
CycloneNTT: An NTT/FFT Architecture Using Quasi-Streaming of
Large Datasets on DDR- and HBM-based FPGA Platforms

Kaveh Aasaraai, Emanuele Cesena, Rahul Maganti, Nicolas Stalder, Javier Varela, Kevin Bowers

{kaasaraai,jvarela,kbowers}@jumptrading.com

{ecesena,rmaganti,nicolas}@jumpcrypto.com

ABSTRACT
Number-Theoretic-Transform (NTT) is a variation of Fast-Fourier-

Transform (FFT) on finite fields. NTT is being increasingly used

in blockchain and zero-knowledge proof applications. Although

FFT and NTT are widely studied for FPGA implementation, we

believe CycloneNTT is the first to solve this problem for large

data sets (≥ 2
24
, 64-bit numbers) that would not fit in the on-chip

RAM. CycloneNTT uses a state-of-the-art butterfly network and

maps the dataflow to hybrid FIFOs composed of on-chip SRAM

and external memory. This manifests into a quasi-streaming data

access patternminimizing external memory access latency andmax-

imizing throughput. We implement two variants of CycloneNTT

optimized for DDR and HBM external memories. Although histor-

ically this problem has been shown to be memory-bound, Cyclo-

neNTT’s quasi-streaming access pattern is optimized to the point

that when using HBM (Xilinx C1100), the architecture becomes

compute-bound. On the DDR-based platform (AWS F1), the latency

of the application is equal to the streaming of the entire dataset

log𝑁 times to/from external memory. Moreover, exploiting HBM’s

larger number of channels, and following a series of additional

optimizations, CycloneNTT only requires
1

6
log𝑁 passes.

ACM Reference Format:
Kaveh Aasaraai, Emanuele Cesena, Rahul Maganti, Nicolas Stalder, Javier

Varela, Kevin Bowers. . CycloneNTT: An NTT/FFT Architecture Using

Quasi-Streaming of Large Datasets on DDR- and HBM-based FPGA Plat-

forms. In Proceedings of (Jump Trading / Jump Crypto). ACM, New York,

NY, USA, 12 pages.

1 INTRODUCTION
The Number Theoretic Transform (NTT) is a generalization of the

Fast Fourier Transform (FFT). The FFT, first presented in [CT65]

and credited back to Gauss, remains unparalleled in its impact on

modern computer science, having largely been responsible for the

birth of digital signal processing. As a result, numerous attempts

have been made over the last half century to optimize and improve

both the asymptotic and concrete efficiency of the FFT.

Classically, the FFT is computed over the field of complex num-

bers, which has an interpretation as transforming periodic functions

from the time to the frequency domain. When the computation

is done over finite fields, the FFT is usually referred to as NTT.

It has an interpretation as transforming polynomials over the fi-

nite field from their coefficients to their value representations, and

it’s used for example for large-polynomial multiplication, or for

interpolating polynomials at given values.

Jump Trading / Jump Crypto, 2022, Chicago, IL
© 2022

Modern applications in cryptography, ranging from homomor-

phic encryption to lattice-based and other post-quantum primitives,

to zero-knowledge (ZK) proofs, motivated a recent review of classi-

cal FFT algorithms and research in efficient implementations over

finite fields. And, as richer applications are built or proposed, the

need to compute NTT over larger datasets grows.

Our work is motivated by ZK applications, particularly in the

context of blockchain technology. ZK proofs are a building block

to build both scalability solutions (e.g., ZK-rollups) and privacy-

enhanced applications for blockchains. In many concrete schemes,

generating a ZK proof requires computing a NTT, typically on a

fairly large dataset.

Contribution. In this paper we present CycloneNTT, a FPGA solu-

tion for computing NTT on large datasets (≥ 2
24
, 64-bit elements),

that thus require external memory.

By leveraging the algorithm introduced in [BLDS10] to reduce

memory accesses, and applying a series of algorithmic- and imple-

mentation-level optimizations, CycloneNTT achieves a quasi stream-

ing data access pattern that maximizes throughput.

The architecture is configurable, and we apply it to DDR- and

HBM-based platforms. Moreover, we show how the designer can

trade off power for delay, depending on the target system and

environmental conditions.

Organization. In Sec. 2 we present related work, and in Sec. 3 we de-

fine terminology and notation. We introduce CycloneNTT in Sec. 4

describing requirements, architecture and high-level interaction

between host and FPGA. In Sec. 5 and 6 we present two instances

of CycloneNTT: a single-layer streaming implementation that is

memory bounded, and a multi-layer streaming one that can over-

come memory bandwidth constrains and become compute-bound.

We show experimental results in Sec. 7 and we conclude in Sec. 8

highlighting future works.

2 RELATEDWORK
Following the growing interest in ZK proofs, recent efforts have

been made to map them to specialized hardware architectures. Of

particular relevance are PipeZk for ASIC [ZWZ
+
21], and NTTGen

for FPGA [YKKP22].

PipeZk is a pipelined accelerator for zkSNARKs targeting an

ASIC architecture, and composed of two subsystems: one for poly-

nomial computation (including NTT) and one for multi-scalar mul-

tiplication. The former performs a recursive decomposition of large

NTT kernels into smaller tiles, which allows them to fit into on-

chip compute resources while complying with off-chip bandwidth

limitations. In PipeZk, multiple modules can run in parallel to op-

timize data utilization. A module is composed of NTT cores, each



Jump Trading / Jump Crypto, 2022, Chicago, IL Aasaraai et al.

performing the butterfly operations, and employing FIFOs of dif-

ferent depth to match the required stride access. Because of the

data-access pattern, the architecture needs to block data in on-chip

SRAM (performing a matrix transpose) before it is able to write it

back to off-chip memory. Although it is an interesting architecture,

it targets a limited range of input sizes from 2
14

to 2
20

elements. And

being an ASIC design means that it loses the deployment flexibility

and time-to-market offered by FPGAs.

NTTGen is a hardware generation framework targeting FPGAs,

optimized for homomorphic encryption. The inputs to the frame-

work are application parameters (such as latency, polynomial de-

gree, and a list of primemoduli), and hardware resources constraints

(e.g. DSP, BRAM and I/O bandwidth), while the output is synthesiz-

able Verilog code. It exploits data-, pipeline- and batch-parallelism,

and offers two flavours of cores: general purpose, and low-latency

customized for generalized Mersenne primes. Input and output

polynomials are stored in off-chip memory, and results are shown

for polynomial degrees ranging from 2
10

to 2
14
. At the heart of

the design is the use of Streaming Permutation Networks (SPN)

[CP15], which allows for arbitrary permutation strides, while reduc-

ing the interconnect complexity and avoiding expensive crossbars.

A SPN consists of three sub-networks: two of them for spatial per-

mutations (in the same cycle) and one for temporal-permutation

(across cycles). NTTGen actually extends the original SPN to sup-

port runtime-control of the underlying routing tables and address

generations. In comparison, CycloneNTT takes a different approach:

we avoid permutations entirely by using a multi-FIFO architecture

backed by off-chip memory.

Worth mentioning as well is HEAX [RLPD20], a highly paral-

lelizable hardware architecture targeting fully homomorphic en-

cryption, with pipelined NTT cores and a word-size of 54 bits to

maximize resources utilization (DSPs). It requires on-chip multi-

plexers to distribute data and twiddle factors to the cores, and is

mainly optimized for on-chip memory usage up to 2
13

elements.

