
GCKSign: Simple and Efficient Signatures from
Generalized Compact Knapsacks*

Joo Woo† Kwangsu Lee‡ Jong Hwan Park§

November 30, 2022

Abstract

In 2009, Lyubashevsky proposed a lattice-based signature scheme by applying the Fiat-Shamir trans-
formation and proved its security under the generalized compact knapsack (GCK) problem. This scheme
has a simple structure but has large signature and key sizes due to the security requirement of their secu-
rity reduction. Dilithium, which was submitted to the NIST Post-Quantum Cryptography standardization
and selected as one of the final candidates, is an improvement of the Lyubashevsky’s signature scheme
and decreases key and signature sizes by modifying the form of a public key and including additional
steps in key generation, signing, and verification algorithms. Thus, Dilithium has a more complex struc-
ture to implement compared to the Lyubashevsky’s scheme. To combine the strength of both signature
schemes, we modify the Lyubashevsky’s signature scheme and present a new security proof that removes
their security requirement. As a result, we propose a simple and practical GCKSign signature scheme
based on the hardness of a new GCK assumption, called target-modified one-wayness of GCK function.
The signature size of our signature scheme decreases 40 percent, the sum of signature and public key
sizes decreases 25 percent, and the secret key size decreases 90 percent for the NIST security level III,
compared to Dilithium. Furthermore, by the simplicity of our structure, the key generation, signing,
and verification algorithms of our scheme run 2.4×, 1.7×, and 2.0× faster than those of Dilithium,
respectively.

1 Introduction

Lattice-based cryptography is seen as a very promising alternative to traditional cryptography with the arrival
of quantum computers. Traditional cryptography is mostly based on the hardness of the number-theoretic
problems such as integer factorization and discrete logarithm for their security. As it was shown that those
problems can be solved in polynomial-time by quantum algorithms, cryptography based on the hardness of
lattice problems, which are known to have resistance to quantum algorithms, has attracted a lot of attention.
The National Institute of Standard and Technology (NIST) launched the Post-Quantum Cryptography (PQC)
Standardization for digital signature, encryption, and key establishment protocols resistant to quantum algo-
rithms. In the fourth round NIST-PQC announcement of 2022, two lattice-based signatures Dilithium [13]
and Falcon [16] were selected as the final three signature candidates.

*This work was submitted to ‘Korean Post-Quantum Cryptography Competition’ (www.kpqc.or.kr).
†Korea University, Seoul, Korea. Email: woojoo0121@korea.ac.kr.
‡Sejong University, Seoul, Korea. Email: kwangsu@sejong.ac.kr.
§Sangmyung University, Seoul, Korea. Email: jhpark@smu.ac.kr.

1

www.kpqc.or.kr

Falcon is a compact signature scheme over NTRU lattices based on the GPV framework [17] and its se-
curity relies on the hardness of the NTRU problem that finds a short vector in NTRU lattices [16]. Although
cryptography based on the NTRU problem has a long and established history, it lacks a formal reduction
from worst-case to average-case hardness. While NTRU lattices are very attractive because of their perfor-
mance and storage efficiency, there are some concerns that the assumed difficulty of the underlying NTRU
problem may be weaker than expected. In that respect, it is desired to avoid using the NTRU assumption
as long as the efficiency penalty is not too high. Also, Falcon samples elements from the discrete Gaussian
distribution which has a potential side-channel vulnerabilities [10, 29]. Additionally, Falcon suffers from a
very complex signing algorithm which makes it hard to implement and parallelize.

On the other hand, Dilithium is a signature scheme based on the Fiat-Shamir transformation [15] and
its security relies on the hardness of the Module Learning with Errors (MLWE) and Module Short Integer
Solutions (MSIS) problems [13]. The design of Dilithium is based on the “Fiat-Shamir with Aborts” frame-
work [21] and other signature schemes proposed in [5,8,18]. Dilithium has a simpler structure to implement
compared to Falcon and samples elements from the uniform distribution, not from the discrete Gaussian
distribution. To decrease the size of a public key, Dilithium uses only high-order bits of a public key, com-
posed of the LWE instances, since the low-order bits of the LWE instances do not affect the verification
phase too much. However, to make up for the correctness error resulted from this, Dilithium adds extra
algorithms during the signing and verification algorithms and this point leads to the increase of complexity
for the scheme.

1.1 Our Contributions

The main results of this paper is to give a simple and efficient signature scheme, requiring no sampling with
the discrete Gaussian distribution and extra algorithms such as a hint algorithm in [13]. We modify the
construction of Lyubashevsky [21] and propose a simpler lattice-based signature scheme than Dilithium and
Falcon. Our scheme is based on the hardness of a new GCK problem, called target-modified one-wayness
(TMO) problem, to get rid of the security requirement of [21], which is the witness-indistinguishability (WI)
of a private key that makes the parameter of their signature scheme inefficient. Due to the absence of this WI
requirement, our parameter sets get a smaller-sized signature and secret key, compared to Dilithium. The
simplicity of our signature scheme allows for a fast and efficient implementation secure against side-channel
attacks and makes it easy for a developer to detect subtle implementation mistakes that could leak a secret
key. The main features of our signature scheme can be summarized as follows:

Simplicity and ease of implementation. Our signature scheme has a very simple and compact structure
to implement. The design of our scheme is based on the Lyubashevsky’s framework [21], which is one
of the simplest lattice-based signature construction following the design of the Schnorr signature. Also,
our scheme only uses the uniform sampling, not the Gaussian sampling, which has a potential side-channel
vulnerabilities. Moreover, all other operations including the polynomial multiplication and the rounding can
be implemented in constant time. This simplicity allows for an implementation secure against side-channel
attacks.

Minimization of public key and signature size. The goal of our signature scheme is to minimize the sum
of public key and signature sizes because many applications require the transmission of these parameters.
By eliminating the security requirement of [21] and analyzing a bounding parameter rigorously using the
Central Limit Theorem (CLT) and the error function analysis, our signature scheme can have smaller sig-
nature size and secret key compared to Dilithium. That is, our scheme has the smallest value of the sum
of the public key and the signature size of any lattice-based scheme with the same security levels under the

2

restriction that a scheme does not use Gaussian sampling.

Fast and efficient implementation. The simplicity of our signature scheme results in the fast and efficient
implementation. Also, we minimize the dimension of the public key to get not only a smaller key size and
also the fast implementation. A polynomial multiplication and a sampling are the most expensive operations
in implementing a cryptosystem. The main operations performed in our scheme are the multiplication and
the sampling of a public key. Hence, the smaller the dimension of the public key we have, the more efficient
our scheme is. Additionally, to get the small dimension of the public key, we analyze a bound parameter
rigorously and set the form of the public key based on the GCK one-wayness problem, not the LWE problem,
which is required to increase the dimension for the security.

1.2 Our Technique

In this paper, we define a relaxed notion of the one-wayness problem of the GCK function, called the
TMO problem which is to solve the one-wayness problem of the GCK function approximately instead
of exactly. We briefly overview the TMO problem of the GCK function. Given public polynomials a =
(a1, . . . , am) ∈ Rm

q and t ∈ Rq, we call a polynomial vector x = (x1, . . . , xm) ∈ Rm and a polynomial
c ∈ R is a solution of the TMO problem if

∑m
i=1(ai · xi) = c · t mod q where both x and c are short.

Under proper settings of parameters, we show that the TMO problem is as hard as the collision-resistance
problem of the GCK function, or no easier than the one-wayness problem of the GCK function. The TMO
problem of GCK function is a natural generalization of the one-wayness problem of the GCK function. The
primary motivation of our work is to improve the efficiency of lattice-based Fiat-Shamir signatures. By
the relaxation of the GCK problem, we can prove the security of our GCKSign signature scheme which
is a slight modification of [21] without relying on the WI requirement. Because of the absence of this WI
requirement, our signature scheme has a small size of public key, secret key, and signature.

Another technique that we use to get a small size of signatures is to analyze the bounding parameter
Ls rigorously and set the value tightly based on the analysis. In our signature scheme, one component of a
signature z is computed as z = y+ c ·s where s is a small secret polynomial vector and c is also short. The
range which the value y is sampled from needs to be large enough to hide the secret s from the signature
(z, c). Also, to make the distribution of the signature independent of that of the secret key s, we apply the
rejection sampling of [21], which is that the signing algorithm outputs z only if all coefficients of z are in
[−B + Ls, B − Ls] where B is the range of all coefficients of y and Ls is the bound parameter of c · s, i.e.
∥c · s∥∞ ≤ Ls. The bound Ls is determined to ensure both the correctness and security of the signature
scheme. In [13] and [21], the bound parameter Ls is calculated assuming the worst-case scenario. For the
improvement of the efficiency, we study the bound parameter selection and present a rigorous analysis of
setting more tight bound by analyzing the multiplication of two polynomials over the ring Zq[x]/(x

n + 1)
using the CLT and the error function analysis. This point leads to a decrease in the signature size.

