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Abstract

We introduce the problem of Verifiable Relation Sharing (VRS) where a client wishes to
share a vector of secret data items among several servers (the verifiers) while proving in
zero-knowledge that the shared data satisfies some properties. This combined task of shar-
ing and proving generalizes notions like verifiable secret sharing and zero-knowledge proofs
over secret-shared data. We study VRS from a theoretical perspective and focus on its round
complexity.

As our main contribution, we show that every efficiently-computable relation can be re-
alized by a VRS with an optimal round complexity of two rounds where the first round is
input-independent (offline round). The protocol achieves full UC-security against an active
adversary that is allowed to corrupt any t-subset of the parties that may include the client to-
gether with some of the verifiers. For a small (logarithmic) number of parties, we achieve an
optimal resiliency threshold of t = 0.5(k + 1), and for a large (polynomial) number of parties,
we achieve an almost-optimal resiliency threshold of t = 0.5(k + 1)(1 − ϵ) for an arbitrarily
small constant ϵ > 0. Both protocols can be based on sub-exponentially hard injective one-way
functions. If the parties have an access to a collision resistance hash function, we can derive
statistical everlasting security, i.e., the protocols are secure against adversaries that are computa-
tionally bounded during the protocol execution and become computationally unbounded after
the protocol execution.

Previous 2-round solutions achieve smaller resiliency thresholds and weaker security no-
tions regardless of the underlying assumptions. As a special case, our protocols give rise to
2-round offline/online constructions of multi-verifier zero-knowledge proofs (MVZK). Such
constructions were previously obtained under the same type of assumptions that are needed
for non-interactive zero-knowledge proofs (NIZK), i.e., public-key assumptions or random-
oracle type assumptions (Abe et al., Asiacrypt 2002; Groth and Ostrovsky, Crypto 2007; Boneh
et al., Crypto 2019; Yang, and Wang, Eprint 2022). Our work shows, for the first time, that
in the presence of an honest majority these assumptions can be replaced with more conser-
vative “Minicrypt”-type assumptions like injective one-way functions and collision-resistance
hash functions. Indeed, our MVZK protocols provide a round-efficient substitute for NIZK in
settings where honest-majority is present. Additional applications are also presented.
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1 Introduction

In recent years, a large amount of research was dedicated to the study of zero-knowledge proofs
in distributed settings, such as zero-knowledge proofs with multiple verifiers [41, 58, 10] and zero-
knowledge proofs over secret-shared data [17, 26, 18, 25]. Those variants of zero-knowledge proofs
have applications both in theory and practice, in round-optimal multiparty computation [2], pri-
vate data aggregation [25], and anonymous communication [26].

A typical scenario of interest consists of a client P (the prover) that holds a vector of secret data
items s, together with several servers V1, . . . ,Vk (the verifiers). The client wishes to share s among
the servers, and also prove in zero-knowledge that the shared data satisfies some properties. Pre-
vious works usually let P send each Vi its share, and then perform a zero-knowledge proof on the
shared data. A natural question is whether considering the sharing and the proving as a single
task could result in a protocol with better round-complexity and better security guarantees. To
capture this joint task of sharing-and-proving, we present the notion of verifiable relation sharing
(VRS).

Verifiable relation sharing. The VRS functionality of a public relation R receives from the prover
an input x = (x0, x1, . . . , xk), where we think of x0 as a private information of the prover, and of
xi as the share of Vi. The functionality verifies that R(x) = 1, and if the verification fails, then it
returns a failure-symbol⊥ to all the verifiers. If the verification succeeds, the functionality returns
xi to Vi. Observe that the VRS functionality captures the typical scenario discussed above, as well
as several cryptographic primitives, including verifiable secret sharing [24], verifiable function
secret sharing [18], secure multicast [35], and zero-knowledge proofs with multiple verifiers.

We formalize the VRS functionality under the definitions of secure multiparty computation
(MPC) in the universal-composability (UC) framework of [22]. We strive for full-security, includ-
ing guaranteed output delivery, at the presence of an honest majority in the plain model. We note
that honest-majority is necessary due to impossibility of UC-secure Zero-knowledge proofs in the
plain model [23]. The active (aka Byzantine or malicious) adversary is allowed to corrupt any mi-
nority subset of the k + 1 parties {P,V1, . . . ,Vk} that may include the prover together with some
of the verifiers. The use of MPC-based “full-security” definitions provides strong guarantees that
are not supported by related notions of distributed zero-knowledge. Specifically, when the prover
P is honest, we get correctness, i.e., every honest Vi outputs xi even in the presence of corrupt
active verifiers, as well as simulation-based privacy, which implies that the adversary only learns
the outputs of the corrupt verifiers. For a corrupt P , we get soundness and knowledge extraction
even when P colludes with some of the verifiers. In contrast, previous works on weaker notions,
such as zero-knowledge proofs over secret-shared data, achieve correctness only for semi-honest
verifiers [17, 18, 26, 25], and in some cases (e.g., [25, 26]) provide soundness only when all the
verifiers are honest.

We study the VRS problem from a theoretical perspective while focusing on the best-achievable
round complexity. It is known that VRS cannot be realized in 1 round even for relatively simple
relations (e.g., VSS [7]). Looking for the second best, we ask:

Q1: Can VRS be realized by a 2-round protocol? Moreover, can we make the first
round input-independent (“offline round”)? If so, under what assumptions?

The question of obtaining a 2-round protocol in the plain model is open even for weaker notions
like distributed zero-knowledge over secret-shared data.
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Multi-verifier zero-knowledge. It is useful to consider the somewhat degenerate version of VRS
in which all the verifiers get the same information except for some private witness that is kept by
P . This variant essentially corresponds to multi-verifier zero-knowledge proofs (MVZK) [21]. When
modeled as an ideal functionality, MVZK is parameterized by a public relation R, it receives from
P a statement x and a witness w, and verifies that R(x,w) = 1. If the verification fails, then the
functionality returns a failure-symbol ⊥ to all the verifiers V1, . . . ,Vk, and if the verification suc-
ceeds, the functionality returns x to all the verifiers. Again, we strive for a 2-round offline/online
solution in the plain model.

Observe that the single verifier case (where the adversary can either corrupt the verifier or
the prover) corresponds to the standard notion of zero-knowledge proofs. Classical impossibility
results [40] show that a plain-model protocol that consists of a single message from the prover to
the verifier, also known as non-interactive zero-knowledge (NIZK), exist only for languages in BPP,
even when one considers only stand-alone security. Assuming a minimal trusted setup in the form
of a common reference string (CRS), one can achieve NIZK for every language in NP from public-
key assumptions [16, 32, 42, 56, 14, 54], or, alternatively, in the random oracle model [33, 12]. In
a related notion, called Zaps [30], the CRS is replaced with a preprocessing round in which only
the verifier communicates by broadcasting its random coins, at the expense of downgrading zero-
knowledge to witness-indistinguishability. Assuming the existence of one-way functions, it is
known that Zaps are equivalent to NIZK [30].

Let us move back to the setting of multiple verifiers. Striving for a 2-round simulation-based
zero-knowledge, we make the necessary assumption of an honest majority among the set of all
parties (including the prover).1 To the best of our knowledge, the only known solution in this
setting follows from the work of Groth and Ostrovsky on Multi-string NIZK Proofs. Specifically,
their work implicitly give rise to a 2-round offline/online honest-majority MVZK that achieves
simulation-based security based on Zaps and public-key encryption [41, Theorem 3]. These as-
sumptions are as strong (or even stronger) than the ones needed for NIZK protocols in the seem-
ingly “harder” 2-party settings. We therefore ask:

Q2: Are NIZK/Zaps assumptions inherently needed for an MVZK protocol with 1-
offline and 1-online round in the honest-majority setting? Is it possible to replace these
assumptions with weaker assumptions?

1.1 Our Contribution

1.1.1 Round-Optimal VRS and MVZK in Minicrypt

We answer Questions 1 and 2 in the affirmative. Our main result is a protocol with 1-offline round
and 1-online round for VRS in the UC-framework, assuming the existence of perfectly-binding
non-interactive commitment scheme (NICOM) with sub-exponential privacy. Such a NICOM
scheme can be based on injective one-way functions with sub-exponential hardness or even
on standard one-way function with sub-exponential hardness assuming worst-case complexity-
theoretic derandomization assumptions [51, 9].2 Throughout, we assume that the parties commu-

1Without an honest majority, a 2-round plain-model MVZK protocol (where in each round both the verifiers and
prover can talk simultaneously) implies a 2-step ZK protocol (where the verifier sends a message and gets a response
from the prover) which is ruled-out by [40] for non-trivial languages outside BPP.

2For technical reasons, the NICOM should satisfy some level of security against selective opening that, by “com-
plexity leveraging”, follows from the assumption that the underlying one-way function (or injective one-way function)
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nicate over pairwise secure and authenticated point-to-point channels, as well as over a common
broadcast channel, which allows each party to send a message to all parties and ensures that the
received message is identical.

Theorem 1.1. Assuming the existence of injective one-way functions with sub-exponential hardness, for
every ϵ > 0 the VRS functionality of every efficiently computable relation R can be realized in 1-offline
round and 1-online round, with full security against an active rushing adversary, in any of the following
settings.

• (Optimal resiliency for small number of verifiers) The number of verifiers k is at most logarithmic
in the security parameter, and the adversary corrupts less than (k + 1)/2 parties.

• (Almost-optimal resiliency for polynomially-many verifiers) The number of verifiers k grows
polynomially with the security parameter and the adversary corrupts less than (k+1)·(12−ϵ) parties.

Since MVZK is a special case of VRS, we obtain the following corollary.

Corollary 1.2. Assuming the existence of injective one-way functions with sub-exponential hardness, the
MVZK functionality of every efficiently computable relation R can be realized in 1-offline round and 1-
online round, with full security against an active rushing adversary, in the same settings of Theorem 1.1.

For optimal resiliency, we obtain a protocol with complexity polynomial in the security param-
eter, but exponential in the number of verifiers k. On the other hand, for every ϵ > 0 we obtain
a protocol with resiliency (k + 1) · (12 − ϵ), whose complexity is polynomial both in the security
parameter and in k. (In fact, we can push ϵ to be as small as ϵ = Ω( 1√

log k
); see Remark J.3.)

The difference between optimal resiliency and “almost-optimal resiliency” is mostly relevant
when the number of verifiers is small, e.g., constant. In this setting, the first protocol provides
an efficient solution. Specifically, we highlight the case of 3-party computation, with a single
prover and two verifiers, and we note that by adding just a single verifier to the standard zero-
knowledge settings, we can obtain a protocol with 1-offline round and 1-online round for the case
of a single corruption from Minicrypt-type assumptions. (In contrast, general-purpose 3-party
MPC for honest majority requires 3 rounds [53].)

Still, the existence of a strict-honest-majority 2-round VRS protocol whose complexity scales
polynomially with the number of parties, remains an interesting open problem. We show that
such a protocol can be constructed if one is willing to make stronger assumptions (e.g., random
oracle or correlation-intractable functions) or if the adversary is non-rushing. In fact, we note that
a weak limitation of the rushing capabilities of the adversary suffices, and present a new notion of
semi-rushing adversary to model such a behavior.3

cannot be inverted in polynomial-time with more than sub-exponential probability. This seems to be a relatively mild
assumption; See Remark A.9.

3The difference between rushing and non-rushing adversary boils down to the scheduling of the messages within
a single round of a protocol. A non-rushing adversary must send the messages of the corrupt parties in a given round
before receiving the messages of the honest parties in that round, whereas a rushing adversary may delay sending the
messages of the corrupt parties until receiving the messages from the honest parties. Thus, the messages of the corrupt
parties may depend on the messages of the honest parties in the same round. Our notion of semi-rushing adversary
allows the adversary to see all the messages of the honest parties, except for one. For more about this model and its
relevance, see the discussion in Section I.1.3.
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1.1.2 VRS and MVZK with Everlasting Security in Minicrypt

It is known that if we do not put restriction on the round complexity, then, in the setting of honest-
majority, one can obtain unconditional results and no assumptions are needed at all! Specifically, as
shown by Rabin and Ben-Or [55], every efficiently computable function can be securely computed
with statistical security against computationally-unbounded adversaries. While we do not know
whether it is possible to achieve statistical security in 2 rounds, we show that VRS and MVZK can
be implemented by a protocol that achieves statistical everlasting security assuming an access to a
collision-resistant hash function h. The notion of statistical everlasting security [50] can be viewed
as a hybrid version of statistical and computational security. During the run-time, the adversary is
assumed to be computationally-bounded (e.g., cannot find collisions in the hash function) but after
the protocol terminates, the adversary hands its view to a computationally-unbounded analyst
who can apply arbitrary computations in order to extract information on the inputs of the honest
parties (e.g., finding collisions or even reading the whole truth table of h).4 This feature is one of
the main advantages of information-theoretic protocols: after-the-fact secrecy holds regardless of
technological advances and the time invested by the adversary.

Theorem 1.3. Given an access to a collision-resistant hash function, the VRS and MVZK functionalities
of efficiently computable relations can be realized in 1-offline round and 1-online round, with full security
and everlasting security against an active rushing adversary, in the same settings (honest-majority with
few verifiers or almost-honest majority with many verifiers) of Theorem 1.1.

Remark 1.4 (On the use of hash function). Our protocol assumes that all parties are given an access to a
collision resistance hash function h. Theoretically speaking, such a function should be chosen from a family
of functionsH in order to defeat non-uniform adversaries. One may assume that h is chosen once and for all
by some simple set-up mechanism. In particular, by using the standard concatenation-based combiner for
hash functions [46], this set-up mechanism may be realized distributively by a single round of public random
coins where security holds against an active rushing adversary that may corrupt all the participants except
for a single one. The choice of the hash function can be abstracted by a CRS functionality, or even, using
the multi-string model of [41] with a single honestly-generated string. However, it should be emphasized
that this CRS is being used in a very weak way: It is “non-programmable” (the simulator receives h as an
input) and it can be sampled once and for all by using the above trivial public-coin mechanism. Even if one
counts this extra set-up step as an additional round, to the best of our knowledge, everlasting security was
not known to be achievable regardless of the underlying assumptions.

The difference between everlasting and computational security is fundamental and is analogous
to the difference between statistical commitments and computational commitments or statistical
ZK vs. computational ZK (see, e.g., the discussions in [20, 52]). Indeed, Theorem 1.3 provides
(UC-secure) MVZK with a statistical zero-knowledge property. As a side bonus, Theorem 1.3 does
not require sub-exponential hardness assumptions.

1.1.3 Round-Optimal Linear Function Computation in Minicrypt

Using the machinery we develop for VRS and MVZK, we obtain a 3-round protocol for linear func-
tion computation. By the lower-bound of [37] our protocol has optimal round complexity. Like

4Technically, in the UC-framework we allow the environment to output its view and require statistical indistin-
guishability between the real and ideal experiments. For details, refer to Appendix A.1.
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in previous results, we assume the existence of injective one-way functions with sub-exponential
hardness in order to obtain a protocol with computational security in the plain model, or an ac-
cess to a collision resistance hash-function in order to obtain a protocol with everlasting security.
In contrast, previous works achieve only computational security by assuming public-key encryp-
tion and Zaps [2]. We emphasize that in Theorem 1.5 we obtain optimal resiliency even when the
number of parties is polynomial in the security parameter.

Theorem 1.5. Assuming the existence of injective one-way functions with sub-exponential hardness, ev-
ery efficiently computable linear function can be realized in 3 rounds, with full security against an active
rushing adversary, that corrupts a minority of the parties. If we replace the one-way function with an access
to a collision resistance hash-function, we also obtain everlasting security.

1.1.4 Applications

We present some applications of our protocols.

MVZK as a NIZK-substitute for honest majority. We notice that our MVZK protocol captures
an important aspect of NIZK, its minimal round complexity, while using only Minicrypt-type as-
sumptions. Indeed, our MVZK protocol implies that the CRS for NIZK is not required, and can
be replaced with only a single offline-round of communication. Similar to NIZK, the proof itself
requires only one online round. However, unlike NIZK, in our protocol all the parties have to com-
municate in the online round.

Round-efficient manipulation of non-homomorphic commitments. In a common scenario in
multiparty computation, a party P holds openings to public commitments C1, . . . , Cℓ. P wishes
to apply some function f on the committed values z1, . . . , zℓ and let the rest of the parties learn
y := f(z1, . . . , zℓ), while proving in zero-knowledge that she used the committed values in the
computation of f . Alternatively, P may want to generate another commitment C, that hides y,
while proving in zero-knowledge that C was honestly generated. Both the tasks can be solved in
1-offline round and 1-online round by using our MVZK protocol. Since the offline round can be
executed in parallel to the generation of C1, . . . , Cℓ, both tasks require only one additional round!
(See Appendix B for details.)

Round-efficient GMW-type compilers in Minicrypt. Using MVZK one can obtain round-
efficient GMW-type compilers in Minicrypt, for the case of honest majority. Given a protocol π
which is secure against a semi-malicious adversary,5 we obtain a protocol π′ with unanimous
abort against an active adversary at the expense of adding a single offline round. If π is secure
against a passive (aka semi-honest) adversary, the overhead grows to 4 rounds. This is because,
in order to extend our compiler to protocols with passive security, it is enough to be able to gener-
ate a random string for every party in 4 rounds. For this, we note that the coin-generation protocol
of [38, Section 7.5.4.4] can be realized in 4 rounds using our protocol. Notably, unlike the GMW
compiler, our transformation avoids the use of public-key encryption. We refer to Appendix B for
elaborate details.

5A semi-malicious adversary is allowed to choose its input and randomness but otherwise follows the protocol. Many
passively secure protocols (e.g., [13]) actually offer semi-malicious security.
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Round-optimal honest-majority MPC in Minicrypt. A followup work by the same authors [57]
shows that general secure multiparty computation with full-security (including guaranteed output
delivery) in the presence of an honest majority can be achieved in an optimal number of 3 rounds
based on Minicrypt-type assumptions (e.g., NICOMs). A main building block of the protocol is
our 2-round offline/online VRS protocol.

Bibliographic Note. Previous unpublished version of [57] contained a weak form of some of
the current results based on the Fiat-Shamir heuristic. These results were removed from the new
version of [57] (that is under submission to this conference), and are fully subsumed by the current
paper.

1.2 Related Works and Comparison

Related works. The VRS functionality was first studied in [37] under the framework of single-
input functionalities that takes their input from a single party. The resiliency was improved to
(k + 1)/3 by Applebaum et al. [4], at the cost of degrading the perfect security to computational
security, assuming the existence of NICOMs.

Boneh et al. [17] initiated the formal study of zero-knowledge proofs over secret-shared data.
They considered information-theoretic security in the following models of corruptions: (1) the
adversary corrupts the prover or up to k − 1 verifiers, and (2) the adversary corrupts the prover
and less than k/2 verifiers. In both corruption models, they only provide security with abort. Their
protocols exploit PCP machinery to achieve low communication complexity (sub-linear in the
description of the relation), but have a super-constant number of rounds. Based on a random
oracle, the number of rounds can be collapsed to 2, assuming that the data is already secret-shared
among the verifiers.

MVZKs were first introduced in [21]. The most relevant MVZK for us can be derived from [41]
which provides a construction of NIZK in the multi-string model assuming the existence of Zaps. In
the multi-string model, the CRS is replaced with several authorities, each providing the protocol
with a public random string, and the protocol is secure as long as a majority of those authorities
are honest (that is, if a majority of the strings are uniformly distributed). An MVZK protocol with
an honest majority of parties can be obtained in the plain model by letting each party broadcast
a random string in the offline round, so that a majority of the strings are uniformly distributed.
Simulation-based security can be obtained via the additional help of public-key encryption [41,
Theorem 3].

Other non-interactive variants of MVZK were presented in [1]. Translated to our model, their
work yield 2-round MVZK for t < k/3 and a 3-round protocol for t < n/2. Both results hold
under public-key (discrete-log) hardness assumptions. Recently, [58] and [10] constructed MVZK
with practical real-world efficiency in honest and super-honest majority settings. However, their
low round (2 or 3) variants rely on random oracle and achieve either selective abort or identifiable
abort.