Beyond that, it employs off-chip memory but only to a very limited

extent due to the latency overhead.

Previous relevant art targeting FPGAs also include [SRTJ
+
19],

[KLC
+
20] for homomorphic encryption, [DM22] for lattice-based

cryptography, [MK20] for homomorphically encrypted deep neural

network inference, as well as [MKO
+
20] for post-quantum digital

signature scheme. Nevertheless, these designs make primarily use

of on-chip BRAM and do not directly provision the use of off-chip

memory. All these work could benefit from CycloneNTT approach

to scale to larger NTTs and possibly allow for richer applications.

Other interesting references, although not directly applicable to

CycloneNTT, include: in-memory computation such as CryptoPIM

[NGI
+
20] and MeNTT [LPY22]; optimized GPU-based implementa-

tions such as [DCH
+
21]; as well as RISC-V architecture extensions

for NTT such as [PS22] and [KA20].

3 BACKGROUND
3.1 Number Theoretic Transform (NTT)
Let 𝑁 be a positive integer and F a field containing a primitive

𝑁 -root of unity, denoted as 𝑤𝑁 . That is, 𝑤𝑁 = 1 in the field, but

𝑤𝑘 ≠ 1, for 0 < 𝑘 < 𝑁 .

The Discrete Fourier Transform (DFT) is a linear transformation

𝐹𝑁 : F𝑁 → F𝑁 defined for y = 𝐹𝑁 (x) by:

𝑦𝑖 =

𝑁−1∑︁
𝑗=0

𝜔
𝑖 𝑗

𝑁
𝑥 𝑗

When F is a finite field of characteristic 𝑝 > 0, the DFT is usually

called Number Theoretic Transform (NTT). Note that in practical

implementation, a DFT over C will be an approximation, whereas

in the case of NTT, we are interested in exact solutions.

A naive implementation of DFT has complexity 𝑂 (𝑁 2). An ef-

ficient algorithm to compute DFT with complexity 𝑂 (𝑁 log𝑁 ) or
better is referred to as Fast Fourier Transform (FFT). For practical

applications, we typically set 𝑁 = 2
𝑛
(radix-2 FFT/NTT), extending

the 𝑥𝑖 with zeros.

Since the𝑤𝑖 𝑗
are 𝑁 2

coefficients, but the𝑤𝑘
are only 𝑁 distinct

numbers, there is periodicity in the matrix coefficients. This led to

a number of "factorization lemmas", of which the Cooley-Tukey

framework [CT65] is the most well-known and fundamental.

When 𝑁 factors in 𝑛1𝑛2, the Cooley-Tukey framework decom-

poses a given order 𝑁 DFT into 𝑛2 smaller order 𝑛1 DFTs, and 𝑛1
smaller order 𝑛2 DFTs, combined with so-called twiddles, which
are proper powers of 𝜔𝑁 . It directly follows that the complexity

reduces from 𝑁 2
to 𝑛1𝑛

2

2
+ 𝑛2

1
𝑛2 < 𝑁 2

.

By repeatedly factoring 𝑁 , one gets to smaller DFTs of prime

order. These "minimal" FFTs (combined with their twiddle multi-

plications) are called butterflies. In particular, if 𝑁 is a power of

2, factoring all the way leads to repeated order 2 DFTs, for a total

complexity of 𝑁 log𝑁 .

Two common ways to compute a FFT are decimation in time
(DIT) and decimation in frequency (DIF). These represent the two

cases of factoring 𝑁 "from the left" or "from the right": DIF when

𝑛1 is a small radix, DIT when 𝑛2 is a radix. We stress that DIT and

DIF differ both on 1) how they "loop" over the input values, and 2)

the butterfly function. We add that it is not necessary and, as we

will see, not always efficient to factor "all the way down" - repeated

higher-order (also called higher radix) factorsr educe the number

of accesses to memory.

3.2 Goldilocks Field
While our design is generic and can be adapted to any field, includ-

ing complex numbers, our current implementation focuses on the

field F𝑝 with 𝑝 = 2
64 − 232 + 1 = 0xFFFF_FFFF_0000_0001, called

Goldilocks field [Gou21, Tea22].

Elements 𝑎, 𝑏 ∈ F𝑝 can be represented as 64-bit (unsigned)

integers. Common field operations are extremely efficient on 64-bit

CPUs, including:

• 𝑎 ± 𝑏 mod 𝑝 , as a single addition/subtraction, optionally

followed by subtracting/adding 𝜀 = 2
32 − 1 = 0xFFFF_FFFF

in case of overflow/underflow.

• 𝑎 · 𝑏 mod 𝑝 , as a single 64 × 64 → 128-bit multiplication

followed by reduction mod 𝑝 , that can be done efficiently

(a handful of assembly instructions), again using the sparse

representation of 𝑝 .



CycloneNTT Jump Trading / Jump Crypto, 2022, Chicago, IL

Algorithm 1 Radix-2 gNTT

1: function gNTT(values, logN, twiddles)

2: values are expected in bit-reversed order
3: 𝑁 ← 2

logN

4: for 𝑖 = 0 to logN do ⊲ DIT loop

5: 𝑚 ← 2
𝑖+1

6: for 𝑘 = 0 to 𝑁 step𝑚 do
7: 𝜔 ← twiddles[𝑘/𝑚] ⊲ one twiddle in inner loop

8: for 𝑗 = 0 to𝑚/2 do
9: 𝑒 ← values[𝑘 + 𝑗]
10: 𝑜 ← values[𝑘 + 𝑗 +𝑚/2]
11: values[𝑘 + 𝑗]← 𝑒 + 𝑜 ⊲ DIF butterfly

12: values[𝑘 + 𝑗 +𝑚/2]← 𝜔 (𝑒 − 𝑜)
13: end for
14: end for
15: end for
16: return values

17: end function

3.3 gNTT Algorithm
In [BLDS10], Bowers et al. introduce the gFFT algorithm to com-

pute DFT (corresponding to a factorization they call𝐺). Their key

observation is that it is possible to re-arrange the computation and

drastically reduce the number of memory accesses to the twiddle

factors, asymptotically from 𝑂 (𝑁 log𝑁 ) in the classical Cooley-

Tukey down to 𝑂 (𝑁 ).
Surprisingly, the resulting algorithm looks exactly like a Cooley-

Tukey DIT, but with butterflies that resemble those of a DIF butterfly.

The derivation is independent from the base field, therefore it also

applies to NTT.

We call gNTT the analogous algorithm for NTT, and we present

a radix-2, in-place, iterative version in Alg. 1. This is at the core of

CycloneNTT. Note the DIT loop starting at line 4 (therefore this

implicitly requires the input values to be sorted in bit-reverse order),

and the DIF butterfly in line 11-12. The key feature of gNTT is the

twiddle 𝜔 at line 7, which is constant throughout the inner loop.

As we will see in more detail, NTT is generally a memory-

bound computation and CycloneNTT, in some instances, results in

a compute-bound one. Reducing the number of twiddles accesses

via gNTT is the first step towards achieving this goal.

We also highlight that gNTT is often more efficient than Cooley-

Tukey even for software implementations. For example, as a corol-

lary of this work, we implemented gNTT in the open source library

plonky21, resulting in a 10-15% performance improvement.