1.3 Related Work

In 2009, Lyubashevsky [21] proposed a signature scheme whose security is based on the GCK problem
by applying the Fiat-Shamir transformation in the random oracle model. This signature scheme has a very
simple structure because it is based on the Schnorr signature. However, the public key and the signature
sizes of this signature scheme are considerably large. This is mainly due to the witness-indistinguishability
(WI) requirement of the security proof in the GCK function (or the MSIS problem). We briefly introduce the
Lyubashevsky’s identification protocol and the security proof in Chapter 2.4 and Appendix B. The signature
scheme has a public key of the form t =

∑m
i=1(ai · si) mod q where a is sampled from Rm

q and s is

3

sampled from the small uniform distribution, which is based on the Module Inhomogeneous SIS (MISIS)
problem. In order to prove the unforgeability of their signature scheme, there should be another valid secret
key corresponding the public key. This is achieved by taking the range which the secret key is sampled
from to be sufficiently large, which is the witness-indistinguishability of a private key. This approach would
increase the signature and public key sizes.

In 2012, Lyubashevsky [22] proposed an improved signature scheme based on the signature scheme
of [21]. This signature scheme has a public key based on the standard ISIS problem and its security proof
is based on the standard SIS problem. Similar to the work [21], there should be another valid secret key
corresponding a public key. Instead of taking the range of the secret key to be sufficiently large, they
employ an alternative proof technique based on the SIS decision problem. The SIS decision problem is to
distinguish between the uniform distribution and the SIS distribution, which is t = As mod q where A
and s are sampled from Zn×m

q and [−η, η]m, respectively. It was shown that the decisional version of the
random subset sum problem is as hard as the search version [19] and Micciancio and Mol have generalized
the relationship to the standard SIS problem [26]. In their security proof, by using the SIS decision problem,
the public key t = As is replaced to t = As′ where s′ has much larger entries than s does. Thus, the public
key t = As′ has non-unique solutions with overwhelming probability. Since the SIS decision problem is
not transferred easily to the ring setting, the signature scheme of [22] can not be extended to the ring version
of the construction, which has an efficient multiplication operation and supports the reduction of the public
key size by the algebraic structure.

Bai and Galbraith [5] presented a provably secure efficient signature scheme following the idea of the
security proof of [22] and they changed the form of the public key based on the standard LWE and SIS
problems. Since then, several follow-up works based on the design of [5] have been proposed [1,3,6,12–14].
Since the decisional LWE problem can be extended to the ring and module settings, these schemes have a
small size of secret key, public key, and signature, and have an efficient performance by the algebraic
structure. The signature scheme of [5] has a public key based on the LWE problem over standard lattices.
The signature scheme of Dilithium [13] has a public key of the form t = As + e mod q where A is
sampled from Rk×m

q and s and e are sampled from the small uniform distribution, which is based on the
MLWE problem over ideal lattices. Also, Ducas et al. [13] pointed out that the low-order bits of a public
key, composed of LWE instances, do not affect the verification phase too much. Thus, Dilithium uses only
high-order bits of the LWE instances as the public key. Because of the public key form and the public key
compression technique, Dilithium has a shorter key sizes than previous lattice-based signatures. However,
to make up for the correctness error resulted from this compression technique, Dilithium adds an extra
algorithms and this point leads to an increase of the complexity for the scheme.

2 Preliminaries

In this section, we first define the syntax and security of digital signatures. We also define various lattice
problems of the GCK function. Next, we briefly introduced the GCK-based identification protocol.

2.1 Notation

For an even (odd) modulus q ∈ Z≥0 and an integer k ∈ Z, define k′ = k mod ±q as the unique element
k′ such that −q/2 < k′ ≤ q/2 (resp. −⌊q/2⌋ ≤ k′ ≤ ⌊q/2⌋) and k′ = k mod q. Zq = Z/qZ denotes
the quotient ring of integers modulo q. Let R and Rq respectively denote the rings Z[x]/(xn + 1) and
Zq[x]/(x

n + 1), where n is a power of two, and q is a prime such that q ≡ 1 mod 2n. Vectors with entries

4

in Rq are denoted with bold lowercase letters, for example, a = (a1, . . . , am) ∈ Rm
q where a1, . . . , am ∈ Rq

for some positive integer m. Rn,h denotes a set of an element in Rq that has all zeros coefficients except h
out of n coefficients are in {1,−1}. We have ∥Rn,h∥ = 2h ·

(
n
h

)
. LetR[−x,x] denotes a set of an element in

Rq satisfying that all coefficients are between [−x, x] for a positive integer x. We define the infinity norm
for a polynomial f = f0 + f1x+ . . .+ fn−1x

n−1 ∈ R as ∥f∥∞ = max0≤i≤n−1|fimod±q|. Similarly, for
f = (f1, . . . , fm) ∈ Rm, we define ∥f∥∞ = maxi(∥fi∥∞).

2.2 Digital Signatures

Definition 2.1. A public-key signature (PKS) scheme for a message spaceM consists of three algorithms:
KeyGen, Sign, and Verify which are defined as follows:

• KeyGen(λ): The key generation algorithm takes as input a security parameter λ and outputs public
key and secret key (pk, sk).

• Sign(sk, µ): The signing algorithm takes as input the secret key sk and a message µ ∈ M, and then
outputs a signature σ.

• Verify(pk, µ, σ): The verification algorithm takes as input the public key pk, a message µ and a
signature σ, and then outputs 1 if the signature is valid or 0 otherwise.

We say that a signature scheme is (1 − γ)-correct if the following condition holds: for all (pk, sk) ∈
KeyGen(λ) and all messages µ ∈M,

Pr
[
(pk, sk)← KeyGen(λ); σ ← Sign(sk, µ) : Verify(pk, µ, σ) = 1

]
> 1− γ(λ),

where γ is a negligible function for the security parameter λ.

Definition 2.2 (Unforgeability). Let PKS = (KeyGen, Sign, Verify) be a signature scheme. The unforge-
ability against chosen-message attacks (UF-CMA) is defined via the following experiment UF-CMAAPKS(λ)
between a challenger C and an adversary A:

1. C runs (pk, sk)← KeyGen(λ) and gives pk to A.

2. A queries signing oracle Sign(sk, µ) with a message µ.

3. Finally, A outputs a signature σ∗ and a message µ∗ which was not previously queried to the signing
oracle. C returns 1 if Verify(pk, µ∗, σ∗) = 1 and otherwise returns 0 as the output of the game.

The advantage ofA for breaking the UF-CMA security of PKS is defined as AdvUF-CMA
PKS (A) = Pr[UF-CMAAPKS ⇒

1]. We say that a signature scheme is UF-CMA secure if for any polynomial-time adversary A, we have
AdvUF-CMA

PKS (A) ≤ ϵ(λ), where ϵ is a negligible function for the security parameter λ.

2.3 Lattice Problems

Before we present lattice problems, we define the GCK function, introduced by Micciancio [25].

Definition 2.3 (GCK Function). For a ring R, subset S ⊂ R, integer m ≥ 1, and a randomly and inde-
pendently chosen element a = (a1, . . . , am) ∈ Rm, the generalized knapsack function Fa : Rm → R is
defined as follow:

5

Fa(x) =
∑m

i=1(ai · xi),

for x ∈ Sm, where
∑m

i=1(ai · xi) is computed using the ring multiplication and addition operation.

In this paper we consider the ring Rq = Zq/(x
n + 1) and a subset S ⊂ R = R[−β,β] for some positive

integer β.

Definition 2.4 (One-Wayness of GCK function [25]). A GCK function is one-way (OW) if for any prob-
abilistic polynomial-time algorithm A, it is easy to compute, but computationally hard to invert the GCK
function: given a pair (a, t = Fa(x)) for randomly chosen a ∈ Rm and x ∈ R[−β,β], find an x in the
domain such that Fa(x)) = t. For integers m, q ∈ N and a real number β ∈ R+, we define AdvOW

m,q,β to be
the advantage of an algorithm A in solving the OW problem of GCK function over the ring Rq.

Based on the analysis in [25], solving the OW problem of GCK function with non-negligible probability
is as hard as approximating the shortest independent vector problem (SIVP) on cyclic lattices in the worst
case.

