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Abstract. Symbolic computations with usage of algebraic graphs A(n, Fq)
and A(n, Fq[x1, x2, . . . , xn]) were used for the development of various
cryptographic algorithms because the length of their minimal cycle (the
girth) tends to infinity when n is growing. It was announced recently that
for each commutative integrity ring the girth of A(n,K) is ≥ 2n. In this
paper we present essentially shorter closed proof of this statement and
evaluate the girth of some induced subgraphs of A(n,K[x1, x2, . . . , xn]).
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1 On lower bound for the girth of graphs A(n,K) over
integrity ring K

All graphs Γ in this paper are symmetric antireflexive binary relations on the
set of their vertices V , i.e Γ is a subset of Cartesian product V with itself, such
that (x, y) ∈ Γ implies (y, x) ∈ Γ , for each x ∈ V element (x, x) does not belong
to Γ (see [1]). Missing definitions of Graph Theory such as path in the graph,
cycle of length m, neighbour of the vertex, bipartite graph and etc. can be also
found in [1].

Definition of commutative ring, integrity ring K and ring of multivariate
polynomials K[x1, x2, . . . , xn] reader can find in [2].

LetK be a commutative ring. We define A(n,K) as a bipartite graph with the
point set nP = Kn and line set nL = Kn (two copies of a Cartesian power of K
are used). We will use brackets and parenthesis to distinguish tuples from nP and
nL. So (p) = (p1, p2, . . . , pn) ∈ nP and [l] = [l1, l2, . . . , ln] ∈ nL. The incidence
relation nI = A(n,K) (or the corresponding bipartite graph nI) is given by
condition p and l are incident if and only if the equations of the following kind
hold:

p2 − l2 = l1p1,
p3 − l3 = p1l2,
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p4 − l4 = l1p3, (6)

p5 − l5 = p1l4,

. . . ,

pn − ln = p1ln−1 for odd n and

pn − ln = l1pn−1 for even n.

Graphs A(m,K) were obtained in [3] as quotients of graphs D(n,K)). This
incidence structure was defined in the following way.

Let K be an arbitrary commutative ring. We consider the totality P of points
of kind

x = (x) = (x1,0, x1,1, x1,2, x2,2, . . . , xi,i, xi,i+1, . . . ) with coordinates from K

and the totality L of lines of kind

y = [y] = [y0,1, y1,1, y1,2, y2,2, . . . , yi,i, yi,i+1, . . . ].

We assume that tuples (x) and [y] has finite support and a point (x) is
incident with a line [y] , i. e. xIy or (x)I[y], if the following conditions are
satisfied:

xi,i − yi,i = yi−1,ix1,0,

xi,i+1 − yi,i+1 = y0,1xi,i, (8)

where i = 1, 2, . . . .

We denote the graph of this incidence structure as A(K). We consider the
set Root of indexes of points and lines of A(K) as a subset of totality of all
elements (i + 1, i + 1), (i, i + 1), (i + 1, i), i ≥ 0 of root system Ã1 of affine
type. We see that Root = {(1, 0), (01), (11), (12), (22), (23), . . . }. So we introduce
R1,0 = Root − {0, 1} and R0,1 = Root − {1, 0}. It allows us to identify sets P
and L with affine subspaces {f : R1,0 → K} and {f : R0,1 → K} of functions
with finite supports.

For each positive integer k ≥ 2, we obtain an incidence structure (Pk, Lk, Ik)
as follows. Firstly, Pk and Lk are obtained from P and L, respectively, by sim-
ply projecting each vector onto its k initial coordinates. The incidence Ik is then
defined by imposing the first k− 1 incidence relations and ignoring all the other
ones. The incidence graph corresponding to the structure (Pk, Lk, Ik) is denoted
by Ak(K). The comparison of equations of Ak(K) and A(k,K) allows to jus-
tify the isomorphism of these graphs. It is convenient for us to identify graphs
A(k,K) with graphs Ak(K) and write indexes of coordinates of points and lines
as elements from Root.

The procedure to delete last coordinates of points and lines of graph A(n,K)
defines the homomorphism n∆ of A(n,K) onto A(n − 1,K), n > 2. The fam-
ily of these homomorphisms defines natural projective limit of A(n,K) which
coincides with A(K). We introduce the colour function ρ on vertexes of graph
A(K) or A(n,K) as x10 for the point (x10, x11, x12, . . . ) and y01 for the line
[y01, y11, x12, . . . ]. We refer to ρ(v) for the vertex v as colour of vertex v.