4 CYCLONENTT
In this section we present CycloneNTT architecture and its unique

properties. It performs in-place operations on the input values. For

the sake of this study, input data is assumed to be stored in off-chip

memory, although streaming data to the FPGA from the host can

be easily accommodated.

The following lists key design goals for CycloneNTT:

• All computation performed entirely within the FPGA and

DRAM directly connected to the FPGA.

1
https://github.com/mir-protocol/plonky2/

Figure 1: CycloneNTT System Architecture and Dataflow

• Support large datasets that do not fit in on-chip SRAM.

• Avoid random-access to off-chip memory.

• Provide configuration to the designer to trade-off power for

delay.

4.1 Architecture
The overall system architecture is shown in Fig 1. The system is

composed of the following main components:

• Externalmemory, which is assumed to beDRAMbased (DDR,

HBM).

• Multiple large FIFOs for streaming the dataset in and out,

backed by on-chip and off-chip memory.

• Sub-NTT module which can be either a single array of but-

terfly units, or a multi-layered network of butterfly units

connected just like a regular NTT network.

• Some connectivity to a host, either through PCIe or net-

work, to load twiddle factors and input data into the external

memory.

• A host processor to initialize the system, with no interaction

during the computation.

In Sec. 5 and 6 we present two instances of this architecture that

primarily differ on the Sub-NTT module and how data is streamed

from/to external memory.

The first instance, Single-Layer Streaming, computes NTT by

moving values in and out of external memory log𝑁 times (e.g., 24

times). The second instance, Multi-Layer Streaming, improves on

that by computing 𝐶 layers at a time (e.g., 𝐶 = 3, or 𝐶 = 6), thus
reducing the number of passes over the values to

1

𝐶
log𝑁 (resp., 8

or 4, compared to the 24 for Single-Layer Streaming).

4.2 High-Level Protocol
Host and FPGA implement the following protocol:

ntt_init(𝑁 ) Initialize the FPGA and twiddles.

(1) Host pre-computes all 𝑁 twiddles, sorted in bit-reverse

order.

(2) Host sends twiddles over PCIe.

(3) FPGA receives the twiddles and stores them in the external

memory.

ntt_send(values) Send input values into FPGA.

https://github.com/mir-protocol/plonky2/


Jump Trading / Jump Crypto, 2022, Chicago, IL Aasaraai et al.

(1) Host sends the input values over PCIe, in bit-reverse order
2

(2) FPGA receives the input values and stores them in the

external memory.

ntt_compute() Compute NTT.

(1) Host sends compute command over PCIe.

(2) FPGA repeats multiple times:

(a) Load twiddles and values into input FIFOs (from exter-

nal memory into SRAM).

(b) Process twiddles and values via Sub-NTT.

(c) Send output values into output FIFOs (from SRAM to

external memory).

Details depend on the architecture and are explained in

Sec. 5, 6.

ntt_recv()→ values Receive output values from FPGA.

(1) Host sends recv command over PCIe.

(2) FPGA returns output values from external memory over

PCIe.

We would like to note that optimizing data transfer between the

FPGA and the host is an orthogonal problem that depends on the ac-

tual platform, and the type of communication used (PCIe/Ethernet),

hence we consider it out of the scope of this work.

4.3 Butterfly Unit
We design and implement a fully-pipelined DIF butterfly unit for

the Goldilocks field F𝑝 , where elements are represented as 64-bit

integers. Fig 2 shows the 8-stage pipeline design with an initiation

interval of 1. The DIF butterfly computes:

𝑒′ = 𝑒 + 𝑜
𝑜′ = 𝜔 (𝑒 − 𝑜) ,

where 𝑒, 𝑜 are two input values, 𝜔 is the twiddle factor, and all

operations are modulo 𝑞.

We employ multiple techniques as outlined in [Gou21] to reduce

the complexity of the computations involved, including modular

multiplication:

• Multiplication by the field’s 𝜖 = 2
32 − 1 is simplified to a

single subtraction as the constant is in the form of 2
𝑛 − 1.

• Due to the unique properties of the Goldilocks field and its

prime, the modular multiplication times 𝜔 can be reduced to

a single 64-bit unsigned multiplication along with a series

of 64-bit additions and subtractions.

5 SINGLE-LAYER STREAMING
In this version of the architecture, the NTT network is processed

one layer at a time. For each layer, the entire dataset is read from

off-chip memory, processed through an array of butterfly units, and

the results are sent back to the off-chip memory, forming a cyclone
of data streaming.

Along with the dataset, twiddle factors are also streamed in to

be used by the butterfly array. This architecture streams in and out

the entire dataset as many as the layers of the NTT network. For 𝑁

numbers, the network has log𝑁 layers, hence the time complexity

2
Bit-reverse order indexes can be computed "on-the fly", and Host can access input

values in RAM, in bit-reverse order. This seems more efficient than in-place reordering.

Figure 2: CycloneNTT butterfly unit optimized for
Goldilocks field. This 8-stage pipeline outputs 𝑒′ = 𝑒 + 𝑜 ,
𝑜′ = 𝜔 (𝑒 − 𝑜). 𝑒 and 𝑜 are "even" and "odd" inputs to the
butterfly, 𝜔 is the twiddle factor, 𝜖 = 2

32 − 1 is used for
modular reduction, and reg(s) are pipeline registers to align
data in time.

Figure 3: An 8-input butterfly network (starting from left),
showing twiddle indexes used in each layer. All right-inputs
are highlighted with a bubble.

of this architecture is determined by the bandwidth of the off-chip

memory to stream in and out the entire dataset log𝑁 times.

5.1 Streaming Twiddles
Since we use [BLDS10]’s network, within a layer, twiddle factors

are used in sequential order. As we progress through the layers,

the number of twiddle factors needed is cut in half, as shown in

Fig 3. However, the stream always starts from index-0. Therefore,

for layer 𝐿, we simply stream in twiddles [0... 𝑁
2
𝐿+1 ) from off-chip

memory.

We make an important observation here that as we progress

through layers, the bandwidth required for streaming twiddles is



CycloneNTT Jump Trading / Jump Crypto, 2022, Chicago, IL

Figure 4: Input data is first bit-reverse reordered and placed
in two FIFOs. The butterfly unit pops data from both FIFOs
and twiddle FIFO, but pushes data only into one FIFO

.

cut in half. This is not only because half the twiddles are used, but

also due to the fact that in layer 𝐿, 2𝐿 neighboring butterflies use the

same twiddle factor. This provides opportunity for twiddle reuse,

given we process butterflies in a sequential order within the layer.

5.2 Parallel Butterflies
We note that the data dependency in the butterfly network is only

inter-layer. Within a layer, we can execute in parallel as many

butterflies as we can afford to feed input data to, and fit the circuit on

the chip. In this single-layer CycloneNTT architecture, we employ

an array of 𝐵 fully-pipelined butterflies in parallel. In order to

achieve maximum throughput, we need to feed the butterfly array

every cycle to avoid bubbles. Therefore, we require 2 × 𝐵 numbers

every cycle to be read from off-chip memory, regardless of the layer

we are processing.

It should be noted that this architecture is memory bound by

design: for every butterfly unit in the system, two numbers and a

twiddle factor need to be read from off-chip memory.