Comparison. We compare our results with the most relevant existing results.
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Ref. Primitive Rounds Threshold Assumptions Security†

[37] SIF/VRS 2 t < (k + 1)/6 – it and full security

[4] SIF/VRS 2 t < (k + 1)/3 NICOM cs and full security

[17] ZK over shared data 2⋆ t < k/2‡ Random Oracle it and abort

[41] MVZK 2 t < k/2 PKE cs and full security

[1] MVZK 3 t < k/2 Discrete-log cs and full security

[58] MVZK 2 t < k/2 Random Oracle it and abort

[10] MVZK 2 t < k/3 Random Oracle it and identifiable abort

This paper SIF/VRS 2 t < (k + 1)(12 − ϵ)§ NICOM⋆⋆ cs/es and full security
† it: information-theoretic, es: everlasting security, cs: computational security,
‡ They assume (1) the adversary corrupts the prover or up to k − 1 verifiers, and

(2) the adversary corrupts the prover and less than k/2 verifiers
⋆ The round complexity does not include the rounds needed for data sharing.
⋆⋆ Perfectly-binding and sub-exponentially hiding NICOM for cs security and

Computationally-binding and statistically-hiding NICOM for es security.
§ We achieve t < (k + 1)/2 when k is logarithmic in the security parameter.

Table 1: Comparison of our work with the state-of-the-art relevant results

2 Preliminaries

Single-Input Functionalities. We adopt an MPC-based notation and replace VRS with the
following notion of single-input functionalities (SIF). We assume that there are n parties, P =
{P1, . . . , Pn}, where one party (e.g., Pn) takes the role of a Dealer D. The SIF functionality F is
parameterized with a function f : {0, 1}∗ → ({0, 1}∗)n, it takes an input string z from the dealer,
computes the outputs (y1, . . . ,yn) = f(z) and delivers yi to the ith party Pi. It is not hard to see
that VRS is a special case of SIF, and that VRS implies SIF in a round-preserving way. (Indeed, to
realize F define the relation R that accepts a vector (x0, x1, . . . , xn−1) if xi = Fi(x0) for i ∈ [n− 1],
and let D invoke a VRS for R with the input (z,F2(z), . . . ,Fn(z)).) We will mostly focus on the
special case of public-SIF that delivers the same output to all the parties, and show in Section K
that a 2-round offline/online general-SIF reduces to 2-round offline/online public-SIF via the aid
of NICOMs.

Security model. We consider an active static, rushing adversary that may corrupt up to t parties.
We consider two main settings: the optimal resiliency setting where n = 2t + 1 and the almost-
optimal resiliency setting where n = (2+ ϵ)t for some arbitrarily small constant ϵ > 0. The parties
are connected by pairwise secure channels and additionally a broadcast channel is available. We
prove security of our protocols in the UC-framework [22] which is recalled in Appendix A.1. We
identify the set of parties P with {1, . . . , n}, and denote the set of honest parties by H ⊆ P, and
the set of corrupt parties by C ⊆ P. In our protocols, we follow the convention that the honest
parties can “disqualify” the dealer whenever it is clear from broadcast messages that the dealer
misbehaves. This does not violate “guaranteed output delivery” since in case of disqualification,
the honest parties can always apply f on some predetermined default value and output the result.
We denote by κ the security parameter and implicitly assume that all other parameters (e.g., the
number of parties, and the complexity of the functionalities and protocols) depend in κ.
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NICOM. A NICOM consists of two PPT algorithms (commit, open) where commit takes a se-
curity parameter κ, message x and random coins r, and outputs a commitment C and a corre-
sponding opening information o. The open algorithm takes κ, and a commitment/opening pair
(C, o) and outputs the message x or a failure message ⊥. The algorithms should satisfy the stan-
dard properties of correctness, binding (i.e., it must be hard for an adversary to come up with
two different openings of any C) and hiding (a commitment must not leak information about the
underlying message) properties. (See Section A.3 for definition and more background.) NICOM
comes in 2 main flavors: (1) with computational hiding and perfect binding, and (2) with statisti-
cal hiding and computational binding. Type (1) commitments can be based on injective one-way
functions [15, 59, 39], and type (2) commitments can be based on collision resistance hash func-
tions [29, 43]. In the latter case, a description of a collision resistance hash function h (that is
sampled from a family H) is given to the algorithms (commit, open) as an auxiliary public param-
eter. Our protocols make use of NICOM in a modular way such that a type (1) instantiation (with
sub-exponential computational hiding) yield computational protocols and type (2) instantiation
yield protocols with everlasting security. The proofs typically treat both notions in a unified way
with minor adaptations when needed.

3 Technical Overview

On short interactions and long write-ups. Intuitively, a SIF protocol consists of the following
sequential parts: (1) The dealer presents a statement; (2) The other parties challenge it via a ran-
dom challenge; (3) The dealer sends a respond; and (4) The other parties decide whether to accept
or reject. Compressing these steps into 2 rounds is highly challenging. For comparison, even the
task of verifiable secret sharing (without revealing it) takes at least 2 rounds [36, 7]. To bypass
this problem, we are forced to run sub-protocols in parallel and with some overlap. Specifically,
we make an extensive use of (1) tentative-output protocols that prepare a tentative version of the
output in an early round and only later, at the end, approve/reject/correct the tentative output;
and (2) offline-phase protocols that begin with an offline, input-independent, round and only later
receive the inputs. This allows us to save some rounds by allowing partial overlap between sub-
protocols, but it also significantly complicates the presentation due to use of reactive MPC func-
tionalities whose description is somewhat lengthy and tedious. In an attempt to make the paper
more reader-friendly, we provide in this section a detailed overview of the protocols and the un-
derlying ideas. The main body of the paper consists of formal statements and the appendices are
devoted to the full proofs and additional background.

Our protocol makes an extensive use of verifiable secret sharing (VSS) [24]. For now, let us think
about a VSS protocol as an actively-secure realization of the ideal functionality that takes as an
input a secret s ∈ F and randomness r from a dealer, and delivers to each party Pi a share si that
is generated from s and r by using some threshold secret sharing scheme with threshold t. Here
and throughout the paper, F is a finite field whose size is assumed to exponential in the security
parameter κ, by default, F = GF(2κ). The underlying secret sharing scheme should be binding in
the sense that a corrupted party cannot “lie” about its share. (This property implies that correct
reconstruction is achievable even at the presence of an active adversary as long as we have n − t
honest parties.) To simplify the exposition, let us assume for now that the underlying seceret
sharing is linearly homomorphic and that the VSS protocol takes a single round. We emphasize that
both features are unrealistic and even impossible to achieve when t > n/3, let alone when t is
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close to n/2.6 Jumping ahead, a considerable part of this work will be devoted to the removal of
these assumption while preserving the round complexity; see Section 3.3.

3.1 SIF for Few Parties

Let us restrict our attention to the case where the number of parties n is small, i.e., n = O(log κ).
Recall that our goal is to construct a 2-round protocol for a general SIF functionality whose first
round is an offline round that does not depend on the input of the dealer. We will use standard
techniques to reduce this problem to the problem of constructing a 2-round protocol for a specific
SIF functionality known as triple secret sharing (TSS) where the dealer wishes to share a triple
(a, b, c) such that c = ab. For TSS, let us strive for a “standard” 2 round protocol whose first round
is allowed to depend on the input.

2-round TSS against non-rushing adversary. Our starting point is the following 2 round proto-
col that assumes that a corrupted dealer is non-rushing. In the first round, the dealer D, that holds
a triple (a, b, c) with c = ab, picks three polynomials A(x), B(x) and C(x) of degree n, n and 2n,
respectively, such that A(0) = a, B(0) = b, C(0) = c and C(x) = A(x) · B(x). Let Ai, Bi and Ci be
the ith coefficient of A(x), B(x) and C(x), and note that A0 = a,B0 = b and C0 = c. The dealer
shares all the coefficients {Ai, Bi}i∈{0,...,n}, and {Ci}i∈{0,...,2n} via VSS. The parties now hold the
shares of a = A0, b = B0 and c = C0.

In order to ensure that c = ab, it suffices to verify that the polynomial C(x) is equal to the
polynomial A(x) ·B(x). To this end, we want to compute A(α), B(α) and C(α) for a random non-
zero field element α, and verify that C(α) = A(α)B(α). Indeed, if C(x) = A(x)·B(x) then equality
always holds, while if C(x) ̸= A(x) · B(x) then the probability that the verification succeeds is at
most 2n/(|F|−1) = negl(κ). Therefore, in the first round, concurrently to the sharing of the dealer,
we let every party Pi broadcast a random non-zero field element αi.

In the second round, our goal is to compute A(αi), B(αi), C(αi) for all i ∈ {1, . . . , n} and
“disqualify the dealer” if for some αi the test A(αi) · B(αi) = C(αi) fails. Recall that A(x) and
B(x) are random polynomials of degree n conditioned on A(0) = a and B(0) = b, and therefore
one can safely release all these αi evaluations without revealing any information on a, b and c. The
actual computation of A(αi), B(αi), C(αi) makes use of the linear-homomorphism of the secret-
sharing. Specifically, observe that A(α) is just a linear function of A0, . . . , An with coefficients
(α0, . . . , αn) (and similarly for B(α) and C(α)), and therefore each party can reveal in the second
round its share of A(αi) (resp., B(αi), C(αi)). The binding property of the VSS guarantees that
a corrupted party cannot lie about its shares and the existence of t + 1 honest parties guarantees
successful reconstruction. The protocol follows the standard commit-challenge-response template
with a minor tweak: many challenges are generated (one for each “verifier”) concurrently to the
commitment stage, and each of the responses is being computed collectively by the “verifiers”.

Coping with a rushing adversary. The above protocol is insecure against a rushing adversary
since such an adversary can wait to see the selected challenges and then share triples that do not

6Even without homomorphism, computational VSS requires 2 rounds [7] when n < 3t. Moreover, even for such a
large resiliency threshold, linear homomorphism is non-trivial to achieve. Specifically, for 2-round VSS, it is unknown
how to achieve linear homomorphism without relying on strong primitives such as homomorphic NICOMs. The lat-
ter are typically contructed based on “structured” (public-key type) assumptions and are not known to follow from
standard NICOMs.
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satisfy the product relation and yet pass the tests. We solve this problem by hiding at least some
of the challenges from the adversary while revealing them to enough parties so that the response
(via reconstruction) can be computed in the second round. Details follow.

Consider all the possible (t+1)-subsets of the parties, Q1, . . . , QN where N =
(

n
t+1

)
. In the first

round, we let each subset Qi generate a secret challenge αi that is known only to the members of
Qi. Specifically, we define some canonical “leader” for Qi (e.g., the party with the smallest index)
and let her sample a random non-zero αi and send it to the other members of Qi over private
channels. Concurrently, the dealer shares the coefficients of the polynomials A,B,C among the n
parties as before, except that now the degree of A and B is taken to be d = N(t+1) and the degree
of C is taken to be 2d. In the second round, each party Pj in Qi broadcasts the value αi and uses
local linear operations to reveal to all the parties the jth share of A(αi), B(αi) and C(αi). After
the second round, for each i, each party P (possibly outside Qi) verifies that all the parties in Qi

broadcast the same point αi and that their shares are valid. If one of these checks fail, we refer to
the ith test as bad and ignore it; Otherwise, the i-th test is called good, and P can recover the points
A(αi), B(αi) and C(αi). If these values satisfy the product relation, we say that the (good) test
passes. Finally, P accepts the triple if all the good tests pass, and disqualifies the dealer otherwise.

The analysis is fairly simple. For a corrupt D, we note that there exists (at least) one set Qi

in which all the parties are honest, and that a corrupt dealer has no information about αi in the
first round. The parties in Qi provide in the second round t + 1 shares of A(αi), B(αi) and C(αi)
and so these values can be publicly recovered, and the probability that C(x) ̸= A(x) · B(x) and
C(αi) = A(αi) · B(αi) is at most 2d/(|F| − 1) = 2N(t + 1)/(|F| − 1) = negl(κ). Thus, except with
negligible probability, there will be at least one good test that fails to pass. On the other hand,
an honest dealer will never be disqualified since, by the binding property of the secret sharing,
even a fully corrupted set of verifiers Qi cannot reveal incorrect shares. As for privacy, there are
N sets, and from each set the adversary can learn information about at most (t + 1) points of
A(x), B(x) and C(x) (a corrupt leader in a set Q can send different evaluation points to the parties
in Q). Since the degree of A(x) and B(x) is d, and the adversary can learn information about at
most N(t+ 1) = d points, we conclude that the adversary learns no information about A(0), B(0)
and C(0), as required. The complexity of the protocol is exponential in t = ⌈n/2⌉ − 1 and so the
protocol is efficient (polynomial in the security parameter κ) only when the number of parties n is
logarithmic in κ. Indeed, this is the only place where we use the assumption n = O(log κ). (See
Section 5.1 for more details.)

From TSS to public SIF. By the standard NP-completeness of quadratic equations, public SIF
non-interactively reduces to public SIF where f computes a vector of degree-2 polynomials over
an arbitrary finite field [37] and the same output is given to all the parties. One can easily adopt
the TSS protocol to the case of general degree-2 SIF functionality (e.g., share the input vector z
and the output vector y, prove that they satisfy a degree-2 relation and ask the parties to publicly
reconstruct y.) However, this will not lead to an offline/online protocol. Instead, we use Beaver’s
trick [11] to transform random triple sharing (realized by TSS) into a degree-2 SIF. The standard
transformation has an overhead of 2 additional rounds, and we avoid it by exploiting the SIF
setting, i.e., the fact that a single dealer knows all the secrets. For details, we refer to Section 5.2. A
reduction from general SIF to public SIF appears in Section K.
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3.2 SIF for any Number of Parties

We move on to the case where the number of parties, n, is large (polynomial in κ) and the resiliency
threshold t is almost optimal, i.e., n = (2 + ϵ)t for some constant ϵ > 0. Our goal is to construct a
2-round offline/online protocol Π for some public SIF functionality F that takes an input z from
the dealer D and delivers the same output y = f(z) to all the parties.

We will handle this case by composing two protocols: (1) The aforementioned 2-round SIF
protocol Πs (“s” for small) that achieves an optimal resiliency for a small (logarithmic) number
of parties; and (2) a perfectly-secure SIF protocol Πb (“b” for big) with constant resiliency of, say
1/3, that works efficiently for polynomially many parties. The latter protocol can have many
rounds and can be instantiated, for example, by the classical protocol of Ben-Or, Goldwasser and
Wigderson (BGW) [13]. We will combine the 2 protocols into a single SIF protocol with almost-
optimal threshold and poly(n) complexity via player virtualization technique. This idea goes back
to the work of Bracha [19] in the context of Byzantine Agreement, and since then has been used
several times in the MPC literature [34, 44, 28] culminating in the celebrated MPC-in-the head
paradigm [48, 49]. Here we show how to apply this idea in the context of SIF. Unlike other con-
texts, we show that the combined protocol inherits the round complexity of the first (“internal”)
protocol, and therefore can be executed in 2 rounds! Details follow.

Let us partition the n parties to M = poly(n) committees A1, . . . , AM each of size n′ for some
constant n′ that depends on the constant ϵ. Call a committee good if it contains at least (n′ + 1)/2
honest parties, and bad otherwise. We will make sure that the fraction of bad sets is at most M/10
no matter which subset of t parties the adversary decides to corrupt. Such a property can be
guaranteed by taking all n′ multisets (see Observation J.2) or, more efficiently, based on expander
graphs (see, e.g., [28, Lemma 5]).7 Let Πb be the BGW protocol that realizes the SIF f among the
dealer D and M “virtual” parties Q1, . . . , QM .

In our new protocol, Π, the dealer D executes the BGW protocol Πb in her “head” with the
input z and then broadcasts a commitment to the transcript. That is, D samples random tapes
r1, . . . , rM for the virtual parties Q1, . . . , QM and computes all the messages that are sent in Πb,
both over private channels and over broadcast channels. Then, D commits to each of these mes-
sages and to the randomness ri of each party Qi, and broadcasts the tuple of commitments G. In
addition, D broadcasts the value y = f(z). Now, we let each committee Ai verify, with the aid of
the small protocol Πs, that the view of Qi is self-consistent, i.e., that the (committed) randomness
and incoming messages of Qi yield the (committed) outgoing messages of Qi and that the final
output is indeed y. More precisely, the committee Ai together with D, compute the following
public-SIF functionality Gzk:

• (Dealer’s input:) An index i ∈ {1, . . . ,M}, a vector of commitments Gi, supposedly to the
randomness of Qi and his incoming and outgoing messages, and the corresponding open-
ings.

• (Public output:) the tuple (vi,yi, Gi, i) where vi is a consistency bit that indicates whether
the committed values are self-consistent, and the value yi is the output that the virtual party

7In principle, n′ should be taken to be Ω(1/ϵ2). Thus, in order to keep n′ small (e.g., logarithmic in the security
parameter), one has to assume that ϵ is not too small, e.g., at least Ω(1/

√
log κ). We limit the discussion to a constant ϵ

only for the sake of simplicity.
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Qi outputs given the committed view.8

We realize this sub-computation by running the small SIF protocol Πs among D and the sub-
committee Ai while making sure that the final output is available to all parties including ones that
do not belong to Ai. This can be done (without an extra round of communication) by passing
all the broadcast messages of the small protocol Πs over the external n-party broadcast channel.
Indeed, we note that, for public-output SIF, the public output of Πs can be fully recovered based
on its broadcast messages. Getting back to Π, we conclude the protocol, by letting each party Pi

accept the output y if at least 0.9M of the committees approve this output (i.e., if the output of the
ith committee is (1,y, Gi, i) where Gi is consistent with G), and disqualify the dealer otherwise.

The protocol Π can be executed in 2 rounds where the first round is devoted to the offline
round of all the instances of the Πs protocol, and the second round is devoted to the commitment
generation and to the second online-round of the Πs instances. Note that the first round of Π
remains input-independent. Let us briefly analyze the security of Π.

For an honest dealer, the verification Πs succeeds for every good committee Qi that contains
an honest majority, and may fail for a bad committee Qi that contains a dishonest majority. We
conclude that at most M/10 of the verifications fail, and so an honest dealer will never be disqual-
ified. As for privacy, a bad committee Qi may completely learn the input of the dealer D in the
corresponding SIF Gzk. This leakage is equivalent to learning the internal state of the virtual party
Qi in the external protocol Πb. Since there are at most M/10 bad committees, the adversary can
learn the state of at most M/10 parties of Πb. The privacy of Πb therefore protects us against such
a leakage. (In fact, for this part we only use the privacy of Πb against a passive corruption.)

A corrupt dealer can commit to an illegal transcript while being approved by all bad commit-
tees. So, in order to be approved, such a dealer must still get the votes of at least 0.8M good com-
mittees. Hence, cheating in Π reduces to cheating in Πb while actively controlling at most 0.2M
of the virtual parties, and while controlling the randomness of the honest virtual parties. Since Πb

is perfectly correct against 0.2M active corruptions, a cheating dealer will always be caught. (For
this part, no privacy is needed and Πb is only required to achieve “perfect correctness with abort”
against an active adversary.) For more details see Section J.

Remark 3.1 (Comparison to the MPC-to-ZK transformation of [48]). It is instructive to consider the
following variant of the protocol. First, the dealer secret-shares its input z to (z1, . . . , zM ) via some robust
M/3-out-of-M secret sharing then it virtually runs an MPC protocol among the parties Q1, . . . , QM for
the public SIFF ′ that takes (z1, . . . , zM ) from the parties, recovers z via robust reconstruction, and delivers
the output f(z). The dealer commits to the views and transcript and the committees A1, . . . , AM use the
small SIF protocol to verify consistency for each virtual party. This description be can viewed as a special
case of the protocol Π in which Πb is realized by sharing z and computing F ′.9

Under this choice, our transformation can be viewed as a multi-verifier version of the MPC-to-ZK
transformation of [48]. The two versions differ with respect to the underlying secret sharing (M -out-of-M
in [48] vs. M/3-out-of-M in our case), and, more importantly, with respect to the verification part. In [48]
a single verifier opens few views (for soundness) while keeping other views unopened (for zero-knowledge),
whereas in our case multiple verifiers distributively open (all) the views in a way that preserves soundness
“globally”, and secrecy for bounded-size coalitions. Furthermore, we show that verification can be realized
with low round complexity based on an “internal” SIF protocol.