As it follows directly from definitions for each vertex v and each colour a ∈ K
there is exactly one neighbour of v with the colour v. We refer to this fact as
linguistic property of graphs A(n,K) and A(K). In fact such property were used
for the definition of the class of linguistic graphs (see [3] and further references).



Families of graphs with the fastest growth of girth 3

Let us consider a special automorphisms of graphs A(K) and A(n,K) defined
over arbitrary commutative ring K. We take the list L of coordinates of the
point of incidence structure A(K) consisting of (10), (11), (12), (22), . . . , (ii),
(i, i+ 1), . . . . Let < stands for the natural order on L presented in the written
above sequence. Assume that nL stands for the first n elements of L. For each
element α from L we introduce automorphism Tα,t, t ∈ K moving point (p) =
(p1,0, p1,1, p1,2, . . . ) to (1p) = (1p1,0,

1 p1,1,
1 p1,2, . . . ) and line [l0,1, l1,1, l1,2, . . . ]

to the line [1l0,1,
1 l1,1,

1 l1,2, . . . ] accordingly to the following rules.

(1) If α = (k, k), k > 0 then Tα,t((p)) has coordinates 1p1,0 = p10, 1p1,1 =
p1,1, . . . , 1pk−1,k = pk−1,k, 1pα = pα + t, 1pi−1,i = pi−1,i − pi−k−1,i−k)t,

1pii =

pii − pi−k,i−kt for each i, i > k and Tα,t([l]) has coordinates 1l01 = l01, l11 = l11,
. . . , 1li−1,i = li−1,i,

1lα = lα+t, 1li−1,i = li−1,i−li−k−1,i−kt,
1lii = lii−li−k,i−kt,

. . . for each i, i > k.

(2) In the case of α = (i, i+ 1), i ≥ 1 transformation Tα,t changes coordinate
pi,i+1 of (p) for pi,i+1 + t and does not change its other coordinates, Tα,t([l])
coincides with [l].

(3) In the case of α = (1, 0) transformation Tα,t changes the first coordinate
p1,0 of point for p1,0 + t and does not change its other coordinates, the tuple
Tα,t([l]) has coordinates l01, l11 − l0,1t, . . . , li−1i, li,i − li−1,it, i > 1.

PROPOSITION 1.1.

(1) Transformations Tα,t are automorphism of the graph A(K).

(2) They generate group H(K) which preserves partition sets of A(K) and
acts as point transitive transformation group.

Proof. Direct check justifies that written above transformations preserves
the incidence relation between points and lines. Let p = (p1,0, p11, p12, . . . ) be an
arbitrary point. Then consecutive application of transformations Tα,t(α), α ∈ L
accordingly to defined above order < with appropriate ring elements t(α) allows
us to move the point p to (0, 0, . . . ). Thus the action of the group is transitive
on P .

We consider transformations nTα,t, α ∈ nL which correspond to natural
action of Tα,t on the vertices of graph A(n,K). Similarly to previous statement
we justify the following statement.

PROPOSITION 1. 2.

(1) The transformation nTα,t are automorphism of the graph A(n,K).

(2) They generate group nH(K) which preserves partition sets of A(n,K)
and acts as point transitive transformation group.

LEMMA 1.1.

As we mentioned above graph A(n,K) satisfies to linguistic property. Thus
the path (0), v1, v2, . . . , vn−1 in the graph A(n,K) are determined by colours
zi of elements vi, i = 1, 2, . . . , n− 1.

LEMMA 1. 2 (two numbers lemma).

Let v0, v1, v2, . . . , vn−1 be the path of A(n,K) starting in zero point v0 =
(0, 0, . . . , 0) given by the tuple of colours z1, z2, . . . , zn−1. Then last two coor-
dinates of vn−1 are z1z2(z1 − z3)(z2 − z4) . . . (zn−3 − zn−1) and zn− 1z1z2(z1 −
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z3)(z2− z4) . . . (zn−3− zn−1). The last two coordinates of v1, v2, . . . , vn−3 equal
to 0.

The proof of this statement can be obtained via straight usage of mathemat-
ical induction. This statement was used in [3] for the prove of the fact that girth
D(n,K) is at least n+ 5 in the case of integrity ring K.

COROLLARY 1. 1.

Let v0, v1, v2, . . . , vn−1 be the path in the graph A(n − 1,K) with v0 =
(0, 0, . . . , 0) and ρ(vi) = zi. Then the last coordinate of the destination point
vn−1 is z1z2(z1 − z3)(z2 − z4) . . . (zn−3 − zn−1). The last coordinate of vn−2 is
zero.

