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Abstract. In the seminal work published by Gohr in CRYPTO 2019, neural networks
were successfully exploited to perform differential attacks on Speck32/64, the smallest
member in the block cipher family Speck. The deep learning aided key-recovery
attack by Gohr achieves considerable improvement in terms of time complexity upon
the state-of-the-art result from the conventional cryptanalysis method. A further
question is whether the advantage of deep learning aided attack can be kept on
large-state members of Speck and other primitives. Since there are several key points
in Gohr’s key-recovery frameworks that seem not fit for large-state ciphers, this
question stays open for years.
This work provides an answer to this question by proposing a deep learning aided multi-
stage key-recovery framework. To apply this key-recovery framework on large-state
members of Speck, multiple neural distinguishers (NDs) are trained and carefully
combined into groups. Employing the groups of NDs under the multi-stage key-
recovery framework, practical attacks are designed and trialed. Experimental results
show the effectiveness of the framework. The practical attacks are then extended
into theoretical attacks that cover more rounds. To do that, multi-round classical
differentials (CDs) are used together with the NDs. To find the CDs’ neutral bits to
boost signals from the distinguishers, an efficient algorithm is proposed.
As a result, considerable improvement in terms of both time and data complexity
of differential key-recovery attacks on round-reduced Speck with the largest, i.e.,
the 128-bit state, is obtained. Besides, efficient differential attacks are achieved on
round-reduced Speck with 96-bit and 64-bit states. Since most real-world block
ciphers have a state size of no less than 64 bits, this work paves the way for performing
cryptanalysis using deep learning on more block ciphers. The code is available at
https://github.com/AI-Lab-Y/NAAF.
Keywords: Differential cryptanalysis · Key-recovery · Machine learning · Neural
network · Large-state · Speck

1 Introduction
In [Goh19], a simple neural network was trained to perform a real-or-random cryptographic
distinguishing task. The target is Speck32/64, the smallest member of a block cipher
family Speck [BSS+15]. Specifically, generic deep residual networks were trained to
distinguish ciphertext pairs whose corresponding plaintext pairs hold particular differences
and the random ones. The obtained neural distinguishers (NDs) cover 5, 6, 7, and 8
rounds of Speck32/64 and exhibit noticeable advantages over their classical counterparts.

∗This is the English version. The initial version is published in SSI, which is available at https:
//doi.org/10.1360/SSI-2022-0298.
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The NDs are then prepended with a classical differential (CD) and the formed hybrid
distinguishers (HDs) are used to do key-recovery attacks. In the key-recovery attack, the
signal from the distinguisher is rather weak. To boost the signal, a combined score on a
structure of ciphertext pairs is used, where the ciphertext pairs in a structure correspond
to plaintext pairs that are expected to pass the CD and reach the input of the ND together.
Such a structure of plaintext pairs can be created from a single plaintext pair using the
CD’s neutral bits (NBs) [BC04, Goh19], since flipping an NB of a conforming pair of CD,
the new data pair also conform to the CD.

In the basic key-recovery framework in [Goh19], a sufficient number of plaintext
structures are chosen, and the ciphertext structures are queried. For each ciphertext
structure, ciphertext pairs are decrypted one round under all last-round subkeys. For each
last-round subkey, the resulting intermediate state pairs are fed into an r-round ND. The
returned scores from the ND are combined, and the combined score is used to filter the
subkey. If the combined score passes a threshold c1, the one-round-decrypted state pairs
within a structure are decrypted another round under all second-to-the-last round subkeys.
Combined scores from an (r − 1)-round ND are then used to filter the subkeys. If the
score passes a threshold c2, the current last-round and second-to-the-last round subkeys
are output as a key guess. After peeling off the last two rounds, a similar (expected to be
more efficient) procedure can be applied to recover other subkeys.

In an improved key-recovery framework upon the basic one in [Goh19], ciphertext
structures are selectively used according to their best performance and visited frequency.
Most importantly, for each ciphertext structure, instead of performing one round of trial
decryption under all subkeys, only a few subkeys are trialed. These few subkeys are selected
under a key-guessing policy based on a variant of Bayesian optimization in a procedure
named as BayesianKeySearch. In BayesianKeySearch, the inconsistency of Speck with the
wrong key randomization hypothesis for differential cryptanalysis is exploited. Specifically,
the expected response of the ND upon wrong-key decryption will be not random but
depend on the bitwise difference between the trial key and the real key. Accordingly,
an effective BayesianKeySearch requires an important preliminary computation on the
wrong key response profile (WKRP) using the NDs. Such a WKRP typically requires
heavy off-line computation and non-negligible memory, which has not been a problem for
attacking small-state ciphers.

Using HDs formed by a 2-round CD and 6-/7-round NDs, applying the highly selective
key-guessing policy, improved key-recovery attacks on 11-round Speck32/64 were pre-
sented. Concretely, compared to the state-of-the-art result on the same target [Din14], the
time complexity is reduced from 246 to 238 with the data complexity slightly increasing
from 214 to 214.5 chosen-plaintext pairs.

However, several key points in the above basic and improved key-recovery framework
seem not fit for launching practical attacks on large-state versions of Speck. One problem
lies in that the NDs trained in [Goh19] take full states as input. A full intermediate state
will depend on all bits of the last subkey. For large-state ciphers, the size of subkeys is
typically too large to do last-round key guessing in one go and still kept considerable
advantage when applying the basic key-recovery framework. Applying the improved
framework, the critical WKRP required by the BayesianKeySearch should record the
empirical mean and standard deviation of scores for every possible difference between trial
subkey and right subkey, thus, is hard to be computed and stored.

Another more subtle problem lies in that, although the ND accepts all bits of the
state pairs as input, it does not exploit the bits at every position equally. In other words,
some bit information at certain positions has little effect on the ND. As a consequence,
those key bits that mainly relate to the non-informative bits are hard to be correctly
guessed. This problem is more severe for large-state ciphers since most of the state bits
are non-informative bits for an ND that covers a moderate number of rounds.
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These two problems prohibit practical ND-based key-recovery attacks on large-state
ciphers, even for rather short round-reduced versions. In addition to the above two
problems, another problem makes it difficult to extend practical ND-based attacks on
relatively short round-reduced versions to theoretical attacks on relatively long versions.
Concretely, to attack as many rounds as possible, CDs are typically prepended to the NDs
to form long HDs. For a CD to be useful, apart from the number of rounds it covers
and the differential probability it has, there is another critical factor. That is, it should
have a sufficient number of neutral bits (NBs) for boosting the weak signal from the HD.
However, for large state ciphers, the CDs covering a moderate number of rounds will have
a low probability. In such cases, it is hard for a random sampling method to generate
sufficiently large number of conforming pairs to filter out the NBs.

With these problems, the question that whether similar deep learning aided key recovery
attacks are applicable to large-state versions stay open for years.

1.1 Our Contributions
This work presents ways to overcome these problems and proposes ND-based key-recovery
attacks to improve differential cryptanalysis of large-state Speck.

1. In this work, a multi-stage ND-based key-recovery framework is proposed. This
framework exploits multiple NDs that accept different parts of the state depending
on different subsets of key bits. The union of subsets of key bits is the full bit-set
(or most part) of a subkey. Subsets of key bits are recovered stage-by-stage. Within
each stage, both the basic and the improved key-recovery attacks employing a single
ND can be applied.

2. For an ND to be useful in the multi-stage key-recovery framework, it should have a
decent accuracy and rely on non-full states. Thus, one should selectively use certain
state bits for individual ND and carefully organize multiple NDs.
In this work, multiple NDs that are selected and retrained after identifying their
informative bits are exhibited for various round-reduced large-state Speck. The
selected NDs form a group such that they together facilitate the recovery of the full
subkey. In addition, such groups of NDs for another three block ciphers, including
Simon [BSS+15], DES [BS92], and Present [BKL+07], are exhibited.

3. Employing the groups of NDs, practical attacks on short round-reduced Speck with
128-, 96-, and 64-bit states are designed, the experimental results are reported. To
extend the practical attacks to cover more rounds, multiple-round CDs that can
be coupled with each ND are presented. To find their NBs to boost the signal of
the distinguishers, an approach to efficiently found NBs of low-probability CDs is
proposed, which can be generally applied to Add-Rotate-Xor (ARX) ciphers.