8The circuit that realizes Gzk depends on the code of the NICOM, consequently, our final construction makes a non-
black-box use of the NICOM.

9For technical reasons, we follow this structure in the formal description of the protocol in Section J.
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3.3 Replacing the Idealised VSS with 1.5-Round Protocols

In the previous section, TSS and public SIF for logarithmic number of parties are the direct con-
sumers of the idealized VSS. In both, the scenario is as follows: D has m inputs s1, . . . , sm and
the parties want to compute a linear combination of the inputs. The coefficients of the linear com-
bination may be chosen by some other party, and the output should be delivered by the end of
second round. For simplicity, we consider the somewhat degenerate case where the goal is to
compute z := s1 + . . . + sm. As mentioned earlier, two challenges arise: (a) VSS sharing itself
requires 2 rounds, whereas our requirement is to complete sharing and reconstruction within 2
rounds and (b) the known 2-round VSS from Minicrypt-like assumptions is not homomorphic. In
a nutshell, we solve the first issue by noting that the VSS of [7] is a “1.5-round” VSS in the sense
that “tentative shares” are distributed already in the first round, and any update that may occur
in the second round is publicly known to all parties. To solve the second issue, we construct a novel
protocol that allows a party to reveal a “certified” linear combination of its shares. This protocol,
glinear, has 2 rounds where the first round is an offline round. Since our protocols employ linear
homomorphism during their second round, glinear forms a viable substitute. Related tools have
been developed in [5] for a smaller resiliency threshold (e.g., n ≥ 3t + 1), and we extend them to
the challenging setting of n = 2t + 1 while maintaining efficiency for polynomially many parties
n = poly(κ). Before describing our solutions in more detail, we present some background on the
underlying secret sharing scheme.

The underlying secret sharing scheme. The secret sharing scheme is essentially the classical
t-out-of-n Shamir-like scheme (extended to bivariate polynomials as in [13]) accompanied with
public commitments to all the shares. To (honestly) share a secret s ∈ F, one samples a ran-
dom symmetric bivariate polynomial F (x, y) of degree at most t in each variable conditioned
on F (0, 0) = s, and hands to each party Pi the vector (F (i, 0), . . . , F (i, n)) which fully defines
the degree-t univariate polynomial fi(x) = F (i, x). We embed these elements in an (n + 1)-by-
(n+1) matrix F = (F (i, j))i,j∈{0,...,n}, and note that this matrix is symmetric since F (i, j) = F (j, i).
The 0th row of this matrix is referred to as the main row and its ith entry F (0, i) = F (i, 0) is
referred to as the main share of party Pi. (The main row corresponds to the univariate polyno-
mial f0(x) = F (0, x) which forms a standard Shamir sharing of s.) As part of the secret shar-
ing, we publish a symmetric matrix, C = (Cij)i,j∈{0,...,n} of commitments to each entry of F,
and hand the openings, Oi = (oij)j∈{0,...,n}, of the ith row to party Pi. We let O denote the
matrix of openings (oij)i,j∈{0,...,n}. It is well-known that this scheme is t-out-of-n secret shar-
ing scheme. The commitment layer makes it impossible for a corrupted party to lie about its
share (the scheme is “binding”), and so it enables robust reconstruction.10 We point out that a
statistically-hiding computationally-binding commitment leads to a secret sharing scheme with
statistical privacy whose robustness holds only against computationally-bounded adversaries
whereas a computationally-hiding statistically-binding commitment scheme yields with a secret
sharing scheme with computational privacy and robustness against computationally-unbounded
adversaries. Let us record the fact that the “polynomial part” of the secret sharing is linearly
homomorphic but the “commitment part” is not.

10We, in fact, consider a weak variant of this sharing in which for a pair of corrupted parties, (Pi, Pj), the share fi(j)
may be inconsistent with the commitment Cij . Still, it can be shown that Pi and Pj cannot lie about their main shares
and so this scheme still allows robust reconstruction. For details, refer to Section D.
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1.5-round VSS. Backes et al. [7] describe a 2-round protocol for securely distributing a secret ac-
cording to the above secret sharing scheme. We note that this protocol has the following structure.
After the first (“sharing”) round, the commitment matrix C is delivered to all the parties and each
party holds a private tentative share that may be invalid. During the second (“verification”) round
of the protocol, each party Pi who may be “unhappy” for some reason, can form a “complaint”
against the dealer D. At the end of this round, either some complaint turns to be “justified”, or all
the complaints are rejected as being “unjustified”. In the former case, the dealer is being publicly
disqualified, and in the latter case, the private shares of all unhappy parties are publicly revealed.
(That is, all parties learn the openings (Oi)i∈W where W is the set of all unhappy parties.) By de-
sign, an honest party never complains about an honest dealer. We will make use of the fact that a
tentative share either remains unchanged during the second round, or becomes publicly available
to all parties.

We formalize these properties via a new 2-phase functionality Fvss (a refined version of VSS),
and prove that the protocol UC-realizes it. The choice of being unhappy is captured by an input
flagi ∈ {0, 1} that is given to Pi at the beginning of the verification phase. As a result Pi can ask to
publicly reveal Oi even it is unhappy with D due to some external reason, that does not depend
on the VSS execution (say, Pi thinks that D is corrupt in the outer-protocol). See Section 4.1.

3.3.1 Supporting Linear Operations

Let us now go back to our goal of computing z := s1 + . . . + sm in two rounds where the secrets
s1, . . . , sm are given to D as inputs. We start by running the first round of the VSS to distribute
tentative shares for s1, . . . , sm via the polynomials F 1, . . . , Fm and the commitments C1, . . . ,Cm.
Our goal now is to publicly reveal the value z := s1 + . . .+ sm by using a single round of commu-
nication that will be carried in parallel to the verification phase of the VSS. Denote by F z(x, y) the
bivariate polynomial F 1(x, y) + . . . + Fm(x, y). Observe that it suffices to design a single-round
protocol that allows to each party Pi to publish the univariate polynomial F z(i, ·) while providing
a certificate for correctness (and while hiding the original shares). Formally, for every “guide” Pi

the parties engage in a subprotocol glinear (“guided linear computation”) so that (1) if Pi is honest
then all parties output F z(i, x), and (2) if Pi is corrupt then all parties output either F z(i, x) or an
erasure ⊥. Since there are n − t ≥ t + 1 honest parties, and all non-⊥ shares are consistent with
F z(x, y), the parties can recover the polynomial F z(x, y) and output z = F z(0, 0). Observe that
we can restrict our attention to the case where the guide is “happy” with the dealer D, since the
shares of a non-happy guide will be publicly released anyway in the end of the second round by
the verification phase of the secret sharing.

Guided linear computation from SCG. To explain how glinear is implemented, let us focus,
for concreteness, on the case where the guide is P1. After the input sharing, the guide P1 holds
all the information regarding the first rows F 1(1, x), . . . , Fm(1, x), including the openings to the
corresponding commitments. In addition, every Pj holds all the information regarding the j-
th share of each first-row, F 1(1, j), . . . , Fm(1, j). The idea now is to let the guide P1 and every
Pj engage in a subprotocol for the computation of F z(1, j) where the role of Pj is to guard the
computation, i.e., to make sure that P1 uses the “correct” values as inputs. Formally, we construct
such a subprotocol, called secure computation with a guard and denoted scg, that has essentially the
following “patrial security” guarantees:
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• If both, P1 and Pj , are honest then the value F z(1, j) is given to all parties while the values,
F⃗ (1, j) := (F 1(1, j), . . . , Fm(1, j)), remain hidden.

• If P1 and Pj are both corrupt, there are no correctness or privacy guarantees.

• If exactly one party is corrupt (either P1 or Pj) then there are no privacy guarantees and the
public output is either F z(1, j) or an identifiable abort (i.e., ⊥ symbol accompanied with the
identity of the corrupt party).

We postpone the description of the scg protocol. For now, let us mention that the protocol is pub-
licly decodable (all honest parties receive the same output that is computed based on broadcasted
values), and has 2 rounds in the offline/online model. Since the first round is input-independent
we can execute it in parallel to the first round of VSS. Now glinear can be reduced to n executions
of scg between P1 and each of the parties P1, . . . , Pn, where each Pj acts as the guard of the compu-
tation of F z(1, j). Given the scg outputs, we output a degree-t polynomial f1(·) if and only if (1) P1

was not disqualified by any of the scg calls, and (2) f1(·) is consistent with all the revealed points.
Otherwise, we disqualify P1. The analysis is straightforward. If P1 is honest, for every honest
guard Pj all the parties learn F z(1, j) (without leaking information on F⃗ (1, j)), while for every
corrupt Pj the parties either learn F z(1, j) or an erasure ⊥ (since the adversary already knows
F⃗ (1, j) we do not care about leakage in this case). Since there are n− t ≥ t+ 1 honest parties, the
parties recover uniquely the polynomial F z(1, x). If P1 is corrupt, then it is either being disqual-
ified by one of the honest guards, or release at least n − t ≥ t + 1 points that are consistent with
F z(1, ·). This means that the final outcome is either F z(1, ·) or ⊥. (See Section 4.3.) Before delving
into the scg construction, we mention that the VSS together with the guided linear computation
lead to a protocol for general linear function evaluation in 3 rounds which is optimal by [37]. We
refer to Section 4.4 for details.

Realizing scg. Roughly speaking, in an scg protocol, the guide Alice is given as an input a vector
bA and the guard Bob receives a copy, bB , of this vector that supposedly agrees with bA. Alice
wishes to publicly reveal the value f(bA), for some public function f , and the guard Bob should
make sure that f is computed consistently with respect to his input. This notion was introduced
by [4] who constructed a 2-round offline/online protocol that statistically realizes the partial secu-
rity properties defined above. However, their protocol works with a designated receiver, and so
multiple invocations of this protocol (with different receivers) may lead to inconsistent outputs.
(Such inconsistencies were tolerated in [4] by leveraging the existence of a strong honest majority,
i.e., t < n/3.) We present a publicly decodable scg by exploiting the fact that all parties are given
external commitments C to the input bA and that the corresponding openings, o, are given to Al-
ice as certificates. Moreover, we make use of NICOM internally in the scg itself, and so get only
computational security. Details follow.

Thanks to the external commitments, it suffices to securely compute the functionality F that
takes x = (bA, o) from Alice and y = bB from Bob, and outputs

y =

{
f(bA), if bA = bB,

(bA, o) otherwise.

Indeed, if Alice and Bob are honest the output will be f(bA). If the parties disagree (due to a single
cheater) then the output reveals Alice’s certified input, and one can check whether the released
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values (bA, o) are consistent with the external commitments or not. In the former case, we can
decode the output f(bA), and in the latter case, we conclude that Alice aborted the computation.
While we will not be able to realize F with full security, we provide an instantiation that suffices
for “partial security”.

Our starting point is the following variant of private simultaneous message (PSM) protocol
of [31]. Bob samples a random string r and sends it to Alice privately during the offline phase.
Then, in the online phase, given the inputs, x and y, Alice and Bob publish messages, A(x, r) and
B(y, r), that publicly reveal F and nothing else. Unfortunately, the standard PSM realization only
works when both parties are honest, and a dishonest party, say Alice, can violate correctness by
sending an invalid message a′ that does not correspond to any input x (with respect to the chosen
r).

Focusing on the case of corrupt Alice, we modify the protocol as follows. At the offline round,
Bob broadcasts internal commitments to all the possible PSM online-messages. That is, for every
possible Alice-input x (resp., every possible Bob-input y), Bob computes a commitment C ′x to the
PSM message A(x, r) (resp., C ′y to the PSM message B(y, r)). At the offline round, Bob broadcasts
the (randomly permuted) list of commitments (C ′x)x and (C ′y)y and privately sends to Alice all the
information: the PSM randomness r together with the corresponding openings (o′x)x and (o′y)y.
At the online round, Alice and Bob compute the PSM messages that correspond to their inputs,
and certify them by opening the corresponding internal commitments. Now, assuming that Bob is
honest, Alice is forced to behave honestly in the PSM and must send a “valid” PSM message that
corresponds to an actual input x. This protocol achieves a similar guarantee against a cheating
Bob and honest Alice, provided that Bob behaves honestly in the offline round. We handle the
case where Bob misbehaves in the offline round (e.g., by committing to bad values or sending to
Alice bad openings) by letting Alice fully expose her certified input. That is, if Alice sees that
Bob misbehaved in the offline round, she simply broadcasts her inputs together with the external
openings as certificates while ignoring the PSM execution. Here we exploit the fact that no privacy
is required at the presence of a cheating Bob.

The above description is somewhat simplified and yields a solution whose complexity is linear
in the domain of F which is too expensive. Moreover, when scg is modelled as a reactive func-
tionality, simulation becomes somewhat subtle and the commitments should satisfy some level of
security under a selective-openning attack. More details (including an efficient version based on
multiparty PSM protocols and a refined definition of scg) appear in Section 4.2.

4 Secure Linear Function Computation

Here, we discuss VSS, SCG, guided linear and general linear computation.

4.1 Verifiable Secret Sharing

Following the discussion in Section 3.3, we present functionality Fvss. The functionality consists
of two phases: a sharing phase and a verification phase. In the sharing phase, the dealer D inputs
a commitment matrix C = (Cij)i,j∈{0,...,n} and an opening matrix O = (oij)i,j∈{0,...,n}. If D is
honest, then the input (C,O) is “well-formed” in the following sense: the matrices C and O are
symmetric, and there exists a symmetric bivariate polynomial F (x, y) of degree at most t in each
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variable, such that the value committed by (Cij , oij) is F (i, j), for all i, j ∈ {0, . . . , n}.11 We think
of s := F (0, 0) as the secret. The functionality returns to each Pi the list of all commitments C, as
well as the list of the i-th row of openings Oi := (oij)j∈{0,...,n}. We call the pair (C,Oi) the tentative
share of Pi, and we say that it is valid if the matrix C is symmetric, and if there exists a degree-t
polynomial fi(x), such that the value committed by (Cij , oij) is fi(j) for all j ∈ {0, . . . , n}. Note
that the tentative shares produced by an honest dealer are always valid.

In the verification phase, each party Pi inputs a flag flagi. We do not intend to keep the flags
private, and so we leak them to the adversary. If D is honest then the flags of all honest parties are
0, and the functionality simply returns to all parties the set W of all (corrupt) parties that raised
a flag, together with their openings (Oi)i∈W. A corrupt dealer is allowed to have two additional
inputs: a flag flagD, and alternative openings Ō = (ōij)i,j∈{0,...,n} that will replace the tentative
openings of unhappy parties. If C is not a symmetric matrix, or if flagD = 1 then the output
of the verification phase is “D is corrupt”.12 Otherwise, let W be the set of all honest parties
with invalid tentative shares, together with all parties that raised a flag. The functionality verifies
that there exists a symmetric bivariate polynomial F (x, y) of degree at most t for which (1) the
value committed by (Cij , oij) is F (i, j) for all Pi in H \ W and j ∈ {0, . . . , n}, and (2) the value
committed by (Cij , ōij) is F (i, j) for all Pi in W and j ∈ {0, . . . , n}. If the verification fails then
the functionality returns “D is corrupt” to all parties, and otherwise, it returns (W, (Ōi)i∈W) to all
parties.13 In Section D we formally define Fvss, present the protocol vss, and prove the following
theorem.

Theorem 4.1. Let κ be a security parameter, n be the number of parties with t < n/2, and let F be a
field. Assuming the existence of perfectly-binding NICOM, there exists a 2-round protocol vss which is a
UC-secure implementation of Fvss, against a static, active, rushing adversary corrupting up to t parties.
The complexity of vss is poly(n, log |F|, κ).

Alternatively, if we replace the perfectly-binding NICOM with statistically-hiding NICOM, we also
obtain everlasting security.

On tentative shares and final shares. At the end of the first round each Pi holds the values
(C,Oi), which we call tentative shares. When D is honest then all parties hold valid tentative
shares, and the tentative shares will become the final shares at the end of the second round. When
D is corrupt, it may happen that only some of the parties hold valid tentative shares, and those
may change only if D is found out to be corrupt in the verification phase.

11Note that, in the UC-framework, this means that the environment picks the sharing (C,O). When the environment
gives the honest parties inputs that are not well-formed (for example, when an honest D receives (C,O) that are not
exactly as mentioned), a complete break-down occurs (see Section A.1 for a formal definition) and we are able to simulate.
We will ignore this issue when presenting the functionalities and protocols, but we do analyse it in the proof of security.

12If C is not symmetric then the parties know that D is corrupt already in the sharing phase. To simplify the func-
tionality and have only one round of disqualification of the dealer, we postpone this case to the verification phase.

13For a corrupt dealer, we are only promised that the public shares and the shares of the honest parties are consistent
with the sharing polynomial F (x, y). However, there might be a corrupt party Pi, and an index j ∈ C such that the
value committed by (Cij , oij) is not F (i, j). We call such a sharing a weak-sharing. In contrast, for an honest D, we
are promised that for every i, j ∈ {0, . . . , n} the value committed by (Cij , oij) is F (i, j), and we call such a sharing a
strong-sharing. See Section D for formal definitions. The distinction between strong sharing and weak-sharing will not
be important in the following sections.
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Public outputs. An external party, that can only listen to the broadcast channel, learns the
following public outputs (for a formal discussion about public outputs, refer to Section A.1): (1)
the commitments C in the sharing phase, and (2) the output of the verification phase (which is
either “D is corrupt” or the set W together with the public openings of all parties in W).

Notation 1. We say that the dealer shares a value s via vss if (1) the dealer picks a random symmetric
bivariate polynomial F (x, y) of degree at most t in each variable, such that F (0, 0) = s, (2) samples
(Cij , oij) ← commit(F (i, j); rij) for every i, j ∈ {0, . . . , n} such that i ≤ j, where rij is a fresh random
string, (3) sets Cji := Cij and oji := oij for every i < j, and (4) initiates vss with C := (Cij)i,j∈{0,...,n}
and O := (oij)i,j∈{0,...,n}.

4.2 Secure Computation with a Guard

We continue with a formal definition of the functionality Fscg. As discussed in Section 3.3, we first
consider the function fscg, which is defined below.

Function fscg. The function

fscg

((
a, δA, (oi)

m
i=1,b

A
)
,
(
δB,bB

))
. (1)

takes as input two tuples: the first one, which we think of as Alice’s inputs, consists of a vector of
coefficients a ∈ Fm, a flag δA ∈ {0, 1}, and a list of values bA ∈ Fm and corresponding openings
(oi)

m
i=1; the second tuple, which we think of as Bob’s inputs, consists of a flag δB ∈ {0, 1}, and a

vector of values bB ∈ Fm. The output of the function is defined as follows:

⊥, if δA = 1,((
a, δA, (oi)

m
i=1,b

A
)
,
(
δB,bB

))
, if (δA = 0 and δB = 1) OR

(δA = δB = 0 and bA ̸= bB),(
a, δA, δB,

∑
i∈{1,...,m} ai · bAi

)
, otherwise.

That is, if Alice’s flag is raised, i.e., δA = 1, the function returns a failure symbol ⊥. Intuitively,
this means that for some external reason Alice does not want to participate in the computation.
Otherwise, δA = 0. In this case, if Bob’s flag is raised, i.e., δB = 1, or if δB = 0 but there exists some
inconsistency between the vectors bA and bB , then the function simply returns the inputs of Alice
and Bob. Intuitively, if Bob’s flag is raised, or if there is an inconsistency between Alice and Bob,
we do not care about privacy, and allow to reveal all the information. Finally, if none of the flags
is raised, and if bA = bB , the functionality returns the vector of coefficients a, the flags δA and δB ,
and the sum

∑
i∈{1,...,m} ai · bAi . The functionality is presented in Figure 1.
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The functionality receives the set of corrupt parties C.