5.3 2-FIFO Architecture
As demonstrated in Fig 3, there exists only inter-layer data depen-

dency in the butterfly network. Furthermore, every output of a

butterfly feeds only a single butterfly, meaning that a single but-

terfly feeds two butterflies in the next layer. However, we make a

further important observation that a single butterfly, depending

on its position in the layer, either feeds the left input or the right

input of its target butterflies, as highlighted in Fig 3. We use this

observation to propose a 2-FIFO architecture as shown in Fig 4.

Every butterfly can be seen as reading its inputs from two FIFOs,

left and right. However, both its outputs will be pushed into either

left, or right FIFO (Fig 4). In addition, as evidenced in Fig 3, the

two outputs are 2
𝐿
rows apart, as their target butterflies in the next

layer are 2
𝐿
apart. For a given butterfly in position (P) in layer (L),

we have:

𝑂 − 𝐹𝐼𝐹𝑂 : 𝑙𝑒 𝑓 𝑡/𝑟𝑖𝑔ℎ𝑡 = ⌊ 𝑃
2
𝐿
⌋ mod 2

𝑂 − 𝐹𝐼𝐹𝑂 : 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 = 0, 2𝐿
(1)

We start by placing every other input number into left and right

FIFOs (Fig 4). Processing every layer of the network amounts to read-

ing
𝑁
2
numbers from each FIFO (𝑁 total), running them through

the array of butterflies in parallel, and writing the results back to

their corresponding FIFO.

5.4 FIFO Memory
The two FIFOs employed in this CycloneNTT architecture are

backed by both on-chip and off-chip memory. We construct the

FIFOs as ring buffers in off-chip memory, and read from off-chip

memory directly. However, when pushing into the FIFOs, we first

store the data and its position in the FIFO in a small, on-chip buffer.

When enough data has been buffered to fill an entire DRAM row,

we flush the buffer to off-chip memory at the corresponding ring

address. Flushing data at DRAM row granularity ensures the lowest

overhead due to the internal structure of the DRAM, yielding the

highest throughput possible.

6 MULTI-LAYER STREAMING
The single-layer architecture proposed in Section 5 requires a single

butterfly unit per two input data as we arrange the units in a one-

dimensional array. Therefore, if off-chip memory bandwidth allows

for streaming in maximum of 2𝐵 elements per cycle, we can only

utilize 𝐵 butterfly units. However, if the chip’s capacity allows for

more butterfly units, we have a memory bound architecture.

To overcome the under-utilization of our computing resources,

we can arrange the butterfly units into a sub-network of butterflies

rather than a vector. This sub-network is similar in shape to the

overall butterfly network shown in Fig 3, it is only smaller in size.

A sub-network with 𝐵 butterfly units in each layer (total of log(2𝐵)
layers by design) requires 2𝐵 inputs, and produces 2𝐵 outputs,

hence its memory bandwidth requirements are the same as in the

single-layer architecture.

Said in another way, if we have bandwidth to stream 2𝐵 elements

per cycle, then we can construct a sub-network with 𝐵 butterfly

units per layer, that sequentially processes log(2𝐵) layers, for a
total of 𝐵 log(2𝐵) butterfly units. In return, we will only need to

stream the dataset from/to external memory
1

log(2𝐵) log𝑁 times.

Just to provide a concrete example, we can instantiate a 6-layer

architecture with 𝐵 = 32 butterflies per layer, or a total of 6 × 32 =
192 butterflies. This architecture will only need to stream the dataset

from/to external memory
1

6
log𝑁 times.

6.1 Streaming Twiddles
In multi-layer processing, we process a sub-network of the overall

network at a time. This means that for every sub-network execu-

tion, we require twiddle factors for all the log(2𝐵) layers at the
same time. Consequently, we require higher memory bandwidth to

stream in twiddle factors. On a positive note, recall that the band-

width requirement for twiddle factors halves every layer into the

network. Therefore, for a sub-network width 𝐵, the overall band-

width requirement for the twiddle factors is only Σ𝐵−1
0

1

2
𝑖 , i.e. < 2

times larger compared to what is needed for single-layer processing,

regardless of the value of 𝐵.



Jump Trading / Jump Crypto, 2022, Chicago, IL Aasaraai et al.

6.2 2B-FIFO Architecture
In the case of single-layer processing, we employ 2 FIFOs. As for

multi-layer processing, we require larger number of FIFOs to be

able to feed all the sub-network inputs at the same time. Fortunately,

HBM-based FPGA platforms provide a large number of ports to off-

chip memory banks (e.g. 32). Furthermore, each port is significantly

wider (typically 512-bits) than Goldilocks field’s numbers (64-bits).

Since we stream in data from all FIFOs at the same time, we can

combine multiple FIFOs (512/64=8) into the same memory bank to

be able to access all FIFOs in parallel.

As with single-layer architecture, the sub-network is fed from

all FIFOs in parallel, and all outputs of the sub-network are directed

to a single FIFO, identified by the position (𝑃 ), layer (𝐿), and size of

the sub-network (𝐵):

𝑂 − 𝐹𝐼𝐹𝑂 : 𝑖𝑛𝑑𝑒𝑥 = ⌊ 𝑃
2
𝐿
⌋ mod 2𝐵

𝑂 − 𝐹𝐼𝐹𝑂 : 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 = {𝑖 × (2𝐵)𝐿 ; 𝑖 ∈ [0, 2𝐵)}
(2)

6.3 Output Buffer Analysis
As stated in eq. (2), egress FIFO index switches every (2𝐵)𝐿 beats,

yet the sub-network is fed from all FIFOs in parallel. Therefore, for

every FIFO we need a buffer to absorb the rate disparity until the

egress FIFO switches to the next index. However, as we advance

through network layers (𝐿), egress FIFO changes very infrequently

up until the very last layer, where we would require a buffer as

large as 𝐵 × 𝑁
2𝐵

= 𝑁
2
numbers. Since we target very large datasets,

this is not a practical buffer size we can afford on-chip. In the fol-

lowing subsections we show how we solve this issue by employing

a technique we call quasi-streaming.

6.4 Quasi-Streaming
The primary reason behind streaming, rather than random access

of, the data to/from off-chip memory is the internal structure of the

DRAM architectures. In a typical DRAM (DDR/HBM), accessing

a row of the data is expensive, hence the memory is arranged

in a very wide format. To minimize overhead, applications must

strive to access and consume an entire row before moving on to

the next. Therefore, streaming data within a row is very beneficial.

However, we make a key observation that if an application’s access

quantum is an entire DRAM row, for such application random

access to different rows yields the same throughput as streaming

rows sequentially.

In Fig 5 we show the throughput we achieve by accessing random

and sequential addresses, while varying access size. As can be seen,

streaming data reaches maximum throughput with access size of

256-bytes, however random-access only eventually reaches the

same throughput with access size of 4096-bytes or higher. This

demonstrates that when accessing a DRAM one-row-at-a-time, the

application can view the DRAM as a truly random-access-memory,

and no consideration needs to be made for sequential addressing.

Using this observation, we propose exploiting quasi-streaming

in CycloneNTT to set the output buffer capacity of FIFOs to a few

multiples of a DRAM row, irrespective of 𝐵. Since we can random

access ingress FIFOs at DRAM-row granularity, we strategically

choose a sequence of addresses to read and feed the sub-network

Figure 5: Bandwidth comparison between streaming and
random-access of various number of bytes. This data was
captured on C1100 platform using HBM channel-0.