4. As a result, considerable improvement in terms of both time and data complexity of
differential key-recovery attacks on round-reduced Speck with the largest, i.e., the
128-bit state, is obtained. Besides, efficient key-recovery attacks under the proposed
framework on round-reduced Speck with 96-bit and 64-bit states are presented. The
resulted attacks and comparisons with existing attacks are summarized in Table 1.

2 Preliminary and Notations
2.1 A Brief Introduction of Speck
Speck is a family of lightweight block ciphers designed together with another family Simon
by researchers from the U.S. National Security Agency (NSA) [BSS+15]. The Speck and
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Table 1: Summary of key-recovery attacks on large-state Speck
Target #R Time (#Enc) Data (#CP) Succ.

Rate
Configure Ref.

Speck128/128 17/32 2113 2113 - 1+14rCD +2 [Din14]
278.98 261.28 0.52 1+6rCD +9rND+1 Sect. 6.2

23/32 2125.35 2125.35 - 1+20rCD +2 [SHY16]

Speck128/192 18/33 2177 2113 - 1+14rCD +3 [Din14]
2142.98 261.28 0.52 1+6rCD +9rND+2 Sect. 6.2

24/33 2189.35 2125.35 - 1+20rCD +3 [SHY16]

Speck128/256 19/34 2241 2113 - 1+14rCD +4 [Din14]
2206.98 261.28 0.52 1+6rCD +9rND+3 Sect. 6.2

25/34 2253.35 2125.35 - 1+20rCD +4 [SHY16]

Speck96/96 13/28 252.61 236.60 0.81 1+4rCD +7rND+1 Sect. 6.2

18/28 282 282 - 1+15rCD +2 [SHY16]

Speck96/144 14/29 2100.61 236.60 0.81 1+4rCD +7rND+2 Sect. 6.2

19/29 2130 282 - 1+15rCD +3 [SHY16]

Speck64/96
11/26 241.13 226.47 0.90 1+3rCD +6rND+1 Sect. 6.2
12/26 273.13 226.47 0.90 1+3rCD +6rND+2 Sect. 6.2

19/26 293.56 261.56 - 1+15rCD +3 [SHY16]

Speck64/128 13/29 2105.13 226.47 0.90 1+3rCD +6rND+3 Sect. 6.2

20/29 2125.56 261.56 - 1+15rCD +4 [SHY16]
- Not available.

Simon families have been standardized by ISO as a part of the RFID air interface standard
(ISO/29167-21 for Simon and ISO/29167-22 for Speck).

The Speck family contains ten members, each of which is characterized by its block
size 2n and key size mn, thus is named as Speck2n/mn. The concrete parameters of
the members of the Speck family can be found in Table 2. In the following presentation,
when the key size does not affect the applicability, the members that have the same state
size will be collectively named as Speck2n.

The encryption of Speck2nmaps a plaintext of two n-bit words (x0, y0) into a ciphertext
(xr, yr), using a sequence of r round functions. The round function is defined as

xi+1 = ((x≫α
i )� yi)⊕ rki+1,

yi+1 = (y≪β
i )⊕ xi+1.

where rki+1 is the (i+ 1)-th round key for i ∈ [0, r − 1]. The round keys rki, i ∈ [1, r] are
generated from an m-word master key by reusing the round function and adding constants.

2.2 Notations

For Speck, denote by n the word size in bits, 2n the state size in bits.

For Speck, denote by (xr, yr) the left and right branches of a state after the encryption of r rounds.

For Speck, denote by rkr the r-round subkey added before obtain (xr, yr).

Denote by x[i] (resp. y[i] and rk[i]) the i-th bit of x (resp. y and rk) counted starting from 0.

Denote by rk[i2 ∼ i1] the rk[i2]‖rk[i2 − 1]‖ . . . ‖rk[i1 + 1]‖rk[i1].

For Speck, denote by [j] the index of the j-th bit of the state, i.e., the concatenation of x and y,
where y[0] is the 0-th bit, and x[0] is the n-th bit.

Denote by {i2 ∼ i1} the set of bit index {i2, i2 − 1, . . . , i1 + 1, i1}.
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Denote by {[i2] ∼ [i1]} the set of neutral bits {[i2], [i2 − 1], . . . , [i1 + 1], [i1]}.

Denote by ⊕ the bit-wise XOR, � the addition modulo 2n.

Denote by x≪s (resp. x≫s) the bit-wise left (resp. right) rotation by s positions.

Denote by x�s (resp. x�s) the bit-wise left (resp. right) shift x by s positions.

For any bit-strings x, y, and z, define eq(x, y, z) := (¬x⊕ y) ∧ (¬x⊕ z) (i.e., eq(x, y, z)[i] = 1 if and
only if x[i] = y[i] = z[i]).

For any bit-strings x, y, and z, define xor(x, y, z) := x⊕ y ⊕ z.

For any integer n, let mask(n) := 2n − 1.

The notation i ∈ [1, n] means i is an integer in range [1, n].

∆[i] represents a single-bit difference whose i-th bit is the only active bit.

hw(x, y) represents the Hamming distance between x and y.

2.3 Neural Distinguishers
Gohr in [Goh19] shows that a deep residual network could be trained to capture the
non-randomness of the distribution of values of output pairs when the input pairs to round
reduced Speck32/64 are of specific difference, and thus play the role of distinguisher in
cryptanalysis.

Many researchers further verify that neural distinguishers against other ciphers could
also be obtained using the method proposed by Gohr [BBCD21, CY21]. In the following,
the way of training neural distinguishers introduced in [Goh19] is briefly recalled.

The Training Data and Input Representation. For a target cipher, the deep residual
network is to be trained to distinguish between ciphertext pairs whose corresponding
plaintext pairs hold a given difference, denoted by ∆, and those whose corresponding
plaintext pairs are randomly selected (for the resulted neural distinguisher, we say ∆ is its
input difference.) Thus, each sample of the training data is a ciphertext pair together with
a label taking a value 0 or 1, where 0 means the difference of the corresponding plaintext
pair is random, and 1 means the difference is the given value ∆. Among the training
dataset and validation dataset, half are positive samples labeled by 1, and the other half
are negative samples labeled by 0.

Assume that the block size of the target cipher is mn. A ciphertext pair is written as
a sequence of n-bit words (w0, · · · , wm−1). Then the wi are directly interpreted as the
row-vectors of an m × n-matrix. The input layer of the deep residual network consists
of mn units likewise arranged in an m × n array. When we train neural distinguishers
against different ciphers, only the number of units in the input layer is changed. More
details of the deep residual network refer to [Goh19].

Training Scheme. Three training schemes are introduced in [Goh19]. We introduce and
use the basic training scheme in this paper. Training is run for 50 epochs on the training
dataset of size 107. The training dataset is processed in batches of size 5000. The deep
residual network is validated on the validation dataset. Optimization is performed against
mean square error loss plus a small penalty based on L2 weights regularization (with
regularization parameter 10−5) using the Adam algorithm [KB15] with default parameters
in Keras [C+15]. A cyclic learning rate schedule is used, setting the learning rate li for
epoch i to li = a+ (n−i) mod (n+1)

n × (b− a), with a = 10−4, b = 2× 10−3 and n = 9.
Once the training is finished and the deep residual network achieves a distinguishing

accuracy higher than 0.5 on the validation dataset, it is a valid neural distinguisher. Feed
a ciphertext pair (C0, C1) into this network, it will output a score Z where 0 6 Z 6 1. If
Z > 0.5, the prediction label of the input is 1. Otherwise, the prediction label is 0.



6 A Deep Learning aided Key Recovery Framework for Large-State Block Ciphers

Table 2: The Speck parameters.
Block Size (2n) Key Size (mn) Rounds α β

32 64 22 7 2

48 72 22 8 3
96 23 8 3

64 96 26 8 3
128 27 8 3

96 96 28 8 3
144 29 8 3

128
128 32 8 3
192 33 8 3
256 34 8 3

3 Deep Learning aided Key-Recovery Framework for Large-
State Ciphers

This section introduces anND-based key-recovery framework. The proposal of the following
framework is to overcome problems when applying existing ND-based attacks to large-state
block ciphers.