Honest parties’ inputs:

• All honest parties input the same commitments (C1, . . . , Cm).

• An honest Alice inputs a = (a1, . . . , am) ∈ Fm, bA = (bA1 , . . . , b
A
m) ∈ Fm, δA ∈ {0, 1} and openings

(oi)
m
i=1. If δA = 0 then it holds that open(Ci, oi) = bAi for each i ∈ {1, . . . ,m}.

• An honest Bob inputs bB = (bB1 , . . . , b
B
m) ∈ Fm and δB ∈ {0, 1}. If both Alice and Bob are honest,

and δA = δB = 0, then bA = bB .

Leakage: The adversary receives (C1, . . . , Cm). In addition, if only Alice is corrupt, then the adversary
receives Bob’s input; if only Bob is corrupt, then the adversary receives Alice’s input. If Alice and Bob
are honest, the adversary receives the output of fscg, defined in Equation 1, on the inputs of Alice and
Bob.

Adversary’s inputs: If Alice is corrupt, then the adversary inputs (a,bA, δA, (oi)
m
i=1) (the openings may

not be correct). If Bob is corrupt, then the adversary inputs (bB , δB). In addition, the adversary inputs
a bit flag, and a string z.

Public outputs: If δA = 1 return ⊥ to all parties. Otherwise, we split into cases.

• (Honest Alice and Bob) Return (a,
∑

i∈{1,...,m} ai · bAi ) to all parties.

• (Honest Alice, Corrupt Bob) If flag = 1, then return “Bob is corrupt” to all parties. Otherwise, return
(a,

∑
i∈{1,...,m} ai · bAi ) to all parties.

• (Corrupt Alice, Honest Bob) If either (1) flag = 1, or (2) δB = 1 and there exists i ∈ {1, . . . ,m} such that
bAi ̸= open(Ci, oi), or (3) bA ̸= bB and there exists i ∈ {1, . . . ,m} such that bAi ̸= open(Ci, oi) then
return “Alice is corrupt” to all. Otherwise, return (a,

∑
i∈{1,...,m} ai · bAi ) to all parties.

• (Corrupt Alice and Bob) Return z to all parties.

Functionality Fscg

Figure 1: Functionality Fscg

In Section E.2 we provide a protocol scg with 1-offline round and 1-online round, and prove the
following lemma.

Lemma 4.2. Let κ be a security parameter, let n be the number of parties, let t < n/2, and let F be a
field. Assuming the existence of perfectly-binding sub-exponentially hiding NICOM, protocol scg is a UC-
secure implementation of Fscg, against a static, active, rushing adversary corrupting up to t parties. The
complexity of the protocol is poly(n, log |F|, κ,m).

Alternatively, if we replace the perfectly-binding NICOM with statistically-hiding NICOM, we also
obtain everlasting security.

Public outputs. An external party, that can only listen to the broadcast channel in an execution
of scg, learns the output of the scg protocol as a public output.

4.3 Guided Linear Function Computation

Following on the motivation and discussion in Section 3.3, we present Functionality Fglinear in
Figure 2. In Section F.1 we present a protocol glinear with 1 offline round and 1 online round, and
prove the following lemma.
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The functionality receives the set of corrupt parties C.

Honest parties’ inputs:

• All honest parties input the same commitments (Cij)i∈{1,...,m},j∈{0,...,n}.

• If G is honest, G inputs (1) a list of coefficients a = (a1, . . . , am) ∈ Fm, (2) a list of values bG =
(bGij)i∈{1,...,m},j∈{0,...,n} ∈ Fm(n+1), (3) a list of openings (oGij)i∈{1,...,m},j∈{0,...,n}, and (4) a flag δG ∈
{0, 1}.
If δG = 0 then for every i ∈ {1, . . . ,m} it holds that open(Cij , o

G
ij) = bGij for every j ∈ {0, . . . , n}, and

the values (bGij)j∈{0,...,n} correspond to a degree-t polynomial.

• An honest Pj inputs a flag δj ∈ {0, 1}, and values (bj1, . . . , b
j
m) ∈ Fm. If both G and Pj are honest and

δG = δj = 0 then (bG1j , . . . , b
G
mj) = (bj1, . . . , b

j
m).

Leakage: The adversary receives (Cij)i∈{1,...,m},j∈{0,...,n}. In addition,

• if G is honest and δG = 0, the adversary receives a, (bGij , o
G
ij)i∈{1,...,m},j∈C and δG, (δj)j∈H, the sum∑

i∈{1,...,m} ai · bGij for any j ∈ {1, . . . , n}, and (bGij , o
G
ij)i∈{1,...,m} for every honest Pj with δj = 1.

• if G is corrupt the adversary also receives (bj1, . . . , b
j
m) and δj for every j ∈ H.

Adversary’s inputs:

• A corrupt guide inputs a, bG, (oGij)i∈{1,...,m},j∈{0,...,n} and δG, and an additional bit flag.

Public outputs: If δG = 1 return ⊥ to all parties. Otherwise, we split into cases.

• Honest guide. The functionality returns (a,
∑

i:δGi =1 ai · bGi,0) to all parties.

• Corrupt guide. The functionality returns “G is corrupt” if either (1) flag = 1, or (2) there exists j ∈ H
with δj = 1, and open(Cij , oij) ̸= bGij for some i ∈ {1, . . . ,m}, or (3) there exists j ∈ H with δj = 0

and (bG1j , . . . , b
G
mj) ̸= (bj1, . . . , b

j
m), and open(Cij , oij) ̸= bGij for some i ∈ {1, . . . ,m}. Otherwise, for

each j ∈ H let vj :=
∑

i∈{1,...,m} ai · bGij , and let g(x) be the polynomial obtained by interpolating
(vj)j∈H. If the degree of g(x) is more than t then the functionality returns “G is corrupt”. Otherwise,
the functionality returns (a, g(0)) to all parties.

Functionality Fglinear

Figure 2: Functionality Fglinear

Lemma 4.3. Let κ be a security parameter, let n be the number of parties, let t < n/2, and let F be a
field. Assuming the existence of perfectly-binding sub-exponentially hiding NICOM, protocol glinear is a
UC-secure implementation of Fglinear, against a static, active, rushing adversary corrupting up to t parties.
The complexity of the protocol is poly(n, log |F|, κ,m).

Alternatively, if we replace the perfectly-binding NICOM with statistically-hiding NICOM, we also
obtain everlasting security.

Public outputs. An external party, that can only listen to the broadcast channel in an execution
of glinear, learns the output of glinear as a public output.

4.4 Linear Function Computation

Using the machinery developed so far, we obtain a round-optimal protocol for linear function
computation, with optimal resiliency, and under Minicrypt-type assumptions. The result is sum-
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marized in Theorem 4.4, and we sketch the proof in Section G.

Theorem 4.4. Let κ be a security parameter, let n be the number of parties, let t < n/2, and let F be a
field. Assuming the existence of perfectly-binding sub-exponentially hiding NICOM, there is a 3-round
UC-secure protocol for the computation of general linear functionalities, against a static, active, rushing
adversary corrupting up to t parties. The complexity of the protocol is poly(|C|, n, log |F|, κ), where C is
the the size of the circuit computing the linear functionality.

Alternatively, if we replace the perfectly-binding NICOM with statistically-hiding NICOM, we also
obtain everlasting security.

5 Single Input Functionalities

Here, we discuss triple secret sharing, public SIF (for small and any number of parties) and general
SIF.

5.1 Triple Secret Sharing

Following the discussion in Section 3.1, here we present the functionality Ftss. The goal of Ftss

is to make a dealer D share three values a, b, c ∈ F such that c = ab. Like Fvss, functionality Ftss

consists of two phases, the sharing phase, and the verification phase. In the sharing phase, the
dealer inputs three pairs of matrices (Ca,Oa), (Cb,Ob) and (Cc,Oc). For an honest D, we are
promised that each of the pairs is “well-formed” in the same sense as in the Fvss functionality, i.e.,
all the matrices are symmetric, and the committed values correspond to bivariate polynomials
F a(x, y), F b(x, y) and F c(x, y) of degree at most t in each variable. In addition, when D is honest
the secrets a := F a(0, 0), b := F b(0, 0) and c := F c(0, 0) satisfy the multiplicative relation c = ab.
The output of Pi in the sharing phase is (Ca,Oa

i ), (C
b,Ob

i) and (Cc,Oc
i ), and like in Fvss, we call

those values the tentative shares of Pi.
In the verification phase, unlike in Fvss, the parties do not hold inputs, and we do not require

the shares of all unhappy parties to be part of the output. Instead, for an honest D the output is
always “verification succeeds”. A corrupt dealer is allowed to have two additional inputs: a flag
flagD, and alternative openings Ōa = (ōaij)i,j∈{0,...,n}, O

b = (ōbij)i,j∈{0,...,n} and Oc = (ōcij)i,j∈{0,...,n}
that will replace the tentative openings of honest parties that received invalid shares in the sharing
phase. If some matrix Ca,Cb or Cc is not symmetric, or if flagD = 1, then the output of the
verification phase is “D is corrupt”. Otherwise, let W be the set of all honest parties with invalid
tentative shares. The functionality verifies that for every v ∈ {a, b, c} there exists a symmetric
bivariate polynomial F v(x, y) of degree at most t for which (1) the value committed by (Cv

ij , o
v
ij) is

F v(i, j) for all Pi in H\W and j ∈ {0, . . . , n}, and (2) the value committed by (Cv
ij , ō

v
ij) is F v(i, j) for

all Pi in W and j ∈ {0, . . . , n}. In addition, the functionality verifies that the multiplicative relation
F c(0, 0) = F a(0, 0) · F b(0, 0) holds. If the verification fails then all parties output “D is corrupt”.
Otherwise, all the parties output “verification succeeds”, and every honest Pi in W outputs the
corrected shares (Ca, Ōa

i ), (C
b, Ōb

i) and (Cc, Ōc
i ). In Section H we present the formal description

ofFtss, together with a 2-round protocol tss that efficiently realizesFtss when the number of parties
is small, i.e., n = O(log κ), and a proof of the following theorem.

Theorem 5.1. Let κ be a security parameter, let n be the number of parties, let t < n/2, and let F be a
field. Assuming the existence of perfectly-binding sub-exponentially hiding NICOM, protocol tss is a UC-
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secure implementation of Ftss, against a static, active, rushing adversary corrupting up to t parties. The
complexity of the protocol is poly(2n, log |F|, κ).

Alternatively, if we replace the perfectly-binding NICOM with statistically-hiding NICOM, we also
obtain everlasting security.

Notation 2. We say that D shares a random triple (a, b, c) with c = ab via tss, if (1) D picks random
symmetric bivariate polynomials F a(x, y), F b(x, y) and F c(x, y), of degree at most t in each variable, such
that F c(0, 0) = F a(0, 0) · F b(0, 0), (2) samples (Cv

ij , o
v
ij) ← commit(F v(i, j); rvij) for every v ∈ {a, b, c}

and i, j ∈ {0, . . . , n} such that i ≤ j, where rvij is a fresh random string, (3) sets Cv
ji := Cv

ij and ovji := ovij
for every i < j and v ∈ {a, b, c}, and (4) initiates tss with Ca := (Ca

ij)i,j∈{0,...,n}, C
b := (Ca

ij)i,j∈{0,...,n},
Cc := (Ca

ij)i,j∈{0,...,n}, and Oa := (oaij)i,j∈{0,...,n}, O
b := (obij)i,j∈{0,...,n}, O

c := (ocij)i,j∈{0,...,n}.

Public outputs. An external party, that can only listen to the broadcast channel, learns the
following public outputs: (1) the commitments Ca,Cb and Cc in the sharing phase, and (2) the
output of the verification phase, which is either “verification succeeds” or “D is corrupt”.

5.2 Public Single Input Functionality

We continue with public SIFs. Gennaro et al. [37] showed a reduction from secure computation of
a single-input function to that of degree-2 polynomials and hence we implement Fpsif in Figure 3.

Fpsif is parameterized by a public degree-2 function f : Fℓ → Fm. The functionality receives the set of
corrupt parties C.

Input. Fpsif receives from an honest D inputs z = (z1, . . . , zℓ).

Public output. Fpsif returns y(z) = (y1(z), . . . , ym(z)) to all parties, where yi(z1, . . . , zℓ) = αi
0 +∑

p∈{1,...,ℓ} α
i
pz

p +
∑

p,q∈{1,...,ℓ} α
i
pqz

pzq is a degree-2 polynomial in the variables z1, . . . , zℓ and the co-
efficients (αi

p, α
i
pq)i∈{1,...,m}p,q∈{1,...,ℓ} are given as part of the description of f .

Functionality Fpsif

Figure 3: Functionality Fpsif

Public SIF for a small number of parties. In Section I, we realize Fpsif by a protocol psiflog
with 1-offline round and 1-online round, that achieves optimal resiliency and prove the following
theorem. Since psiflog uses tss as a sub-protocol, it is only efficient for a small number of parties,
n = O(log κ).

Theorem 5.2. Let κ be a security parameter, let n be the number of parties, let t < n/2, and let F be a
field. Assuming the existence of perfectly-binding sub-exponentially hiding NICOM, protocol psiflog is a
UC-secure implementation of Fpsif , against a static, active, rushing adversary corrupting up to t parties.
The complexity of the protocol is poly(|C|, 2n, log |F|, κ), where C is the circuit computing the function f .

Alternatively, if we replace the perfectly-binding NICOM with statistically-hiding NICOM, we also
obtain everlasting security.
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Public SIF for a large number of parties. As discussed in Section 3.2, we use protocol psiflog in
order to obtain a protocol psif, which is efficient even when the number of parties is polynomial
in κ, at the expense of slightly relaxing the resiliency threshold. In Section J, we present protocol
psif with 1-offline round and 1-online round, realizing Fpsif , and prove the following theorem.

Theorem 5.3. Let κ be a security parameter, let ϵ > 0 be a constant, let n be the number of parties and
t the number of corrupt parties such that n = (2 + ϵ)t. Let F be a field. Assuming the existence of
perfectly-binding sub-exponentially hiding NICOM, protocol psif is a UC-secure implementation of Fpsif ,
against a static, active, rushing adversary corrupting up to t parties. The complexity of the protocol is
poly(|C|, n, log |F|, κ), where C is the size of the circuit computing the function f .

Alternatively, if we replace the perfectly-binding NICOM with statistically-hiding NICOM, we also
obtain everlasting security.

5.3 General Single Input Functionality

A general SIF F can be defined by a list of functions f1(z), . . . , fn(z) : {0, 1}∗ → {0, 1}∗, where
fi(z) specifies the output of Pi. That is, F receives an input z from the dealer, and returns fi(z) to
every Pi. In Section K, we prove that general SIF reduces to public SIF in a round-preserving way
and we prove the following theorems.

Theorem 5.4 (Optimal-resiliency SIF for a small number of parties). Let κ be a security parameter,
let n be the number of parties and t < n/2. Let F be a single input functionality with binary circuit size
s. Assuming the existence of perfectly-binding sub-exponentially hiding NICOM, there exists a protocol sif
with 1-offline round and 1-online round which is a UC-secure implementation of F , against a static, active,
rushing adversary corrupting up to t parties. The complexity of the protocol is poly(s, 2n, κ).

Alternatively, if we replace the perfectly-binding NICOM with statistically-hiding NICOM, we also
obtain everlasting security.

Theorem 5.5 (Almost-optimal resiliency SIF for a large number of parties). Let κ be a security pa-
rameter, let ϵ > 0 be a constant, let n be the number of parties and let t the number of corrupt parties such
that n = (2 + ϵ)t. Let F be a single input functionality with binary circuit size s. Assuming the exis-
tence of perfectly-binding sub-exponentially hiding NICOM, there exists a protocol sif with 1-offline round
and 1-online round which is a UC-secure implementation of F , against a static, active, rushing adversary
corrupting up to t parties. The complexity of the protocol is poly(s, n, κ).

Alternatively, if we replace the perfectly-binding NICOM with statistically-hiding NICOM, we also
obtain everlasting security.
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A Appendix: Security Model, Useful Facts and Standard Primitives

A.1 Security model

In this section we give a high-level description of the UC-framework, due to [22]. For more details,
the reader is referred to [22]. We begin with a short description of the standard model, and then
explain how the UC-framework augments it. At a high level, in the standard model, security of
a protocol is argued by comparing the real-world execution to an ideal-world execution. In an
ideal-world execution, the inputs of the parties are transferred to a trusted party F (called the
ideal functionality) over a perfectly secure channel, the trusted party computes the function based
on these inputs and sends to each party its respective output. Informally, a protocol π securely
implements F if for any real-world adversary A, there exists an ideal-world adversary S (called
the simulator), that controls the same parties as A, so that the global output of an execution of π
with A (consisting of the honest parties’ outputs and the output of A), is indistinguishable from
the global output of the ideal-world execution with F and S (consisting of the honest parties’
outputs and the output of S).

The UC-framework augments the standard model by adding an additional entity, called the
environment Z . In the real-world, Z arbitrarily interacts with the adversary A, and, in addition,
Z generates the inputs of the honest parties at the beginning of the execution, and receives their
outputs at the end of the execution. In the ideal world, the same environmentZ arbitrarily interacts
with the simulator S, and, in addition, Z communicates with dummy parties, that receive the
honest parties’ inputs from Z and immediately transfer them to F , and later receive the honest
parties’ outputs from F and immediately transfer them to Z . In both worlds, at the end of the
execution the environment Z outputs a single bit.

For a security parameter κ and input ζ toZ , we denote the distribution of the output bit ofZ(ζ)
in a real-world execution of π with adversary A by REALπ,Z(ζ),A(κ). We denote the distribution
of the output bit of Z(ζ) in an ideal-world execution with ideal-functionality F , simulator S by
IDEALF ,Z(ζ),S(κ). Intuitively, we say that a protocol π UC-emulates an ideal-functionality F if
for every real-world polynomial-time adversary A there exists an ideal-world polynomial-time
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simulator S, so that for any environment Z and any input ζ to Z , it holds that {REALπ,Z(ζ),A(κ)}κ
is computationally indistinguishable from {IDEALF ,Z(ζ),S(κ)}κ.

The dummy-adversary. Since the above definition quantifies over all environments, we can
merge the adversary A with the environment Z . That is, it is enough to require that the simu-
lator S will be able to simulate, for any environment Z , the dummy adversary that simply delivers
messages from Z to the protocol machines. For more information, see [22].

The hybrid model. The UC-framework is appealing because it has strong composability prop-
erties. Consider a protocol ρ that securely implements an ideal functionality G in the F-hybrid
model (which means that the parties in ρ have access to an ideal functionality F), and let π be a
protocol that securely implements F . The composition theorem guarantees that if we replace in ρ
each call to F with an execution of π we obtain a secure protocol. This means that it is enough to
prove the security of a protocol in the hybrid model, where the analysis is much simpler.

Corruption-aware functionalities. Throughout, we assume that our functionalities are
corruption-aware, which means that they might depend on the identities of the corrupt parties
C. The notion of corruption aware functionalities was first introduced by [22], and the reader is
referred to [22] for more information (see also [6, Section 6.2]).

We mention that our single-input functionalityFsif is a fictitiously corruption aware functionality,
which means that Fsif receives the set of corrupt parties C, but does not depend on it. It is known
(see, e.g., [6, Section 6.2]) that if a protocol securely computes a fictitiously corruption aware func-
tionality, then it also securely computes it in the standard model, where the functionality does
not receive the set of corrupt parties C. Therefore, our final functionality Fsif is also secure in the
standard model.

