to. B can thus forward this randomness as its input to
the Update oracle.

Finally, when A outputs a forgery, B outputs the same forgery. The proof is then concluded by
noting that whenever A wins in G2, B wins in Gmu,uf-b∧acc-b′

MU-ATS-PR[pp].

B.4 Building Blocks: Deferred Definitions

For completeness, we present formal definitions of the building blocks used by our compiler.
Extractable non-interactive statistically-binding commitment schemes. We rely on the
following notion of an extractable non-interactive statistically-binding commitment scheme [23, 50,
1]:

Definition 7. Let ϵbinding = ϵbinding(λ) and ϵext = ϵext(λ) be functions of the security parameter
λ ∈ N. An ϵext-extractable non-interactive ϵbinding-statistically-binding commitment scheme for a
message space M = {Mλ}λ∈N is a 4-tuple of probabilistic polynomial-time algorithms Π = (Setup,
Commit,Verify,Ext) with the following properties:7

1. Perfect completeness: For every λ ∈ N and m ∈Mλ it holds that

Pr

[
Verify(crs, com, decom,m) = 1

∣∣∣∣ (crs, τ)← Setup(1λ)

(com, decom)← Commit(crs,m)

]
= 1

where the probability is taken over the internal randomness of Setup, Commit and Verify.
2. Statistical binding: For every λ ∈ N it holds that

Pr

[
∃com,m ̸= m′, decom, decom′ s.t.

Verify(crs, com, decom,m) = Verify(crs, com, decom′,m′) = 1

]
≤ ϵbinding(λ)

where the probability is taken over the choice of (crs, τ)← Setup(1λ).
3. Computational hiding: For every probabilistic polynomial-time algorithm A = (A1, A2) there

exists a negligible function ν(·) such that

AdvhidingΠ,A (λ)
def
=
∣∣∣Pr [ExpthidingΠ,A (0, λ) = 1

]
− Pr

[
ExpthidingΠ,A (1, λ) = 1

]∣∣∣ ≤ ν(λ)

for all sufficiently large n, where for each b ∈ {0, 1} the experiment ExpthidingΠ,A (b, λ) is defined as:
(a) crs← Setup(1λ).
(b) (m0,m1, state)← A1(1

λ, crs).
(c) (com, decom)← Commit(crs,mb).
(d) b′ ← A2(crs, com, state).
(e) Output b′.

7 Often, the definition for extractable non-interactive commitments considers two separate setup procedures, an
“honest” one and an alternative setup procedure that admits a trapdoor. The CRS generated by both procedures
should be indistinguishable. Since, in the context of threshold signatures, we are assuming a trusted setup anyway,
we use a simplified definition that considers a single setup algorithm that admits a trapdoor.
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4. Extractability: For every λ ∈ N and for every com ∈ {0, 1}∗ it holds that

Pr

[
∃decom s.t. Verify(crs, com, decom,m) = 1 or
∀decom′,m′Verify(crs, com, decom′,m′) = 0

∣∣∣∣ (crs, τ)←$ Setup(1λ)
m← Ext(crs, τ, com)

]
≥ 1− ϵext(λ)

where the probability is taken over the choice of (crs, τ)← Setup(1λ).

Non-interactive zero-knowledge proof systems. We rely on the following standard notion of
a non-interactive simulation-sound adaptive zero-knowledge proof system [13, 12, 29, 55, 26, 46, 36,
37]:

Definition 8. A non-interactive simulation-sound zero-knowledge proof system for a language
L = {Lλ}λ∈N with a witness relation R(L) = {Rλ}λ∈N is a tuple of probabilistic polynomial-
time algorithms Π = (Setup,P,V). We require the existence of a pair (Sim1,Sim2) of probabilistic
polynomial-time algorithms such that the following properties hold:

1. Perfect completeness: For every λ ∈ N and (x,w) ∈ Rλ it holds that

Pr

[
V(1λ, crs, x, π) = 1

∣∣∣∣ crs← Setup(1λ)

π ← P(1λ, crs, x, w)

]
= 1

where the probability is taken over the internal randomness of Setup, P and V.
2. Adaptive zero knowledge: For every probabilistic polynomial-time algorithm A there exists a

negligible function ν(·) such that

AdvzkΠ,A(λ)
def
=
∣∣∣Pr [ExptzkΠ,A(λ) = 1

]
− Pr

[
ExptzkΠ,A,Sim1,Sim2

(λ) = 1
]∣∣∣ ≤ ν(λ)

for all sufficiently large n, where the experiment ExptzkΠ,A(λ) is defined as:
(a) crs← Setup(1λ).
(b) b← AP(1λ,crs,·,·)(1λ, crs).
(c) Output b.
and the experiment ExptzkΠ,A,Sim1,Sim2

(λ) is defined as:
(a) (crs, τ)← Sim1(1

λ).
(b) b← ASim′

2(1
λ,τ,·,·)(1λ, crs), where Sim′2(1λ, τ, x, w) = Sim2(1

λ, τ, x) if (x,w) ∈ Rλ and Sim′2(1
λ,

τ, x, w) = ⊥ otherwise.
(c) output b.

3. Simulation soundness: For every probabilistic polynomial-time algorithm A there exists a
negligible function ν(·) such that

AdvssΠ,A(λ)
def
= Pr

[
ExptssΠ,A(λ) = 1

]
≤ ν(λ)

for all sufficiently large λ ∈ N, where the experiment ExptssΠ,A(λ) is defined as:
(a) (crs, τ)← Sim1(1

λ).
(b) (x, π)← ASim2(1λ,τ,·)(1λ, crs).
(c) Denote by Q the set of Sim2’s query-response pairs.
(d) Output 1 if and only if x /∈ Lλ, (x, π) /∈ Q, and V(1λ, crs, x, π) = 1.
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C Interactive ATS-PR

In this section, we present our definitions for interactive ATS-PR schemes. We focus on schemes
in which the signing protocol is made up of three rounds of communication among the signers.
These definitions capture our (non-refreshable) ATS construction from Section 6 and our ATS-PR
construction from Section 7.2.

Three-round threshold signature schemes. In addition to threshold signature schemes with
non-interactive signing procedures (with or without a proactive refresh), we also consider schemes
in which signing is done via an interactive protocol of three rounds or less. The syntax for such
schemes closely follows that of non-interactive schemes, with the following exception. In interac-
tive schemes, the signature algorithm Sign is now an interactive protocol, made up of three sub-
algorithms (Sign1, Sign2, Sign3), where:

– Sign1 is a randomized algorithm which takes as input a secret key ski, a message m, and a subset
J of indices. It outputs a state sti,1 and a first message msgi,1 to be sent to all in round 1 of the
protocol to all signers in J \ {i}.

– Sign2 is a deterministic algorithm which takes as input a state sti,1 and incoming messages
{msgj,1}j∈J\{i}. It outputs a state sti,2 and a second message msgi,2 to be sent to all in round
2 of the protocol to all signers in J \ {i}.

– Sign3 is a deterministic algorithm which takes as input a state sti,2 and incoming messages
{msgj,2}j∈J\{i}. It outputs a signature share si.

The syntax above requires knowledge of m and J at the beginning of the protocol (these are given
as inputs to Sign1). This captures the standard scenario in which a subset J of signers initiates
the signing protocol in a coordinated manner in order to sign a particular message m. Defining the
syntax in this manner also has the advantage of being general enough to capture protocols that
require knowledge of m and J already in the onset of the protocol. It should be noted, however,
that signers in our interactive protocols (Sections 6 and 7) do not require knowledge of m until the
last message is computed, and require knowledge of J during the all-but-last rounds only in order
to know to whom to send their all-but-last messages.

The correctness definitions for an interactive threshold siganture scheme are naturally extended
from the non-interactive case, by replacing the non-interactive signing algorithm with an honest
execution of the interactive signing protocol.

Security. Accountability and unforgeability of three-round threshold signatures are defined via a
natural generalization of the analogous definitions for non-interactive schemes, presented in Figure
5. Importantly, the signing oracle is now replaced with three seperate oracles, one for each of the
sub-routines making up the signing protocol. The adversary may query any of these oracles on
inputs and ordering of its choice. In particular, this allows the adversary to interact with honest
signers in many concurrent sessions of the signing protocol, arbitrarily interleaving between them.

For a three-round threshold signatures scheme with proactive refresh PRTS = (KGen,Sign =
(Sign1, Sign2,Sign3),Vf,Trace,Update = (Update0,Update1)), the security games capturing its un-
forgeability and accountability are defined below. As in the non-interactive case, the scheme and
corresponding games are parameterized by public parameters pp. To avoid over-cluttering in nota-
tion, we assume that pp are included in the public key outputted by KGen.
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Games Guf-b
PRATS[pp],G

acc-b′
PRATS[pp],G

uf-b∧acc-b′
PRATS[pp]

1 : flaguf-0, flaguf-1, flagacc-0, flagacc-1 ← 0

2 : (st, n, t, E)← A(pp)

3 : (pk, pkc, sk11, . . . , sk
1
n)←$ KGen(pp, n, t)

4 : for e = {2, . . . , E} do

5 : (ske1, . . . , sk
e
n)←$ Update(pk, ske−1

1 , . . . , ske−1
n )

6 : for i = {1, . . . , n} do
7 : sidi ← 0,Si,1 ← ∅,Si,2 ← ∅

8 : (m∗, σ∗)←$AskO(·,·),Sign(·)(st, pk, pkc)

9 : if Vf(pk,m∗, σ∗) = 0 then

10 : return 0

11 : if ∀e ∈ [E], |Qsk
e | < t ∧ |Qsig

e (m∗)| = 0 then

12 : flaguf-0 ← 1

13 : if ∀e ∈ [E], |Qsk
e ∪Qsig

e (m∗)| < t then

14 : flaguf-1 ← 1

15 : if Trace(pk,m∗, σ∗) ̸⊆ ∪e∈[E]

(
Qsk

e ∪Qsig
e (m∗)

)
then

16 : flagacc-0 ← 1

17 : if ∀e ∈ [E],Trace(pk,m∗, σ∗) ̸⊆ Qsk
e ∪Qsig

e (m∗) then

18 : flagacc-1 ← 1

19 : Only game Guf-b
PRATS[pp] : return flaguf-b

20 : Only game Gacc-b
PRATS[pp] : return flagacc-b

21 : Only game Guf-b∧acc-b′
PRATS[pp] : return flaguf-b ∨ flagacc-b′

Oracle Sign1O(e, i,J ,m):

1 : sidi ← sidi + 1

2 : Si,1 ← Si,1 ∪ {sidi}

3 : (stsidii,1 ,msgsidii,1 )←$ Sign1(sk
e
i ,m,J )

4 : return msgsidii,1

Oracle Sign2O(e, i, sid, (m̃sgi1,1, . . . , m̃sgiℓ,1)):

1 : if sid ̸∈ Si,1 then

2 : return ⊥
3 : fi

4 : (stsidi,2,msgsidi,2)←$ Sign2(st
sid
i,1, m̃sgi1,1, . . . , m̃sgiℓ,1)