In the sequel, the core idea of this key-recovery framework is firstly introduced. Then,
the explicit attack procedure and the complexity analysis are presented, which will be
directly applied in the concrete key-recovery attacks on various versions of Speck. At last,
additional factors for applying the framework are discussed.

3.1 Core Idea
The high-level idea is to recover a full subkey with a multi-stage procedure. Each stage
employs an individual ND (typically prepended with a CD) to recover partial key bits.
For that, multiple NDs that accept different parts of the state are selected so that their
feeding data depend on different subsets of key bits whose union covers the full subkey.
Subsets of key bits are recovered either in parallel stages or in sequential stages, which
depends on the targeted cipher. Within each stage, the existing basic or the improved
key-recovery attacks can be applied. Figure 1 is the schematic diagram of this multi-stage
key-recovery framework.

Selection Criteria. For an x-stage key-recovery attack, the x neural distinguishers are
selected with the following criteria.

1. Each neural distinguisher NDi accepts a partial state and undertakes the task of
recovering a partial key. Denote the set of the partial state bits by Ci and the set of
partial key bits by Bi for i ∈ [1, x].

2. The union B1 ∪ · · · ∪ Bx should cover as many key bits as possible. In an ideal
scenario, the union contains all bits of the key to be recovered.

3. The size of the partial state accepted by each ND is appropriate, such that their
accuracy is sufficient, at the same time the allocated workload for recovering partial
key-bits is feasible and balanced. That is, |Ci| and |Bi| are well allocated for i ∈ [1, x].

Based on the x neural distinguishers, the whole key recovery attack is divided into x
stages. In Stage i for i ∈ [1, x], the |Bi| key bits are recovered using a single NDi, which
can be reviewed as attacking a small-state cipher.
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Figure 1: The schematic diagram of the multi-stage key-recovery framework for large-state block
ciphers. A total of x neural distinguishers NDi are used, whose input differences are ∆i; each
ND is prepended with a CD, and CDi is defined as Γi → ∆i for i ∈ [1, x]. Each NDi is trained
on partial state bits Ci, and is used to recover partial key bits Bi, i ∈ [1, x].

3.2 The Attack Procedure
Suppose one has x neural distinguishers NDi and x prepended differentials CDi := Γi

pi−→
∆i, where pi is the differential probability of CDi for i ∈ [1, x] (see Figure 1). The target
is to recover the last-round subkey rk.

The whole attack contains x stages performed one by one. In Stage i, |Bi| bits of the last
subkey is to be recovered with the knowledge of the previously recover key-bits

⋃
j∈[1,i−1] Bj .

The concrete method to recover Bi can be either the basic one or the improved one (when
the targeted cipher has inconsistency with the wrong key randomization hypothesis such
that BayesianKeySearch can be applied) in [Goh19]. For generality, let us describe the
procedure using the basic attack within each stage. The whole procedure goes as follows.
Let ε be a small constant.

1. For i ∈ [1, x], do as follows.

(a) Launch Stage i by choosing ε
pi

plaintext pairs with difference Γi. Expand the
plaintext pairs into plaintext structures using the log2(Ni) neutral bits of CDi.

(b) For each of the ε
pi

plaintext structures, do as follows.
i. Query the encryption oracle and obtain the corresponding ciphertext struc-

ture. Note that each ciphertext structure contains Ni ciphertext pairs.
ii. Initialize a list Li ← ∅
iii. For each of the βi top-ranked partial key guesses for bits in

⋃
j∈[1,i−1] Bj

that were recommended from the previous stages, denoted it by ~kgi−1 :=
kgi−1‖ · · · ‖kg1 (for Stage 1, β1 = 1 and ~kgi−1 = ∅)
A. For each of the 2|Bi| possible value kgi of the key bits in Bi, denote the

concatenation kgi‖kgi−1‖ · · · ‖kg1 by ~kgi.
• Partially decrypt the Ni ciphertext pairs by one round using ~kgi to

obtain pairs of values for state bits in Ci.
• Feed Ni partial state pairs into NDi, obtain Ni scores Zj for j ∈

[1, Ni].
• Combine the scores using the following formula

v ~kgi
:=

Ni∑
j=1

log2

(
Zj

1− Zj

)
. (1)
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B. If v ~kgi
> ci, store ( ~kgi, v ~kgi

) in Li.
iv. If Li 6= ∅, sort Li according to the scores of the guessed key bits, and

take the βi+1 top-ranked values as the guessed value for the key-bits in⋃
j∈[1,i] Bj . Go to Step 1a.

(c) If all ε
pi

ciphertext structures have been used and no values of ~kgi obtain a
score passing ci, terminate the attack with output ⊥.

2. Return the concatenated key bits ~kgx with the highest score in the last stage as the
guessed value for rk.

Complexity Analysis. In the worst case, all the ε
pi

ciphertext structures are queried at
each Stage i for i ∈ [1, x]. Thus, the data complexity of the above procedure is upper
bounded by

x∑
i=1

ε

pi
×Ni. (2)

In the above attack procedure, there are three basic operations (within the inner most
loop in Step 1(b)iiiA):

1. perform one round decryption on a ciphertext pair using a key guess.

2. feed a decrypted ciphertext pair into a neural distinguisher and obtain the score Z.

3. compute the value of log2

(
Z

1−Z

)
.

Taking the combination of the three operations as the atomic operation, the computational
complexity in terms of the number of the atomic operations is upper bounded by

x∑
i=1

βi × 2|Bi| × ε

pi
×Ni, (3)

where Ni is the number of ciphertext pairs in a ciphertext structure in Stage i, and β1 = 1.
Suppose the atomic operation in Stage i is equivalent to ηi encryptions of the targeted

cipher, for i ∈ [1, x]. The computational complexity in terms of the number of equivalent
encryptions is then is upper bounded by

x∑
i=1

βi × 2|Bi| × ε

pi
×Ni × ηi. (4)

3.3 Applicable Scenario
Apart from the careful combination of x neural distinguishers for applying the x-stage
key-recovery framework, there might be other factors one should consider.

• The first factor that needs to be considered is the selection of the input difference
of the multiple NDs. Assume that the x neural distinguishers are built using input
differences ∆i for i ∈ [1, x]. The x input differences ∆i, i ∈ [1, x] can be the same one
for reusing data among different stages. However, typically, it is hard to find such an
input difference suitable for multiple NDs for a large-state cipher. Nevertheless, even
if the input differences of multiple NDs are different, it is possible that the influence
on the data requirement is not significant. For various targeted ciphers in this work,
it is much easier to find a good combination of x neural distinguishers using different
input differences, at the same time, the influence on the data complexity is kept to
be a constant factor.
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• The second factor is about the CDs to be prepended to each ND (as shown in
Figure 1, a CDi := Γi → ∆i is prepended to an NDi for i ∈ [1, x]). The numbers
of rounds covered by the CDs, their differential probabilities, and their number of
neutral bits should be matched with their coupled NDs and the other CD and ND
couples. For example, the number of neutral bits of a CD should be sufficient with
respect to the accuracy of the corresponding ND.

• The third factor is the execution order of x stages. The x stages can be launched in
parallel if the recovery of one subset of key bits does not rely on the recovery of other
subsets. Otherwise, the x stages must be executed sequentially. For example, for
Speck, the attacks are triggered from the recovery of the least significant bits (with
respect to �) to the most significant bits stage-by-stage. In sequential execution, in
case that Stage i wrongly guessed the partial key-bits in Bi, that might influence
the guessing of key bits in

⋃
j∈[i+1,x] Bi. The degree of influence depends on the

property of the targeted cipher. For Speck (ARX cipher), the influential factors
include both the number and the position of the wrongly guessed key bits. In our
experiments on Speck, when the previous stages get outputs, even if there are a few
wrongly guessed key bits, it is still possible that the later stages correctly guess the
remaining key bits.

Apart from the above considerations, there is no strict limitations for the application
of the framework.

4 Neural Distinguishers on Large-State Speck
This section presents a simple way to build multiple NDs that are ready to be employed
in the multi-stage key-recovery framework. Groups of NDs are exhibits for large-state
members of Speck.

