
Eurocrypt’23 reviews and differences with Crypto’23 submission

Revisiting cycles of pairing-friendly elliptic curves

This supplementary material contains (1) the original Eurocrypt’23 reviews, (2) how we addressed the sug-
gestions of the reviewers, and (3) a version of the manuscript highlighting the changes from the Eurocrypt’23
to the Crypto’23 submissions. Note that, in particular, some notation was changed, and some theorems and
lemmas were renumbered. As a result, some of the reviewers’ comments may not match the current version
of the paper.

Review #94A

Paper summary. This paper revisits cycles of pairing-friendly elliptic curves. Such cycles are very useful in
the context of verifiable computing. The optimal case are 2-cycles for which the base field prime of one curve
is equal to the group order of the other and vice versa. Finding cycles (other than ones from MNT4-MNT6
curves) is very hard and they might not even exist. With the goal of better understanding and possibly
discovering new cycles, the paper studies their properties and shows new results that rule out some known
parameterized curve families. It is mainly a continuation of previous work by Chiesa, Chua and Weidner
and refines some of their results.

Overall merit. Weak accept (I have more arguments in favor of accept).

Reviewer expertise. Expert (I’ve worked on this topic domain and I’m familiar with the literature).

Confidence level. High (Carefully read and understood the main submission and checked relevant parts of
the supplementary material).

Questions/clarifications for the authors.

1. Clarification in Lemma 5.5: This Lemma remains unclear to me. Could you please check that the
statement is correct? The inequalities bounding the cardinality of Cs(X) involve the value K, but
Cs(X) is independent of K, is it not? The lower case k should be an upper case K in Cs,K(X), right?

Unfortunately, I was not able to convince myself that the proof is correct. Please make it more clear.
The induction is not easy to understand although it should be. I think one can very easily prove
similarly to what you do that for two consecutive primes we have |

√
(qi+1) − √

qi| < 1 and more

general |
√
(qi+ℓ)−

√
qi| < ℓ. Then it follows that the qi all lie in Ii because they form a circle. It took

way too long for me to understand this given your proof. Please see below for more comments on that
proof.

2. Clarification in Lemma 4.4: The statement is not precise. I think that the condition that all r(x) have
the same sign needs to be covered by the existence of A and B. I suggest to state the following: “...
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there exist A,B such that for all x < A, sign(r(x)) is constant, such that for all x > B sign(r(x)) is
constant, and such that for all x not in [A,B], either rx = ...”. Is this correct?

Technical details. This paper mainly continues the work started by Chiesa, Chua and Weidner with the goal
of finding new cycles of pairing-friendly curves, or maybe, to better understand why there are so few of them.

The main result about 2-cycles shows that if a curve from a polynomial family is part of the cycle, then the
other curve is from a family for which all divisibility conditions hold for the polynomials or it is one of a
finite set of curves. This result allows to exhaust all possibilities for the known families and allows to rule
out certain options. Some of these results were not known before, for example that Freeman and BN curves
cannot occur in 2-cycles with other curves of embedding degree ≤ 20.

The authors also prove some bounds on the trace of curves in 2-cycles, which leads to the new insight that
for polynomial families in 2-cycles with embedding degree 8 or 12, the trace of Frobenius lies at the outer
edge of the Hasse interval. This can help in searches because the trace polynomial must have degree deg(p)/2.

Towards the end of the introductory Section 2 the authors present a speedup to an algorithm (suggested by
Freeman) that searches prime order pairing-friendly curves, but the authors weren’t able to find any more
families with that. It is likely that Freeman, Scott and Teske already ran such experiments on a very large
scale and didn’t find any new families. The result here is not surprising, but recording the algorithm variant
is valuable.

Some specific remarks:

• Typo in Remark 4.6: Clearly, the Freeman p mod q is not of the form where the quadratic term has
coefficient 25b. I think you mean 5b. The argument should go through with that change. Please
confirm that it works.

• Proof of Lemma 5.2: Please use the floor of
√

X/C when first defining the range for k and in the sum
over the πk, etc. Also Equation (3) is wrong, it needs to be 2N/ log(N) on the right hand side. You
use it correctly in what follows, though.

• Proof of Lemma 5.5 needs to be made more clear: pi in the third line should be qi. Please simplify
the proof to show that all qi are in Ii as noted above. The inequality from Lenstra’s paper must be
|ℓ− (q + 1)| ≤ 2

√
q. What is the cardinality of L you use to arrive at the upper bound for Cs(X)?

• I think that using the same letter c or C for constants that change during a proof or an argument
makes it really hard to understand these proofs. Why not at least number them c1, c2, c3, etc. to
make it clear that the constants change?

Minor remarks:

• The term “constant-time” usually means that code is written such that its execution time is indepen-
dent of any secret data. You mean constant verification time, which is something else.

• In Prop. 2.8, please don’t use Φk ◦ t for Φk(t− 1).

• In the proof of Lemma 3.7, I don’t think one needs the convergence of the geometric series, one can
show the same simply using the finite geometric sum.
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• In Prop. 3.10 and Cor. 3.11, fix the condition on k to be 3 ≤ k ≤ 104.

• It seems to me that stating Prop. 4.1 in a positive way is simpler: if the previous curve has embedding
degree ℓ, then there exists i s.t. q(i) = 1 mod ℓ?

• Thm. 4.5. The statement needs to end with “embedding degree ℓ.”

• Third line after proof of Thm. 4.5: “it is immediate to check whether q|pℓ − 1”.

• Proof of Lemma 5.4: hki − 1 must be hkii − 1.

• Reference 32: The title must be “Zur Theorie der Kreisteilungsgleichung”.

Editorial details. The editorial quality is decent. Some technical details are imprecise and there are quite a
few typos, none of them seem to be actual errors. A few places could be written much clearer as indicated
in my above remarks, but overall I could understand the paper.

Novelty and conceptual contributions. The paper extends what is known about cycles of pairing-friendly
curves. Although there are no new constructions, showing where not to look is valuable too. With verifiable
computing and SNARKs being at the center of many applications where performance and scalability are
important, it is natural to ask whether more efficient parameters exist. While this paper might be of interest
for only a smaller fraction of the Eurocrypt audience, it is interesting for everyone trying to implement and
use such protocols.

Review #94B

Paper summary. This paper investigates pairing-friendly elliptic curves and 2-cycle property. The authors
examine existing families of pairing-friendly elliptic curves, and demonstrate the non-existence of 2-cycle
properties.

Overall merit. Weak reject (I have more arguments in favor of reject).

Reviewer expertise. Some familiarity (I have not worked on this topic domain but I am superficially familiar
with the literature).

Confidence level. Low (Read as much of the main submission as possible, but got stuck in parts).

Technical details. The authors mainly focus on the 2-cycle properties of pairing-friendly elliptic curves with
the motivation on applications to proof systems such as SNARKs which involves pairings. The paper pro-
vides background on pairing-friendly elliptic curves and cycles of elliptic curves. These are nice, but I believe
they can be shorten and made more concise. The authors then present the analysis on 2-cycle in elliptic
curves. It would be good if the authors could also explain the significance or the impact of the findings. For
example, where are the mentioned families of pairing-friendly curves are used and how knowing the cycles
are useful in a real application.

Editorial details. The editorial quality is reasonable but can be improved. It might be good to clearly
highlight new contributions.
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Novelty and conceptual contributions. The main result of this paper is to show the (non-) existence of
s-cycle of elliptic curves, with the focus on pairing-friendly curves. The authors provide many propositions,
theorems, lemmas, and corollaries. The proofs and the analysis of existing families of pairing-friendly curves
are good to know.

Review #94C

Paper summary. This paper is about ways and dead-ends in finding cycles of pairing-friendly elliptic curves,
with recursive SNARKs as main application. This paper is about a mathematical aspect of elliptic curves
defined over prime fields. More precisely, it aims at finding parameters and families of elliptic curves
satisfying many constraints:

• 2-cycle: E1/Fq has order p, E2/Fp has order q (the role of p and q are swapped),

• prime order: #E1(Fq) = p, #E2(Fp) = q and p, q are prime integers,

• pairing-friendly: E1 and E2 are pairing-friendly, that is, they have a low embedding degree (the
smallest integer w.r.t. the subgroup order p, resp. q, such that the p-torsion, resp. q-torsion is Fqk1 ,
resp. Fpk2 -rational, in other words, one can compute a Weil or Tate pairing efficiently.

This work is based on the paper [13].

[13] Chiesa, A., Chua, L., Weidner, M.: On cycles of pairing-friendly elliptic curves. SIAM Journal on
Applied Algebra and Geometry 3(2), 175-192 (2019) https://epubs.siam.org/doi/epdf/10.1137/18M1173708.

It explores some of the open questions of [13]. It has an editorial quality that could be improved to help
the reader understanding better the results and their consequences. The new contributions of this paper
are presented pages 10-21. Sect. 3.2 presents lemmas and results on bounds that the values of cyclotomic
polynomials can take. Sect. 4 has impossibility results on cycles where one of the curves has parameters
of a known family of pairing-friendly curve of prime order. Section 5 has probabilities on the density of
s-cycles of curves in the way Balasubramanian and Koblitz did for pairing-friendly curves. The paper has
appendices and comes with SageMath code. Section 3 contains preliminary results required in Section 4.
Section 4 proves that one cannot make a 2-cycle where one of the two curves is a pairing-friendly curve in
a known family: Freeman curves, BN curves, MNT3 curves, and the other one is a (yet unknown) curve of
embedding degree less than 20. The only case that works is the already known case of MNT4+MNT6. It
seems that the same technique would work to enlarge the bound of 20 on the second embedding degree (it
would require more computing time to fill-in tables of Appendix B).

Overall merit. Weak accept (I have more arguments in favor of accept).

Reviewer expertise. Expert (I’ve worked on this topic domain and I’m familiar with the literature).

Confidence level. High (Carefully read and understood the main submission and checked relevant parts of
the supplementary material).

Questions/clarifications for the authors.
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1. I have some clarifications requests about pages 8-9 and the algorithm page 8. The authors present an
algorithm à la Tanaka-Nakamula [TN08] for finding polynomial parameters of pairing-friendly elliptic
curves, that is, polynomials (p(x), q(x), t(x)) where t is the trace, q is the field characteristic, and p is
the prime order. Somehow, this is related to the KSS technique. [SG18] presented in a unified setting
the known BN, Freeman and MNT curves, thanks to the Aurifeuillean factorization of cyclotomic
polynomials. In the submitted paper, the authors cite [23], but later there was [GP06] and [W12].
Except for k = 8 which was considered in [TN08] and [KSS08], it seems to me that the Aurifeuillian
technique [GP06] captures all possible cases of factorization of cyclotomic polynomials Φk(t(x) − 1)
where deg(t) = 2. Could the authors comment on that? [updated] The authors answered my questions.

[GP06] Andrew Granville and Peter Pleasants. Aurifeuillian factorization. Math. Comp., 75(253):497-
508, 2006. https://www.ams.org/journals/mcom/2006-75-253/S0025-5718-05-01766-7.

[KSS08] Kachisa, Schaefer, Scott. Constructing Brezing-Weng pairing friendly elliptic curves using
elements in the cyclotomic field. https://eprint.iacr.org/2007/452.

[SG18] Scott and Guillevic. A new family of pairing-friendly elliptic curves. WAIFI 2018. https://eprint.
iacr.org/2018/193.

[TN08] Tanaka S., Nakamula K.: Constructing pairing-friendly elliptic curves using factorization of
cyclotomic polynomials. In: Galbraith S.D., Paterson K.G. (eds.) PAIRING 2008. LNCS, vol. 5209,
pp. 136-145. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85538-5 10.

[W12] Samuel S Wagstaff, Jr. The search for Aurifeuillian-like factorizations. Journal of Integers,
12A(6):1449-1461, 2012. https://homes.cerias.purdue.edu/ ssw/cun/mine.pdf.

2. Section 5 contains number theory results. Could the authors comment on their formulas, link the
results of the section to the rest of the paper, and explain what are the consequences in the possibility
of finding s-cycles of pairing-friendly curves?

3. I have another request about appendix C3, function is integer valued(). Is this function testing if
a polynomial with coefficients in QQ takes only integer values? Why is it not needed to compute the
congruences of x such that g(x) is in ZZ, e.g. x = 1 mod 3 would give integer values but x = 0,−1
would not. For example for BLS12 curves (that are not of prime order and will never form a 2-cycle),
q(x) has the form (x− 1)2/3 ∗ p(x) + x, and takes integer values only at x = 1 mod 3.

I agree with the authors’ answers. My remark about is integer valued() is meaningless.

Technical details. About Proposition 3.9: (I checked it) t > ((t-1)/t * q)^(1/euler phi(k)). If we
consider the MNT parameters e.g. given by Ben Lynn code, we can check this formula on numerical data:
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k = 4
u = ZZ(-0 x72a74a7ba34d61b0)
D = ZZ (684811)
t = u+1
q = u**2+u+1
p = u**2+1
y = ZZ(0 x3d6ee0031aa423)
Fq = GF(q)
a = -3
b = ZZ(0 xc4eb66bd690a0b02bdbf8f38bf33148)
E = EllipticCurve ([Fq(a), Fq(b)])
assert E.order() == p
assert p.is_prime ()

assert q + 1 - t == p
assert t**2 - 4*q == -D*y**2

t_ = t.abs()
assert t_** euler_phi(k) * t_ > ((t_ -1) * q)
assert t_ > ((t_ -1)/t_ * q)**(1/ euler_phi(k))

Editorial details. The paper could say more explicitly what are the consequences of the results in practice.

• For example what does Proposition 3.6 imply? Is it true to deduce that a polynomial family with
deg(t) even (t is the trace) will never be a node in a s-cycle? (unlike MNT-4 and MNT-6 curves,
that have deg(t) = 1 and form a polynomial 2-cycle). Or is it more subtle? Maybe part (b) of the
introduction of Section 4 is related?

• End of Sect. 3 says: ”this is consistent with what is observed in known families”. What are the
known families the sentence refers to? As far as we know, only BN curves are known as prime-order
pairing-friendly curves with k = 12, and none for k = 8, right? In the BN case, indeed, one can check
that q/4 < t2 < 4 ∗ q (taking the squares). Is that what this sentence means?
QQx.<x> = QQ[]; t = 6*x^2+1; q = 36*x^4+36*x^3+24*x^2+6*x+1;

• Lemma 4.4. I agree with reviewer #A about the statements on A and B.

Minor remarks and typos:

• p. 3 Notation. “that p, q, qi > 3 and are prime” → “that p, q, and qi > 3 are prime”

• p.10 I would suggest writing “#E(Fq) is in the Hasse interval of #E′(Fp) if and only if #E′(Fp) is in
the Hasse interval of #E(Fq)”, that is, writing explicitly that is it about orders over the respective
ground fields.

• p. 12 According to the notations of Remark 3.2, the second curve in Proposition 3.10 and in Corollary
3.11 should be labeled E′, not E.

• p. 13 Sect. 4.1 first line, “will that” → “that will”. A comma is missing at the end of the second line
of numbers in Corollary 4.2, after the number 70.

• Bottom of page 14 in Lemma 4.4: replacing the end comma with a full stop?