Definition 2.5 (Collision-Resistance of GCK function [23,28]). A GCK function is collision-resistant (CR)
if for any probabilistic polynomial-time algorithmA, it is computationally hard to find the collision of GCK
function: given a random a ∈ Rm, find a pair (x,x′) in the domain such that Fa(x) = Fa(x

′). For integers
m, q ∈ N and a real number β ∈ R+, we define AdvCR

m,q,β to be the advantage of an algorithm A in solving
the CR problem of GCK function over the ring Rq.

Based on the analysis of [23, 28], finding the collision of GCK function with non-negligible probability
is as hard as the shortest vector problem (SVP) over cyclic lattices in the worst case.

It is easy to see that there is a reduction from the CR problem of GCK function to the OW problem of
GCK function. In other words, if there is a polynomial-time algorithm A that can solve the OW problem of
GCK function, then there is another algorithm B that can break the collision resistance of GCK function, i.e.
AdvOW

m,q,β ≤ AdvCR
m,q,β . We briefly describe how B solves the CR problem usingA. Initially, B takes a ∈ Rm

q

as input and needs to find a pair (x,x′) such that Fa(x) = Fa(x
′), ∥x∥∞ ≤ β, and ∥x′∥∞ ≤ β. It samples

x ← Rm
[−β,β] and computes t = Fa(x). Then it runs A on input (a, t). Finally, A outputs x′ ∈ Rm

q such
that ∥x′∥∞ ≤ β and Fa(x

′) = t. We need to show that x ̸= x′. For a randomly picked x ∈ Rm
[−β,β], there is

another value x′ ∈ Rm
[−β,β] which produces the same value t with high probability since (2β + 1)nm ≫ qn.

Also, A does not know which value is used to compute t. Thus, it holds that x ̸= x′ with high probability.
Thus B solves the CR problem by outputting a pair (x,x′).

Definition 2.6 (Target-Modified One-wayness of GCK function). For any n,m, q ∈ N and α, β ∈ R, the
target-modified one-wayness (TMO) problem is defined as follows: Given a ∈ Rm

q , t ∈ Rq, find x ∈ Rm
q

and c ∈ Rq such that ∥c∥∞ ≤ α, ∥x∥∞ ≤ β satisfying

Fa(x) = c · t mod q.

The TMO problem is to solve the OW problem approximately instead of exactly, which is a relaxed
notion of the OW problem. Recall that the OW problem is to find a short x ∈ Rm

q , which is a preimage of
t for the GCK function Fa(·). Now, the TMO problem is to find x ∈ Rm

q , which is an approximate short
preimage of t such that Fa(x) = c · t mod q for some short c ∈ Rq. The TMO problem is non-trivial
when the bound α are relatively small compared to the bound β. For integers m, q ∈ N and real numbers
α, β ∈ R+, we define AdvTMO

m,q,α,β to be the advantage of an algorithm A solving the TMO problem of GCK
function over the ring Rq. We present the hardness of the TMO problem based on previous GCK problems
in Appendix A.

6

Figure 1: Lyubashevsky’s identification protocol

2.4 GCK-based Identification Protocol

A lattice-based identification protocol (Figure 1), introduced by Lyubashevsky in 2009 [21], is based on the
CR problem of GCK function. In this protocol, a public key does not reveal a secret key because of the OW
problem of GCK function and its security is proved under the stronger assumption that the underlying GCK
function is CR. At a high level, the protocol of Lyubashevsky has a public key (a, t = Fa(s) mod q) and
a response is a proof of knowledge of a secret key s where s ∈ Rm

[−η,η] for some small integer η. In the first
round, a prover picks y ∈ Rm

[−B,B] for some relatively large integer B and sends Fa(y) to a verifier. Next,
the verifier picks a random challenge c ∈ Rn,h, and send it to the prover. After that, the prover computes
z = y+c ·s. If z and c ·s are in a proper range, then the prover sends z to the verifier to prevent the leakage
of the secret key. Otherwise, the prover has to abort and the protocol has to be repeated. This identification
protocol can be converted into a signature scheme by using the Fiat-Shamir transformation. In Appendix B,
we sketch the security proof of Lyubashevsky’s signature scheme under the CR problem of GCK function.

3 Proposed Signature Scheme

In this section, we propose our GCKSign signature scheme and present our parameter sets for various
security levels. Additionally, we give implementation details of our scheme.

3.1 Construction

In this section we describe our signature scheme based on the GCK problem. This scheme requires a hash
function H to binary strings of fixed length ℓ and an encoding function encode that maps binary strings
of length ℓ to an element in the set Rn,h. For the security parameter λ, the system parameter params is
generated as follows: choose an integer n such that n = 2a for a positive integer a ∈ N and we set n = 256
for the NIST security level II and III and n = 512 for the NIST security level V. Also, choose a modulus q
as a prime and positive integers m,B, h, Ls to fulfill the security requirements. Then, params is given by
(n, q,m,B, h, Ls). It is assumed that params is used for all algorithms in our signature construction. The
key generation, signing, and verification algorithms of our signature scheme are described as follows:

KeyGen. This algorithm first chooses random 256-bit seeds seeda and seeds. It samples public polynomials

7

a1, . . . , am uniformly at random over Rq by expanding seeda and secret polynomials s1, . . . , sm uniformly
at random over R[−η,η] by expanding seeds. Next, it computes a polynomial t = Fa(s) =

∑m
i=1(ai · si).

Finally, it outputs a public key pk = (t, seeda) and a secret key sk = (s = (s1, . . . , sm), seeda).

Algorithm 1: KeyGen
Input : -
Output: public key pk = (t, seeda), and secret key sk = (s, seeda)

1 seeda, seeds ← {0, 1}256;
2 a = (a1, . . . , am)← samplea(seeda) ∈ Rm

q ;
3 s = (s1, . . . , sm)← samples(seeds) ∈ Rm

[−η,η];
4 t← Fa(s) =

∑m
i=1(ai · si);

5 pk ← (t, seeda);
6 sk ← (s, seeda);
7 return (pk, sk);

Sign. This algorithms first regenerates the public polynomials a1, . . . , am from seeda. It chooses a random
256-bit seed seedy and initializes a counter at 1. It samples polynomials y1, . . . , ym uniformly at random
over R[−B,B] by using seedy and the counter. Next, it computes a polynomial v = Fa(y) =

∑m
i=1(ai · yi).

It obtains ĉ by computing the hash function H(v, µ) together with the message µ. It obtains a sparse
polynomial c ∈ Rn,h by running encode(ĉ) and computes z = y + c · s. If z ̸∈ R[−B+Ls,B−Ls], then it
increase the counter and goes to the step that samples y and repeats the subsequent steps. Finally, it outputs
a signature σ = (z, ĉ).

Algorithm 2: Sign
Input : message µ, and secret key sk = (s, seeda)
Output: signature (z, ĉ)

1 counter← 1;
2 a = (a1, . . . , am)← samplea(seeda) ∈ Rm

q ;
3 seedy ← {0, 1}256;
4 y = (y1, . . . , ym)← sampley(seedy, counter) ∈ Rm

[−B,B];
5 v ← Fa(y) =

∑m
i=1(ai · yi);

6 ĉ← H(v, µ) ∈ {0, 1}256;
7 c← encode(ĉ) ∈ Rn,h;
8 z ← y + s · c;
9 if z /∈ Rm

[−B+Ls,B−Ls]
then

10 counter← counter + 1;
11 goto step 4;
12 end
13 return σ = (z, ĉ);

Verify. This algorithm first derives a polynomial c from ĉ in the signature. It regenerates the public poly-
nomials a1, . . . , am from the seed seeda. Next, it computes v = Fa(z) − c · t =

∑m
i=1 ai · zi − c · t.

This polynomial v is used to compute the hash value H(v, µ) together with the message µ. It accepts the

8

signature if the hash value matches the signature ĉ and z ∈ R[−B+Ls,B−Ls].