Since the size of the key has no influence on the distinguishers, for convenience, the
members of Speck with different key sizes but with the same state size (2n-bit) will be
collectively named as Speck2n.

4.1 A Procedure to Build a Group of NDs
To found a proper combination of NDs to launch a multi-stage key-recovery attack, one
takes the following steps.

1. Train b neural distinguishers with input difference ∆[i] for i ∈ [0, b− 1]. Where ∆[i]
means a single-bit difference whose i-th bit is the only active bit 1. The fed data
are full-state ciphertext pairs. For Speck2n, b = 2n, and the fed data are pairs of
2n-bit data.

2. Identify informative bits, denote the set by Ci, i.e., ciphertext bits that have a
significant influence on the accuracy of NDs. This can be done using the Bit
Sensitivity Test introduced in [CY20].

3. Select from b neural distinguishers a proper combination of x neural distinguishers
according to the Ci’s, the related subkey bits, and the criteria listed in Sect 3.1.

4. Train each of the x selected NDs from the scratch and with input state pairs being
truncated such that only the corresponding informative bits are left. For Speck2n,
the fed data are pairs of |Ci|-bit data.

1More generally, these input differences can be not limited to single-bit ones as long as the obtained
multiple NDs have different sets of informative bits.
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4.2 Neural Distinguishers against large-state Speck
Using the procedure in Sect 4.1, a combination of five 9-round NDs with the following
input differences is obtained for Speck128:

∆1 = ∆[64], ∆2 = ∆[76], ∆3 = ∆[90], ∆4 = ∆[105], ∆5 = ∆[117]. (5)

A combination of four 7-round NDs with the following input differences is obtained for
Speck96:

∆1 = ∆[53], ∆2 = ∆[65], ∆3 = ∆[77], ∆4 = ∆[89]. (6)

A combination of three 6-round NDs with the following input differences is obtained for
Speck64:

∆1 = ∆[42], ∆2 = ∆[47], ∆3 = ∆[33]. (7)

Table 4 summarizes the details of the combination of NDs for the three large-state sub-
families of Speck. These combinations of NDs will be employed in the key-recovery
attacks in the next sections.

Table 4: Neural distinguishers against round-reduced large-state Speck.
9-round Speck128 7-round Speck96 6-round Speck64

NDi ∆i Ci Acc. ∆i Ci Acc. ∆i Ci Acc.

ND1 ∆[64] {22∼18, 14∼9} 0.559 ∆[53] {19∼8} 0.633 ∆[42] {17∼8} 0.613
ND2 ∆[76] {34∼30, 26∼21} 0.586 ∆[65] {31∼20} 0.621 ∆[47] {29∼18} 0.677
ND3 ∆[90] {48∼44, 40∼34} 0.609 ∆[77] {43∼32} 0.628 ∆[33] {31, 30, 7∼0} 0.653
ND4 ∆[105] {63∼59, 55∼49} 0.616 ∆[89] {47∼44, 7∼0} 0.634
ND5 ∆[117] {11, 7, 4, 3, 0} 0.559

∆i: the input difference Acc.: the accuracy of the NDi

Ci: the index of bits of xr (at the same time, take the same index of bits of yr) that are fed into
NDi, where xr (resp. yr) is the left (resp. right) n-bit word of a full r-round output state.

5 Practical Key Recovery Attacks on Large State Speck
This section presents practical key recovery attacks on large stage Speck employing the
groups of neural distinguishers presented in Section 4.

5.1 Practical Attack on 12-Round Speck128
Applying the multi-stage key-recovery framework proposed in Sect 3, and employing the
combinations of NDs found in Sect 4, a practical attack on 12-round Speck128 can be
launched to recover the full last subkey.

Concretely, each of the five 9-round neural distinguishers NDi (shown in Table 4) is
prepended with a 1-round classical differential Γi → ∆i (shown in Table 5) and form a
10-round hybrid distinguisher HDi, which can be freely extended another round at the top
since there is no whitening key added before the first nonlinear operation in Speck. Hence,
at the top of the last round, there are 11 rounds in total, and the goal is to recover the
12-th subkey rk12. For launching the attack procedure in Sect. 3.2, concrete parameters
are as follows.

Attack Setting. The 64 bits of the round key rk12 is recovered through five stages:

1. Stage 1 guesses |B1| = 15 bits, i.e., rk12[14 ∼ 0].
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2. Stage 2 guesses |B2| = 12 bits, i.e., rk12[26 ∼ 15].

3. Stage 3 guesses |B3| = 14 bits, i.e., rk12[40 ∼ 27].

4. Stage 4 guesses |B4| = 15 bits, i.e., rk12[55 ∼ 41].

5. Stage 5 guesses |B5| = 8 bits, i.e., rk12[63 ∼ 56].

Table 5 summarizes the to be used five 1-round CDs together with their differential
probability pi and their 10 neutral bits (thus, Ni = 210 for i ∈ [1, 5]). The small constant
ε is set to be 4. At Stage i, at most 4

pi
ciphertext structures are generated, for i ∈ [1, 5].

In the five stages, the thresholds on the scores for filtering wrong key guesses are set to
be c1 = c2 = c3 = c4 = c5 = 10. For Stage i, the upper bound of the number of kept
surviving key guesses is set to be βi+1 = 3 for i ∈ [1, 4] (note that β1 is always 1).

Table 5: One-round classical differentials to be prepended to the NDs in Table 4.
1-round Speck128 1-round Speck96 1-round Speck64

CDi Γi → ∆i NB’s pi Γi → ∆i NB’s pi Γi → ∆i NB’s pi

CD1 ∆[72,69,61]→∆[64] {[20]∼ [11]} 2−1 ∆[61,58,2]→∆[53] {[25]∼ [16]} 2−2 ∆[50,47,7]→∆[42] {[39]∼ [30]} 2−2

CD2 ∆[84,81,9]→∆[76] {[32]∼ [23]} 2−2 ∆[73,70,14]→∆[65] {[37]∼ [28]} 2−2 ∆[55,52,12]→∆[47] {[39]∼ [30]} 2−2

CD3 ∆[98,95,23]→∆[90] {[46]∼ [37]} 2−2 ∆[85,82,26]→∆[77] {[49]∼ [40]} 2−2 ∆[41,38,30]→∆[33] {[29]∼ [20]} 2−2

CD4 ∆[113,110,38]→∆[105] {[61]∼ [52]} 2−2 ∆[94,49,38]→∆[89] {[61]∼ [52]} 2−2

CD5 ∆[125,122,50]→∆[117] {[73]∼ [64]} 2−2

Experimental Results. Under the above attack setting, we performed the attack in 100
trials. The trials were performed on a PC with a modern graphic card (GeForce GTX
1080 Ti GPU). The average time consumption of the attack using a single CPU core and
a GPU is about 5060 seconds.

Out of the 100 trials, there are 80 trails that return a key candidate. Denote the
Hamming distance between the returned key candidate kg and the real round key rk by
hw(kg, rk). The mean value of hw(kg, rk) over the 80 trials is 3.2. The concrete statistic
on hw(kg, rk) is reported in Table 6. From Table 6, when we count an attack as successful
as long as hw(kg, rk) 6 3, the success rate is 0.52.

Table 6: Statistic on hw(kg, rk) over 100 trials of the 12-round attack on Speck128
hw(kg, rk) 0 1 2 3 4 5 6 7 8 9

# trials 4 12 17 19 8 9 7 3 0 1

We argue that an attack can be considered as successful as long as hw(kg, rk) 6 3.
The reasons are as follows. Firstly, note that correctly guessing at least (64− 3) bits is
equivalent to reducing the round key space from 264 to C(64, 3)× 23 = 218.3. Actually, the
remaining key space could be smaller since we observe that some round key bits are more
likely to be wrongly guessed than other key bits. 2

Secondly, to fully correct the few bit errors in the returned key guessing and recover
other round keys, the complexity is expected to be small. To do that, one can employ
i-round neural distinguishers where i 6 8, and reuse the ciphertext structures that were
used to recommend the returned last-round key. The ciphertext structures that were used
to recommend the returned key can be taken as the correct ones (their corresponding
plaintext structures conform to the prepended CDs and reach the input difference of the

2This phenomenon also occurs in our attacks on other variants of reduced Speck. However, the positions
of wrongly guessed key bits do not have common characteristic among different versions.
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NDs). The reason is that the thresholds ci are set such that using wrong ciphertext
structures, there will be no key candidates able to be recommended (note that the numbers
of neutral bits of the CDs that we used are relatively high, such that the signals from the
distinguishers are very strong. Thus, the thresholds can be easily set to block almost all
wrong ciphertext structures.)