Novelty and conceptual contributions. The new results are exposed mainly in sect. 4 and 5. Section 4
presents an interesting technique to prove impossibility results on finding 2-cycles. Sect. 5 deals with the
density of s-cycles of pairing-friendly curves and builds on the work of Balasubramanian and Koblitz. It
would help understanding these contributions if the authors could better explain what they are doing and
the implications of the results.
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Final reviewer consensus

All reviewers agree that studying cycles of pairing-friendly elliptic curves is an interesting and timely topic,
in particular given the strong interest to construct more efficient SNARKs by providing better parameters
than those given by the inefficient MNT cycle, which currently is the only option. The results, in particular
the method described in Section 4, are interesting.

We thank the authors for their detailed answers to the reviewers’ questions. While we think that this is a
promising paper and that negative results like yours have a place in the literature, in the end we concluded
that the paper is not yet in a shape to be accepted at Eurocrypt. The number of typos and some inaccuracies
have made it hard to verify the results and understand the paper fully.

We encourage the authors to improve their paper and submit their work again. Please fix typos, consider
improving the exposition to better explain the results, include the references pointed out by the reviewers
and adjust the section about the search algorithm accordingly. Consider better connecting Section 5 to the
rest. The reviews and the authors responses should be a good guide.

Author’s answers to first set of reviews

We thank the committee for their thoroughness in reviewing the paper, and for providing us with very
valuable feedback. We have considered and implemented most of the smaller comments, fixing the typos
and incorporating necessary clarifications.

We answer the main concerns of the reviewers below.

Review #94A

1. Lemma 5.5. Indeed, both the statement and proof of this lemma had a few inaccuracies. In particular,
Cs(X) is independent of K, and the factor K which appeared in both the lower and upper bound
should be removed. Also, the notation Cs,k should be Cs,K . With regards to the induction step, we
have added more detail in line with what the reviewer suggested. When deducing the upper bound
of Cs(X), the cardinality of L is |L| = s. Hence, the constant that appears in the second equation is
actually a new constant that depends on s. With the suggested notation, reenumerating the constants
as they change, we believe this step will be clearer, but let us know if there are still any further
questions about this proof.

2. Lemma 4.4. We agree with the clarification suggested, and have rephrased the statement accordingly.

3. Remark 4.6. The coefficient 25b was a typo, and should be 5b, as suggested. The argument is
straightforward with this modification.

We would like to thank the reviewer for the concerns raised because it made us realize that some steps were
not clear enough, in particular some proofs from Section 5. In the new version of the manuscript we will
add some steps to facilitate its reading and comprehension.
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Review #94B

Regarding context and applications: many current blockchain projects use SNARKs, both for anonymity
and scalability purposes. Unbounded recursive composition of SNARKs has been proposed to achieve suc-
cinct blockchains (eprint 2020/352). The situation is different depending on the type of SNARK used.

If one uses a SNARK that does not require pairings, suitable cycles are relatively easy to find. The downside
is that such SNARKs are less efficient than pairing-based ones: pairing-based SNARK have the advantage
of a verification algorithm that runs in time constant in the size of the statement being proven.

However, only the MNT pairing-friendly cycles are known, which are inefficient due to the low security
provided. Some concrete examples can be seen at https://members.loria.fr/AGuillevic/pairing-friendly-
curves/. An alternative is to not use cycles, but then we incur into non-native arithmetic simulation, which
is another soure of inefficiency. This situation leaves us with no ideal case, which motivates the research of
our paper.

Review #94C

1. Algorithm on page 8. We were not aware of some of these results, and we thank the reviewer for
bringing them to our attention. Upon reading the provided papers, we agree with the reviewer that,
for the case deg t = 2 (φ(k) ≤ 4), all the good polynomials have been identified, and thus our search
algorithm seems to be futile. We will consider whether the condition given by Proposition 2.12 is still
relevant, and otherwise remove the section from the manuscript.

2. Section 5. We agree that this section feels a bit disconnected from the rest of the document. The goal
here was to look at pairing-friendly cycles from a different angle: whilst most of the paper has a more
algebraic treatment of cycles, this section is concerned with their density. The contribution here is to
quantify to some extent the folklore notion that ’pairing-friendly cycles are hard to find’.

3. Function is integer valued() in appendix C3. We follow [20, Definitions 2.6 and 2.7] and focus
on polynomials that take integer values for any x in ZZ. Our purpose is to apply our test to known
pairing-friendly families of prime order, and all of them are defined by polynomials in ZZ[X]. Thus,
in our case this notion is enough to obtain our main result. Still, if a new family were to appear,
represented by polynomials such that, for example, take integer values only when X = a mod n, we
could evaluate the polynomials at nX+a, which would yield integer-valued polynomials without losing
potential curves in the transformation (the other values do not give integer parameters anyway), and
work with those.

Differences between Eurocrypt’23 and Crypto’23 manuscript submissions

The main differences between the two manuscripts are the following. On the one hand, we refined the
narrative to highlight the importance of our results and the context in which they are framed. On the
other hand, we removed the algorithm for searching new parametric families from Section 2.2. Following
the reviewers’ suggestions, we also rewrote some results to make them clearer, especially Lemma 4.4 and
several results in Section 5. Additionally, we improved the bounds from Corollary 4.8. Finally, we added
more details to the proofs of Section 5 and give some intuition on the strategy followed to derive Theorem
5.2, which we believe facilitate the reading and comprehension of the section.
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Revisiting cycles of pairing-friendly elliptic curves

No Author Given

No Institute Given

Abstract. A recent area of interest in cryptography is recursive composition of
proof systems. One of the approaches to make recursive composition efficient in-
volves cycles of pairing-friendly elliptic curves of prime order. However, known
constructions have

::::
very

:
low embedding degrees, hence requiring .

:::::
This

::::::
entails

large parameter sizes, which makes the overall system inefficient. In this paper,
we explore 2-cycles composed of curves from families parameterized by polynomi-
als, and show that such cycles do not exist unless a strong condition holds. As a
consequence, we prove that no 2-cycles can arise from the known families, except
for the one that is

::::
those

:::::
cycles

:
already known. Additionally, we show some gen-

eral properties about cycles, and provide a detailed computation on the density of
pairing-friendly cycles among all cycles.

1 Introduction

A proof system is interactive protocol between two parties, called the prover and the
verifier. The prover aims to convince the verifier of the truth of a certain statement
u, which is an element of a language L in NP. Associated to a statement is a witness,
which is a potentially secret input w that the prover uses to produce the proof of u ∈ L.
A recent area of interest is recursive composition of proof systems [47,8]. Here,

:::::
since

::
it

::::
leads

:::
to

:::::::::::::
proof-carrying

::::
data

:::::::
(PCD)

::::
[15]

:
,
:
a
:::::::::::::
cryptographic

:::::::::
primitive

::::
that

::::::
allows

::::::::
multiple

::::::::
untrusted

:::::::
parties

:::
to

::::::::::
collaborate

:::
on

::
a

:::::::::::
computation

:::::
that

::::
runs

:::::::::::
indefinitely,

::::
and

::::
has

:::::
found

:::::::
multiple

:::::::::::
applications

::::::::::::
[16,39,31,10].

::
In

:::::::::
recursive

:::::::::::
composition

::
of

:::::
proof

:::::::
systems, each prover

in a sequence of provers takes the previous proof and verifies it, and performs some
computations on their own, finally producing a proof that guarantees that (a) the previous
proof verifies correctly, and (b) the new computation has been performed correctly. This
way, the verifier, who simply verifies the last proof produced in the sequence, can be sure
of the correct computation of every step.

For recursive composition, we
:::
We require two things from the proof system

::
for

::::::::
recursive

:::::::::::
composition

::
to

:::::
work. First, that it is expressive enough to be able to accept its own ver-

ification algorithm as something to prove statements about, and second, that the veri-
fication algorithm is small enough so that the prover algorithm does not grow on each
step. In the literature we can find several proof systems that differ on their crypto-
graphic assumptions and performance. Succinct non-interactive arguments of knowledge
(SNARKs) are of particular interest, since they provide a computationally sound proof
of small size compared to the size of the statement [9]. In particular, we focus on pairing-
based SNARKs [40,27,25], which make use of elliptic-curve pairings for verification of
proofs, achieving verification time that does not depend on the size of the statement be-
ing proven. One downside of SNARKs is that they require a set of public parameters,

Authors are listed in alphabetical order (https://www.ams.org/profession/leaders/CultureStatement04.pdf).



known as the common reference string (CRS), that is at best linear in the size of the state-
ment. We note that there is a way to achieve recursive composition with a linear-time
verifier, as long as the proof system is compatible with an efficient accumulator scheme
[11,12]. However, we focus on the case of pairing-based SNARKs, due to the appeal of
constant-time verification

:::::::
constant

:::::::::::
verification

::::
time.

1.1 Avoiding non-native arithmetic with cycles

Any
::
A

:
pairing-based SNARKs

:::::::
SNARK

:
relies on an elliptic curve E/Fq for some prime

q, and such that E(Fq) has a large subgroup of prime order p. With this setting, the
SNARK is able to prove satisfiability of arithmetic circuits over Fp. However, the proof
will be composed of elements in Fp and, crucially, elements in E(Fq). Each of these
latter elements, although they belong to a group of order p, are represented as a pair
of elements in Fq. Moreover, the verification involves operations on the curve, which
have formulas that use Fq-arithmetic. Therefore, recursive composition of SNARK proofs
requires to write the Fq-arithmetic, derived from the verification algorithm, with an Fp-
circuit. Ideally, we would like q = p. However, there is a linear-time algorithm for solving
the discrete logarithm problem on curves of this kind [45]. Therefore, we shall assume
that p ̸= q.

Since Fp-circuit satisfiability is an NP complete problem, it is possible to simulate Fq-
arithmetic via Fp-operations, but this solution incurs into an efficiency blowup of O(log q)
compared to native arithmetic [8, Section 3.1].

::::::
Ideally,

:::
we

::::::
would

::::
like

::::::
q = p.

::::::::
However,

:::::
there

::
is
::
a
::::::::::
linear-time

:::::::::
algorithm

:::
for

:::::::
solving

:::
the

:::::::
discrete

:::::::::
logarithm

::::::::
problem

:::
on

::::::
curves

::
of

::::
this

:::::
kind

::::
[45].

::::::::::
Therefore,

:::
we

:::::
shall

:::::::
assume

::::
that

:::::
p ̸= q.

:
Another

::
In

::::
this

:::::
case,

:::
one

:
approach is to instantiate a new copy of the SNARK with

another elliptic curve E′ to deal with Fq-circuits. In [17], the authors propose to use a
2–chain of pairing-friendly elliptic curves to achieve bounded recursive proof composition.
A 2-chain of (pairing-friendly) elliptic curves is a tuple of pairing-friendly elliptic curves
(E1, E2), defined over Fp1

and Fp2
, where p1|#E2(Fp2

)
::::::::::::
p1 | #E2(Fp2

).
A more ambitious approach, proposed in [8], is to use pairs of curves that also satisfy

that #E2(Fp2
) = p1 ::::::::::::

p2 | #E1(Fp1
). In this case, the pair of curves is called a 2–cycle.

By alternating the instantiation of the SNARK with the two curves of the cycle, it is
possible to allow unbounded recursive composition of the SNARK without incurring into
non-native arithmetic simulation. Although this idea can also be used with longer cycles,
2-cycles are the optimal choice for recursive SNARKs, because they only require the
generation and maintenance of two CRS.

1.2 State of the art

Silverman and Stange [44] introduced and did a systematic study on 2-cycles of elliptic
curves. As they show in their paper, in general, cycles of elliptic curves are easy to find.
However, for recursive SNARK composition

::::::::::
composition

:::
of

::::::::::::
pairing-based

:::::::::
SNARKs, we

need to be able to compute a pairing operation on the curves of the cycle. For this reason,
curves need to have a low embedding degree

:
,
:
so that the pairing can be computed in a

reasonable amount of time. Such curves are called pairing-friendly curves.
In [14], the authors

::::::
Chiesa,

::::::
Chua,

::::
and

::::::::
Weidner

:
focused on cycles of pairing-friendly

curves. In particular, they showed that only prime-order curves can form cycles. The only
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known method to produce prime-order curves is via families of curves parameterized by
polynomials, and currently there are only five that are known. The first three of these
families were introduced by Miyaji, Nakabayashi, and Takano [37], who characterized all
prime-order curves with embedding degrees 3, 4, and 6.

:::::
These

:::
are

::::::
called

::::::
MNT

::::::
curves.

Based on the work from [26], Barreto and Naehrig [6] found a new family of curves
with embedding degree 12, and later Freeman [21] found another one with embedding
degree 10. The only known cycles are formed by alternating Miyaji–Nakabayashi–Takano
(MNT )

:::::
MNT

:
curves of embedding degrees 4 and 6 [29,14]. As proposed in [8], these

cycles can be used to instantiate recursive composition of SNARKs, but due to their

::::
very low embedding degree, the parameter sizes need to be very large to avoid classical
discrete-logarithm attacks [35], making the whole construction slow. Furthermore, the
fact that the embedding degrees are different leads to an unbalance in the parameters,
making one curve larger than necessary. Therefore, it would be desirable to have 2-cycles
in which both curves have the same embedding degree k, for k a bit larger than in
MNT curves. For instance, [14] suggests embedding degrees 12 or 20.

::::
This

::::::
would

:::::
allow

::
for

::::::
more

:::::::
efficient

:::::::::::::
instantiations

::
of

:::::::::
protocols

:::::
that

:::::
make

::::
use

::
of

:::::::::
recursive

:::::::::::
composition

::
of

:::::::::::::
pairing-friendly

::::::::::
SNARKs.

Chiesa, Chua, andWeidner [14] characterized all the possibilities for
:
A

:::::::::::::::
characterization

::
of

::
all

::::
the

:::::::
possible

:
cycles consisting of MNT curves and

::
is

:::::
given

::
in

::::
[14].

::::::
They

:::
also

:
showed

that there are no cycles consisting of curves from only the Freeman or Barreto–Naehrig
(BN) families. They also gave some properties and impossibility results about pairing-
friendly cycles, suggesting that adding the condition of pairing-friendliness to the curves
of a cycle is a strong requirement: while cycles of curves are easy to find, cycles of pairing-
friendly curves are not.

Recent progress has focused on chains of elliptic curves [20] but there are still some
interesting problems in the direction of cycles. In particular, [14] lists some open problems,
such as studying 2-cycles where the two curves have same embedding degree or finding a
cycle by combining curves from different families.

1.3 Contributions and organization

In this paper, we continue with the line of research of [14] and tackle some of the open
problems suggested by the authors. In Section 2, we review the background material
on elliptic curves, focusing on families of pairing-friendly curves with prime order. In
Section 3, we recall the notion of cycles of elliptic curves, and what is known about them.
We also present some new results, in particular a lower bound on the trace of curves
involved in a 2-cycle, when both curves have the same (small) embedding degree. In
Section 4 we study whether a combination of curves from different families can form a
2-cycle. This answers one of the open questions from [14], for the case of 2-cycles.

Theorem 4.5 (informal). Parametric families either form 2-cycles as polynomials or
only form finitely many

::::::::::::::
pairing-friendly 2-cycles, and these can be explicitly bounded.