Reactive functionalities. In this work, we consider both single-phase functionalities and reac-
tive (or multi-phase) functionalities. A single-phase functionality maps the inputs of the parties
to the outputs in a single phase of computation. A multi-phase functionality consists of multiple
phases of computation, where each phase depends on the internal state of the functionality. In
each phase the functionality receives the inputs of the parties, computes the outputs based on the
inputs and the internal state, and updates the internal state based on the inputs. We only con-
sider functionalities with a single phase, or with two phases. For more information about reactive
functionalities, see, e.g., [38, Chapter 7.7.1.3].

Functionalities with well-formed inputs and complete break-down. In many cases we assume
that the ideal functionality receives well-formed inputs from the honest parties. (For example,
we assume that all honest parties input the same commitments.) However, in order to prove UC-
security, we actually need to consider arbitrary environments, including environments that pick
inputs that are not well-formed. We solve this mismatch by adopting the (standard) convention
that whenever the inputs of the honest parties are not well-formed, a complete break-down of the
functionality occurs (see, e.g., [27, Chapter 4.4]). That is, whenever the inputs of the honest parties
are not well-formed, then the ideal functionality (1) leaks all the private information (i.e., the
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inputs of the honest parties) to the simulator, and (2) allows the simulator to determine the outputs
of the honest parties.

Complete break-down allows us to simulate even when the inputs are not well-formed, since
the simulator has more power: it receives the inputs of the honest parties, and it is allowed to
determine their outputs. Indeed, any protocol for a single-phase functionality can be perfectly
simulated when complete break-down occurs, since the simulator, that holds all the inputs of the
honest parties at the beginning of the simulation, can take the role of the honest parties in an
execution of the protocol with Z and A, and at the end of the execution determine the outputs
of the honest parties accordingly. We emphasize that, when using the functionality in some other
protocol, private information will not be leaked due to a complete break-down as long as we make
sure that we always call the functionality with well-formed inputs.

In general, for 2-phase functionalities, complete break-down does not necessarily imply trivial
simulation since the simulator might not be able to take the role of the honest parties when the bad
inputs arrive only in the second phase. However, in all our 2-phase functionalities perfect simulation
will be possible, because in the first phase (that consists of a single round) for every honest party
the simulator does exactly what an honest party will do.14 Therefore, even if the bad inputs arrive
in the second phase, the simulator can take the role of the honest parties and complete an execution
of the protocol. This issue is explicitely treated in the corresponding proofs.

Public outputs. Sometimes it will be useful to consider the case where there are external parties
that listen to the broadcast channel but do not participate in the execution of the protocol. We
would like to let those parties learn parts of the output, which we call public outputs. In order
to argue that a protocol is secure even in those settings, we also need to consider an adversary
that does not corrupt any party, but only listens to the broadcast channel. We prove that the
same simulators can still simulate the execution that such an adversary sees, given the public
outputs and the leakage specified by the functionality; that is, we show that no environment can
distinguish the real-world from the ideal-world.

Everlasting security. We also consider a hybrid version of statistical and computational security.
Intuitively, everlasting security requires that an environment which is polynomially-bounded dur-
ing the execution and is allowed to be unbounded after the execution, cannot distinguish the real-
world from the ideal-world. Observe that this security notion lies between computational-security
(where we consider only environments that are always polynomially-bounded) and statistical-
security (where we also consider environments that are unbounded during the execution of the
protocol).

The notion of everlasting security was formalized in the UC-framework by [50]. In a nutshell,
instead of considering environments that are unbounded after the execution, it is enough to con-
sider only environments that are always polynomially-bounded, but are not limited to a single
bit output. In particular, such environments can output their whole view. Using the same no-
tation as before, REALπ,Z(ζ),A(κ) and IDEALF ,Z(ζ),S(κ), to denote the output distribution of Z in

14This is possible because the first phase is either an offline-phase, that has no inputs and no outputs, and the sim-
ulation of the first round consists merely of an execution of the first round of the protocol (like in protocol scg and
protocol glinear, see Footnotes 21 and 24), or because in the first round only a single honest party has an input, and the
communication from this honest party to the corrupt parties is fully determined by the outputs of the corrupt parties,
which the simulator holds (like in protocol vss, see Footnote 19).
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the real-world and in the ideal-world (where now the output may contain more than one bit),
we say that a protocol π UC-emulates an ideal functionality F with everlasting security, if for
every polynomial-time real-world adversary A there exists an ideal-world polynomial-time sim-
ulator S such that for any polynomial-time environment Z and any input ζ to Z , the random
variables {REALπ,Z(ζ),A(κ)}κ, and {IDEALF ,Z(ζ),S(κ)}κ are statistically indistinguishable. There-
fore, in general, in order to prove security it is enough to show that the view of the environment
in the real-world is statistically-close to the view of the environment in the ideal-world.

We mention that the composition theorems of UC-security hold for protocols with everlasting
security (i.e., the composition of two protocols with everlasting security results in a protocol with
everlasting security). For a formal definition and statement of the composition theorem, the reader
is referred to [50].

Global setup. In order to obtain protocols with everlasting security, we use non-interactive com-
mitments which are statistically-hiding and computationally binding. Such commitments cannot
be implemented in the plain model and they require an additional round of intereaction or some
global setup. (Otherwise, a non-uniform adversary can “hardwire” an ambiguous commitment
with 2 consisting openings). In our setting the setup consists the slection of a collision-resistance
hash function h from a family H. For simplicity, we capture this via the standard notion of
common reference string (CRS). (Though, weaker notions suffice as discussed in Remark 1.4.)
Throughout the paper, we assume that all functionalities and parties have access to the same
global functionality Fcrs, that, upon receiving a query, returns the common reference string. We
mention that, since all our protocols are static systems, where all identities and connectivity is
fixed beforehand, the composition theorems in this model follow immediately from the composi-
tion theorems guaranteed by UC-security, even when we consider everlasting security (see, e.g., [8,
Section 1]).

A.2 Standard Useful Facts

A.2.1 Polynomials

Let n > 0 be a natural number, and let t < n. In the following, unless stated otherwise, F is a field
of size greater than n. We start with basic facts about polynomials (see., e.g., [6]).

Fact A.1. Let s ∈ F and let p(x) be a random degree-d polynomial, conditioned on p(0) = s. Let
α1, . . . , αd ∈ F be distinct nonzero field elements. Then the random variables

p(α1), . . . , p(αd)

are uniformly distributed over Fd.

Fact A.2. Let K ⊆ {1, . . . , n} be a set of size at least t + 1, and let {fk(x)}k∈K be a set of degree-t
polynomials. If for every i, j ∈ K it holds that fi(j) = fj(i) then there exists a unique symmetric bivariate
polynomials F (x, y) of degree at most t in each variable such that fk(x) = F (x, k) = F (k, x) for every
k ∈ K.

We denote by Ps,t the uniform distribution over symmetric bivariate polynomials F (x, y) of
degree at most t in each variable, conditioned on F (0, 0) = s.
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Fact A.3. For any s, s′ ∈ F and C ⊆ {1, . . . , n} of size at most t, it holds that

(i, F (x, i))i∈C ≡ (i, F ′(x, i))i∈C,

where F is sampled from Ps,t and F ′ is sampled from Ps′,t.

Fact A.4. For every s, s′ ∈ F, C ⊆ {1, . . . , n} of size at most t, and two sets of degree-t polynomials
{fi(x)}i∈C and {f ′i(x)}i∈C such that fi(j) = fj(i) and f ′i(j) = f ′j(i) for all i, j ∈ C, it holds that the sup-
port size of F (x, y) is equal to the support size of F ′(x, y), where F (x, y) is sampled from Ps,t conditioned
on F (x, i) = fi(x) for every i ∈ C, and F ′(x, y) is sampled from Ps′,t conditioned on F ′(x, i) = f ′i(x) for
every i ∈ C.

The following fact is due to Beaver [11].

Fact A.5 (Beaver’s Trick over Univariate Polynomials). Let C ⊆ {1, . . . , n} be a set of size at most t,
and let fα(x) and fβ(x) be any degree-t polynomials. Then the following two experiments have the same
distribution.

• Experiment 1. Sample three random degree-t polynomials fa(x), f b(x) and f c(x) conditioned on
fa(0) · f b(0) = f c(0). Set u := fα(0)− fa(0) and v := fβ(0)− f b(0). Output(

(fa(i), f b(i), f c(i))i∈C, f
α(x)− fa(x), fβ(x)− f b(x), uf b(x) + vfa(x) + f c(x) + uv

)
.

• Experiment 2. Sample uniform triples (ai, bi, ci)i∈C. Sample a degree-t polynomials fu(x) and
fv(x) conditioned on {fu(i) = fα(i) − ai}i∈C and {fv(i) = fβ(i) − bi}i∈C. Set u := fu(0)
and v := fv(0) and sample a degree-t polynomial f(x) conditioned on f(0) = fα(0) · fβ(0) and
{f(i) = ubi + vai + ci + uv}i∈C. Output(

(ai, bi, ci)i∈C, f
u(x), fv(x), f(x)

)
.

A.2.2 Statistical Distance

We start with a basic fact, which can be found, e.g., in [3].

Fact A.6. LetW be a set, and let {Xw}w∈W , {Yw}w∈W be distribution ensembles. Then, for every distri-
bution W overW , we have ∆((W,XW ), (W,YW )) = Ew←W [∆(Xw, Yw)].

Fact A.7. Let X = (X1, X2) and Y = (Y1, Y2) be probability distributions on a set A × B such that
∆(X,Y ) ≤ ϵ. Let δ =

√
2ϵ. Then, with probability at least 1− δ over z ← X1 it holds that

∆(X2 |X1=z, Y2 |Y1=z) ≤ δ.

Proof. Consider the random variable Z = (Z1, Z2) distributed over A × B, that is sampled in the
following way. First, Z1 is sampled, and it has the same marginal distribution as X1. Then, Z2 is
sampled according to the conditional distribution Y2 |Y1=Z1 .

Since ∆(X,Y ) ≤ ϵ then ∆(Z, Y ) ≤ ϵ. Indeed, Z1 and Y1 are ϵ-close in statistical distance, and
conditioned on any value Z1 = Y1 = z, the random variables Z2 |Z1=z and Y2 |Y1=z have the same
distribution. By the triangle-inequality it follows that ∆(X,Z) ≤ ∆(X,Y ) + ∆(Y,Z) ≤ 2ϵ.
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By Fact A.6 it follows that

2ϵ ≥ ∆(X,Z) = Ez←X1 [∆(X2 |X1=z, Y2 |Y1=z)].

Finally, by Markov’s inequality we conclude that

Pr
z←X1

[∆(X2 |X1=z, Y2 |Y1=z) ≥ δ] ≤ 2ϵ/δ = δ.

This concludes the proof.

A.3 Non-Interactive Commitment Schemes (NICOM)

Definition A.8 (NICOM). A NICOM is a pair of probabilistic algorithms (commit, open) that take as
a common input the security parameter 1κ and a some (possibly empty) random public parameters pp ∈
{0, 1}ℓ(κ) for some polynomial ℓ(·) and satisfy the following requirements:

– Syntax: commit takes as an input a message x ∈ {0, 1}∗ and random tape r ∈ {0, 1}∗ and outputs a
commitment/openning pair (C, o) and the algorithm open takes as an input a commitment/opening
pair (C, o) and outputs a message x′ ∈ {0, 1}∗ ∪ {⊥}.

– Correctness: For every κ, pp, x, r, it holds that openpp(1κ, commitpp(1
κ, x; r)) = x.

– Binding: For every family of polynomial-size non-uniform adversaries A = {Aκ} and every se-
curity parameter κ, with probability at most ϵ = negl(κ) over a uniform choice of pp, the tuple
(C, o, o′) := Aκ(pp) satisfies openpp(1

κ, C, o) ̸= openpp(1
κ, C, o′) and openpp(1

κ, C, o) ̸= ⊥ and
openpp(1

κ, C, o′) ̸= ⊥. The scheme is statistically binding, if the above holds even for inefficient
adversaries, and perfectly binding if, in addition, ϵ = 0.

– Hiding: For every family of non-uniform adversaries A = {Aκ}, every polynomial p(·), every secu-
rity parameter κ, every pp, and every pair of messages x, x′ ∈ {0, 1}p(κ), the distinguishing gap∣∣Pr(C,o)←Cpp(1κ,x)[Aκ(pp, C) = 1]− Pr(C,o)←Cpp(1κ,x′)[Aκ(pp, C) = 1]

∣∣ ≤ ϵ(κ)

for some negligible ϵ(·). The scheme is statistically hiding if the above holds even for inefficient
adversaries.

For ease of reading, we typically omit the security parameter and the public parameters from the algorithms.
By default, the security parameter is set according to the global security parameter that is being used by the
system, and the public parameters are chosen once and for all before all protocols begin by a set-up phase as
explained towards the end of Section A.1.

Remark A.9 (Sub-exponential hiding). Assuming injective OWF over m-bit inputs that cannot be in-
verted by a PPT adversary with probability better than 2−m

δ , it is possible to construct [15, 59, 39] a plain-
model (with no public parameters) perfectly-binding NICOM whose computational hiding property holds
for ϵ ≤ 2−κ. We refer to such a commitment as perfectly binding sub-exponentially hiding NICOM.
Moreover, under worst-case derandomization assumptions [9], such NICOMs can be based on general (not
necessarily injective) sub-exponentially hard OWFs. Similar sub-exponential hardness assumptions are
quite common in the literature and typical candidate one-way functions seem to achieve sub-exponential
hardness. In fact, our variant of sub-exponential hardness is relatively mild compared to other notions,
since we do not allow the adversary to run in sub-exponential time, but only allow it to succeed with sub-
exponentially small probability.
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B Appendix: Applications of VRS and SIF

Here, we detail the applications briefed in Section 1.1.4. In order to simplify the presentation, we
continue by presenting the applications using single input functionalities, and n parties, denoted
P1, . . . , Pn.

Round efficient manipulation of non-homomorphic encryption. Consider the case where there
are public commitments C1, . . . , Cℓ, and a distinguished party P1 holds the corresponding open-
ings o1, . . . , oℓ. Let the committed values be z1, . . . , zℓ and think of them as private values of P1.
P1 wishes to apply a public function f on the committed values, and reveal y := f(z1, . . . , zℓ) to
the rest of the parties P2, . . . , Pn.

We note that P1 can use a single input functionality F that (1) receives the commitments and
openings (Ci, oi)i∈{1,...,ℓ} from P1, (2) opens the i-th commitment Ci with oi in order to reveal zi,
and (3) returns (C1, . . . , Cℓ, f(z1, . . . , zℓ)) to all the parties (if the opening of some commitment
fails then the functionality returns a failure-symbol ⊥ to all the parties). Indeed, if the output of
the functionality is ⊥, the rest of the parties conclude that P1 is corrupt. Otherwise, the rest of
the parties hold the output (C̄1, . . . , C̄ℓ, y) of the functionality. Each party verifies that P1 used the
correct commitments as inputs to F , that is, C̄i = Ci for i ∈ {1, . . . , ℓ}. If the verification succeeds
the parties output y, and otherwise they conclude that P1 is corrupt.

Round-efficient GMW-type compiler for protocols with semi-malicious security. We continue
by describing a compiler that takes an r-round protocol which is secure against a semi-malicious
adversary, and transforms it to an (r + 1)-round protocol that provides security with unanimous
abort against a malicious adversary. Let Φ be an r-round protocol, and let Φi,j be the next-message
function of the i-th party in round j (that is, Φi,j is the function that computes the j-th round
messages of Pi based on the input and randomness of Pi, as well as the messages that Pi received
in rounds 1, . . . , j − 1). We assume without loss of generality that Φ only uses private-channel
communication. The main idea is to emulate the execution of Φ with the help of single input
functionalities. At the j-th round, we use SIF to make sure that Pi’s behaviour is consistent with
Pi’s input, randomness and all messages that Pi received in the previous rounds, where we make
sure that there are public commitments that hide those values. We also make sure that Pi provides
public commitment for every message that she has to send in the j-th round, and that every other
party Pk receives the opening of the respective commitment.

For every party Pi and round j we define the single input functionality F i,j as follows.

• If j = 1 thenF i,1 receives from Pi (1) input xi for Φ, (2) randomness ρi for Φ, and (3) auxiliary
randomness ρi,1.

The functionality computes the first round messages of Pi in Round 1 by computing
Φi,1(xi, ρi) = (ai,11 , . . . , ai,1n ), where ai,1k is the first round message from Pi to Pk. The function-
ality uses the auxiliary randomness ρi,1 to (1) sample a commitment and opening (Cxi , oxi)
of xi, (2) sample a commitment and opening (Cρi , oρi) of ρi, and (3) sample a commitment
and opening (Ci,1

k , oi,1k ) of ai,1k , for every k ∈ {1, . . . , n}.
The functionality returns oxi , oρi to Pi. In addition, every Pk receives from the functionality
all the commitments Cxi , Cρi , C

i,1
1 , . . . , Ci,1

n and the opening oi,1k .
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• For j > 1, the functionality receives from Pi (1) commitments and openings (Cxi , oxi) and
(Cρi , oρi), (2) commitments and openings (Ck,j′

i , ok,j
′

i ) for all k ∈ {1, . . . , n} and j′ < j, and
(3) auxiliary randomness ρi,j .

The functionality (1) opens Cxi with oxi to obtain xi, (2) opens Cρi with oρi to obtain ρi,
and (3) opens each Ck,j′

i with ok,j
′

i to obtain ak,j
′

i . If some opening fails then the function-
ality returns a failure-symbol ⊥ to all the parties. Otherwise, the functionality computes
Φi,j(xi, ρi, (a

k,j′

i )k∈{1,...,n},j′<j) = (ai,j1 , . . . , ai,jn ). The functionality uses the auxiliary random-
ness ρi,j to sample a commitment and opening (Ci,j

k , oi,jk ) of ai,jk , for every k ∈ {1, . . . , n}.

Every Pk receives from the functionality (1) all the commitments Ci,j
1 , . . . , Ci,j

n and the open-
ing oi,jk , and (2) the commitments (Ck,j′

i )k∈{1,...,n},j′<j and Cxi , Cρi that Pi inputs to F i,j .

The compiler does as follows.

• (Offline round) In this round the parties execute the offline round of all SIF executions that
will be described below.

• (Emulation of Round 1) Every Pi holds its input xi and samples randomness ρi for protocol
Φ, and randomness ρi,1 for F i,1. For every Pi the parties execute the online round of the SIF
execution of F i,1, where Pi inputs xi, ρi and ρi,1. At the end of this round each Pi holds the
commitments Ci′,1

k for all i′ ∈ {1, . . . , n} and k ∈ {1, . . . , n}, as well as the openings oi
′,1
i for

all i′ ∈ {1, . . . , n}.15

• (Emulation of Round j > 1) For every j = 2, . . . , r the parties do as follows.

– Every Pi samples randomness ρi,j for F i,j .

– For every Pi the parties execute the online round of the SIF execution of F i,j , where
Pi inputs (1) commitments and openings (Cxi , oxi) and (Cρi , oρi), (2) commitments and
openings (Ck,j′

i , ok,j
′

i ) for all k ∈ {1, . . . , n} and j′ < j, and (3) the randomness ρi,j .

– At the end of the round, every Pk does as follows. If some SIF execution ended with ⊥
then the parties abort.

– Otherwise, the output of Pk in F i,j has the form (1) commitments Ci,j
1 , . . . , Ci,j

n and the
opening oi,jk , and (2) the commitments (C̄k,j′

i )k∈{1,...,n},j′<j and C̄xi , C̄ρi that Pi inputs to
F i,j . If there exists i ∈ {1, . . . , n} such that the commitments in the second part of the
output are not equal to the public commitments (Ck,j′

i )k∈{1,...,n},j′<j and Cxi , Cρi that
were generated in previous round, then Pk aborts.16

– Otherwise, continue to the next iteration.

• (Output computation) After the emulation of Round r, each Pi holds input xi, randomness
ρi and incoming messages (ai

′,j
i )i′∈{1,...,n},j∈{1,...,r}), where ai

′,j
i is the value hidden in Ci′,j

i .
Pi uses those values in order to compute its output in protocol Φ.