5 : Si,1 ← Si,1 \ {sid}
6 : Si,2 ← Si,2 ∪ {sid}

7 : return msgsidi,2

Oracle Sign3O(e, i, sid, (m̃sgi1,2, . . . , m̃sgiℓ,2)):

1 : if sid ̸∈ Si,2 then

2 : return ⊥
3 : fi

4 : QSig
e (m)← QSig

e (m) ∪ {i}

5 : ssidi ←$ Sign3(st
sid
i,2, m̃sgi1,2, . . . , m̃sgiℓ,2)

6 : Si,2 ← Si,2 \ {sid}

7 : return ssidi

Oracle skO(e, i):

1 : Qsk
e ← Qsk

e ∪ {i}
2 : return skei

Fig. 5. The security games Guf-b
PRATS[pp],G

acc-b′
PRATS[pp],G

uf-b∧acc-b′
PRATS[pp] for b, b′ ∈ {0, 1} for a three-round ATS-PR scheme

PRATS = (KGen,Sign,Combine,Vf,Trace,Update) with public parameters pp. In line 8, we write Sign(·) as a short
hand for denoting that A has oracle access to the three oracles Sign1O(·, ·, ·, ·, ·), Sign2O(·, ·, ·, ·) and Sign3O(·, ·, ·, ·).
As in Figure 1, for a set X and an element x, we let X ← X ∪ {x} be a shorthand for the following operation: If X
was previously defined, then set X ← X ∪ {x}; if X is still undefined, then set X = {x}.
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D Deferred Proofs

D.1 Proof of Theorem 1

Proof. Let b ∈ {0, 1} and let A be an adversary participating in the Guf-b∧acc-1
CATS[pp] security game.

Consider the following algorithm B that takes part in the Guf-b
PRTS[pp] security game. B takes as input

the public parameters pp and simulates the game Guf-b∧acc-1
CATS[pp] to A as follows:

1. Invoke A(pp) to obtain (n, t, E). Send (t, t, E) to the challenger in Guf-b
PRTS[pp], and receive from

the challenger (pk∗, pkc∗).
2. Sample J ∗ ←$ St,n and set pkJ

∗ ← pk∗ and pkcJ
∗ ← pkc∗.

3. For each J = {j1, . . . , jt} ∈ St,n \ {J ∗}:
(a) Sample (pkJ , pkcJ , (skJ ,1

j1
, . . . , skJ ,1

jt
))← PRTS.KGen(pp, t, t).

(b) For e = 1, . . . , E−1, compute (skJ ,e+1
j1

, . . . , skJ ,e+1
jt

)←$ PRTS.Update(pkJ , skJ ,e
j1

, . . . , skJ ,e
jt

).

4. Set pk← (pkJ )J∈St,n and pkc← (pkcJ )J∈St,n .
5. Pass pk and pkc to A and reply to its oracle queries as follows:

– When A issues a secret-key query (e, i) to skO: If i ∈ J ∗, then forward this query to the
secret-key oracle in the game Guf-b

PRTS[pp]. Denote the response by skJ
∗,e

i . Reply to A with

skei = (skJ ,e
i )J∈St,n(i).

– When A issues a signature share query (m, e, i): If i ∈ J ∗, then forward the query to
the signature oracle in Guf-b

PRTS[pp] and get back a partial signature si; denote it as sJ
∗

i . For

J ∈ St,n(i)\{J ∗}, compute sJi ←$ PRTS.Sign(skJ ,e
i ,m). Reply to A with si = (sJi )J∈St,n(i).

When A outputs a message-signature pair (m∗, σ∗), B outputs the same. Observe that B perfectly
simulates the game Guf-b∧acc-1

CATS[pp] to A. Moreover, by the definition of CATS, whenever Guf-b∧acc-1
CATS[pp] (A) =

1, this implies that σ∗ = (J , σ) is a valid signature on m∗ with respect to PRTS, and that in each
epoch e there is at least one user je ∈ J for which A did not query for skeje , nor for the signature
share of je on m∗. Hence, in the corresponding epoch, B also did not query for skJ

∗,e
je

nor for a
signature share of je on m∗ with respect to this key. Therefore, if it additionally holds that J = J ∗,
then Guf-b

PRTS[pp](B) = 1 as well. Since the view of A is independent of the choice of J ∗, this implies
that

Advuf-b
PRTS[pp](B) ≥

1

binmax
· Advuf-b∧acc-1

CATS[pp] (A),

concluding the proof of Theorem 1.

D.2 Proof of Theorem 2

Proof. Let A be an adversary playing game Guf-1∧acc-1
PRATS[pp] and let (M∗, S∗) denote the message and

signature A outputs at the end of the game. Assume without loss of generality that with probability
1, the signature S∗ is a 3-tuple containing a public key for ATS, a PRTS signature, and an ATS
signature. Let S∗ = (PK∗, S∗0 , S

∗
1), and let Spk denote the set of ATS public keys sampled by the

challenger in Guf-1∧acc-1
PRATS[pp], either by calling ATS.KGen as a subroutine of PRATS.KGen or by simulating

ΠATS.KGen as part of PRATS.Update.
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By total probability,

Advuf-1∧acc-1
PRATS[pp](A) = Pr

[
Guf-1∧acc-1

PRATS[pp](A) = 1 ∧ PK∗ ∈ Spk

]
+Pr

[
Guf-1∧acc-1

PRATS[pp](A) = 1 ∧ PK∗ ̸∈ Spk

]
.

Theorem 2 then follows from Lemma 6 and Lemma 5 below.

Lemma 5. There exist an adversary B1 such that for all pp

Pr
[
Guf-1∧acc-1

PRATS[pp](A) = 1 ∧ PK∗ ∈ Spk

]
≤ E · Advuf-1∧acc-1

ATS[pp] (B1)

Proof (of Lemma 5). Consider the following adversary B1 playing in Guf-1∧acc-1
ATS[pp] . The adversary B1

invokes A(pp) and simulates Guf-1∧acc-1
PRATS[pp] as follows:

1. Receive (n, t, E) from A. Forward (n, t) to the challenger in Guf-1∧acc-1
ATS[pp] .

2. Receive ATS.pk∗ from the challenger in Guf-1∧acc-1
ATS[pp] .

Sample (PRTS.pk, (PRTS.sk1, . . . ,PRTS.skn)) ←$ PRTS.KGen(n, n) and send the public key
PRATS.pk = (n, t,PRTS.pk) to A.

3. Sample e∗ ←$ [E] and answer the signing and secret key queries of A as in the following manner:
– For e ∈ [E] \ {e∗}: Sample (ATS.pk(e), (ATS.sk

(e)
1 , . . . ,ATS.sk

(e)
n )) ←$ ATS.KGen(n, t) and

compute

σ
(e)
pk ←$ PRTS.Sign(PRTS.pk, (PRTS.sk1, . . . ,PRTS.skn),ATS.pk

(e)).

For each secret key query of the form (e, i), send (PRTS.ski,ATS.sk
(e)
i ,ATS.pk

(e)
i , σ

(e)
pk ) to A.

For each query to one of the signing oracles, simulate the response of the oracle using the
knowledge of the secret keys PRTS.sk1, . . . ,PRTS.skn and ATS.sk

(e)
1 , . . . ,ATS.sk

(e)
n .

– For e = e∗: Compute

σ
(e∗)
pk ←$ PRTS.Sign(PRTS.pk, (PRTS.sk1, . . . ,PRTS.skn),ATS.pk

∗).

For each secret key query of the form (e, i), send the index i as the input to a secret key
query in the game Guf-1∧acc-1

ATS[pp] and receive a key ATS.sk∗i in response. Send (PRTS.ski,ATS.sk
∗
i ,

ATS.pk∗, σ
(e∗)
pk ) to A as the response to the secret key query.

For each query to a signing oracle, forward the query to the corresponding oracles in
Guf-1∧acc-1

ATS[pp] (omitting the epoch index e∗ from the input). If the query is to Sign1O or Sign2O,
relay the response to A. If it is to Sign3O, then the oracle in Guf-1∧acc-1

ATS[pp] responds with a

signature σm on a message m on behalf of a subset J ; reply to A with (ATS.pk∗, σ
(e∗)
pk , σm).

4. Receive a message m∗ and a signature σ∗ = (pk∗, σ∗0, σ
∗
1). If the output of the simulated

Guf-1∧acc-1
PRATS[pp] is 1 and pk∗ = ATS.pk∗, then output (m∗, σ∗1). Otherwise, output ⊥.

Observe that whenever the output of the simulated Guf-1∧acc-1
PRATS[pp] game is 1, the forgery outputted

by A is a valid one, and in particular σ∗1 is a valid ATS signature on m∗ with respect to pk∗. This
also means that either it holds that PRATS.Trace(PRATS.pk,m∗, σ∗) = ⊥, or in epoch e∗ there is
an index j∗ ∈ J ∗ for which A did not query for its secret key or its signature share on m∗. In the
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former case, this implies that ATS.Trace(pk∗,m∗, σ∗1) = ⊥, and in the latter, this implies that B1
did not issue the corresponding queries as well.

Finally, whenever Guf-1∧acc-1
PRATS[pp](A) = 1 ∧ PK∗ ∈ Spk occurs and B1 guesses correctly e∗ as the

epoch relative to which A outputs the forgery (note that this is well defined when PK∗ ∈ Spk), it is
also the case that Guf-1∧acc-1

ATS[pp] (B1). Conditioned on PK∗ ∈ Spk, the probability that pk∗ = ATS.pk∗

is 1/E, since the view of A is independent of the epoch e∗ which is chosen uniformly at random.
This implies the lemma.

Lemma 6. There exist an adversary B2 such that for all pp

Pr
[
Guf-1∧acc-1

PRATS[pp](A) = 1 ∧ PK∗ ̸∈ Spk

]
≤ Advuf-b∧uf-1

PRTS[pp](B2)

Proof (of Lemma 6). Consider the following adversary B2 playing in Guf-1
PRTS[pp]. The adversary B2

invokes A(pp) and simulates Guf-1∧acc-1
PRATS[pp] as follows:

1. Receive (n, t, E) from A. Forward (n, n,E) to the challenger in Guf-1
PRTS[pp].

2. Receive PRTS.pk from the challenger in Guf-1
PRTS[pp] and forward PRTS.pk to A as the public key

in Guf-1∧acc-1
PRATS[pp].

3. Answer A’s oracle queries as follows:
– For i = 1, . . . , E: Sample

(ATS.pk(i), (ATS.sk
(i)
1 , . . . ,ATS.sk(i)n ))←$ ATS.KGen(n, t).

and compute an n-out-of-n signature with respect to epoch i on ATS.pk(i), via access to the
signing oracle in Guf-1

PRTS[pp]. Denote the resulting signature by σ
(i)
pk for each i ∈ [E].

