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Abstract—Digital Signature Schemes such as DSA, ECDSA,
and RSA are widely deployed to protect the integrity of security
protocols such as TLS, SSH, and IPSec. In TLS, for instance,
RSA and (EC)DSA are used to sign the state of the agreed upon
protocol parameters during the handshake phase. Naturally,
RSA and (EC)DSA implementations have become the target
of numerous attacks, including powerful side-channel attacks.
Hence, cryptographic libraries were patched repeatedly over
the years.

Here we introduce Jolt, a novel attack targeting signature
scheme implementations. Our attack exploits faulty signatures
gained by injecting faults during signature generation. By
using the signature verification primitive, we correct faulty
signatures and, in the process deduce bits of the secret signing
key. Compared to recent attacks that exploit single bit biases in
the nonce that require 245 signatures, our attack requires less
than a thousand faulty signatures for a 256-bit (EC)DSA. The
performance improvement is due to the fact that our attack
targets the secret signing key, which does not change across
signing sessions. We show that the proposed attack also works
on Schnorr and RSA signatures with minor modifications.

We demonstrate the viability of Jolt by running experi-
ments targeting TLS handshakes in common cryptographic li-
braries such as WolfSSL, OpenSSL, Microsoft SymCrypt,
LibreSSL, and Amazon s2n. On our target platform, the
online phase takes less than 2 hours to recover 192 bits
of a 256-bit ECDSA key, which is sufficient for full key
recovery. We note that while RSA signatures are protected in
popular cryptographic libraries, OpenSSL remains vulnerable
to double fault injection. We have also reviewed their FIPS
hardened versions which is slightly less efficient but still
vulnerable to our attack. We found that (EC)DSA signatures
remain largely unprotected against software-only faults, posing
a threat to real-life deployments such as TLS, and potentially
other security protocols such as SSH and IPSec. This highlights
the need for a thorough review and implementation of faults
checking in security protocol implementations.

1. Introduction

RSA and Digital Signature Algorithms (EC)DSA have
been serving for over two decades as the backbone of
our security network. Naturally, it has become the target
of numerous attacks, especially ones exploiting imperfec-
tions in its implementation. While developers have come
a long way in protecting against side-channel attacks, the
development and vulnerability testing methodologies are far
from perfect. For instance, [1] surveyed 44 developers of
27 prominent open-source cryptographic libraries and found
that, while most developers are aware of timing attacks and
of their potentially dramatic consequences, they choose to
prioritize other issues over the perceived huge investment
of time and resources currently needed to make their code
resistant to such attacks. Quite naturally, vulnerabilities,
including leakages in RSA and ECDSA implementations,
are far from being resolved. While most leakages have been
fixed, cryptanalytical techniques for recovery have advanced
to the point where extremely subtle leakages as small as a
bit have been exploited to yield full key recovery [2].

Curse of EC(DSA) Nonces. A well-known and often ex-
ploited weakness is that of the nonce values used during the
signing process [3], [4], [5], [6], [7], [8], [9]. Nonces are
required to be uniform and free from any bias. Otherwise, a
number of techniques can be used to efficiently recover the
secret key from signature samples. Hence, developers need
to make sure their random number generators are free of
any biases and their implementations of sensitive functions
are free from leakage. In particular, software-only attacks,
such as the ones exploiting signature generation timing [6]
have repeatedly shown to be effective in recovering signing
keys. Most (EC)DSA implementations, therefore, have de-
ployed countermeasures to achieve constant-time execution.
Despite these efforts, (EC)DSA implementations are still
being haunted by subtle leakages.

Fault Injection Attacks. Beyond passive attacks, signature
schemes have been a target of active tampering, such as in
fault injection attacks. Early on, Boneh et al. [10] introduced
so-called Bellcore attacks, showing how glitches introduced



during CRT-based exponentiation can be used to recover
RSA keys from faulty signatures. Early practical attacks
targeted smartcards. For instance, [11] uses glitching to zero
out part of the nonce in DSA and recover the key using a
lattice attack, while [12] used faults to target information
flow and retrieve parts of the ephemeral ECDSA key. Ravi
et al. [13] experimented with electromagnetic fault injection
on the post-quantum signature scheme and NIST finalist
Crystals-Dilithium. With the proliferation of attacks target-
ing the nonces and imperfect randomization, deterministic
versions of DSA and schemes such as EdDSA emerged
with the promise of built-in resilience. Ambrose et al. [14]
question the merits of deterministic schemes by introducing
differential fault attacks against them and propose various
low-cost countermeasures to protect real-life deployments.

Scanning for Natural Faults. Most relevant to our study
is the Technical Report Weimer published in 2015 [15].
Weimer demonstrated that active scans performed in TLS
traffic over months can reveal errors in RSA signatures. The
faults in several hundred faulty signatures led to the com-
promise of private keys. The faults were traced to devices
by several vendors. Most significantly, Weimer linked the
source of the faults to the failure of several TLS libraries
to implement fault-checking mechanisms in the signing
code. The work demonstrates the fragility of RSA signature
padding and the possible threats that come with generat-
ing signatures at a massive scale on imperfect hardware.
More recently, Sullivan et al. [16] similarly scanned their
university networks’ logs for faulty signatures generated
in TLS 1.2 and were indeed able to recover RSA keys,
including those of a Alexa top-10 site, several browser-
trusted wildcard certificates for organizations that used a
popular VPN product, etc. This work demonstrated that,
despite the addition of RSA signature fault checks in TLS
libraries, the threat still persists.

Software Faults via Rowhammer. The emergence of
Rowhammer gave a realistic tool for an attacker to inject
software faults without direct physical access. In [17], for
instance, Razavi et al. demonstrated an end-to-end attack
breaking OpenSSH public-key authentication and GPG sig-
nature forgery. In their attack, Rowhammer is used to inject
bit flips into the RSA public key modulus until factorization
and thereby secret key recovery is achieved. Weissman et al.
[18] demonstrated a Bellcore attack on a CRT-based RSA
implementation in WolfSSL, to recover secret keys on an
FPGA enabled cloud platform. Further, in [19] Poddebniak
et al. analyze the security of deterministic ECDSA and
EdDSA signature schemes and find that the elimination
of randomization enables new kinds of fault attacks. The
authors demonstrate a successful Rowhammer attack on
EdDSA, but also show that EdDSA, as used in the TLS,
SSH and IPSec protocols, remains immune to their attack.

Signature Correction Attack. More recently, Rowhammer
was used by Mus et al. [20] to target the NIST Round 2
competitor, signature scheme LUOV. The attack works by
injecting faults via Rowhammer and then tracing the fault

to the faulty signature output, recovering a fraction of the
internal secret bits in the process. This process continues
until a breakdown in the system of multi-variate equations
is reached, enabling full key recovery. A more enhanced ver-
sion, called the Signature Correction Attack, was developed
by Islam et al. [21] to target Crystal-Dilithium, the finalist
of the NIST post-quantum signature competition. The attack
again uses Rowhammer to inject faults during signing, and
subsequently corrects faulty signatures to deduce key bits of
Crystals-Dilithium. This shows that post-quantum schemes
are also vulnerable to fault injection attacks.

In this work, we demonstrate that signature schemes
in common cryptographic libraries are still vulnerable to
software-only fault injection attacks. Specifically, we em-
ploy Rowhammer and Signature Correction adapted to
work with (EC)DSA, Schnorr and RSA signatures, to
achieve full key recovery. The main advantage of Jolt
is that implementations commonly implement countermea-
sures against Bellcore and Nonce based attacks. Thus, most
(EC)DSA and some RSA signature implementations remain
vulnerable to Jolt.

Our Contribution

We present a fault injection attack on popular signature
schemes:
• Our technique works by co-locating with the victim and

injecting faults into the victim memory space, e.g., using
Rowhammer. The faulty signatures are post-processed
using a novel technique called Jolt, an ElGammal style-
specific Signature Correction Attack, which yields the
signing key. The attack applies to ElGammal style sig-
nature schemes such as (EC)DSA, Schnorr and RSA
signatures.

• We analyzed popular cryptographic libraries such
as OpenSSL, WolfSSL, LibreSSL, Microsoft
SymCrypt, Amazon s2n and determined that their
TLS 1.2 and 1.3 implementations are vulnerable to
the proposed attack. We have also reviewed their FIPS
hardened versions which is slightly less efficient but
still vulnerable to our attack. Further in Microsoft
Symcrypt, only the first signature is checked, leaving
further signatures unprotected.

• We demonstrate full ECDSA signing key recovery in
OpenSSL. Specifically, with faults injected in less than
2 hours of the online phase, we recover 192 bits using
515 signatures, which are then post-processed with 232

complexity to yield the full 256-bit ECDSA signing key.
This is the first end-to-end demonstration of a signature
correction attack in a real-world setting in TLS server-
client communication.

