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Abstract. A recent area of interest in cryptography is recursive composition of
proof systems. One of the approaches to make recursive composition efficient in-
volves cycles of pairing-friendly elliptic curves of prime order. However, known
constructions have very low embedding degrees. This entails large parameter sizes,
which makes the overall system inefficient. In this paper, we explore 2-cycles com-
posed of curves from families parameterized by polynomials, and show that such
cycles do not exist unless a strong condition holds. As a consequence, we prove
that no 2-cycles can arise from the known families, except for those cycles already
known. Additionally, we show some general properties about cycles, and provide
a detailed computation on the density of pairing-friendly cycles among all cycles.

1 Introduction

A proof system is interactive protocol between two parties, called the prover and the
verifier. The prover aims to convince the verifier of the truth of a certain statement u,
which is an element of a language L in NP. Associated to a statement is a witness, which
is a potentially secret input w that the prover uses to produce the proof of u ∈ L. A
recent area of interest is recursive composition of proof systems [42,8]. Here, each prover
in a sequence of provers takes the previous proof and verifies it, and performs some
computations on their own, finally producing a proof that guarantees that (a) the previous
proof verifies correctly, and (b) the new computation has been performed correctly. This
way, the verifier, who simply verifies the last proof produced in the sequence, can be sure
of the correct computation of every step.

For recursive composition, we require two things from the proof system. First, that
it is expressive enough to be able to accept its own verification algorithm as something
to prove statements about, and second, that the verification algorithm is small enough
so that the prover algorithm does not grow on each step. In the literature we can find
several proof systems that differ on their cryptographic assumptions and performance.
Succinct non-interactive arguments of knowledge (SNARKs) are of particular interest,
since they provide a computationally sound proof of small size compared to the size of
the statement [9]. In particular, we focus on pairing-based SNARKs [35,24,22], which
make use of elliptic-curve pairings for verification of proofs, achieving verification time
that does not depend on the size of the statement being proven. One downside of SNARKs
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is that they require a set of public parameters, known as the common reference string
(CRS), that is at best linear in the size of the statement. We note that there is a way to
achieve recursive composition with a linear-time verifier, as long as the proof system is
compatible with an efficient accumulator scheme [10,11]. However, we focus on the case
of pairing-based SNARKs, due to the appeal of constant-time verification.

1.1 Avoiding non-native arithmetic with cycles

A pairing-based SNARK relies on an elliptic curve E/Fq for some prime q, and such that
E(Fq) has a large subgroup of prime order p. With this setting, the SNARK is able to
prove satisfiability of arithmetic circuits over Fp. However, the proof will be composed of
elements in Fp and, crucially, elements in E(Fq). Each of these latter elements, although
they belong to a group of order p, are represented as a pair of elements in Fq. Moreover, the
verification involves operations on the curve, which have formulas that use Fq-arithmetic.
Therefore, recursive composition of SNARK proofs requires to write the Fq-arithmetic,
derived from the verification algorithm, with an Fp-circuit. Since Fp-circuit satisfiability
is an NP complete problem, it is possible to simulate Fq-arithmetic via Fp-operations, but
this solution incurs into an efficiency blowup of O(log q) compared to native arithmetic
[8, Section 3.1].

Ideally, we would like q = p. However, there is a linear-time algorithm for solving
the discrete logarithm problem on curves of this kind [40]. Therefore, we shall assume
that p ̸= q. Another approach is to instantiate a new copy of the SNARK with another
elliptic curve E′ to deal with Fq-circuits. In [14], the authors propose to use a 2–chain of
pairing-friendly elliptic curves to achieve bounded recursive proof composition. A 2-chain
of (pairing-friendly) elliptic curves is a tuple of pairing-friendly elliptic curves (E1, E2),
defined over Fp1 and Fp2 , where p1 | #E2(Fp2).

A more ambitious approach, proposed in [8], is to use pairs of curves that also satisfy
that p2 | #E1(Fp1

). In this case, the pair of curves is called a 2–cycle. By alternating
the instantiation of the SNARK with the two curves of the cycle, it is possible to allow
unbounded recursive composition of the SNARK without incurring into non-native arith-
metic simulation. Although this idea can also be used with longer cycles, 2-cycles are
the optimal choice for recursive SNARKs, because they only require the generation and
maintenance of two CRS.

1.2 State of the art

Silverman and Stange [39] introduced and did a systematic study on 2-cycles of elliptic
curves. As they show in their paper, in general, cycles of elliptic curves are easy to find.
However, for recursive composition of pairing-based SNARKs, we need to be able to
compute a pairing operation on the curves of the cycle. For this reason, curves need to
have a low embedding degree, so that the pairing can be computed in a reasonable amount
of time. Such curves are called pairing-friendly curves.

In [13], the authors focused on cycles of pairing-friendly curves. In particular, they
showed that only prime-order curves can form cycles. The only known method to produce
prime-order curves is via families of curves parameterized by polynomials, and currently
there are only five that are known. The first three of these families were introduced by
Miyaji, Nakabayashi, and Takano [33], who characterized all prime-order curves with
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embedding degrees 3, 4, and 6. These are called MNT curves. Based on the work from
[23], Barreto and Naehrig [6] found a new family of curves with embedding degree 12,
and later Freeman [18] found another one with embedding degree 10. The only known
cycles are formed by alternating MNT curves of embedding degrees 4 and 6 [26,13]. As
proposed in [8], these cycles can be used to instantiate recursive composition of SNARKs,
but due to their very low embedding degree, the parameter sizes need to be very large
to avoid classical discrete-logarithm attacks [31], making the whole construction slow.
Furthermore, the fact that the embedding degrees are different leads to an unbalance in
the parameters, making one curve larger than necessary. Therefore, it would be desirable
to have 2-cycles in which both curves have the same embedding degree k, for k a bit
larger than in MNT curves. For instance, [13] suggests embedding degrees 12 or 20.

Chiesa, Chua, and Weidner [13] characterized all the possibilities for cycles consist-
ing of MNT curves and showed that there are no cycles consisting of curves from only
the Freeman or Barreto–Naehrig (BN) families. They also gave some properties and im-
possibility results about pairing-friendly cycles, suggesting that adding the condition of
pairing-friendliness to the curves of a cycle is a strong requirement: while cycles of curves
are easy to find, cycles of pairing-friendly curves are not.

Recent progress has focused on chains of elliptic curves [17] but there are still some
interesting problems in the direction of cycles. In particular, [13] lists some open problems,
such as studying 2-cycles where the two curves have same embedding degree or finding a
cycle by combining curves from different families.

1.3 Contributions and organization

In this paper, we continue with the line of research of [13] and tackle some of the open
problems suggested by the authors. In Section 2, we review the background material
on elliptic curves, focusing on families of pairing-friendly curves with prime order. In
Section 3, we recall the notion of cycles of elliptic curves, and what is known about them.
We also present some new results, in particular a lower bound on the trace of curves
involved in a 2-cycle, when both curves have the same (small) embedding degree. In
Section 4 we study whether a combination of curves from different families can form a
2-cycle. This answers one of the open questions from [13], for the case of 2-cycles.

Theorem 4.5 (informal). Parametric families either form 2-cycles as polynomials or
only form finitely many pairing-friendly 2-cycles, and these can be explicitly bounded.

Moreover, we show that no curve from any of the known families can be in a 2-cycle
in which the other curve has embedding degree k ≤ 20. This is achieved by combining
the previous theorem with explicit computations for each of the families. These results
shed some light over the difficulty of finding new cycles of elliptic curves, considering the
fact that polynomial families are the only known way to produce pairing-friendly elliptic
curves with prime order. Finally, in Section 5 we estimate the density of pairing-friendly
cycles among all cycles. We conclude the paper in Section 6. Appendices A, B, C include
additional computations and SageMath code, which can also be found in [1].

2 Pairing-friendly elliptic curves

Notation. Throughout this document, we assume that p, q, qi > 3 and are prime numbers.
We denote by Fq the finite field with q elements. For n ∈ N, we denote by ζn an n-th
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primitive root of unity. We denote by φ(n) the Euler’s totient function on n. We denote
by Φn the n-th cyclotomic polynomial, which has degree φ(n). A polynomial g ∈ Q[X] is
integer-valued if g(x) ∈ Z for all x ∈ Z.

2.1 Elliptic curves

An elliptic curve E over Fq (denoted E/Fq) is a smooth algebraic curve of genus 1, defined
by the equation

Y 2 = X3 + aX + b,

for some a, b ∈ Fq such that 4a3 − 27b2 ̸= 0. We denote the group of Fq-rational points
by E(Fq), and refer to #E(Fq) as the order of the curve. The neutral point is denoted
by O. Given m ∈ N, the m-torsion group of E is E[m] = {P ∈ E(Fq) | mP = O}, where
Fq is the algebraic closure of Fq. When q ∤ m, we have that E[m] ∼= Zm × Zm. The trace
of Frobenius (often called just trace) of E is

t = q + 1−#E(Fq).