Algorithm 3: Verify
Input : message µ, signature σ = (z, ĉ), and public key pk = (t, seeda)
Output: {1, 0} // accept or reject signature

1 c← encode(ĉ) ∈ Rn,h;
2 a = (a1, . . . , am)← samplea(seeda) ∈ Rm

q ;
3 v ← Fa(z)− t · c =

∑m
i=1 ai · zi − t · c;

4 if z /∈ Rm
[−B+Ls,B−Ls]

∨ ĉ ̸= H(v, µ) then
5 return 0;
6 end
7 return 1;

3.2 Correctness

We show the correctness of our signature scheme. To guarantee the correctness of this signature scheme, it
has to hold two requirements for a signature σ = (z, ĉ): The first one is that ∥z∥∞ < B−Ls and the second
one is that the output of the hash function in the signing algorithm and the output of the hash function in the
verification algorithm are same. The first one is guaranteed since this condition is checked in the signing
algorithm. The second one is also guaranteed by the following equations

m∑
i=1

(ai · zi)− c · t =
m∑
i=1

(ai · (yi + c · si)− c ·
m∑
i=1

(ai · si)

=

m∑
i=1

(ai · yi) + c ·
m∑
i=1

(ai · si − ai · si) =
m∑
i=1

(ai · yi)

3.3 Implementation Details

Generation of a. The function samplea maps a uniform seed seeda ∈ {0, 1}256 to a vector a ∈ Rm
q in NTT

(number theoretic transform) domain representation during the key generation, signing, and verification
algorithms. It computes each coefficient of ai ∈ Rq of a separately. The seed is expanded using SHAKE-
128. The output stream is considered as a sequence of integers between 0 and 2⌈log q⌉ − 1. Then it proceeds
to do rejection sampling to obtain a value less than the modulus q. It repeats SHAKE-128 until all the mn
coefficients are filled out in case that the output stream is exhausted.

Generation of s. The function samples maps a uniform seed seeds ∈ {0, 1}256 to a vector s ∈ Rm
[−η,η]

during the key generation and signing algorithms. The process is similar to the way to sample a. The seed
is expanded using SHAKE-128 and the output stream is considered as a sequence of integers between 0 and
2⌈log(2η+1)⌉ − 1. Then it proceeds to do rejection sampling to generate a value in the range {0, 2η − 1}.
Afterwards, the integers are obtained by subtracting (η − 1) from the value.

Generation of y. The function sampley maps a uniform seed seedy ∈ {0, 1}256 to a vector s ∈ Rm
[−B,B]

during the signing algorithm. The process is similar to the way to sample s. The seed is expanded using
SHAKE-128 and the output stream is considered as a sequence of integers between 0 and 2⌈log(2B+1)⌉ − 1.

9

Then it proceeds to do rejection sampling to generate a value in the range {0, 2B − 1}. Afterwards, the
integers are obtained by subtracting (B − 1) from the value.

Encoding function. The encoding function encode maps a bit string ĉ to a polynomial c ∈ Rn,h of elements
of R which have h coefficients that are either 1 or -1 and the rest are 0. This function absorbs the bit string ĉ
into SHAKE-256 and outputs a stream of random bytes that are interpreted as the positions and signs of the
h nonzero entries of ĉ. It repeats SHAKE-256 until all the h coefficients are filled out in case that the output
stream is exhausted.

3.4 Number of Iterations

We analyze the probability of z ∈ Rm
[−B+Ls,B−Ls]

that stops the iterations of the signing steps. The proba-
bility that ∥z∥∞ < B − Ls can be (heuristically) computed as

δz =
(2B − 2Ls + 1

2B + 1

)nm
.

The probability that ∥s ·c∥∞ ≤ Ls is approximately 1−1/210 in our parameter sets by setting Ls in the way
in Chapter 4. The expected number of iterations during the signing algorithm is the inverse of the product
of the probability δz and (1 − 1/210). In Table 2, the expected number of iterations of our scheme varies
from approximately 2.97 to 3.08.

3.5 Bound Parameter

The bound parameter Ls is used to bound the infinite norm of the value c ·s. [21] and Dilithium use the ring
Rq = Zq[x]/(x

n + 1) as well as our signature scheme. In the ring, the multiplication of two polynomials
is done as follows. For two polynomials a, b and the multiplication c ∈ Rq where a =

∑n−1
i=0 aix

i, b =∑n−1
i=0 bix

i and c =
∑n−1

i=0 cix
i = a · b on the ringRq, the coefficient of c is represented as follows:

c0 = a0b0 − a1bn−1 − · · · − an−1b1,

c1 = a0b1 + a1b0 − a2bn−1 − · · · − an−1b2,

...

cn−2 = a0bn−2 + · · ·+ an−2b0 − an−1bn−1,

cn−1 = a0bn−1 + a1bn−2 + · · ·+ an−1b0

Each coefficient ci can be seen as the sum of n terms ajbk where 0 ≤ j ≤ n− 1 and 0 ≤ k ≤ n− 1. Now
we explain how the bound parameter in [13] is set where c ∈ Rn,h and s sampled from a secret distribution.
Since c is a polynomial with coefficients in {−1, 0, 1} with exactly h nonzero entries, ∥c · s∥∞ is less than
or equal to the sum of h largest coefficients s, which is not larger than h × ∥s∥∞. Since s is sampled from
R[−η,η], the expected value of Ls is h× η, assuming the worst case.

In order to set the bound parameter Ls more tightly, we choose to analyze the bound ∥c · s∥∞ itself,
rather than expecting the value by calculating the sum of the h largest entries in s. The reason we claim that
the bound Dilithium set is not tight is that the probability that the h largest entries are added to compose a
coefficient of c · s is very low, for example, n = 256 and h = 39 in our parameter set.

As we mentioned above, the number of terms added to compose each coefficient ci is at most n. Among
the added terms, only h/n portion contributes to the actual summation when we consider the multiplication
of c and s. In our parameter setting, the coefficients of s are uniform in [−η, η]. Therefore, the coefficients

10

Table 1: Security requirements for our signature scheme

Parameters Definitions Security Requirements

λ security parameter -
n 2k where k ∈ N
h number of ±1 in c 2h ·

(
n
h

)
≥ 2λ

η secret polynomial range -
m dimension of pk -
q modulus q ≡ 1 mod 2n

Ls bound of ∥c · s∥∞ ηs ·
√

τ
3η2

δz 1− rejection probability ≥ 0.3
B y coefficient range ≥

n√δz+2Ls−1
2(1− n√δz)

≥ 1
2 · (q

1/m − 1)

pk size (bytes) (n · log2 q + 256)/8

sig size (bytes) (nm · (⌈2 log2(B − Ls)⌉+ 1) + 256)/8

sk size (bytes) (nm · ⌈log2(2η + 1)⌉) + n)/8

of c ·s can be seen as the sum of at most n · hn variables in [−η, η]. As a result, we can see that the distribution
of the coefficients of c · s converges to N

(
0, n · hn ·

1
3η2

)
= N

(
0, h

3η2

)
:= N(0, σ2

s) by CLT. Then we set
Ls = ηs · σs for some real number ηs. To analyze the acceptance probabilities of the boundary check with
Ls, we follow the methodology from [27] when they analyze the decryption failure rate using the Gauss
error function.

Note that the acceptance probability of z is increased in the signing algorithm when the bound parameter
is small, while the acceptance probability of c · s is decreased. We determine a good trade-off between those
probabilities by setting the acceptance probability of c · sas 1 − 1/210 and the values ηs as approximately
4.5.

3.6 Parameter Sets

We provide bounds of all the system parameters and concrete parameters to fulfill the security requirements.
In Table 1, we summarize the bounds and requirements of all the system parameters. All parameters satisfy
the requirements in Table 1 to ensure both correctness and security of our signature scheme.

Let λ be the security parameter, which is the bit security of our signature scheme. LetR andRq denote
the rings Z[x]/(xn + 1) and Zq[x]/(x

n + 1) respectively where q is a prime modulus such that q ≡ 1
mod 2n and n is the dimension of the ring which is a power of 2. Let η be the value indicating the range
used to sample the coefficients of secret polynomials in [−η, η]. Let m be the number of public polynomials
and h be the number of non-zero coefficients in the output of the hash function. A public key consists of
seeda and t, which is (256+ n · log2 q)/8 bytes. A signature consists of z and ĉ, which is (n · (2⌈log2(B −
Ls)⌉+ 1) + 256)/8 bytes. A secret key consists of seeda and s, which is (nm · ⌈log2(2η + 1)⌉) + 256)/8
bytes.

We propose three sets of parameters targeting the NIST security level II, III, and V in Table 2. We set
n = 256 (or n = 512) for the dimension of the polynomial ring and η = 1 for the coefficient bound of the
secret polynomials. For the NIST security level II, we set n = 256 and q ≈ 254. For the NIST security level
III, we set n = 256 and q ≈ 260. For the NIST security level V, we set n = 512 and q ≈ 244.