• In addition to existing DDR3 Rowhammer vulnerability
profiles, 4 new DDR4 DRAM chips from various vendors
and 1 new DDR3 DRAM chip are profiled.

• Further, we demonstrate that despite extensive fault
checks implemented in OpenSSL, RSA signatures are
still vulnerable to Signature Correction Attacks, resulting
in the gradual exposure of bits of the signing key.



• Finally, while we demonstrate the viability of our attack
on TLS, other security protocols that rely on signatures
might also be potentially vulnerable.

1.1. Outline of the Paper

The rest of the paper is organized as follows. In Sec-
tion 2, we summarize known attacks exploiting leakages
and briefly explain Rowhammer fault injection and proposed
countermeasures in the literature. In Section 3, we provide
the threat model for Jolt. In Section 4, we explain the Jolt
Signature Correction Attack on secret key and nonce leakage
on ECDSA. In Section 5, we show how Jolt works on
Schnorr and RSA signatures. In Section 7, we present the
results of our experiments performing Jolt on TLS Hand-
shakes. Additionally, we present a vulnerability analysis
of popular cryptographic libraries, a summary of possible
countermeasures and finish with the conclusions.

2. Background

2.1. Partial Leakage Attacks on ECDSA

The ECDSA primitives are briefly summarized in the
Appendix. In this section, we summarize techniques for
exploiting partial leakages from (EC)DSA.

2.1.1. Exploiting Leakages from the nonce k. A standard
assumption in cryptographic schemes is that nonces are
collected from uniform sources. In practice, however, this
is difficult to achieve, e.g., because there might be inherent
biases in the random number generation mechanisms, or
some bits might be revealed either due to implementation
bugs or through side-channel leakages.

It is well known that leakage of even a small number of
nonce bits may be exploited to recover the key. Such leakage
can be used to formulate the problem of recovering the key
and solve a version of the hidden number problem (HNP)
introduced by Boneh and Venkatesan [3]. In practice, there
is always a trade-off between the size of a leakage and the
number of collected signatures needed to solve the HNP.

One can reduce HNP to Closest Vector Problem (CVP)
and solve the lattice problem depending on the key size
and the number of leaked nonce bits. For example, Lattice-
based techniques [4], [5], [6], [7], [8], [9] allow efficient
key recovery for small signature sizes, such as 2 bit leakage
for 160-bit signatures and at least 4 bit leakage for 256-bit
signatures with few (100s) signatures. On the other hand,
lattice based techniques do not work for less data leakage
[22], [2]. For less than 2-bit leakage, even extremely subtle
leakages have been exploited to yield full key recovery for
less than 192-bit ECDSA signatures. [2], [22], [23].

De Mulder et al. [24] revisited Bleichenbacher’s idea of
using Fast Fourier Transformation (FFT) [25] by deploying
BKZ-based approach to reduce the complexity of collecting
signatures for collision search. They succeeded in recovering
the full secret key by using 5 MSB nonce bits of 4000

signatures. Aranha et al. [22] improved the idea by using
a GLV/GLS decomposition technique to reduce the need of
nonce leakage to a single bit with a signature budget of 233
for 160-bit ECDSA.

In [2], Aranha et al. exploit small timing differences
in the Montgomery ladder implementation to guess the
MSB of nonces in ECDSA with high probability. They
succeed in reducing the need for nonce leakage and the
number of signatures required for key recovery. That said,
still an impractically high number of signatures (with nonce
leakage) are needed for breaking ECDSA for more than
192-bits.

2.1.2. Exploiting Leakages from the Secret Key d. Partial
leakage attacks on ECDSA concentrate on the leakage from
biased nonces. De Michelli et al. [26] note that there are
no known attacks capable of exploiting scattered partial
leakages from the secret key of ECDSA. We will explain
our method for overcoming this problem in Section 4.3.2.

2.2. Fault Injection via Rowhammer

As the complexity of the programs and computational
power of processors increase, memory systems became the
limiting factor in terms of both capacity and latency. This
trend forced modern DRAM technology to become more
compact. As DRAMs get denser, they also become more
prone to disturbance errors [27]. Therefore, DRAM rows
need to be periodically refreshed due to charge leakage in
the capacitors. If one memory row is accessed repeatedly,
it might cause interference with the neighboring rows due
to the dense memory structure, resulting in faster leakage.
If the refresh rate cannot keep up, bit flips may occur. This
phenomenon, which is known as the Rowhammer vulnera-
bility, was first introduced by Kim et al. in 2014 [27]. Using
Rowhammer, an attacker is able to inject bit flips into the
victim memory, even if the attacker resides in a process
logically isolated from the victim process.

Modern CPUs and memory systems isolate processes
by two distinct levels of address translations. The Memory
Management Unit (MMU) is responsible for translating
virtual addresses to physical addresses and managing page
allocations. The pagemap file in Linux systems stores
virtual to physical address translations and requires admin
privileges to read. The physical address is then further
translated into channels, ranks, banks and columns inside
the DRAM by the memory controller. To successfully flip
bits via Rowhammer, an attacker needs to bypass these trans-
lation barriers and find physically neighbor rows in DRAM.
The DRAM address translation is not publicly disclosed for
modern CPUs. However, Pessl et al. [28] showed that the
translation is deterministic and can be reverse engineered.
After finding physically neighboring rows, an attacker can
repeatedly access their own rows and cause bit flips in the
neighboring rows.

Further improvements of Rowhammer and demonstra-
tions in practical attacks followed. Seaborn et al. [29] im-
proved Rowhammer by hammering in two rows that sand-



wich the victim row, resulting in faster leakage in the victim
cells. Gruss et al. [30] achieved root access with opcode
flipping in sudo binaries. Gruss et al. [31] and Ridder et
al. [32] have shown that Rowhammer can even be applied
through JavaScript in browsers remotely. Tatar et al. [33] and
Lip et al. [34] have shown that Rowhammer can be made
to work remotely over a network. Further, Rowhammer
has been shown to work in cloud environments [35], [36]
and heterogeneous FPGA-CPU platforms [18]. In addition
to that, Veen et al. [37] have shown that Rowhammer
attack can be implemented on commodity mobile platforms.
Kwong et al. introduced RamBleed [38], an attack that
exploits the data dependency of Rowhammer to recover
bit values directly from victim memory. Rowhammer has
also been used to target cryptographic libraries, e.g., Mus
et al.[20] and Islam et al.[21] used Rowhammer to inject
faults into two post-quantum signature schemes, LUOV and
Dilithium, to achieve key recovery. Rowhammer has also
been used to inject faults into machine learning models to
cause misclassification [39].

Numerous techniques have been proposed to detect [40],
[41], [42], [43], [44], [45], [46], [47] and mitigate [31],
[37], [48] Rowhammer. Gruss et al. [30] have shown that
all of these countermeasures are ineffective. A number
of countermeasures require modifications to the hardware,
bootloader or a BIOS update [48], [49], [50], [27], [51],
[52]. In practice, such techniques are rarely implemented.
Cojocar et al. [53] in 2019 reverse engineered the ECC
memories showing that ECC countermeasure is not secure
either. Another hardware countermeasure, Target Row Re-
fresh (TRR) on DDR4 chips, has also been bypassed [54],
[55] using n-sided and non-uniform Rowhammer patterns.
Ridder et al. [32] applied this work to attack TRR enabled
DDR4 memory from JavaScript and claimed that more than
80% of the DRAM chips in the market are still vulnerable
to the Rowhammer attack.

3. Threat Model

Our model is similar to those in other Rowhammer
attacks [27], [30], [56], [35], [36] where the attacker needs
co-location in the same system as the victim. Specifically
our threat model assumes
• The adversary runs a process with read write access to

DRAM devices shared with the victim. The adversary has
the ability to run a TLS client and connect to the server
run by the victim.

• The victim and the adversary may, but do not have to, run
on the same kernel. The kernel(s) are considered secure
and free of any software vulnerabilities with process
isolation in place to logically separate the adversary from
the victim. In fact, the adversary and the victim may run
on completely separate machines as long as the DRAM
is shared.

• The adversary runs isolated as a common user process
with no root privilege hence has no access to services that
expose mapping between virtual and physical memory
addresses.

• The shared DRAM devices are vulnerable to
Rowhammer-induced bit flips. While certainty is
not required, higher probability flips will yield faster
attacks.

Note that the co-location can range from trivial to subtle,
i.e. victim and attacker processes may run on the same host,
or in virtual machines hosted on a shared server, or even in
separate CPUs sharing a memory subsystem. Microarchitec-
tural attacks commonly assume some form of co-location.
Meltdown, for instance, requires execution on the same
processor, Spectre assumes a shared Branch Prediction Unit,
while cross-hyperthread MDS attacks require co-location
with the victim on the same core.