Hasse’s theorem [38, Theorem V.1.1] states that |t| ≤ 2
√
q, and Deuring’s theorem [15,

Theorem 14.18] states that, for any t ∈ Z within the Hasse bound, there exists an elliptic
curve E/Fq with trace t.

A curve is said to be supersingular when q | t, and ordinary otherwise. Since we
work with q > 3 prime, the Hasse bound implies that the only supersingular curves
are those with t = 0. In the case of ordinary curves, the endomorphism ring will be an
order O ⊆ Q(

√
d), where d is the square-free part of t2 − 4q. The value d is called the

discriminant of the curve E, and we say that E has complex multiplication by O. Note
that the Hasse bound implies that d < 0.1

Pairings and the embedding degree. Let E/Fq be an elliptic curve. Then, for m
such that q ∤ m, we can build a pairing

e : E[m]× E[m] → µm,

where E[m] ∼= Zm × Zm is the m-torsion group of the curve and µm is the group of mth
roots of unity. The map e is bilinear, i.e. e(aP, bQ) = e(P,Q)ab for any P,Q ∈ E[m].
Various instantiations of this map exist, e.g. the Weil [38, §III.8] pairing. Since µm ⊂ F∗

qk

for some k ∈ N and is a multiplicative subgroup, it follows that m | qk − 1. The smallest
k satisfying this property is called the embedding degree of E[m]. When m = #E(Fq), we
refer to this k as the embedding degree of E.

Proposition 2.1. Let E/Fq be an elliptic curve of prime order p. The following condi-
tions are equivalent:

– E has embedding degree k.
– k is minimal such that p | Φk(q) [33, Remark 1].
– k is minimal such that p | Φk(t− 1) [5, Lemma 1].

1 Other works take |d| as the discriminant.
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Most curves have a very large embedding degree. This has a direct impact on the
computational cost of computing the pairing. On the one hand, we want small embed-
ding degrees to ensure efficient arithmetic. On the other hand, however, small embedding
degrees open an avenue for attacks, more precisely the [31] and [21] reductions. These
translate the discrete logarithm problem on the curve to the discrete logarithm problem
on the finite field Fqk , where faster (subexponential) algorithms are known. With a small
embedding degree, we are forced to counteract the reduction to finite field discrete log-
arithms by increasing our parameter sizes. Therefore, a balanced embedding degree is
often preferred when using pairing-friendly curves.

We note the following result, useful for finding curves with small embedding degree.

Proposition 2.2. Let E/Fq be an elliptic curve with prime order p and embedding degree
k such that p ∤ k. Then p ≡ 1 (mod k).

Proof. The embedding degree condition is equivalent to k being minimal such that qk ≡ 1
(mod p). Since p is prime, by Lagrange’s theorem we have that k | p− 1.

The complex multiplication (CM) method. Let E/Fq be an elliptic curve with
prime order p and trace t. The embedding degree condition is determined by p and q
alone, so the actual coefficients of the curve equation do not play any role. Because of
this, the main approach to finding pairing-friendly curves tries to find (t, p, q) first, and
then curve coefficients that are compatible with these values.

Given (t, p, q) such that p = q + 1 − t and t ≤ 2
√
q, Deuring’s theorem ensures that

a curve exists, but that does not mean that it is easy to find. The algorithm that takes
(t, p, q) and produces the curve coefficients is known as the complex multiplication (CM)
method, and its complexity strongly depends on the discriminant d of the curve. Currently,
this is considered feasible up to |d| ≈ 1016 [41].

Because of our focus on finding good triples (t, p, q), we will identify curves with them.
That is, we write E ↔ (t, p, q) as shorthand for an elliptic curve E/Fq with order p and
trace t. This curve might not be unique, but any of them will have the same embedding
degree and discriminant, so they are indistinguishable for our purposes.

2.2 Pairing-friendly polynomial families

The idea of considering families of elliptic curves parameterized by low-degree polynomials
is already present in [33,6], but is studied in a more systematic way in [18,20]. We will
consider triples of polynomials (t, p, q) ∈ Q[X]3 such that, given x ∈ Z, there is an elliptic
curve E ↔ (t(x), p(x), q(x)).

We are interested in prime-order elliptic curves, so we require that the polynomials
p, q represent primes.

Definition 2.3. Let g ∈ Q[X]. We say that g represents primes if:

– g(X) is irreducible, non-constant and has a positive leading coefficient,
– g(x) ∈ Z for some x ∈ Z (equivalently, for infinitely many such x), and
– gcd{g(x) | x, g(x) ∈ Z} = 1.

The Bunyakovsky conjecture [36] states that a polynomial in the conditions of the
definition above takes prime values for infinitely many x ∈ Z. We now formally define
polynomial families of pairing-friendly elliptic curves.
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Definition 2.4. Let k, d ∈ Z with d < 0 < k. We say that a triple of polynomials
(t, p, q) ∈ Q[X]3 parameterizes a family of elliptic curves with embedding degree k and
discriminant d if:

1. p(X) = q(X) + 1− t(X),
2. p is integer-valued (even if its coefficients are in Q \ Z),
3. p and q represent primes,
4. p(X) | Φk(t(X)− 1), and
5. the equation 4q(X) = t(X)2 + |d|Y 2 has infinitely-many integer solutions (x, y).

We naturally extend the notation E ↔ (t, p, q) to polynomial families.

Conditions 1-3 ensure that the polynomials represent infinitely many sets of param-
eters compatible with an elliptic curve. Condition 4 ensures that the embedding degree
is at most k, where ideally k is small. Condition 5 ensures that there are infinitely many
curves in the family with the same discriminant d. If this d is not too large, we will be
able to use the CM method to find the curves corresponding to these parameters. If we
ignore condition 5, such families are not too hard to find, as illustrated by the following
lemma.2

Lemma 2.5. For any integer k ≥ 3 there are infinitely many pairs (q, Eq) with embedding
degree k, and such that |E(Fq)| is prime, under the Bunyakovsky conjecture.

Proof. Infinite families are known for k = 3, 4, 6, as detailed below in Table 1. We can
then assume φ(k) ≥ 4. We will construct a family represented by the polynomial tuple
(t, p, q) as follows.

Let p(X) = Φrk(X), for some prime number r such that r ∤ k. Then, it holds that
φ(kr) ≥ 4(r − 1) ≥ 2r. We set q = p+ xr. Then

p | xrk − 1 = (xr)k − 1 = (q − p)k − 1,

so p | qk − 1. In this case p = q − xr, so the trace is given by t = 1 + xr, and deg (t) ≤
deg (p)/2. Also, the cyclotomic polynomial is irreducible, so it represents infinitely many
prime values.

Let f(X) = 4q(X)− t(X)2. Freeman [18] observed that condition 5 in Definition 2.4
is strongly related to the form of this polynomial.

Proposition 2.6. Fix k ∈ N, and let (t, p, q) ∈ Z[X]3 satisfying conditions (1-4) in the
previous definition. Assume that one of these holds:

– f(X) = aX2 + bX + c, with a, b, c ∈ Z, a > 0 and b2 − 4ac ̸= 0. There exists a
discriminant d such that ad is not a square. Also, the CM equation has an integer
solution.

– f(X) = (ℓX + |d|)g(X)2 for some discriminant d, ℓ ∈ Z, and g ∈ Z[X].

Then, we have that (t, p, q) parameterizes a family of elliptic curves with embedding degree
k and discriminant d.

2 Furthermore, numerical experiments easily find many tuples (t, p, q) with low degree and small
coefficients satisfying conditions 1-4, but unfortunately not condition 5.
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On the other hand, if deg f ≥ 3, it is unlikely to produce a family of curves, as
highlighted by the following result, which is a direct consequence of Siegel’s theorem [38,
Corollary IX.3.2.2].

Proposition 2.7. Fix k ∈ N, and let (t, p, q) as above, and satisfying conditions (1-4)
in the previous definition. Assume that f(X) is square-free and deg f ≥ 3. Then (t, p, q)
cannot represent a family of elliptic curves with embedding degree k.

Finally, [18] also presents some results on the relations between the degrees of the
polynomials involved in representing a family of curves.

Proposition 2.8. Let t ∈ Q[X]. Then, for any k and any irreducible factor p | Φk ◦ t,
we have that φ(k) | deg p.

