
Applying Castryck-Decru Attack on the Masked
Torsion Point Images SIDH variant

Jesús-Javier Chi-Domínguez1

Cryptography Research Centre, Technology Innovation Institute, Abu Dhabi, UAE
jesus.dominguez@tii.ae

Keywords: Cryptanalysis · Castryck-Decru Attack · Isogeny-based cryptogra-
phy · Masked-SIDH

Abstract. This paper illustrates that masking the torsion point images
does not guarantee Castryck-Decru attack does not apply. Our experi-
ments over SIDH primes hint that any square root concerning the Weil
pairing on the masked public key helps to recover Bob’s private key via
the Castryck-Decru attack.

1 Introduction

Castryck and Decru provided in [2] a heuristically polynomial SIDH key-recovery
Attack, which relies on the knowledge of

– The isogeny degree;
– The image of coprime torsion points; and
– The endomorphism ring of the isogeny domain curve.

Maino and Martindale in [7] gave an algorithm that works without knowing
the endomorphism ring of the domain curve. In contrast, Robert demonstrated
the existence of a polynomial key-recovery attack on SIDH [10]. The results
in [7,10] are still theoretical, but [2] shared a Magma code of their attack im-
proved by the sagemath code of Oudompheng and Pope in [9].

To mitigate the Castryck-Decru attack, Fouotsa and Moriya independently
proposed solutions for SIDH. Fouotsa suggested masking the torsion point im-
ages [4] and Moriya hiding the isogeny degree [8]. This works only analyze
Fouotsa’s countermeasure given in [4].

2 SIDH framework

We strongly recommend that the readers go through [5,3,1] and [2] for details
concerning SIDH and the Castryck-Decru attack. Let us first center on the fol-
lowing SIDH setup. Let Fp2 be a quadratic field extension of Fp along with
p = 2a3b − 1. We set as starting supersingular curve E0 : y

2 = x3 + 6x2 + x 1.
1 We choose the same E0 as in SIKE proposal [1], but it can be any different curve

with known endomorphism ring.

https://orcid.org/0000-0002-9753-7263

2 J. Chi-Domínguez

Let {PA, QA} a basis for the 2a-torsion subgroup E0[2
a], and {PB , QB} for the

3b-torsion subgroup E0[3
b] = ⟨PB , QB⟩.

Public parameters: a, b, E0, {PA, QA} and {PB , QB}

Alice

Sample skA
$←− J0 . . 2a − 1K

Get the 2a-isogeny ϕ : E0 → EA

with kerϕ = ⟨PA + [skA]QA⟩
Set pkA = (EA, ϕ(PB), ϕ(QB))

Derive the shared secret curve EAB

from the 2a-isogeny ϕ′ : E2 → EAB

with kerϕ′ = ⟨ψ(PB) + [skA]ψ(QB)⟩

Bob

Sample skB
$←− J0 . . 3b − 1K

Get the 3b-isogeny ψ : E0 → EB

with kerψ = ⟨PB + [skB]QB⟩
Set pkB = (EB , ψ(PA), ψ(QA))

Derive the shared secret curve EAB

from the 3b-isogeny ψ′ : E1 → EAB

with kerψ′ = ⟨ϕ(PB) + [skB]ϕ(QB)⟩

pkA
pkB

Key Generation

Key Derivation

Fig. 1: General description of the SIDH protocol.

3 The masked SIDH from [4]

The countermeasure from [4] proposes masking the torsion point images in pkA
and pkB as

– Alice samples a random integer rA ∈ J0 . . 3b − 1K coprime to 3. Next, she
sets a her public key pkA = (EA, [rA]ϕ(PB), [rA]ϕ(QB)).

– Bobs samples a random integer rB ∈ J0 . . 2a − 1K coprime to 2. Next, he
sets a his public key pkB = (EB , [rB]ψ(PA), [rB]ψ(QA)).

[4] claims the above masking proposal is enough for the Castryck-Decru
attack to fail; we need precisely the image of the torsion points to mount the
Castryck-Decru attack. In concrete, an attacker can get both (rA)

2
mod 3b and

(rB)
2
mod 2b via discrete logarithms concerning the following Weil pairing equa-

tions

e3b
(
[rA]ϕ(PB), [rA]ϕ(QB)

)
=

(
e(PB , QB)

2a
)(rA)2

and

e2a
(
[rB]ψ(PA), [rB]ψ(QA)

)
=

(
e(PA, QA)

3b
)(rB)2

.

On that basis, [4] suggests a large prime such that the number of square roots
for (rA)

2 and (rB)
2 is about 2λ, thus finding the correct rA and rB ensure λ-bits

of security.

Applying Castryck-Decru Attack on the Masked SIDH variant from [4] 3

4 Applying Castryck-Decru Attack

For simplicity, we center on analyzing Bob’s public key (just as in [2]), but
it easily extends to Alice’s scenario. This section justifies and experimentally
illustrates that any square root of r = (rB)

2 helps to make the Castryck-Decru
works.