Figure 6: Quasi-Streaming read order to change O-FIFO index
every two beats. In this example we highlight reading index-
4 out of order leads to output FIFO index-1.

that produces frequently-changing egress FIFO indexes. Fig 6 shows

an example of such sequence for quasi-streaming of data, that

enables switching egress FIFO index quickly. Alternatively, for a

large enough 𝐵 (≥ 8), which leads to reading one or more DRAM

rows at a time, one can conveniently choose 𝐵 to be the quantum

of FIFO reads, simplifying the read sequence further. It should be

noted that in this architecture, the elements stored in the FIFOs are

not popped sequentially, but rather with pre-defined read addresses.

6.5 Power vs Delay
CycloneNTT is a configurable architecture. The primary parameter

to tune is the number of inputs to the sub-network (𝐵), which also

determines the number of FIFOs (2𝐵). As we grow 𝐵, fewer passes



CycloneNTT Jump Trading / Jump Crypto, 2022, Chicago, IL

Layer-1 Layer-2 Last Layer (log𝑁 )

Twiddles 1
1

2

1

log𝑁

FIFO-0 1 1 1

FIFO-1 1 1 1

Table 1: Relative bandwidth requirement for each port

of the dataset is required (
log𝑁

log 2𝐵
), lowering execution time. How-

ever, sub-network size grows proportional to 𝐵 log 2𝐵, resulting

in increased power dissipation. Depending on the application and

environmental properties, one can choose the right 𝐵 to create the

best fitting solution.

Another major design decision to consider is clock frequency.

Depending on the platform, after a certain clock speed the memory

interface will be saturated, and increasing the clock speed returns

no discernible gains. On the other hand, increases in clock speed

result in more power dissipation. For example, on the C1100 HBM-

based platform [AX21, AX22], each port is rated at the theoretical

maximum speed of 14.2GB/s, excluding DRAM timing overheads.

Considering the 512-bit interface to the memory, this translates

to a maximum clock speed of 222MHz, after which the memory

interface is saturated.

7 MEMORY INTERFACE
In this section we discuss the architecture and complexity of the

memory interface needed for reading and writing to off-chip DRAM

storage. CycloneNTT uses DRAM to store twiddle factors, input

vectors, and the back-end for the 2B FIFOs employed.

7.1 Single-Layer
In this section we discuss the relatively simpler memory interface

needed for the single-layer CycloneNTT. As we only require two

FIFOs, we can simply allocate one memory port per FIFO as shown

in Fig 7. In addition, we require a third memory port to access twid-

dle factors. Table 1 shows the relative bandwidth requirement per

port in each layer. For example, when processing the first layer of

the entire network, at every beat for every butterfly, we require one

number from each FIFO, along with one twiddle factor. Therefore,

while processing the first layer, the bandwidth requirement is the

same for all ports.

7.1.1 Twiddles. As described in Sec 3.3 our butterfly network uses

twiddles in a streaming fashion, in bit-reverse order. Therefore, at

initialization time we store all twiddle factors into the correspond-

ing memory bank, in bit-reverse order. During the computation of

layer 𝑙 we simply stream in twiddles [0 . . . 𝑁
2
𝑙 ) as required by the

network.

7.1.2 Reads. At least in the case of Goldilocks field and our tar-

geted platforms, the memory interfaces are wider (512-bits) than

the individual numbers (64-bits), and we expect this will be the case

for most applications. Consequently, every read from the memory

provides multiple numbers. This provides the opportunity to pro-

cess multiple numbers at the same time using a vector of butterflies,

as explained in Section 5.

Figure 7: Memory interfaces used in single-layer streaming
connecting left/right FIFOs and providing twiddle access.

Figure 8: Output FIFO index and position in the FIFO based
on the beat-index in each layer 𝑙 ∈ [0 . . . log𝑁 ).

7.1.3 Writes. As shown in Fig 3 and Eq 1 both outputs of the

butterfly unit are directed to the same FIFO, either left or right.

In addition, the two outputs are not placed sequentially, and are

separated by Eq 1. Consequently, for each write port, we require

two (one for each butterfly output) small SRAM-based caches to

hold each butterfly output as they become available. This caching

is necessary as writing individual numbers to DRAM yields very

low bandwidth utilization.

7.2 Multi-Layer
The multi-layer configuration of CycloneNTT improves memory

bandwidth utilization while presenting new challenges with regards

to data write backs.

Similar to single-layer, memory ports are assumed to be wider

than individual numbers. However, unlike single-layer, in the same

cycle we cannot consume multiple numbers from the same FIFO as

that would require creating a vector of sub-networks which would

be prohibitively expensive. Instead, we map multiple FIFOs into

the same memory port, which results in one number per FIFO per

read-cycle throughput as we require. Considering our targeted field

and platforms, each port can accommodate
512

64
= 8 FIFOs.

7.2.1 Reads. Each memory port is independently fetching num-

bers from its allotted eight FIFOs (or input vector for the first round)

in a quasi-streaming fashion. To minimize read overhead, read re-

quests are batched into𝐷 beats, yielding all numbers required for𝐷



Jump Trading / Jump Crypto, 2022, Chicago, IL Aasaraai et al.

Figure 9: Logical and physical memory ports in multi-layer
architecture. Each cache is implemented with a single block-
ram.

beats of the sub-network.𝐷 is chosen in away that 512×𝐷 ≥DRAM-

row. Next, read addresses follow a FIFO-first scheme to provide a

fast switching output FIFO as per Eq 2 and Fig 8. For the first and

last layers, output FIFO either switches with every beat or does

not switch at all, therefore read addresses end up being sequen-

tial. However, starting from the second layer, each port requests 𝐷

beats, then jumps the gap to the next output FIFO. In practice, this

is done with carefully decomposing the read address into limbs and

cycling through them out of order. This is very similar to DRAM

row/bank/bank-group interleaving, with the added complexity that

the bit width allocated for each part changes as we progress through

the layers. Nevertheless, this yields a compute-heavy, yet relatively

simple, circuit to determine read addresses.

7.2.2 Writes. Writing data back to DRAM is substantially more

complicated compared to reads. We have to overcome two chal-

lenges: a) Multiple FIFOs need to be combined into the same port,

b) As evident in Fig 8, the output data needs to be transposed.

In order to combine multiple outputs into the same port, we need

an SRAM-based cache to store the results as they become available.

The cache is as wide as the sub-network, and requires 𝐹 × 𝐷 rows

where 𝐹 = 8 in this case. It is only after every 𝐹 × 𝐷 beats that we

have the data for all FIFOs allotted to each port, at which time we

can write them to the memory after transposing them.

7.2.3 Twiddles. Similar to the single-layer architecture, twiddles

have the same bandwidth requirement as numbers in the first layer.

We opt to allocate the same number of ports for twiddles as for

numbers, which is
2𝐵
𝐹=8

.

7.3 Data Transposition
Row-Column data transposition is required starting from the second

layer. This is shown in Fig 8 as sequential numbers for each FIFO

are spread across beats. The challenge here is each write port cache

needs to support writing the entire beat (2B numbers) every cycle

as they come out of the sub-network, yet it needs to be able to

transpose 𝐹 = 8 beats into a write word for DRAM, also every cycle.

The first operation requires a wide memory arrangement, while

the second operation requires multiple read ports.