– In response to a secret-key query for index ℓ ∈ [n] and epoch e ∈ [E]: Forward the query to
the secret-key oracle of Guf-1

PRTS[pp] and obtain a secret key PRTS.sk
(e)
ℓ . Respond to A with

PRATS.sk
(e)
ℓ = (PRTS.sk

(e)
ℓ ,ATS.sk

(e)
ℓ ,ATS.pke), σ

(e)
pk ).

– In response to a signature queries for epoch e ∈ [E], simulate the signing oracles of Guf-1∧acc-1
PRATS[pp]

using knowledge of ATS.sk(e)1 , . . . ,ATS.sk
(e)
n and the values ATS.pk(e) and σ

(e)
pk .

4. Receive a message m∗ and a signature σ∗ = (pk∗, σ∗0, σ
∗
1). If the output of the simulated

Guf-1∧acc-1
PRATS[pp] is 1 and pk∗ ̸∈ {ATS.pk(1), . . . ,ATS.pk(E)}, then output (pk∗, σ∗0). Otherwise, out-

put ⊥.

When the output of the simulated Guf-1∧acc-1
PRATS[pp] game is 1, it holds the forgery outputted by A is

a valid one, and in particular σ∗0 is a valid PRTS signature on pk∗ with respect to PRTS.pk. This
also means that in each epoch A issued at most t − 1 secret key queries, and so the same is true
for B2. Finally, conditioned on PK∗ ̸∈ Spk, B2 never queried its signing oracle on pk∗. Hence, the
event Guf-1∧acc-1

PRTS[pp] (B2) is contained in the conjunction Guf-1∧acc-1
PRATS[pp](A) = 1∧PK∗ ∈ Spk, implying the

lemma.

D.3 Proof of Theorem 3

Proof. Let A be an adversary participating in the game Guf-1∧acc-1
RSAATS[G] and qchal, qsign be bounds on

the number of Hchal queries and signature queries issued by A in Guf-1∧acc-1
RSAATS[G], respectively, and let
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q = qchal + qsign. Assume without loss of generality that A does not issue the same query to Hcom or
to Hchal more than once. Consider the following algorithm B0. On inputs (G, Z) and (h1, . . . , hq),
the algorithm B0 simulates Guf-1∧acc-1

RSAATS[G] to A as follows:

1. Invoke A(G) and receive (n, t) from A.
2. Sample i∗ ←$ [n]. For j ∈ [n] \ {i∗} sample Xj ←$ G and compute skℓ ← Z

∏
j∈[n]\{i∗,ℓ} eℓ ·(∏

j∈[n]\{i∗}Xj

)∏
k∈[n]\{ℓ} ek

.

3. Compute Y ← Z
∏

j∈[n]\{i∗} ej ·
(∏

j∈[n]\{i∗}Xj

)∏
ℓ∈[n] eℓ

and pass pk = (n, t, Y ) to A.
4. Answer oracle queries as follows:

– Initialize a dictionary Lcom of input-output pairs for Hcom. When A issues a query q = Z to
Hcom, if Lcom[q] is defined, then let c = L[q]. If not, let c← {0, 1}λ. If there exists a query q′

in Lcom such that Lcom[q′] = c, then output ⊥ and terminate. Otherwise, record Lcom[q] = c.
Reply with c.

– Initialize a counter t = 0 and a dictionary Lchal of input-output pairs for Hchal. When A issues
a query q = (m, pk,J , R) to Hchal, if Lchal[q] is defined, then let h = Lchal[q]. Otherwise let
t = t+ 1 and h = ht and record Lchal[q] = h. Reply with h.

– In response to a secret-key query for index ℓ ∈ [n] reply as follows. If ℓ = i∗, abort the
simulation and output ⊥. Otherwise, reply with sk.

– In response to signing queries: If the session identifier provided by A is inconsistent with
previous queries, return ⊥ to A. Otherwise, simulate users j ̸= i∗ honestly using the knowl-
edge of skj , simulating the random oracles and recording their responses.
For j = i∗:
(a) First round: Sample ci∗ ← {0, 1}λ and send ci∗ as the first message of user i∗ in the

protocol.
(b) Second round: Let t = t+ 1 and h = ht, sample Si∗ ← G, and compute Ri∗ = S

∏
j∈J ej

i∗ ·
Y −h·

∏
j∈J\{i∗} ej . If Lcom[Ri∗ ] has already been defined, then output ⊥ and terminate.

Otherwise, record Lcom[Ri∗ ] = ci∗ .
Given {cj}j∈J\{i∗}, for each j find the group element Rj such that Lcom[Rj ] = cj . If
for some j there is no such value, then skip to Step 4c. If for some j there exist two
elements Rj and R′j such that Lcom[Rj ] = cj = Lcom[R′j ], then output ⊥ and terminate
the simulation. Let R =

∏
j∈J Rj . If Lchal[(m, pk,J , R)] is already defined then output

⊥ and terminate. Otherwise, record Lchal[(m, pk,J , R)] = h and send Ri∗ as the second
message in the protocol.

(c) Third round: Receive all openings {Rj}j∈J\{i∗} provided as the second-round messages.
For all j ∈ J \ {i∗}: If Lcom[Rj ] is undefined, then sample c ← {0, 1}λ and record
Lcom[Rj ] = c. Verify that for all j ∈ J \ {i∗} it holds that Lcom[Rj ] is consistent with
the commitment cj from the first round. If for some j this is not the case, reply ⊥ to A.
Otherwise, reply with Si∗ sampled in Step 4b.

At the end of the simulation, the forger A outputs a message m∗ and a signature σ∗ = (J ∗, R∗, S∗).
If i∗ ̸∈ J ∗, if A never queried Hchal with q = (m∗, pk,J ∗, R∗) or if the output of the simulated
game Guf-1∧acc-1

RSAATS[G] is 0, then B0 outputs ⊥ and terminate. Otherwise, let ℓ∗ denote the index of the
Hchal-query in which A queried for Hchal(m

∗, pk,J ∗, R∗). Then, B0 outputs (ℓ∗, (hℓ∗ , σ
∗)).

We say that B0 succeeds if its output is different than ⊥, and we turn to bound the probability
that B0 succeeds. Recall that B0 outputs ⊥ if one of the following events occurs:
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– The simulated Guf-1∧acc-1
RSAATS[G] game comes to a conclusion and its output is 0. Denote this event by

E1.
– A queries the secret key of i∗ or outputs a forgery with respect to a subset that does not include

i∗. Denote this event by E2.
– In a q query to Hcom that was not previously defined, B0 samples a value c which a previous

query was mapped to. Denote this event by E3. Since c is sampled uniformly at random from
{0, 1}λ, and Lcom are recorded either during signature or Hcom queries, the probability that E3

occurs is bounded by qcom · (qcom + qsign) · 2−λ.
– In some signing query, Lcom[Ri∗ ] was already defined before Ri∗ was computed in Step 4b. Denote

this event by E4. Observe that the distribution of Ri∗ is uniform in G. Hence, the probability
that E3 occurs is bounded by qsign · (qcom + qsign) /|G|.

– In some signing query, A provided a commitment cj which is a collision between (at least) two
values in Lcom. Denote this event by E5. Since all cj values stored in Lcom are chosen uniformly
at random, the birthday bound implies that the probability for E5 is at most (qcom + qsign)

2 ·2−λ.
– In some signing query, Lchal[(m, pk,J , R)] was already defined for R computed in Step 4b.

Denote this event by E6. Since R is distributed uniformly in G, and Lchal values are recorded
in either Hchal queries or signature queries, it holds that the probability of E6 is bounded by
qsign · (qchal + qsign) /|G|.

Taking everything together, we obtain that the probability that B0 succeeds is bounded by

Pr [B0 succeeds] ≥ Pr
[
E1 ∧ E2 ∧ E3 ∧ E4 ∧ E5 ∧ E6

]
≥ Pr

[
E1 ∧ E2

]
− Pr [E3]− Pr [E4]− Pr [E5]− Pr [E6]

≥ Pr
[
E1 ∧ E2

]
−

q2sign + qsign · qcom + qsign · qchal + qsign

|G|

−
2q2com + 3qsign · qcom + q2sign

2λ
.

Observe that the event E1 ∧ E2 occurs when the output of the simulated Guf-1∧acc-1
RSAATS[G] game is 1, A

never queries for the secret key of i∗, and the forgery outputted by A is with respect a subset J ∗
that contains i∗. Note that for the output of the game to be 1, there has to be at least one index
j∗ ∈ J ∗ such that A never queries for the secret key of j∗. Hence, and since i∗ is chosen uniformly
at random from [n], we get that

Pr
[
E1 ∧ E2

]
≥ 1

nmax
· Pr

[
Guf-1∧acc-1

RSAATS[G] = 1
]
=

1

nmax
· Advuf-1∧acc-1

RSSATS[G](A).

Putting things together, it holds that

Pr [B0 succeeds]

≥
Advuf-1∧acc-1

RSSATS[G](A)
nmax

−
q2sign + qsign · qcom + qsign · qchal + qsign

|G|

−
2q2com + 3qsign · qcom + q2sign

2λ
. (1)

Now consider the algorithm B attempting to solve the strong RSA problem. On input (G, Y ),
B runs the forking algorithm FB0 for B0 guaranteed by Lemma 1. If the output of FB0 is ⊥, then
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B outputs ⊥ and terminate. Otherwise, B obtains a pair ((h, σ = (J , R, S)), (h′, σ′ = (J ′, R′, S′)))
such that h ̸= h′. Moreover, by the definition of B0 and that the following equations hold:

S
∏

i∈J ei = R · Y h·
∑

i∈J
∏

j∈J\{i} ej (2)

S′
∏

i∈J ′ ei = R′ · Y h′·
∑

i∈J ′
∏

j∈J ′\{i} ej (3)

Additionally, by the definition of B0, we also know that R = R′ and J = J ′, that i∗ ∈ J ∩ J ′.
Assume without loss of generality that h > h′ (otherwise, the proof is symmetric). Hence, dividing
Eq. (2) by (3) and rearranging, we obtain that(

S/S′
)∏

i∈J ei = Y (h−h′)·(
∑

i∈J
∏

j∈J\{i} ej) (4)

We argue that
∏

i∈J ei and (h− h′) ·
(∑

i∈J
∏

j∈J\{i} ej

)
are coprime.

Claim 9 GCD
(∏

i∈J ei, (h− h′) ·
(∑

i∈J
∏

j∈J\{i} ej

))
= 1.

We postpone the proof of the claim to the end of the section. We now explain how B decides on its
output. First, by Claim 9 and Bezout’s theorem, there exist integers a and b, efficiently computable
using Euclid’s extended algorithm, such that

a ·
∏
i∈J

ei + b · (h− h′) ·

∑
i∈J

∏
j∈J\{i}

ej

 = 1

This implies that

Y = Y a·
∏

i∈J ei+b·(h−h′)·(
∑

i∈J
∏

j∈J\{i} ej)

=
(
Y a ·

(
S/S′

)b)∏i∈J ei
, (5)

where Eq. (5) follows from Eq. (4). Denote W = Y a · (S/S′)b and X−i∗ =
∏

j∈[n]\{i∗}Xj . Then,

plugging in Y = Z
∏

j∈[n]\{i∗} ej ·
(∏

j∈[n]\{i∗}Xj

)∏
ℓ∈[n] eℓ

and rearranging, we obtain that

W
∏

i∈J ei = Z
∏

j∈[n]\{i∗} ej ·X
∏

ℓ∈[n] eℓ
−i∗ .