4. Jolt: Signature Correction Attack

The Jolt attack proposes novel algorithms targeting El-
Gammal style signature such as (EC)DSA, Schnorr, and
RSA signatures. The Signature Correction Attack is a frame-
work to use fault injection, to recover secrets by correcting
the faulty signatures, as demonstrated on LUOV [20] and
Dilithium [21]. We introduce Jolt, a specialized Signature
Correction Attack which specifies where to inject the faults,
how to correct the faulty signatures, and how to recover the
remaining bits on ElGammal style signatures.

These signature schemes are commonly used to secure
TLS handshakes, SSH and IPSec protocols. Jolt exploits the
fact that most cryptographic implementations of (EC)DSA
do not verify the signature after a signing operation. Hence,
before the signing operation Jolt injects faults into the secret
signing key, collects the resulting faulty signatures and using
a novel post-processing technique recovers bits of secret key
(or nonce). Note that here, for simplicity, we demonstrate the
details of the attack on ECDSA. Note also that, in Section 7
we are going to use Jolt to exploit TLS Handshake and
recover full signing key d.

Similar to other Signature Correction based attacks [20],
[21], Jolt works in three distinct phases:
1) Offline Memory Profiling Phase: The attacker studies

the memory system to identify vulnerable (flippy) loca-
tions by allocating memory pages and running hammer-
ing experiments. This is the most time consuming part
of the attack. However, the victim does not have to be
actively running (or even present) on the machine during
this phase.

2) Online Faulting Phase: In this phase, the attacker and
victim are co-located on the same memory subsystem.
While the victim is performing ECDSA signing opera-
tions, the attacker injects faults in the previously studied
(but since released) memory pages. Any resulting faulty
signatures are collected by the attacker from the network
traffic.

3) Offline Post-processing Phase: This is where the Sig-
nature Correction Algorithm is used on each faulty
signature; first, the error pattern is recovered and the
corresponding secret key bit is deduced from the error
pattern. If the number of faulty signatures is not sufficient
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Figure 1: The physical addresses of pages are contiguous
when the peaks found by SPOILER are equally distant.

to fully recover the remaining key bits using exhaustive
search, we run a modified version of Shanks’ algorithm.

In what follows we explain these steps in greater detail.

4.1. Offline Memory Profiling Phase

To inject faults via Rowhammer into ECDSA secrets,
e.g. the secret signing key d or the nonce k, the attacker
needs to identify the flippable locations in the physical
memory and collect addresses that will fall into the same
bank and in adjacent hammering rows.

4.1.1. Finding Contiguous Memory. With the aim of al-
locating the attacker rows near the victim rows, we first
find physically contiguous memory addresses. For finding
contiguous physical memory, one of the methods is using
huge pages which guarantees consecutive virtual addresses
to be contiguous in physical address space as well. However,
it requires a special system configuration. Since we do
not assume any special configuration or privilege, we use
SPOILER vulnerability [57] in Intel CPUs, which allows us
to detect 8MB of contiguous chunks of physical addresses
from the user space. Figure 1 shows the equidistant peaks,
which correspond to pages that belong to the same 8MB
memory chunk. We refer readers to [57] for details of
SPOILER implementation.

4.1.2. Finding Neighbor Rows. Following the allocation of
the contiguous memory chunk, we find the pages that are
mapped into the same DRAM bank. For this, we leverage
row conflict side-channel [28] which gives us the pages
mapping to the same bank. As we know, accessing two
addresses from two different banks causes low memory
latency compared to accessing them from the same bank.
The reason behind this is that accessing two addresses from
the same bank will cause one row to be written back to
its original position before another row can be loaded into
the row buffer. The measurements from the experiment are
shown in Figure 2, where we have set a threshold value of
380 clock cycles to extract the addresses that are located in
the same DRAM bank.

Figure 2: Histogram of access times to the pages in the
buffer. The pages that are physically located on the same
DRAM bank take longer to access due to row conflict. We
set the threshold to 380 clock cycle for distinguishing the
pages on the same DRAM bank.

4.1.3. Finding Flippy Locations. After successfully allo-
cating rows in the same DRAM bank within a contigu-
ous physical memory, we mounted a practical Rowhammer
attack. For systems with DDR3 DRAM, we implement a
double-sided Rowhammer attack where each victim row is
surrounded by an aggressor row from top and bottom. For
DDR4 systems, double-sided Rowhammer does not work
due to the TRR mitigation. Therefore, we implement n-sided
Rowhammer attack where multiple victim rows are targeted
in an alternating aggressor and victim row placement. Then,
we identify the rows with bit flips by repeatedly accessing
(hammering) the aggressor rows and checking the value
changes in the victim row.

4.2. Online Phase: Injecting Faults into ECDSA

Using Rowhammer, we can (probabilistically) target a
number of variables, e.g., the secret signing key d, the nonce
k before or after its inverse is computed, or its inverse k−1

or the signature s1. For the attack to be successful, however,
we need the fault to be

• Traceable to an exhaustible number of possible fault
patterns in the faulty signature; and

• Masking a secret to permit us to deduce the secret.
Traceability ensures that we can recover the error; however,
for the error pattern to be useful, it should apply to a secret.
We identify two targets in ECDSA, i.e. the nonce k (before
inversion) and the signing key d either of which can be
chosen in this stage for Rowhammer fault injection.

4.2.1. Mapping the Secret to Flippy Locations. To be
able to flip bits in the ECDSA key, we need to manipulate
the memory so that the key is located in one of the victim
rows that we identified in Section 4.1.3. After unmapping
the flippy locations, the victim generates/loads the private

1. Note that another approach would be to bypass or modify computa-
tional steps targeting code/instructions instead of data in memory. However,
such attacks are beyond the scope of this work



key. Since the Linux Buddy Allocator allocates recently
unmapped physical pages on the page cache frame in first-
in-last-out order [58], the private key is mapped into the
flippy row. Alternative methods that can be used for mapping
the victim are spraying [29], [35], [56], waylaying [59], [38],
[60] or grooming [37].

In what follows, we consider concrete attack targets and
discuss the error recovery mechanisms in the offline phase.

4.3. Offline Phase: Post-processing

4.3.1. Signature Correction with Faulty d. Another option
is to inject the fault to the private key d after key genera-
tion/during signing. d̄ = d + ∆d where ∆d is the injected
fault in d. Since d is used only in signature generation s, r
stays the same and faulty s is s̄ = k−1(H(M)+ d̄r) mod n.
Therefore, the faulty signature is generated as (r, s̄). It is
obvious that signature is going to fail during verification.
The details of Signature Generation and Verification steps
are given in Algorithms 1 and 2.

Algorithm 1 ECDSA Signing with a faulty private key

1: Input: A message M ∈ {0, 1}∗, private key d̄ = d+∆d,
2: Output: Faulty signature (r, s̄)
3: Choose a nonce/ephemeral key k ∈ Z∗

n.
4: Compute the curve point R = kP , and compute the x

coordinate Rx = r = (kP )x.
5: Compute s̄ = k−1(H(M) + d̄r) mod n.
6: return Signature pair (r, s̄).

Algorithm 2 ECDSA faulty signature verification attempt

1: Input: Signature (r, s̄), a message M ∈ {0, 1}∗, public
key Q ∈ E,

2: Output:
3: Compute H(M).
4: Compute w̄ = (s̄)−1 = k(H(M) + d̄r)−1 mod n.
5: Compute ū1 = H(M)w̄ mod n.
6: Compute ū2 = rw̄ mod n.
7: Compute R̄ = ū1P + ū2Q ∈ E.
8: Take r̄ = (R̄)x.
9: If r̄ == r: verify, Else reject.

10: return Reject since r̄ ̸= r.

Claim 1. An observation on Correctness
The difference introduced by the fault can be captured
as R̄+∆dū2P = R.

Proof Sketch. Using the public key Q = dP and d̄ =
d + ∆d. Also w̄ = s̄−1 = k(H(M) + d̄r)−1. Expand the
LHS as follows

R̄+∆dū2P = ū1P + ū2Q+∆dū2P

= k(H(M) + d̄r)−1(H(M) + dr +∆dr)P

= kP = R

Finding ∆d. We can efficiently find ∆d from the Claim 1.
Note that, R̄ and ū2 are generated for verification, P is
publicly known. Since r is known, we can find R by
inserting into underlying elliptic curve E. All that remains is
to use R̄+∆dū2P = R to check all possible error patterns
∆d. For m-bit private key d, we need 2m trials to find 1-bit
fault of the injected ∆d. The doubling is due to the fact
that we need to try both positive (0 to 1 faults) and negative
error patterns (1 to 0 faults). Further, we need 22

(
m
2

)
trials

to find a 2-bit fault and recover 2 bits of ∆d. Once the fault
pattern ∆d is found, the log of its magnitude gives us the
location of the fault, and its sign gives us the value of the
bit of d, e.g. negative is decoded as a logic 1 bit and positive
into a logic 0 bit value.