Moreover, we show that no curve from any of the known families can be in a 2-cycle in
which the other curve has embedding degree k ≤ 20

::::::
ℓ ≤ 22,

::::
even

::::::
going

:
a
:::
bit

::::::
further

:::
in

::::
some

::::
cases. This is achieved by combining the previous theorem with explicit computations for
each of the families. These results shed some light over the difficulty of finding new
cycles of elliptic curves, considering the fact that polynomial families are the only known
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way to produce pairing-friendly elliptic curves with prime order. Finally, in Section 5 we
estimate the density of pairing-friendly cycles among all cycles.

::
In

:::
[4],

::::::::::::::::
Balasubramanian

:::
and

:::::::
Koblitz

:::::::::
estimated

::::
the

::::::
density

:::
of

::::::::::::::
pairing-friendly

::::::
curves.

::::
We

:::::::::
generalize

::::
their

::::::
result

::
to

:::::
cycles

::
of

:::::::::::::::
pairing-friendly

::::::
curves.

:
We conclude the paper in Section 6. Appendices A, B,

C include additional computations and SageMath code, which can also be found in [1].

2 Pairing-friendly elliptic curves

Notation. Throughout this document, we assume that p, q, qi > 3 and are prime numbers.
We denote by Fq the finite field with q elements. For n ∈ N, we denote by ζn an n-th
primitive root of unity. We denote by φ(n) the Euler’s totient function on n. We denote ,

:::
and

:
by Φn the n-th cyclotomic polynomial, which has degree φ(n). A polynomial g ∈ Q[X]

is integer-valued if g(x) ∈ Z for all x ∈ Z.

2.1 Elliptic curves

An elliptic curve E over Fq (denoted E/Fq) is a smooth algebraic curve of genus 1, defined
by the equation

Y 2 = X3 + aX + b,

for some a, b ∈ Fq such that 4a3 − 27b2 ̸= 0. We denote the group of Fq-rational points
by E(Fq), and refer to #E(Fq) as the order of the curve. The neutral point is denoted
by O. Given m ∈ N, the m-torsion group of E is E[m] = {P ∈ E(Fq) | mP = O}, where
Fq is the algebraic closure of Fq. When q ∤ m, we have that E[m] ∼= Zm × Zm. The trace
of Frobenius (often called just trace) of E is

t = q + 1−#E(Fq).

Hasse’s theorem [43, Theorem V.1.1] states that |t| ≤ 2
√
q, and Deuring’s theorem [18,

Theorem 14.18] states that, for any t ∈ Z within the Hasse bound, there exists an elliptic
curve E/Fq with trace t.

A curve is said to be supersingular when q | t, and ordinary otherwise. Since we
work with q > 3 prime, the Hasse bound implies that the only supersingular curves
are those with t = 0. In the case of ordinary curves, the endomorphism ring will be an
order O ⊆ Q(

√
d), where d is the square-free part of t2 − 4q. The value d is called the

discriminant of the curve E, and we say that E has complex multiplication by O. Note
that the Hasse bound implies that d < 0.1

Pairings and the embedding degree. Let E/Fq be an elliptic curve. Then, for m
such that q ∤ m, we can build a pairing

e : E[m]× E[m] → µm,

where E[m] ∼= Zm × Zm is the m-torsion group of the curve and µm is the group of
mth roots of unity. The map e is bilinear, i.e. e(aP, bQ) = e(P,Q)ab for any P,Q ∈ E[m].
Various instantiations of this map exist, e.g. the Weil [43, §III.8] pairing

::::::
pairing

:::::::::
[43, §III.8]

1 Other works take |d| as the discriminant.
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. Since µm ⊂ F∗
qk for some k ∈ N and is a multiplicative subgroup, it follows thatm | qk−1.

The smallest k satisfying this property is called the embedding degree of E[m]. When
m = #E(Fq), we refer to this k as the embedding degree of E.

Proposition 2.1. Let E/Fq be an elliptic curve of prime order p. The following condi-
tions are equivalent:

– E has embedding degree k.
– k is minimal such that p | Φk(q) [37, Remark 1].
– k is minimal such that p | Φk(t− 1) [5, Lemma 1].

Most curves have a very large embedding degree. This has a direct impact on the
computational cost of computing the pairing. On the one hand, we want small embedding
degrees to ensure efficient arithmetic. On the other hand, however, small embedding
degrees open an avenue for attacks, more precisely the [35] and [24] reductions, which

:
.
:::::
These

:
translate the discrete logarithm problem on the curve to the discrete logarithm

problem on the finite field Fqk , where faster (subexponential) algorithms are known. With
a small embedding degree, we are forced to counteract the reduction to finite field discrete
logarithms by increasing our parameter sizes. Therefore, a balanced embedding degree is
often preferred when using pairing-friendly curves.

We note the following result, useful for finding curves with small embedding degree.

Proposition 2.2. Let E/Fq be an elliptic curve with prime order p and embedding degree
k such that p ∤ k. Then p ≡ 1 (mod k).

Proof. The embedding degree condition is equivalent to k being minimal such that qk ≡ 1
(mod p). Since p is prime, by Lagrange’s theorem ,

:::
we

::::
have

::::
that

:
k | p− 1. ⊓⊔

The complex multiplication (CM) method. Let E/Fq be an elliptic curve with
prime order p and trace t. The embedding degree condition is determined by p and q
alone, so the actual coefficients of the curve equation do not play any role. Because of
this, the main approach to finding pairing-friendly curves tries to find (t, p, q) first, and
then curve coefficients that are compatible with these values.

Given (t, p, q) such that p = q + 1 − t and t ≤ 2
√
q, Deuring’s theorem ensures that

a curve exists, but that does not mean that it is easy to find. The algorithm that takes
(t, p, q) and produces the curve coefficients is known as the complex multiplication (CM)
method, and its complexity strongly depends on the discriminant d of the curve. Currently,
this is considered feasible up to |d| ≈ 1016 [46].

Because of our focus on finding good triples (t, p, q), we will identify curves with them.
That is, we write E ↔ (t, p, q) as shorthand for an elliptic curve E/Fq with order p and
trace t. This curve might not be unique, but any of them will have the same embedding
degree

:::
and

::::::::::::
discriminant, so they are indistinguishable for our purposes.

2.2 Pairing-friendly polynomial families

The idea of considering families of elliptic curves parameterized by low-degree polynomials
is already present in [37,6], but is studied in a more systematic way in [21,23]. We will
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consider triples of polynomials (t, p, q) ∈ Q[X]3 such that, given x ∈ Z, there is an elliptic
curve E ↔ (t(x), p(x), q(x)).

We are interested in prime-order elliptic curves, so we require that the polynomials
p, q represent primes.

Definition 2.3. Let g ∈ Q[X]. We say that g represents primes if:

– g(X) is irreducible, non-constant and has a positive leading coefficient,
– g(x) ∈ Z for some x ∈ Z (equivalently, for infinitely many such x), and
– gcd{g(x) | x, g(x) ∈ Z} = 1.

The Bunyakovsky conjecture [41] states that a polynomial in the conditions of the
definition above takes prime values for infinitely many x ∈ Z. We now formally define
polynomial families of pairing-friendly elliptic curves.

Definition 2.4. Let k, d ∈ Z with d < 0 < k. We say that a triple of polynomials
(t, p, q) ∈ Q[X]3 parameterizes a family of elliptic curves with embedding degree k and
discriminant d if:

1. p(X) = q(X) + 1− t(X),
2. p is integer-valued (even if its coefficients are in Q \ Z),
3. p and q represent primes,
4. p(X) | Φk(t(X)− 1), and
5. the equation 4q(X) = t(X)2 + |d|Y 2 has infinitely-many integer solutions (x, y).

We naturally extend the notation E ↔ (t, p, q) to polynomial families.

Conditions 1-3 ensure that the polynomials represent infinitely many sets of param-
eters compatible with an elliptic curve. Condition 4 ensures that the embedding degree
is at most k, where ideally k is small. Condition 5 ensures that there are infinitely many
curves in the family with the same discriminant d. If this d is not too large, we will be
able to use the CM method to find the curves corresponding to these parameters. If we
ignore condition 5, such families are not too hard to find, as illustrated by the following
lemma.2

Lemma 2.5. For any integer k ≥ 3 there are infinitely many pairs (q, Eq) with embedding
degree k, and such that |E(Fq)| is prime, under the Bunyakovsky conjecture.

Proof. Infinite families are known for k = 3, 4, 6, as detailed below in Table 2. We can
then assume φ(k) ≥ 4. We will construct a family represented by the polynomial tuple
(t, p, q) as follows.

Let p(X) = Φrk(X), for some prime number r such that r ∤ k. Then, it holds that
φ(kr) ≥ 4(r − 1) ≥ 2r. We set q = p+ xr. Then

p | xrk − 1 = (xr)k − 1 = (q − p)k − 1,

so p | qk − 1. In this case p = q − xr, so the trace is given by t = 1 + xr, and deg (t) ≤
deg (p)/2. Also, the cyclotomic polynomial is irreducible, so it represents infinitely many
prime values. ⊓⊔
2 Furthermore, numerical experiments easily find many tuples (t, p, q) with low degree and small
coefficients satisfying conditions 1-4, but unfortunately not condition 5.
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Let f(X) = 4q(X)− t(X)2. Freeman [21] observed that condition 5 in Definition 2.4
is strongly related to the form of this polynomial.

Proposition 2.6. Fix k ∈ N, and let (t, p, q) ∈ Z[X]3 satisfying conditions (1-4) in the
previous definition. Assume that one of these holds:

– f(X) = aX2 + bX + c, with a, b, c ∈ Z, a > 0 and b2 − 4ac ̸= 0. There exists a
discriminant d such that ad is not a square. Also, the CM equation has an integer
solution.

– f(X) = (ℓX + |d|)g(X)2 for some discriminant d, ℓ ∈ Z, and g ∈ Z[X].

Then, we have that (t, p, q) parameterizes a family of elliptic curves with embedding degree
k and discriminant d.

On the other hand, if deg f ≥ 3, it is unlikely to produce a family of curves, as
highlighted by the following result, which is a direct consequence of Siegel’s theorem [43,
Corollary IX.3.2.2].

Proposition 2.7. Fix k ∈ N, and let (t, p, q) as above, and satisfying conditions (1-4)
in the previous definition. Assume that f(X) is square-free and deg f ≥ 3. Then (t, p, q)
cannot represent a family of elliptic curves with embedding degree k.

Finally, [21] also presents
:::::
proves

:
some results on the relations between the degrees of

the polynomials involved in representing a family of curves.

Proposition 2.8. Let t ∈ Q[X]. Then, for any k and any irreducible factor p | Φk ◦ t
:::::::::::
p | Φk(t− 1),

we have that φ(k) | deg p.

Proposition 2.9. Let (t, p, q) represent a family of curves with embedding degree k, with
φ(k) ≥ 4. If f = 4q − t2 is square-free, then:

– deg p = deg q = 2deg t.

– If a is the leading coefficient of t(X), then a2/4 is the leading coefficient of p(X), q(X).

Known pairing-friendly families with prime order. Only a few polynomial families
of elliptic curves with prime order and low embedding degree are known. The first work
in this direction is due to Miyaji, Nakabayashi, and Takano, [37], who characterized all
prime-order curves with embedding degrees k = 3, 4, 6 (these correspond to φ(k) = 2).
Based on the work of Galbraith, McKee and Valença [26], two additional families were
found: Barreto and Naehrig [6] found a family with k = 12, and Freeman [21] found
another one with k = 10 (both cases have φ(k) = 4). Note, however, that their results
are not exhaustive, meaning that there could still be other families with these embedding
degrees that have not been found, unlike in the MNT case. We summarize the polynomial
descriptions of these families in Table 2.
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Family k t(X) p(X) q(X)

MNT3 3 6X − 1 12X2 − 6X + 1 12X2 − 1

MNT4 4 −X X2 + 2X + 2 X2 +X + 1

MNT6 6 2X + 1 4X2 − 2X + 1 4X2 + 1

Freeman 10 10X2 + 5X + 3 25X4 + 25X3 + 15X2 + 5X + 1 25X4 + 25X3 + 25X2 + 10X + 3

BN 12 6X2 + 1 36X4 + 36X3 + 18X2 + 6X + 1 36X4 + 36X3 + 24X2 + 6X + 1

Table 1. Polynomial descriptions of MNT, Freeman and BN curves, where k corresponds to the
embedding degree, t(X) is the trace, p(X) is the order, and q(X) is the order of the base field.

For completeness, we note that there are no elliptic curves with prime order and
embedding degree k ≤ 2, except for a few cases of no cryptographic interest.

Proposition 2.10. Let p, q ∈ Z be prime numbers. If q ≥ 14, then there is no elliptic
curve E/Fq with #E(Fq) = p and embedding degree k ≤ 2.

Proof. Suppose that such a curve exists.

– If k = 1, then p | q − 1. Clearly p ̸= q − 1, since otherwise p, q cannot both be prime.
Then p ≤ q−1

2 , and then q− p ≥ q+1
2 . But, at the same time, q− p = t− 1 ≤ 2

√
q− 1,

due to the Hasse bound. These two conditions are only compatible when q ≤ 9, which
is already ruled out by hypothesis.

– If k = 2, then p | q2−1 = (q−1)(q+1). We have that p ∤ q−1 (otherwise k = 1), and
thus p | q+1 because p is prime. Again, p ̸= q+1, because otherwise p, q cannot both
be prime. Then p ≤ q+1

2 , and thus q−p ≥ q−1
2 . By the Hasse bound, q−p ≤ 2

√
q−1,

and these are only compatible for q < 14.
⊓⊔

An attempt at finding new families. This section describes a technique for searching
for new parametric families of pairing-friendly curves with prime order. The idea was
already known to Freeman [22], although we present a new speed-up when deg t = 2.
Unfortunately, we cannot report any new findings, but still outline the technique due to
its potential independent interest.

The algorithm works as follows: we are looking for tuples (t, p, q) ∈ Q[X]3 in the
conditions of Definition 2.4. We first note that the three polynomials are in the linear
relation p = q + 1− t, so we actually just need to find two of them. Moreover, by Proposition 2.1,
we know that p is limited to the irreducible factors of Φk(q) or Φk(t− 1), so if we have
one of these, then we will have very few candidates for p. We use t− 1 as our “free”
polynomial because it has lower degree than q.

d = φ(k)/2 t =
∑d

i=0 tiX
i q = p− 1 + t continue f = 4q − t2 continue print (t, p, q)

We present a way to speed up this search when deg t = 2, based on the following result.

Let t ∈ Q[X] with deg t = 2. Then:

– If t(X) = ζk has a solution in Q(ζk), then Φk ◦ t factors over the rationals into two
irreducible polynomials of degree φ(k) each.
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– Otherwise, Φk ◦ t is irreducible and has degree 2φ(k).

The proposition below allows us to replace the brute force in the three coefficients
(t0, t1, t2) of t by the leading coefficient and discriminant, (t2, ∆).

Let a, b, c, k ∈ Z, with a ̸= 0 and k ≥ 3. Consider the polynomial t(X) = aX2 + bX + c

with discriminant ∆. If t(X) = ζk has a solution in Q(ζk), then Φk

(
−∆2

4a

)
is a square in

Q.
We have

4at(X) = (2aX + b)2 −∆2,

where ∆ =
√
b2 − 4ac is the discriminant of the polynomial t(X). Hence, we are looking

for solutions of the equation
y2 −∆2 = 4aζ

over K = Q(ζ). Raising Equation to the k-th power, we get

0 =
(
y2 −∆2

)k − (4a)k = y2k +

k∑

j=1

(
k

j

)
(−1)jy2k−2j

(
∆2

)j
.