Fortunately, individual numbers being written (64-bits) are about

the same width as typical blockrams found in FPGAs (36/72 bits).

We propose the architecture shown in Fig ??. Each column is stored

Number of Ports Utilization

Single Layer - F1 3
3

4
= 75%

Single Layer - C1100 3
3

32
= 9%

3-Layer - C1100 3
3

32
= 9%

4-Layer - C1100 6
6

32
= 18%

6-Layer - C1100 24
24

32
= 75%

Table 2: Memory port usage and overall memory bandwidth
utilization of the platform.

into a separate blockram with acceptable storage waste. To provide

multiple read ports for data transpose, we carefully rotate the data

through blockram columns as they are being written. In this way,

no two numbers belonging to the same column are ever written to

the same blockram, hence we can read them in parallel from each

ram. This architecture requires 2𝐵, 2𝐵 × 1 multiplexers inside the

soft-crossbar, and 𝐹 , 2𝐵 × 1 multiplexers for data transpositions.

For 𝐵 > 4 this can yield to long critical paths, hence we opt to use

a 2-cycle multiplexer design.

7.4 Simultaneous Reads and Writes
At any given time, we are reading from all FIFOs to feed the sub-

network, and writing back its outputs to FIFOs. In order to avoid the

read/write clash into the same memory bank, we allocate two HBM

banks for each logical memory port of the architecture, as shown in

Fig 9. Across layers, we ping-pong between the underlying layers

for reads and writes, hence no HBM port is ever used for reads and

writes at the same time. This comes at the expense of extra memory

ports used.

Accessing adjacent HBM memory ports comes with almost no

overhead in HBM architectures. HBM provides a hardened, low-

latency crossbar that provides a high speed all-to-all configuration

only for adjacent ports. Therefore, ping-ponging between two ports

for each logical port amounts to changing theMSB of the address bit,

and using the same port for reads and writes with no multiplexers

required in the fabric.

7.5 Memory Interface Utilization
Following the memory interfacing explained in the previous sec-

tions, table 2 reports the number of memory ports used and overall

utilization of the platform memory interfaces, under various Cy-

cloneNTT configurations. Note that the reported number includes

ports needed for accessing numbers and twiddle factors. Overall,

in the case of multi-layer architecture, 3 × 2𝐵
𝐹=8

ports are needed,

making the 6-layer architecture the largest a 32-port HBM platform

can support.

8 EVALUATION
In this section we evaluate CycloneNTT on two different platforms

with various design parameters. We implement all networks with

Goldilocks butterfly units, however any number system can be

substituted. For example if the butterfly unit is replaced by one that

handles complex numbers, the entire system would calculate the

FFT of input data.



CycloneNTT Jump Trading / Jump Crypto, 2022, Chicago, IL

Platform Memory Type Single/Multi-Layer

AWS-F1 DDR Single

C1100 HBM

Single

3 (B=4)

4 (B=8)

5 (B=16)

6 (B=32)

Table 3: All configurations used for evaluation.

8.1 Methodology
Table 3 lists all CycloneNTT configurations used in this work. The

focus of this work is on the C1100 platform as is the more suitable

platform for such application. However, to demonstrate the porta-

bility of our design, we showcase a single-layer configuration on

AWS F1 platform as well.

We implement the entire system in SystemVerilog RTL, and

have made the code publicly available on GitHub, however for

anonymity we omit the link until after publication. We value the

reproducibility of all the results presented here, and chose platforms

that are accessible to most designers.

We report five metrics for each configuration of CycloneNTT:

• Resource Utilization: We report LUTs, registers, BRAMs,

URAMs (if any), and DSPs used in each configuration.

• Power: We rely on Vivado’s power report to get an estimate

of the power dissipation of the design. It should be noted that

these are estimates by the tool, and actual energy consump-

tion can vary at runtime due to input data and environmental

properties, and would require live measurements.

• Clock Speed: We report the clock speed achieved for each

design. As mentioned in Section 6.5, pushing the clock speed

beyond a certain point provides no discernible gains and will

only result in higher power dissipation.

• Latency: We report the time it takes to process the entire

NTT network. We exclude data transfer times between the

FPGA and the host, as we find data transfer optimization to

be orthogonal to this work, and can vary depending on the

platform, e.g. in a host-less, network-attached appliance the

interface speed can vary.

• Throughput: To facilitate comparison across platforms and

configurations, and with prior art, we report the throughput

of the design in terms of millions-of-numbers-per-second.

8.1.1 AWS-F1. This cloud platform provides access to cards with

AMD-Xilinx VU9P FPGAs [AWS]. The card has four independent

DDR channels, each with 16GB capacity and a theoretical through-

put of 16GB/s. The interface exposed to the design is 512-bits wide,

and would be saturated at 250MHz. On this platform, we rely on

Amazon provided shell for all communications with the host and

DDR. We find the platform and shell easy to use, taking about 20%

of the VU9P chip’s resources. The use of this platform in this study

is to demonstrate CycloneNTT’s performance on a DDR-based

platform where only a few number of memory ports are available.

Platform Layers Total Power (W) Design Power (W)

AWS-F1 Single 35.243 0.906

C1100

Single 28.45 1.727

3 27.766 1.265

4 35.071 3.919

5 48.800 14.739

6 52.752 23.499

Table 4: Power dissipation as estimated by Vivado.

Platform Layers LUTs Regs BRAM DSP

AWS-F1 Single 11255 (10%) 15325 (10%) 54 (10%) 160 (10%)

C1100

Single

20234 23061 320 54

(2.57%) (1.46%) (5.66%) (4.54%)

3

16771 16998 144 29

(1.9%) (1.0%) (2.4%) (2.2%)

4

53026 46026 384 74

(6.7%) (2.9%) (6.8%) (6.2%)

5

170099 121075 960 212

(20%) (6.9%) (16%) (16%)

6

563677 319104 2304 691

(65%) (18%) (39%) (51%)

Table 5: Resource utilization count and the percentage of the
platform used for various CycloneNTT configurations.

8.1.2 C1100. This is a PCIe card provided by AMD-Xilinx directly,

and is curated towards cryptocurrency mining [AX21]. This plat-

form is equipped with a VU55P HBM-based FPGA. This FPGA has

32-HBM channels, each with 2Gbits of capacity, and 14GB/s of the-

oretical bandwidth. HBM channels are almost independent [AX22].

The interface exposed to the design is 512-bits wide, and would

saturate at 222MHz. On this platform we use Vitis/XRT environ-

ment for development and deployment. However, we use pure RTL

kernels, and only rely on the platform for communication to the

host and HBM.

8.2 Results
In this subsection we discuss our findings regarding CycloneNTT

architecture over four metrics.

8.2.1 Power. Table 4 reports estimated power dissipation for vari-

ous CycloneNTT configurations on both platforms. Since we com-

pare power profile on two different platforms, we include power

report for the entire chip and the design. The single-layer architec-

ture consumes more energy compared to the 3-layer design. This

can be explained by its inefficient use of resources as shown in the

next section. The 6-layer architecture demonstrates a super-linear

power increase with respect to 𝐵. As reported in the next subsection,

this design has a significantly higher resource utilization, hence

the significant increase in its power dissipation.

8.2.2 Resource. In Fig 5 we report the resource utilization of var-

ious CycloneNTT configurations. The single-layer architecture

demonstrates a clear inefficiency in using resources, as it consumes

more than a 3-layer architecture. However a super-linear growth is



Jump Trading / Jump Crypto, 2022, Chicago, IL Aasaraai et al.