Noteworthy that for the path as above the conditions zi−zi+2 6= 0 and z2 6= 0
hold.

COROLLARY 1.2.

Assume that conditions of previous statement hold, z1 is not a zero and K
is an integrity ring. Then the last coordinate of the tuple vn−1 is not a zero but
the last coordinate of vn−3 is zero.

As we mentioned above the procedure to cut the last coordinate of each
vertex of graph A(n,K) defines colour preserving homomorphism n∆ from the
graph A(n,K) to A(n− 1,K). So if graph A(n− 1,K) has no cycles of length s
then graph A(n, k) does not have C2s as well.

THEOREM 1.1 [4].

Let K be an integrity ring. Then the girth of graph A(n,K) is at least 2n.

Proof. As it follows from the definitions of graphs A(2,K) and A(3,K) they
are isomorphic to well investigated graphs D(2,K) and D(3,K) (see [11]). Thus
their girth are ≥ 6 and ≥ 8 respectively. It means that graphs A(n,K), n ≥ 4
do not contain cycles C4 and C6. So the girth of A(4,K) is at least 8. Let us
consider graph A(5,K) and assume that it has cycle C of length 8. Let (p) be
some point from this cycle. We can apply automorphism τ from 5H which moves
point (p) to point (0, 0, 0, 0, 0). Thus τ(C) is formed by two paths of kind (0),
[v1], (v2), [v3], (v4), [v5] of colours z1, z2, z3, z4, z5 and (0), [u1], (u2), [u3] of
colours y1, y2, z5 such that [u3] = [v5]. Noteworthy that y1 6= z1. Without loss
of generality we can assume that z1 6= 0. Then according to Corollary 1.2 the
last coordinate of [v5] is different from zero but the last coordinate of [u3] equals
0. Thus we get a contradiction. So the graph A(5,K) has no cycles C4, C6 and
C8. It means that its girth is ≥ 10 and graphs A(n,K), n ≥ 5 has no cycles C4,
C6, C8.

Assume that graph A(6,K) has a cycle C of length 10. Without loss of
generality we can assume that C contains zero point and formed by two paths of
kind (0), [v1], (v2), [v3], (v4), [v5], (v6) of colours zi, i = 1, 2, . . . , 6 with z1 6= 0 and
(0), [u1], (u2), [u3], (u4) of colours y1, y2, y3, z6 such that [u4] = [v6]. According
to the Corollary 1.2 last coordinate of v6 is not zero but last coordinate of u4 is
0. So we get a contradiction. Thus girth of A(n,K), n ≥ 6 is ≥ 12. Continuation
of this process for n = 7, 8, . . . justifies the statement.
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The fact that the girth of homogeneous algebraic graphs A(n,K), K 6= F2

defined over the field K is bounded by 2n+ 2 is proven in [4]. So we justify the
following statement.

PROPOSITION 1.1.
Let K be a field with more than 2 elements. Then the girth of graph A(n.K)

is 2n or 2n+ 2.

2 Cryptographically significant corollaries

Let K be commutative integrity ring containing at least two elements. We con-
sider nonempty subsetsR and S ofK[x1, x2, . . . , xn] for n ≥ 1. Let R,SA(n,K[x1, x2, . . . , xn]
be the induced subgraph of A(n,K) of all points and lines with colours from R
and S respectively. According to famous result by D. Hilbert K[x1, x2, . . . , xn]
is also an integrity ring. So the girth of infinite graph A(n, K[x1, x2, . . . , xn]) is
≥ 2n and the following statement holds.

PROPOSITION 2.1.
The girth of graph R,SA(n,K[x1, x2, . . . , xn]) is at least 2n.
COROLLARY 2.1.
Let K be a field 6= F2 and subsets R and S contain the field of constants K

then the girth of graph Γ = R,SA(n,K[x1, x2, . . . , xn]) is 2n or 2n+ 2.
This statement follows from the fact that Γ contains induced subgraph

A(n,K) which contains the cycle of length 2n or 2n + 2. Similarly we get the
following statement.

COROLLARY 2.2.
Let K be a field of odd characteric p and subsets R and S contain prime field

Fp then the girth of graph Γ =R,S A(n,K[x1, x2, . . . , xn]) is 2n or 2n+ 2.
These results about the girth of induced subgraphs can be used for further

investigation of properties of cryptographic systems based on symbolic compu-
tations with usage of graphs A(n, Fq[x1, x2, . . . , xn]) such as [5, [6], [7], see also
4 and [8] and further references.
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