In particular, y is a root of a monic polynomial with integer coefficients, and hence, it is
an algebraic integer. Taking norms in K we get

N(y)2 =
∏

σ∈Gal(K/Q)

(∆2 + 4aσ(ζ)) = (4a)φ(k)Φk

(
−∆2

4a

)
.

If Equation does not have a solution over the integers, then neither does t(X) = ζk. Since

the norm of an algebraic integer is an integer and 2|φ(k) for k ≥ 3, then Φk

(
−∆2

4a

)
must

be a square.
The idea is the same as outlined in the algorithm above, but now we loop over (t2, ∆)

instead of (t0, t1, t2), and proceed only if Φk(−∆2

4a ) is a square. Since the condition is
necessary but not sufficient, we still need to check for irreducibility of Φk(t− 1). Once
a suitable pair (t2, ∆) has been found, we look for t1, t0 compatible with ∆. Still, this
was not enough to find any new instances of families for the values of k compatible with
deg t = 2, that is, 5, 8, 10, 12 (those with φ(k) = 4).

3 Cycles of elliptic curves

3.1 Definition and known results

The notion of cycles of elliptic curves was introduced in [44].

Definition 3.1. Let s ∈ N. An s-cycle of elliptic curves is a tuple (E1, . . . , Es) of elliptic
curves, defined over fields Fq1 , . . . ,Fqs , respectively, and such that

#Ei(Fqi) = qi+1 mod s,

for all i = 1, . . . , s.
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Remark 3.2. Cycles of length 2 have some particular properties that are worth noting.
Let E,E′ be two curves forming a 2-cycle. Then

– If E ↔ (t, p, q), then Definition 3.1 implies that E′ ↔ (2− t, q, p).

– E
:::
We

:::::
have

::::
that

:::::::::::
p = #E(Fq):is in the Hasse interval of E′

:::::::::::
q = #E′(Fp):if and only if

E′
:
q is in the Hasse interval of E

:
p. Indeed, if the former holds, we have that

:::
then

:

√
p− 1 ≤ √

q ≤ √
p+ 1,

which is equivalent to √
q − 1 ≤ √

p ≤ √
q + 1.

It is known that cycles of any length exist [44, Theorem 11]. We summarize in the
following two propositions some facts about cycles. These results are due to [14].

Proposition 3.3. Let E1, . . . , Es be an s-cycle of elliptic curves, defined over prime fields
Fq1 , . . . ,Fqs . Then:

(i) E1, . . . , Es are ordinary curves.

(ii) If q1, . . . , qs > 12s2, then E1, . . . Es have prime order.

(iii) Let t1, . . . , ts be the traces of E1, . . . , Es, respectively. Then

s∑

i=1

ti = s.

(iv) If s = 2, then the curves in the cycle have the same discriminant d.

(v) If the curves in the cycle have the same discriminant |d| > 3, then s = 2.

(vi) If s > 2 and E1, . . . , Es have the same discriminant d, then necessarily s = 6 and
|d| = 3.

There are also some impossibility results.

Proposition 3.4. We have the following.

(i) There do not exist
:
is
:::
no

:
2-cycles

:::::
-cycle

:
with embedding degree pairs (5, 10), (8, 8) or

(12, 12).

(ii) There do not exist cycles
::
is

:::
no

:::::
cycle formed only by Freeman curves.

(iii) There do not exist cycles
::
is

:::
no

:::::
cycle formed only by BN curves.

3.2 Some properties of cycles

In this section, we show some results about cycles, most of them about 2-cycles in which
both curves have the same embedding degree.

Proposition 3.5. Sophie Germain
:::
Safe

:
primes are not part of any 2-cycle in which both

curves have the same embedding degree k.
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Proof. Let p, q be the orders of the curves in the cycle, and assume that one of them is a
Sophie Germain prime. Let us say p = 1 + 2ℓ, with ℓ

:
.
:::::::
Assume

:::::
that

:
p
::
is
::
a
::::
safe

::::::
prime,

:::
i.e.

::::::::::
p = 1 + 2r,

::::
with

::
r prime. Since they

:::
p, q

:
are in a cycle, q = p+ 1− t for some |t| ≤ 2

√
p.

Now, since k | p − 1 by Proposition 2.2, we have k = 1, 2, ℓ, 2ℓ
:::::::::::
k = 1, 2, r, 2r. We already

know that k ̸= 1, 2. Hence, k = ℓ or 2ℓ
:
,
:::::
hence

::::::::::
k ∈ {r, 2r}. But then ℓ | q − p

:::::::
r | q − p, and

thus

|q − p| ≥ ℓr = (p− 1)/2
p− 1

2
::::

> 2
√
p+ 1

for any p > 3
:::::
p > 3, which contradicts the fact that |q − p| = |1− t| < 2

√
p+ 1.

:::::::::::::::::::::::
|q − p| = |1− t| < 2

√
p+ 1.

⊓⊔
Proposition 3.6. Let s ∈ Z. Consider ,

::::
and

:::
let

::::::::::::::
(t, p, q) ∈ Q[X]3

::::::::::::
parameterize a family of

elliptic curves with trace parameterized by a polynomial t ∈ Q[X]
::::::::::::::
pairing-friendly

::::::
elliptic

:::::
curves, with deg t even. Then,

::::
there

::::
are

:
only finitely many curves from this family form

s-cycles within
:::
such

::::
that

:::
all

::
s
::::::
curves

:::
in

:::
the

:::::
cycle

::::::
belong

::
to

:
the family.

Proof. If s curves with traces t1, . . . , ts, respectively, form a cycle, by Proposition 3.3.(iii)
we have that

∑s
i=1 ti = s. Since deg t ≥ 2 and s is fixed, necessarily there exist a, b ∈

{1, . . . , s} such that ta, tb have different signs. However, since deg t is even, there exists a
lower bound b such that, for all |x| > b, we have that t(x) has the same sign. Therefore,
only finitely many cases can occur in which the traces have opposing sign. ⊓⊔

Given an elliptic curve E ↔ (t, p, q), Hasse’s theorem gives us the bound |t| ≤ 2
√
q,

which translates to
::
in

:
the polynomial case as

::::::
implies

::::
that

:
deg t ≤ 1

2deg q. We now derive
a lower bound for t in the case of 2-cycles in which both curves have the same small
embedding degree. We require first the following technical lemma.

Lemma 3.7. Let k ∈ N and 3 ≤ k ≤ 104. We have that:

(i) For any |x| > 1,

Φk(x) ≤
|x|

|x| − 1
xφ(k).

(ii) For any ε > 0, there exists B > 0 such that, for all x with |x| > B,

Φk(x− 1) ≤ (1 + ε)
|x|

|x| − 1
xφ(k).

Proof. Clearly such bound exists for |x| large enough, since Φk(x) = xφ(k) + o
(
xφ(k)

)
.

More precisely, for k ≤ 104, the k-th cyclotomic polynomial has only
:
0
::::
and ±1 as coeffi-

cients [36]. Therefore

Φk(x) ≤ xφ(k)+

φ(k)−1∑

i=0

|x|i = xφ(k)


1 +

φ(k)∑

i=1

1

|x|i


 ≤ xφ(k)

(
1 +

1

|x| − 1

)
=

|x|
|x| − 1

xφ(k),

using the fact that the geometric series converges when |x| > 1.
Part (ii) is now trivial when x > 0. For x < 0, we note that, since Φk is a polynomial

with positive leading coefficient, for any ε > 0 there exists B > 0 such that, for all x with
|x| > B,

Φk(x− 1) ≤ (1 + ε)Φk(x),

11



since otherwise the function would grow exponentially fast when x → −∞. The result
follows directly from applying part (i) to Φk(x). ⊓⊔

Remark 3.8. More precisely, for k such that 3 ≤ k ≤ 104, we do not need to choose B
too large to achieve a small constant. The following values have been obtained computa-
tionally.

1 + ε 2 1.1 1.01
B 146 1069 10250

Proposition 3.9. Let E ↔ (t, p, q) be an elliptic curve with embedding degree k, with
|t| > 1 and 3 ≤ k ≤ 104. Then, for any ε > 0 there exists B > 0 such that, for all x with
|x| > B, we have

|t| >
(

1

1 + ε

|t| − 1

|t| q

) 1
φ(k)

.

Proof. We have that p | Φk(t − 1), so p ≤ Φk(t − 1). Also, we have that |t| < |Φk(t) −
Φk(t− 1)|. Assume first that t > 1. Then, due to part (i) of the previous lemma,

q = p− 1 + t ≤ p+ t < Φk(t) ≤
t

t− 1
tφ(k).

Taking φ(k)-th roots,

t >

(
t− 1

t
q

) 1
φ(k)

.

The case t < −1 is completely analogous, using part (ii) of Lemma 3.7. ⊓⊔

The result above deals with a single curve, but actually it can be strengthened for
some 2-cycles.

Proposition 3.10. Let E ↔ (t, p, q) and E ↔ (2− t, q, p)
:::::::::::::::
E′ ↔ (2− t, q, p)

:
be two el-

liptic curves with |t| > 1 and the same embedding degree k ≡ 0 (mod 4), such that
k ≤ 3 ≤ 104

:::::::::::
3 ≤ k ≤ 104. Then, for any ε > 0 there exists B > 0 such that, for all x

with |x| > B, we have

|t| >
(

1

1 + ε

|t| − 1

|t| q

) 2
φ(k)

.

Proof. The case k ≡ 0 (mod 4) corresponds to those cyclotomic polynomials such that
Φk(x) = Φk(−x) for all x. From the embedding degree conditions, we have

p | Φk(t− 1),

q | Φk(1− t),

and therefore pq | Φk(t−1), since p, q are different primes. Assume, without loss of gener-
ality, that q < p. Then q2 ≤ pq ≤ Φk(t−1), and proceeding as the proof of Proposition 3.9,
we obtain

q2 ≤ (1 + ε)
|t|

|t| − 1
tφ(k),

from which we obtain the desired bound. ⊓⊔

12



Corollary 3.11. Let E ↔ (t, p, q) and E ↔ (2− t, q, p)
:::::::::::::::
E′ ↔ (2− t, q, p) be two elliptic

curves with the same embedding degree k ≡ 0 (mod 4), such that k ≤ 3 ≤ 104
:::::::::::
3 ≤ k ≤ 104.

There exists B such that, if |t| > B, then

1

2
q

2
φ(k) < |t| ≤ 2q

1

2
.

Remark 3.12. The result above is particularly interesting in two cases:

– When φ(k) = 2, i.e. k = 4. In this case,

1

2
q < |t| ≤ 2q

1

2
,

which cannot happen
::
for

:::::::
q > 15. This shows that there are no (4, 4)-cycles (which

was already known from [14]).

– When φ(k) = 4, i.e. k ∈ {8, 12}. In this case,

1

2
q
1

2
< |t| ≤ 2q

1

2
,

which shows that t asymptotically behaves like
√
q, and therefore is on the outermost

part of the Hasse interval. In particular, for polynomial families this means that
deg t = 1

2deg p, which improves on the inequality known before. This is consistent
with what is observed in known families.

4 Cycles from known families

In this section, we prove our main result about 2-cycles of elliptic curves: given a family
(t, p, q) ∈ Q[X]3 with embedding degree k, and ℓ ∈ N, one of two things can happen:

(a) q | pℓ − 1
::::::::::
q | Φℓ(1− t), as polynomials. In this case, any curve in the family forms a

2-cycle with the corresponding curve in the family (2− t, q, p), which has embedding
degree ℓ

:::
(see

:::::::::::
Proposition

:::::
2.1).

::::::::
Observe

:::::
that,

::::
due

:::
to

:::::::::::
Proposition

::::
3.3,

::::
both

::::::::
families

::::
have

:::
the

:::::
same

::::::::::::
discriminant.

(b) Only finitely many curves from the family form a 2-cycle with curves of embedding
degree ℓ.

Furthermore, when we are in the second case we can explicitly find these cycles. For all
known families (Table 2), we prove that no curve from them

::::::
(except

:::
for

::
a

:::
few

:::::::::
anecdotal

:::::
cases)

:
is part of a 2-cycle with any curve with embedding degree ℓ ≤ 20

:::::
ℓ ≤ L.

::::
The

::::::
bound

:
L
::::::::
depends

:::
on

:::
the

:::::::
family,

::::
and

::
in

:::
all

:::::
cases

::
at

:::::
least

:::::::
L ≥ 22.

4.1 Cycles from parametric-families

First, we show a technique will that
::::
that

:::
will

:
help us rule out many cases from our main

results, by performing a very simple check.
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Proposition 4.1. Let (t, p, q) ∈ Q[X]3 parameterize a family of pairing-friendly elliptic
curves, and let ℓ ∈ N such that

q(i) ̸≡ 1 (mod ℓ)

for i = 0, . . . , ℓ− 1. Then, if
:
.
:::
Let

:
a curve E from the family is

::
be

:
in a cycle,

:::
and

:::::::
assume

:::
that

:
the previous curve in the cycle does not have

:::
has embedding degree ℓ.

::::
Then

:::::
there

:::::
exists

:::::::::::::::
i ∈ {0, . . . , ℓ− 1}

:::::
such

::::
that

:

q(i) ≡ 1 (mod ℓ).
::::::::::::::::

Proof. Let x ∈ Z such that E ↔ (t(x), p(x), q(x)), and let E′ ↔ (t′, p′, q′) be the previous
curve in the cycle . We assume that E′ has

:::
with

:
embedding degree ℓ, and will reach a

contradiction. From the definition of cycle, p′ = q(x). Then, applying Proposition 2.2 to
curve E′, we deduce that

q(x mod ℓ) ≡ q(x) ≡ p′ ≡ 1 (mod ℓ).

This contradicts the hypothesis q(i) ̸≡ 1 (mod ℓ) for i = 0, . . . , ℓ. ⊓⊔

By testing the property of
::::::::
condition

:::::
given

:::
by Proposition 4.1 for known families and

3 ≤ ℓ ≤ 100, we obtain the following results.

Corollary 4.2. An MNT3 curve cannot be preceded in a cycle by a curve with embedding
degree ℓ, where

ℓ ∈ {3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36,
37, 39, 40, 41, 42, 44, 45, 48, 49, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70

72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 96, 98, 99, 100}.

Corollary 4.3. A Freeman curve cannot be preceded in a cycle by a curve with embedding
degree ℓ, where

ℓ ∈ {4, 5, 8, 10, 11, 12, 15, 16, 20, 22, 24, 25, 28, 30, 32, 33, 35, 36, 40, 44, 45, 48, 50, 52, 53, 55, 56,
59, 60, 61, 64, 65, 66, 68, 70, 72, 75, 76, 77, 79, 80, 83, 84, 85, 88, 90, 92, 95, 96, 97, 99, 100}.

Furthermore, even when we cannot rule out a certain ℓ, we obtain a condition on
xmod ℓ, which will help us later when we check by brute force all x in an interval. Also
note that, despite the fact that we will use these corollaries to simplify our work in the
next section, which deals with 2-cycles, these results work for cycles of any length.