Let r′ be a square root of r, and let ϑr′ : P 7→ [r̃rB]ψ(P) be the isogeny being
r̃ the multiplicative inverse of r′ modulo 2a. Next, we let ϑ̂r′ : P 7→ [r̃rB]ψ̂(P)

describes the dual isogeny of ϑr′ . Consequently, we get ϑr′ ◦ ϑ̂r′ =
[
3b(r̃rB)

2
]

and ϑ̂r′ ◦ ϑr′ =
[
3b(r̃rB)

2
]
.

Lemma 1. The isogeny ϑr′ and its dual ϑ̂r′ satisfy ϑr′ ◦ ϑ̂r′ =
[
3b
]
= ϑ̂r′ ◦ ϑr′ .

Proof. Let E be either E0 or EB . Since we analyze curves with E(Fp2) ∼= Zp+1×
Zp+1, we only need to prove the equality over the 2a-torsion and 3b-torsion
subgroups (any point in E(Fp2) splits as the sum of order-2a and order-3b points).

If P be an order-3b point on E, [3b(r̃rB)
2
]P = O = [3b]P and then the

equality holds. If P be an order-2a point on E, we have (r̃rB)
2
= 1 mod 2a and

thus [3b(r̃rB)
2
]P = [3b]P . ⊓⊔

Lemma 1 implicitly says ϑr′ : E0 → EB and its dual ϑ̂r′ : EB → E0 looks
like 3b-isogenies over Fp2 . We point out that ϑr′ and ϑ̂r′ does not behave as
3b-isogenies over extensions fields of Fp2 but we do not care about that for
attacking the masked SIDH construction. In particular, locally over Fp2 , we get
a high chance that the Castryck-Decru attack succeeds for ϑr′ .

Now we sketch how to recover Bob’s secret 3b-isogeny ψ : E0 → EB . Given
the masked public key pkB = (EB , [rB]ψ(PA), [rB]ψ(QA)), we proceed as follows:

1. Parse (EB , P
′, Q′)← pkB ;

2. Get r = (rB)
2 from the Weil pairing equation in Section 3;

3. Compute any square root r′ of r;
4. Calculate the multiplicative inverse r̃ of r′ modulo 2a;
5. Set pk′B = (EB , [r̃]P

′, [r̃]Q′);
6. Feed the Castryck-Decru attack with pk′B to find the isogeny ϑr′ : P 7→

[r̃rB]ψ(P).
7. Derive skB from ϑr′ .

We validate the above procedure using the sagemath code from [9] along with
the below code 2 and illustrate that we do not need the correct square root rB
of r = (rB)

2.

2 We take the script baby_SIDH.sage from [9] as a baseline and replace it according
to SIKE parameters.

4 J. Chi-Domínguez

import public_values_aux
from public_values_aux import *

load('castryck_decru_shortcut.sage')

SIKEpXXX parameters
a, b = 33, 19
a, b = 191, 117
a, b = 273, 172

Set the prime, finite fields and starting curve
with known endomorphism
p = 2^a*3^b - 1
public_values_aux.p = p

Fp2.<i> = GF(p^2, modulus=x^2+1)
R.<x> = PolynomialRing(Fp2)

E_start = EllipticCurve(Fp2, [0,6,0,1,0])
E_start.set_order((p+1)^2) # Speeds things up in Sage

Generation of the endomorphism 2i
two_i = generate_distortion_map(E_start)

Generate public torsion points, for SIKE implementations
these are fixed but to save loading in constants we can
just generate them on the fly
P2, Q2, P3, Q3 = generate_torsion_points(E_start, a, b)
check_torsion_points(E_start, a, b, P2, Q2, P3, Q3)

Generate Bob's key pair
bob_private_key, EB, PB, QB = gen_bob_keypair(E_start, b, P2, Q2, P3, Q3)
solution = Integer(bob_private_key).digits(base=3)

print(f"Running the attack against SIDHp{p.bit_length()} parameters,
which has a prime: 2^{a}*3^{b} - 1")↪→

print(f"If all goes well then the following digits should be found:
{solution}")↪→

def mask(pk):
(EB, PB, QB) = pk
N = 2^a
rB = 2 * randint(1, N // 2) + 1
print(f'mask:\t{rB}')
return EB, rB * PB, rB * QB

===================================
===== ATTACK ====================
===================================
def unmask(pk):

Applying Castryck-Decru Attack on the Masked SIDH variant from [4] 5

(EB, PB, QB) = pk
e = P2.weil_pairing(Q2, 2^a)
e_= PB.weil_pairing(QB, 2^a)
N = e.order()
r = discrete_log(e_, e^(3^b))
assert (e ^ (r * (3^b))) == e_
assert N == e_.order()
N = 2^a
R = IntegerModRing(N)
square_roots = R(r).sqrt(all=True)
other = int(square_roots[0])
dec, tilde, _ = xgcd(other, N)
assert dec == 1
tilde = int(R(tilde))
assert tilde * other % (N) == 1
PB_ = tilde * PB
QB_ = tilde * QB
assert e^(3^b) == (PB_).weil_pairing(QB_, 2^a)
print(f'unmask:\t{other}')
return EB, PB_, QB_

def RunAttack(num_cores):
return CastryckDecruAttack(E_start, P2, Q2, EB, PB, QB, two_i,

num_cores=num_cores)↪→

EB, PB, QB = mask((EB, PB, QB))
EB, PB, QB = unmask((EB, PB, QB))

if __name__ == '__main__' and '__file__' in globals():
if '--parallel' in sys.argv:

Set number of cores for parallel computation
num_cores = os.cpu_count()
print(f"Performing the attack in parallel using {num_cores}

cores")↪→

else:
num_cores = 1

recovered_key = RunAttack(num_cores)

Our experiments randomly generate instances with the following SIDH pa-
rameters:

– Baby SIDHp64 from [9]: a = 33 and b = 19,
– $IKEp217: a = 110 and b = 67;
– SIKEp377 from [6]: a = 191 and b = 117;
– SIKEp546 from [6]: a = 273 and b = 172;

Remark 1. If we replace the prime p = 2a3b−1 by p = 4AB−1 with (A,B) = 1,
and the isogeny degrees 2a and 3b by A and B, respectively. Then, a similar

6 J. Chi-Domínguez

reasoning from above holds. We can use the Castryck-Decru attack to recover
the private key skB from the proposal in [4]; this time, we should find the isogeny
ϑr′ : P 7→ [r̃rB]ψ(P) with r̃r′ = 1 mod A for any square root r′ of (rB)

2 modulo
A.

References

1. Azarderakhsh, R., Campagna, M., Costello, C., De Feo, L., Hess, B., Jalali, A.,
Jao, D., Koziel, B., LaMacchia, B., Longa, P., Naehrig, M., Pereira, G., Renes,
J., Soukharev, V., Urbanik, D.: Supersingular Isogeny Key Encapsulation. Third
Round Candidate of the NIST’s post-quantum cryptography standardization pro-
cess (2020), available at: https://sike.org/

2. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH (preliminary
version). IACR Cryptol. ePrint Arch. p. 975 (2022), https://eprint.iacr.org/2022/
975

3. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. Journal of Mathematical Cryptology 8(3),
209–247 (2014). https://doi.org/10.1515/jmc-2012-0015, https://doi.org/10.1515/
jmc-2012-0015

4. Fouotsa, T.B.: SIDH with masked torsion point images (2022), https://eprint.iacr.
org/2022/1054

5. Jao, D., De Feo, L.: Towards Quantum-Resistant Cryptosystems from Super-
singular Elliptic Curve Isogenies. In: Yang, B. (ed.) Post-Quantum Cryptog-
raphy - 4th International Workshop, PQCrypto 2011, Taipei, Taiwan, Novem-
ber 29 - December 2, 2011. Proceedings. Lecture Notes in Computer Science,
vol. 7071, pp. 19–34. Springer (2011). https://doi.org/10.1007/978-3-642-25405-
5_2, https://doi.org/10.1007/978-3-642-25405-5_2

6. Longa, P., Wang, W., Szefer, J.: The Cost to Break SIKE: A Comparative
Hardware-Based Analysis with AES and SHA-3. In: Malkin, T., Peikert, C. (eds.)
Advances in Cryptology - CRYPTO 2021 - 41st Annual International Cryptol-
ogy Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings,
Part III. Lecture Notes in Computer Science, vol. 12827, pp. 402–431. Springer
(2021). https://doi.org/10.1007/978-3-030-84252-9_14, https://doi.org/10.1007/
978-3-030-84252-9_14

7. Maino, L., Martindale, C.: An attack on SIDH with arbitrary starting curve. IACR
Cryptol. ePrint Arch. p. 1026 (2022), https://eprint.iacr.org/2022/1026

8. Moriya, T.: Masked-degree SIDH (2022), https://eprint.iacr.org/2022/1019
9. Oudompheng, R., Pope, G.: A Note on Reimplementing the Castryck-Decru Attack

and Lessons Learned for SageMath (2022), https://eprint.iacr.org/2022/1283
10. Robert, D.: Breaking SIDH in polynomial time. IACR Cryptol. ePrint Arch. p. 1038

(2022), https://eprint.iacr.org/2022/1038

https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975
https://doi.org/10.1515/jmc-2012-0015
https://doi.org/10.1515/jmc-2012-0015
https://doi.org/10.1515/jmc-2012-0015
https://eprint.iacr.org/2022/1054
https://eprint.iacr.org/2022/1054
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-030-84252-9_14
https://doi.org/10.1007/978-3-030-84252-9_14
https://doi.org/10.1007/978-3-030-84252-9_14
https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1019
https://eprint.iacr.org/2022/1283
https://eprint.iacr.org/2022/1038

	 Applying Castryck-Decru Attack on the Masked Torsion Point Images SIDH variant