Rearranging,  W

X

∏
ℓ∈[n]\J eℓ

−i∗


∏

ℓ∈J eℓ

= Z
∏

j∈[n]\{i∗} ej .

Denote T = W

X

∏
ℓ∈[n]\J eℓ

−i∗

. Since, by definition, {ei}i∈[n] are coprime to the order of G, this implies

that

T ei∗ = Z
∏

j∈[n]\J ej .
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Since i∗ ∈ J , it holds that GCD(ei∗ ,
∏

j∈[n]\J ej) = 1. Hence, using the extended Euclid’s algorithm,
we can find integers a′ and b′ such that

Z = Za′·ei∗+b′·
∏

j∈[n]\J ej =
(
Za′ · T b′

)ei∗
.

Hence, B computes U = Za′ · T b′ and outputs (U, ei∗) as its output to the strong RSA problem. By
the above reasoning, whenever B outputs an output other than ⊥ it succeeds in solving the strong
RSA problem. By Lemma 1, this happens with probability at least

Pr [B0 succeeds] ·
(
Pr [B0 succeeds]

qsign + qchal
− 1

2λ

)
.

Using Eq. (1), we obtain Theorem 3.

We conclude by proving Claim 9.

Proof (Claim 9). Note that 0 < h− h′ < 2λ < min{ei}i∈J and hence

GCD

(∏
i∈J

ei, h− h′

)
= 1.

We are left with arguing that GCD
(∏

i∈J ei,
∑

i∈J
∏

j∈J\{i} ej

)
= 1. Assume towards contradiction

that this is not the case. Then, there exists some ℓ ∈ J such that eℓ divides
∑

i∈J
∏

j∈J\{i} ej .
However, we can write

α =

∑
i∈J

∏
j∈J\{i} ej

eℓ
=

∑
i∈J\{ℓ}

∏
j∈J\{i,ℓ}

ej +

∏
j∈J\{ℓ} ej

eℓ

This implies that eℓ divides
∏

j∈J\{ℓ} ej in contradiction to the fact that {ei}i∈J are distinct primes.

D.4 Proof of Lemma 2

Proof. Consider the following adversary B1 playing the game Guf
BLS[G]. B1 can issue signature queries

and random oracle queries to its BLS challenger. To distinguish the random oracle in Guf
BLS[G] from

the one in the 1-epoch BLS ATS, we denote queries to the former by Ĥ(m).
On getting a challenge public key pk∗ from its BLS challenger, the adversary B1 invokes A(G)

and simulates Gsa-uf-0
BLSPR-1[G] as follows:

1. Receive (n, t) from A.
2. Guess i∗ ←$ [n]. Sample {α1, . . . , αi∗−1, αi∗+1, . . . , αn} ←$ Zp. Compute pkj ← gαj for all i ̸= i∗.
3. Set pki∗ ← pk∗, i.e. B1 embeds the challenge public key in position i∗.
4. Send pk = {pk1, . . . , pkn}, pkc = ⊥ to A.

Next, A issues a sequence of queries, and B1 replies as follows:

– H(m): B1 queries its challenger for h← Ĥ(m), sets H(m)← h and returns h to A.
– skO(1, i): If i = i∗, B1 aborts. Otherwise, B1 returns αi.
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– SignO(m, 1, i): We assume without loss of generality that the adversary always queries H(m)
before any signing query on m. If i = i∗, B1 answers by querying its signing oracle for a
signature. Otherwise, B1 returns H(m)αi .

Eventually, A outputs a forgery (m∗, (J ∗, σ∗)). If i∗ ̸∈ J ∗ or if i∗ ∈ Qsig
1 (m∗), then B1 aborts

(outputs ⊥ and terminates). Let α∗ denote the secret key corresponding to the BLS challenge pk∗

(that is, pk∗ = gα
∗). Observe that if the forgery outputted by A is valid and if B1 hasn’t aborted,

it means that
σ∗ = (H(m)α

∗λi∗ )
∏

i∈J ∗,i ̸=i∗

H(m)λiαi

where λj =
∏

i∈J ∗\{j}
i

i−j .
Then, B1 computes

σ
′ ←

(
σ∗∏

i∈J ∗,i ̸=i∗ H(m)λiαi

) 1
λi∗

and outputs the pair (m∗, σ′
). Note that if A succesfully outputted a forgery, then (m∗, σ

′
) is a valid

message-signature pair with respect the challenge public key pk∗. Also note that if A did not query
for a signature share on m∗ with respect to user i∗, then by definition of B1, i∗ ̸∈ Qsig

1 (m∗) .
Finally, note that whenever A wins in the unforgeability game Gsa-uf-0

BLSPR-1[G], there must be an
index j∗ ∈ J ∗ for which A never queries the secret key or a signature share for the forgery message
m∗. If B1 correctly guesses this value (i∗ = j∗), then it also outputs a succesful forgery. Overall,
since B1 perfectly simulates Gsa-uf-0

BLSPR-1[G] to A and the view of A is independent of i∗, it holds that

AdvufBLS[G](B1) ≥
1

nmax
· Advsa-uf-0BLSPR-1[G](A).

This proves the lemma.

D.5 Proof of Lemma 3

Proof. Consider the following adversary B2 playing the game Gsa-uf-0
BLSPR-1[G]. B2 can issue signature

queries and random oracle queries to its 1-epoch BLS ATS challenger. To distinguish the random
oracle in Gsa-uf-0

BLSPR-1[G] from the one in the general BLS ATS, we denote queries to the former by
Ĥ(m).
B2 invokes A(G) and simulates Gsa-uf-0

BLSPR[G] as follows:

1. Receive (n, t, E) from A, and forward (n, t) to the challenger in Gsa-uf-0
BLSPR-1[G].

2. Receive pk = (pk1, . . . , pkn), pkc from the challenger and forward them to A.
3. Reply to oracle queries by A as follows:

– Whenever A queries H on a message m: B2 queries h ← Ĥ(m), sets H(m) ← h and returns
h.

– Whenever A queries its secret-key oracle on (k, i) (that is, the key of user i in epoch k): If
k = 1, then B2 forwards this query to its own secret-key oracle, sets sk1i as the response. If
k > 1, then B2 samples a random secret key skki ←$ Zp. For each epoch k, B2 maintains a
set Rk, encoding all the signers for which B2 determined the secret key in epoch k. B2 sets
Rk ← Rk ∪ {i} and returns skki to A.
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– Signing queries: Assume without loss of generality that A always queries the random oracle
for H(m) before issuing a signing query of the form (m, k, i) (a signature share on m relative
to i’s secret key in the kth epoch). Whenever A issues a signing query (m, k, i), if k = 1 then
B2 forwards the query (m, i) to its signing oracle, and replies with the response. Otherwise,
if k > 1, B2 decides on its response as follows:
• If i ∈ Rk, then B2 replies with H(m)sk

k
i .

• If i ̸∈ Rk and |Rk| < t − 1, then B2 samples skki ←$ Zp, updates Rk ← Rk ∪ {i}, and
replies with H(m)sk

k
i .

• If i ̸∈ Rk and |Rk| = t − 1, then we use the fact that ∀j ∈ Rk, sk
k
j = sk1j + δkj for some

δkj , where {δkj } are Shamir secret shares of 0. In other words, in a random execution of
the protocol, there should be a polynomial f of degree t− 1 such that δkj = f(j)∀j ∈ Rk

and f(0) = 0. Hence, by Lagrange interpolation, δki =
∑

j∈Rk
λj(i) · (skkj − sk1j ), where

λj(i) =
∏

ℓ∈Rk\{j}
ℓ−i
ℓ−j .

To compute the response, B2 computes a← H(m)
∑

j∈Rk
λj(i)·skkj . For each j ∈ (Rk ∪ {i})∩

R1 it then computes a term bj as bj ← H(m)sk
1
j . For each j ∈ (Rk ∪ {i}) \R1, it requests

a signature share on m with respect to signer j from its own signing oracle, and sets bj

to be the response. Finally, B2 replies to A with the partial signature a ·bi ·
∏

j∈Rk
b
−λj(i)
j .

The above discussion shows that this preserves the perfect simulation of Gsa-uf-0
BLSPR[G].

Eventually, A outputs a forgery (m∗, (J ∗, σ∗)). B2 outputs this forgery as well. We claim that if the
output of the simulated Gsa-uf-0

BLSPR[G] is 1 then so is the output of Gsa-uf-0
BLSPR-1[G]. This is because in this

case it holds that

– Vf(pk,m∗, σ∗) = 1.
– For each k ∈ [E] it holds that |Qsk

k | < t. Hence, |Qsk
1 | < t. Also, B2 makes no secret key queries

for epochs k > 1.
– For all k ∈ [E] it holds that Qsig

k (m∗) = ∅. In particular, this means that B2 forwards no signing
queries for m∗ to its signing oracle.

Hence, all the requirements are satisfied for the output Gsa-uf-0
BLSPR-1[G] to be 1. Since

Advsa-uf-0BLSPR[G](A) ≤ Advsa-uf-0BLSPR-1[G](B2).

This completes the proof of the lemma.

D.6 Proof of Lemma 4

Proof. Consider the following adversary B playing the game Guf
BLS[G]. We use α to denote the chal-

lenge secret key in the BLS game Guf
BLS[G]. On getting a challenge public key pk∗ ← gα from its BLS

challenger, B invokes A(G) and simulates Gsa-acc-0
BLSPR[G] as follows:

– Receive (n, t, E) from A.
– Guess i∗ ←$ [n]. Sample {α1, . . . , αi∗−1, αi∗+1, . . . , αn} ←$ Zp. Compute pkj ← gαj for all i ̸= i∗.
– Set pki∗ ← pk∗ (i.e. B embeds the challenge public key at position i∗).
– For all k ∈ {2, . . . , E}, sample a1,k, . . . , at−1,k ←$ Fp. Then, for all i ∈ [n] compute δki ←∑t−1

l=1 al,k · il. (i.e. we generate new Shamir secret shares of 0 for every epoch).
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– Send pk = {pk1, . . . , pkn}, pkc = ⊥ to A.

Next, A issues a sequence of queries. We assume without loss of generality that A always queries
H(m) before issuing any signing query on m. We now specify how B answers each of those queries:

– H(m) : B queries the random oracle of its BLS challenger and forwards the answer to A. B also
maintains a mapping of messages to their corresponding hashes.

– skO(k, i): If i = i∗, B aborts. Otherwise, if k = 1, B returns αi, and if k > 1, B returns
αi +

∑k
j=2 δ

j
i .