4.2 2-cycles from parametric families

The goal here will be to start from a known family of pairing-friendly elliptic curves,
and argue that they form no 2-cycles with other pairing-friendly curves. To do so, let
(t, p, q) represent such family. For any curve E ↔ (t(x), p(x), q(x)), there is another curve
E′ ↔ (2 − t(x), q(x), p(x)) such that the two of them form a 2-cycle. Furthermore, if E′

has a small embedding degree ℓ ∈ Z, then q(x) | p(x)ℓ−1. Note that this is for a particular
x ∈ Z, not as polynomials.
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Informally, our strategy will be the following. The embedding degree condition on
E′ can be reformulated in terms of integer division: the division of p(x)ℓ by q(x) has
remainder 1. We will compare integer division and polynomial division, and show that,
outside of a finite interval [A,B]

::::::::::
[Nleft, Nright], the remainders in both cases essentially

agree. Therefore, by showing that the polynomial remainder r(x) never takes the value 1,
we will rule out any possibility of cycles outside of [A,B]

:::::::::::
[Nleft, Nright]. For known families

of curves, we will deal with the cases x ∈ [A,B]
::::::::::::::
x ∈ [Nleft, Nright]:manually, as there are

only a finite number of them, and show that none of them leads to a partner curve with
small embedding degree.

Lemma 4.4. Let x ∈ Z, and let a, b ∈ Q[X] be two integer-valued polynomials. Assume
that b has even degree and positive leading coefficient.

– Let h, r ∈ Q[X] be the quotient and remainder, respectively, of the polynomial division
of a by b. Let c > 0 be the smallest integer such that ch, cr ∈ Z[X].

– Let hx, rx ∈ Z be the quotient and remainder, respectively, of the integer division of
ca(x) by b(x).

Then either deg r = 0, or there exist A,B ∈ Z such that, for all x ∈ Z \ [A,B]
:::::::::::::
Nleft, Nright ∈ Z

:::
and

::::::::::::::::
δleft, δright ∈ {0, 1}

:::::
such

::::
that:

:

–
:::
For

:::
all

:::::::::
x < Nleft,:::

we
::::
have

::::
that

::::::::::
sign(r(x))

::
is

:::::::::
constant,

:::
and

::::::::::::::::::::::
r(x) = cr(x) + δleftb(x).

–
:::
For

:::
all

:::::::::
x > Nright, we have that either rx = cr(x) or rx = cr(x) + b(x). More precisely

::::::::
sign(r(x))

:
is
:::::::::
constant,

::::
and

::::::::::::::::::::::
r(x) = cr(x) + δrightb(x).:

:::::::::::
Furthermore, let us denote σA = sign{r(x) | x < A} and σB = sign{r(x) | x > B}, respectively.
Then

::::::::::::::::::::::::
σleft = sign{r(x) | x < Nleft}::::

and
::::::::::::::::::::::::::::
σright = sign{r(x) | x > Nright}. :::::

Then
:

rxδleft
::

=
1− σleft

2
,

:::::::

δright =
1− σright

2
.

:::::::::::::::

Proof. We observe that c is well-defined, as it can be taken as the least common multiple
of all denominators occurring in the coefficients of h, r. Likewise, σA, σB ::::::::

σleft, σright:are
well-defined, since r is a polynomial, and thus at most it changes sign deg r times. For
the second part, we have that

ca(x) = b(x)hx + rx,

ca(x) = b(x)(ch(x)) + cr(x),

where 0 ≤ rx < b(x), and deg r < deg b, and all these values are integer. Subtracting, we
obtain rx − cr(x) = b(x)(ch(x)− hx),

rx − cr(x) = b(x)(ch(x)− hx),
::::::::::::::::::::::::::

and thus rx ≡ cr(x) (mod b(x)). Since 0 ≤ rx < b(x), we just need to find cr(x) mod b(x),
as this will necessarily agree with

::
be

:::
the

:::::
same

:::
as

:
rx.

We illustrate the technique for the case σA = −1, σB = 1
:::::::::::::::::
σleft = −1, σright = 1

:
(the

other cases are completely analogous). Note that, if deg r > 0, then r is not a constant
polynomial.
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– Let A ∈ Z
::::::::
Nleft ∈ Z

:
be the largest integer such that 0 < −cr(x) ≤ b(x) for all x < A.

Such A
::::::::
x < Nleft.:::::

Such
:::::
Nleft exists because both b(x),−cr(x) → ∞ when x → −∞,

and deg b > deg (−cr). If x < A
:::::::
x < Nleft, then 0 < −cr(x) ≤ b(x). Multiplying by

(−1), we get that −b(x) ≤ cr(x) < 0, and adding b(x), we get 0 ≤ cr(x)+b(x) < b(x).
Therefore, rx = cr(x) + b(x).

– Let B ∈ Z
:::::::::
Nright ∈ Z be the smallest integer such that 0 ≤ cr(x) < b(x) for all x > B.

Such B
:::::::::
x > Nright.:::::

Such
::::::
Nright:exists because both b(x), cr(x) → ∞ when x → ∞,

and deg b > deg (cr). If x > B
::::::::
x > Nright, then 0 ≤ cr(x) < b(x). Therefore, necessarily

rx = cr(x).
⊓⊔

We can now prove the main theorem of this section, from which the desired results
will directly follow.

Theorem 4.5. Let k, ℓ ∈ N. Let (t, p, q) be a triple of polynomials parameterizing a family
of elliptic curves with embedding degree k. Then either q | pℓ − 1 as polynomials, or there
are at most finitely many 2-cycles formed by a curve from the family and a curve with
embedding degree k

:
ℓ.

Proof. Due to Proposition 2.10, we can safely assume that k, ℓ ≥ 3. Assume that there
exists a 2-cycle involving a curve E from the family and another curve E′ with embedding
degree ℓ. That is, assume that there exists x ∈ Z such that E ↔ (t(x), p(x), q(x)) is in a
2-cycle. Then E′ ↔ (2 − t(x), q(x), p(x)). By the condition of the embedding degree, we
have that

q(x) | p(x)ℓ − 1,

and thus there exists h ∈ Z such that

p(x)ℓ = q(x)h+ 1.

We now wish to apply Lemma 4.4, with a = pℓ and b = q, so we must argue that q has
even degree and positive leading coefficient. We distinguish two cases:

– For k ∈ {3, 4, 6}, all the prime-order families are the MNT families, which have
deg q = 2 and positive leading coefficient.

– For k with φ(k) ≥ 4, we have from Lemma 2.8 that φ(k) | deg p, and in this case φ(k)
is always even. Furthermore, since p = q + 1 − t and t = O(

√
q) (due to the Hasse

bound), necessarily deg q = deg p. Now, since q has even degree, it necessarily has
positive leading coefficient, otherwise it could not represent infinitely many curves.

Let h, r ∈ Q[X] be the quotient and remainder, respectively, of the polynomial division of
pℓ by q. If q ∤ pℓ−1 as polynomials, then r ̸= 1. If r is another constant polynomial, then the
embedding degree condition does not hold for any x ∈ Z. If deg r > 0, Lemma 4.4 gives
us c, A,B,∈ Z, σA, σB ∈ {±1}

:::::::::::::::::::::::::::::::
c,Nleft, Nright,∈ Z, δleft, δright ∈ {0, 1}

:
such that, if x < A,

::::::::
x < Nleft,:

cr(x) +
1− σA

2
δleft
::

b(x) = 1,

and if x > B, then
:::::::::
x > Nright,::::

then
:

cr(x) +
1− σB

2
δright
:::

b(x) = 1.
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The polynomials cr(X) and cr(X)+b(X) can only take the value 1 finitely many times. By
increasing A,B

::::::::
enlarging

:::::::::::
[Nleft, Nright]:if necessary, we can ensure that this only happens

inside of [A,B]
::::::::::
[Nleft, Nright]. Therefore, there are no cycles for x ̸∈ [A,B]

::::::::::::::
x ̸∈ [Nleft, Nright].

⊓⊔

This result immediately yields the following consequences for concrete families of
curves. Let (t, p, q) parametrize a family of curves. Given a certain value of ℓ, it is imme-
diate to check whether q ∤ ℓk − 1

::::::::
q ∤ pℓ − 1

:
as polynomials. If that is not the case (which

happens most of the time), Theorem 4.5 ensures that there are at most finitely-many cycles
formed by a curve from the family and a curve with embedding degree ℓ. For each can-
didate ℓ, we compute the values c, A,B

:::::::::::
c,Nleft, Nright from Theorem 4.5 corresponding to

the division of pℓ by q. Interestingly, c = 1 for all known families of pairing-friendly curves
with prime order. The resulting values of A,B

:::::::::
Nleft, Nright:are summarized in Table 3 for

the MNT3, Freeman,
:
and BN families. No tables are included for MNT4 and MNT6 fam-

ilies because, in these cases, we have A = −1, B = 0 and A = B = 0
::::::::::::::::::
Nleft = −1, Nright = 0

:::
and

::::::::::::::::
Nleft = Nright = 0, respectively, regardless of ℓ.

Remark 4.6. Given arbitrary integer-valued polynomials p, q ∈ Q[X] and ℓ ∈ N, there
is no guarantee that the polynomial remainder of pℓ by q will have integer coefficients,

:::
i.e.

:::::
c = 1,

:
or even be integer-valued. Nevertheless, this does happen for MNT, Freeman,

and BN curves. We show this for Freeman curves, but the argument is very similar in all
cases. For completeness, the other cases are included in Appendix A.

We proceed by induction on ℓ. For ℓ = 1, we have that

p(X) mod q(X) = −10X2 − 5X − 2.

This polynomial is of the form 25aX3 + 25bX2 + 5cX + d
:::::::::::::::::::::::
25aX3 + 5bX2 + 5cX + d, for

some a, b, c, d ∈ Z. We will now show that, if pℓ mod q is of this form, then pℓ+1 mod q is
also of this form. This will prove that all the remainder is actually in Z[X] for any ℓ ∈ N.

Hence, suppose that there exist a, b, c, d ∈ N such that

p(X)ℓ mod q(X) = 25aX3 + 5bX2 + 5cX + d.

Then

p(X)ℓ+1 ≡ p(X)ℓp(X) ≡
(
25aX3 + 5bX2 + 5cX + d

) (
−10X2 − 5X − 2

)

≡ −250aX5 − (125a+ 50b)X4 − (50a+ 25b+ 50c)X3

−(10b+ 25c+ 10d)X2 − (10c+ 5d)X − 2d
≡ (75a+ 25b− 50c)X3 + (−25a+ 40b− 25c− 10d)X2

+(−20a+ 20b− 10c− 5d)X + (−15a+ 30b− 2d) (mod q(X)).

Since the coefficient of degree 3 is divisible by 25, and the coefficients of degree 2 and 1
are divisible by 5, the induction step works.

Remark 4.7. The values of A,B
::::::::::
Nleft, Nright :

in MNT4 and MNT6 families are in stark
contrast with the other families

:::::::
(shown

::
in

:::::::::
Appendix

:::
B), but can be easily explained. In

MNT3, BN and Freeman
::::::::
Freeman,

::::
and

::::
BN curves, the remainder r of the polynomial

division qk by p has coefficients that
:::::
mostly

:
increase with k. Because of this, we need to

get further away from zero before the asymptotic behaviour
::::::::
behavior kicks in.
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On the contrary, only a small number of remainders are possible in MNT4 and MNT6
curves. Let p, q ∈ Q[X] be the polynomials parameterizing the order of

::::::::::::::
(t, p, q) ∈ Q[X]3

:::::::::::
parameterize

:
MNT4 curvesand the order of their base fields. We have that q | p6−1 (they

form infinitely many cycles with MNT6 curves). That is, p has order 6 modulo q, and thus
pk mod q can only take 6 possible values. Concretely, p(X)k mod q(X) ∈ {±1,±X,±(X+
1)} for any k ∈ N, and all of these yield the bounds A = −1, B = 1

::::::::::::::::::
Nleft = −1, Nright = 0.

Similarly, in the case of MNT6 curves, the remainder of pk by q can only take 4 val-
ues. Concretely p(X)k mod q(X) ∈ {±1,±2X} for any k ∈ N, which yield the bounds
A = B = 0

:::::::::::::::
Nleft = Nright = 0.

An exhaustive search in [A,B]
:::::::::::
[Nleft, Nright] reveals no curves with embedding degree

ℓ, for any of the values of ℓ considered
:
,
::::::
except

:::
for

::
a
::::
few

::::::::
examples

:::::
with

:::
no

::::::::::::
cryptographic

:::::::
interest.

:::
We

::::::::
consider

:::::::
MNT3,

:::::::::
Freeman,

:::
and

::::
BN

::::::
curves,

:::::
since

::
it
::
is

:::::::
already

::::::
known

:::::
[14]

:::
that

::::::
MNT4

::::
and

::::::
MNT6

::::::
curves

::::
are

::::
only

::
in

::::::
cycles

:::::
with

::::
each

:::::
other.

Corollary 4.8. Let (E,E′) be a 2-cycle of elliptic curves, and assume that E′ has embedding
degree ℓ ≤ 20

::
E

::
is

::::
not

::::
one

::
of

:::
the

::::::
curves

:::::::::
described

::
in

::::::
Table

:::
??. Then:

(i)
:
If
:
E is not an MNT curve, unless (E,E′) is a cycle formed by an MNT4-MNT6

pair
:::
an

::::::
MNT3

::::::
curve,

::::
then

:::
E′

::::
has

::::::::::
embedding

:::::
degree

:::::::
ℓ ≥ 23.

(ii)
:
If
:
E is not a Freeman curve,

:::::
then

:::
E′

:::
has

::::::::::
embedding

::::::
degree

::::::
ℓ ≥ 26.

(iii)
:
If
:
E is not a BN curve

:
,
::::
then

:::
E′

::::
has

:::::::::
embedding

::::::
degree

::::::
ℓ ≥ 33.

::::::
Family

:
k

:
ℓ

:
x
:

t
: :

p
:
q

::::::
MNT3

:
3

::
10

::
−1

: ::
−7

: ::
19

::
11

::::::
MNT3

:
3

::
10

:
1
: :

5
: :

7
::
11

:::
BN

: ::
12

::
18

::
−1

: :
7
: ::

13
::
19

Table 2.
::::::::
Instances

::
of

::::::
curves

:::::::::::
E ↔ (t, p, q),

::::
with

::::::::::
embedding

::::::
degree

::
k,

:::::
from

::::::
known

:::::
cycles

::::
that

::::
form

:
a
:::::::::::::
pairing-friendly

::::::
2-cycle

:::::
with

::::::
another

:::::
curve

:::
E′

::::
with

::::::::::
embedding

:::::
degree

::
ℓ.

:::
The

:::::::::::::
computational

::::::
check

::::
took

:
a
::::
few

:::::
hours

:::
on

:
a
::::::::
standard

:::::::::
computer,

:::::
using

::::
the

:::::::::
SageMath

::::
code

:::::
from

:::::::::
Appendix

:::
C.

:::::::::::::
Theoretically,

:::::
there

::
is

:::
no

::::::
reason

:::
to

::::
stop

:::
at

::
a

:::::
given

::::::::::
embedding

::::::
degree

::
ℓ.