Proposition 2.9. Let (t, p, q) represent a family of curves with embedding degree k, with
φ(k) ≥ 4. If f = 4q − t2 is square-free, then:

– deg p = deg q = 2deg t.
– If a is the leading coefficient of t(X), then a2/4 is the leading coefficient of p(X), q(X).

Known pairing-friendly families with prime order. Only a few polynomial families
of elliptic curves with prime order and low embedding degree are known. The first work
in this direction is due to Miyaji, Nakabayashi, and Takano, [33], who characterized all
prime-order curves with embedding degrees k = 3, 4, 6 (these correspond to φ(k) = 2).
Based on the work of Galbraith, McKee and Valença [23], two additional families were
found: Barreto and Naehrig [6] found a family with k = 12, and Freeman [18] found
another one with k = 10 (both cases have φ(k) = 4). Note, however, that their results
are not exhaustive, meaning that there could still be other families with these embedding
degrees that have not been found, unlike in the MNT case. We summarize the polynomial
descriptions of these families in Table 1.

Family k t(X) p(X) q(X)

MNT3 3 6X − 1 12X2 − 6X + 1 12X2 − 1

MNT4 4 −X X2 + 2X + 2 X2 +X + 1

MNT6 6 2X + 1 4X2 − 2X + 1 4X2 + 1

Freeman 10 10X2 + 5X + 3 25X4 + 25X3 + 15X2 + 5X + 1 25X4 + 25X3 + 25X2 + 10X + 3

BN 12 6X2 + 1 36X4 + 36X3 + 18X2 + 6X + 1 36X4 + 36X3 + 24X2 + 6X + 1

Table 1. Polynomial descriptions of MNT, Freeman and BN curves, where k corresponds to the
embedding degree, t(X) is the trace, p(X) is the order, and q(X) is the order of the base field.

For completeness, we note that there are no elliptic curves with prime order and
embedding degree k ≤ 2, except for a few cases of no cryptographic interest.

Proposition 2.10. Let p, q ∈ Z be prime numbers. If q ≥ 14, then there is no elliptic
curve E/Fq with #E(Fq) = p and embedding degree k ≤ 2.
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Proof. Suppose that such a curve exists.

– If k = 1, then p | q − 1. Clearly p ̸= q − 1, since otherwise p, q cannot both be prime.
Then p ≤ q−1

2 , and then q− p ≥ q+1
2 . But, at the same time, q− p = t− 1 ≤ 2

√
q− 1,

due to the Hasse bound. These two conditions are only compatible when q ≤ 9, which
is already ruled out by hypothesis.

– If k = 2, then p | q2−1 = (q−1)(q+1). We have that p ∤ q−1 (otherwise k = 1), and
thus p | q+1 because p is prime. Again, p ̸= q+1, because otherwise p, q cannot both
be prime. Then p ≤ q+1

2 , and thus q−p ≥ q−1
2 . By the Hasse bound, q−p ≤ 2

√
q−1,

and these are only compatible for q < 14.
⊓⊔

An attempt at finding new families. This section describes a technique for searching
for new parametric families of pairing-friendly curves with prime order. The idea was
already known to Freeman [19], although we present a new speed-up when deg t = 2.
Unfortunately, we cannot report any new findings, but still outline the technique due to
its potential independent interest.

The algorithm works as follows: we are looking for tuples (t, p, q) ∈ Q[X]3 in the
conditions of Definition 2.4. We first note that the three polynomials are in the linear
relation p = q + 1 − t, so we actually just need to find two of them. Moreover, by
Proposition 2.1, we know that p is limited to the irreducible factors of Φk(q) or Φk(t− 1),
so if we have one of these, then we will have very few candidates for p. We use t − 1 as
our “free” polynomial because it has lower degree than q.

Require: Bound B on |ti| and target embedding degree k.
d = φ(k)/2
for (t0, . . . , td) in [−B,B]d+1 do

t =
∑d

i=0 tiX
i

for p | Φk(t− 1) do
q = p− 1 + t
if p or q do not represent primes then continue
f = 4q − t2

if deg f > 2 and f has no repeated roots then continue
print (t, p, q)

We present a way to speed up this search when deg t = 2, based on the following
result.

Lemma 2.11 ([23], Lemma 1). Let t ∈ Q[X] with deg t = 2. Then:

– If t(X) = ζk has a solution in Q(ζk), then Φk ◦ t factors over the rationals into two
irreducible polynomials of degree φ(k) each.

– Otherwise, Φk ◦ t is irreducible and has degree 2φ(k).

The proposition below allows us to replace the brute force in the three coefficients
(t0, t1, t2) of t by the leading coefficient and discriminant, (t2, ∆).
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Proposition 2.12. Let a, b, c, k ∈ Z, with a ̸= 0 and k ≥ 3. Consider the polynomial
t(X) = aX2 + bX + c with discriminant ∆. If t(X) = ζk has a solution in Q(ζk), then

Φk

(
−∆2

4a

)
is a square in Q.

Proof. We have
4at(X) = (2aX + b)2 −∆2,

where ∆ =
√
b2 − 4ac is the discriminant of the polynomial t(X). Hence, we are looking

for solutions of the equation
y2 −∆2 = 4aζ (1)

over K = Q(ζ). Raising Equation (1) to the k-th power, we get

0 =
(
y2 −∆2

)k − (4a)k = y2k +

k∑
j=1

(
k

j

)
(−1)jy2k−2j

(
∆2

)j
.

In particular, y is a root of a monic polynomial with integer coefficients, and hence, it is
an algebraic integer. Taking norms in K we get

N(y)2 =
∏

σ∈Gal(K/Q)

(∆2 + 4aσ(ζ)) = (4a)φ(k)Φk

(
−∆2

4a

)
. (2)

If Equation (2) does not have a solution over the integers, then neither does t(X) = ζk.

Since the norm of an algebraic integer is an integer and 2|φ(k) for k ≥ 3, then Φk

(
−∆2

4a

)
must be a square. ⊓⊔

The idea is the same as outlined in the algorithm above, but now we loop over (t2, ∆)

instead of (t0, t1, t2), and proceed only if Φk(−∆2

4a ) is a square. Since the condition is
necessary but not sufficient, we still need to check for irreducibility of Φk(t − 1). Once
a suitable pair (t2, ∆) has been found, we look for t1, t0 compatible with ∆. Still, this
was not enough to find any new instances of families for the values of k compatible with
deg t = 2, that is, 5, 8, 10, 12 (those with φ(k) = 4).

3 Cycles of elliptic curves

3.1 Definition and known results

The notion of cycles of elliptic curves was introduced in [39].

Definition 3.1. Let s ∈ N. An s-cycle of elliptic curves is a tuple (E1, . . . , Es) of elliptic
curves, defined over fields Fq1 , . . . ,Fqs , respectively, and such that

#Ei(Fqi) = qi+1 mod s,

for all i = 1, . . . , s.

Remark 3.2. Cycles of length 2 have some particular properties that are worth noting.
Let E,E′ be two curves forming a 2-cycle. Then
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– If E ↔ (t, p, q), then Definition 3.1 implies that E′ ↔ (2− t, q, p).
– p is in the Hasse interval of q if and only if q is in the Hasse interval of p. Indeed, if

the former holds, we have that

√
p− 1 ≤ √

q ≤ √
p+ 1,

which is equivalent to √
q − 1 ≤ √

p ≤ √
q + 1.

It is known that cycles of any length exist [39, Theorem 11]. We summarize in the
following two propositions some facts about cycles. These results are due to [13].

Proposition 3.3. Let E1, . . . , Es be an s-cycle of elliptic curves, defined over prime fields
Fq1 , . . . ,Fqs . Then:

(i) E1, . . . , Es are ordinary curves.
(ii) If q1, . . . , qs > 12s2, then E1, . . . Es have prime order.
(iii) Let t1, . . . , ts be the traces of E1, . . . , Es, respectively. Then

s∑
i=1

ti = s.

(iv) If s = 2, then the curves in the cycle have the same discriminant d.
(v) If the curves in the cycle have the same discriminant |d| > 3, then s = 2.
(vi) If s > 2 and E1, . . . , Es have the same discriminant d, then necessarily s = 6 and

|d| = 3.

There are also some impossibility results.

Proposition 3.4. We have the following.

(i) There is no 2-cycle with embedding degree pairs (5, 10), (8, 8) or (12, 12).
(ii) There is no cycle formed only by Freeman curves.
(iii) There is no cycle formed only by BN curves.

3.2 Some properties of cycles

In this section, we show some results about cycles, most of them about 2-cycles in which
both curves have the same embedding degree.

Proposition 3.5. Sophie Germain primes are not part of any 2-cycle in which both
curves have the same embedding degree k.