– SignO(m, k, i): If i ̸= i∗, B returns H(m)α
k
i , where αk

i = αi if k = 1 and αk
i = αi +

∑k
j=2 δ

j
i if

k > 1. If i = i∗, B queries its BLS challenger for σm,i∗ ←$ Sign(m). Then, if k = 1, B returns
σm,i∗ , and if k > 1, B returns σm,i∗ · H(m)

∑k
j=2 δ

j
i∗ .

Eventually, A outputs a forgery (m∗, (J ∗, σ∗)). B aborts if i∗ ̸∈ J ∗ or if there exists some k ∈ [E]
such that i∗ ∈ Qsig

k (m∗). Observe that by a similar analysis to that found in the proof of Lemma
2, if B does not abort, it wins the unforgeability game of BLS. Moreover, by the same analysis, it
holds that

AdvufBLS[G](B) ≥
1

nmax
· Advsa-acc-0BLSPR[G](A).

This concludes the lemma.

D.7 Proof of Theorem 5

The proof of Theorem 5 follows the same roadmap as the proof for our BLS-based scheme, proving
unforgeability and accountability separately. Let us use Schnorr3-PR-1 to denote a 1-epoch variant
of our Schnorr-based 3-round ATS-PR scheme (obtained by fixing the number E of epochs to
1). Similar to the BLS based scheme, unforgeability is proven in two steps. First, we reduce the
unforgeability of Schnorr3-PR-1 to that of Schnorr signatures in Lemma 7. Then, in Lemma 8, we
reduce the unforgeability of our multi-epoch scheme to the 1-epoch variant.

Lemma 7. For every adversary A for the game Gsa-uf-0
Schnorr3-PR-1[pp], there exists an adversary B1, such

that for all groups G,

Advsa-uf-0Schnorr3-PR-1[G](A) ≤ nmax · (qH + qS) ·
(
AdvufSchnorr[G](B1) +

qS · (qH + qS)

p
+

2q2C
2λ

)
.

Lemma 8. For every adversary A, there exists an adversary B2 such that,

Advsa-uf-0Schnorr3-PR[G](A) ≤ (qS + qH) ·
(
Advsa-uf-0Schnorr3-PR-1[G](B2) +

qS(qS + qH)

p
+

2q2C
2λ

)
.

Lemma 9. For every adversary A there exists an adversary B, such that,

Advsa-acc-0Schnorr3-PR[G](A) ≤ nmax · (qS + qH) ·
(
AdvufSchnorr[G](B) +

qS(qS + qH)

p
+

2q2C
2λ

)
.
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Proof of Lemma 7

Proof. We assume without loss of generality that A does not issue the same query to Hcom or to
Hchal more than once.

Consider the following adversary B1 playing the game Guf
Schnorr[G]. B1 can issue signature queries

and random oracle queries. To distinguish the random oracle in Guf
Schnorr[G] from the one in the

1-epoch Schnorr ATS, we denote queries to the former by Ĥsig(m, pk, R).
On getting a challenge public key pk∗ from its challenger, B1 invokes A(G) and simulates

Gsa-uf-0
Schnorr3-PR-1[G] as follows:

– Receive (n, t) from A.
– Guess i∗ ←$ [n]. Then, sample {α1, . . . , αi∗−1, αi∗+1, . . . , αn} ←$ Zp. Compute pkj ← gαj ∀j ̸=

i∗.
– Set pki∗ ← pk∗. Send (pk = {pk1, . . . , pkn}, pkc = ⊥) to A.

Next, A issues a sequence of queries. We use qS , qH , qC to denote a bound on the number of
signing queries, random oracle queries on Hchal and random oracle queries on Hcom, issued by A
across all signing sessions, respectively.
B1 also samples j∗ ←$ [qH + qS ], guessing which of the Hchal(m, pk,J , R) queries will correspond

to the forgery that A will return. Note that j∗ is sampled from [qH + qS ] (rather than from [qH ]),
because we assume w.l.o.g. that A always queries Hchal before sending a corresponding Sign3O query,
meaning that the total number of Hchal queries is upper bounded by qH + qS .
B1 initializes (the simulated oracles) Hcom(R)← ⊥,Hchal(m, pk,J , R)← ⊥ for all values of m,R

and all possible subsets of signers J . B1 also maintains (i) a counter t to track the number of Hchal

queries, initialized with 0, and (ii) a dictionary Qchal to track auxiliary information used to answer
Hchal queries. It is initialized as empty, i.e. Qchal ← ∅.

For signing queries, for each signer j ∈ [n], B1 maintains four mappings: (i). Rj : [qS ] →
{0, 1}λ to record nonces generated to respond to Sign1O(1, j,J ,m) queries, (ii) Sj to store auxiliary
information used for answering signing queries, and (iii) Mj,1 to record all the messages sent by A
in a Sign2O(1, j, sid, {msgi,1}) query, (iv) S ′j to store the (m,J , e) values for every signing session.
All these mappings are initialized as empty at the beginning of simulation. These are in addition to
the variables sidi,Si,1,Si,2 defined and initialized as per the security game in Figure 5.

We now discuss how B1 responds to each of A’s queries.
Hcom(R). If Hcom(R) has been determined, i.e. if Hcom(R) ̸= ⊥, then B1 returns Hcom(R). Otherwise,
B1 samples a random string c←$ {0, 1}λ and returns c. B1 sets Hcom(R)← c.
Hchal(m, pk,J , R).

– If Hchal(m, pk,J , R) has been determined, i.e. Hchal(m, pk,J , R) ̸= ⊥, then B1 returns the value
Hchal(m, pk,J , R).

– Otherwise, B1 sets t ← t + 1. And, if i∗ ̸∈ J , then (i) if this is the j∗th query (i.e. t = j∗),
B1 aborts, (ii) else, B1 samples a random element h ←$ Zp. B1 sets Hchal(m, pk,J , R) ← h and
returns h to A.

– Or, if i∗ ∈ J and t = j∗ then B1 samples a random message m′ ←$ M, and queries its

Schnorr challenger for h ← Ĥsig(m
′, pk∗, R

1

λJ
i∗ ), where λJi∗ =

∏
j∈J\{i∗}

j
j−i∗ . B1 then sets

Hchal(m, pk,J , R)← h and returns h to A. B1 also records the value Qchal(m, pk,J , R)← m′.

52



– Otherwise, if i∗ ∈ J and t ̸= j∗, then, B1 iterates over all session ids in Si∗,2. For each sid ∈ Si∗,2,
B1 first checks if (m,J ) match the values in S ′i∗(sid). Next, for all j ∈ J \ {i∗}, B1 finds a value
Rj s.t. Hcom(Rj) = msgj,1, with msgj,1 stored in Mi∗,1(sid). If there’s more than one such Rj for
some j, B1 aborts. If there is exactly one such value for all j then, B1 calculates R(sid)← Ri∗(sid)·∏

j∈J\{i∗}Rj . If R = R(sid), then, B1 uses h stored in Si∗(sid), sets Hchal(m, pk,J , R)← h, and
returns this h.

– If there is no such sid that meets all the conditions above, then B1 samples h ←$ Zp, sets
Hchal(m, pk,J , R)← h and returns h.

skO(1, i). If i = i∗ then B1 aborts. Otherwise, B1 returns αi.
Sign1O(1, i,J ,m). B1 sets sidi ← sidi + 1, Si,1 ← Si,1 ∪ {sidi},S ′i(sidi)← (m,J , 1).

– If i ̸= i∗, then B1 samples a random ri ←$ Zp and sets Ri(sidi) ← gri . If Hcom(Ri(sidi)) ̸= ⊥,
then B1 returns msgi,1 ← Hcom(Ri(sidi)). Otherwise, B1 samples a random string c ←$ {0, 1}λ,
sets Hcom(Ri(sidi))← c. B1 returns c and sets Si(sidi)← (ri, c)

– If i = i∗, then B1 samples a random string ci∗ and returns this. B1 also stores Si∗(sidi∗)← ci∗ .

Sign2O(1, i, sid, {msgj,1}j∈J\{i}). Assuming that the session is valid, i.e. sid ∈ Si,1, and denoting
(m,J , 1) ← S ′i(sid), for each j ∈ J , B1 finds the element Rj such that Hcom(Rj) = msgj,1. If for
some j, there is more than one such, then B1 aborts. If for some j ̸= i∗ this value is undefined, B1 sets
a flag flag ← 1, returns Ri(sid), and stores all the messages received, Mi,1(sid) ← {msgj,1}j∈J\{i}.
Also, for j = i∗, if there is no sidi∗,i s.t. Si∗(sidi∗,i) = msgi∗,1, then B1 sets flag← 1.

Otherwise, if i ̸= i∗, B1 simply returns Ri(sid). But if i = i∗, B1 first samples si∗ ←$ Zp, and a
random h ←$ Zp. Then, B1 sets Ri∗(sid) ← gsi∗

(pk∗)
h·λJ

i∗
, and sets Hcom(Ri∗(sid)) ← ci∗ , where ci∗ is

stored in Si∗(sid). B1 additionally sets Si∗(sid)← (Si∗(sid), si∗ , h).
Let (m,J , 1)← S ′i(sid).
Then, B1 computes R = Ri∗(sid)

∏
j∈J\{i∗}Rj , wherein Hcom(Rj) = msgj,1∀j ∈ J \ {i∗}. Then,

If Hchal(m, pk,J , R) was ever queried by A before or was programmed by B1 in a sign query in
another session, then B1 aborts.

In all cases, B1 stores all the messages received, Mi,1(sid) ← {msgj,1}j∈J\{i}. Similar to the
game, B1 sets Si,1 ← Si,1 \ {sid},Si,2 ← Si,2 ∪ {sid}.
Sign3O(1, i, sid, {msgj,2}j∈J\{i}). Assuming that the session is valid, i.e. sid ∈ Si,2, and denoting
(m,J , 1)← S ′i(sid), B1 first verifies all commitments that were sent by A in signing rounds 1 and 2.
If, for some j ∈ J \ {i},Hcom(msgj,2) = ⊥, then B samples a random number c←$ {0, 1}λ and sets
Hcom(msgj,2)← c. Next, If for some j ∈ J \ {i}, Hcom(msgj,2) ̸= msgj,1 (using the msgj,1 stored in
Mi,1(sid)), then B1 returns ⊥. B1 also checks that for msgi∗,1, if there is any other value R ̸= msgi∗,2,
s.t. Hcom(R) = msgi∗,1, then B1 aborts.

If flag = 1, B1 aborts. If not aborted or returned ⊥, B1 computes R = Ri(sid)
∏

j∈J\{i}msgj,2.
If the j∗th Hchal query has already been made, then B1 checks if the j∗th Hchal query had inputs

(m, pk,J , R), if so, then B1 aborts since for A to return a valid uf-0 forgery on (m, pk,J , R), A is
not allowed to query partial signature of any signer on these inputs.

Note that by our assumption that A always queries Hchal(m, pk,J , R) before calling Sign3O,
Hchal(m, pk,J , R) ̸= ⊥.
B1 then returns partial signatures as follows:

– If i ̸= i∗, B1 returns si = ri + λJi · αi · Hchal(m, pk,J , R) (using ri ← Si(sid)).
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– Otherwise, if i = i∗, B1 returns si∗ from Si∗(sid).