11

Table 2: Parameters for our signature scheme

NIST Security Level II III V

n 256 256 512

q 254 − 10751 260 − 2559 244 − 7167

m 4 4 3
h 39 45 44

challenge space 192 212 256
B 214 − 1 214 + 29 215 − 1

η 1 1 1
Ls 18 18 19

Repetitions 3.08 2.97 2.43

SIS Hardness (Core-SVP)

BKZ block-size b 430 628 917
Classical Core-SVP 125 183 268
Quantum Core-SVP 114 166 243

Output Size

pk size (bytes) 1,760 1,952 3,040
sig size (bytes) 1,952 2,080 3,104
sk size (bytes) 288 288 544

Performance (Reference Code)

KeyGen (K cycles) 184 202 265
Sign (K cycles) 1,062 1,240 1,421
Verify (K cycles) 237 253 373

In Table 3, we compare our signature’s parameter to those of Lyubashevsky’s scheme [21] and Dilithium
[13]. The table shows the parameters of our scheme including the sizes of public key, signature, and secret
key compared to those of [13,21]. Whereas our scheme is based on the TMO problem of GCK function, the
scheme of [21] is based on the collision-resistance of GCK function, which is a stronger assumption. Also,
in [21], the coefficient range of the secret polynomials η is set to 2047 to satisfy their additional security
requirement (2η+1)nm ≥ qn · 2128 cased by the witness indistinguishability. Because large η causes larger
bound parameter Ls and large range of y, these values directly affect the size of signature. By changing the
lattice problem and the security analysis of our scheme, we can remove their additional security requirement.
Thus we can set smaller η = 1. As a result, the public key, secret key, and signature sizes of our scheme
decrease considerably compared to those of [21].

Dilithium is an improvement of the signature scheme of [5]. Thus, the security of Dilithium is based on
the hardness of not only the MSIS problem but also the MLWE problem. Briefly speaking, key-recovery
attack, which attempts to recover a secret key from a public key, is to solve the MLWE problem and forgery
attack, which attempts to forge a signature, is to solve the MSIS problem. To guarantee that the scheme is
secure against those attacks, both the MSIS and MLWE problems have enough hardness against the best
known lattice attacks such as primal attack and dual attack. The MLWE and MSIS problems involve finding
a short vector in lattices. However, the analysis of two instances is slightly different. We now recall the
MLWE and MSIS problems briefly. For integers k and m, given (A, t = As + e), the MLWE problem

12

Table 3: Comparison of parameters in signature schemes

n m q η
sig

(bytes)
pk

(bytes)
sk

(bytes)
pk + sig
(bytes)

Classical
Hardness

Hard
Problem

[21]
512 5 ≈ 260 2047 9, 000 3, 875 3, 875 12, 875 71 GCK-

CR512 8 ≈ 296 2047 14, 875 6, 125 6, 125 21, 000 127

[13]
256 (4, 4) ≈ 223 2 2, 420 1, 312 2, 544 3, 732 123

MLWE,
MSIS

256 (6, 5) ≈ 223 4 3, 293 1, 952 4, 016 5, 245 182

256 (8, 7) ≈ 223 2 4, 595 2, 592 4, 880 7, 187 252

Ours
256 4 ≈ 254 1 1, 952 1, 760 288 3, 712 125

GCK-
TMO

256 4 ≈ 260 1 2, 080 1, 952 288 4, 032 183

512 3 ≈ 244 1 3, 104 3, 040 544 6, 144 268

is finding (s, e) where A is sampled from Rk×m
q . The MSIS problem is finding y such that A · y = 0

mod q where A is sampled from Rk×m
q . The straightforward way of increasing the hardness of the MLWE

problem is to increase the values (k,m). However, the hardness of the MSIS problem is increased when k
is increased and m is decreased. In other words, if m is increased, the MLWE problem became harder, but
the MSIS problem became easier. Thus, in Dilithium, m is set to a value providing similar hardness of the
MLWE and MSIS problems after k is set.

Unlike Dilithium, our signature scheme is based on only SIS problem, so the security increases when
the value m decreases (until the GCK function has a collision). Also, setting the bound parameter Ls more
tightly, as described in Chapter 4, helps to reduce the value m and the bound parameter B while maintaining
the number of iterations during the signing phase. Since the value m and the bound parameter B are directly
related to the signature size (= m · ⌈log2B⌉), our scheme provides smaller signature sizes compared to [13]
for the same security level. In detail, the size of signature for our scheme decreases 20 percent for the NIST
security level II and around 35 percent for the NIST security level III, compared to [13]. Moreover, we
minimize the sum of the public key and the signature. The sum of these parameters decreases 25 percent for
the NIST security level III.

4 Security Analysis

In this section, we prove the security of our signature scheme under the hardness of the TMO problem, and
then we analyze the concrete security of our signature scheme by using best known lattice attacks.

4.1 Provable Security Analysis

The provable security of our scheme is supported by a security reduction from the TMO problem of the
underlying GCK function to the unforgeability against chosen-message attacks in the random oracle model.

Theorem 4.1. Our GCKSign signature scheme is UF-CMA secure in the random oracle model if the TMO
problem of the GCK function is hard. That is, for any PPT adversary A, there exists a PPT algorithm B that
solves the TMO problem with the success probability at least ϵ′

(
ϵ′

qs+qh
− 1

2λ

)
where ϵ′ = AdvUF-CMA

PKS (A) +
qs

(2B−1)n .

Proof. In order to prove the security of our signature scheme under the TMO problem of the GCK function,
we define a sequence of hybrid games G0, . . . ,G2 where G0 is the original UF-CMA security game defined

13

in Chapter 2.2 and G2 is the final game in which the success probability of an adversary can be easily
bounded by the hardness of the TMO problem. For each game Gi, we define an event δi which corresponds
to the probability of the adversary A successfully outputs a valid forgery in the game Gi.

Game G0. In this game, a challenger C runs (pk, sk) ← KeyGen(λ) and gives pk to an adversary A.
Whenever A asks a hash query (v, µ), C gives the same answer to A if the query has been asked before.
If it has not, then C chooses a new value ĉ in the challenge space and gives it to A. Whenever A asks a
sign query µ, C computes a signature σ ← Sign(sk, µ) and gives σ = (z, ĉ) to A. Finally, A outputs a
forgery (µ, σ) with the condition that µ was not queried in the signing oracle. C returns Verify(pk, µ, σ) as
the output of the experiment. Thus, we get Pr[δ0] = AdvUF-CMA

PKS (A).
Game G1. This game is the same as the game G0 except that the sign queries are replaced by the MidSign
algorithm (see Algorithm 4 below) and hash queries are handled by answering with random values. Since
two games G0 and G1 are the same except that the challenge value ĉ is generated by the random oracle, the
adversary can not tell if the sign oracle was answered by the Sign algorithm or MidSign algorithm.

Algorithm 4: MidSign
Input : message µ, public key (a, t)
Output: signature (z, ĉ)

1 Choose y uniformly at random from R[−B,B];
2 Choose ĉ ∈ {0, 1}ℓ uniformly at random;
3 Compute c = encode(ĉ);
4 Compute z = y + c · s. If ∥zi∥∞ ≥ B − Ls for some i, then retry at step 1;
5 Compute v =

∑m
i=1(ai · yi);

6 Re-program the hash oracle H(·) so that H(v, µ) = ĉ;
7 Return σ = (z, ĉ);

Note that there is a possibility that the hash function responses are not consistent in G1. In other words,
for the same input, the output of the hash function which was set for a hash oracle can be different from
the output of the hash function which was reprogrammed for a sign oracle. This event occurs when the
commitment value in the commitment space Rm

q chosen by the adversary for the hash oracle is same to the
value

∑m
i=1(ai · yi) with the public key a = (a1, . . . , am) and randomly sampled y = (y1, . . . , ym) in the

MidSign algorithm. Therefore, we present the following lemma which bounds the probability that the event
occurs based on the way in [20].

Lemma 4.2. Given a public key a← Rm
q , for all w in the commitment space, it holds that Pr

y←Rm
[−B,B]

[
∑m

i=1(ai·

yi) = w] ≤ (1
2B−1)

n.

Proof. Note that a random polynomial x← Rq is invertible in Rq = Zq[X]/(xn +1) when the polynomial
xn + 1 splits into n linear factors with the probability at least 1 − n/q. Hence the probability that at least
one of m polynomials in a = (a1, . . . , am)← Rm

q is invertible is greater than 1− (n/q)m. This probability
is overwhelming for our parameter setting. We assume that a1 is invertible without loss of generality. Then,
for all w, we can rewrite the above probability as

Pr
y←Rm

[−B,B]

[y1 = a−11 (w −
∑m

i=2(ai · yi))] ≤ (1
2B−1)

n.

14

The inequality follows due to the fact that a value a−11 (w −
∑m

i=2(ai · yi)) is an element in Rq and the size
of the set R[−B,B] is (2B − 1)n.

For the values in Table 2, we have that (1
2B−1)

n < 2−3840. By summing up the probability over all qs
signing queries, we get [Pr[δ1]− Pr[δ0]] ≤ qs · (2B − 1)−n.