Proof. Let p, q be the orders of the curves in the cycle, and assume that one of them
is a Sophie Germain prime. Let us say p = 1 + 2ℓ, with ℓ prime. Since they are in a
cycle, q = p+ 1− t for some |t| ≤ 2

√
p. Now, since k | p− 1 by Proposition 2.2, we have

k = 1, 2, ℓ, 2ℓ. We already know that k ̸= 1, 2. Hence, k = ℓ or 2ℓ. But then ℓ | q − p, and
thus

|q − p| ≥ ℓ =
p− 1

2
> 2

√
p+ 1

for any p > 3, which contradicts the fact that |q − p| = |1− t| < 2
√
p+ 1.
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Proposition 3.6. Let s ∈ Z. Consider a family of elliptic curves with trace parameterized
by a polynomial t ∈ Q[X], with deg t even. Then, only finitely many curves from this family
form s-cycles within the family.

Proof. If s curves with traces t1, . . . , ts, respectively, form a cycle, by Proposition 3.3.(iii)
we have that

∑s
i=1 ti = s. Since deg t ≥ 2 and s is fixed, necessarily there exist a, b ∈

{1, . . . , s} such that ta, tb have different signs. However, since deg t is even, there exists a
lower bound b such that, for all |x| > b, we have that t(x) has the same sign. Therefore,
only finitely many cases can occur in which the traces have opposing sign.

Given an elliptic curve E ↔ (t, p, q), Hasse’s theorem gives us the bound |t| ≤ 2
√
q,

which in the polynomial case implies that deg t ≤ 1
2deg q. We now derive a lower bound

for t in the case of 2-cycles in which both curves have the same small embedding degree.
We require first the following technical lemma.

Lemma 3.7. Let k ∈ N and 3 ≤ k ≤ 104. We have that:

(i) For any |x| > 1,

Φk(x) ≤
|x|

|x| − 1
xφ(k).

(ii) For any ε > 0, there exists B > 0 such that, for all x with |x| > B,

Φk(x− 1) ≤ (1 + ε)
|x|

|x| − 1
xφ(k).

Proof. Clearly such bound exists for |x| large enough, since Φk(x) = xφ(k) + o
(
xφ(k)

)
.

More precisely, for k ≤ 104, the k-th cyclotomic polynomial has only ±1 as coeffi-
cients [32]. Therefore

Φk(x) ≤ xφ(k)+

φ(k)−1∑
i=0

|x|i = xφ(k)

1 +

φ(k)∑
i=1

1

|x|i

 ≤ xφ(k)

(
1 +

1

|x| − 1

)
=

|x|
|x| − 1

xφ(k),

using the fact that the geometric series converges when |x| > 1.
Part (ii) is now trivial when x > 0. For x < 0, we note that, since Φk is a polynomial

with positive leading coefficient, for any ε > 0 there exists B > 0 such that, for all x with
|x| > B,

Φk(x− 1) ≤ (1 + ε)Φk(x),

since otherwise the function would grow exponentially fast when x → −∞. The result
follows directly from applying part (i) to Φk(x).

Remark 3.8. More precisely, for k such that 3 ≤ k ≤ 104, we do not need to choose B
too large to achieve a small constant. The following values have been obtained computa-
tionally.

1 + ε 2 1.1 1.01
B 146 1069 10250

11



Proposition 3.9. Let E ↔ (t, p, q) be an elliptic curve with embedding degree k, with
|t| > 1 and 3 ≤ k ≤ 104. Then, for any ε > 0 there exists B > 0 such that, for all x with
|x| > B, we have

|t| >
(

1

1 + ε

|t| − 1

|t|
q

) 1
φ(k)

.

Proof. We have that p | Φk(t − 1), so p ≤ Φk(t − 1). Also, we have that |t| < |Φk(t) −
Φk(t− 1)|. Assume first that t > 1. Then, due to part (i) of the previous lemma,

q = p− 1 + t ≤ p+ t < Φk(t) ≤
t

t− 1
tφ(k).

Taking φ(k)-th roots,

t >

(
t− 1

t
q

) 1
φ(k)

.

The case t < −1 is completely analogous, using part (ii) of Lemma 3.7.

The result above deals with a single curve, but actually it can be strengthened for
some 2-cycles.

Proposition 3.10. Let E ↔ (t, p, q) and E ↔ (2 − t, q, p) be two elliptic curves with
|t| > 1 and the same embedding degree k ≡ 0 (mod 4), such that k ≤ 3 ≤ 104. Then, for
any ε > 0 there exists B > 0 such that, for all x with |x| > B, we have

|t| >
(

1

1 + ε

|t| − 1

|t|
q

) 2
φ(k)

.

Proof. The case k ≡ 0 (mod 4) corresponds to those cyclotomic polynomials such that
Φk(x) = Φk(−x) for all x. From the embedding degree conditions, we have

p | Φk(t− 1),

q | Φk(1− t),

and therefore pq | Φk(t−1), since p, q are different primes. Assume, without loss of gener-
ality, that q < p. Then q2 ≤ pq ≤ Φk(t−1), and proceeding as the proof of Proposition 3.9,
we obtain

q2 ≤ (1 + ε)
|t|

|t| − 1
tφ(k),

from which we obtain the desired bound.

Corollary 3.11. Let E ↔ (t, p, q) and E ↔ (2 − t, q, p) be two elliptic curves with the
same embedding degree k ≡ 0 (mod 4), such that k ≤ 3 ≤ 104. There exists B such that,
if |t| > B, then

1

2
q

2
φ(k) < |t| ≤ 2q

1
2 .

Remark 3.12. The result above is particularly interesting in two cases:

12



– When φ(k) = 2, i.e. k = 4. In this case,

1

2
q < |t| ≤ 2q

1
2 ,

which cannot happen for q > 15. This shows that there are no (4, 4)-cycles (which
was already known from [13]).

– When φ(k) = 4, i.e. k ∈ {8, 12}. In this case,

1

2
q

1
2 < |t| ≤ 2q

1
2 ,

which shows that t asymptotically behaves like
√
q, and therefore is on the outermost

part of the Hasse interval. In particular, for polynomial families this means that
deg t = 1

2deg p, which improves on the inequality known before. This is consistent
with what is observed in known families.

4 Cycles from known families

In this section, we prove our main result about 2-cycles of elliptic curves: given a family
(t, p, q) ∈ Q[X]3 with embedding degree k, and ℓ ∈ N, one of two things can happen:

(a) q | pℓ−1, as polynomials. In this case, any curve in the family forms a 2-cycle with the
corresponding curve in the family (2− t, q, p), which has embedding degree ℓ. Observe
that, due to Proposition 3.3, both families have the same discriminant.

(b) Only finitely many curves from the family form a 2-cycle with curves of embedding
degree ℓ.

Furthermore, when we are in the second case we can explicitly find these cycles. For all
known families (Table 1), we prove that no curve from them is part of a 2-cycle with any
curve with embedding degree ℓ ≤ 20.

4.1 Cycles from parametric-families

First, we show a technique will that help us rule out many cases from our main results,
by performing a very simple check.

Proposition 4.1. Let (t, p, q) ∈ Q[X]3 parameterize a family of pairing-friendly elliptic
curves, and let ℓ ∈ N such that

q(i) ̸≡ 1 (mod ℓ)

for i = 0, . . . , ℓ − 1. Then, if a curve E from the family is in a cycle, the previous curve
in the cycle does not have embedding degree ℓ.

Proof. Let x ∈ Z such that E ↔ (t(x), p(x), q(x)), and let E′ ↔ (t′, p′, q′) be the previous
curve in the cycle. We assume that E′ has embedding degree ℓ, and will reach a contra-
diction. From the definition of cycle, p′ = q(x). Then, applying Proposition 2.2 to curve
E′, we deduce that

q(x mod ℓ) ≡ q(x) ≡ p′ ≡ 1 (mod ℓ).

This contradicts the hypothesis q(i) ̸≡ 1 (mod ℓ) for i = 0, . . . , ℓ. ⊓⊔

13



By testing the condition given by Proposition 4.1 for known families and 3 ≤ ℓ ≤ 100,
we obtain the following results.

Corollary 4.2. An MNT3 curve cannot be preceded in a cycle by a curve with embedding
degree ℓ, where

ℓ ∈ {3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36,
37, 39, 40, 41, 42, 44, 45, 48, 49, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70

72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 96, 98, 99, 100}.

Corollary 4.3. A Freeman curve cannot be preceded in a cycle by a curve with embedding
degree ℓ, where

ℓ ∈ {4, 5, 8, 10, 11, 12, 15, 16, 20, 22, 24, 25, 28, 30, 32, 33, 35, 36, 40, 44, 45, 48, 50, 52, 53, 55, 56,
59, 60, 61, 64, 65, 66, 68, 70, 72, 75, 76, 77, 79, 80, 83, 84, 85, 88, 90, 92, 95, 96, 97, 99, 100}.