15For simplicity, we assume that the execution of F i,1 cannot end with failure, since if a corrupt Pi does not provide
the functionality with xi, ρi and ρi,1 then the parties can simply set those values to be the all-zero string.

16Observe that all the parties receive the same commitments, so all the parties abort in this case.
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C Appendix: A common strategy for the proofs

In all the formal security proofs except that of scg, the same proof that shows that a pro-
tocol π securely implements a functionality F when the underlying commitment scheme is
computationally-hiding, also shows that π securely implements F with everlasting security when
the underlying commitment scheme is statistically-hiding, simply by changing computational-
indistinguishability to statistical-distance throughout the proof. Thus, we unify notation and say
that random variables X and Y are ϵ-close, which means that X and Y are ϵ-indistinguishable
when the underlying commitment scheme is computationally-hiding, or that X and Y are ϵ-close
in statistical distance, when the underlying commitment scheme is statistically-hiding. For proto-
col scg we provide a different proof for each case.

In order to unify the proofs, we also assume that the parties and functionalities have access to
a global functionality Fcrs that returns the CRS string. In the case of computational security we
always assume that Fcrs does nothing, and that the CRS string is empty.

Throughout, we denote by View the tuple consists of the randomness of the environment, the
messages that the corrupt parties sent and received, and the inputs of the honest parties (which
are picked by the environment). We denote by ϵ the error term of the commitment scheme, where
ϵ = negl(κ). We always assume that the adversary is the dummy adversary (see Section A.1).

D Verifiable Secret Sharing

In this section we provide formal definitions to notions discussed in Section 4.1. Fix some com-
mon reference string crs (if the underlying commitment scheme is statistically-hiding), and con-
sider a pair (C,O) of commitments C = (Cij)i,j∈{0,...,n} and openings O = (oij)i,j∈{0,...,n}. For
i ∈ {0, . . . , n}, let Ci = (Cij)j∈{0,...,n} and Oi = (oij)j∈{0,...,n}. We begin with the definitions of
valid shares and strong sharing. We emphasize that the definitions consider the CRS only if the
underlying commitment scheme is statistically-hiding.

Definition D.1 (validity). We say that (C,Oi) is valid (with respect to crs) if the following conditions
hold:

1. (Consistent commitments) Cjk = Ckj for all j, k ∈ {0, . . . , n}.

2. (Valid openning) For all j ∈ {0, . . . , n} the value fij := open(Cij , oij) is not ⊥.

3. (Low degree) The polynomial fi(x), obtained by interpolating (fij)j∈{0,...,n}, is of degree at most t.

Definition D.2 (Strong double t-sharing aka ⟨⟨·⟩⟩-sharing). A pair (C,O) is a strong double t-
sharing of s (with respect to crs), denoted as ⟨⟨s⟩⟩, if the following conditions hold:

1. (Validity) (C,Oi) is valid for every i ∈ {0, . . . , n}.

2. (Consistent openning) oij = oji for i, j ∈ {0, . . . , n}.

3. (Sharing of s) The values (fi0 := open(Ci0, oi0))i∈{1,...,n} correspond to a degree t polynomial f(x)
such that f(i) = fi0 and f(0) = s.
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Overall, when (C,O) is a strong double t-sharing of s, it holds (by conditions 1 and 2) that each
fi(x) is of degree at most t and that fi(j) = fj(i) for all i, j ∈ {0, . . . , n}. It therefore follows (see
Fact A.2) that the values (fij)i,j∈{0,...,n} correspond to a unique symmetric bivariate polynomial
F (x, y) of degree at most t in each variable, such that F (i, j) = fij for all i, j ∈ {0, . . . , n}.

Next, the weak sharing ensures that the shares of the honest parties are consistent with some
symmetric bivariate polynomial F (x, y) of degree t in each variable. However, a share of a corrupt
Pi may not be consistent with F (x, y). The following definition is tailored to the case where the
decommitment information that “belongs” to a subset of the parties, W, have been published.
(The set W may consist of both honest and corrupted parties.)

Definition D.3 (Weak double t-sharing aka J·K-sharing). A tuple (W,C,OW,OH\W) of parties W ⊆
{1, . . . , n}, public commitments C = (Cij)i,j∈{0,...,n}, public openings OW = (oij)i∈W,j∈{0,...,n}, and
private openings OH\W = (oij)i∈H\W,j∈{0,...,n} for the set of honest parties H is a weak double t-sharing
of s (with respect to crs), denoted as JsK, if the following conditions holds:

1. (Partial validity) For every i ∈W ∪ H it holds that (C,Oi) is valid.

2. (Weakly consistent opening) open(Cij , oij) = open(Cji, oji)
17 for i, j ∈W ∪ H

3. (Weak sharing of s) The values (fi0 := open(Ci0, oi0))i∈W∪H correspond to a degree t polynomial
f(x) such that f(i) = fi0 and f(0) = s.

Consider a weak double t-sharing (W,C,OW,OH\W), and let fi(x) be the polynomial defined
by (fij := open(Cij , oij))j∈{0,...,n}, for i ∈ W ∪ H. By condition (1) it follows that fi(x) is a degree-t
polynomial, and by condition (2) it holds that fi(j) = fj(i) for all i, j ∈ W ∪ H. Therefore, (see
Fact A.2) the polynomials {fi(x)}i∈W∪H define a unique symmetric bivariate polynomial F (x, y)
of degree at most t in each variable, such that F (x, i) = fi(x) for all i ∈ W ∪ H. (Note that
|W ∪ H| ≥ t + 1 since we always have honest majority, i.e., t < n/2.) We conclude that any
tuple (W,C,OW,OH\W) that satisfies Conditions (1) and (2), is a weak double t-sharing of a value
s := F (0, 0), where F (x, y) is the corresponding sharing polynomial.

Observation D.4 (Weak-sharing as a robust sharing). We observe that unless the binding property of
the commitment scheme is violated, weak-sharing is also a robust sharing. Indeed, for every i ∈ W the
openings Oi are already public, and consistent with F (x, y). In addition, every i ∈ H \W provides its
openings Oi which are also consistent with F (x, y). Finally, since there are at least t+1 honest parties, for
every corrupt Pi that reveals valid openings Oi, the committed polynomial fi(x) is either consistent with
F (x, y), or has degree more than t, in which case the parties think of it as an erasure.

For both sharings, we refer to F (x, y) as the sharing polynomial and fi(x) = F (x, i) = F (i, y) as
the ith row polynomial.

Definition D.5 (Rows of Sharing). Let (C,O) and (W,C,OW,OH\W) denote a ⟨⟨s⟩⟩ and respectively
JsK. We refer (Ci,Oi) as the ith row and denote by ⟨⟨s⟩⟩i and JsKi for respective sharing. We refer (C0,O0)
as the main row of the sharings and denote by ⟨s⟩ and [s] for respective sharing.

Notation 3 (Tentative Sharing aka T·W-sharing). We refer the sharing of s at the end of the sharing phase
by tentative sharing and denote it as TsW. The ith and the main row of a TsW is denoted as TsWi and ⌊s⌉
respectively.

17Notice that, we allow oij ̸= oji, and yet require open(Cij , oij) = open(Cji, oji) to hold.
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D.1 The VSS functionality and protocol

We continue with a formal definition of the functionality Fvss.

The functionality Fvss receives the set of corrupt parties C.

Sharing phase.

• Inputs: Fvss receives from D a pair (C,O) of commitments C = (Cij)i,j∈{0,...,n} and openings O =
(oij)i,j∈{0,...,n}. If D is honest then (C,O) is a strong double t-sharing of some value s.

• Public outputs: The functionality returns C as a public output.

• Private outputs: For i ∈ {1, . . . , n}, Fvss returns (oij)j∈{0,...,n} to Pi.

Verification phase.

• Honest parties’ inputs: Each honest party Pi inputs a bit flagi, such that if D is honest then flagi = 0
for every honest Pi.

• Leakage: For any honest Pi, the bit flagi is leaked to the adversary.

• Adversary’s inputs: Each corrupt Pi inputs a bit flagi. If D is corrupt, then D has two additional
inputs, Ō := (ōij)i,j∈{0,...,n} and a bit flagD.

• Public outputs: We split into two cases.

– Honest D. Let W be the set of all corrupt parties Pi with flagi = 1. Fvss returns(
W, (oij)i∈W,j∈{0,...,n}

)
to all parties.

– Corrupt D. Let W be the set containing all parties Pi with flagi = 1, together with all honest par-
ties Pi with an invalid pair (C,Oi), where Oi := (oij)j∈{0,...,n}. Let ŌW := (ōij)i∈W,j∈{0,...,n}. If
the tuple (W,C, ŌW,OH\W) is a weak double t-sharing, and flagD = 0 then Fvss returns

(
W, ŌW

)
to all parties. Otherwise, Fvss returns “D is corrupt” to all parties.

Functionality Fvss

Figure 4: Functionality Fvss

A formal description of protocol vss, which is a slightly simplified version of the protocol of [7]
appears in Figure 5.

Primitives: A NICOM scheme (commit, open).

Sharing Phase (R1):

• (Inputs.) D holds a pair (C,O), which is a strong double t-sharing.

• D broadcasts C. In addition, for every i ∈ {1, . . . , n}, D sends Oi to Pi.

• Each party Pi picks n + 1 random values (gi0, . . . , gin), computes
(
Gij , hij

)
= commit(gij) for j ∈

{0, . . . , n}, sends (gij , hij)j∈{0,...,n} to D, and broadcasts Gi := (Gij)j∈{0,...,n}.

• (Output.) Each Pi outputs (C,Oi).

Protocol vss
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Verification Phase (R2):

• (Inputs.) Each Pi holds an input-bit flagi.

• D does the following for every party Pi:

– Becomes unhappy with Pi if the check gij
?
= open(Gij , hij) fails for some j ∈ {0, . . . , n}.

– Broadcasts Oi when unhappy, and (αij)j∈{0,...,n} otherwise, where αij := oij + gij .

• A party Pi is unhappy with D if the pair (C,Oi) is invalid, or if flagi = 1. Pi broadcasts
(gij , hij)j∈{0,...,n} when unhappy and no message otherwise.

• (Local Computation) The pair (D,Pi) is said to be in conflict if Pi broadcasts (gij , hij)j∈{0,...,n} such
that gij = open(Gij , hij) for all j ∈ {0, . . . , n}. Let W be the set of parties conflicted with D. For
every i ∈ W and j ∈ {0, . . . , n}, if D broadcasted Oi in the verification phase, set ōij := oij , and
otherwise set ōij := αij − gij . Let ŌW := (ōij)i∈W,j∈{0,...,n}.

• (Output.) If there exists i ∈ W such that the pair (C, Ōi) is invalid then the parties output “D is
corrupt”. Otherwise, every party outputs (W, ŌW).

Figure 5: Protocol vss

We continue with the proof of security of Theorem 4.1.

D.2 Proof of security

Proof of Theorem 4.1. In this section, we prove that protocol vss UC-emulates Fvss (with everlasting
security when the underlying commitment scheme is statistically-hiding). Let A be the dummy
adversary. We define the simulator S as follows. S usesA in a black-box manner, and forwards all
messages between Z and A. S first receives the set of corrupt parties C. We split into two cases.

D.2.1 Honest Dealer

Sharing phase. First,18 S receives from Fvss the commitments and openings (C,Oi) for every
i ∈ C. S sends C toA as the broadcast of D, and Oi as the private message from D to Pi, for every
i ∈ C. In addition, on behalf of every honest Pi, S sets ((Gij , hij) := commit(gij , rij))j∈{0,...,n},
where rij and gij are fresh random strings, and sends Gi := (Gij)j∈{0,...,n} to A as the broadcast of
Pi. This completes the communication from honest parties to corrupt parties in the first round. At
this stage, S receives fromA the messages that every corrupt party Pi sends, that is, the broadcast
Gi and the private messages (gij , hij)j∈{0,...,n} to D.

Verification phase. S receives the input bits of the honest parties, {flagi}i∈H as a leakage from
Fvss. Since D is honest, we are promised that all those bits are 0.19 S simulates the honest parties

18If the inputs of the honest D are not well-formed (that is, (C,O) is not a strong double t-sharing), then a complete
break-down occurs (see Section A.1). In this case simulation is trivial, because the simulator, that holds all the inputs of
the honest parties, can simply take the role of the honest parties in an execution of the protocol, and at the end of the
execution, it sends to Fvss the outputs of the honest parties. This results in a perfect simulation of the protocol. Hence,
we continue by assuming that the first-round inputs to the honest dealer are well-formed.

19If the honest parties inputs are not well-formed (that is, flagi = 1 for some honest Pi) then a complete break-down
occurs (see Section A.1). In this case we can obtain perfect simulation. Indeed, the first round was simulated exactly like
an execution of the protocol. Therefore the simulator, that now holds (C,O) can continue the execution of the protocol
by computing the first round messages between D and the honest parties (which concludes the first round execution)
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(except the dealer D) by not sending any message. S simulates D in the following way.

• For every honest Pi, S broadcasts (αij)j∈{0,...,n}, where each αij is a random string.

• For every corrupt Pi, S first verifies if gij
?
= open(Gij , hij) for j ∈ {0, . . . , n} and becomes

unhappy with Pi if the check fails for some j. S broadcasts (oij)j∈{0,...,n} on behalf of D when
unhappy, and otherwise broadcasts (αij)j∈{0,...,n}, such that αij := oij + gij .

At this stage, S receives from A the message that every corrupt party Pi sends. Some corrupt
parties might send no message, while others broadcast some values (g′ij , h

′
ij)j∈{0,...,n}. For every

corrupt Pi such that g′ij = open(Gij , h
′
ij) for all j ∈ {0, . . . , n}, S sets flagi := 1, and for all other

corrupt parties S sets flagi := 0. Finally, for every i ∈ C the simulator inputs flagi to Fvss.

Fix a polynomial-time environment Z with input ζ, and assume without loss of generality that
Z is deterministic. We begin by showing that the view of Z in the real-world is close to the view
of Z in the ideal world.

We start by analysing (1) Z’s view in the sharing phase, (2) the outputs of the honest parties
in the sharing phase, and (3) Z’s view in the verification phase. (That is, for now we ignore the
outputs of the honest parties in the verification phase.) We consider the following hybrid-worlds,
where we assume that the honest parties know the set H.

• In Hybrid 1, the honest parties act like in the real-world, except that in round 2, (a) an hon-
est party Pi never sends a broadcast message, (b) for every i ∈ H, D does not verify that

open(Gij , hij)
?
= gij for j ∈ {0, . . . , n}, but D is always happy with Pi, and (c) for every i ∈ H,

the computation of αi0, . . . , αin by D is done using the values gi0, . . . , gin that Pi sends to D
(and not the values extracted from the commitments).

• In Hybrid 2, the honest parties act like in Hybrid 1, with the following modification: in the
first round, an honest Pi samples random elements (gi0, . . . , gin) and (g′i0, . . . , g

′
in), samples

(Gij , hij)← commit(g′ij ; rij), where rij is a fresh random string, broadcasts Gi0, . . . , Gin, and
sends (gij , hij)j∈{0,...,n} to D (so that value gij will be used in the computation of αij).

Real-world vs. Hybrid 1. We claim that the real-world view has the same distribution as in
Hybrid 1. This follows by noting that in the real-world (a) an honest Pi is always happy with an
honest D, and we are promised that flagi = 0, so Pi never sends a broadcast message in round 2, (b)
D is always happy with an honest Pi, and (c) for every honest Pi it holds that gij = open(Gij , hij),
so αij is computed in the same way in both worlds.

Hybrid 1 vs. Hybrid 2. We claim that the view in Hybrid 1 is O(n2ϵ)-close to the view in Hy-
brid 2. Indeed, the random variables (crs, (gi0, . . . , gin)i∈H) have the same distribution in both
hybrids, where gij ’s are the values sent from Pi to D in the first round. Fix those values, and
note that the Hybrid 1 random variables (Gi)i∈H are O(n2ϵ)-close to the corresponding Hybrid 2
random variables. Finally, one can verify that in both hybrids the rest of view can be obtained

and then computing the second round messages of the honest parties, while using flagi as the input of Pi. Finally, after
receiving the corrupt parties messages from the adversary, the simulator can compute the outputs of the honest parties
in the execution, and send them to Fvss to be the outputs of the ideal-world honest parties. Therefore, we continue by
assuming that the second-round inputs are well-formed as well.
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from (crs, (Gi)i∈H, (gi0, . . . , gin)i∈H) by the same efficient process.20 We conclude that the view in
Hybrid 1 is O(n2ϵ)-close to the view in Hybrid 2.

Hybrid 2 vs. ideal-world. We claim that the view in Hybrid 2 has the same distribution as the
ideal-world view. This follows by noting that the random variables (crs, (Gi)i∈H) have the same
distribution in both worlds, and that the rest of the view can be obtained by the same efficient
process.

We continue by analysing the honest parties’ outputs in the verification phase. Let View denote
the concatenation of (1) Z’s view in the sharing phase, (2) the outputs of the honest parties in the
sharing phase, and (3) Z’s view in the verification phase. We say that View is “good” if for any
commitment C from View, and for any two openings o, and o′ that appear in View, it holds that
either open(C, o) = ⊥ or open(C, o′) = ⊥ or open(C, o) = open(C, o). By the binding property, View
is good with probability at least 1− ϵ.

First, note that whenever View is good then D is not discarded in the real-world. For every
good View, it is not hard to see that both in the real-world and the ideal-world, the outputs of
the honest parties in the verification phase can be extracted from View by the following efficient
deterministic process: W is the set of all corrupt parties that are in conflict with D according to
View, and each honest party outputs (W,OW). This completes the case of an honest dealer.

D.2.2 Corrupt Dealer

Sharing phase. S begins the simulation of the first round by taking the role of the honest parties,
computing their messages in the first round, and transferring messages from honest parties to
corrupt parties to A. Then, the dealer receives from A the messages from the corrupt parties to
the honest parties, and gives them to the simulated honest parties.

Let C be the corrupt dealer’s broadcast, and let Oi be the openings that the dealer sent to an
honest Pi. S sets Oi := (⊥, . . . ,⊥) for any i ∈ {0, . . . , n} \ H, sets O := (Oi)i∈{0,...,n}, and inputs
(C,O) to Fvss.

Verification phase. The honest parties’ inputs (flagi)i∈H are leaked to S from Fvss. S continues
to simulate the honest parties using the leaked inputs (flagi)i∈H. That is, S computes the messages
sent by the honest parties, and transfers messages from honest parties to corrupt parties to A.
Then, S receives from A the messages from the corrupt parties to the honest parties, and gives
them to the simulated honest parties. Finally, the dealer computes the output of the honest parties
in the simulation.

At the end of the simulation, if the output of the honest parties is “D is corrupt” then S inputs
flagD := 1 to the functionality (the other inputs do not matter). Otherwise S sets flagD := 0, and
computes the set W of parties conflicted with the dealer in the simulation. For every i ∈ W ∩ C
S sets flagi := 1, and for every other corrupt Pi the dealer sets flagi := 0. For every i ∈ W and
j ∈ {0, . . . , n}, S computes ōij like an honest party in the simulation, and for i ∈ {0, . . . , n} \W
and j ∈ {0, . . . , n} S sets ōij := ⊥. S sets Ō := (oij)i,j∈{0,...,n} and inputs (flagi)i∈C, flagD and Ō to
Fvss.

20We remind the reader that we consider the CRS string only in the case of statistically-hiding commitments. In the
case of computationally-hiding commitments the CRS is simply an empty string.
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Fix any polynomial-time environment Z and input ζ to the environment. We show that the
view of Z in the real-world is close to the view of Z in the ideal-world.

Analysis. Since S always holds all the honest parties’ inputs, and emulates the honest parties in
an execution of vss, then the view of the sharing phase, together with the honest parties’ outputs
in the sharing phase and the view of the verification phase, have the same distribution in both
worlds. It remains to analyse the output of the honest parties in the verification phase.

