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Abstract. This paper illustrates that masking the torsion point images
does not guarantee Castryck-Decru attack does not apply. Our experi-
ments over SIDH primes hint that any square root concerning the Weil
pairing on the masked public key helps to recover Bob’s private key via
the Castryck-Decru attack.

1 Introduction

Castryck and Decru provided in [2] a heuristically polynomial SIDH key-recovery
Attack, which relies on the knowledge of

– The isogeny degree;
– The image of coprime torsion points; and
– The endomorphism ring of the isogeny domain curve.

Maino and Martindale in [7] gave an algorithm that works without knowing
the endomorphism ring of the domain curve. In contrast, Robert demonstrated
the existence of a polynomial key-recovery attack on SIDH [10]. The results
in [7,10] are still theoretical, but [2] shared a Magma code of their attack im-
proved by the sagemath code of Oudompheng and Pope in [9].

To mitigate the Castryck-Decru attack, Fouotsa and Moriya independently
proposed solutions for SIDH. Fouotsa suggested masking the torsion point im-
ages [4] and Moriya hiding the isogeny degree [8]. This works only analyze
Fouotsa’s countermeasure given in [4].

2 SIDH framework

We strongly recommend that the readers go through [5,3,1] and [2] for details
concerning SIDH and the Castryck-Decru attack. Let us first center on the fol-
lowing SIDH setup. Let Fp2 be a quadratic field extension of Fp along with
p = 2a3b − 1. We set as starting supersingular curve E0 : y

2 = x3 + 6x2 + x 1.
1 We choose the same E0 as in SIKE proposal [1], but it can be any different curve

with known endomorphism ring.
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Let {PA, QA} a basis for the 2a-torsion subgroup E0[2
a], and {PB , QB} for the

3b-torsion subgroup E0[3
b] = ⟨PB , QB⟩.

Public parameters: a, b, E0, {PA, QA} and {PB , QB}

Alice

Sample skA
$←− J0 . . 2a − 1K

Get the 2a-isogeny ϕ : E0 → EA

with kerϕ = ⟨PA + [skA]QA⟩
Set pkA = (EA, ϕ(PB), ϕ(QB))

Derive the shared secret curve EAB

from the 2a-isogeny ϕ′ : E2 → EAB

with kerϕ′ = ⟨ψ(PB) + [skA]ψ(QB)⟩

Bob

Sample skB
$←− J0 . . 3b − 1K

Get the 3b-isogeny ψ : E0 → EB

with kerψ = ⟨PB + [skB ]QB⟩
Set pkB = (EB , ψ(PA), ψ(QA))

Derive the shared secret curve EAB

from the 3b-isogeny ψ′ : E1 → EAB

with kerψ′ = ⟨ϕ(PB) + [skB ]ϕ(QB)⟩

pkA
pkB

Key Generation

Key Derivation

Fig. 1: General description of the SIDH protocol.

3 The masked SIDH from [4]

The countermeasure from [4] proposes masking the torsion point images in pkA
and pkB as

– Alice samples a random integer rA ∈ J0 . . 3b − 1K coprime to 3. Next, she
sets a her public key pkA = (EA, [rA]ϕ(PB), [rA]ϕ(QB)).

– Bobs samples a random integer rB ∈ J0 . . 2a − 1K coprime to 2. Next, he
sets a his public key pkB = (EB , [rB ]ψ(PA), [rB ]ψ(QA)).

[4] claims the above masking proposal is enough for the Castryck-Decru
attack to fail; we need precisely the image of the torsion points to mount the
Castryck-Decru attack. In concrete, an attacker can get both (rA)

2
mod 3b and

(rB)
2
mod 2b via discrete logarithms concerning the following Weil pairing equa-

tions

e3b
(
[rA]ϕ(PB), [rA]ϕ(QB)

)
=

(
e(PB , QB)

2a
)(rA)2

and

e2a
(
[rB ]ψ(PA), [rB ]ψ(QA)

)
=

(
e(PA, QA)

3b
)(rB)2

.

On that basis, [4] suggests a large prime such that the number of square roots
for (rA)

2 and (rB)
2 is about 2λ, thus finding the correct rA and rB ensure λ-bits

of security.
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4 Applying Castryck-Decru Attack

For simplicity, we center on analyzing Bob’s public key (just as in [2]), but
it easily extends to Alice’s scenario. This section justifies and experimentally
illustrates that any square root of r = (rB)

2 helps to make the Castryck-Decru
works.

Let r′ be a square root of r, and let ϑr′ : P 7→ [r̃rB ]ψ(P ) be the isogeny being
r̃ the multiplicative inverse of r′ modulo 2a. Next, we let ϑ̂r′ : P 7→ [r̃rB ]ψ̂(P )

describes the dual isogeny of ϑr′ . Consequently, we get ϑr′ ◦ ϑ̂r′ =
[
3b(r̃rB)

2
]

and ϑ̂r′ ◦ ϑr′ =
[
3b(r̃rB)

2
]
.

Lemma 1. The isogeny ϑr′ and its dual ϑ̂r′ satisfy ϑr′ ◦ ϑ̂r′ =
[
3b
]
= ϑ̂r′ ◦ ϑr′ .

Proof. Let E be either E0 or EB . Since we analyze curves with E(Fp2) ∼= Zp+1×
Zp+1, we only need to prove the equality over the 2a-torsion and 3b-torsion
subgroups (any point in E(Fp2) splits as the sum of order-2a and order-3b points).