5.2 Practical Attacks on Reduced Speck96, Speck64

Similar to the practical attack on round-reduced Speck128, practical attacks on round-
reduced Speck96 and Speck64 can be launched to recover the full last subkey. The
attacks are direct applications of the multi-stage key-recovery framework proposed in
Sect 3 and the combinations of NDs found in Sect 4.

Practical Attack on 10-round Speck96. Four 7-round NDs are to be employed together
with the 1-round CDs (see Tables 4 and 5). After freely extending another round, there
are 9 rounds at the top, and the goal is to recover the 10-th subkey rk10 in four stages.

In the four stages, each stage guesses 12 bits of the round key rk10, namely rk10[11 ∼ 0],
rk10[23 ∼ 12], rk10[35 ∼ 24], and rk10[47 ∼ 36], respectively. Table 5 summarizes the
to be used four 1-round CDs together with their differential probability pi and their 10
neutral bits (thus, Ni = 210 for i ∈ [1, 4]). The other attack parameters are set to be
the same as that in the 12-round attack on Speck128 in Sect. 5.1. That is, ci = 10 for
i ∈ [1, 4] and βi = 3 for i ∈ [2, 4].

Under the above attack setting, the attack was performed in 100 trials. The average
time consumption of the attack on the same PC (with a GeForce GTX 1080 Ti GPU card)
is about 825 seconds. Out of the 100 trials, there are 87 trails that return a key candidate.
The concrete statistic on the Hamming distance between the returned key candidate kg
and the real round key rk, i.e., hw(kg, rk), is reported in Table 7. From Table 7, if an
attack is considered as successful as long as hw(kg, rk) 6 3, the success rate is 0.81.

Table 7: Statistic on hw(kg, rk) over 100 trials of the 10-round attack on Speck96
hw(kg, rk) 0 1 2 3 4 5

# trials 23 30 18 10 3 3

Practical Attack on 9-round Speck64. Three 6-round NDs are to be employed together
with the 1-round CDs (see Tables 4 and 5). After freely extending another round, there
are 8 rounds at the top, and the goal is to recover the 9-th subkey rk9 in three stages.

At the three stages, there are 10, 12, and 10 bits of rk9 to be guessed, namely rk9[9 ∼ 0],
rk9[21 ∼ 10], and rk9[31 ∼ 22], respectively. Table 5 summarizes the to be used four
1-round CDs together with their differential probability pi and their 10 neutral bits (thus,
Ni = 210 for i ∈ [1, 3]). The other attack parameters are set to be the same as that in the
12-round attack on Speck128 in Sect. 5.1. That is, ci = 10 for i ∈ [1, 3] and βi = 3 for
i ∈ [2, 3].

Under the above attack setting, the attack was performed in 100 trials. The average
time consumption of the attack on the same PC (with a GeForce GTX 1080 Ti GPU card)
is about 90 seconds. Out of the 100 trials, there are 98 trails that return a key candidate.
The concrete statistic on the Hamming distance between the returned key candidate kg
and the real round key rk, i.e., hw(kg, rk), is reported in Table 8. From Table 8, if an
attack is considered as successful as long as hw(kg, rk) 6 3, the success rate is 0.90.
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Table 8: Statistic on hw(kg, rk) over 100 trials of the 9-round attack on Speck64
hw(kg, rk) 0 1 2 3 4 5 6 7

# trials 22 30 29 9 4 1 2 1

6 Theoretical Cryptanalysis of Large-State Speck
6.1 Prepending Multiple-Round CDs to the NDs
The practical attacks can be extended for several rounds after prepending a longer classical
differential (CD) to each of the NDs. The number of rounds of a CD that can be prepended
to an ND is limited by the number of neutral bits of the CD. The latter should satisfy the
requirement for boosting weak signals from the distinguisher, while it decreases sharply
with the increase of the former.

6.1.1 Find Neutral Bits of Low-Probability Differential Trails

For large-state Speck, finding neutral bits of multiple-round CDs is not as straightforward
as for small-state Speck, since the probability of CDs of a moderate number of rounds can
be very low. For low-probability differentials, it is hard for a random sampling method to
generate a sufficiently large number of conforming pairs to filter out NBs. Hence, this part
of the work produces a method to find neutral bits of low-probability differential trails.

For the key-recovery attacks covering as many rounds as possible, both (probabilistic)
neutral bits (NBs) and simultaneous neutral bit-sets (SNBSs) [BGL+21] are considered.
For convenience, we collectively refer to them as NBs. To find NBs of a given differential,
one way is to obtain many conforming pairs, flip the candidate bit/bit-set and examine
the influence on the conformity. Thus, an efficient way to generate many conforming pairs
for a differential is needed. For this, we provide the following method.

Generating Conforming Pairs and Finding NBs for Low-Probability Differentials. When
a bit is neutral for a differential trail in the setting where round-keys are independently
randomly selected (free round-key setting), it is also neutral for the differential trail in the
setting where round-keys are generated using a key schedule (real round-key setting). Thus,
the following approach reduces the real round-key setting into the free round-key setting
and generates conforming pairs for a given differential trail by adjusting randomly sampled
round-keys. The obtained conforming pairs can then be used to filter out candidate NBs.

Firstly, we deduced conditions on conforming pairs for an XOR-difference propagating
through addition modular 2n, denoted by δ = (α, β 7→ γ).

Define the differential probability of XOR-difference through addition modular 2n by
DP+(α, β 7→ γ) := Pr(x,y)∈Fn

2×Fn
2
[(x� y)⊕ ((x⊕ α)� (y ⊕ β)) = γ].

Observation 1. Let δ = (α, β 7→ γ) be a possible XOR-differential through addition
modulo 2n (�). For (x, y) and (x⊕ α, y ⊕ β) be a conforming pair of δ, x and y should
satisfy the follows. For 0 ≤ i < n− 1, if eq(α, β, γ)[i] = 0

x[i]⊕ y[i] = xor(α, β, γ)[i+ 1]⊕ α[i], if α[i]⊕ β[i] = 0,
x[i]⊕ c[i] = xor(α, β, γ)[i+ 1]⊕ α[i], if α[i]⊕ xor(α, β, γ)[i] = 0,
y[i]⊕ c[i] = xor(α, β, γ)[i+ 1]⊕ β[i], if α[i]⊕ xor(α, β, γ)[i] = 1,

}
if α[i]⊕ β[i] = 1,


where c[i] is the i-th carry bit, and the definitions of eq(·, ·, ·) and xor(·, ·, ·) can be found
in Sect. 2.2.

Proof. See Appendix A.1.



14 A Deep Learning aided Key Recovery Framework for Large-State Block Ciphers

With Observation 1, given a differential trail of Speck, we use Algorithm 1 to generate
conforming pairs and filter candidate NBs. Since the round-keys are adjusted such that
most conditions on conforming pairs are satisfied, the number of repeats from Step 1a
to 1e is far less than N/DP+(δ). Therefore, Algorithm 1 is much more efficient than a
purely random sampling method. As for the choice of N , preliminary experiments were
performed using N ∈ {210 ∼ 213}. The obtained empirical neutrality by taking N = 210

do not differ obviously from that obtained by taking larger N . Thus, all presented results
by applying this algorithm (in Table 11) are obtained by taking N = 210.

Algorithm 1 Generate conforming pairs and filter candidate neutral bit/bit-set for
differential trails of Speck
INPUT:

1. an r-round differential trail δ = (δx0, δy0) 7→ (δx1, δy1) 7→ · · · 7→ (δxr, δyr)

2. a candidate neutral bit-set Is = [i1, i2, · · · , ij]

OUTPUT: empirical neutrality p of Is.