Game G2. This game is the same as the game G1 except that the sign queries are replaced by the SimSign
algorithm (see Algorithm 5 below) and hash queries are handled by answering with random values. G2 is
the same as G1 except the way the value z is generated. In G1, y and ĉ are sampled from Rm

[−B,B] and
{0, 1}ℓ, respectively. The value z is computed as z = y + c · s and it checks if ∥z∥∞ ≤ B −Ls. Then, the
hash oracle is reprogrammed as ĉ = H(

∑m
i=1(ai · yi), µ) where c = encode(ĉ). On the other hand, in G2,

z and ĉ are sampled from Rm
[−B+Ls,B−Ls]

and {0, 1}ℓ, respectively. Then, the hash oracle is reprogrammed
as ĉ = H(·) so that H(

∑m
i=1(ai · zi)− c · t, µ) where c = encode(ĉ).

Algorithm 5: SimSign
Input : message µ, public key (a, t)
Output: signature (z, ĉ)

1 Choose z uniformly at random from R[−B+Ls,B−Ls];
2 Choose ĉ ∈ {0, 1}ℓ uniformly at random;
3 Compute c = encode(ĉ);
4 Compute v =

∑m
i=1(ai · zi)− c · t;

5 Re-program the hash oracle H(·) so that H(v, µ) = ĉ;
6 Return σ = (z, ĉ);

We need to check if the adversary can distinguish between the distributions of (z, c, v) in G1 and G2.
In G1, the commitment v1, which is an input of the hash function, is computed as v1 =

∑m
i=1(ai · yi)

where y ∈ Rm
[−B,B]. In G2, however, the commitment v2 is computed as v2 =

∑m
i=1(ai · zi) − c · t where

z ∈ Rm
[−B+Ls,B−Ls]

. Even though the way to compute the commitment value is changed, the commitment
v2 should be able to be expressed as an inner product of the public parameter a and r for some r ∈ Rm

[−B,B].
To guarantee this, we can set r = z−c·s for an unknown secret key s ∈ R[−η,η] such that t =

∑m
i=1(ai ·si).

It is easy to see that
∑m

i=1(ai · ri) =
∑m

i=1(ai · (z − c · s)) =
∑m

i=1(ai · zi) − c · t = v2. Also, note that
∥c · s∥∞ is less than or equal to Ls under a proper parameter set. Since z is sampled from R[−B+Ls,B−Ls],
we get ∥r∥∞ ≤ ∥z∥∞ + ∥c · s∥∞ ≤ B − Ls + Ls = B. As a result, we get Pr[δ2] = Pr[δ1].

Now we apply the generalized forking lemma of Bellare and Neven [7]. With the probability ϵ′
(

ϵ′

qs+qh
−

1
2λ

)
where ϵ′ = Pr[δ2], we obtain two signatures (z, c) and (z′, c′) for c ̸= c′ such that∑m

i=1(ai · zi)− c · t = v,
∑m

i=1(ai · z′i)− c′ · t = v.

We simply set x = z − z′, c̃ = c− c′ and outputs x, c̃ as the solution of the TMO problem. We can easily
check that ∥x∥∞ ≤ 2(B − Ls) and ∥c̃∥∞ ≤ 2. Also, we can check that Fa(x) = c̃ · t as follow:

Fa(x) = Fa(z − z′) = (v + c · t)− (v + c′ · t)
= (c− c′) · t = c̃ · t.

Therefore we have that ϵ′
(

ϵ′

qs+qh
− 1

2λ

)
≤ AdvTMO

m,q,2,2(B−Ls)
. This completes the proof.

15

4.2 Concrete Security Analysis

The BKZ lattice reduction algorithm [11] is the most important building block in most efficient SIS attacks.
Thus, our estimator determines the overall hardness against the SIS solvers by estimating the cost of the
BKZ algorithm. There are a variety of approaches to measure the running time of BKZ [2,4,11]. In general,
an SVP solver is the main building block of the BKZ algorithm. Regarding the number of SVP oracle
calls that the BKZ algorithm makes, the Core-SVP model [4] assumes that an SVP oracle is required only
once in a conservative model. This methodology is significantly more conservative than prior ones used
in lattice-based cryptography. In particular, we assume that an adversary can run the asymptotically best
known algorithms, with no overhead compared to the asymptotic run-times. In particular, we assume that
the adversary can cheaply handle huge amounts of (possibly quantum) memory. This conservatism is in
line with the goal of long-term post-quantum security. The best known classical SVP solver runs in time
≈ 20.292·b and the best known quantum SVP solver runs in time ≈ 20.265·b. Therefore, we determined
to adopt the BKZ cost model of 0.292b for the classical model and the BKZ cost model of 0.265b for
the quantum model where b is the BKZ block size. The security parameters in Table 2 are based on this
conservative methodology.

As we mentioned above, it is assumed that the adversary can run the asymptotically best known algo-
rithms, with no overhead compared to the asymptotic run-times in the Core-SVP model. To estimate the
cost of schemes more rigorously, Kyber [9] and Dilithium [13] refine the core-SVP methodology to count
the number of gates required to solve lattice problems (e.g. MLWE) by relying on the concrete estimation
for the cost of sieving in gates and by accounting for the number of calls to the SVP oracle. The required
security level specified by NIST is based on the classical and quantum gate counts for the optimal key recov-
ery and collision attacks on AES and SHA3, respectively. For example, the NIST security level I, III, and
V are defined in terms of block ciphers AES128, AES192, AES256 and 2143, 2207 and 2272 classical gates
are required, respectively. Also, the NIST security level II and IV are defined in terms of hash functions
SHA-256 and SHA-384 and 2146 and 2210 classical gates are required for the corresponding security level,
respectively.

With this refined estimates for the MLWE hardness, Dilithium presented three parameters for the NIST
security level II, III, and V with 158, 216 and 285 security (=log2(gates)) for the MLWE hardness. Applying
this analysis to the MSIS problem is not complete yet but it is strongly expected that the refined cost of
SIS would be somewhat larger than the cost of LWE [13] when they have the same BKZ blocksize b.
Based on this observation, we believe that our signature scheme satisfies their stated “NIST Security Level”
designation as long as Kyber and Dilithium satisfy their security level since our parameter sets require larger
BKZ block sizes than [13] for the same security categories.

4.3 Cost of Known Attacks

Forgery attack for solving the GCK-TMO problem. An attacker may attempt to forge a signature. By
Theorem 4.1, this implies finding (x, c̃) such that Fa(x) = c̃ · t, ∥c̃∥∞ ≤ α where α = 2 and ∥x∥∞ ≤ β
where β = 2(B − Ls). As a result, it follows that Pr[δ2] ≤ AdvTMO

m,q,2,2(B−Ls)
.

To estimate the hardness of the TMO problem of the GCK function upon which the security of our
signature scheme is based, we follow the way explained in [13], which is a software to estimate the hardness
of infinite norm SIS problem. This approach seems natural since there are the reductions from the MSIS
problem to the CR problem of the GCK function and from the CR problem to the TMO problem of the
GCK function. To our best knowledge, since there is no algorithm to solve the TMO problem efficiently, we
estimate the concrete security level using algorithms to estimate the hardness of the SIS problem instead.

16

Table 4: Performance comparison of signature schemes

NIST
Security Level

KeyGen
(K cycle)

Sign
(K cycle)

Verify
(K cycle)

Classical
Hardness

Dilithium [13]
II 272 1, 323 298 123

III 495 2, 155 520 182

V 728 2, 592 779 252

Ours
II 184 1, 062 237 125

III 202 1, 240 253 183

V 265 1, 421 373 268

While the MSIS problem is defined over polynomial rings, the best attacks are applied by simply considering
the SIS problem since we do not currently have any attack for this ring structure. Note that an MSIS
instance can be mapped to a SIS instance by considering a matrix A ∈ Z(n×n·m)

q with infinity norm bounds
β = 2(B − Ls).

Key-recovery attack for solving the GCK-OW problem. An attacker may also attempt to recover the
secret key s from the public key a, t =

∑m
i=1(ai · si). As each of the m elements of the secret polynomials

is sampled from Rm
[−η,η], this amounts to solving the OW problem of the GCK function, which is reduced

to the MSIS problem. Note that the smaller the bound parameter in the SIS problem, the harder the SIS
problem is. Since η is much smaller than β in our parameter setting, the key-recovery attack is concretely
harder than the forgery attack. Therefore, we set our parameters to provide enough hardness for at least the
forgery attack as described above.