Furthermore, even when we cannot rule out a certain ℓ, we obtain a condition on
xmod ℓ, which will help us later when we check by brute force all x in an interval. Also
note that, despite the fact that we will use these corollaries to simplify our work in the
next section, which deals with 2-cycles, these results work for cycles of any length.

4.2 2-cycles from parametric families

The goal here will be to start from a known family of pairing-friendly elliptic curves,
and argue that they form no 2-cycles with other pairing-friendly curves. To do so, let
(t, p, q) represent such family. For any curve E ↔ (t(x), p(x), q(x)), there is another curve
E′ ↔ (2 − t(x), q(x), p(x)) such that the two of them form a 2-cycle. Furthermore, if E′

has a small embedding degree ℓ ∈ Z, then q(x) | p(x)ℓ−1. Note that this is for a particular
x ∈ Z, not as polynomials.

Informally, our strategy will be the following. The embedding degree condition on
E′ can be reformulated in terms of integer division: the division of p(x)ℓ by q(x) has
remainder 1. We will compare integer division and polynomial division, and show that,
outside of a finite interval [A,B], the remainders in both cases essentially agree. Therefore,
by showing that the polynomial remainder r(x) never takes the value 1, we will rule out
any possibility of cycles outside of [A,B]. For known families of curves, we will deal with
the cases x ∈ [A,B] manually, as there are only a finite number of them, and show that
none of them leads to a partner curve with small embedding degree.

Lemma 4.4. Let x ∈ Z, and let a, b ∈ Q[X] be two integer-valued polynomials. Assume
that b has even degree and positive leading coefficient.

– Let h, r ∈ Q[X] be the quotient and remainder, respectively, of the polynomial division
of a by b. Let c > 0 be the smallest integer such that ch, cr ∈ Z[X].

– Let hx, rx ∈ Z be the quotient and remainder, respectively, of the integer division of
ca(x) by b(x).

Then either deg r = 0, or there exist A,B ∈ Z such that, for all x ∈ Z \ [A,B], we have
that either rx = cr(x) or rx = cr(x)+b(x). More precisely, let us denote σA = sign{r(x) |
x < A} and σB = sign{r(x) | x > B}, respectively. Then

rx =

{
cr(x) +

(
1−σA

2

)
b(x) for x < A,

cr(x) +
(
1−σB

2

)
b(x) for x > B,

14



Proof. We observe that c is well-defined, as it can be taken as the least common multiple
of all denominators occurring in the coefficients of h, r. Likewise, σA, σB are well-defined,
since r is a polynomial, and thus at most it changes sign deg r times. For the second part,
we have that

ca(x) = b(x)hx + rx,

ca(x) = b(x)(ch(x)) + cr(x),

where 0 ≤ rx < b(x), and deg r < deg b, and all these values are integer. Subtracting, we
obtain

rx − cr(x) = b(x)(ch(x)− hx),

and thus rx ≡ cr(x) (mod b(x)). Since 0 ≤ rx < b(x), we just need to find cr(x) mod b(x),
as this will necessarily agree with rx.

We illustrate the technique for the case σA = −1, σB = 1 (the other cases are com-
pletely analogous). Note that, if deg r > 0, then r is not a constant polynomial.

– Let A ∈ Z be the largest integer such that 0 < −cr(x) ≤ b(x) for all x < A. Such
A exists because both b(x),−cr(x) → ∞ when x → −∞, and deg b > deg (−cr). If
x < A, then 0 < −cr(x) ≤ b(x). Multiplying by (−1), we get that −b(x) ≤ cr(x) < 0,
and adding b(x), we get 0 ≤ cr(x) + b(x) < b(x). Therefore, rx = cr(x) + b(x).

– Let B ∈ Z be the smallest integer such that 0 ≤ cr(x) < b(x) for all x > B. Such B
exists because both b(x), cr(x) → ∞ when x → ∞, and deg b > deg (cr). If x > B,
then 0 ≤ cr(x) < b(x). Therefore, necessarily rx = cr(x).

⊓⊔

We can now prove the main theorem of this section, from which the desired results will
directly follow.

Theorem 4.5. Let k, ℓ ∈ N. Let (t, p, q) be a triple of polynomials parameterizing a family
of elliptic curves with embedding degree k. Then either q | pℓ − 1 as polynomials, or there
are at most finitely many 2-cycles formed by a curve from the family and a curve with
embedding degree ℓ.

Proof. Due to Proposition 2.10, we can safely assume that k, ℓ ≥ 3. Assume that there
exists a 2-cycle involving a curve E from the family and another curve E′ with embedding
degree ℓ. That is, assume that there exists x ∈ Z such that E ↔ (t(x), p(x), q(x)) is in a
2-cycle. Then E′ ↔ (2 − t(x), q(x), p(x)). By the condition of the embedding degree, we
have that

q(x) | p(x)ℓ − 1,

and thus there exists h ∈ Z such that

p(x)ℓ = q(x)h+ 1.

We now wish to apply Lemma 4.4, with a = pℓ and b = q, so we must argue that q has
even degree and positive leading coefficient. We distinguish two cases:

– For k ∈ {3, 4, 6}, all the prime-order families are the MNT families, which have
deg q = 2 and positive leading coefficient.
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– For k with φ(k) ≥ 4, we have from Lemma 2.8 that φ(k) | deg p, and in this case φ(k)
is always even. Furthermore, since p = q + 1 − t and t = O(

√
q) (due to the Hasse

bound), necessarily deg q = deg p. Now, since q has even degree, it necessarily has
positive leading coefficient, otherwise it could not represent infinitely many curves.

Let h, r ∈ Q[X] be the quotient and remainder, respectively, of the polynomial division of
pℓ by q. If q ∤ pℓ − 1 as polynomials, then r ̸= 1. If r is another constant polynomial, then
the embedding degree condition does not hold for any x ∈ Z. If deg r > 0, Lemma 4.4
gives us c, A,B,∈ Z, σA, σB ∈ {±1} such that, if x < A,

cr(x) +

(
1− σA

2

)
b(x) = 1,

and if x > B, then

cr(x) +

(
1− σB

2

)
b(x) = 1.

The polynomials cr(X) and cr(X) + b(X) can only take the value 1 finitely many times.
By increasing A,B if necessary, we can ensure that this only happens inside of [A,B].
Therefore, there are no cycles for x ̸∈ [A,B]. ⊓⊔

This result immediately yields the following consequences for concrete families of
curves. Let (t, p, q) parametrize a family of curves. Given a certain value of ℓ, it is imme-
diate to check whether q ∤ pℓ − 1 as polynomials. If that is not the case (which happens
most of the time), Theorem 4.5 ensures that there are at most finitely-many cycles formed
by a curve from the family and a curve with embedding degree ℓ. For each candidate ℓ,
we compute the values c, A,B from Theorem 4.5 corresponding to the division of pℓ by
q. Interestingly, c = 1 for all known families of pairing-friendly curves with prime order.
The resulting values of A,B are summarized in Table 2 for the MNT3, Freeman and BN
families. No tables are included for MNT4 and MNT6 families because, in these cases, we
have A = −1, B = 0 and A = B = 0, respectively, regardless of ℓ.

Remark 4.6. Given arbitrary integer-valued polynomials p, q ∈ Q[X] and ℓ ∈ N, there
is no guarantee that the polynomial remainder of pℓ by q will have integer coefficients,
i.e. c = 1, or even be integer-valued. Nevertheless, this does happen for MNT, Freeman
and BN curves. We show this for Freeman curves, but the argument is very similar in all
cases. For completeness, the other cases are included in Appendix A.

We proceed by induction on ℓ. For ℓ = 1, we have that

p(X) mod q(X) = −10X2 − 5X − 2.

This polynomial is of the form 25aX3 + 5bX2 + 5cX + d, for some a, b, c, d ∈ Z. We will
now show that, if pℓ mod q is of this form, then pℓ+1 mod q is also of this form. This will
prove that all the remainder is actually in Z[X] for any ℓ ∈ N.

Hence, suppose that there exist a, b, c, d ∈ N such that

p(X)ℓ mod q(X) = 25aX3 + 5bX2 + 5cX + d.
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Then

p(X)ℓ+1 ≡ p(X)ℓp(X) ≡
(
25aX3 + 5bX2 + 5cX + d

) (
−10X2 − 5X − 2

)
≡ −250aX5 − (125a+ 50b)X4 − (50a+ 25b+ 50c)X3

−(10b+ 25c+ 10d)X2 − (10c+ 5d)X − 2d
≡ (75a+ 25b− 50c)X3 + (−25a+ 40b− 25c− 10d)X2

+(−20a+ 20b− 10c− 5d)X + (−15a+ 30b− 2d) (mod q(X)).