4.3.2. Recovering the remaining bits of d. While
Rowhammer is a great tool, it allows recovery of only a
limited number of key bits due to the unflippable memory
cells and repeating bit flips. Even after recovering most
of the bits using Rowhammer, it takes significant time to
exhaust all the remaining bits. Assuming t < m bits are
recovered out of m = log(n). The DLP problem with the
information gained from bits of the secret key d, which we
call hints, can be formalized as follows.
Definition 1 (Generalized DLP with Hints). Given a finite

cyclic group G of order n, a generator α of G, an
element β ∈ G, and t < log(n) randomly selected bits
of d, find the integer d, 0 ≤ d ≤ n−1, such that αd = β.

Note that, hints are randomly distributed over d. Unfortu-
nately, efficiently recovering d with more than few chunks
of unknown bits is an open problem [26].

The most obvious but least viable approach is to run
an exhaustive search attack on the remaining w = m −
t bits on the public key Q = dP . We gain exponentially
with increasing t, however, ideally, we would like to take
advantage of DLP algorithms with square-root complexity.

We overcome this open problem by modifying Shanks’
Algorithm as follows.

Modified Baby Step-Giant Step Algorithm. We can adapt
the Shanks’ Algorithm (see Section 2 in Appendix) to take
advantage of the t known bits of d recovered by the Signa-
ture Correction Algorithm. For this, we first represent d as
the sum of two m-bit numbers as the known and unknown
parts of d, d(k) and d′, respectively, i.e., d = d(k) + d′. The
known part d(k) consists the recovered t bits of d, in which
known bits (either 0 or 1) are in place whereas the rest of
the bits (unknown bits) are 0. The unknown part d′ consists
of the unknown w = m− t bits of d, d′ = (d′m−1, . . . , d

′
0)2

in which known t bits are 0.

Q = dP = (d′ + d(k))P ⇒ Q′ = Q− d(k)P = d′P

Hence our DLP problem becomes to find d′ such that Q′ =
d′P where d′ has t zeros and w unknown bits in binary
representation.

We optimize Shanks’ algorithm to solve the size-reduced
DLP problem as follows. First note that, we can skip the



known bits in the algorithm by eliminating (neither com-
puting nor storing) known bits and using related values
from the Lookup Table. Every bit we have recovered will
reduce the computation and storage needs by half. We start
by eliminating known bits from the equation then continue
pre-computing some points on the Elliptic curve using the
bits of the unknown part. Then we create a Lookup table
for the first w1 unknown least significant bits of d′ (Baby
Steps). Finally, we search for a point on the Elliptic curve by
w2 = w−w1 most significant part of the unknown bits that
matches a point in the Lookup table (Giant Steps). When
we find a match, we can deduce all the unknown bits of d,
namely d′, recovering d = d′+d(k). Note that, to keep track
of the bits in the algorithm, we represent d′ in two different
forms: as m bits and as w bits (only the unknown bits) as
follows:

• m-bit representation is d′ = (d′m−1, · · · , d′0)2 where
d′i = 0 if d′i is known, else, d′i = d′wj

.
• w-bit representation is d′ = (d′w−1, · · · , d′0)2.

The proposed Modified Baby Step-Giant Step Algorithm is
shown in Algorithm 3. We can summarize Baby Step-Giant
Step Algorithm in four main steps:
1) Eliminating Recovered Bits: In this step, we reduce the

size of the DLP problem by eliminating known bits from
the equation Q = dP . Size reduced problem is Q′ = d′P
in which d′ is still an m-bit number in which t known
bits are set to zero.

2) Precomputation Table: For every unknown bit in d′, a
base point is pre-computed as a power of 2, i.e., Aj =
2iP in which i is the index for m-bit representation and
j is the index for w-bit representation. In other words, we
change the representation of d′ from m-bit representation
to w-bit representation. Store the w-bit index of the bit
j, the m-bit index of the bit aj and the related base point
Aj = 2iP in a Precomputation Table.

3) Baby Step: This step is similar to the Baby-Steps in
Shanks’ Algorithm. We store only the Baby-Step points.
In other words, we find the potential curve points and
its first w1 unknown bits of m-bit representation and
store them in Lookup table. Every point can be com-
puted as Pk = Σw1−1

j=0 kjAj and m-bit coefficient is
bk = Σw1−1

j=0 kj2
aj for the least significant w1 unknown

bits k = (kw1−1, · · · , k0)2 and stored in a Lookup Table
as (k, bk, Pk).

4) Giant Step: This step is similar to the Giant-Steps in
Shanks’ Algorithm. In the search phase, we go through
2w2 possible curve points for w2 unknown most sig-
nificant bits of d′. Every point can be computed by
Bi = Σw2−1

j=0 ijAj+w1
for i = (iw2−1, · · · , i0)2. After

every computation, we check if Q′ −Bi is equal to any
of stored Lookup table points Pk. Unknown bits of d,d′,
are (i)2||(k)2 equivalently d′ = ci + bk for the matching
Q′−Bi = Pk. Return d = d′+d(k). Note that, known bits
in d′ and unknown bits in dk are set to zero. Therefore,
there is no carry bit in the summation of these numbers.
Finally, we note that Shanks’ algorithm is flexible, e.g.

storage usually imposes a more significant restriction and

Algorithm 3 Modified Baby-Step Giant-Step DLP Solver
Input: Cyclic group E with generator |P | = n, and public key Q =
dP ,
m-bit scalar number d in which certain t bits are known.
Output: Unknown w = m− t bits of d, d′.
Initialization

1: Represent d as d = d(k) + d′

2: Compute Q′ = Q− d(k)P // Q′ = d′P
3: Choose w1, w2 s.t. w = w1 + w2 for mem/cycle budgets 2w1 , 2w2

Precomputation
4: j = 0, A = P
5: for i = 0 to m− 1 do
6: if d′i is unknown then
7: Aj = A // Aj = 2iP
8: aj = i // index of m-bit representation
9: Store (j, aj , Aj) in Precomputation Table

10: j = j + 1
11: end if
12: A = 2A
13: end for

Baby Step Computations
14: for k = 0, 1, . . . , 2w1 − 1 do
15: Pk = 0, bk = 0
16: for j = 0 to w1 − 1 do
17: if kj = 1 then // k = (kw1−1, · · · , k0)2
18: Pk = Pk +Aj

19: bk = bk + 2aj // baby step indices
20: end if
21: Store triplet (k, bk, Pk) in Lookup Table T.
22: end for
23: end for
24: Sort Lookup Table T w.r.t. Pk column.

Giant Step Computations
25: Set w2 = w − w1

26: for i = 0, 1, . . . , 2w2 − 1 do
27: Bi = 0, ci = 0
28: for j = 0 to w2 − 1 do
29: if ij = 1 then // i = (iw2−1, · · · , i0)2
30: Bi = Bi +Aj+w1

31: ci = ci + 2aj+w1 // giant step indices
32: end if
33: end for
34: if Q′ −Bi matches any Pk in T then
35: d′ = (ci + bk)2
36: Return d = d′ + d(k)

37: end if
38: end for

computation. One can change the algorithm to precompute
a smaller table with j = 0, . . . , w1 < w values and then
search in a larger space i = 0, . . . , w2 > w1 values with the
condition w1 + w2 = w.

Complexity. The modified Shanks’ algorithm iterates works
in three phases:
• Precomputation: In this phase we scale the base point P

with all powers of 2 and stores the ones for the unknown
locations. Since at most only m iterations and storage are
needed, this part is negligible in complexity.

• Baby step computations: For Modified Baby Step we
need to compute

A(w1) = Σw1
i=1(i− 1)

(
w1

i

)
point additions in E. Note that

(
w1

i

)
is the number of k

values of weight i, each of which require i−1 additions to



assemble kP together from the precomputed Aj values2

For w1 = 32, 35, 40 we obtain A(w1) = 235.9, 239.0, and
244.2, respectively. In table T, we store 2w1 points along
with the indices.

• Giant step computations: The Modified Giant Step does
not need to store any data but still needs to compute
A(w2) point addition operations for Bi, and 2w2 point
additions to compute Q′ −Bi for the comparisons.

All in all assuming uniform distribution of recovered bits,
and an even split, i.e. w1 = w2 = (m − t)/2, the storage
and time complexities of the modified Baby-Step Giant Step
Algorithm are in the order of O(

√
2m−t).

4.3.3. Signature Correction with Faulty nonce k. We
consider the scenario that a fault is injected into k after
kP is computed, i.e., k̄ = k+∆k where ∆k is the injected
fault in k. Note that, ∆k = 2i−1 for the bit flip in the ith

bit of k for 1-bit flip. If there are more than 1-bit flips in k
then ∆k can be written as Σi∈I2

i−1 where I is the set of bit
flip positions in k. Since the fault is injected into k after r is
generated, s is faulty s̄ = k̄−1(H(M)+dr) mod n whereas
r is not faulty. Here H(.) represents a cryptographic hash
function such as SHA-256. Therefore, the faulty signature
is (r, s̄). In Algorithm 4 and 5, you can find the details
of Signature Generation and Verification steps for a faulty
nonce.