5 Performance Analysis

In Table 4, we evaluate the performance of our implementations on a 3.7GHz Intel Core i7-8700k run-
ning Ubuntu 20.04 LTS. The table shows that the key generation, signing, and verification algorithms of our
scheme are faster for every security level, compared to those of Dilithium. We choose the modulus q satisfy-
ing the condition q ≡ 1 mod 2n, which enables the “fully-splitting” NTT algorithm for the multiplication
operation. Even though our modulus q is much larger than the modulus of Dilithium (q ≈ 223), our scheme
is faster than Dilithium because of the simplicity of our scheme.

A polynomial multiplication and a sampling are the most costly operations in implementing a cryp-
tosystem. Both Dilithium and our scheme apply the NTT to optimize polynomial multiplication. The main
operation performed in both schemes is a multiplication of a public key (A ∈ Rk×m

q in Dilithium and
a ∈ Rm

q in our scheme). In the NIST security level III, the multiplication A · y involves 30 polynomial
multiplications in Dilithium, whereas a ·y involves only 4 polynomial multiplications in our scheme. Since
one polynomial multiplication for each scheme costs similarly, our multiplication operation of a public key
is approximately 7 times faster than that of Dilithium.

Secondly, Dilithium needs to sample ⌈log2 q⌉ · n · k · m ≈ 22, 080 bytes to generate a public matrix
A← Rk×m

q . Meanwhile, our scheme needs to sample ⌈log2 q⌉ · n ·m ≈ 7, 680 bytes to generate a ∈ Rm
q .

As a result, the sampling time of our scheme is approximately 3 times faster than that of Dilithium. These
points make our scheme faster than Dilithium overall.

17

6 Conclusion

We proposed a simple and practical signature scheme based on the hardness of the TMO problem of GCK
function in ideal lattices. Dilithium [13], which is one of NIST finalist candidates for PQC signature
schemes, has short public key and signature sizes. However, the scheme has a complicated structure with
a public key compression technique. Meanwhile, Lyubashevsky’s signature scheme has a much simpler
structure to implement. However, the scheme has large public key and signature sizes resulted mainly due
to the additional security requirement. To combine the strength of both schemes, we modified the scheme of
Lyubashevsky slightly and presented a new security proof eliminating the security requirement. Because of
the absence of this requirement, our parameter sets enable our scheme to have small public key, secret key,
and signature sizes. Besides, we presented a tight analysis of bounding parameters Ls using CLT and error
function analysis, which results in a decrease in the public key and secret key sizes as well. Furthermore,
our scheme has a very simple and compact structure to implement, which results in the fast and efficient im-
plementation. As a result, our signature scheme has small key and signature sizes and a simple and efficient
structure to implement compared to that of Dilithium for the NIST security level II, III, and V.

References

[1] Sedat Akleylek, Nina Bindel, Johannes A. Buchmann, Juliane Krämer, and Giorgia Azzurra Marson.
An efficient lattice-based signature scheme with provably secure instantiation. In Progress in Cryp-
tology - AFRICACRYPT 2016, volume 9646 of Lecture Notes in Computer Science, pages 44–60.
Springer, 2016.

[2] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with errors.
J. Math. Cryptol., 9(3):169–203, 2015.

[3] Erdem Alkim, Nina Bindel, Johannes A. Buchmann, and Özgür Dagdelen. TESLA: tightly-secure
efficient signatures from standard lattices. Cryptology ePrint Archive, Report 2015/755, 2015. http:
//eprint.iacr.org/2015/755.

[4] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum key exchange - A
new hope. In 25th USENIX Security Symposium, pages 327–343. USENIX Association, 2016.

[5] Shi Bai and Steven D. Galbraith. An improved compression technique for signatures based on learning
with errors. In Topics in Cryptology - CT-RSA 2014, volume 8366 of Lecture Notes in Computer
Science, pages 28–47. Springer, 2014.

[6] Paulo S. L. M. Barreto, Patrick Longa, Michael Naehrig, Jefferson E. Ricardini, and Gustavo
Zanon. Sharper ring-lwe signatures. Cryptology ePrint Archive, Report 2016/1026, 2016. http:
//eprint.iacr.org/2016/1026.

[7] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and a general forking
lemma. In ACM Conference on Computer and Communications Security - CCS 2006, pages 390–399.
ACM, 2006.

[8] N. Bindel, S. Akleylek, E. Alkim, P. S. L. M. Barreto, J. Buchmann, E. Eaton, G. Gutoski, J. Kramer,
P. Longa, H. Polat, J. E. Ricardini, and G. Zanon. Submission to NIST’s post-quantum project: Lattice-
based digital signature scheme qTESLA, 2017. Available: https://qtesla.org/, Accessed: Nov. 03, 2018.

18

http://eprint.iacr.org/2015/755
http://eprint.iacr.org/2015/755
http://eprint.iacr.org/2016/1026
http://eprint.iacr.org/2016/1026

[9] Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck,
Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS - Kyber: A CCA-secure module-
lattice-based KEM. In EuroS&P, pages 353–367. IEEE, 2018.

[10] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom. Flush, gauss, and reload - A
cache attack on the BLISS lattice-based signature scheme. In Cryptographic Hardware and Embedded
Systems - CHES 2016, volume 9813 of Lecture Notes in Computer Science, pages 323–345. Springer,
2016.

[11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In Advances in
Cryptology - ASIACRYPT 2011, volume 7073 of Lecture Notes in Computer Science, pages 1–20.
Springer, 2011.

[12] Özgür Dagdelen, Rachid El Bansarkhani, Florian Göpfert, Tim Güneysu, Tobias Oder, Thomas
Pöppelmann, Ana Helena Sánchez, and Peter Schwabe. High-speed signatures from standard lat-
tices. In Progress in Cryptology - LATINCRYPT 2014, volume 8895 of Lecture Notes in Computer
Science, pages 84–103. Springer, 2014.

[13] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehlé. CRYSTALS-
Dilithium algorithm specifications and supporting documentation, 2018. Available: https://pq-
crystals.org/dilithium/resources.shtml, Submission to round 2 of the NIST post-quantum project.

[14] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, and
Damien Stehlé. CRYSTALS-Dilithium: A lattice-based digital signature scheme. IACR Trans. Cryp-
togr. Hardw. Embed. Syst., 2018(1):238–268, 2018.

[15] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In Advances in Cryptology - CRYPTO ’86, volume 263 of Lecture Notes in Computer
Science, pages 186–194. Springer, 1986.

[16] P.A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest, T. Ricosset, G. Seiler,
W. Whyte, and Z. Zhang. Falcon: Fast-fourier lattice-based compact signatures over NTRU, 2017.
Available: https://falcon-sign.info/falcon.pdf.

[17] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new crypto-
graphic constructions. In ACM Symposium on Theory of Computing - STOC 2008, pages 197–206.
ACM, 2008.

[18] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical lattice-based cryptography:
A signature scheme for embedded systems. In Cryptographic Hardware and Embedded Systems -
CHES 2012, volume 7428 of Lecture Notes in Computer Science, pages 530–547. Springer, 2012.

[19] Russell Impagliazzo and Moni Naor. Efficient cryptographic schemes provably as secure as subset
sum. J. Cryptol., 9(4):199–216, 1996.

[20] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treatment of fiat-shamir signa-
tures in the quantum random-oracle model. In Advances in Cryptology - EUROCRYPT 2018, volume
10822 of Lecture Notes in Computer Science, pages 552–586. Springer, 2018.

19

[21] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures.
In Advances in Cryptology - ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer Science,
pages 598–616. Springer, 2009.

[22] Vadim Lyubashevsky. Lattice signatures without trapdoors. In Advances in Cryptology - EUROCRYPT
2012, volume 7237 of Lecture Notes in Computer Science, pages 738–755. Springer, 2012.

[23] Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knapsacks are collision resistant.
In International Colloquium on Automata, Languages, and Programming - ICALP 2006, pages 144–
155. Springer, 2006.

[24] Vadim Lyubashevsky and Gregor Seiler. Short, invertible elements in partially splitting cyclotomic
rings and applications to lattice-based zero-knowledge proofs. In Advances in Cryptology - EURO-
CRYPT 2018, pages 204–224. Springer, 2018.

[25] Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient one-way functions.
computational complexity, 16(4):365–411, 2007.

[26] Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the sample complexity of LWE
search-to-decision reductions. In Advances in Cryptology - CRYPTO 2011, volume 6841 of Lecture
Notes in Computer Science, pages 465–484. Springer, 2011.

[27] So Hyun Park, Suhri Kim, Dong Hoon Lee, and Jong Hwan Park. Improved ring LWR-based key
encapsulation mechanism using cyclotomic trinomials. IEEE Access, 8:112585–112597, 2020.

[28] Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from worst-case assumptions on
cyclic lattices. In Theory of Cryptography Conference - TCC 2006, pages 145–166. Springer, 2006.