Consider a view View that includes the sharing phase view, the output of the honest parties in
the sharing phase, and the verification phase view. We say that View is “good” if for any commit-
ment C from the view, and for any two openings o, and o′ that appear in the view, it holds that
either open(C, o) = ⊥ or open(C, o′) = ⊥ or open(C, o) = open(C, o). By the binding property, a
view View is good with probability at least 1− ϵ.

We claim that for every every good View, both in the real-world and the ideal-world the out-
puts of the honest parties in the verification phase can be extracted from View by the following
efficient deterministic process: if D is discarded according to View then every honest party out-
puts “D is corrupt”; otherwise, let W be the set of all parties that are in conflict with D according
to View, and each honest party outputs (W, ŌW), where ŌW is computed from View according to
the protocol.

This process clearly works for a good View obtained from the real-world. For a good View
obtained from the ideal-world, note that whenever D is discarded according to View then S sets
flagD = 1, so all honest parties output “D is corrupt”. Otherwise, note that the set W defined by
the process is the same as the set W defined by Fvss. Indeed, all honest parties with invalid shares
or with raised flag are in conflict with D, so they are in W according to the process and Fvss. In
addition, S sets flagi = 1 for every corrupt Pi which is in W according to the process. In addition,
it is not hard to verify that the set OW defined by the simulator is the same as the corresponding
set defined by the simulator. Hence, it remains to show that the tuple (W,C, ŌW,OH\W) is a weak
double t-sharing of some value s.

Observe that for every i ∈ W the pair (C, Ōi) is valid, or otherwise the honest parties would
output “D is corrupt”. In addition, for any i ∈ H \W the pair (C,Oi) is also valid, or otherwise
Pi would be unhappy with D, so Pi will be in W. In addition, since View is good, and D is not
discarded, then open(Cij , o

′
ij) = open(Cji, o

′
ji) for every i, j ∈ W ∪ H, where o′ij = ōij if i ∈ W, and

o′ij = oij otherwise. We conclude that (W,C, ŌW,OH\W) is a weak double t-sharing of some value
s. This completes the analysis of a corrupt dealer, and the proof of security of the protocol.

E Secure Partial Computation with a Guard

E.1 PSM Protocols

In this section we provide a formal definition of PSM, discussed in Section 3.3, together with a
security statement.

Definition E.1 (PSM Protocols). Let X1, . . . , Xℓ, Z be finite sets, and let X = X1× . . .×Xℓ. An ℓ-party
PSM protocol psm, computing a ℓ-argument function f : X → Z consists of:

• A message computation function psmi : Xi × R → Mi, for every party i ∈ {1, . . . , ℓ}, where R is a
finite set of common random inputs and Mi is a finite message domain.
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• A reconstruction function rec : M1 × . . .×Mℓ → Z that will be computed by the evaluator E.

The protocol psm =
(
psm1, . . . , psmℓ, rec

)
should satisfy the following properties.

1. (Correctness) For every (x1, . . . , xℓ) ∈ X and r ∈ R, rec(psm1(x1, r), . . . , psmm(xℓ, r)) =
f(x1, . . . , xℓ).

2. (Security) There exists a simulator Spsm, such that for every (x1, . . . , xℓ) ∈ X ,
Spsm

(
f(x1, . . . , xℓ)

)
≡ REALpsm(x1, . . . , xℓ), where REALpsm(x1, . . . , xℓ) denotes the distribution

of (psm1(x1, r), . . . , psmm(xℓ, r)) over the choice of r. For computational security,≡ needs to be≡c,
whereas for statistical security, ≡ needs to be ≡s.

Note that PSM security addresses only the case where the parties P1, . . . , Pℓ are honest.

Lemma E.2 (Polynomial-time PSM Protocols [47]). For every ℓ-argument functionality f that admits
a Boolean NC1 circuit of size s, there exists a PSM protocol with complexity of poly(s). In particular, if
s = poly(ℓ), then there exists a PSM protocol with complexity poly(ℓ).

E.2 The Protocol

In this section we present the scg protocol. As discussed in Section 3.3, our goal is to let all parties
learn the output of the function fscg on the inputs of Alice and Bob, while learning nothing else
about the inputs of Alice and Bob. (See Equation 1 for a formal definition of fscg.) We think of fscg
as a binary-function, fscg : {0, 1}ℓ → {0, 1}ℓ′ , so that the first ℓA bits correspond to Alice’s inputs,
and the last ℓB = ℓ − ℓA bits correspond to Bob’s inputs. We use an ℓ-party PSM protocol for the
computation of fscg, so that Alice simulates the first ℓA senders in the protocol, and Bob simulates
the last ℓB senders (each sender holds a single input bit). In the offline-round, we let Bob pick the
randomness r for the psm protocol and send it to Alice. In order to make sure that both Alice and
Bob follow the psm protocol in the online round, we also let Bob commit all possible messages
psmi(x, r) for x ∈ {0, 1} and i ∈ {1, . . . , ℓ} and send the openings to Alice. The commitments
are published under a random shift, so that no information is leaked about the inputs of Alice
and Bob. In the online-round, if Alice or Bob sends a PSM message psmi(x, r) on behalf of the
i-th sender, then they also have to provide the corresponding commitment’s opening, so that the
parties can verify that a valid message was sent. Every party then acts on the opening and PSM
messages to either conclude Alice/Bob to be corrupt or obtain the output of fscg. The protocol is
efficient, because fscg can be implemented as an NC1 circuit. Protocol scg is given in Figure 6.

Primitives: A PSM psm = (psm1, . . . , psmℓ, rec) for fscg : {0, 1}ℓ → {0, 1}ℓ
′
.

scg.off(R1): Bob samples a random string r for psm. For each i ∈ {1, . . . , ℓ} and x ∈ {0, 1}, Bob computes
(C ′

i,x, o
′
i,x) ← commit(psmi(x, r)) and picks a random shift σi of {0, 1}. For each i ∈ {1, . . . , ℓ}, Bob

broadcasts the shifted list of commitments (C ′
i,σi(x)

)x∈{0,1}. (That is, the commitment with index (i, x)

is moved to index (i, σi(x)).) Bob sends
(
r, (o′i,x)i∈{1,...,ℓ},x∈{0,1}, σi

)
to Alice.

scg.on inputs: All parties hold publicly known commitments C1, . . . , Cm. Alice holds input(
a, δA, (oi, b

A
i )

m
i=1

)
and Bob holds

(
δB , (bBi )

m
i=1

)
.

Protocol scg= (scg.off,scg.on)

45



scg.on(R2): The parties do as follows.

• Alice’s communication. For each x ∈ {0, 1} and i ∈ {1, . . . , ℓ}, Alice verifies that
open(C ′

i,σi(x)
, o′i,x) = psmi(x, r). If the verification fails then Alice broadcasts her inputs(

a, δA, (oi, b
A
i )

m
i=1

)
. Otherwise, Alice computes the binary string xA := (a, δA, (oi, b

A
i )

m
i=1) ∈

{0, 1}ℓA , computes si := psmi(x
A
i , r) for each i ∈ {1, . . . , ℓA} and broadcasts the list

(σi(x
A
i ), o

′
i,xA

i
, si)i∈{1,...,ℓA}.

• Bob’s communication. Bob computes the binary string xB := (δB , (bBi )
m
i=1) ∈ {0, 1}ℓB , computes

si := psmi(x
B
i−ℓA

, r) for each i ∈ {ℓA + 1, . . . , ℓ} and broadcasts (σi(x
B
i−ℓA

), o′
i,xB

i−ℓA

, si)i∈{ℓA+1,...,ℓ}.

• Local Computation. Each party does the following.

1. If Alice broadcasts her inputs
(
a, δA, (oi, b

A
i )

m
i=1

)
, and δA = 1 then output⊥ and terminate. Other-

wise δA = 0. Verify that bAi
?
= open(Ci, oi) for every i ∈ {1, . . . ,m}, and output “Alice is corrupt”

if the verification fails. Otherwise, output (a,
∑

i∈{1,...,m} ai · bi).
2. Else, denote the messages received from Alice by (ij , o

′
j , sj)j∈{1,...,ℓA}, and the messages received

from Bob by (ij , o
′
j , sj)j∈{ℓA+1,...,ℓ}. If some (ij , o

′
j , sj) with j ∈ {1, . . . , ℓA} is not received, or

open(C ′
j,ij

, o′j) ̸= sj then output “Alice is corrupt”. If some (ij , o
′
j , sj) with j ∈ {ℓA + 1, . . . , ℓ} is

not received, or open(C ′
j,ij

, o′j) ̸= sj then output “Bob is corrupt”.
3. Else, compute w ← rec(s1, . . . , sℓ). Parse w to obtain the output of fscg. If the output is ⊥ then

output ⊥.

Otherwise, if the output of fscg is ((a, δA, (oi, b
A
i )

m
i=1), (δ

B , (bBi )
m
i=1)), verify that bAi

?
= open(Ci, oi)

for every i ∈ {1, . . . ,m}, and output “Alice is corrupt” if the verification fails. If the verification
did not fail, output (a,

∑
i∈{1,...,m} ai · bi).

Otherwise the output of fscg is (a, δA, δB ,
∑

i∈{1,...,m} ai · bAi ). Output (a,
∑

i∈{1,...,m} ai · bAi ).

Figure 6: Protocol scg= (scg.off,scg.on)

We continue with the proof of Lemma 4.2.

E.3 Proof of security

Proof of Lemma 4.2. In this section we prove that protocol scg UC-emulates Fscg (with everlasting
security when the underlying commitment scheme is statistically-hiding). Let A be the dummy
adversary against scg. We define the simulator S as follows. The simulator S uses A in a black-
box manner, and forwards all messages between Z and A. The simulator first receives the set of
corrupt parties C.

We split into cases, and begin by considering the case of honest Alice and Bob. In this
case, we provide a single simulator (Section E.3.1), but two different analyses: one for the the
case where the underlying commitment scheme is statistically-hiding and everlasting security is
achieved (Section E.3.2), and one for the case where the underlying commitment scheme is only
computationally-hiding, and computational security is achieved (Section E.3.3). Then, we present
the rest of the cases (where at least one of Alice and Bob is corrupt), together with their analysis,
which applies both to the case of statistically-hiding commitments and computationally-hiding
commitments.
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E.3.1 Honest Alice and Bob – Simulator

Offline round. S simulates the actions of an honest Bob. That is, S samples a random
string r for the psm protocol, commitments and openings corresponding to the PSM messages
(C ′i,x, o

′
i,x) ← commit(psmi(x, r)) for each x ∈ {0, 1} and i ∈ {1, . . . , ℓ}, and random shifts σi for

any i ∈ {1, . . . , ℓ}, like an honest Bob. S sends the shifted commitments (C ′i,σi(x)
)i∈{1,...,ℓ},x∈{0,1} to

the adversary, as the broadcast of Bob.

Online round. First,21 S receives as leakage (1) the commitments (C1, . . . , Cm), and (2) the out-
put of fscg on the inputs of Alice and Bob. We split into cases according the output of fscg. We
begin by treating the simple cases, where either δA = 1, or δB = 1.

• If the output of fscg is ⊥ then δA = 1. In this case, S sends the messages of an honest Alice
with the default values a = (0, . . . , 0), bA = (0, . . . , 0), (o1, . . . , om) = (0, . . . , 0) and with the
flag δA = 1. For Bob, S plays like in the protocol, assuming that the inputs of Bob are δB = 0
and bB = (0, . . . , 0).

• Otherwise, the output of fscg is not ⊥, so δA = 0. If the output of fscg is of the form
((a, δA, (oi, b

A
i )

m
i=1), (δ

B, (bBi )
m
i=1)), then δB = 1. In this case the simulator holds the inputs

of Alice and Bob and can perfectly simulate their messages in execution of scg.

We continue with the case where δA = δB = 0. In this case, since Alice and Bob are both honest, the
output of fscg is of the form (a, 0, 0, χ), where χ is the sum

∑
i∈{1,...,m} ai · bAi . S finds (b′i)i∈{1,...,m}

such that
∑

i∈{1,...,m} ai · b′i = χ. This can be done by finding the first i∗ ∈ {1, . . . ,m} such that
ai∗ ̸= 0, and setting b′i∗ to a−1i∗ ·χ while the rest of the b′i’s are set to 0 (if no such ai exists then χ = 0,
and we can simply set b′i = 0 for every i).

For each i ∈ {1, . . . ,m} set b̄Ai := b′i and b̄Bi := b′i. In addition, for i ∈ {1, . . . ,m} set ōi := 0.
S then computes the binary string xA := (a, δA, (ōi, b̄

A
i )

m
i=1), computes s̄i := psmi(x

A
i , r) for each

i ∈ {1, . . . , ℓA} and broadcasts (σi(x
A
i ), o

′
i,xA

i
, s̄i)i∈{1,...,ℓA} on behalf of Alice. S also computes the

binary string xB := (δB, (b̄
B
i )

m
i=1), computes s̄i := psmi(x

B
i−ℓA , r) for each i ∈ {ℓA + 1, . . . , ℓ} and

broadcasts (σi(xBi−ℓA), o
′
i,xB

i−ℓA

, s̄i)i∈{ℓA+1,...,ℓ} on behalf of Bob.22 This concludes the simulation.

E.3.2 Honest Alice and Bob – Statistically-Hiding Commitment Scheme

Fix any polynomial time environment Z and input ζ to the environment. We show that the view
of Z in the real world is statistically close to the view of Z in the ideal world.

21If the inputs of the honest parties are not well-formed (for example, if not all honest parties have the same commit-
ments as inputs), then a complete break-down occurs (see Section A.1). In this case we note that we can obtain a perfect
simulation. Indeed, the offline-round was simulated exactly like a real-world execution. In addition, the simulator,
that now holds all the inputs of the honest parties, can continue following the protocol with those inputs in order to
perfectly simulate the online-round. Finally, the simulator can compute the outputs of the honest parties in the execu-
tion, and determine them as the outputs of the honest parties in Fscg. Since the same reasoning also applies to the other
cases (honest Alice and corrupt Bob; corrupt Alice and honest Bob; and corrupt Alice and Bob), the rest of the section
assumes that the inputs of the honest parties are well-formed.

22Notice that in all three cases the simulation is done by computing some pre-image that gives the desired output
and using it as the input of the PSM (in fact, when δB = 1 we actually hold the inputs of Alice and Bob). Looking
ahead, in the indistinguishability proof, we use PSM privacy that guarantees that those messages have (almost) the
same distribution as in the real-world as long as the output remains the same in both cases.
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Z’s view. In the real-world, since Alice and Bob are honest, then the verification of Al-
ice at the beginning of the online phase always succeeds. Therefore the adversary’s view
consists of (1) the crs and the first-round broadcast of Bob (C ′i,σi(x)

)x∈{0,1} for each i ∈
{1, . . . , ℓ}, (2) the inputs of Alice and Bob that are picked by the environment, (3) the online-
round broadcast of Alice (σi(x

A
i ), o

′
i,xA

i
, si)i∈{1,...,ℓA}, and (4) the online-round broadcast of Bob

(σi(x
B
i−ℓA), o

′
i,xB

i−ℓA

, si)i∈{ℓA+1,...,ℓ}.

We begin by showing that (1) has same distribution in both worlds. This would imply that
(2) has the same distribution in both worlds, since given the first-round view, the environment
picks the inputs of Alice and Bob in the same way in both worlds. Then, we consider the ran-
dom variables (r, (σi)i∈{1,...,ℓ}), where where r is the PSM randomness sampled by Bob, and
(σi)i∈{1,...,ℓ} are the random shifts sampled by Bob. We show that even conditioned on (1), i.e
(crs, (C ′i,σi(x)

)i∈{1,...,ℓ},x∈{0,1}), in both worlds the random variables (r, (σi)i∈{1,...,ℓ}) are O((ℓϵ)1/2)-
close to uniform, and there are overwhelmingly many such (crs, (C ′i,σi(x)

)i∈{1,...,ℓ},x∈{0,1}) for
which the above is true. This will allow us to extend the argument from O((ℓϵ)1/2)-closeness
between distributions (r, (σi)i∈{1,...,ℓ}) and uniform to O((ℓϵ)1/2)-closeness between real and ideal
world distributions of (3) and (4).23

Consider the random variables (crs, (C ′i,σi(x)
)i∈{1,...,ℓ},x∈{0,1}, r, (σi)i∈{1,...,ℓ}). It is not hard to

see that, since S follows the steps of an honest Bob in the offline phase, those random variables
have the same distribution in both worlds. In the following, we denote the length of r by |r|, and
note that each σi can be represented by a single bit.

First, we observe that the random variables (crs, (C ′i,σi(x)
)i∈{1,...,ℓ},x∈{0,1}, r, (σi)i∈{1,...,ℓ}) are

O(ℓϵ)-close in statistical distance to the random variables (crs, (C ′′i,σi(x)
)i∈{1,...,ℓ},x∈{0,1}, U|r|, Uℓ),

where each commitment in (C ′′i,σi(x)
)i∈{1,...,ℓ},x∈{0,1} is a commitment of the all-zero string. Indeed,

(r, (σi)i∈{1,...,ℓ}) have the same distribution as (U|r|, Uℓ). Conditioned on those values, and by the
hiding property of the commitment scheme, it follows that (crs, (C ′i,σi(x)

)i∈{1,...,ℓ},x∈{0,1}) is O(ℓϵ)-
close in statistical distance to (crs, (C ′′i,σi(x)

)i∈{1,...,ℓ},x∈{0,1}).
We say that a fixing of (crs, (C ′i,σi(x)

)i∈{1,...,ℓ},x∈{0,1}) is “good”, if conditioned on this fixing,
the random variables (r, (σi)i∈{1,...,ℓ}) are O((ℓϵ)1/2)-close to (U|r|, Uℓ). By Fact A.7 it follows
that a fixing is good with probability at least 1 − O((ℓϵ)1/2). Condition on any good fixing of
(C ′i,σi(x)

)i∈{1,...,ℓ},x∈{0,1}. At this stage the honest parties inputs are picked by Z , and so they have
the same distribution in both worlds. Fix those inputs as well.

It remains to show that

(i1, . . . , iℓ), (o
′
1,i1 , . . . , o

′
ℓ,iℓ

), (s1, . . . , sℓ)

have the same distribution in both worlds, where ij , o′j,ij and sj are the indices, openings and
PSM messages broadcasted by Alice and Bob in the online round. Since the simulator finds a pre-
image to the output of fscg, and in both worlds (r, (σi)i∈{1,...,ℓ}) is O((ℓϵ)1/2)-close to (U|r|, Uℓ), and
by the security of the PSM protocol, we conclude that in both worlds ((s1, . . . , sℓ), (i1, . . . , iℓ)) are
O((ℓϵ)1/2)-close to (Spsm(val), Uℓ), where Spsm is the simulator of the PSM protocol, and val is the
output of fscg. Note that val is fixed, as we’ve already fixed the honest parties inputs. Finally, fix

23When δB = 1 the simulator actually holds the inputs of Alice and Bob and we obtain perfect simulation. However,
since the analysis captures this case as well, we don’t need to split into cases.
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((s1, . . . , sℓ), (i1, . . . , iℓ)) as well, and observe that the random variables (o′1,i1 , . . . , o
′
ℓ,iℓ

) have the
same distribution in both worlds. We conclude that the real-world view is O((ℓϵ)1/2)-close to the
ideal-world view.

Honest parties’ outputs. Fix any view View of the adversary. In the real world, since Alice and
Bob are honest, the verification of Alice always succeeds, and Alice and Bob are never discarded.
If δA = 1 then the ideal-world output is ⊥, and by the perfect correctness of the PSM scheme
the real-world output is ⊥ as well. We continue by assuming that δA = 0. In the ideal world,
the output of the honest parties is (a,

∑
i∈{1,...,m} ai · bAi ) with probability 1. In the real-world, the

perfect correctness of the PSM protocol implies that all honest parties correctly recover the output
of fscg, which is either (a, δA, δB,

∑
i∈{1,...,m} ai ·bAi ) or ((a, δA, (oi, bAi )

m
i=1), (δ

B, (bBi )
m
i=1)). In the first

case the parties output (a,
∑

i∈{1,...,m} ai · bAi ), and in the second case, since Alice is honest it holds
that open(Ci, oi) = bAi for all i ∈ {1, . . . ,m}, so the the parties output (a,

∑
i∈{1,...,m} ai · bAi ) as well.