Claim 2. An observation on Correctness
The difference introduced by the fault can be captured
as R̄ = R+∆kP

Proof Sketch.

R̄ = ū1P + ū2Q = k̄(H(M) + dr)(H(M) + dr)−1P

= k̄P = R+∆kP.

Finding ∆k We can find ∆k by correcting the faulty

signature and then checking a limited number of possible
error patterns. Thanks to the Claim 2, it is enough to subtract
∆kP from R̄ and check if (∆kP − R̄)x = r or not. Note
that, R̄ is calculated for verification, P is publicly known
and r is known since it is a part of the signature. For an n-bit
nonce, we need 2n trials to recover a 1-bit fault, 22

(
n
2

)
trials

to check for a 2-bit fault patterns. Once the fault pattern ∆k

is found, the magnitude of ∆k gives us the location of the
fault, and the sign gives us the value of the bit of d at this
location. For example, from ∆k = −23, we can deduce
that d3 = 1. Since the direction of change is negative, the
original bit value must have been a logic 1 in this position.

2. The alternative (more costly) approach would be to compute kP for all
possible baby step index values without removing the recovered locations,
by repeatedly adding P to itself and storing the ones with indices that
match the ones at the recovered bits. This would require about 2w1+t/2

additions.

Computing the d from recovered bits of k. An alternative
approach is to exploit the k bits recovered by Signature
Correction using existing techniques such as lattice reduc-
tion [4], [5], [6], [7], [8], [9] or more powerful FFT based
techniques [25], [24], [22], [23], [2]. Lattice reduction tech-
niques allow very efficient key recovery (with only a few
hundred signatures) but require 2 bit leakages for 160-bit
signatures and at least 4 bit leakages for 256-bit signatures.

Due to restrictions imposed by our fault injection mech-
anism, we are only able to recover a single bit from k per
faulty signature3. Hence, we are left with only Bleichen-
bacher’s FFT based approach [25] which was shown recently
[2] to recover the secret key d with bias less than one bit
in k per signature (r, s): s = k−1(e + dr) (mod n). The
less than here means that the attack works with recovered
bits that are only probabilistically correct. This is not a
problem in our attack, where we recover one exact bit
per nonce from each faulty signature. Aranha et al. [22]
employed the FFT approach to attack 160-bit ECDSA where
k is 1-bit biased. They can succeed in retrieving the secret
key with 233 signatures in about 237 time and with 233

memory complexity. To recover a 256-bit ECDSA key d,
they estimate that HNP can be solved with 252 signatures
with 1-bit leakage. A more recent work [2] takes advantage
of leakage in the Montgomery ladder implementation of
ECDSA for FFT based key recovery with fewer signatures.
They estimate that 220 and 245 signatures, for 160-bit and
256-bit curves, respectively, will be required in the best
scenario with 1 bit nonce leakage.

As it relates to our proposed attack, the FFT based
approach may be used to exploit the 1-bit leakage from
the nonces, however, at a significant cost of 245 faulty
signatures. The lower security setting, i.e., for 160-bit curves
with 220 signatures appears to be practical. Finally, we
want to note that, exploiting leakage from k appears more
difficult compared to exploiting leakage from d as it requires
significantly more signatures. However, it is also much more
likely for a memory device to be vulnerable to single bit
flips than many, as required by the former approach, see
Section 7.2. Hence, while much more costly, the FFT based
approach might be the only option for a successful attack
in certain hardware configurations.

Simultaneously exploiting k and d bits. An interesting
open question is how one might pool together the leakages
recovered via Signature Correction to simultaneously exploit
recovered bits of d and k to improve over the attacks
discussed earlier. We are not aware of any such techniques
in the literature.

5. Applying Jolt to Other Signature Schemes

5.1. DSA Signatures

While our description of the Signature Correction Al-
gorithm assumed ECDSA (and used additive notation), the

3. Double flips are rare and even when they occur are likely non-
contiguous, hence not useful for exploitation using existing techniques



Algorithm 4 ECDSA Signing with a faulty nonce

1: Input: A message M ∈ {0, 1}∗, private key d,
2: Output: (r, s̄) signature.
3: Choose a nonce/ephemeral key k ∈ Z∗

n.
4: Compute the curve point R = kP , and compute the x

coordinate r = (kP )x.
5: Inject a fault in k, k̄ = k +∆k.
6: Compute s̄ = (k̄)−1(H(M) + dr) mod n.
7: return Signature pair (r, s̄).

Algorithm 5 ECDSA faulty signature verification attempt

1: Input: Signature (r, s̄), a message M ∈ {0, 1}∗, public
key Q ∈ E,

2: Output: Reject.
3: Compute H(M).
4: Compute w̄ = (s̄)−1 = k̄(H(M) + dr)−1 mod n.
5: Compute ū1 = H(M)w̄ mod n.
6: Compute ū2 = rw̄ = rk̄(H(M) + dr)−1 mod n.
7: Compute R̄ = ū1P + ū2Q.
8: Take r̄ = (R̄)x
9: If r̄ == r: verify, Else reject.

10: return Reject since r̄ ̸= r.

attack applies in an identical manner to DSA by only
changing the group setting to a multiplicative one. To save
space, we refrain from repeating the description.

5.2. Schnorr Signatures

Schnorr signatures are defined using a group G, of prime
order q, with generator α, in which the discrete log problem
is assumed to be hard. We also use a cryptographic hash
function H : {0, 1}∗ → Zq. For key generation we choose
a private signing key d ∈ Z∗

q . The public verification key is
β = αd. To sign a message M :

• Choose random nonce k ∈ Z∗
q .

• Compute r = αk.
• Compute e = H(r||M), where || denotes concatenation

and r is represented as a bit string.
• Compute s = k − de.
• The signature is the pair (s, e).

Verification
• Compute rv = αsβe.
• Compute ev = H(rv||M).
• If ev = e then the signature is verified.

If we inject a fault into d before signing, i.e., d̄ = d +∆d

then the fault propagates into the signature s̄ = k − d̄e and
verification fails since r̄v = αs̄βe and thus, ēv = H(r̄v||M)
and ēv ̸= e. This immediately points to an error correction
strategy that will reveal ∆d.
Claim 3. The difference introduced by the fault can be

captured as r̄v = rvα
−∆de.

This means upon receiving the faulty signature (s̄, e) we
can simply try fixing r̄v by multiplying it with α∆de for all

possible ∆d until the hash result ev matches the received e
during verification. As before, the error pattern allows us to
deduce the corresponding bit of the signing key d.

5.3. RSA Signatures

The Signature Correction approach indeed does apply
on RSA signature with little modification. Very briefly re-
member, in textbook RSA, a public key consists of integers
(N, e), where N = pq is a public modulus obtained as the
product of two large primes p and q, and e represents the
public exponent used in signature verification. In majority
of TLS sessions we have e = 216 + 1. The private key d is
the secret signing exponent obtained as d = e−1 mod ϕ(N)
where ϕ(N) = (p − 1)(q − 1). A textbook RSA signature
on a message M is defined as s = Md mod N . To verify
the signature we check if M = se mod N holds.

In practice, depending on the specifics of the scheme,
i.e. PKCS#1v1.5, PKCS#1v2.1 or RSA-PSS signatures, the
message is processed using a combination of hashing,
padding and possible randomization via a nonce and then
fed into the textbook version as message M described above.

Jolt is agnostic to the specifics, hence, we will as-
sume the input M represents the preprocessed message.
Assume during signing we inject a fault into the signing
key d̄ = d + ∆d thereby obtaining a faulty signature
s̄ = M d̄ mod N . The Signature Correction step would
simply try for possible ∆d = ±2i, where i ranges over the
bits of N , until s̄M−∆d mod N hits the correct signature
which we will know when it verifies using the public key,
i.e. (s̄M−∆d)e = M mod N .

5.3.1. Recovering the full RSA signing key. Using Signa-
ture Correction, we can recover one bit of the signing key d
per faulty signature. This means as in the ECDSA case, we
will obtain a collection of scattered bits of d. While there are
numerous techniques to amplify partial leakages from p and
q or dp = d mod p − 1 or equivalently dq = d mod q − 1,
it remains an open problem to exploit a limited number of
scattered leakages from d to recover the full key [26]. This
means we need to recover a significant fraction of the bits
of d, leaving only an exhaustible number of bits unknown.