[29] Peter Pessl. Analyzing the shuffling side-channel countermeasure for lattice-based signatures. In
Progress in Cryptology - INDOCRYPT 2016, volume 10095 of Lecture Notes in Computer Science,
pages 153–170. Springer, 2016.

[30] El Bansarkhani Rachid and Buchmann Johannes. High performance lattice-based CCA-secure encryp-
tion. Cryptology ePrint Archive, Report 2015/042, 2015. http://eprint.iacr.org/2015/
042.

20

http://eprint.iacr.org/2015/042
http://eprint.iacr.org/2015/042

A Hardness of the TMO Problem

First, we observe a rather obvious reduction that bases the hardness of solving the TMO problem on the
hardness of the OW problem. The following theorem shows that the OWn,m,q,β problem is as hard as the
TMOn,m,q,α,β problem for α ≥ 1.

Theorem A.1. Suppose there is a PPT algorithm A that solves the OWm,q,β problem with advantage ϵ(k).
Then there is a PPT algorithm B that solves the TMOm,q,α,β problem with the same advantage ϵ(k) for any
α ≥ 1.

Proof. The algorithm B takes a ∈ Rm
q and t ∈ Rq as input and needs to find x and c such that Fa(x) = c ·t,

∥c∥∞ ≤ α, and ∥x∥∞ ≤ β. The algorithm B runs the algorithm A on input (a, t). With advantage ϵ(k), A
outputs x ∈ Rm

q such that ∥x∥∞ ≤ β and Fa(x) = t. B sets c = 1 ∈ Rq. Then it is easy to check that a
pair (x, c) is a solution for the TMOm,q,α,β problem when α ≥ 1. That is, AdvOW

m,q,β ≤ AdvTMO
m,q,α,β for any

α ≥ 1.

In the following theorem, we derive upper bound on the AdvTMO
m,q,α,β .

Theorem A.2. Let n,m, q ∈ N, α, β ∈ R. If (2β+1)nm ≫ qn, then it holds that AdvTMO
m,q,α,β ≤ 2AdvCR

m,q,β .

Proof. Suppose there is a PPT algorithmA that solves the TMOm,q,α,β problem with advantage AdvTMO
m,q,α,β

for any α ≥ 1. Recall thatA takes (a, t) as input and find a pair (x, c) such that Fa(x) = c · t. As described
in [30, Section 3.3], the probability that an element chosen uniformly random in Rq is in the subset of the
multiplicative invertible elements of Rq is given by (1− 1/q)n 1. This probability is overwhelming for our
parameter setting. Thus we assume that c has an inverse element in Rq. With (x, c) that A outputs, we set
z = x · c−1. Note that Fa(z) = Fa(x · c−1) = Fa(x) · c−1 = t. For a real number γ ∈ R satisfying
γ ≪ β and nαγ ≤ β, let Ω be the set of all possible (x, c) derived fromA when the pair (a, t) is given. We
partition the set Ω into two disjoint sets ΩI and ΩII which are defined as follows.

Case 1: ΩI = { (x, c) ∈ Ω : ∥z∥∞ > γ}.
Case 2: ΩII = { (x, c) ∈ Ω : ∥z∥∞ ≤ γ}.

The algorithmA’s output (x, c) belongs to either case 1 or case 2. First, we will show that the algorithm
B in case 1 solves the CRm,q,β problem using the algorithm A in case 1 as follows:

1. Choose a random z′ ∈ Rm
[−γ,γ] and compute t = Fa(z

′).

2. Run A on input (a, t) and get (x, c) from A.

3. Compute x′ = c · z′ and output (x,x′) as a solution for CRm,q,β problem.

For (x,x′) to be a solution of the CRm,q,β problem, we need to show that Fa(x) = Fa(x
′) first. Since

(x, c) is a solution for the TMO problem, it holds that Fa(x) = c · t. Also, we set t = Fa(z
′) in step 1. By

the homomorphic property of GCK function, it holds that c·t = c·Fa(z
′) = Fa(c·z′) = Fa(x

′). Secondly,
it holds that ∥x∥∞ ≤ β by definition and ∥x′∥∞ ≤ β since it holds that ∥x′∥∞ ≤ n · ∥c∥∞ · ∥z′∥∞ ≤

1To make the probability 1, we can change the modulus q satisfying the condition presented in [24, Corollary 1.2.], i.e. q ≡
2k+1 mod 4k for some integer k such that n ≥ k > 1 and k is a power of 2 (instead of satisfying the condition q ≡ 1 mod 2n
for the fully-splitting NTT algorithm). For example, if we set k = 16, any y ∈ Rq that satisfies 0 < ∥y∥∞ ≤ 2 will always have
an inverse in Rq . This implies that the polynomial xn + 1 splits into k factors and we can run “partially-splitting” NTT algorithm
for the multiplication operation, which can lead to an increase in the multiplication cost slightly.

21

nαγ ≤ β. Lastly, we will show that x and x′ are distinct. Note that z ̸= z′ since ∥z∥∞ > γ and ∥z′∥∞ ≤ γ
by definition. Therefore, x− x′ = c · (z − z′) ̸= 0.

Now, we consider the algorithm A in case 2. We will show that there is another algorithm C that solves
the OWm,q,γ problem using A in case 2. When B takes (a, t) as input, B runs A on input (a, t). Then A
outputs (x, c). After then, B outputs z = x · c−1 as a solution for the OWm,q,γ problem. The reason why z
is a solution for the OW problem is because it holds that Fa(z) = t and ∥z∥ ≤ γ by definition.

Note that AdvTMO
m,q,α,β is less than the sum of the advantage of A in solving the TMO problem in case

1 and the advantage of A in solving the TMO problem in case 2. Because we showed that the advantage
of A in solving the TMO problem in case 1 is less than AdvCR

m,q,β and the advantage of A in solving the
TMO problem in case 2 is less than AdvOW

m,q,γ . Note that AdvOW
m,q,γ ≤ AdvOW

m,q,β ≤ AdvCR
m,q,β . Therefore, we

complete the proof.

B Security Proof of Lyubashevsky’s Scheme

We see how to prove that Lyubashevsky’s signature scheme [21] is UF-CMA based on the CR problem of
GCK function.

Theorem B.1 ([21]). If the signature scheme is insecure against chosen message attacks for the proposed
parameters, then there is polynomial-time algorithm that can solve the CR problem of GCK function.

We sketch the main idea here. Let A be a forger against the signature scheme. Then it is sufficient to
build the polynomial-time algorithm B that solves the CR problem of GCK function using A. In the first
stage of the attack, the adversary B chooses a random secret key s ∈ R[−η,η] and sends the public key pair
a and t = Fa(s) to A. Since B knows the secret key, B can perfectly respond A’s signing oracles. In the
second stage, A sends the forgery signature (z, c). A forking lemma argument shows that the reduction can
then extract two signatures (z, c) and (z′, c′) for c ̸= c′ such that∑m

i=1(ai · zi)− c · t =
∑m

i=1(ai · z′i)− c′ · t

Then B sets x = z − c · s and x′ = z′ − c′ · s. We can easily check that Fa(x) = Fa(x
′) as follow:

m∑
i=1

(ai · xi) =
m∑
i=1

(ai · (z − c · s)) =
m∑
i=1

(ai · zi)− c ·
m∑
i=1

(ai · si)

=

m∑
i=1

(ai · zi)− c · t =
m∑
i=1

(ai · z′i)− c′ · t

=

m∑
i=1

(ai · z′i)− c′ ·
m∑
i=1

(ai · si) =
m∑
i=1

(ai · x′i)

To guarantee that x and x′ are distinct, the system parameters satisfy the condition that for a randomly-
picked s ∈ Rm

[−η,η], there is another s′ ∈ Rm
[−η,η] such that Fa(s) = Fa(s

′) and the adversary A can not
know the exact secret key the adversary B picked, which is called the witness-indistinguishability. So, the
bound of the secret key η needs to be large enough to satisfy that (2η + 1)nm ≫ qn for the existence of
another secret s′ and the witness-indistinguishability. The proof in detail is given in [21].

22

	Introduction
	Our Contributions
	Our Technique
	Related Work

	Preliminaries
	Notation
	Digital Signatures
	Lattice Problems
	GCK-based Identification Protocol

	Proposed Signature Scheme
	Construction
	Correctness
	Implementation Details
	Number of Iterations
	Bound Parameter
	Parameter Sets

	Security Analysis
	Provable Security Analysis
	Concrete Security Analysis
	Cost of Known Attacks

	Performance Analysis
	Conclusion
	Hardness of the TMO Problem
	Security Proof of Lyubashevsky's Scheme