1. Generate N conforming pairs for δ as follows.

(a) Randomly generate an input data (x0, y0).
(b) On this input data, compute the i-th round function by selecting the (i− 1)-th

round-key. Concretely, during the i-th round-computation, generate the (i− 1)-
th round-key by firstly determining those bits that made the inputs to the i-th
� satisfy conditions listed in Observation 1, then randomly generate other bits.
Some conditions that depend on carry bit cannot be fulfilled by simply adjusting
one key-bit without affecting conditions on other bits. For such conditions,
simply bypass them by randomly selecting the key-bits. Compute in this way
through r-round and obtain output (xr, yr).

(c) Use the adjusted round-keys to compute the r-round output on the input
(x0 ⊕ δx0, y0 ⊕ δy0) (denoted by (x′0, y′0)).

(d) If the output (x′r, y′r) satisfy xr ⊕ x′r = δxr and yr ⊕ y′r = δyr, store
((x0, y0), (x′0, y′0)) and all round-keys as a conforming pair.

(e) Repeat Step 1a until N conforming pairs are obtained.

2. For each conforming pair, flip bits in Is, test whether the resulted pair is a conforming
pair (encrypted under the round-keys associated with the original conforming pair).
Count the number of cases that the conformity is kept, denote the number by cnt.

3. Return p← cnt/N as the empirical neutrality of Is.

6.1.2 CDs and NBs of the CDs for Large-State Speck

Applying Algorithm 1, we searched all NBs (simultaneously flipping at most 3 bits) for
CDs that can be prepended to the obtained NDs.

CDs for Large State Speck. For each version of Speck, the CDs to be prepended to the
NDs can be seen as dominated by a single differential trail. Thus, we will use the dominant
differential trails as the CDs. Different differential trails prepended to different NDs can be
obtained from the same base differential trail by rotating intermediate differences to the left
(circular shift by word). The obtained trails are valid as long as the condition on the least
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significant bit, i.e., xor(α, β, γ)[0] = 0 is fulfilled by the input/output differences (α, β, γ)
to all involved �’s on the trails (refer to Algorithm 2) 3. The differential weight of each
trail obtained by cyclically shifting the base differs from that of the base trail by at most
t, where t = maxi,0≤i<n(

∑r
j=1 ¬eq(αj , βj , γj)[i]) and (αj , βj , γj) are the input/output

differences through the j-th � along the r-round differential trail. In our following cases, t
is at most 3. The base trails exploited in the following theoretical attacks are listed in
Table 9.

NBs of the CDs. When restricting that the neutrality be no less than 0.7 for CDs of
Speck128 (resp. 0.8 for CDs of Speck96 and Speck64), the number of independent NBs
together with the differential weight of each rotated differential trail are listed in Table 10.
The concrete exploitable NBs for the CDs that will be prepended to the used NDs are
listed in Table 11.

Similar to the differential trails, we found that most NBs of rotated trails can be obtained
from the NBs of the base trail by a circular shift to the left (by word). For example, the
bit-set [26, 37, 98 ] is an NB of the base differential trail listed in column ‘Speck128’ of
Table 10 and denoted by CD[64] in Table 11. For the differential trail obtained by rotating
53 bits to the left (denoted by CD[117]), the bit-set [(26 + 53) mod 64, (37 + 53) mod 64,
64 + ((98 + 53) mod 64) ], i.e., [15, 26, 87 ] is its NB.

In summary, there are more than 10 exploitable NBs for 6-round, 4-round, and 3-round
differential trails of Speck128, Speck96, and Speck64, respectively. For longer differential
trails of each version, the number of high neutrality NBs is no more than 3.

Table 9: Differential Trails used for Speck. The listed are base trails. Other trails can be
obtained by rotating (by word) the base trails to the left. The notation (w w1 ∼ w2) in the first
row represents the range of the differential weights of the trails that can be obtained by rotating
the base trails.

R Speck128
(w 43 ∼ 46)

Speck96
(w 20 ∼ 22)

Speck64
(w 10 ∼ 12)

δxi δyi wi δxi δyi wi δxi δyi wi

-6 4041041440401000 024040240640d010
-5 0200012012009000 1002000020061080 14
-4 1000000100141010 9010000000249410 10 100100141010 901000249410
-3 8000000001248000 0080000000002084 9 800001248000 008000002084 9 81248000 00802084
-2 0000000000010404 0400000000000024 6 000000010404 040000000024 6 00010404 04000024 6
-1 0000000000000120 2000000000000000 4 000000000120 200000000000 4 00000120 20000000 4
0 0000000000000001 0000000000000000 2 000000000001 000000000000 2 00000001 00000000 2

6.2 Theoretical Cryptanalysis of Extended Round-Reduced Speck128,
Speck96, and Speck64

For Speck128/128, prepending the five 6-round CDs (in Table 11) to the five 9-round
NDs (in Table 4), one can obtain five HDs covering 15 rounds, which can be denoted by
6rCD−∆[64] −9rND, 6rCD−∆[76] −9rND, 6rCD−∆[90] −9rND, 6rCD−∆[105] −9rND,
6rCD−∆[117] −9rND. Exploiting the 15-round HDs, one can launch a multi-stage attack
to recover the full last subkey of 17-round Speck128/128. Each stage of the 17-round
attack composes of a freely invertible round at the top, a 15-round HD at the middle, and
1-round partial subkey guessing at the end (denoted by 1r + 6rCD−∆[·] −9rND + 1r).

3There are differential trails with the same output and have a high probability (by a factor at most 22)
than the used differential trails. However, those trails are impossible for some keys (weak-key differential
trails). Hence, we employ the ones that have the highest differential probability among non-weakkey trails.
Exploiting weak-key trails, the attack complexity can be slightly improved but only applies to a partial
key space.
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Table 10: The differential weights (denoted by w) and the numbers of independent NBs (denoted
by #NB) of differential trails obtained by rotating (to the left by rol bits) the base trail in Table 9.

Speck128 (#NB with Prnb > 0.7)

rol w #NB rol w #NB rol w #NB rol w #NB rol w #NB rol w #NB rol w #NB rol w #NB

0 45 12 8 45 12 16 46 13 24 46 13 32 46 13 40 46 12 48 44 12 56 44 12
1 46 12 9 45 12 17 45 13 25 46 13 33 46 13 41 45 12 49 45 12 57 46 12
2 45 12 10 46 12 18 46 12 26 45 14 34 45 12 42 45 12 50 45 12 58 45 12
3 44 12 11 45 12 19 46 12 27 46 13 35 45 12 43 45 12 51 43 12 59 43 12
4 46 12 12 46 12 20 46 12 28 46 13 36 46 12 44 46 12 52 46 12 60 46 12
5 45 12 13 46 12 21 46 12 29 45 12 37 45 12 45 44 12 53 44 12 61 44 12
6 45 12 14 45 13 22 46 12 30 46 13 38 45 12 46 45 12 54 46 12 62 46 12
7 46 12 15 46 15 23 45 14 31 45 13 39 45 12 47 45 12 55 45 12 63 45 12

Speck96 (#NB with Prnb > 0.8)

rol w #NB rol w #NB rol w #NB rol w #NB rol w #NB rol w #NB rol w #NB rol w #NB

0 21 25 6 22 23 12 22 23 18 22 21 24 22 22 30 22 23 36 22 21 42 21 22
1 22 23 7 22 23 13 22 23 19 22 22 25 22 23 31 21 24 37 20 22 43 21 21
2 21 24 8 21 24 14 22 22 20 22 22 26 21 23 32 21 22 38 22 21 44 22 21
3 21 23 9 22 26 15 22 22 21 22 21 27 22 22 33 22 24 39 21 22 45 20 24
4 22 23 10 22 24 16 22 21 22 22 21 28 22 23 34 21 21 40 21 21 46 22 22
5 21 23 11 21 24 17 22 22 23 21 23 29 21 22 35 21 21 41 22 21 47 21 25

Speck64 (#NB with Prnb > 0.8)

rol w #NB rol w #NB rol w #NB rol w #NB rol w #NB rol w #NB rol w #NB rol w #NB

0 12 18 4 12 16 8 11 16 12 12 14 16 12 15 20 12 15 24 11 14 28 12 14
1 12 16 5 11 17 9 12 14 13 12 14 17 12 15 21 11 15 25 12 15 29 10 16
2 11 18 6 12 17 10 12 14 14 12 14 18 11 14 22 12 17 26 11 15 30 12 15
3 12 15 7 12 15 11 12 14 15 11 16 19 12 15 23 11 15 27 12 14 31 11 26

Table 11: The concrete NBs and their empirical probabilities for the CDs to be prepended
to the NDs. The CDs can be obtained by rotating by word (to the left by rol bits) the base
trail in Table 9 (corresponding to the ones in bold in Table 10). For each CD, its NBs can be
obtained by rotating by word (to the left by rol bits) the NBs listed in the first row for each
version of Speck. Concretely, for Speck2n, suppose i < n and j >= n, then [i, j]≪k means
[(i + k)%n, n + (j + k)%n]. The column titled Prnb shows the empirical probability that all 210

pairs in a structure created from a conforming pair using the 10 NBs are conforming pairs. Each
empirical probability in this table is obtained by performing 1024 independent trials.