If P be an order-3b point on E, [3b(r̃rB)
2
]P = O = [3b]P and then the

equality holds. If P be an order-2a point on E, we have (r̃rB)
2
= 1 mod 2a and

thus [3b(r̃rB)
2
]P = [3b]P . ⊓⊔

Lemma 1 implicitly says ϑr′ : E0 → EB and its dual ϑ̂r′ : EB → E0 looks
like 3b-isogenies over Fp2 . We point out that ϑr′ and ϑ̂r′ does not behave as
3b-isogenies over extensions fields of Fp2 but we do not care about that for
attacking the masked SIDH construction. In particular, locally over Fp2 , we get
a high chance that the Castryck-Decru attack succeeds for ϑr′ .

Now we sketch how to recover Bob’s secret 3b-isogeny ψ : E0 → EB . Given
the masked public key pkB = (EB , [rB ]ψ(PA), [rB ]ψ(QA)), we proceed as follows:

1. Parse (EB , P
′, Q′)← pkB ;

2. Get r = (rB)
2 from the Weil pairing equation in Section 3;

3. Compute any square root r′ of r;
4. Calculate the multiplicative inverse r̃ of r′ modulo 2a;
5. Set pk′B = (EB , [r̃]P

′, [r̃]Q′);
6. Feed the Castryck-Decru attack with pk′B to find the isogeny ϑr′ : P 7→

[r̃rB ]ψ(P ).
7. Derive skB from ϑr′ .

We validate the above procedure using the sagemath code from [9] along with
the below code 2 and illustrate that we do not need the correct square root rB
of r = (rB)

2.

2 We take the script baby_SIDH.sage from [9] as a baseline and replace it according
to SIKE parameters.
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import public_values_aux
from public_values_aux import *

load('castryck_decru_shortcut.sage')

# SIKEpXXX parameters
# a, b = 33, 19
# a, b = 191, 117
a, b = 273, 172

# Set the prime, finite fields and starting curve
# with known endomorphism
p = 2^a*3^b - 1
public_values_aux.p = p

Fp2.<i> = GF(p^2, modulus=x^2+1)
R.<x> = PolynomialRing(Fp2)

E_start = EllipticCurve(Fp2, [0,6,0,1,0])
E_start.set_order((p+1)^2) # Speeds things up in Sage

# Generation of the endomorphism 2i
two_i = generate_distortion_map(E_start)

# Generate public torsion points, for SIKE implementations
# these are fixed but to save loading in constants we can
# just generate them on the fly
P2, Q2, P3, Q3 = generate_torsion_points(E_start, a, b)
check_torsion_points(E_start, a, b, P2, Q2, P3, Q3)

# Generate Bob's key pair
bob_private_key, EB, PB, QB = gen_bob_keypair(E_start, b, P2, Q2, P3, Q3)
solution = Integer(bob_private_key).digits(base=3)

print(f"Running the attack against SIDHp{p.bit_length()} parameters,
which has a prime: 2^{a}*3^{b} - 1")↪→

print(f"If all goes well then the following digits should be found:
{solution}")↪→

def mask(pk):
(EB, PB, QB) = pk
N = 2^a
rB = 2 * randint(1, N // 2) + 1
print(f'mask:\t{rB}')
return EB, rB * PB, rB * QB

# ===================================
# ===== ATTACK ====================
# ===================================
def unmask(pk):
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(EB, PB, QB) = pk
e = P2.weil_pairing(Q2, 2^a)
e_= PB.weil_pairing(QB, 2^a)
N = e.order()
r = discrete_log(e_, e^(3^b))
assert (e ^ (r * (3^b))) == e_
assert N == e_.order()
N = 2^a
R = IntegerModRing(N)
square_roots = R(r).sqrt(all=True)
other = int(square_roots[0])
dec, tilde, _ = xgcd(other, N)
assert dec == 1
tilde = int(R(tilde))
assert tilde * other % (N) == 1
PB_ = tilde * PB
QB_ = tilde * QB
assert e^(3^b) == (PB_).weil_pairing(QB_, 2^a)
print(f'unmask:\t{other}')
return EB, PB_, QB_

def RunAttack(num_cores):
return CastryckDecruAttack(E_start, P2, Q2, EB, PB, QB, two_i,

num_cores=num_cores)↪→

EB, PB, QB = mask((EB, PB, QB))
EB, PB, QB = unmask((EB, PB, QB))

if __name__ == '__main__' and '__file__' in globals():
if '--parallel' in sys.argv:

# Set number of cores for parallel computation
num_cores = os.cpu_count()
print(f"Performing the attack in parallel using {num_cores}

cores")↪→

else:
num_cores = 1

recovered_key = RunAttack(num_cores)

Our experiments randomly generate instances with the following SIDH pa-
rameters:

– Baby SIDHp64 from [9]: a = 33 and b = 19,
– $IKEp217: a = 110 and b = 67;
– SIKEp377 from [6]: a = 191 and b = 117;
– SIKEp546 from [6]: a = 273 and b = 172;

Remark 1. If we replace the prime p = 2a3b−1 by p = 4AB−1 with (A,B) = 1,
and the isogeny degrees 2a and 3b by A and B, respectively. Then, a similar
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reasoning from above holds. We can use the Castryck-Decru attack to recover
the private key skB from the proposal in [4]; this time, we should find the isogeny
ϑr′ : P 7→ [r̃rB ]ψ(P ) with r̃r′ = 1 mod A for any square root r′ of (rB)

2 modulo
A.
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