Since the coefficient of degree 3 is divisible by 25, and the coefficients of degree 2 and 1
are divisible by 5, the induction step works.

Remark 4.7. The values of A,B in MNT4 and MNT6 families are in stark contrast with
the other families, but can be easily explained. In MNT3, BN and Freeman curves, the
remainder r of the polynomial division qk by p has coefficients that increase with k.
Because of this, we need to get further away from zero before the asymptotic behavior
kicks in.

On the contrary, only a small number of remainders are possible in MNT4 and MNT6
curves. Let p, q ∈ Q[X] be the polynomials parameterizing the order of MNT4 curves and
the order of their base fields. We have that q | p6 − 1 (they form infinitely many cycles
with MNT6 curves). That is, p has order 6 modulo q, and thus pk mod q can only take 6
possible values. Concretely, p(X)k mod q(X) ∈ {±1,±X,±(X + 1)} for any k ∈ N, and
all of these yield the bounds A = −1, B = 1. Similarly, in the case of MNT6 curves, the
remainder of pk by q can only take 4 values. Concretely p(X)k mod q(X) ∈ {±1,±2X}
for any k ∈ N, which yield the bounds A = B = 0.

An exhaustive search in [A,B] reveals no curves with embedding degree ℓ, for any of
the values of ℓ considered.

Corollary 4.8. Let (E,E′) be a 2-cycle of elliptic curves, and assume that E′ has em-
bedding degree ℓ ≤ 20. Then:

(i) E is not an MNT curve, unless (E,E′) is a cycle formed by an MNT4-MNT6 pair.
(ii) E is not a Freeman curve.
(iii) E is not a BN curve.

5 Probabilities and estimates

In this section, we generalize the results in [4] to s-cycles of elliptic curves. In particular, an
s-cycle is a collection of s primes q1, . . . , qs and s elliptic curves E1/Fq1 , . . . , Es/Fqs , such
that |Ei(Fqi)| = qi+1 mod s. Among these, we are interested in estimating the probability
of finding cycles with small embedding degrees. As s increases, the number of cycles also
increases. However, since the embedding degree condition is imposed on every step of the
cycle, the probability decreases dramatically with s, as this is a very strong requirement.

In order to get a cycle we need an s-tuple of primes q1, . . . , qs that fit in the Hasse
interval of each other, i.e. |qi+1−qi−1| ≤ 2

√
qi. Throughout this section, all the constants

in the proofs will be denoted c, although we remark that they might be different on each
inequality or step of the proof.
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Theorem 5.1. Let s ≥ 2 and X ∈ Z. Let p be the probability of finding an s-cycle of
elliptic curves (Eq1 , . . . , Eqs) with qi ∈ [X, 2X] and embedding degrees ki ≤ K for all
i = 1, . . . , s, by sampling uniformly from all the s-cycles of elliptic curves with orders in
the interval [X, 2X]. Then

p < cK(K + 1)
(log logX)2s(logX)3s

Xs/2
,

for some constant c depending on s.

We first count the s-tuples of possible primes q1, . . . , qs.

Lemma 5.2. Let s ≥ 2 a positive integer fixed and C > 0 a constant depending on s.
For any X ≥ 2 we denote Ts(X) the number of s-tuples of primes in the interval [X, 2X]
with |qi − qj | ≤ C

√
X. Then, there exist constants c1, c2 depending on s, such that

c1
X(s+1)/2

(logX)s
≤ Ts(X) ≤ c2

X(s+1)/2

(logX)s
.

Proof. We split the interval [X, 2X] in subintervals Ik = [X + (k− 1)C
√
X,X + kC

√
X)

for 1 ≤ k ≤
√
X/C and call πk the number of primes on the interval Ik. We denote

XC = X + C
⌊√

X
C

⌋√
X. Observe that 2X −XC ≤ C

√
X and, hence, the prime number

theorem gives √
X/C∑
k=1

πk = π(XC)− π(X) =
X

logX
+ E,

where |E| < ε X
logX for any ε > 0 and X > Xε sufficiently large, depending on ε. Then,

a simple application of Hölder’s inequality [7, Chapter 1, Theorem 2] for p = s, q = s
s−1

gives us for X > Xε

(1−ε)
X

logX
≤

√
X/C∑
k=1

πk ≤

√
X/C∑
k=1

1

(s−1)/s √
X/C∑
k=1

πs
k

1/s

≤ cX(s−1)/2s

√
X/C∑
k=1

πs
k

1/s

and hence

cX(s+1)/2

(logX)s
≤

√
X/C∑
k=1

πs
k.

Finally observe that every s-tuple of primes on each interval Ik is counted in Ts(X), so we
will use the above to get a lower bound on Ts(X). Let A be the set of indices k such that
the interval Ik has more than (s + 1)2 primes. Then, by the well known inequality [34,
Corollary 2]

π(M +N)− π(M) ≤ 2M

logM
, (3)

we get πk ≤ c
√
X

logX for any k and hence

X

logX
∼

∑
k∈A

πk +
∑
k∈A

πk < c

√
X

logX
|A|+ (s+ 1)2(

√
X − |A|)

< c

√
X

logX
|A|+ (s+ 1)2

√
X
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which gives us the bound
|A| > c

√
X

for any X sufficiently large. Hence, ordering the primes to avoid repetitions, we get

Ts(X) ≥

√
X/C∑
k=1

(
πk

s

)
≥

∑
k∈A

(
πk

s

)
=

1

s!

∑
k∈A

πs
k

s−1∏
j=0

(
1− j

πk

)
>

1

s!

∑
k∈A

πs
ke

−s(s+1)/πk >
1

s!e

∑
k∈A

πs
k

=
1

s!e

√
X/C∑
k=1

πs
k −

∑
k∈A

πs
k

 ≥ c
X(s+1)/2

(logX)s
− 1

s!e
(s+ 1)2s

√
X

> c
X(s+1)/2

(logX)s
.

In order to prove the second inequality, we denote the primes in the interval [X, 2X], in
increasing order, as q1, . . . , qN . If we have an s-tuple starting with qi, then the rest of the
s − 1 primes on the s-tuple will be in the interval Ii = (qi, qi + C

√
X]. Hence, letting

πi =
∑

q∈Ii
1, we can apply the inequality (3) to obtain

Ts(X) ≤
N∑
i=1

(
πi

s− 1

)
≤ c

N∑
i=1

πs−1
i ≤ c

X
s−1
2

(logX)s−1
N ≤ c

X
s+1
2

(logX)s
. (4)

Remark 5.3. For s = 2 and C = 1 we can get any constant c1 < 1/2, by noting that

T2(X) ≥ 1

2

√
X∑

k=1

πk(πk−1) =
1

2

√
X∑

k=1

π2
k−

1

2

√
X∑

k=1

πk ≥ 1

2

X3/2

(logX)2
−1

2

X

logX
≥

(
1

2
− ε

)
X3/2

(logX)2
.

A different proof of the lower bound for the case s = 2 and C = 1, with a slightly worst
constant, is given in [28, Lemma 1].

Now, let us impose the condition of having very small embedding degree.

Lemma 5.4. For any X > 0 and K > 0, let Ts,K(X) be the number of s-tuples of primes

in the interval [X, 2X], with |qi − qj | ≤ C
√
X, for some constant C > 0 and such that

qi+1|qki
i − 1 for some ki ≤ K. Then

Ts,K(X) ≤ cK(K + 1)
√
X,

for some constant c > 0.

Proof. We proceed similarly to [4]. First note that if qi+1|qki
i −1, then qi+1|(qi−qi+1)

ki−1

and, since |qi − qj | ≤ C
√
X, we have that for any i there exists an integer |hi| ≤ C

√
X

such that qi+1|hki
i − 1 for some ki ≤ K. Now, since qi+1 > X ≥ (Chi)

2, we see that
hki − 1 has at most cki

2 prime divisors on the interval [X, 2X], for some constant c > 0.
Summing over the possible k and h we get

Ts,K(X) ≤
∑
k≤K

∑
|h|≤C

√
X

∑
q|hk−1

1 ≤ cK(K + 1)
√
X.
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Lemma 5.5. Let Cs(X) the set of s-tuples of elliptic curves E1/Fq1 , . . . , Es/Fqs forming
a cycle of length s, and Cs,K(X) ⊂ Cs(X) the subset in which Ei has embedding ki ≤ K
for all i = 1, . . . , s. Then

c1K
X(2s+1)/2

(logX)2s ≤ |Cs(X)| ≤ c2K(log logX)2sX(2s+1)/2

|Cs,k(X)| ≤ c3K(K + 1)(logX)s(log logX)2sX(s+1)/2

for some constants c1, c2, c3 depending on s.