Speck128 (10 NBs for each of the five CDs)

CD rol [26, 37, 98]≪rol [34, 106]≪rol [41]≪rol [42]≪rol [43]≪rol [112]≪rol [113]≪rol [114]≪rol [115]≪rol [116]≪rol Prnb

CD[64] 0 1.000 0.998 0.947 0.901 0.818 1.000 0.981 0.954 0.924 0.852 0.567
CD[76] 12 0.999 1.000 0.970 0.947 0.840 0.999 0.979 0.964 0.929 0.873 0.649
CD[90] 26 0.994 1.000 0.935 0.873 0.778 0.995 0.977 0.932 0.883 0.833 0.502
CD[105] 41 0.995 0.997 0.951 0.872 0.785 0.994 0.979 0.951 0.917 0.836 0.516
CD[117] 53 0.996 0.998 0.936 0.896 0.768 0.996 0.975 0.944 0.896 0.820 0.512

Speck96 (10 NBs for each of the four CDs)

CD rol [10, 21, 66]≪rol [25]≪rol [26]≪rol [27]≪rol [28]≪rol [80]≪rol [81]≪rol [82]≪rol [83]≪rol [84]≪rol Prnb

CD[53] 5 1.000 1.000 0.999 0.996 0.998 1.000 1.000 0.999 0.999 0.999 0.993
CD[65] 17 1.000 1.000 0.999 0.999 0.993 1.000 0.999 1.000 1.000 1.000 0.990
CD[77] 29 1.000 1.000 0.999 0.997 0.994 1.000 1.000 0.999 0.997 0.999 0.987
CD[89] 41 1.000 0.998 0.997 0.998 0.994 1.000 1.000 1.000 0.997 0.995 0.987

Speck64 (10 NBs for each of the three CDs)

CD rol [7, 47]≪rol [13, 53]≪rol [17]≪rol [18]≪rol [19]≪rol [56]≪rol [57]≪rol [58]≪rol [59]≪rol [60]≪rol Prnb

CD[42] 10 1.000 1.000 0.998 0.992 0.967 1.000 0.999 0.998 0.996 0.998 0.951
CD[47] 15 1.000 1.000 0.983 0.971 0.938 1.000 0.990 0.982 0.971 0.948 0.854
CD[33] 1 1.000 1.000 0.983 0.981 0.969 1.000 0.991 0.982 0.975 0.955 0.887

The attack can be launched by directly applying the procedure described in Sect. 3.2,
and adopting almost the same parameters as that in the five-stage procedure for practically
attacking 12-round Speck128 in Sect 5.1. Compared to the practical attack on 12-round
that employs 1-round CDs in Sect. 5.1, the attack employing 6-round CDs requires more
ciphertext structures in each stage, since the differential probabilities are much lower;
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another difference is that the used NBs are probabilistic instead of complete ones. Thus,
to obtain a ciphertext structure in which all pairs correspond to conforming pairs, slightly
more data is required (by a factor of the reciprocal of the neutrality). Along the recovery of
the last subkey, correct ciphertext structures are identified. After recovering the last subkey
and peeling off the last round, a procedure employing the identified correct ciphertext
structures and stronger 8-round NDs can be launched to recover the second-to-the-last
subkey.

Similarly, basing on the practical attacks on 10-round Speck96 and 9-round Speck64
in Sect. 5.2, one can directly devise theoretical attacks on 13-round Speck96 and 11-round
Speck64 by simply replacing the 1-round CD’s and their NBs in Table 5 with the longer
ones in Table 11, at the same time increasing the number of ciphertext structures according
to the differential probability and the neutrality of the NBs.

According to the complexity analysis in Sect. 3, the worst-case data and time complexity
of the theoretical attacks can be directly computed with formulas 2 and 4. The results
on the complexity analysis of the above theoretical attacks are listed in Table 12, where
ε,Ni, βi, |Bi| are the same as the practical attacks in Sect. 5; The Prnb’s are additional
factors compared to the complexity of practical attacks since the NBs are probabilistic.
These Prnb’s can be found in the last column of Table 11; The factor ηi for computing
the time complexity is the ratio between the time for an atomic operation in the attacks
(refer to Sect. 3) and the time for encrypting one plaintext. These ratios are obtained by
experiments with data processed in a batch of size 210 and the timings are averaged over 212

trials. The success rates of the attacks are expected to be the same as the corresponding
practical attacks, where 17-round corresponds to 12-round attack on Speck128/128,
13-round corresponds to 10-round attack on Speck96/96, and 11-round corresponds to
9-round attack on Speck64/96, respectively.

The attack on 17-round Speck128/128 can be directly converted to attacks on 18-
round Speck128/192 (resp. 19-round Speck128/256). To do that, one simply guesses
the 18-round subkey (resp. 19- and 18-round subkeys) to peel off one round (resp. two
rounds), and repeat the 17-round attack at most 264 (resp. 2128) times. It is expected that
only for the correctly guessed last-round subkey (resp. last-round and second-to-the-last
subkeys), the inner procedure has a return. A similar analysis applies to attacks on
13-round Speck96/96 (resp. 14-round Speck96/144) and 11-round Speck64/96 (resp.
12-round Speck64/96 and 13-round Speck64/128) (refer to Table 12 and Table 1).

6.3 Experimental Verification of 11-round Attack on Speck64

The theoretical analysis of the 11-round attack on reduced Speck64 was further ex-
perimentally verified. The recovery of the last subkey was performed in 55 trials on a
server with a professional graphic card (Tesla V100-SXM2-32GB GPU). The average time
consumption of the attack using a single CPU core and a GPU is about 19395 seconds.
The average number of cipertext structures queried in the attack is 7891, which is 223.95

chosen plaintexts.
Out of the 55 trials, there are 53 trails return a key candidate. The mean value of

hw(kg, rk) over the 53 trials is 2.0. The concrete statistic on hw(kg, rk) is reported in
Table 13. From Table 13, when we count an attack as successful as long as hw(kg, rk) 6 3,
the success rate is 0.87.

From the above, for Speck64, the experimental result on 11-round attack is largely
consistent with its theoretical analysis in Table 12.
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Table 12: Complexity of the theoretical attacks using multiple-round CDs with the NDs
17-round Speck128/128

Attack Stagei
DC TC Ps.

ε/(pi × Prnb)×Ni pairs #CP βi × 2|Bi|× DC pairs ×ηi #Enc

1r + 6rCD−∆[64] −9rND + 1r 4/(2−45 × 0.567)× 210 258.82 1× 215 × 257.82 × 10.69 276.24

1r + 6rCD−∆[76] −9rND + 1r 4/(2−46 × 0.649)× 210 259.62 3× 212 × 258.62 × 10.41 275.58

1r + 6rCD−∆[90] −9rND + 1r 4/(2−45 × 0.502)× 210 258.99 3× 214 × 257.99 × 10.77 277.00

1r + 6rCD−∆[105] −9rND + 1r 4/(2−45 × 0.516)× 210 258.95 3× 215 × 257.95 × 10.90 277.98

1r + 6rCD−∆[117] −9rND + 1r 4/(2−44 × 0.512)× 210 257.97 3× 28 × 256.97 × 9.74 269.84∑
i
#CP - 261.28

∑
i
#Enc 278.98 0.52

13-round Speck96/96

Attack Stagei
DC TC Ps.