Eventually, A outputs a forgery (m∗,J ∗, z∗, R∗). If i∗ ̸∈ J ∗ or if m∗, pk,J ∗, R∗ are not the
j∗th Hchal query, then B1 aborts. We assume w.l.o.g that Hchal(m

∗, pk,J ∗,R∗) ̸= ⊥, and denote it
as h∗ ← Hchal(m

∗, pk,J ∗,R∗). B1 gets m′∗ ← Qchal(m
∗, pk,J ∗,R∗), which was used to program

Hchal(m
∗, pk,J ∗,R∗).

If not aborted, B1 outputsm′∗, R′∗ = (R∗)

1

λJ
∗

i∗ , z′∗ =
1

λJ
∗

i∗
·

z∗ − h∗ · (
∑

j∈J ∗\{i∗}

λJ
∗

j · αj)

 .

We claim that this is a valid Schnorr forgery. This is because, (i). B1 never sent a Sign query to the
Schnorr challenger, and (ii). Vf(pk,m∗, (J ∗, R∗, z∗)) = 1 which means that,

gz
∗
= R∗ ·

∏
j∈J

X
h∗·λj

j


This means that,

gz
′∗

=

(
gz

∗−h∗·(
∑

j∈J∗\{i∗} λ
J∗
j ·αj)

) 1

λJ
∗

i∗

=

(
gz

∗

gh
∗(
∑

j∈J∗\{i∗} λ
J∗
j ·αj)

) 1

λJ
∗

i∗

=

(
R∗ ·

∏
j∈J ∗ X

h∗λj

j∏
j∈J ∗\{i∗}(Xj)h

∗·λj

) 1

λJ
∗

i∗

=
(
R∗X

h∗λi∗
i∗

) 1

λJ
∗

i∗

= (R∗)

1

λJ
∗

i∗ ·Xh∗
i∗

= R′∗ ·Xh∗
i∗

Lastly, B1 programmed h∗ = Hchal (m
∗, pk,J ∗, R∗) to be equal to the value of Ĥsig on input(

m′∗, pk∗, (R∗)
1

λJ
∗

i∗

)
. This follows from how B1 responds to all Hchal queries with i∗ ∈ J , and how

B1 programs the j∗th Hchal query from within the signing queries. This gives us:

gz
′∗
= R′∗ ·X

Ĥchal

m′∗,pk∗,(R∗)

1

λJ
∗

i∗


i∗

Hence,
(
R′∗ = R∗

λJ∗
i∗

, z′∗ = 1

λJ∗
i∗
· (z∗ − h∗ · (

∑
j∈J ∗\{i∗} λ

J ∗

j · αj))

)
is a valid Schnorr signature

for message m′∗.
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B1 is able to produce a valid forgery whenever it does not abort. Let Abort denote the event
in which B1 prematurely aborts the simulation. This means that Pr

[
Guf

Schnorr[G] = 1 | Abort
]

=

Advsa-uf-0Schnorr3-PR-1[G](A). Hence, we get:

AdvufSchnorr[G](B1) = Pr
[
Abort ∧ (Guf

Schnorr[G] = 1)
]
+ Pr

[
Abort ∧ (Guf

Schnorr[G] = 1)
]

= Pr
[
Abort ∧ (Guf

Schnorr[G] = 1)
]

= Pr
[
Abort

]
· Pr
[
Guf

Schnorr[G] = 1 | Abort
]

Let us use E1a to refer to the event that B1 guessed i∗ correctly (i.e. i∗ ∈ J ∗ and i∗ ̸∈ QSK
1 ),

let E1b represent the event that B1 correctly guessed j∗ Let E2a be the event that, for all qS signing
queries, A had not queried Hchal(m, pk,J , R) before calling Sign2O(m, 1, i,J ) for some i, and E2b be
the event that, for all qS signing queries, B1 had not already programmed Hchal(m, pk,J , R) before
A calls Sign2O(·). Let E3 denote the event in which B1 does not abort due to a collision in Hcom

and E4 the event in which B1 does not abort due to flag being equal to 1.
Next, observe that Pr[E1a] ≥ 1

n , Pr[E1b] ≥ 1
qH+qS

, and the probability that B1 guesses both i∗, j∗

correctly is atleast 1
n(qS+qH) . Also, Pr

[
E2b

]
≤ q2S

p , since for any signing query, a collision can occur
with probability max qS/p. Next, Pr[E2a] ≥ (1 − qS

p )qH . This is true since, conditioned on A not
observing an Hcom query whose output was Ĥcom(Ri(sid)), its view is independent of the value R
in the input (m, pk,J , R) to Hchal. We simplify the expression to get Pr[E2a] ≥ 1− qSqH

p , meaning
Pr
[
E2a

]
≤ qSqH

p . Similarly Pr[E3] ≤ q2C/2
λ and Pr[E4] ≤ qC/2

λ, since the responses of B1 to Hcom

queries are uniformly random in {0, 1}λ. Then, we have,

Pr
[
Abort

]
= Pr[E1a ∧ E1b ∧ E2a ∧ E2b ∧ E3 ∧ E4]

≥ Pr[E1a ∧ E1b]− Pr
[
E2a

]
− Pr

[
E2b

]
− Pr[E3]− Pr[E4]

≥ 1

n(qH + qS)
− qSqH

p
−

q2S
p
−

q2C
2λ
− qC

2λ

≥ 1

n(qH + qS)
− qS(qS + qH)

p
−

2q2C
2λ

.

Since conditioned on Abort, B1 perfectly simulates the game to A, we get,

AdvufSchnorr[G](B1) ≥ (
1

n(qH + qS)
− qS(qH + qS)

p
−

2q2C
2λ

) · Advsa-uf-0Schnorr3-PR-1[G](A)

≥
Advsa-uf-0Schnorr3-PR-1[G](A)

n(qH + qS)
− qS · (qH + qS)

p
−

2q2C
2λ

.

This completes the proof.

Proof of Lemma 8
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Proof. Consider the following adversary B2 playing the game Gsa-uf-0
Schnorr3-PR-1[G]. B2 can issue sig-

nature queries and random oracle queries to its challenger. To distinguish the random oracles in
Gsa-uf-0

Schnorr3-PR-1[G] from the ones in the Schnorr3-PR game, we denote queries to the former by Ĥcom(R)

and Ĥchal(m, pk,J , R). B2 invokes A(G) and simulates Gsa-uf-0
Schnorr3-PR[G] as follows:

1. Receive (n, t, E) from A, and forward (n, t) to the challenger in the game Gsa-uf-0
Schnorr3-PR-1[G]

2. Receive pk = (pk1, . . . , pkn), pkc from the challenger and forward them to A.
3. Initialize (the simulated oracles) Hcom(R) ← ⊥,Hchal(m, pk,J , R) ← ⊥ for all values of m,R

and all possible subsets of signers J . B2 also maintains a counter t to track the number of Hchal

queries, initialized with 0.
4. For signing queries, for each signer j ∈ [n], B2 maintains the following mappings: (i) Rj : [S]→
{0, 1}λ to record nonces generated to respond to Sign1O(m, e, j,J ) queries, (ii) Qj,2 : [S] →
M× [E]×2N ×{{0, 1}λ} to record all the Sign2O queries (with their corresponding inputs) that
A sends to B2, (iii) S ′j : [S]→M× [E]× 2N to track Sign1O queries, and (iv) Q′j,1, Q

′
j,2 to store

auxiliary information for answering Sign1O and Sign2O queries respectively. All these mappings
are initialized as empty at the beginning of simulation. These are in addition to the variables
sidj ,Si,1,Si,2 defined and initialized as per the security game in Figure 5.

5. We use qS , qH , qC to denote a bound on the number of signing queries, random oracle queries
on Hchal and random oracle queries on Hcom, issued by A across all epochs and signing sessions,
respectively. B2 guesses j∗ ←$ [qH + qS ], denoting which of the Hchal(m, pk,J , R) queries will
correspond to the forgery that A will return. j∗ is upper bounded by qH+qS , because we assume
w.l.o.g. that A queries Hchal before calling Sign3O.

6. Reply to oracle queries by A as follows:
– Hcom(R) : B2 forwards query Ĥcom(R) to the challenger in Gsa-uf-0

Schnorr3-PR-1[G], and sends the re-
sponse toA, where we use Ĥcom to denote the corresponding random oracle in Gsa-uf-0

Schnorr3-PR-1[G].
B2 sets Hcom(R)← Ĥcom(R).

– Hchal(m, pk,J , R) : If Hchal(m, pk,J , R) ̸= ⊥, then B2 just returns that. Otherwise, B2
increments t← t+ 1.
If t = j∗, then B2 queries its oracle, and sets Hchal(m, pk,J , R)← Ĥchal(m, pk,J , R).
Otherwise, B2 iterates over all the Sign2O queries that A has made so far, i.e. for all j,
for all sidj ∈ Qj,2, with (mj , ej ,Jj , {msgjk,1}) ← Qj,2(sidj) s.t. j ̸∈ QSK

ej ∪ QSK′
ej and mj =

m,Jj = J , B2 does the following: for all k ∈ Jj \ {j}, B2 finds the element Rk,j s.t.
Hcom(Rk,j) = msgjk,1. For any k if there’s more than one such, B2 aborts. Otherwise, if
there’s exactly one Rk,j value for all k, then B2 computes Rj = Rj(sidj)

∏
k∈J\{j}Rk,j , and

if Rj = R, then B2 sets Hchal(m, pk,J , R)← h, where h is taken from Q′j,2(sidj).
Lastly, if no such Sign2O query is found, B2 sends query Ĥchal(m, pk,J , R) to the challenger
in Gsa-uf-0

Schnorr3-PR-1[G], and sets Hchal(m, pk,J , R)← Ĥchal(m, pk,J , R).
In all cases, B2 sends Hchal(m, pk,J , R) to A, after setting its value.

– skO(e, i) : For e = 1, B2 forwards this to the challenger in Gsa-uf-0
Schnorr3-PR-1[G], and sends the

response to A. For e > 1, B2 samples a random skei ←$ Zp, and returns skei to A. B2 sets
QSK

e ← QSK
e ∪ {i}.

– Sign1O(e, i,J ,m) : For e = 1, B2 forwards this to the challenger in Gsa-uf-0
Schnorr3-PR-1[G], and

sends the response to A. For e > 1, if this is the first signing query for this epoch, and
if A has made less than t − 1 skO queries for this epoch, then B2 samples a random set
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QSK′
e ⊂ [n]\QSK

e of signers of size t−1−|QSK
e |, and for all j ∈ QSK′

e , B2 samples a random
skej ←$ Zp. From now on, we can use lagrange interpolation over the elements in QSK

e ∪QSK′
e

to respond to signing queries for epoch e.
Then, B2 sets sidi ← sidi + 1, Si,1 ← Si,1 ∪ {sidi} and S ′i(sidi) ← (m,J , e). B2 samples a
random element, ci ←$ {0, 1}λ, sets Q′i,1(sidi)← ci and returns msgi,1 ← ci and sidi to A.