6. Attack Strategies

Depending on the partial leakages recovered from
(EC)DSA or RSA, one may choose the most optimal attack
strategy as visualized in Figure 3. Red boxes show attacks
that exploit nonce leakages and provide the number of
signatures required for 256-bit ECDSA. The green boxes
highlight the results of this work. For simplicity, we assume
a conservative limit of 50 bits for tractable space/cycles.

7. Experiment Results

In this section we describe our experiments on TLS.
We first describe Jolt experiments followed by an anal-
ysis of the handshake process through which faulty
signature are collected in selected crypto libraries.
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Figure 3: Summary of nonce/secret key leakage attacks on
m-bit (EC)DSA and RSA signatures.

7.1. Experiment Setup

We evaluate 19 DRAM chips from the two most popular
DRAM generations, DDR3 and DDR4. The raw memory
profiles of 14 DDR3 DRAM chips are taken from [61].
The remaining 5 memory profiles are generated from our
DRAM chips. DDR4 experiments are done on a Ubuntu
20.04.1 LTS system with Intel(R) Core(TM) i9-9900K CPU
@3.60GHz and 4 DDR4 DRAM chips produced by Corsair,
GSkill and Crucial. ECDSA fault injection experiments
are done on a Ubuntu 16.04.7 LTS system with Samsung
DDR3 DRAM chip with serial number M378B5773DH0
and Intel(R) Core(TM) i7-4770 CPU @3.4GHz. The row
refresh interval for all experiments is set to the default value
of 64 ms.

For the ECDSA experiments, we use prime256v1,
a.k.a. the NIST P-256 elliptic curve, where d is 256 bits.
However, our attack applies to any other elliptic curve. We
attack the OpenSSL v3.0.4 implementation, which is the
latest stable version of OpenSSL, as this work is done.

The attacker can initiate the TLS connection request
remotely as long as the IP Address of the TLS Server is
known. Alternatively, the attacker can initiate the connection
using the localhost IP as long as they are co-located in the
same server. As explained in Section 3, the attacker needs
to share with the server the same memory subsystem. To
simplify the experiment setup, we use a single DRAM chip
in the system to ensure both the server and the attacker use
the same memory device.

7.2. Jolt Experiments

Offline Memory Profiling Phase is dependent only on
the DRAM chip. Hence, we evaluate the Offline Memory
Profiling Phase of our attack on 15 DDR3 and 4 DDR4
DRAM chips. Specifically, we take 128MB memory profiles
from each DDR3 DRAM chip and 256MB from each DDR4
DRAM chip and count the number of bit flips that land
on a 256-bit area in a 4KB page. In our setup, profiling
128MB on DDR3 takes 95 minutes and profiling 256MB

Brand Serial Number Size
[GB]

# Flips in
d / profile V

ul
n?

D
D

R
3

Corsair CMD16GX3M2A1600C9 16 232± 7 ✓
Corsair CML16GX3M2C1600C9 16 47± 7 ✓
Corsair CML8GX3M2A1600C9W 8 7± 3 ✗
Corsair CMY8GX3M2C1600C9R 8 245± 5 ✓
Crucial BLS2C4G3D1609ES2LX0CEU 8 4± 2 ✗

Geil GPB38GB1866C9DC 8 55± 7 ✓
Goodram GR1333D364L9/8GDC 8 6± 3 ✗

GSkill F3-14900CL8D-8GBXM 8 231± 8 ✓
GSkill F3-14900CL9D-8GBSR 8 53± 8 ✓
Hynix HMT351U6CFR8C-H9 8 253± 1 ✓

V7 V73T8GNAJKI 8 37± 6 ✓
PNY MD8GK2D31600NHS-Z 6 37± 6 ✓

Integral IN3T4GNZBIX 4 203± 12 ✓
Samsung M378B5173QH0 4 17± 4 ✗
Samsung M378B5773DH0 2 196± 8 ✓

D
D

R
4

Corsair CMU64GX4M4C3200C16 64 255± 1 ✓
Corsair CMK32GX4M2B3200C16 32 1± 1 ✗
GSkill F4-3600C16D-16GVKC 16 196± 10 ✓
Crucial CT8G4DFD824A.C16FF 8 2± 2 ✗

TABLE 1: Number of possible bit flips in d calculated on
14 different DDR3 chips per profile (128 or 256MBs). In
our setup, it takes 95 minutes to profile a 128 MB on DDR3
and 480 minutes to profile 256MB on DDR4 chips.

on DDR4 takes 480 minutes. We observe that, the page
offset of the 256-bit ECDSA key d is fixed in a 4KB
memory page when it is generated in a new session since
ASLR does not randomize the last 12 bits of addresses in
heap memory. However, it changes between different library
versions. Therefore, to analyze the effect of page offset, we
sweep the page offset of d from 0x000 to 0xFFF and take
the average and standard deviation of bit flips. Table 1 shows
the number of bit locations that can be flipped in d. We
observe that the number of bit flips in d is highly dependent
on the DRAM chip and less on the page offset. Although the
number of possible bit flips is low in some DRAM chips,
it is possible to profile another 128/256MB memory buffer
and increase the number of recovered bits. For instance, in
a 4GB memory with a memory buffer size of 256MB, we
have a chance to increase the number of bits at most 16 fold.
The upper bound is due to the overlapping locations. A more
significant limitation is library crashes caused by excessive
flipping in unintended memory locations. The last column
in Table 1 marks the chips as vulnerable where the leakage
in bits of d can be reliably amplified to enable full key
recovery by collecting bits from multiple memory buffers.

We demonstrated the attack over a network by targeting
a TLS server. As the client, each time we initiate a connec-
tion request to the server, by injecting faults into the server
memory, we receive the faulty signature. We implemented
the end-to-end attack on OpenSSL ECDSA implementation
in Samsung M378B5773DH0-2GB and flipped bits in the
secret key.

In the Online Phase, we successfully flipped bits of the
ECDSA key and collected faulty signatures. Although the
shorter private key size compared to the previous work [20],
[21] requires fewer bits to recover, it also introduces new
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Figure 4: Recovered number of bits on an ECDSA private
key d. Dashed line represents the simulated bit flips when
the fault distribution is assumed uniformly random. Solid
line represents the observed number bit flips on d on DDR3
DRAM.

challenges. Since the key size is 256-bit, which is much
smaller than a page size 32,768-bit, most of the bits that
can be flipped land outside of the key. In our experiments,
bit flips that land outside of the key either do not affect
the signature generation (a valid signature is generated)
or the signing operation fails. Specifically, we attempted
the online phase 29,918 times in 170 mins and it did not
crash the operating system. In 22,845 trials, the library was
not affected at all, i.e. it created a signature and verified
successfully. In 6,192 trials, the library was affected, i.e. a
flip was injected, but the attack failed due to library crashes.
In 881 trials, we have seen flips on the secret key, d, and
were able to recover a bit of d from a faulty signature using
the Signature Correction.

In the first 117 mins of online phase, we collected 515
signatures. We have seen 1 time triple bit flips, 39 times
double bit flips and 475 times single bit flips. We did not
observe more than 3 bit flips for d.

In Offline Post-processing Phase, we recovered 192
unique bits (log2(d) = 256) via Signature Correction as
explained in Section 4.3.1 using 515 faulty signatures. The
remaining bits are recovered using the modified Shanks’
Algorithm with 232 space and time complexity (See Algo-
rithm 3.). Figure 4 shows, unique bits recovered on DDR3
is lower than the simulation with the assumption of random
uniform distribution. We claim that the reason for a larger
overlap rate in the bit flips is caused by the Buddy Memory
Allocation system of the Linux kernel. The progression of
recovered bit location are illustrated in Figure 5.

7.3. TLS Handshake Experiments

We can successfully initiate the Jolt attack in most com-
monly used TLS versions 1.2 and 1.3. Although there are
a few key differences between the two, the main difference
between the versions is the number of round trips (fewer in
TLS 1.3) to settle the shared key between communicating
parties. Our attack scenario is not affected by these differ-
ences. Therefore, from now on, we will only focus on TLS
1.3 and explain our attack.

Our attack targets the handshake protocol between a
client and a server to recover the bits of the secret key of
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Figure 5: The progression of unique bit flip locations on
an ECDSA private key d. White and black cells represent
flipped and not flipped bits respectively. After running the
online phase of Rowhammer for 117 minutes, 192 unique
bits are recovered out of 256 bits.

the server. In TLS, a handshake protocol is initiated to set
up a shared key between a client and a server. In our attack
scenario (Figure 6), client is the attacker and server is the
victim. The attacker also has access to the same system that
the server runs on. This is needed in order to inject faults
into the secret key. Below are the steps of our attack during
a TLS handshake:

• The first step of the TLS handshake is initiated by
a client (attacker) by sending the following message:
(ClientHello, KeyShare). The attacker does not
perform any modifications on the message contents.