Platform Single/Multi-Layer Clock Speed (MHz)

AWS-F1 Single 250

C1100

Single 300

3 300

4 300

5 176

6 161

Table 6: Maximum clock speed attainable for each configura-
tion.

Figure 10: The final placement of a 6-layer CycloneNTT on
C1100 platform.

visible with increasing the number of layers in the case of multi-

layer architectures.

As discussed in Section 6.3, in the case of multi-layer architec-

tures, buffers as wide as 2𝐵 and as high as DRAM row are required

to absorb the rate disparity between ingress and egress of the FIFOs.

However, as discussed in Section 7 a separate buffer per memory

write port is also required, which also scales with respect to 𝐵.

As a result, and as evidenced in these results, BRAM usage grows

exponentially with respect to the number of layers.

The only DSP usage in the design is inside the butterfly units.

The single-layer design requires 𝐵 butterfly units multiplied by

the butterfly vector size (=8 in our case), whereas the multi-layer

design requires 𝐵 log 2𝐵 units. Considering DSPs only, the largest

CycloneNTT architecture to fit in C1100 platformwould be 8-layers.

However, due to excessive wires required inside the sub-network

of butterfly units, and to connect the soft crossbar required inside

write caches, as described in Section 7, a 6-layer (𝐵 = 32) is the

largest configuration that fits on the C1100 platform. In Fig 10

shows the final placement of a 6-layer CycloneNTT on C1100.

Layers 2
18

2
20

2
21

2
24

3 655-1310 - 6116-12233 55924-111848

4 - 1092-2184 - 20971-41943

5 - 732-1464 - -

6 64-129 - - 5518-1137

Table 7: Execution latency lower and upper bound, in mi-
croseconds, for various architectures with applicable input
sizes.

8.2.3 Clock Frequency. Fig 6 reports the maximum clock speed

achieved for each design configuration. Given the relatively flat

architecture of CycloneNTT, the clock speed is not significantly

affected by the number of layers used in the sub-network. However,

the routability of the design is affected, as the chip simply runs out of

wires to connect all the butterfly units for 7-layers or larger designs.

Although having a higher clock frequency is generally desirable,

however due to memory bandwidth constraints, the overall system

performance gain is negligible after a certain point. In addition,

when power dissipation is considered, one can choose to lower

the clock speed to lower power profile of the design, at minimal

expense of performance.

8.2.4 Estimated Latency. Given the clock frequency of each con-

figuration, we can estimate the latency of a multi-layer design for

a given input size. In an 𝐿 layer design, with input size of 𝑁 , all

numbers are read from the external memory and written back
𝑁
𝐿

times. Given we employ 2𝐵 = 2
𝐿
FIFOs in parallel, the lower bound

for the number of cycles it would take to cycle through the num-

bers is
𝑁
𝐿
∗ 𝑁

2
𝐿 ∗ 𝑝𝑒𝑟𝑖𝑜𝑑 . However, due to write caching required

for data transposition, the entire process can be delayed. In the

worst case scenario, all reads and all writes happen sequentially,

which gives us the upper bound for execution time of two times the

lower bound. In Table 7 we report the range for execution latency

of various configurations with various input sizes.

8.2.5 Latency. Table 8 compares the execution time of different

designs for different dataset sizes. As expected, the single-layer

architecture is the slowest, as it spends log𝑁 passes over the entire

dataset. In comparison, multi-layer architectures significantly cut

down the latency by processing multiple layers at the same time. Of

course as evidenced before, this speed gain comes at the relatively

significant cost of power and resources. Comparing Table 7 with

Table 8 we see that all obtained numbers fall between the estimated

range.

8.2.6 Throughput. Fig 11 shows the improvement in throughput

as we add layers to CycloneNTT. The exponential growth with

respect to the number of layers is evident. Here we also compare

CycloneNTT with prior works. [KMG
+
19] demonstrates a through-

put of 233 million per second for one million points, as that is the

largest that can fit in their platform’s on-chip memory. [YKKP22]

is an NTT generator platform, but does not accommodate a mil-

lion point NTT. We use their largest sample size (2
1
4) and assume

a linear scaling to calculate their equivalent million/sec through-

put. We should note that CycloneNTT utilizes external memory to

accommodate large data sets while providing superior throughput.



CycloneNTT Jump Trading / Jump Crypto, 2022, Chicago, IL

Layers 2
18

2
20

2
21

2
24

Single 3536 16806 36388 358937

3 1137 - 10859 101589

4 - 2117 - 42570

5 - 1036 - -

6 101 - - 8083

Table 8: Execution latency, in microseconds, for various ar-
chitectures with applicable input sizes.

Figure 11: Throughput in millions of numbers per second
processed by each architecture and prior work.

9 CONCLUSION AND FUTUREWORK
CycloneNTT is a hardware solution for computing NTT on large

datasets (≥ 2
24
, 64-bit numbers) that require external memory.

By applying a series of algorithmic- and implementation-level op-

timizations, CycloneNTT achieves a quasi-streaming data access

pattern that maximizes throughput. The architecture is configurable

and it has been applied to DDR- and HBM-based platforms. More-

over, the designer can trade off power for delay, depending on

the target system and environmental conditions. To the best of

our knowledge, CycloneNTT is the first architecture to tackle this

problem for such large datasets in an efficient manner.

Future work relates to the current limitations on external mem-

ory, and it is two-fold. First, as datasets grow larger, even off-chip

memory capacity becomes a limiting factor, which would require

the deployment of multiple FPGAs. Efficient inter-FPGA commu-

nication through various channels (PCIe/Ethernet/etc.) will be the

key points in achieving the same level of throughput as in a single

FPGA solution. Second, DRAM technology suffers, in general, from

high-latency, non-deterministic access latency, temperature and

reliability issues (for a detailed analysis, refer to [JWW21]). An al-

ternative here is to explore off-chip SRAM, which offers lower and

deterministic access latency at the cost of lower capacity and band-

width. Historically, off-chip SRAM has been limited to an order of

magnitude lower capacity compared to DRAM. However recent pro-

cess technology advancements have enabled higher capacity chips.

The use of smaller, yet-faster, off-chip memory coupled with the

deployment of multiple FPGAs, could provide higher system-level

performance and energy efficiency.

Alternative platforms that may also be considered in a future

work include, but are not limited to, AMD-Xilinx Versal AI Series

(making use of their AI Engines) as well as Versal HBM series.

REFERENCES
[AWS] AWS. Amazon EC2 F1 instances. https://aws.amazon.com/ec2/instance-

types/f1/. Accessed: 2022-09-23.

[AX21] AMD-Xilinx. Varium C1100 compute adaptor data sheet, DS1003 (v1.0).

https://docs.xilinx.com/v/u/en-US/ds1003-varium-c1100, September 2021.

Accessed: 2022-09-23.

[AX22] AMD-Xilinx. Vitis unified software platform documentation: Ap-

plication acceleration development (UG1393): HBM configuration

and use. https://docs.xilinx.com/r/en-US/ug1393-vitis-application-

acceleration/HBM-Configuration-and-Use, May 2022. Accessed: 2022-

09-23.