Proof. First note that, if we have an s-cycle of curves, then the corresponding primes are
as in Lemma 5.2 for any C > s. Without loss of generality, let us assume that cycles start
at the smallest prime. Now, if we have an s-tuple in which the smallest prime is pi, then
the rest of the s−1 primes on the s-tuple will be in the interval Ii = (qi, qi+s

√
q
i
+(s/2)2].

We can see this by induction. Let qα, qβ be the ℓ-th and (ℓ + 1)-th primes in the cycle,
respectively. The induction hypothesis is that qα ≤ qi + 2ℓ

√
q
i
+ ℓ2. Then

qβ ≤ qα+2
√
qα+1 ≤ qi+2ℓ

√
qi+ℓ2+2

√
qi + 2ℓ

√
qi + ℓ2+1 = qi+2(ℓ+1)

√
qi+(ℓ+1)2

and then observe that the largest prime in the cycle can only be s/2 steps apart from the
first one, since they form a cycle.

Now, let us start by proving the upper bound for Cs(X). We know by [29, Propo-
sition 1.9] that for every q and every subset of integers L such that for any ℓ ∈ L,
|ℓ − q + 1| ≤ 2

√
q, there are at most c log q(log log q)2

√
q|L| isomorphism classes over Fq

of elliptic curves with |E(Fq)| ⊂ L for some constant c, so on each s-tuple there will be
less than

c(logX)s(log logX)2sXs/2

isomorphism classes of elliptic curves with points on the s-tuple and, in particular, forming
a cycle of length at most s. Applying the second inequality of Lemma 5.2, we get the
expected upper bound for cycles of length at most s, and in particular for Cs(X).

Now, to prove the lower bound for Cs(X) we see that the same Proposition 1.9 of [29]
shows that for every subset of integers L ⊂ [q −√

q, q +
√
q] with |L| ≥ 3 there are more

than c(|L| − 2)
√
q

log q isomorphism classes over Fq of elliptic curves with |E(Fq)| ⊂ S for

some constant c, so on each s-tuple with s ≥ 3 we have more than cs Xs/2

(logX)s isomorphism

classes of elliptic curves with points on the s-tuple and, in particular, forming a cycle of
length at most s. Combining this with the first inequality of Lemma 5.2, we get the lower
bound

c
X(2s+1)/2

(logX)2s
.

Then, Cs(X) will be cycles of isomorphism classes of elliptic curves of length at most s
minus cycles of isomorphism classes of elliptic curves of length at most s− 1, so

Cs(X) ≥ c
X(2s+1)/2

(logX)2s
− c

X(2s−1)/2

(logX)2s−2
≥ c

X(2s+1)/2

(logX)2s
,

for X sufficiently large depending on s.
Finally, the proof of the upper bound for Cs,K(X) is the same, now using Lemma 5.4

instead. ⊓⊔
As a corollary of the previous Lemma, we get Theorem 5.1, by just dividing Cs,K(X)

by Cs(X).
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6 Conclusions

Cycles of elliptic curves require the curves involved to be of prime order, and families of
elliptic curves parameterized by low-degree polynomials are the only known approach at
generating pairing-friendly curves with prime order. In this work, we have shown that this
approach is unlikely to yield new cycles, beyond the MNT4-MNT6 cycles that are already
known. In particular, we have shown that no known families are involved in a 2-cycle with
any pairing-friendly curve. Along the way, we have developed our understanding of these
mathematical objects, showing some new properties and a probability analysis.

While a lot is still unknown about pairing-friendly cycles, we highlight two avenues
that we consider interesting for future research.

– Generalizing Theorem 4.5 and Corollary 4.8 to s-cycles, for s > 2. The case s = 2 is
the most appealing from a practical perspective, due to the application to recursive
composition of SNARKs, but it would be desirable to have the complete picture. The
main hurdle here is that, whereas fixing a curve in a 2-cycle automatically determines
the other, longer cycles have more degrees of freedom, so we do not have as much
explicit information to work with in the proof.

– Consider a 2-cycle such that both curves E ↔ (t, p, q) and E′ ↔ (2− t, q, p) have the
same embedding degree k. If we restrict ourselves to the case k ≡ 0 (mod 4), it is
easy to argue (as in Proposition 3.10) that

pq | Φk(t− 1).

This approach allows [13] to prove that said cycles cannot exist when k ∈ {8, 12}.
However, the authors leave higher values of k as an open question. If we consider fam-
ilies of curves, Theorem 4.5 tells us that the above relation must hold as polynomials,
or else only a finite number of cycles will exist. Thus, we wonder if considering the
above condition as a relation between polynomials, and applying polynomial machin-
ery, could help in answering this question.
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In this section, we show that p(X)ℓ mod q(X) is an integer-valued polynomials, when
E ↔ (t, p, q) are either the MNT3 or BN curves. This is completely analogous to the
argument in Remark 4.6.

MNT3 curves. In this case, q(X) = 12X2−1. We proceed by induction on ℓ. For ℓ = 1,
we have that

p(X) mod q(X) = −6X + 2,

which is of the form 6aX + b, for some a, b ∈ Z. We show that, if pℓ mod q is of this form,
then so is pℓ+1 mod q. Then all the remainders will actually be in Z[X].

Assume that there exist a, b, c, d ∈ N such that

p(X)ℓ mod q(X) = 6aX + b.
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Then

p(X)ℓ+1 ≡ p(X)ℓp(X) ≡ (6aX + b) (−6X + 2)
≡ −36aX2 + (12a− 6b)X + 2b
≡ (−12a+ 6b)X + (−3a+ 2b) (mod q(X)).

Since the coefficient of degree 1 is divisible by 6, the induction step works.

BN curves. In this case, q(X) = 36X4 + 36X3 + 24X2 + 6X + 1. Assume that there
exist a, b, c, d ∈ N such that

p(X)ℓ mod q(X) = 36aX3 + 6bX2 + 6cX + d,

for some a, b, c, d ∈ Z. Then

p(X)ℓ+1 ≡ p(X)ℓp(X) ≡
(
36aX3 + 6bX2 + 6cX + d

) (
−6X2

)
≡ −216aX5 − 36bX4 −−36cX3 − 6dX2

≡ (−72a+ 36b− 36c)X3 + (−108a+ 24b− 6d)X2

+(−30a+ 6b)X + (−6a+ b) (mod q(X)).

Since the coefficient of degree 3 is divisible by 36, and the coefficients of degree 2 and 1
are divisible by 6, the induction step works.
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B Tables

Bounds for MNT3

ℓ A B
5 -104 104
10 -75658 75657
19 -10626317415 10626317415

Bounds for Freeman

ℓ A B
3 -2 4
6 -164 161
7 -686 685
9 -10608 10607
13 -1805067 1805066
14 -6158596 6158595
17 -210958904 210958905
18 -643610018 643610019
19 -1875810507 1875810508

Bounds for BN

ℓ A B
3 -1 0
4 -3 4
5 -12 11
6 -15 4
7 -65 64
8 -104 103
9 -167 168
10 -831 830
11 -513 508
12 -3523 3524
13 -8620 8619
14 -4092 4097
15 -52351 52350
16 -66417 66414
17 -164463 164464
18 -626817 626816
19 -186373 186364
20 -2992820 2992819

Table 2. Bounds A,B from Lemma 4.4 for different embedding degrees ℓ of the potential partner
curve of MNT3, Freeman, and BN curves. The remaining values of ℓ ≤ 20 are covered by
Corollaries 4.2 and 4.3 for MNT3 and Freeman curves, respectively.

C SageMath code

C.1 Setup

MNT3(), MNT4(), MNT6(), Freeman(), BN()

These functions return the set of polynomials that define the families of curves MNT3,
MNT4, MNT6, Freeman, and BN, respectively.

The expected outputs are:

– t: polynomial t(X) ∈ Q[X] that parameterizes the trace.

– p: polynomial p(X) ∈ Q[X] that parameterizes the order of the curves.