– Sign2O(e, i, sidi, {msgj,1}): If sidi ̸∈ Si,1 or if e does not match the epoch number in S ′i(sidi),
then B2 returns ⊥. Otherwise, we denote (m,J , e)← S ′i(sidi). For each j ∈ J , B2 finds the
element Rj such that Hcom(Rj) = msgj,1. If, for some j, there is more than one such value,
then B2 aborts.
If e = 1, then B2 just forwards this to its challenger.
Otherwise, B2 sets Si,1 ← Si,1 \ {sidi},Si,2 ← Si,2 ∪ {sidi}. Next, if i ∈ QSK

e ∪QSK′
e , then B2

samples ri ←$ Zp, sets Ri ← gri , and saves Q′i,2(sidi)← (ri, Ri).

Otherwise, B2 calculates pkei ← pki
∏

j∈QSK
e ∪QSK′

e
(g

skej

pkj
)λj(i), where λj(i) =

∏
k∈QSK

e ∪QSK′
e \{j}

k−i
k−j .

Next, for each j ∈ J \ {i}, B2 finds the sidj,i s.t. Q′j,1(sidj,i) = msgj,1.
• If for any j, there is no such sidj,i, or if S ′j(sidj,i) ̸= (m,J , e), B2 samples si ←$ Zp, hi ←$

Zp and computes Ri ← gsi

(pkei )
hiλ

J
i

, where λJi =
∏

j∈J\{i}
j

j−i . B2 then sets Q′i,2(sidi) ←

(si, hi, Ri). If no such sidj,i is found for some j, then B2 sets flag← 1.
• Otherwise, for all j for which B2 found a sidj,i, B2 checks ifA has called Sign2O(e, j, sidj,i, {msgjk,1})

yet, i.e. B2 checks if sidj,i ∈ Qj,2. If this has not been called for any j i.e. sidj,i ̸∈ Qj,2∀j,
then, B2 samples si ←$ Zp, hi ←$ Zp and computes Ri ← gsi

(pkei )
hiλ

J
i

. B2 stores Q′i,2(sidi)←

(si, hi, Ri).
• If there is a j such that sidj,i ∈ Qj,2 i.e. A has already called Sign2O(m, e, j,J , {msgjk,1})

such that j ̸∈ QSK
e ∪QSK′

e , then, B2 compares msgk,1 with msgjk,1 for all k ∈ J \ {i, j}.
If they are all equal, and if msgji,1 = Q′i,1(sidi), then B2 samples a random si ←$ Zp but
uses the same hj from Q′j,2(sidj,i). B2 computes Ri ← gsi

(pkei )
hjλ

J
i

. B2 stores Q′i,2(sidi) ←

(si, hj , Ri).
• If there is no such j (i.e. for which all the messages in the Sign2O(m, e, j,J , sidj,i, {msgjk,1})

call match this Sign2O(m, e, i,J , sidi, {msgj,1}) call, and which is also not in QSK
e ∪QSK′

e

), then B2 samples a random si ←$ Zp, hi ←$ Zp, and sets Ri ← gsi

(pkei )
hiλ

J
i

. B2 stores

Q′i,2(sidi)← (si, hi, Ri).
In all cases, B2 sends Ri to A, and sets Qi,2(sidi) ← (m, e,J , {msgj,1}), Hcom(Ri) ←
Q′i,1(sidi), Ri(sidi)← Ri.
Lastly, B2 iterates over all the Sign2O queries that have been made so far, i.e. for all j, for
all sidj ∈ Qj,2, with Qj,2(sidj) = (mj , ej ,Jj , {msgjk,1}) s.t. j ̸∈ QSK

ej ∪ QSK′
ej and i ∈ Jj and

msgji,1 = Q′i,1(sidi), B2 does the following: for all k ∈ Jj \ {j}, B2 finds the element Rk,j

s.t. Hcom(Rk,j) = msgjk,1. For any k if there’s more than one such, B2 aborts. Otherwise, if
there’s exactly one Rk,j value for all k, then B2 computes Rj = Rj(sidj)

∏
k∈J\{j}Rk,j , and

does the following:
• If Hchal(m, pk,J , Rj) has been set before, and was not the j∗th Hchal query, then B2

aborts.
– Sign3O(e, i, sidi, {msgj,2}): If e = 1, B2 forwards this to its challenger. If sidi ̸∈ Si,2, then B2

returns ⊥. Otherwise, let us denote (m,J , e)← S ′i(sidi).
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Upon receiving msgj,2 for all j ∈ J \ {i}, B2 first checks that all the commitments are valid.
If, for some j ∈ J \ {i},Hcom(msgj,2) = ⊥, then B2 sets Hcom(msgj,2)← Ĥcom(msgj,2).
Next, if for some j ∈ J \ {i}, Hcom(msgj,2) ̸= msgj,1 (B2 uses the msgj,1 stored in Qi,2(sidi)

to compare), then B2 returns ⊥. Note that this perfectly simulates the game Guf-0
Schnorr3-PR[G],

since the protocol returns null if the messages received are malformed.
If flag = 1, B2 aborts.
If not aborted or returned ⊥ up to this point, B2 computes

R← Ri(sidi)
∏

j∈J\{i}

msgj,2.

B2 denotes hm,J ,e ← Hchal(m, pk,J , R). Note that this should not correspond to the j∗th
query since A is not allowed to query any partial sign on m∗ for its forgery to be valid. i.e.
if (m, pk,J , R) are the inputs to the j∗th Hchal query, then B2 aborts.
Note that hm,J ,e ̸= ⊥ due to our assumption that A always calls Hchal oracle before the
corresponding Sign3O query. Then, if i ∈ QSK

e ∪QSK′
e , B2 returns ri+hm,J ,e · skei ·λJi , using

ri from Q′i,2(sidi). Otherwise, B2 uses the si value in Q′i,2(sidi) and returns it as the partial
signature.
Lastly, B2 does Si,2 ← Si,2 \ {sidi}.

B2 preserves perfect simulation of Gsa-uf-0
Schnorr3-PR[G].

Eventually, A outputs a forgery (m∗, (J ∗, R∗, σ∗)). If (m∗, pk,J ∗, R∗) are not the j∗th Hchal

query, then B2 aborts. Otherwise, B2 outputs this forgery as well. We claim that if the output of
the simulated Gsa-uf-0

Schnorr3-PR[G] is 1, then so is the output of Gsa-uf-0
Schnorr3-PR-1[G], assuming B2 does not

abort. This is because,

– Vf(pk,m∗, (J ∗, R∗, σ∗)) = 1 implies that this forgery will be valid w.r.t. the 1-epoch game as
well.

– (m∗, (J ∗, R∗, σ∗)) being a valid forgery means that A didn’t query any partial sign on m∗, in
any epoch. Since B2 forwards signing queries to its challenger only in the first epoch, this means
that B2 made no signing queries on m∗ as well.

– Since A returns a valid UF-0 forgery, for each k ∈ [E], it holds that |QSK
e | < t. This implies,

|QSK
1 | < t. Also, B2 forwards no secret key queries in any epoch e > 1.

Hence, all the requirements are satisfied for the output of Gsa-uf-0
Schnorr3-PR-1[G] to be 1. Using law of

total probability and Bayes theorem, we get:

Advsa-uf-0Schnorr3-PR-1[G](B2) ≥ Pr
[
Abort

]
· Advsa-uf-0Schnorr3-PR[G](A)

Let us use E1 to denote the event that B2 guessed j∗ correctly, E2a to denote the event that for
all qS signing queries, A had not queried Hchal(m, pk,J , R), before A calls Sign2O(m, e, i,J , ·) for
some e, i, and E2b to denote the event that, for all signing queries, B2 had not already programmed
Hchal(m, pk,J , R), before A calls Sign2O(m, e, i,J , ·) for some e, i. Let E3 be the event that B2
doesn’t abort due to a collision in Hcom (which is checked in Sign2O(·) queries) , and E4 be the event
that B2 doesn’t abort because flag = 1. Then, we have,

Pr
[
Abort

]
= Pr[E1 ∧ E2a ∧ E2b ∧ E3 ∧ E4]

≥ Pr[E1]− Pr
[
E2a

]
− Pr

[
E2b

]
− Pr[E3]− Pr[E4].
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Similar to Proof D.7, Pr[E1] ≥ 1
qS+qH

. Pr[E3] ≤ q2C/2
λ and Pr[E4] ≤ qC/2

λ ≤ q2C/2
λ, since the

responses of B1 to Hcom queries are uniformly random in {0, 1}λ.
Pr
[
E2b

]
≤ q2S

p , since for every signing query, a collision can occur with probability atmost qS/p.
Next, Pr[E2a] ≥ (1− qS

p )qH . This is true since conditioned on A not observing an Hcom query whose
output was Ĥcom(Ri(m,J , e)), its view is independent of the value R in the input (m, pk,J , R) to
Hchal. We simplify the expression to get Pr[E2a] ≥ 1− qSqH

p , meaning Pr
[
E2a

]
≤ qSqH

p .
Combining everything, we get,

Advsa-uf-0Schnorr3-PR-1[G](B2)

≥ (
1

qS + qH
− qSqH

p
−

q2S
p
−

q2C
2λ
−

q2C
2λ

) · Advsa-uf-0Schnorr3-PR[G](A)

≥
Advsa-uf-0Schnorr3-PR[G](A)

qS + qH
− qS(qS + qH)

p
−

2q2C
2λ

This completes the proof.

Proof of Lemma 9

Proof. Consider the following adversary B playing the game Guf
Schnorr[G], wherein B can issue signa-

ture queries and random oracle queries. To distinguish the random oracle in Guf
Schnorr[G] from the

one in the accountability game of 3-round Schnorr ATS-PR, we denote queries to the former by
Ĥsig(m, pk, R). We use α to denote the challenge secret key in the Schnorr game Guf

Schnorr[G]. On get-
ting the challenge public key pk∗ ← gα from its Schnorr challenger, B invokes A(G) and simulates
Gsa-acc-0

Schnorr3-PR[G] as follows:

– Receive (n, t, E) from A.
– Guess i∗ ←$ [n]. Sample {α1, . . . , αi∗−1, αi∗+1, . . . , αn} ←$ Zp. Compute pkj ← gαj for all j ̸= i∗.
– Set pki∗ ← pk∗ (i.e. B embeds the challenge public key at position i∗)
– For all k ∈ {2, . . . , E}, sample a1,k, . . . , at−1,k ←$ Fp. Then, for all i ∈ [n], compute δki ←∑t−1

l=1 al,k · il (i.e. we generate new Shamir secret shares of 0 for every epoch)
– Send pk = {pk1, . . . , pkn}, pkc = ⊥ to A.