::::::::
However,

::::
the

:::::::
interval

:::::::::::
[Nleft, Nright]:::::

grow
::::::::
rapidly,

:::::::
making

:::
the

::::::
brute

:::::
force

:::::
check

:::::
inside

::
of
::::
the

:::::::
interval

::
a
::::::
much

:::::
more

:::::::
serious

::::::::::
computing

::::::
effort,

::::::::
requiring

::
a
:::::
more

::::::::
polished

::::::::::::::
implementation.

:::::
Still,

:::
the

:::::
most

::::::::::
interesting

::::
cases

::::
are

:::::
those

::::
with

:::::::
smaller

::::::::::
embedding

::::::
degree,

::
as

::::
the

:::::
ideal

::::::
cycles

:::
for

:::::::::
recursive

:::::::::::
composition

::::::
would

:::
be

::::::
those

::
in

::::::
which

::::
the

::::::::::
embedding

::::::
degrees

:::
of

::::
both

::::::
curves

::::
are

::
as

:::::
close

:::
as

::::::::
possible.

5 Probabilities and estimates
:::::::::
Density

:::
of

:::::::::::::::::::
pairing-friendly

::::::::
cycles

::
So

::::
far,

::::
this

:::::
work

::::
has

:::::
been

::::::
mostly

:::
an

:::::::::
algebraic

:::::::::
treatment

:::
of

::::::
cycles.

:
In this section, we

generalize the results in [4]
::::
look

::
at

::::::
cycles

:::::
from

::
a
::::::::
different

::::::
angle,

:::::::::::
concerning

::::::::
ourselves

::::
with

:::::
their

::::::::
density.

::::
The

::::
goal

:::
is

::
to

:::::::::
quantify

::
in

::::::::
concrete

::::::
terms

::::
the

:::::::
folklore

:::::::
notion

::::
that
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:::::::::::::
pairing-friendly

::::::
cycles

:::
are

:::::
hard

::
to

:::::
find.

::::
Our

:::::::
starting

::::::
point

:
is
::::
the

::::::::
following

::::::
result

::
of

:::
[4].

::
It

::::::
proves

::
an

::::::
upper

::::::
bound

::
on

:::
the

::::::::::
probability

::
of

::
a
:::::::
random

::::::
elliptic

:::::
curve

::::::
being

::::::::::::::
pairing-friendly.3

Theorem 5.1 ([4], Theorem 2).
::
Let

::::::::
M ∈ Z.

::::
Let

::
p

::
be

::::
the

::::::::::
probability

::
of

:::::::
finding

:::
an

::::::
elliptic

:::::
curve

::::::
E/Fq ::::

with
::::::
prime

:::::
order

::::::::::::
p ∈ [M, 2M ]

::::
and

:::::::::
embedding

::::::
degree

::::::::::::
k ≤ (log q)2,

::
by

::::::::
sampling

:::::::::
uniformly

:::::
from

::
all

::::
the

::::::
curves

::::
with

::::::
orders

:::
in

:::
the

:::::::
interval

:::::::::
[M, 2M ].

:::::
Then

:

p < c
(logM)9(log logM)2

M
,

:::::::::::::::::::::::

::
for

::::::
some

::::::::
constant

:::::
c > 0.

:

:::
We

:::::::::
generalize

::::
the

:::::
result

::::::
above

:
to s-cycles of elliptic curves. In particular, an s-cycle

is a collection of s primes q1, . . . , qs and s elliptic curves E1/Fq1 , . . . , Es/Fqs , such that
|Ei(Fqi)| = qi+1 mod s:::::::::::::::::::

#Ei(Fqi) = qi+1 mod s. Among these, we are interested in estimating
the probability of finding cycles

::::::
finding

::::::
those

:
with small embedding degrees. As s in-

creases, the number of cycles also increases. However, since the embedding degree condi-
tion is imposed on every step of the cycle, the probability decreases dramatically with s,
as this is a very strong requirement.

In order to get a cycle we need an s-tuple of primes q1, . . . , qs that fit in the Hasse
interval of each other, i.e. |qi+1 − qi − 1| ≤ 2

√
qi. Throughout this section, all the constants

in the proofs will be denoted c, although we remark that they might be different on each
inequality or step of the proof

:::
We

:::::
start

:::
by

::::::
stating

::::
the

:::::
main

:::::
result

:::
of

:::
this

:::::::
section.

Theorem 5.2. Let s ≥ 2and X ∈ Z,
:::::::
K > 0,

::::
and

:::::::
M ∈ Z. Let p be the probability of find-

ing an s-cycle of elliptic curves (Eq1 , . . . , Eqs) with qi ∈ [X, 2X]
:::::::::::::::::
E1/Fq1 , . . . , Es/Fqs::::

with

:::::::::::
qi ∈ [M, 2M ]

:
and embedding degrees ki ≤ K for all i = 1, . . . , s, by sampling uniformly

from all the s-cycles of elliptic curves
::::
with

::::::
orders

:
in the interval [X, 2X]. Then

:::::::
[M, 2M ].

::::
Then

:

p < cK(K + 1)
(log logX)2s(logX)3s

Xs/2

(logM)3s(log logM)2s

Ms/2
:::::::::::::::::::

,

for some constant c
::::
c > 0

:
depending on s.

We
::::
will

:::::
prove

:::
our

::::::
result

::::::
above

:::::::
through

::
a
::::::::
sequence

::
of

::::::::
lemmas.

::::
The

:::::::
overall

:::::::
strategy

::
is

::
as

:::::::
follows:

::
in

::::::::
Lemma

:::
5.3,

:::
we

::::::
count

:::
the

::::::::
number

::
of

::::::::
s-tuples

::
of

::::::
primes

:::::::
within

:::
the

:::::::
interval

:::::::
[M, 2M ]

::::
that

::::
are

::::::::::
compatible

::::
with

:::
the

::::::
Hasse

:::::::::
condition.

::
In

:::::::
Lemma

::::
5.5,

:::
we

::::::
impose

:::
an

:::::
upper

::::::
bound

::
K

:::
on

:::
the

::::::::::
embedding

:::::::
degree.

:::::::
Finally,

:::
in

::::::::
Lemmas

:::
5.7

::::
and

:::
5.8,

:::
we

::::::
count

:::
the

::::::
curves

::::
that

:::
are

::::::::::
compatible

:::::
with

:::
the

:::::::
primes

:::::::
counted

:::
in

:::
the

::::::::
previous

::::
two

:::::::
results.

:::
We

:::::
start

::
by

::::::::::::
disregarding

:::
the

::::::
curves

::::
and

::::
just

:::::::
looking

:::
at

:::
the

:::::::
primes.

:::
In

:::::
order

::
to

::::
get

:
a

:::::
cycle,

:::
we

::::
need

:::
an

:::::::
s-tuple

::
of

:::::::
primes

::::::::
q1, . . . , qs:::::

that
::
fit

::
in
::::
the

::::::
Hasse

:::::::
interval

::
of

:::::
each

:::::
other,

:::
i.e.

::::::::::::::::::::
|qi+1 − qi − 1| ≤ 2

√
qi.::::::

Thus,
:::
we first count the s-tuples of possible primes q1, . . . , qs

::::
that

:::
are

::::
not

:::
too

:::
far

:::::
apart.

Lemma 5.3. Let s ≥ 2 a positive integer fixed
:
be

::
a
:::::
fixed

:::::::
positive

:::::::
integer

:
and C > 0 a

constant depending on s. For any X ≥ 2 we denote Ts(X)
::::::
M ≥ 2

:::
we

::::::
denote

:::
by

::::::
Ts(M)

3
::
In

::
[4]

:
,
:::
the

:::::::
authors

:::::
define

::::::
pairing

::::::::::
friendliness

::
as

::::::
having

:::
an

:::::::::
embedding

::::::
degree

::::::::::
k ≤ (log q)2.

:::
We

:::
will

::::
keep

:::
the

::::::
bound

::
as

:::
an

:::::::::
unspecified

:::::::::
parameter

:::
K.

19



the number of s-tuples of primes in the interval [X, 2X] with |qi − qj | ≤ C
√
X

:::::::
[M, 2M ]

::::
with

:::::::::::::::
|qi − qj | ≤ C

√
M . Then, there exist constants c1, c2 depending on s, such that

c1
X(s+1)/2

(logX)s
M (s+1)/2

(logM)s
::::::::

≤ Ts(XM
::

) ≤ c2
X(s+1)/2

(logX)s
M (s+1)/2

(logM)s
::::::::

.

Proof. We split the interval [X, 2X] in subintervals Ik = [X + (k − 1)C
√
X,X + kC

√
X)

for 1 ≤ k ≤
√
X/C

:::::::
[M, 2M ]

:::
in

:::::::::::
subintervals

:::::::::::::::::::::::::::::::::::
Ik = [M + (k − 1)C

√
M,M + kC

√
M)

:::
for

::::::::::::::::
1 ≤ k ≤ ⌊

√
M/C⌋ and call πk the number of primes on the interval Ik. We denoteXC = X + C

⌊√
X
C

⌋√
X

:::::::::::::::::::::::
MC = M + C

⌊√
M
C

⌋√
M .

Observe that 2X −XC ≤ C
√
X

:::::::::::::::::
2M −MC ≤ C

√
M and, hence, the prime number theo-

rem gives

∑

k=1

√
X/C⌊

√
M/C⌋

::::::
πk = π(XM

::C)− π(XM
::

) =
X

logX

M

logM
:::::

+ Ee,

where |E| < ε X
logX :::::::::::

|e| < ε M
logM for any ε > 0 and X > Xε :::::::

M > Mε:
sufficiently large,

depending on ε. Then, a simple application of Hölder’s inequality [7, Chapter 1, Theorem
2] for p = s, q = s

s−1 gives us for X > Xε

(1− ε)
X

logX
≤

√
X/C∑

k=1

πk ≤




√
X/C∑

k=1

1




(s−1)/s 


√
X/C∑

k=1

πs
k




1/s

≤ cX(s−1)/2s




√
X/C∑

k=1

πs
k




1/s

:::::
p = s

:::
and

::::::::
q = s

s−1:::::
gives

:::
us

::::
that,

:::
for

:::::::::
M > Mε,:

(1− ε)
M

logM
:::::::::::

≤
⌊
√
M/C⌋∑

k=1

πk ≤




⌊
√
M/C⌋∑

k=1

1




(s−1)/s 


⌊
√
M/C⌋∑

k=1

πs
k




1/s

::::::::::::::::::::::::::::::::::::::::::::::

≤ c1M
(s−1)/2s




⌊
√
M/C⌋∑

k=1

πs
k




1/s

.

::::::::::::::::::::::::::::

and hence
::::::
Hence,

:

cX(s+1)/2

(logX)s
c2M

(s+1)/2

(logM)s
::::::::::

≤
∑

k=1

√
X/C⌊

√
M/C⌋

::::::
πs
k.

Finally
:
, observe that every s-tuple of primes on each interval Ik is counted in Ts(X)

::::::
Ts(M),

so we will
:::
can

:
use the above

:::::::::
expression to get a lower bound on Ts(X)

::::::
Ts(M). Let A be

the set of indices k such that the interval Ik has more than (s+1)2 primes. Then, by the
well known

:::::
Now,

:::::
since

:::
for

::::
any

:::::::
N1 > 0

::::
and

:::::::
N2 > 1

:::
we

::::
have

::::
the

::::::::
following

:
inequality [38,

Corollary 2]
:
,
:

π(MN1
::

+N2)− π(MN1
::

) ≤ 2M

logM

2N2

logN2
:::::

, (1)
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we get πk ≤ c
√
X

logX ::::
that

:::::::::::
πk ≤ c3

√
M

logM:
for any kand hence

:
.
:::::::::
Therefore,

:

X

logX

M

logM
:::::

∼
∑

k∈A

πk +
∑

k∈A

πk < c

√
X

logX
|3

√
M

logM
#

::::::::

A|+ (s+ 1)2(
√
X
√
M

:::
− |#

:
A|)

< c

√
X

logX
|3

√
M

logM
#

::::::::

A|+ (s+ 1)2
√
X
√
M,

::::

which gives us the bound
|#
:
A| > c

√
X4

√
M

::::

for any X
::
M

:
sufficiently large. Hence, ordering the primes to avoid repetitions, we get

::::
that

Ts(XM
::

) ≥
∑

k=1

√
X/C⌊

√
M/C⌋

::::::

(
πk

s

)
≥

∑

k∈A

(
πk

s

)
=

1

s!

∑

k∈A

πs
k

s−1∏

j=0

(
1− j

πk

)

>
1

s!

∑

k∈A

πs
ke

−s(s+1)/πk >
1

s!e

∑

k∈A

πs
k

=
1

s!e


∑

k=1

√
X/C⌊

√
M/C⌋

::::::
πs
k −

∑

k∈A

πs
k


 ≥ c

X(s+1)/2

(logX)s
5
M (s+1)/2

(logM)s
:::::::::

− 1

s!e
(s+ 1)2s

√
X
√
M

:::

> c
X(s+1)/2

(logX)s
5
M (s+1)/2

(logM)s
:::::::::

.

In order to prove the second inequality, we denote the primes in the interval [X, 2X]
:::::::
[M, 2M ],

in increasing order, as q1, . . . , qN . If we have an s-tuple starting with qi, then the rest of the
s−1 primes on the s-tuple will be in the interval Ii = (qi, qi + C

√
X]

::::::::::::::::::
Ii = (qi, qi + C

√
M ].

Hence, letting πi =
∑

q∈Ii
1, we can apply the inequality (1) to obtain

:
of

:::::::::
Equation (1)

:
to

::::::
obtain

Ts(XM
::

) ≤
N∑

i=1

(
πi

s− 1

)
≤ c6

N∑

i=1

πs−1
i ≤ c

X
s−1
2

(logX)s−1 7
M

s−1
2

(logM)s−1

::::::::::

N ≤ c
X

s+1
2

(logX)s
8

M
s+1
2

(logM)s
::::::::

.

(2)
⊓⊔

Remark 5.4. For s = 2 and C = 1 we can get any constant c1 < 1/2, by noting that

T2(XM
::

) ≥ 1

2

∑

k=1

√
X

√
M

:::
πk(πk−1) =

1

2

∑

k=1

√
X

√
M

:::
π2
k−

1

2

∑

k=1

√
X

√
M

:::
πk ≥ 1

2

X3/2

(logX)2
M3/2

(logM)2
::::::::

−1

2

X

logX

M

logM
:::::

≥
(
1

2
− ε

)
X3/2

(logX)2
M3/2

(logM)2
::::::::

.

A different proof of the lower bound for the case s = 2 and C = 1, with a slightly worst

:::::
worse

:
constant, is given in [32, Lemma 1].

Now, let us impose the condition of having very small embedding degree.
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Lemma 5.5. For any X > 0
::::::
M > 0

:
and K > 0, let Ts,K(X)

:::::::
Ts,K(M)

:
be the num-

ber of s-tuples of primes in the interval [X, 2X], with |qi − qj | ≤ C
√
X

::::::::
[M, 2M ],

::::
with

:::::::::::::::
|qi − qj | ≤ C

√
M , for some constant C > 0 and such that qi+1|qki

i − 1
:::::::::::
qi+1 | qki

i − 1
:
for

some ki ≤ K. Then

Ts,K(XM
::

) ≤ cK(K + 1)
√
X
√
M

:::
,

for some constant c > 0.