– q: polynomial q(X) ∈ Q[X] that parameterizes the order of the finite field over which
the curve is defined.
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1 # SETUP
2

3 # Polynomial rings over the reals and rationals.
4 R.<X> = PolynomialRing(RR, ’X’)
5 Q.<X> = PolynomialRing(QQ, ’X’)
6

7 # Curve families.
8 def MNT3():
9 t = Q(6*X -1)

10 q = Q(12*X^2 - 1)
11 p = q + 1 - t
12 return(t, p, q)
13

14 def MNT4():
15 t = Q(-X)
16 q = Q(X^2 + X + 1)
17 p = q + 1 - t
18 return(t, p, q)
19

20 def MNT6():
21 t = Q(2*X + 1)
22 q = Q(4*X^2 + 1)
23 p = q + 1 - t
24 return(t, p, q)
25

26 def Freeman ():
27 t = Q(10*X^2 + 5*X + 3)
28 q = Q(25*X^4 + 25*X^3 + 25*X^2 + 10*X + 3)
29 p = q + 1 - t
30 return(t, p, q)
31

32 def BN():
33 t = Q(6*X^2 + 1)
34 q = Q(36*X^4 + 36*X^3 + 24*X^2 + 6*X + 1)
35 p = q + 1 - t
36 return(t, p, q)

C.2 Code for Proposition 4.1

candidate embedding degrees(Family, K)

Given a family of curves, this function computes the possible embedding degrees of curves
that may form 2-cycles with a curve of the given family.
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The expected inputs are:

– Family: a polynomial parameterization (t(X), p(X), q(X)) of a family of pairing-
friendly elliptic curves with prime order.

– K: a bound on the embedding degree to look for.

The expected outputs are:

– embedding degrees: a list of potential embedding degrees k such that 3 ≤ k ≤ K and
a curve from the family might form a cycle with a curve with embedding degree k.

– modular conditions: conditions on x mod k for each of these k.

1 def candidate_embedding_degrees(Family , K):
2

3 (t, p, q) = Family ()
4 # Create an empty list to store the candidate embedding degrees.
5 embedding_degrees = []
6 # Create an empty list to store the lists of modular conditions for
7 # each k.
8 modular_conditions = [None] * (K+1)
9

10 # Embedding degree k implies that q(x) = 1 (mod k).
11 # We check this condition in 0, ..., k-1 and build a list of candidates
12 # such that any x has to be congruent to one of them modulo k.
13 for k in range(3, K+1):
14

15 candidate = False
16

17 for i in range(k):
18 if ((q(i) % k) == 1):
19 # First time a candidate k is discovered , add it to the
20 # list and create a list within modular_conditions to store
21 # the values i.
22 if (not candidate):
23 candidate = True
24 embedding_degrees.append(k)
25 modular_conditions[k] = []
26 modular_conditions[k]. append(i)
27

28 return embedding_degrees , modular_conditions

C.3 Auxiliary functions

is integer valued(g)

This function checks whether a given polynomial g is integer-valued. It returns True if
so, and False otherwise. The test is based on the fact that a polynomial g ∈ Q[X] is
integer-valued if and only if g(x) ∈ Z for deg g + 1 consecutive x ∈ Z [12, Corollary 2].

1 def is_integer_valued(g):
2

3 # Check if evaluation is integer in deg(g) + 1 consecutive points.
4 for x in range(g.degree ()+1):
5 if (not g(x) in ZZ):
6 print(str(g) + " is not integer -valued.")
7 return False
8 return True
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find relevant root(w, b, side)

This function finds the left-most or right-most root of a polynomial b(X) ∈ Q[X].

The expected inputs are:

– w: positive integer.

– b: polynomial b(X) ∈ Q[X].

– side: this parameter specifies which root to keep. If side = -1, then the function
takes the left-most root, and if side = 1, it returns the right-most root.

The expected output is the relevant extremal root.

1 def find_relevant_root(w, b, side):
2

3 # Decide whether to keep the left -most or right -most root.
4 i = -(1 + side) / 2
5

6 # 0 <= w(x)
7 C_1 = 0
8 w_roots = R(w).roots ()
9 if (w_roots != []):

10 C_1 = w_roots[i][0]
11

12 # w(x) < b(x)
13 C_2 = 0
14 bw_roots = R(b - w).roots()
15 if (bw_roots != []):
16 C_2 = bw_roots[i][0]
17

18 # Return the relevant extremal root.
19 if (side == -1):
20 return ceil(min(C_1 , C_2))
21 else:
22 return floor(max(C_1 , C_2))

C.4 Code for Table 2

compute bounds(a, b)

This function computes the bounds A,B of Lemma 4.4, which has been used to produce
the results of tables from Figure 2. It uses the auxiliary functions from Appendix C.3.

The expected inputs are:

– a, b: two integer-valued polynomials in Q[X].

The expected outputs are:

– A, B: integer bounds as described in Lemma 4.4.
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1 def compute_bounds(a, b):
2 # Check that b has even degree and positive leading coefficient.
3 if (b.degree () % 2 == 1 or b.leading_coefficient () < 0):
4 print("Invalid divisor.")
5 return
6 # Check that a, b are integer valued.
7 if (not is_integer_valued(a) or not is_integer_valued(b)):
8 return
9 # Polynomial division.

10 (h, r) = a.quo_rem(b)
11 # Compute c so that ch, cr are in Z[X].
12 denominators = [i.denominator () for i in (h.coefficients () + r.

coefficients ())]
13 c = lcm(denominators)
14 # Compute signs.
15 sigma_B = sign(r.leading_coefficient ())
16 sigma_A = sigma_B * (-1)^(r.degree ())
17 # Compute the polynomials w_A , w_B such that
18 # 0 <= w_A < b(x) for all x < A, and
19 # 0 <= w_B < b(x) for all x > B.
20 w_A = c * r + ((1 - sigma_A) / 2) * b
21 w_B = c * r + ((1 - sigma_B) / 2) * b
22 # Compute A, B.
23 A = find_relevant_root(w_A , b, -1)
24 B = find_relevant_root(w_B , b, 1)
25 return (A, B)

C.5 Code for Corollary 4.8

exhaustive search(Family, k, A, B, mod cond)

This function performs the exhaustive search from Corollary 4.8 within the intervals
[A,B].

The expected inputs are:

– Family: a polynomial parameterization (t(X), p(X), q(X)) of a family of pairing-
friendly elliptic curves with prime order.

– k: an embedding degree.
– A, B: upper and lower integer bounds.
– mod cond: conditions on x mod k for every x in the interval [A, B].

The expected output is:

– curves: a list of integers x ∈ [A, B] such that the curve parameterized by (t(x), p(x), q(x))
forms a cycle with a curve with embedding degree k.

1 def exhaustive_search(Family , k, A, B, mod_cond):
2

3 (t, p, q) = Family ()
4 curves = []
5

6 for x in range(A, B+1):
7 # We skip those values that will never yield q(x) = 1 (mod k), as
8 # precomputed above.
9 if (not (x % k) in mod_cond): continue

10 # Check the embedding degree condition.
11 if (p(x)^k - 1 % q(x) == 0):
12 curves.append ((x, k, t(x), p(x), q(x)))
13

14 return curves
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C.6 Main function

search for cycles(Family, K)

This function looks for 2-cycles formed by a curve belonging to a given parameterized
family of curves and a prime-order curve with an embedding degree less than a given
bound.

The expected inputs are:

– Family: a polynomial parameterization (t(X), p(X), q(X)) of a family of pairing-
friendly elliptic curves with prime order.

– K: an integer bound on the embedding degree to look for.

The function prints out all 2-cycles involving a curve from the family and a prime-order
curve with embedding degree k < K.

1 def search_for_cycles(Family , K):
2

3 # Instantiate the family.
4 (t, p, q) = Family ()
5 print("Starting family: " + str(Family.__name__))
6 print("t(X) = " + str(t))
7 print("p(X) = " + str(p))
8 print("q(X) = " + str(q))
9

10 # Find the candidate embedding degrees up to K that are compatible with
11 # this family.
12 (embedding_degrees , modular_conditions) = candidate_embedding_degrees(

Family , K)
13 print("Candidate embedding degrees: " + str(embedding_degrees))
14 for k in embedding_degrees:
15 print((k, modular_conditions[k]))
16 print("=======================")
17

18 # For each potential embedding degree , find the bounds A, B and perform
19 # exhaustive search within [A, B].
20 for k in embedding_degrees:
21

22 print("k = " + str(k))
23 (A, B) = compute_bounds(p^k, q)
24 print("A = " + str(A) + ", B = " + str(B))
25

26 curves = exhaustive_search(Family , k, A, B, modular_conditions[k])
27 print("Curves with embedding degree " + str(k) + " that form a

cycle with a curve from the " + str(Family.__name__) + " family: " +
str(len(curves)))

28

29 for curve in curves:
30 (x, k, t, p, q) = curve
31 print("x = " + str(x))
32 print("embedding degree = " + str(k))
33 print("t(x) = " + str(t))
34 print("p(x) = " + str(p))
35 print("q(x) = " + str(q))
36 print("-----------------------")
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