Next, A issues a sequence of queries. We use qS , qH , qC to denote a bound on the number of
signing queries, random oracle queries on Hchal and random oracle queries on Hcom across all epochs
and signing sessions respectively. B guesses j∗, denoting which of the Hchal(m, pk,J , R) queries will
correspond to the forgery that A will return. j∗ is upper bounded by qH + qS , because we assume
w.l.o.g. that A always queries Hchal before sending a corresponding Sign3O query.
B initializes (the simulated oracles) Hcom(R)← ⊥,Hchal(m, pk,J , R)← ⊥ for all values of m,R

and all possible subsets of signers J . B also maintains (i) a counter t to track the number of Hchal

queries, and (ii) a dictionary Qchal to track auxiliary information used to answer Hchal queries. It is
initialized as empty, i.e. Qchal ← ∅.

For signing queries, for each signer j ∈ [n], B maintains four mappings: (i). Rj : [qS ]→ {0, 1}λ
to record nonces generated to respond to Sign1O(e, j,J ,m) queries, (ii) Next, Sj to store auxiliary
information for answering signing queries, (iii) Mj,1 to record all the messages sent by A in a
Sign2O(e, j, sid, {msgi,1}) query and (iv) S ′j , to store (m,J , e) corresponding to session ids. All
these mappings are initialized as empty at the beginning of simulation. We now specify how B
answers each of A’s queries:
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– Hcom(R): If Hcom(R) has been determined, i.e. if Hcom(R) ̸= ⊥, then B1 returns Hcom(R). Oth-
erwise, B1 samples a random string c←$ {0, 1}λ and returns c. B1 sets Hcom(R)← c.

– Hchal(m, pk,J , R): If Hchal(m, pk,J , R) has been determined, i.e. it holds that Hchal(m, pk,J , R) ̸=
⊥, then B returns Hchal(m, pk,J , R). Otherwise, B increments the counter t← t+ 1.
Next, if i∗ ̸∈ J , then, if t = j∗, then B aborts, otherwise, B samples a random element h←$ Zp,
sets Hchal(m, pk,J , R)← h and returns h to A.
If i∗ ∈ J , and if t ̸= j∗, B iterates through all the Sign2O(·, i∗, ·, ·) queries that A has made
so far, i.e. for all sid ∈ S ′i∗ , with (mi∗ ,Ji∗ , e) ← S ′i∗(sid), if mi∗ = m,Ji∗ = J , then, for each
j ∈ J \ {i∗}, B finds Rj s.t. Hcom(Rj) = msgj,1, where msgj,1 is stored in Mi∗,1(sid). If there’s
exactly one such Rj for all j ∈ J \ {i∗}, then B computes Ri∗,sid = Ri∗(sid)

∏
j∈J\{i∗}Rj , and

if Ri∗,sid = R, then B sets Hchal(m, pk,J , R)← h, using h stored in Si∗(sid).
In all other cases (including the case i∗ ∈ J and t = j∗), B samples a random message m′ ←$M,

queries its Schnorr challenger for h ← Ĥsig(m
′, pk∗, R

1

λJ
i∗ ). B sets Hchal(m, pk,J , R) ← h, and

returns h to A. B also stores Qchal(m, pk,J , R)← m′.
– skO(k, i): if i = i∗, B aborts. Otherwise, if k = 1, B returns αi, and if k > 1, B returns

αi +
∑k

j=2 δ
j
i .

– Sign1O(e, i,J ,m): B first sets sidi ← sidi + 1, Si,1 ← Si,1 ∪ {sidi} and S ′i(sidi) ← (m,J , e). If
i ̸= i∗, then B samples random r ←$ Zp and computes Ri(sidi)← gr. Also, B1 sets Si(sidi)← r.
If Hcom(Ri(sidi)) ̸= ⊥, then B1 returns msgi,1 ← Hcom(Ri(sidi)). Otherwise, B samples a random
string c←$ {0, 1}λ, sets Hcom(Ri(sidi))← c, and returns msgi,1 ← c to A.
If i = i∗, B samples a random ci∗ ←$ {0, 1}λ, stores Si∗(sidi∗)← ci∗ and returns msgi∗,1 ← ci∗ .
In all cases, B also sends sidi to A.

– Sign2O(e, i, sidi, {msgj,1}): B first checks if sidi ∈ Si,1 and the epoch number in S ′i(sidi) is e, if
not, it returns ⊥. Otherwise, denoting (m,J , e) ← S ′i(sidi), for each j ∈ J \ {i}, B finds the
element Rj such that Hcom(Rj) = msgj,1. If for some j there is more than one such, then B
aborts. If for some j ̸= i∗ this value is undefined, B sets a flag flag ← 1, returns Ri(sidi), and
stores all the messages received, Mi,1(sidi)← {msgj,1}j∈J\{i}. Also, for i ̸= i∗, j = i∗, if there is
no sidi∗,i s.t. Si∗(sidi∗,i) = msgi∗,1, then B1 sets flag← 1.
Otherwise, if i ̸= i∗, B simply returns Ri(sidi) and stores all the messages received, Mi,1(sidi)←
{msgj,1}j∈J\{i}. But if i = i∗, B first samples si∗ ←$ Zp, and a random h ←$ Zp. Then, B
computes pkei∗ ← pk∗ ·g

∑e
k=2 δ

k
i∗ and sets Ri∗(sidi∗)← gsi∗

(pkei∗ )
h·λJ

i∗
, and sets Hcom(Ri∗(sidi∗))← ci∗ ,

where ci∗ is stored in Si∗(sidi∗). B additionally sets Si∗(sidi∗)← (Si∗(sidi∗), si∗ , h).
Next, B computes R = Ri∗(sidi∗)

∏
j∈J\{i∗}Rj , wherein Hcom(Rj) = msgj,1∀j ∈ J \ {i∗}.

• If Hchal(m, pk,J , R) was ever queried by A before, or was programmed by B while responding
to another Sign2O(m, e′, i′,J , {msgj,1}) query in a different epoch or signing session, then B
aborts.

B returns Ri∗(sidi∗) and stores all the messages received, Mi∗,1(sidi∗)← {msgj,1}j∈J\{i∗}.
In all cases where B doesn’t abort or send ⊥, B sets Si,1 ← Si,1 \ {sidi},Si,2 ← Si,2 ∪ {sidi}.

– Sign3O(e, i, sidi, {msgj,2}): B first checks that all the commitments sent by A are valid. We
denote (m,J , e) ← S ′i(sidi). If, for some j ∈ J \ {i},Hcom(msgj,2) = ⊥, then B samples a
random number c←$ {0, 1}λ and sets Hcom(msgj,2)← c.
Next, if for some j ∈ J \ {i}, Hcom(msgj,2) ̸= msgj,1 (using msgj,1 stored in Mi,1(sidi)), then
B returns ⊥. Also, if flag = 1, then B aborts. Note that this perfectly simulates the game
Guf-0

Schnorr3-PR-1[G], since the protocol returns null if the messages received are malformed.
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If not aborted or returned ⊥ yet, B computes R = Ri(sidi)
∏

j∈J\{i}msgj,2.
• If i = i∗ and if the j∗th Hchal query has already been made, then B checks if the j∗th H

query had inputs (m, pk,J , R), if so, then B aborts since for A to return a valid acc-0 forgery
on (m, pk,J , R), A is not allowed to query partial signature of the i∗ signer on the forgery
message.
• Note that Hchal() ̸= ⊥ because of our assumption that A always queries Hchal before calling

the corresponding Sign3O query.
Then, if i ̸= i∗, B returns si ← ri + λJi (αi +

∑e
k=2 δ

k
i ) ·Hchal(m, pk,J , R), where ri ← Si(sidi) .

If i = i∗, B returns si∗ from Si∗(sidi∗).

It can be seen that B is able to perfectly simulate the game Gsa-acc-0
Schnorr3-PR[G].

Eventually, A outputs a forgery (m∗,J ∗, z∗, R∗). If i∗ ̸∈ J ∗ or if m∗, pk,J ∗, R∗ are not the
j∗th Hchal query, then B aborts. Otherwise, We assume w.l.o.g. that Hchal(m

∗, pk,J ∗, R∗) ̸= ⊥ and
denote it as h∗ ← Hchal(m

∗, pk,J ∗, R∗).
B finds (m′∗) ← Qchal(m

∗, pk,J ∗, R∗) which was used to program Hchal(m
∗, pk,J ∗, R∗) ←

Ĥsig(m
′∗, pk∗, (R∗)

1

λJ
∗

i∗ ).

B returns (m′∗, (R∗)

1

λJ
∗

i∗ , 1

λJ∗
i∗

(z∗ − h∗ ·
∑

j∈J ∗\{i∗} λ
J ∗

j αj)) as a Schnorr signature forgery.

Similar to the proof of Lemma 7, it can be seen that this is a valid forgery. Hence, B is able to pro-
duce a valid forgery using A whenever it doesn’t abort. Let Abort denote the event in which B prema-
turely aborts the simulation. This means that Pr

[
Guf

Schnorr[G] = 1 | Abort
]
= Advsa-acc-0Schnorr3-PR-1[G](A).

Hence we get (similar to D.7),

AdvufSchnorr[G](B) = Pr
[
Abort

]
· Advsa-acc-0Schnorr3-PR[G](A)

Let us use E1a to denote the event that B guesses i∗ correctly (i.e. i∗ ∈ J ∗ and i∗ ̸∈ QSK
e ∪

QSig
e (m∗) for all epochs e) and E1b denotes the event that B guesses j∗ correctly. Also, let E2a to

denote the event that for all qS signing queries, A had not queried Hchal(m, pk,J , R), before A calls
Sign2O(m, e, i,J ) for some e, i, and E2b to denote the event that, for all signing queries, B had not
already programmed Hchal(m, pk,J , R), before A calls Sign2O(m, e, i,J ) for some e, i. Let E3 be
the event that B2 doesn’t abort due to a collision in Hcom (which is checked in Sign2O(·) queries),
and E4 be the event that B2 doesn’t abort because flag = 1.

We have Pr[E1a] ≥ 1
n , Pr[E1b] ≥ 1

qH+qS
(similar to D.7) and, Pr

[
E2b

]
≤ q2S

p , Pr
[
E2a

]
≤ qSqH

p ,
Pr[E3] ≤ q2C/2

λ and Pr[E4] ≤ qC/2
λ ≤ q2C/2

λ, similar to D.7.
Then, similar to the analysis in D.7, we get,

AdvufSchnorr[G](B) = Pr
[
Abort

]
· Advsa-acc-0Schnorr3-PR[G](A)

= (Pr[E1a ∧ E1b ∧ E2a ∧ E2b ∧ E3 ∧ E4]) · Advsa-acc-0Schnorr3-PR[G](A)

≥ (Pr[E1a ∧ E1b]− Pr
[
E2a

]
− Pr

[
E2b

]
− Pr[E3]− Pr[E4])

·Advsa-acc-0Schnorr3-PR[G](A)

≥ (
1

n(qS + qH)
−

q2S
p
− qSqH

p
−

q2C
2λ
−

q2C
2λ

) · Advsa-acc-0Schnorr3-PR[G](A)

≥
Advsa-acc-0Schnorr3-PR[G](A)

n(qS + qH)
− qS(qS + qH)

p
−

2q2C
2λ
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This completes the proof.
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