Proof. We proceed similarly to [4]. First note that if qi+1|qki
i − 1, then qi+1|(qi − qi+1)

ki − 1

::::::::::::
qi+1 | qki

i − 1,
:::::
then

::::::::::::::::::::
qi+1 | (qi − qi+1)

ki − 1
:
and, since |qi − qj | ≤ C

√
X

:::::::::::::::
|qi − qj | ≤ C

√
M ,

we have that for any i there exists an integer |hi| ≤ C
√
X such that qi+1|hki

i − 1
:::::::::::
|hi| ≤ C

√
M

::::
such

::::
that

::::::::::::
qi+1 | hki

i − 1 for some ki ≤ K. Now, since qi+1 > X ≥ (Chi)
2
:::::::::::::::::
qi+1 > M ≥ (Chi)

2,

we see that hki − 1
::::::
hi

ki − 1
:
has at most cki

2 prime divisors on the interval [X, 2X]
:::::::
[M, 2M ],

for some constant c > 0. Summing over the possible k and h we get

Ts,K(XM
::

) ≤
∑

k≤K

∑
|h|≤C

√
X |h|≤C

√
M

:::::::

∑
q|hk−1q|hk−1

:::::

1 ≤ cK(K + 1)
√
X
√
M

:::
.

⊓⊔

:::::::
Finally,

:::
we

:::::
bring

::::::
curves

:::::
back

::::
into

::::
the

:::::::::
equation.

::::::
Given

::
an

::::::::
interval

::::::::
[M, 2M ],

:::
we

::::
will

:::::
count

:::
the

::::::
tuples

::
of
:::::::
curves

::::
with

::::::
orders

::
in
::::
the

:::::::::
intervals,

:::
and

::::
the

::::::
subset

::
of

:::::
those

:::::
such

::::
that

:::::
every

:::::
curve

::
in

::::
the

:::::
tuple

::
is
:::::::::::::::
pairing-friendly.

::::::::
Theorem

::::
5.2

::::
will

:::::
follow

::::::::
directly

:::::
from

:::::
these.

:::
We

:::::::::
introduce

:::
the

:::::::::
following

:::::
result

:::::
from

::::
[33],

::::::
which

:::
we

::::
will

::::::
require

:::
for

::::
the

::::::
proof.

Lemma 5.6 ([33], Propositon 1.9).
:::
Let

:::::
q > 3

:::
be

::
a
::::::
prime

::::::::
number,

:::
let

:::::::
P ⊂ N

::::
and

::
let

:::::
Nq,P:::

be
::::
the

:::::::
number

:::
of

::::::::::::
isomorphism

:::::::
classes

:::
of

:::::::
elliptic

::::::
curves

:::::
over

:::
Fq:::::

and
:::::
order

::::::::::::
#E(Fq) ∈ P .

:::::
Then:

:

–
:
If
:::::::::::::::::::::::::::::
P ⊂ [q + 1− 2

√
q, q + 1 + 2

√
q],

::::
then

:::::::::::::::::::::::::::::
Nq,P ≤ c#P (log q)(log log q)2

√
q

:::
for

:::::
some

:::::::
constant

:::::
c > 0.

:

–
:
If
:::::::::::::::::::
P ⊂ [q −√

q, q +
√
q]
::::
and

:::::::::
#P ≥ 3,

::::
then

:::::::::::::::::::::
Nq,P ≥ c(#P − 2)

√
q

log q :::
for

:::::
some

::::::::
constant

:::::
c > 0.

:

Lemma 5.7. Let Cs(X) the set
:::::::
M ≥ 2,

::::
and

:::
let

:::::::
Cs(M)

::
be

::::
the

:::::::
number

:
of s-tuples of

elliptic curves E1/Fq1 , . . . , Es/Fqs forming a cycle of length s, and Cs,K(X) ⊂ Cs(X) the
subset in which Ei has embedding ki ≤ K

:::::
where

::::::::::::
qi ∈ [M, 2M ]

:
for all i = 1, . . . , s. Then

c1K
X(2s+1)/2

(logX)2s ≤ |Cs(X)| ≤ c2K(log logX)2sX(2s+1)/2

|Cs,k(X)| ≤ c3K(K + 1)(logX)s(log logX)2sX(s+1)/2

for some constants c1, c2, c3 ::::
there

:::::
exist

:::::::::
constants

:::::
c1, c2,:depending on s.

:
,
:::::
such

::::
that

c1
M (2s+1)/2

(logM)2s
≤ Cs(M) ≤ c2(log logM)2sM (2s+1)/2.

::::::::::::::::::::::::::::::::::::::::::::
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Proof. First note that, if we have an s-cycle of curves, then the corresponding primes are
as in Lemma 5.3 for any C > s. Without loss of generality, let us assume that cycles start
at the smallest prime. Now, if we have an s-tuple in which the smallest prime is pi :qi, then
the rest of the s−1 primes on the s-tuple will be in the interval Ii = (qi, qi+s

√
q
i
+(s/2)2].

We can see this by induction. Let qα, qβ be the ℓ-th and (ℓ + 1)-th primes in the cycle,
respectively. The induction hypothesis is that qα ≤ qi + 2ℓ

√
q
i
+ ℓ2. Then

qβ ≤ qα + 2
√
qα + 1 ≤ qi + 2ℓ

√
qi + ℓ2 + 2

√
qi + 2ℓ

√
qi + ℓ2 + 1 = qi + 2(ℓ+ 1)

√
qi + (ℓ+ 1)2

:
,

qβ
:
≤ qα + 2

√
qα + 1 ≤ qi + 2ℓ

√
qi + ℓ2 + 2

√
qi + 2ℓ

√
qi + ℓ2 + 1

::::::::::::::::::::::::::::::::::::::::::::::::::::

= qi + 2(ℓ+ 1)
√
qi + (ℓ+ 1)2.

:::::::::::::::::::::::::

and then observe thatthe largest prime in the cyclecan only be
:::::
From

::::
here

:::
we

:::::::
deduce

::::
that,

::
for

::::
any

:::::::::::
l = 1, . . . , s,

:::
we

:::::
have

::::
that

:

√
ql+i −

√
qi ≤ ℓ.

::::::::::::::

:::::
Since

::::
they

:::::
form

:
a
::::::
cycle,

::::
then

::
it

:::::
must

:::
be

:::
the

::::
case

::::
that

:::::::
ql ∈ Ii :::

for
::
all

::
l.
:::::
Note

::::
that

:::::
there

:::
are

::
at

:::::
most

:
s/2 steps apart from the first one, since they form

:::::
primes

::::::::
between

::::
the

::::::
largest

:::
and

::::
the

:::::::
smallest

::::::
prime

::
of

:
a cycle.

Now, let us start by proving the upper bound for Cs(X). We know by [33, Proposition 1.9]
that for every q and every subset of integers L such that for any ℓ ∈ L, |ℓ− q + 1| ≤ 2

√
q,

:::::::
Cs(M).

:::
Let

::
P

:::
be

:
a
::::::
subset

::
of

::::::
primes

::
p
:::::::::
satisfying

::::
that

::::::::::::::::
|p− (q + 1)| ≤ 2q.

:::
By

:::
the

::::
first

::::
part

::
of

::::::
Lemma

::::
5.6,

:::
we

:::::
know

::::
that there are at most c log q(log log q)2

√
q|L|

:::::::::::::::::::::
c1
√
q log q(log log q)2#P

isomorphism classes over Fq of elliptic curves with |E(Fq)| ⊂ L
:::::::::::
#E(Fq) ∈ P

:
for some con-

stant c, so
::
c1.:::::::

Taking
::
P

:::::
with

:::::::
#P = s

::::
and

:::::::::::
multiplying

::::
over

:::::
each

:::::
prime

:::
of

:::
an

::::::
s-tuple

:::
we

:::
get

:::::
that, on each s-tuple,

:
there will be less than

c2(logXM
::

)s(log logXM
::

)2sXM
::

s/2

isomorphism classes of elliptic curves with points on the s-tuple and, in particular, forming
a cycle of length at most s.

::::
Note

:::::
that

:::
the

::::::::
constant

::
c2::::::::

depends
:::
on

::
s.

:
Applying the second

inequality of Lemma 5.3, we get the expected upper bound for cycles of length at most
s, and in particular for Cs(X).

::::::
Cs(M).

:

Now, to
::
To prove the lower bound for Cs(X) we see that the same Proposition 1.9 of

[33] shows that for every subset of integers L ⊂ [q −√
q, q +

√
q] with |L| ≥ 3

::::::
Cs(M)

:::
we

:::
will

::::
use

:::
the

:::::::
second

::::
part

::
of

::::::::
Lemma

:::
5.6.

:::
In

::::
this

:::::
case,

:::
for

::::
any

:
q
::::
and

::::
any

::::::
subset

:::
of

::::::
primes

::::::::::::::::::
P ⊂ [q −√

q, q +
√
q]

:::::
with

::::::::
#P ≥ 3

:
there are more than c(|L| − 2)

√
q

log q :::::::::::::
c3(#P − 2)

√
q

log q

isomorphism classes over Fq of elliptic curves with |E(Fq)| ⊂ S
:::::::::::
#E(Fq) ∈ P

:
for some

constant c, so
::
c3.:::::::

Hence,
:
on each s-tuple with s ≥ 3 we have more than cs Xs/2

(logX)s

::::::::
c4

Ms/2

(logM)s:
isomorphism classes of elliptic curves with points on the s-tuple and, in par-

ticular, forming a cycle of length at most s.
::::
Note

:::::
that

::
c4:::

is
:
a
:::::::::
constant

::::
that

::::::::
depends
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::
on

::
s.
::::::::
Observe

:::::
that,

:::
in

::::::::::
particular,

::
all

::::::
those

::::::
primes

:::
lie

:::
on

::::
the

:::::
Hasse

::::::::
interval

:::
for

::
q,

:::::
since

:::::::::::::::::::::::::::::::::::::::::::::
P ⊂ [q −√

q, q +
√
q] ⊂ [q + 1− 2

√
q, q + 1 + 2

√
q]. Combining this with the first inequal-

ity of Lemma 5.3, we get the lower bound

c
X(2s+1)/2

(logX)2s
5
M (2s+1)/2

(logM)2s
::::::::::

.

Then, Cs(X)
:::::
Then,

::::::
Cs(M)

:
will be cycles of isomorphism classes of elliptic curves of length

at most s minus cycles of isomorphism classes of elliptic curves of length at most s − 1,
so

:
.
:::
In

:::::
order

::
to

::::::
bound

::::
the

:::::::
number

::
of

::::::
cycles

::
of
:::::::
length

::
at

:::::
most

::::::
s− 1,

::
we

::::
use

:::
the

::::::::
previous

:::::
upper

::::::
bound

:::
for

:::::::
Ci(M),

:::
for

:::::::::::::::
i = 1, . . . , s− 1,

::
so

:::
we

::::
get

Cs

s−1∑

i=1
::

(Xlog logM
:::::::

)c
X(2s+1)/2

(logX)2s
− c

X(2s−1)/2

(logX)2s−2
2iM (2i+1)/2 ≤
::::::::::::

c
X(2s+1)/2

(logX)2s
,6(log logM)2s−2M (2s−1)/2

::::::::::::::::::::::

for X
::::
some

::::::::
constant

:::
c6.::::::

Hence,
:

Cs(M) ≥ c5
M (2s+1)/2

(logM)2s
− c6(log logM)2s−2M (2s−1)/2 ≥ c7

M (2s+1)/2

(logM)2s
,

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

::
for

:::::
some

::::::::
constant

:::
c7::::

and
:::
for

:::
M sufficiently large depending on s.

Finally, the proof of the upper bound for Cs,K(X) is the same, now using Lemma5.5
instead. ⊓⊔

As a corollary of the previous Lemma
::
By

::::::::::
mimicking

:::
the

:::::::
second

::::
part

:::
of

:::
the

::::::::
previous

:::::
proof,

::::
but

:::::
using

::::::::
Lemma

:::
5.5

:::::::
instead

:::
of

:::::::
Lemma

::::
5.3,

:::
we

:::::::
obtain

:::
the

:::::::::
following

:::::::::
analogous

:::::
result.

:

Lemma 5.8.
::
Let

::::::::
M ≥ 2.

:::
Let

:::::::::
Cs,K(M)

::
be

:::
the

:::::::
number

:::
of

:::::::
s-tuples

::
in

::::
the

:::::
same

:::::::::
conditions

::
as

::
in

:::::::
Lemma

::::
5.7,

:::::
which

:::::::::::
additionally

::::::
satisfy

::::
that

::
Ei::::

has
:::::::::
embedding

:::::::
ki ≤ K

:::
for

:::
all

::::::::::
i = 1, . . . , s.

::::
Then

:::::
there

::::::
exists

::
a

::::::::
constant

::
c,

:::::::::
depending

:::
on

::
s,

:::::
such

::::
that

:

Cs,K(M) ≤ cK(K + 1)(logM)s(log logM)2sM (s+1)/2.
:::::::::::::::::::::::::::::::::::::::::::::::

:::::::
Finally,

::::
from

:::::::::
Lemmas

:::
5.7

::::
and

:::
5.8, we get Theorem 5.2 , by just dividing Cs,K(X) by

Cs(X)
::
by

:::::::
dividing

:::::::::
Cs,K(M)

:::
by

:::::::
Cs(M).

6 Conclusions

Cycles of elliptic curves require the curves involved to be of prime order, and families of
elliptic curves parameterized by low-degree polynomials are the only known approach at
generating pairing-friendly curves with prime order. In this work, we have shown that
this approach is unlikely to yield new cycles, beyond the MNT4-MNT6 cycles that are
already known. In particular, we have shown that no known families are involved in a
2-cycle with any pairing-friendly curve

::
of

:::::::::::::
cryptographic

:::::::
interest. Along the way, we have

developed our understanding of these mathematical objects, showing some new properties
and a probability analysis.

While a lot is still unknown about pairing-friendly cycles, we highlight two avenues
that we consider interesting for future research.
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– Generalizing Theorem 4.5 and Corollary 4.8 to s-cycles, for s > 2. The case s = 2 is
the most appealing from a practical perspective, due to the application to recursive
composition of SNARKs, but it would be desirable to have the complete picture. The
main hurdle here is that, whereas fixing a curve in a 2-cycle automatically determines
the other, longer cycles have more degrees of freedom, so we do not have as much
explicit information to work with in the proof.

– Consider a 2-cycle such that both curves E ↔ (t, p, q) and E′ ↔ (2− t, q, p) have the
same embedding degree k. If we restrict ourselves to the case k ≡ 0 (mod 4), it is
easy to argue (as in Proposition 3.10) that

pq | Φk(t− 1).

This approach allows [14] to prove that said cycles cannot exist when k ∈ {8, 12}.
However, the authors leave higher values of k as an open question. If we consider fam-
ilies of curves, Theorem 4.5 tells us that the above relation must hold as polynomials,
or else only a finite number of cycles will exist. Thus, we wonder if considering the
above condition as a relation between polynomials, and applying polynomial machin-
ery, could help in answering this question.
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A Polynomial division

In this section, we show that p(X)ℓ mod q(X) is an integer-valued polynomials, when
E ↔ (t, p, q) are either the MNT3 or BN curves. This is completely analogous to the
argument in Remark 4.6.