• Once the server (victim) receives the message from
the client, it creates and sends a response mes-
sage: (ServerHello, KeyShare, VerifyCert,
Finished). Here the attacker targets VerifyCert
message, which contains the signature of the entire hand-
shake. The attacker injects fault into the secret key of the
certificate. Therefore, any signature that is created during
the VerifyCert message step, becomes a faulty sig-
nature, and the message VerifyCert’ becomes faulty.
After the response message (along with the faulty signa-
ture) is created, the server forwards it to the client.

• Once the client receives the response (ServerHello,
KeyShare, VerifyCert’, Finished), it can re-
cover the bits of the secret key from the faulty signature
in VerifyCert’.

The success of this attack is tied to two key steps:

• The attacker needs to inject the fault into the secret
key before the server initiates the signature creation in
VerifyCert step.

• The client (attacker) needs to successfully receive the
faulty signature from the server.



Figure 6: Fault injection during TLS 1.3 handshake.

7.4. Jolt Vulnerabilities in Crypto Libraries

We analyzed a number of prominent crypto libraries
to see how their implementations are handling faults and
whether they are vulnerable to the proposed Signature Cor-
rection Algorithm. The targeted libraries are widely used in
cloud service systems. Specifically, Symcrypt is deployed on
Azure and S2N deployed on AWS. Furthermore, OpenSSL
and LibreSSL are also integrated into and used in S2N, so
we included them on our analysis. Another library WolfSSL
is also included in the analysis since it is the most common
lightweight library that supports embedded systems. As for
other libraries, we encountered incompatibility issues and
opted instead to concentrate on end-to-end attacks including
reception of faulty signatures through TLS. The results of
our analysis are summarized in Table 2. We can group the
targeted libraries into two categories. Ones that only imple-
ment the lower level crypto primitives, i.e. Microsoft
SymCrypt, and others such as OpenSSL, LibreSSL,
WolfSSL and Amazon s2n, that in addition implement
a TLS stack.

In each of the libraries summarized below we,
• First, we manually reviewed the lower level signature

primitives to determine if there are any countermeasures
implemented to prevent fault injection or suppression of
faulty signatures.

• We then injected faults into the secret signing key to
determine if a faulty signature was indeed generated,
which was then subsequently corrected using our Signa-
ture Correction Algorithm.

• Finally, in the libraries where TLS is supported, we have
run a client-server setup, where we injected faults on the
server during signature generation as part of the TLS
handshake, and checked whether the faulty signature was
received on the client side.

• We repeated the experiments on regular releases as well
as FIPS hardened versions of the cryptographic libraries
whenever available.

OpenSSL 3.0.4. OpenSSL software is one of the most
mature and full-featured cryptographic libraries. OpenSSL
supports TLS and also comes with a built-in module that
supports FIPS certification. We have verified that OpenSSL
ECDSA is vulnerable to fault injection, i.e., when faults
are injected on a TLS server to the secret signing key,

1 // SERVER SIDE: Fault injection
2 ...
3 // Enable for *simulated* faults on secret key
4 RandomBitFlip(eckey->priv_key);
5

6 if (eckey->meth->sign != NULL)
7 return eckey->meth->sign(type, dgst, dlen,
8 sig, siglen, kinv, r, eckey);
9 ...

10

11 // CLIENT SIDE: Bit recovery algorithm
12 ...
13 BN_mod_mul(u1, m, u2, order, ctx);
14 BN_mod_mul(u2, sig->r, u2, order, ctx);
15

16 for(test_add=0; test_add<2; test_add++)
17 for(i =0; i<256; i++){
18 //mult with 2**i
19 powmul(u3, u2, i, order, ctx);
20 if(test_add)
21 BN_mod_add(u1,u1,u3,order,ctx);
22 else
23 BN_mod_sub(u1,u1,u3,order,ctx);
24

25 ...
26 /* if the signature is correct
27 u1 is equal to sig->r */
28 if((BN_ucmp(u1, sig->r))
29 return i;
30 }

Figure 7: OpenSSL code snippet for simulated fault injection
on server side and signature correction on the client side

faulty signatures are generated. The faulty signatures go
unnoticed by the server, and are then relayed to the TLS
client. By running the Signature Correction Algortihm on
the faulty signatures, we were able to recover secret key
bits. In Figure 7, we provide a code snippet for simulated
faults on the server side and for the Signature Correction
Algorithm on the client side. Even when FIPS mode is
activated, the OpenSSL TLS server still sends (and the client
still receives) the faulty signatures allowing the attack to
proceed.

Besides ECDSA in the TLS handshake, we detected a
vulnerability that applies to handshakes with RSA. The RSA
library first performs a signing operation which uses the
CRT reduced versions of the secret key and applies the CRT
method to speed up exponentiation. After that, it verifies the
signature. If the signature does not pass, it uses the non-CRT
method to recompute the signature from scratch. However,
after the second signature is computed, there is no check
implemented. Hence, it is possible to force the server to send
faulty signatures by injecting faults into both the secret key
and the CRT encoded versions of the secret key. With this
approach an attacker can bypass the signature verification
and still recover a faulty signature.

wolfSSL 5.3.1. wolfSSL is a lightweight SSL/TLS library
designed for use in IoT, embedded, and RTOS environments.
wolfSSL implements low level cryptographic primitives as
well as TLS 1.3 and a FIPS ready version to support the
FIPS certification of products that use wolfSSL. We have



Library/Version Detected? Signature leaked? Standalone Signature check?

wolfSSL 5.3.1 No transmitted by server Yes None
OpenSSL 3.0.4 No transmitted by server Yes None
OpenSSL-FIPS 2.0.8 Yes transmitted by server Yes PK-SK pair is checked with fix message
LibreSSL 3.5.3 No transmitted by server forked from OpenSSL None
Amazon s2n 1.3.18 No transmitted by server uses OpenSSL for crypto layer None

MS SymCrypt 102.0 No only first signature is detected Yes PK-SK pair is checked with fix message
(for first signature only)

TABLE 2: Summary of results in cryptographic libraries analyzed for Jolt vulnerability

verified the faulty injection attack on ECDSA works on
the TLS server side during the handshake, where the faulty
signatures are received on the client side and corrected to
yield secret signing bits.

Microsoft SymCrypt 102.0. After the addition of asym-
metric schemes in Windows 10 (1703 release), SymCrypt
has been the primary crypto library for all algorithms in
Windows. Besides providing safety and assurance, a goal of
SymCrypt is to support FIPS 140-2 certification. SymCrypt
does not implement TLS. However, a SymCrypt-OpenSSL
module allows SymCrypt primitives to be used to secure
TLS connections.

In our SymCrypt experiments, we have first injected
faults into the secret signing key obtaining faulty signatures,
which we used to recover key bits via the Signature Correc-
tion Algorithm. When FIPS mode is enabled, whenever a
new ECDSA key is generated or used for the first time,
it is verified throwing an error when a fault is injected.
Nevertheless, if faults are injected after the first signature
is generated, then the fault goes unnoticed and our attack
works. Hence, by implementing a short time delay before
injection starts, faulty signatures can be collected from
SymCrypt as well.

LibreSSL 3.5.3. LibreSSL is a TLS/crypto stack originally
forked from OpenSSL. It supports TLS, however, does not
support FIPS. We have verified that, LibreSSL TLS is
vulnerable. Fault injection into the secret key during ECDSA
signature generation does generate faulty signatures, which
are then relayed to a client. On the client side, we were
able to run the Signature Correction Algorithm on the faulty
signature and recover secret key bits.

Amazon S2N-TLS 1.3.18. S2N-TLS is an implementation
of TLS/SSL protocols designed by Amazon for use in AWS.
Their library is structured in a way to make use of other
cryptographic libraries as an underlying framework. They
currently support OpenSSL, LibreSSL, BoringSSL, and the
Apple Common Crypto libraries. We performed our tests the
OpenSSL library since that comes as default from Amazon.
In this setting, we simulated the attack slightly differently
since it is built on top of another cryptographic library. We
know that OpenSSL is vulnerable to our attack. Therefore,
we focused on checking if the signatures were still sent
by the server even if they were faulty. Right after the
cryptographic library performed the signing operation, we
injected fault into the signatures. The server still sends the

faulty signature to the client without performing any checks.
Hence, we can still receive and recover the secret bits on
the client side.

8. Responsible Disclosure

We have disclosed our findings to the security teams
of OpenSSL, WolfSSL, LibreSSL, Microsoft, and AWS
and received confirmation of disclosure receipt. Amazon-
s2n (CVE-2022-42962), WolfSSL (CVE-2022-42961), Li-
breSSL (CVE-2022-42963) verified the vulnerability and
shared candidate patches that incorporate ”Verify after
Sign” to our team. After verification the patches were re-
leased to the public. The OpenSSL and Microsoft Symcrypt
teams validated the vulnerabilities, but opted against issuing
patches, stating that Rowhammer is currently not in their
threat model.