ε/(pi × Prnb)×Ni pairs #CP βi × 2|Bi|× DC pairs ×ηi #Enc

1r + 4rCD−∆[53] −7rND + 1r 4/(2−21 × 0.993)× 210 234.01 1× 212 × 233.01 × 12.00 248.59

1r + 4rCD−∆[65] −7rND + 1r 4/(2−22 × 0.990)× 210 235.01 3× 212 × 234.01 × 11.89 251.17

1r + 4rCD−∆[77] −7rND + 1r 4/(2−21 × 0.987)× 210 234.02 3× 212 × 233.02 × 12.12 250.20

1r + 4rCD−∆[89] −7rND + 1r 4/(2−22 × 0.987)× 210 235.02 3× 212 × 234.02 × 12.30 251.23∑
i
#CP - 236.60

∑
i
#Enc 252.61 0.81

11-round Speck64/96

Attack Stagei
DC TC Ps.

ε/(pi × Prnb)×Ni pairs #CP βi × 2|Bi|× DC pairs ×ηi #Enc

1r + 3rCD−∆[42] −6rND + 1r 4/(2−12 × 0.951)× 210 225.07 1× 210 × 224.07 × 11.93 237.65

1r + 3rCD−∆[47] −6rND + 1r 4/(2−11 × 0.854)× 210 224.23 3× 212 × 223.23 × 12.40 240.45

1r + 3rCD−∆[33] −6rND + 1r 4/(2−12 × 0.887)× 210 225.17 3× 210 × 224.17 × 12.00 239.34∑
i
#CP - 226.47

∑
i
#Enc 241.13 0.90

DC: data complexity TC: time complexity Ps: success rate
#CP: number of chosen plaintexts #Enc: number of equivalent encryptions under the targeted cipher.

Table 13: Statistic on hw(kg, rk) over 55 trials of the 11-round attack on Speck64
hw(kg, rk) 0 1 2 3 4

# trials 4 16 12 16 5

7 Application to More Ciphers
To demonstrate the generality of the multi-stage key-recovery framework, we present combi-
nations of neural distinguishers that are facilitated to be employed to perform key-recovery
attacks on three other block ciphers, including Simon [BSS+15], Present [BKL+07],
and DES [BS92]. Table 14 shows one combination of six NDs against 16-round reduced
Simon128, one combination of four NDs against 5-round reduced Present, and one
combination of three NDs against 5-round reduced DES. Note that multi-round CDs are
to be prepended to these NDs for the attacks to cover more rounds.

8 Summary and Conclusions
This paper presents a multi-stage key-recovery framework for attacking large-stage block
ciphers basing on differential neural distinguishers. To apply this framework on cryptanaly-
sis of large-stage members of the block cipher family Speck, multiple neural distinguishers
were trained and carefully selected. Under the proposed multi-stage key-recovery frame-
work and with the combinations of neural distinguishers, various practical attacks were
designed and trialed on round-reduced Speck with 128-bit, 96-bit, and 64-bit states.
Basing on the practical attacks, theoretical attacks covering more rounds were devised,
for which classical differentials and their neutral bits are searched to cooperate with the
neural distinguishers. As a result, considerable improvement in terms of both time and
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Table 14: Neural distinguishers against round-reduced Simon, Present, and DES.
16-round Simon128 5-round Present 5-round DES

NDi ∆i Ci Acc. ∆i Si Acc. ∆i Si Acc.

ND1 ∆[8] {9∼0} 0.669 ∆[9] {2, 4, 7, 10, 12, 15} 0.832 ∆[41] {1} 0.669
ND2 ∆[21] {22∼10} 0.717 ∆[22] {11} 0.838 ∆[45] {2, 4, 7} 0.717
ND3 ∆[34] {35∼23} 0.717 ∆[25] {0, 1, 3, 8, 9} 0.839 ∆[62] {3, 5, 6, 8} 0.717
ND4 ∆[47] {48∼36} 0.717 ∆[34] {5, 6, 13, 14} 0.800
ND5 ∆[54] {55∼49} 0.718
ND5 ∆[62] {63∼56} 0.711

∆i: the input difference Acc.: the accuracy of the NDi

Ci: the index of bits of xr (at the same time, take the same index of bits of yr) that are
fed into NDi, where xr (resp. yr) is the left (resp. right) n-bit word of a full r-round
output state.
Si: the index of S-boxes that are fed into NDi.

data complexity of differential key-recovery attacks on 17-round (resp. 18- and 19-round)
reduced Speck with the largest, i.e., 128-bit state and 128-bit key (resp. 192- and 256-bit
key) is obtained. Besides, efficient attacks are achieved on round-reduced Speck with
96-bit and 64-bit states.

A Appendix

A.1 Proof of Observation 1

Property 1 (Basic property of addition modulo 2n [LM01]). If (x, y) ∈ Fn2 × Fn2 , then
x� y = x⊕ y ⊕ carry(x, y), where the carry, carry(x, y) := c ∈ Fn2 , of addition x� y is
defined recursively as follows. Firstly, c[0] := 0. Secondly, c[i+ 1] := (x[i] ∧ y[i])⊕ (x[i] ∧
c[i])⊕ (y[i] ∧ c[i]), for every i ≥ 0.

Lemma 1 ( [LM01]). DP+(α, β 7→ γ) = Pr(x,y)∈Fn
2×Fn

2
[carry(x, y)⊕carry(x⊕α, y⊕β) =

xor(α, β, γ)], where xor(x, y, z) := x⊕ y ⊕ z.

Theorem 1 ( [LM01]). Let δ = (α, β 7→ γ) be an arbitrary XOR-differential through
addition modulo 2n. Algorithm 2 returns DP+(δ) in time Θ(logn). More precisely, it
works in time Θ(1) + t, where t is the time it takes to compute wh.

Algorithm 2 Compute DP+(δ) [LM01]
INPUT: δ = (α, β 7→ γ)
OUTPUT: DP+(δ)

1. If eq(α�1, β�1, γ�1) ∧ (xor(α, β, γ)⊕ (β�1)) 6= 0 then return 0;

2. Return 2−wh(¬eq(α,β,γ)∧mask(n−1));

Proof of Observation 1. Denote carry(x, y)⊕ carry(x⊕α, y⊕ β) by ∆c. From Lemma 1,
for an arbitrary conforming pair, (x, y) and (x ⊕ α, y ⊕ β), of a possible differential
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δ := (α, β 7→ λ), one have

xor(α, β, γ)[i+ 1]
= ∆c[i+ 1]
= (x[i]y[i]⊕ x[i]c[i]⊕ y[i]c[i]) ⊕

((x[i]⊕ α[i])(y[i]⊕ β[i])⊕ (x[i]⊕ α[i])(c[i]⊕∆c[i])⊕ (y[i]⊕ β[i])(c[i]⊕∆c[i]))
= x[i]β[i]⊕ y[i]α[i]⊕ α[i]β[i]⊕ (x[i]⊕ y[i]⊕ α[i]⊕ β[i])∆c[i]⊕ (α[i]⊕ β[i])c[i]

.

Since δ is a possible differential, from Theorem 1, one only need to consider those bits i,
0 ≤ i < n− 1, such that eq(α, β, γ)[i] = 0. For those bits i, one has the follows.
If α[i] ⊕ β[i] = 0, then α[i] = β[i] 6= λ[i] = ∆c[i] (note that xor(α[i], β[i], λ[i]) = ∆c[i]).
Thus, α[i]β[i] = 0 and α[i]⊕∆c[i] = 1. One has

xor(α, β, γ)[i+ 1] = (x[i]⊕ y[i])(α[i]⊕∆c[i])⊕ α[i], thus
x[i]⊕ y[i] = xor(α, β, γ)[i+ 1]⊕ α[i];

if α[i]⊕ β[i] = 1, one has

xor(α, β, γ)[i+ 1] = (x[i]⊕ y[i])(α[i]⊕∆c[i])⊕ x[i]⊕∆c[i]⊕ c[i], thus
x[i]⊕ c[i] = xor(α, β, γ)[i+ 1]⊕ α[i], if α[i]⊕ xor(α, β, γ)[i] = 0,
y[i]⊕ c[i] = xor(α, β, γ)[i+ 1]⊕ β[i], if α[i]⊕ xor(α, β, γ)[i] = 1.

}
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