MNT3 curves. In this case, q(X) = 12X2−1. We proceed by induction on ℓ. For ℓ = 1,
we have that

p(X) mod q(X) = −6X + 2,

which is of the form 6aX + b, for some a, b ∈ Z. We show that, if pℓ mod q is of this form,
then so is pℓ+1 mod q. Then all the remainders will actually be in Z[X].

Assume that there exist a, b, c, d ∈ N such that

p(X)ℓ mod q(X) = 6aX + b.

Then
p(X)ℓ+1 ≡ p(X)ℓp(X) ≡ (6aX + b) (−6X + 2)

≡ −36aX2 + (12a− 6b)X + 2b
≡ (−12a+ 6b)X + (−3a+ 2b) (mod q(X)).

Since the coefficient of degree 1 is divisible by 6, the induction step works.

BN curves. In this case, q(X) = 36X4 + 36X3 + 24X2 + 6X + 1. Assume that there
exist a, b, c, d ∈ N such that

p(X)ℓ mod q(X) = 36aX3 + 6bX2 + 6cX + d,

for some a, b, c, d ∈ Z. Then

p(X)ℓ+1 ≡ p(X)ℓp(X) ≡
(
36aX3 + 6bX2 + 6cX + d

) (
−6X2

)

≡ −216aX5 − 36bX4 −−36cX3 − 6dX2

≡ (−72a+ 36b− 36c)X3 + (−108a+ 24b− 6d)X2

+(−30a+ 6b)X + (−6a+ b) (mod q(X)).

Since the coefficient of degree 3 is divisible by 36, and the coefficients of degree 2 and 1
are divisible by 6, the induction step works.
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B Tables

Bounds for MNT3

ℓ A
::::
Nleft B

:::::
Nright

5 -104 104
10 -75658 75657
19 -10626317415 10626317415

Bounds for Freeman

ℓ A
::::
Nleft B

:::::
Nright

3 -2 4
6 -164 161
7 -686 685
9 -10608 10607
13 -1805067 1805066
14 -6158596 6158595
17 -210958904 210958905
18 -643610018 643610019
19 -1875810507 1875810508

::
21

: ::::::::::::
-12522961240

:::::::::::
12522961243

:

::
23

: ::::::::::::
-15125575810

:::::::::::
15125575853

:

Bounds for BN

ℓ A
::::
Nleft B

:::::
Nright

3 -1 0
4 -3 4
5 -12 11
6 -15 4
7 -65 64
8 -104 103
9 -167 168
10 -831 830
11 -513 508
12 -3523 3524
13 -8620 8619
14 -4092 4097
15 -52351 52350
16 -66417 66414
17 -164463 164464
18 -626817 626816
19 -186373 186364
20 -2992820 2992819

::
21

: ::::::::
-6014684

:::::::
6014683

:

::
22

: ::::::::
-5673471

:::::::
5673474

:

::
23

: ::::::::
-41263041

: ::::::::
41263040

::
24

: ::::::::
-39448697

: ::::::::
39448694

::
25

: ::::::::::
-151319223

:::::::::
151319224

:

::
26

: ::::::::::
-462478015

:::::::::
462478014

:

::
27

: ::::::::
-20593636

: ::::::::
20593693

::
28

: ::::::::::
-2473968276

: ::::::::::
2473968275

::
29

: ::::::::::
-4050737756

: ::::::::::
4050737755

::
30

: ::::::::::
-6238668798

: ::::::::::
6238668799

::
31

: ::::::::::::
-31854421247

:::::::::::
31854421246

:

::
32

: ::::::::::::
-20649322466

:::::::::::
20649322461

:

Table 3. Bounds A,B
::::::::
Nleft, Nright:

from Lemma 4.4 for different embedding degrees ℓ of the
potential partner curve of MNT3, Freeman, and BN curves. The remaining values of ℓ ≤ 20 are
covered by Corollaries 4.2 and 4.3 for MNT3 and Freeman curves, respectively.

C SageMath code
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::::::::::::::::::
Supplementary

::::::::::
material

::
-
:::::::::::::
SageMath

::::::
code

This code is available at [1].

B.1 Setup

MNT3(), MNT4(), MNT6(), Freeman(), BN()

These functions return the set of polynomials that define the families of curves MNT3,
MNT4, MNT6, Freeman, and BN, respectively.

The expected outputs are:

– t: polynomial t(X) ∈ Q[X] that parameterizes the trace.
– p: polynomial p(X) ∈ Q[X] that parameterizes the order of the curves.
– q: polynomial q(X) ∈ Q[X] that parameterizes the order of the finite field over which

the curve is defined.

1 # SETUP
2

3 # Polynomial rings over the reals and rationals.
4 R.<X> = PolynomialRing(RR, ’X’)
5 Q.<X> = PolynomialRing(QQ, ’X’)
6

7 # Curve families.
8 def MNT3():
9 t = Q(6*X -1)

10 q = Q(12*X^2 - 1)
11 p = q + 1 - t
12 return(t, p, q)
13

14 def MNT4():
15 t = Q(-X)
16 q = Q(X^2 + X + 1)
17 p = q + 1 - t
18 return(t, p, q)
19

20 def MNT6():
21 t = Q(2*X + 1)
22 q = Q(4*X^2 + 1)
23 p = q + 1 - t
24 return(t, p, q)
25

26 def Freeman ():
27 t = Q(10*X^2 + 5*X + 3)
28 q = Q(25*X^4 + 25*X^3 + 25*X^2 + 10*X + 3)
29 p = q + 1 - t
30 return(t, p, q)
31

32 def BN():
33 t = Q(6*X^2 + 1)
34 q = Q(36*X^4 + 36*X^3 + 24*X^2 + 6*X + 1)
35 p = q + 1 - t
36 return(t, p, q)

B.2 Code for Proposition 4.1

candidate embedding degrees(Family, K low, K high)

Given a family of curves, this function computes the possible embedding degrees of curves
that may form 2-cycles with a curve of the given family.
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The expected inputs are:

– Family: a polynomial parameterization (t(X), p(X), q(X)) of a family of pairing-
friendly elliptic curves with prime order.

– K low, K high: lower and upper bounds on the embedding degree to look for.

The expected outputs are:

– embedding degrees: a list of potential embedding degrees k such that K low ≤ k ≤
K high and a curve from the family might form a cycle with a curve with embedding
degree k.

– modular conditions: conditions on x mod k for each of these k.

1 def candidate_embedding_degrees(Family , K_low , K_high):
2

3 (t, p, q) = Family ()
4 # Create an empty list to store the candidate embedding degrees
5 embedding_degrees = []
6 # Create an empty list to store the lists of modular conditions for

each k
7 modular_conditions = [None] * (K_high + 1)
8

9 # Embedding degree k implies that q(x) = 1 (mod k).
10 # We check this condition in 0, ..., k-1 and build a list of candidates
11 # such that any x has to be congruent to one of them modulo k.
12 for k in range(K_low , K_high + 1):
13

14 candidate = False
15

16 for i in range(k):
17 if ((q(i) % k) == 1):
18 # First time a candidate k is discovered , add it to the

list and
19 # create a list within modular_conditions to store the

values i.
20 if (not candidate):
21 candidate = True
22 embedding_degrees.append(k)
23 modular_conditions[k] = []
24 modular_conditions[k]. append(i)
25

26 return embedding_degrees , modular_conditions

B.3 Auxiliary functions

is integer valued(g)

This function checks whether a given polynomial g is integer-valued. It returns True if
so, and False otherwise. The test is based on the fact that a polynomial g ∈ Q[X] is
integer-valued if and only if g(x) ∈ Z for deg g + 1 consecutive x ∈ Z [13, Corollary 2].

1 def is_integer_valued(g):
2

3 # Check if evaluation is integer in deg(g) + 1 consecutive points.
4 for x in range(g.degree ()+1):
5 if (not g(x) in ZZ):
6 print(str(g) + " is not integer -valued.")
7 return False
8 return True
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find relevant root(w, b, side)

This function finds the left-most or right-most root of a polynomial b(X) ∈ Q[X].

The expected inputs are:

– w: positive integer.
– b: polynomial b(X) ∈ Q[X].
– side: this parameter specifies which root to keep. If side = -1, then the function

takes the left-most root, and if side = 1, it returns the right-most root.

The expected output is the relevant extremal root.

1 def find_relevant_root(w, b, side):
2 # Decide whether to keep the left -most or right -most root.
3 i = -(1 + side) / 2
4 # 0 <= w(x)
5 C_1 = 0
6 w_roots = R(w).roots ()
7 if (w_roots != []):
8 C_1 = w_roots[i][0]
9 # w(x) < b(x)

10 C_2 = 0
11 bw_roots = R(b - w).roots()
12 if (bw_roots != []):
13 C_2 = bw_roots[i][0]
14 # Return the relevant extremal root.
15 if (side == -1):
16 return ceil(min(C_1 , C_2))
17 else:
18 return floor(max(C_1 , C_2))

check embedding degree(px, qx, k)

This function determines whether k is the smallest positive integer such that (pxk − 1)
(mod qx) = 1, and outputs True/False.

1 def check_embedding_degree(px, qx, k):
2 # Checks divisibility condition
3 if ((px^k - 1) % qx != 0): return False
4 # Checks that divisibility conditions does not happen for smaller

exponents
5 div = divisors(k)
6 div.remove(k)
7 for j in div:
8 if ((px^j - 1) % qx == 0):
9 return False

10 return True

B.4 Code for Table 3

compute bounds(a, b)

This function computes the bounds Nleft, Nright of Lemma 4.4. This function has been
used to produce the results of tables from Figure 3. It uses the auxiliary functions from
Appendix B.3.
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The expected inputs are:

– a, b: two integer-valued polynomials in Q[X].

The expected outputs are:

– N left, N right: integer bounds Nleft, Nright described in Lemma 4.4.

1 def compute_bounds(a, b):
2

3 # Check that b has even degree and positive leading coefficient
4 if (b.degree () % 2 == 1 or b.leading_coefficient () < 0):
5 print("Invalid divisor.")
6 return
7

8 # Check that a, b are integer valued.
9 if (not is_integer_valued(a) or not is_integer_valued(b)):

10 return
11

12 # Polynomial division
13 (h, r) = a.quo_rem(b)
14

15 # Compute c so that ch, cr are in Z[X]
16 denominators = [i.denominator () for i in (h.coefficients () + r.

coefficients ())]
17 c = lcm(denominators)
18

19 # Compute signs
20 sigma_right = sign(r.leading_coefficient ())
21 sigma_left = sigma_right * (-1)^(r.degree ())
22

23 # We compute the polynomials w_left , w_right such that
24 # 0 <= w_left < b(x) for all x < N_left , and
25 # 0 <= w_right < b(x) for all x > N_right.
26 w_left = c * r + ((1 - sigma_left) / 2) * b
27 w_right = c * r + ((1 - sigma_right) / 2) * b
28

29 # Compute N_left , N_right
30 N_left = find_relevant_root(w_left , b, -1)
31 N_right = find_relevant_root(w_right , b, 1)
32

33 return (N_left , N_right)

B.5 Code for Corollary 4.8

exhaustive search(Family, k, N left, N right, mod cond)

This function performs the exhaustive search from Corollary 4.8 within the intervals
[Nleft, Nright].

The expected inputs are:

– Family: a polynomial parameterization (t(X), p(X), q(X)) of a family of pairing-
friendly elliptic curves with prime order.

– k: an embedding degree.
– N left, N right: upper and lower integer bounds.
– mod cond: conditions on x mod k for every x in the interval [N left, N right].
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The expected output is:

– curves: a list of curve descriptions (x, k, t(x), p(x), q(x)) such that x ∈ [N left, N right],
and the curve parameterized by (t(x), p(x), q(x)) forms a cycle with a curve with em-
bedding degree k.

1 def exhaustive_search(Family , k, N_left , N_right , mod_cond):
2

3 (t, p, q) = Family ()
4 curves = []
5

6 for x in range(N_left , N_right +1):
7 # We skip those values that will never yield q(x) = 1 (mod k), as

precomputed above.
8 if (not (x % k) in mod_cond): continue
9 # Check the embedding degree condition

10 if (check_embedding_degree(p(x), q(x), k)):
11 curves.append ((x, k, t(x), p(x), q(x)))
12

13 return curves

B.6 Main function

search for cycles(Family, K low, K high)

This function looks for 2-cycles formed by a curve belonging to a given parameterized
family of curves and a prime-order curve with an embedding degree between two given
bounds.

The expected inputs are:

– Family: a polynomial parameterization (t(X), p(X), q(X)) of a family of pairing-
friendly elliptic curves with prime order.

– K low, K high: integer lower and upper bounds on the embedding degree to look for.

The function prints to a file all 2-cycles involving a curve from the family and a prime-
order curve with embedding degree K low ≤ k ≤ K high.
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1 import time
2

3 def search_for_cycles(Family , K_low , K_high):
4

5 file_name = ’output_ ’ + Family.__name__ + ’.txt’
6 f = open(file_name , ’w’)
7 start = time.time()
8

9 # Instantiate the family
10 (t, p, q) = Family ()
11 print("Starting family: " + str(Family.__name__), file=f)
12 print("t(X) = " + str(t), file=f)
13 print("p(X) = " + str(p), file=f)
14 print("q(X) = " + str(q), file=f)
15

16 # Find the candidate embedding degrees up to K that are compatible with
this family

17 (embedding_degrees , modular_conditions) = candidate_embedding_degrees(
Family , K_low , K_high)

18 print("Candidate embedding degrees: " + str(embedding_degrees), file=f)
19 for k in embedding_degrees:
20 print(("For k = " + str(k) + ", necessarily x = " +str(

modular_conditions[k])) + " (mod " + str(k) + ")", file=f)
21 print("========================", file=f)
22

23 # For each potential embedding degree , find the bounds N_left , N_right
and perform exhaustive search within [N_left , N_right ].

24 for k in embedding_degrees:
25

26 f.close()
27 f = open(file_name , ’a’)
28 start_k = time.time()
29

30 print("k = " + str(k), file=f)
31 (N_left , N_right) = compute_bounds(p^k, q)
32 print("N_left = " + str(N_left) + ", N_right = " + str(N_right),

file=f)
33

34 curves = exhaustive_search(Family , k, N_left , N_right ,
modular_conditions[k])

35 print("Curves with embedding degree " + str(k) + " that form a
cycle with a curve from the " + str(Family.__name__) + " family: " +
str(len(curves)), file=f)

36

37 for curve in curves:
38 (x, k, tx , px , qx) = curve
39 print("x = " + str(x), file=f)
40 print("embedding degree = " + str(k), file=f)
41 print("t(x) = " + str(tx), file=f)
42 print("p(x) = " + str(px), file=f)
43 print("q(x) = " + str(qx), file=f)
44 print("------------", file=f)
45

46 end_k = time.time()
47 print(’Computations for embedding degree ’ + str(k) + ’ took’,

round(end_k - start_k , 2), ’seconds.’, file=f)
48 print("------------------------", file=f)
49

50 end = time.time()
51 print("========================", file=f)
52 print(’Overall computation took’, round(end - start , 2), ’time’, file=f

)
53

54 f.close()
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