9. Countermeasures

In this section, we mostly focus on software-based
defense, taking into account that architectural solutions,
while more powerful, incur substantial overhead and require
significant reengineering. We provide a brief overview of
countermeasures to inhibit Rowhammer and mitigate Jolt.

9.1. Rowhammer Countermeasures

Rowhammer has become a powerful tool for attacking a
broad class of DRAM chips and has therefore commanded
the attention of device manufacturers and researchers. Here,
we only summarize the most prominent countermeasures.

Increasing DRAM Refresh rate. One of the standard
Rowhammer countermeasures are to take away the root
cause by increasing the refresh rate, i.e., reduce the refresh
window below 64 ms. This will significantly reduce the
chances of flips at the cost of increasing the power con-
sumption and decreasing performance.

Using ECC. Early on, use of error-correction code (ECC)
which is readily available in many chipsets, was recom-
mended [27]. Although ECC can correct single bit flips and
detect double bit flips, [62] showed that it is possible to by-
pass ECC by locating and flipping three or more bit locations
within a word using timing side-channels. Therefore, while
it helps in practice, ECC is not a strong countermeasure.



Target Row Refresh. Recently Target Row Refresh (TRR),
which utilizes mitigative distance-1 aggressor row refresh,
has proved to be working well against detecting and mitigat-
ing distance-1 Rowhammer attacks. However, quite recently
Halfdouble [63] attack was circumventing TRR. Halfdouble
has shown that by hammering distance-2 aggressor rows,
one might exploit the TRR mitigative refreshes of distance-
1 aggressor rows to the effect of increasing the likelihood of
getting bit flips in the victim rows. The authors recommend
also refreshing distance-2 aggressor rows as a potential
defense mechanism and leave it as an open question on
how wide of a refresh window needs to be implemented
around the victim row. Furthermore, tackling the contiguous
memory allocation through the underlying system allocator,
will make the system more resilient to the Halfdouble attack.

9.2. Signature Correction Attack Countermeasures

Verify after Sign. Using this verify after sign, approach
a sender can detect the existence of an adversary injecting
faults via Rowhammer. The advantage of the verification
algorithm is that it is approximately three times faster than
the double signing procedure. Moreover, a verification step
is trivial to implement in existing libraries. That said, the
downside of verify after sign is that, there is a chance that
the checking mechanism itself will become a victim of the
attack by using instruction skips via opcode flipping [59] in
which one bypass the checking step.

Redundant Signing. A simple countermeasure is to sign
multiple times with the same values (with each copy stored
in different memory locations) and then check if the results
match. The adversary would have to inject the same fault
multiple times into the same positions in all signing opera-
tions to succeed. In addition to the overhead, as before the
check step might become a target to instruction skipping
attacks. Other attacks such as RAMBleed [38] targeting a
single computation might still be able to bypass this simple
protection scheme.

Masking Sensitive Values. There is a wealth of literature
on protecting secrets in hardware against leakages and fault
injections. A powerful such technique is masking [64] where
sensitive internal secrets are randomly split into multiple
parts, e.g. additively in Zn: d = d1+d2 mod n for ECDSA
(or w.r.t. any other operation that fits the computation
domain), and then the desired function is computed over
separate randomized paths and aggregated at the end. The
advantage is that the shares change in every iteration making
the exploitation of partial leakages much harder. On the
downside, masking requires randomization. As long as the
adversaries’ probing capabilities are limited. Otherwise one
can use higher order masking (more shares) to improve the
resilience of the scheme. In our setting, masking will provide
protection as long as the initial mask randomization step is
secured. If the fault is injected before this initial step, the
attack will work exactly as before.

10. Discussion

In this work, we demonstrated how software fault injec-
tion attacks can compromise TLS signing keys. We stress
that we used the TLS protocol as a target to demonstrate
our attack. However, digital signatures are tightly integrated
into our computing infrastructure in numerous products, and
therefore, other security protocols that use signatures are
likely vulnerable to the presented attack vector as well. This
work underlines the significance of a comprehensive review
of security software in their usage scenarios under clearly
defined threat models.

11. Conclusion

In this work, we introduced a novel fault injection attack
on popular signature schemes such as (EC)DSA, Schnorr
and RSA signature schemes. For fault injection we utilized
Rowhammer, a software only approach, which makes our
attack relevant to cloud servers and other platforms with
shared memory subsystems. We demonstrated the power
of the attack on TLS handshakes secured using RSA and
ECDSA signatures. For this, we analyzed five popular cryp-
tographic libraries: OpenSSL, LibreSSL, wolfSSL,
Amazon s2n and Microsoft Symcrypt and found
that all are vulnerable to ECDSA key recovery. Specif-
ically, when used in TLS handshakes, a malicious client
can recover the signing key with as little as a few hundred
faulty signatures on platforms vulnerable to Rowhammer.
The problem is exacerbated by either missing or insuf-
ficient signature checks and worse incorrect handling of
detected faults. For instance, in Microsoft Symcrypt
only the first signature is checked, leaving further signatures
unprotected. We recommend a thorough review of security
libraries, the implementation of universal signature checks,
and correct failure handling.
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Appendix

Elliptic Curve Digital Signatures

The Elliptic Curve Digital Signature Algorithm
(ECDSA) [65] is an elliptic curve variant of the Digital
Signature Algorithm (DSA) [66] in which the prime
subgroup in DSA is replaced by a group of points on
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an elliptic curve over a finite field. The ECDSA key
generation process starts with the selection of an elliptic
curve, specified by the curve parameters and the base
field Fq over which the curve is defined, and a base point
P ∈ E of cryptographically large order n in the group
operation. Cryptographic security of ECDSA is based on
Discrete Logarithm Problem (DLP) over finite additive
cyclic groups.

Algorithm 6 ECDSA Key Generation

1: Input: E: an Elliptic Curve, P ∈ E: a base point on E
of order n

2: Output: Q ∈ E: Public Key, d ∈ Z∗
n: Private Key

3: Randomly choose a private key d ∈ Z∗
n.

4: Compute the curve point Q = dP ∈ E.
5: return integer d: The Private key, and Q ∈ E: the

Public key.

Algorithm 7 ECDSA Signing

1: Input: A message M ∈ {0, 1}∗, private key d,
2: Output:
3: Choose a nonce/ephemeral key k ∈ Z∗

n.
4: Compute the curve point kP , and compute the x coor-

dinate r = (kP )x.
5: Compute s = k−1(H(M) + dr) mod n, where H(.)

represents a cryptographic hash function such as SHA-
256.

6: return Signature pair (r, s).

Algorithm 8 ECDSA Verification

1: Input: Signature (r′, s′), a message M ′ ∈ {0, 1}∗,
public key Q ∈ E,

2: Output:
3: Compute H(M ′) where H(.) is the same cryptographic

hash function in signing.
4: Compute w = (s′)−1 mod n.
5: Compute u1 = H(M ′)w mod n.
6: Compute u2 = r′w mod n.
7: Compute R′ = u1P + u2Q ∈ E
8: Check if x coordinate of R′, r′ = (R′)x is equal to r

or not. If r′ = r verify, if not then reject.
9: return Verify or reject.

Baby-Step Giant-Step Algorithm

One of the earliest meet in the middle algorithms for
computing discrete logarithms in finite cyclic groups is
the Baby-Step Giant-Step Algorithm by Shanks. A version
adapted to the additive Elliptic Curve Group setting is given
in Algorithm 9. The algorithm is searching for a collision
between a computed value y parameterized by the index i
against the searched item jP parameterized by j. A collision
is found when y = jP . In each iteration of the i loop we

Algorithm 9 Baby-Step Giant-Step DLP Algorithm

1: Input: A cyclic group E of order n, having a generator
P and an element Q

2: Output: A value d satisfying Q = dP .
3: Set w = ⌈log

√
n⌉

4: for j = 0, 1, . . . , 2w − 1 do
5: Compute jP and store the pair (j, jP ) in a table.
6: end for
7: Compute u = −2wP
8: Set y = Q
9: for i = 0, 1, . . . , 2w − 1 do

10: if y matches any (jP ) in the table then
11: Return i2w + j.
12: end if
13: Compute y = y + u
14: end for

are updating y = y + u = y − wP . Thus after i iterations
y = Q− iwP . Since y = jP , it holds that Q− iwP = jP ,
and hence Q = (iw + j)P and d = iw + j. In other words
when the algorithm terminates i and j hold the lower and
higher half of the bits of d, respectively. The Algorithm
succeeds in finding the discrete logarithm with time and
space complexity of O(

√
n). Note that, in practice, in the

search loop the majority of the time is spent checking table
entries, although this step can also be speed up with hash
lookups. Moveover, we can make different allocations for
Baby-Step and Giant Step parts, i.e., reach different trade-
off points between storage and computation, by unevenly
dividing n into two parts.
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