[BLDS10] Kevin J. Bowers, Ross A. Lippert, Ron O. Dror, and David E. Shaw. Improved

twiddle access for fast fourier transforms. IEEE Transactions on Signal
Processing, 58(3):1122–1130, 2010.

[CP15] Ren Chen and Viktor K. Prasanna. Automatic generation of high through-

put energy efficient streaming architectures for arbitrary fixed permuta-

tions. In 2015 25th International Conference on Field Programmable Logic
and Applications (FPL), pages 1–8, 2015.

[CT65] James Cooley and John Tukey. An algorithm for the machine calculation

of complex fourier series. Mathematics of Computation, 19(90):297–301,
1965.

[DCH
+
21] Sultan Durrani, Muhammad Saad Chughtai, Mert Hidayetoglu, Rashid

Tahir, Abdul Dakkak, Lawrence Rauchwerger, Fareed Zaffar, and Wen-mei

Hwu. Accelerating fourier and number theoretic transforms using tensor

cores and warp shuffles. In 2021 30th International Conference on Parallel
Architectures and Compilation Techniques (PACT), pages 345–355, 2021.

[DM22] Kemal Derya, Ahmet Can Mert, Erdinç Öztürk, and Erkay Savaş. CoHA-

NTT: A configurable hardware accelerator for NTT-based polynomial

multiplication. Microprocessors and Microsystems, 89:104451, 2022.
[Gou21] A. P. Goucher. An efficient prime for number-theoretic trans-

forms. https://cp4space.hatsya.com/2021/09/01/an-efficient-prime-for-

number-theoretic-transforms, September 2021. Accessed: 2022-09-23.

[JWW21] Matthias Jung, Christian Weis, and Norbert Wehn. The Dynamic Random
Access Memory Challenge in Embedded Computing Systems, pages 19–36.
Springer International Publishing, Cham, 2021.

[KA20] Emre Karabulut and Aydin Aysu. RANTT: A RISC-V architecture extension

for the number theoretic transform. In 2020 30th International Conference
on Field-Programmable Logic and Applications (FPL), pages 26–32, 2020.

[KLC
+
20] Sunwoong Kim, Keewoo Lee, Wonhee Cho, Yujin Nam, Jung Hee Cheon,

and Rob A. Rutenbar. Hardware architecture of a number theoretic trans-

form for a bootstrappable RNS-based homomorphic encryption scheme.

In 2020 IEEE 28th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), pages 56–64, 2020.

[KMG
+
19] Hans Kanders, Tobias Mellqvist, Mario Garrido, Kent Palmkvist, and Oscar

Gustafsson. A 1 million-point FFT on a single FPGA. IEEE Transactions on
Circuits and Systems I: Regular Papers, 66(10):3863–3873, 2019.

[LPY22] Dai Li, Akhil Pakala, and Kaiyuan Yang. MeNTT: A compact and efficient

processing-in-memory number theoretic transform (NTT) accelerator. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 30(5):579–588,
2022.

[MKO
+
20] Ahmet Can Mert, Emre Karabulut, Erdinc Ozturk, Erkay Savas, and Aydin

Aysu. An extensive study of flexible design methods for the number

theoretic transform. IEEE Transactions on Computers, pages 1–1, 2020.
[MK20] Ahmet Can Mert, Emre Karabulut, Erdinç Öztürk, Erkay Savaş, Michela

Becchi, and Aydin Aysu. A flexible and scalable NTT hardware : Appli-

cations from homomorphically encrypted deep learning to post-quantum

cryptography. In 2020 Design, Automation Test in Europe Conference Exhi-
bition (DATE), pages 346–351, 2020.

[NGI
+
20] Hamid Nejatollahi, Saransh Gupta, Mohsen Imani, Tajana Simunic Rosing,

Rosario Cammarota, and Nikil Dutt. CryptoPIM: In-memory acceleration

for lattice-based cryptographic hardware. In 2020 57th ACM/IEEE Design
Automation Conference (DAC), pages 1–6, 2020.

[PS22] Rogério Paludo and Leonel Sousa. NTT architecture for a linux-ready

RISC-V fully-homomorphic encryption accelerator. IEEE Transactions on
Circuits and Systems I: Regular Papers, 69(7):2669–2682, 2022.

[RLPD20] M. Sadegh Riazi, Kim Laine, Blake Pelton, and Wei Dai. HEAX: An archi-

tecture for computing on encrypted data. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’20, page 1295–1309, New York,

NY, USA, 2020. Association for Computing Machinery.

[SRTJ
+
19] Sujoy Sinha Roy, Furkan Turan, Kimmo Jarvinen, Frederik Vercauteren, and

Ingrid Verbauwhede. FPGA-based high-performance parallel architecture

https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://docs.xilinx.com/v/u/en-US/ds1003-varium-c1100
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/HBM-Configuration-and-Use
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/HBM-Configuration-and-Use
https://cp4space.hatsya.com/2021/09/01/an-efficient-prime-for-number-theoretic-transforms
https://cp4space.hatsya.com/2021/09/01/an-efficient-prime-for-number-theoretic-transforms


Jump Trading / Jump Crypto, 2022, Chicago, IL Aasaraai et al.

for homomorphic computing on encrypted data. In 2019 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages
387–398, 2019.

[Tea22] Polygon Zero Team. Plonky2: Fast recursive arguments with PLONK

and FRI. https://github.com/mir-protocol/plonky2/blob/main/plonky2/

plonky2.pdf, September 2022. Accessed: 2022-09-23.

[YKKP22] Yang Yang, Sanmukh R. Kuppannagari, Rajgopal Kannan, and Viktor K.

Prasanna. NTTGen: A framework for generating low latency NTT im-

plementations on FPGA. In Proceedings of the 19th ACM International

Conference on Computing Frontiers, CF ’22, page 30–39, New York, NY, USA,

2022. Association for Computing Machinery.

[ZWZ
+
21] Ye Zhang, Shuo Wang, Xian Zhang, Jiangbin Dong, Xingzhong Mao, Fan

Long, Cong Wang, Dong Zhou, Mingyu Gao, and Guangyu Sun. PipeZK:

Accelerating zero-knowledge proof with a pipelined architecture. In Pro-
ceedings of the 48th Annual International Symposium on Computer Architec-
ture, ISCA ’21, page 416–428. IEEE Press, 2021.

https://github.com/mir-protocol/plonky2/blob/main/plonky2/plonky2.pdf
https://github.com/mir-protocol/plonky2/blob/main/plonky2/plonky2.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Number Theoretic Transform (NTT)
	3.2 Goldilocks Field
	3.3 gNTT Algorithm

	4 CycloneNTT
	4.1 Architecture
	4.2 High-Level Protocol
	4.3 Butterfly Unit

	5 Single-Layer Streaming
	5.1 Streaming Twiddles
	5.2 Parallel Butterflies
	5.3 2-FIFO Architecture
	5.4 FIFO Memory

	6 Multi-Layer Streaming
	6.1 Streaming Twiddles
	6.2 2B-FIFO Architecture
	6.3 Output Buffer Analysis
	6.4 Quasi-Streaming
	6.5 Power vs Delay

	7 Memory Interface
	7.1 Single-Layer
	7.2 Multi-Layer
	7.3 Data Transposition
	7.4 Simultaneous Reads and Writes
	7.5 Memory Interface Utilization

	8 Evaluation
	8.1 Methodology
	8.2 Results

	9 Conclusion And Future work
	References