This concludes the case of honest Alice and Bob with statistically-hiding commitments.

E.3.3 Honest Alice and Bob - Computationally-Hiding Commitment Scheme

We continue by proving the security of our protocol when the underlying commitment scheme is
merely computationally-hiding. We show that for the simulator described in Section E, no envi-
ronment can distinguish the real-world from the ideal-world.

Under sub-exponential hardness assumption (see Section A.3 and Remark A.9), we may
assume that for every security parameter µ, there exists an efficient commitment scheme
(commit, open) which is perfectly-binding and computationally-hiding, and has error 2−µ. We
assume that the commitments used for the inputs of Alice and Bob have security parameter κ,
which is the security parameter of the protocol. Observe that there exists a constant c such that
the total bit-length of the honest inputs, which we’ve denoted by ℓ, is at most c ·m · (κ log |F|)c. In
the protocol itself, for the committed PSM messages, we let Bob use a commitment scheme with
security parameter κ′, such that κ′ = ℓ+ log ℓ+ κ. In this section we set ϵ := 2−κ and ϵ′ := 2−κ

′
.

Fix any environment Z and an advice string z, and assume without loss of generality that Z
is deterministic. We start by proving that any degenerate environment Z ′, that always gives the
same inputs to Alice and Bob, cannot distinguish real-world from ideal-world with advantage
more than ℓϵ′. We then show that if a general environment Z distinguishes the real-world from
ideal-world with advantage δ, then there exists a degenerate environment that distinguishes with
advantage δ/2ℓ. We conclude that a general environment distinguishes real-world from ideal-
world with advantage at most 2ℓ · ℓϵ′ = 2−κ.

We begin with the following claim.

Claim E.3. Let Z ′ be an environment, and let z′ be an advice string. Assume that Z ′(z′) never corrupts
Alice and Bob, and always gives the honest parties the same inputs at the beginning of the online phase.
Then,

REALscg,Z′(z′),A ≈ℓϵ′ IDEALFscg,Z′(z′),S .

Proof. Let xA and xB be the binary strings that Alice and Bob compute as the psm input, and note
that those strings are fixed, as they are merely a binary encoding of Alice and Bob’s inputs. Let
X := xA ◦ xB be the concatenation of those strings. Similarly, let x̄A and x̄B be the binary strings
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that the simulator computes as the psm input, and note that those strings are fixed as well. Let
X̄ := x̄A ◦ x̄B .

Consider the real-world random variables(
(C ′i,σi(x)

)i∈{1,...,ℓ},x∈{0,1}, (o
′
i,Xi

)i∈{1,...,ℓ}, (σi(Xi))i∈{1,...,ℓ}

)
,

and the ideal-world random variables(
(C̄ ′i,σi(x)

)i∈{1,...,ℓ},x∈{0,1}, (ō
′
i,X̄i

)i∈{1,...,ℓ}, (σ̄i(X̄i))i∈{1,...,ℓ}

)
,

and observe that they are ℓϵ′-indistinguishable. Indeed, by the perfect-security of the psm scheme,
and since fscg(X ) = fscg(X̄ ), it follows that s1, . . . , sℓ have the same distribution in both worlds. In
addition, it is not hard to see that (σi(Xi))i∈{1,...,ℓ} and (σ̄i(X̄i))i∈{1,...,ℓ} have the same distribution.
Conditioned on those values, fix any r in the real-world and r̄ in the ideal-world. The random
variables (C ′i,σi(Xi)

, o′i,Xi
)i∈{1,...,ℓ} and (C ′

i,σ̄i(X̄i)
, o′

i,X̄i
)i∈{1,...,ℓ} have the same distribution, and the

random variables (C ′i,σi(1−Xi)
)i∈{1,...,ℓ} and (C ′

i,σ̄i(1−X̄i)
)i∈{1,...,ℓ} are ℓϵ′-indistinguishable.

Finally, since both Alice and Bob are honest and by the perfect correctness of the psm scheme,
it follows that, in both worlds, the output of the honest parties is always ⊥ when δA = 1, and
(a,

∑
i∈{1,...,m} ai · bAi ) otherwise. This completes the proof of the claim.

Denote by X1, . . . ,X2ℓ all length-ℓ binary strings. Observe that each input (XA,XB) to Alice
and Bob corresponds to a unique binary string Xi = XA ◦ XB .

For i ∈ {1, . . . , 2ℓ}, we turn Z into a new environment Zi with advice string zi := (z,Xi) in the
following way. The environmentZi(zi) acts in the offline phase exactly likeZ(z). At the beginning
of the online-phase the environment computes the binary strings (XA,XB) corresponding to the
inputs of Alice and Bob that Z(z) would produce. If XA ◦XB = Xi then Zi continues the execution
by acting likeZ , and outputs the same output asZ . Otherwise, the environment outputs a random
bit.

We continue by showing that if Z(z) distinguishes the real-world from the ideal-world with
advantage δ, then someZi distinguishes the real-world from the ideal-world with advantage δ/2ℓ.

Claim E.4. Assume that |Pr[REALscg,Z(z),A = 1] − Pr[IDEALFscg,Z(z),S = 1]| = δ. Then there exists
i ∈ {1, . . . , 2ℓ} such that |Pr[REALscg,Zi(zi),A = 1]− Pr[IDEALFscg,Zi(zi),S = 1]| ≥ δ/2ℓ.

Proof. Assume without loss of generality that

Pr[REALscg,Z(z),A = 1]− Pr[IDEALFscg,Z(z),S ] = δ.

For i ∈ {1, . . . , 2ℓ}, let EREAL
i be the event that, in a real-world execution of the protocol with Z(z)

and A, Z picked inputs that correspond to Xi. Similarly, let E IDEAL
i be the event that, in an ideal-

world execution with Z(z) and S, Z picked inputs that correspond to Xi. Since the simulator
acts like an honest Bob in the offline-round, it follows that Pr[EREAL

i ] = Pr[E IDEAL
i ] for every i ∈

{1, . . . , 2ℓ}, so we omit the superscript, and simply denote the event by Ei.
For i ∈ {1, . . . , 2ℓ}, let ĒREAL

i be the event that, in a real-world execution of the protocol with
Zi(zi) and A, Zi picked inputs that correspond to Xi. Similarly, let Ē IDEAL

i be the event that, in
an ideal-world execution with Zi(zi) and S, Zi picked inputs that correspond to Xi. As before, it
holds that Pr[ĒREAL

i ] = Pr[Ē IDEAL
i ] for every i ∈ {1, . . . , 2ℓ}, so we omit the superscript.
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It follows that

δ = Pr[REALscg,Z(z),A = 1]− Pr[IDEALFscg,Z(z),S = 1]

=

2ℓ∑
i=1

Pr[Ei]
(
Pr[REALscg,Z(z),A = 1 | Ei]− Pr[IDEALFscg,Z(z),S = 1 | Ei]

)
=

2ℓ∑
i=1

Pr[Ēi]
(
Pr[REALscg,Zi(zi),A = 1 | Ēi]− Pr[IDEALFscg,Zi(zi),S = 1 | Ēi]

)
=

2ℓ∑
i=1

(
Pr[REALscg,Zi(zi),A = 1]− Pr[IDEALFscg,Zi(zi),S = 1]

)
where (1) in the third equality we used the fact that Pr[Ei] = Pr[Ēi] for all i ∈ {1, . . . , 2ℓ}, and
that Pr[REALscg,Z(z),A = 1 | Ei] = Pr[REALscg,Zi(zi),A = 1 | Ēi], and Pr[IDEALFscg,Z(z),S = 1 | Ei] =
Pr[IDEALFscg,Zi(zi),S = 1 | Ēi], which follow since Zi acts exactly like Z in the offline round and
the generation of the honest parties inputs, and conditioned on Ei and Ēi, Zi continues to act like
Z in the online-round, and (2) the fourth equality follows since for every i ∈ {1, . . . , 2ℓ},

Pr[REALscg,Zi(zi),A = 1]− Pr[IDEALFscg,Zi(zi),S = 1]

= Pr[Ēi]
(
Pr[REALscg,Zi(zi),A = 1 | Ēi]− Pr[IDEALFscg,Zi(zi),S = 1 | Ēi]

)
+ Pr[¬Ēi]

(
Pr[REALscg,Zi(zi),A = 1 | ¬Ēi]− Pr[IDEALFscg,Zi(zi),S = 1 | ¬Ēi]

)
,

and the second term is equal to zero, since whenever Ēi does not occur, Zi outputs a random bit.
Hence, by an averaging argument, there exists i ∈ {1, . . . , 2ℓ} such that Pr[REALscg,Zi(zi),A =

1]− Pr[IDEALFscg,Zi(zi),S = 1] ≥ δ/2ℓ.

Finally, assume that |Pr[REALscg,Z(z),A = 1] − Pr[IDEALFscg,Z(z),S = 1]| = δ. By Claim E.4
there exists i ∈ {1, . . . , 2ℓ} such that |Pr[REALscg,Zi(zi),A = 1] − Pr[IDEALFscg,Zi(zi),S = 1]| ≥ δ/2ℓ.
By Claim E.3 it follows that |Pr[REALscg,Zi(zi),A = 1] − Pr[IDEALFscg,Zi(zi),S = 1]| < ℓϵ′. We con-
clude that |Pr[REALscg,Z(z),A = 1] − Pr[IDEALFscg,Z(z),S = 1]| < 2ℓ · ℓϵ′ = 2−κ, where the last
equality follows by our choice of ϵ′. This concludes the analysis of honest Alice and Bob with
computationally-hiding commitments.

E.3.4 Corrupt Alice, Honest Bob

Offline round. S simulates the actions of an honest Bob. That is, S samples a random string r for
the psm protocol, commitments and openings (C ′i,x, o

′
i,x) ← commit(psmi(x, r)) for each x ∈ {0, 1}

and i ∈ {1, . . . , ℓ}, and random shifts σi for any i ∈ {1, . . . , ℓ}, like an honest Bob. S sends the
commitments (C ′i,σi(x)

)i∈{1,...,ℓ},x∈{0,1} to the adversary on behalf of Bob.

Online round. S receives (
bB, δB

)
and (C1, . . . , Cm)

from the leakage of the ideal functionality Fscg. S holds the input of Bob, and continues the sim-
ulation of Bob by sending the messages that Bob sends, and then receiving from A the massages
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that the corrupt Alice sends. At the end of the simulation, S computes the honest parties output,
denoted v. If v is ⊥ then the simulator inputs δA = 1 (the rest of the inputs do not matter). Other-
wise δA = 0. If v is “Alice is corrupt”, then S inputs flag := 1 to Fscg (the rest of the inputs do not
matter). Otherwise, when v is not “Alice is corrupt”, we split into cases.

1. If the corrupt Alice broadcasted (a, δA, (oi, b
A
i )i∈{1,...,m}), let ōi := oi and b̄Ai := bAi for each

i ∈ {1, . . . ,m}, and note that b̄Ai = open(Ci, ōi) (or otherwise the honest parties would output
“Alice is corrupt”). S inputs (a, δA, (ōi, b̄

A
i )

m
i=1) and flag := 0 to Fscg. (The input z of the

doesn’t matter.)

2. Otherwise, the corrupt Alice has broadcasted (ij , o
′
j , sj)j∈{1,...,ℓA}. For each j ∈ {1, . . . , ℓA}, S

takes the index ij broadcasted by the corrupt Alice, and sets xj := σ−1j (ij). S then sets xA :=

(x1, . . . , xℓA) ∈ {0, 1}ℓA , and parses xA = (a, δA, (oi, b
A
i )

m
i=1). S inputs (a, δA, (oi, b

A
i )

m
i=1),

flag := 0 and flag := 0 to Fscg. (The input z of the doesn’t matter.)

Fix any polynomial time environment Z and input ζ to the environment. We show that the
view of Z in the real world is close to the view of Z in the ideal world.

Z’s view. Since S receives the inputs of the honest parties, and acts like an honest Bob in both
rounds, it perfectly simulate the view ofZ . It remains to show that the output of the honest parties
has the same distribution in both worlds.

Honest parties’ outputs. We say that a view View is “good” if for any commitment C from the
view, and for any two openings o, and o′ that appear in the view, it holds that either open(C, o) = ⊥
or open(C, o′) = ⊥ or open(C, o) = open(C, o). By the binding property, a view View is good with
probability at least 1− ϵ.

For every good View, the outputs of the honest parties can be extracted from View by the effi-
cient deterministic process, that simply outputs what the honest parties would output given the
broadcasts of Alice and Bob from View. The process clearly works for a good View obtained from
the real-world. For a good View obtained from the ideal-world, we split into cases.

• If the output according to View is ⊥ then S sets δA = 1, so the ideal-world output is also ⊥.
Otherwise δA = 0.

• If the output according to View is “Alice is corrupt”, then S sets flag = 1, so the ideal-world
output is also “Alice is corrupt”. Otherwise flag = 0.

• Otherwise, if Alice broadcasts (a, δA, (oi, b
A
i )i∈{1,...,m}) and the output according to View is

(a,
∑

i∈{1,...,m} ai · bAi ), then it must hold that bAi = open(Ci, oi) for all i ∈ {1, . . . ,m} (or
otherwise Alice would be discarded). It is not hard to see that the ideal-world output is also
(a,

∑
i∈{1,...,m} ai · bAi ).

• Otherwise, Alice broadcasts (ij , o
′
j , sj)j∈{1,...,ℓA} and the output according to View is(

a,
∑

i∈{1,...,m} ai · bAi
)
. If δB = 1, or bA ̸= bB then the output of fscg is

((a, δA, (oi, b
A
i )

m
i=1), (δ

B, (bBi )
m
i=1)), so it must hold that bAi = open(Ci, oi) for all i ∈

{1, . . . ,m} (Otherwise, Alice is found to be corrupt). Otherwise, the output of fscg is
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(a, δA, δB,
∑

i∈{1,...,m} ai · bAi ). In both cases, since Alice is not found to be corrupt, it must
hold that open(C ′j,ij , o

′
j) = sj for any j ∈ {1, . . . , ℓA}. Since View is good, and by the correct-

ness of the underlying PSM protocol, we conclude that the output in the ideal-world is also(
a,

∑
i∈{1,...,m} ai · bAi

)
.

This concludes the case of corrupt Alice and honest Bob.

E.3.5 Honest Alice, Corrupt Bob

Offline round. In the offline round only the corrupt Bob communicates, so S receives the mes-
sages that Bob sends to the honest parties from A.

Online round. The adversary receives the inputs of the honest Alice, (a, δA, (oi, bAi )
m
i=1), and

computes the online round broadcast of the honest Alice, based on the offline-round message
from Bob to Alice. S then receives from A the online round broadcast of the corrupt Bob.

At the end of the simulation S computes the output of the honest parties in the simulation. If
the output is ⊥ then the inputs to Fscg doesn’t matter. If the output is “Bob is corrupt” S inputs
flag = 1 toFscg (the rest of the inputs do not matter). Otherwise, the output is not “Bob is corrupt”,
and S inputs flag = 0 to Fscg (the rest of the inputs do not matter).

Fix any polynomial time environment Z and input ζ to the environment. We show that the
view of Z in the real world is close to the view of Z in the ideal world.

Z’s view. Since S receives the inputs of the honest parties, and acts like an honest Alice in both
rounds, it perfectly simulate the view ofA. It remains to show that the output of the honest parties
has the same distribution in both worlds.

Honest parties’ output. We say that a view View is “good” if for any commitment C from the
view, and for any two openings o, and o′ that appear in the view, it holds that either open(C, o) = ⊥
or open(C, o′) = ⊥ or open(C, o) = open(C, o). By the binding property, a view View is good with
probability at least 1 − ϵ. Whenever a view is good, it is not hard to verify that the output in the
ideal-world is equal to the output of the honest parties according to View. This concludes the case
of honest Alice and corrupt Bob.

E.3.6 Corrupt Alice and Bob

Since the only parties that hold inputs and communicate are Alice and Bob, S can trivially simulate
the view of the corrupt parties. At the end of the simulation S computes the output of the honest
parties in the simulation, denoted z. S inputs z to Fscg (the rest of the inputs do not matter). It is
not hard to see that the above simulator perfectly simulates scg. This completes the case of corrupt
Alice and Bob.

E.3.7 Complexity Analysis

Here we sketch the complexity analysisof protocol scg. In order to show that the complexity of scg
is poly(n, log |F|, κ,m), it is enough to show that the complexity of the underlying PSM protocol is
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poly(n, log |F|, κ,m). For this, according to Theorem E.2 it is enough to show that fscg has a circuit
with size polynomial in (n, log |F|, κ,m) and depth logarithmic in (n, log |F|, κ,m). This follows by
standard use of multiplication and addition over extension fields of the binary field, that can be
done in NC1 (see [45]), and by the fact the comparing two strings requires logarithmic depth.

This completes the complexity analysis, and completes the proof of security of the protocol.

F Guided Linear Function Computation

F.1 The Protocol

In this section we present the glinear protocol, discussed in Section 4.3. The protocol sim-
ply invokes n instances of SCG with G as Alice and every Pj as Bob, computing the function
a1 · bG1j + . . .+ am · bGmj . If (a) G (aka Alice) gets identified as corrupt in any of the n SCG instances,
or (b) it inputs different a or different flags to the SCG instances, or (c) the outputs of SCGs cor-
responding to instances where Bob is not identified as corrupt lead to a non-degree-t polynomial,
then G is identified as corrupt. Otherwise, the the parties use the outputs of all SCGs whose output
is not “Bob is corrupt” in order to interpolate the degree-t polynomial f(x), and output (a, f(0)).

Primitives: SCG scheme scg = (scg.off, scg.on).

glinear.off(R1): For every j ∈ {1, . . . , n}, the parties execute an instance of the offline phase of scg, de-
noted scg.offj , with G as Alice and Pj as Bob.

glinear.on inputs: All parties hold the same commitments (Cij)i∈{1,...,m},j∈{0,...,n}.
G holds (1) a list of coefficients a = (a1, . . . , am) ∈ Fm, (2) a list of values bG = (bGij)i∈{1,...,m},j∈{0,...,n} ∈
Fm(n+1), (3) a list of openings (oGij)i∈{1,...,m},j∈{0,...,n}, and (4) a flag δG ∈ {0, 1}.

Every Pj holds a flag δj ∈ {0, 1}, and values (bj1, . . . , b
j
m) ∈ Fm.

glinear.on(R2): For each j ∈ {1, . . . , n}, the protocol scg.onj is executed, where

• All parties input (C1j , . . . , Cmj).

• G, as Alice, inputs the coefficient vector a, the vector of values (bG1j , . . . , b
G
mj), the flag δG and

the openings (oGij)
m
i=1 (if δG = 1 then we assume that the guide inputs some default values for

a, (bG1j , . . . , b
G
mj) and (oGij)

m
i=1);

• Pj , as Bob, inputs the flag δj and the values (bj1, . . . , b
j
m) (if δj = 1, Pj inputs some default values for

(bj1, . . . , b
j
m)).

(Local computation) For each k ∈ {1, . . . , n} let outk be the output of scgk. If there exists k such that
outk is “Alice is corrupt”, then output “G is corrupt”. Otherwise, if all outk are ⊥ then output ⊥. If
only some outk are ⊥ (and some are not), then output “G is corrupt”. Otherwise, let K be the set of all
indices k such that outk is not “Bob is corrupt”, and let outj = (ak, vk) for each k ∈ K. If the the list of
coefficients ak is not the same among all {outk}k∈K then output “G is corrupt”. Otherwise set a := ak

for some k ∈ K. Let g(x) be the polynomial obtained by interpolating over (vk)k∈K . If g(x) is of degree
more than t then output “G is corrupt”. Otherwise, output (a, g(0)).

Protocol glinear = (glinear.off, glinear.on)
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Figure 7: Protocol glinear = (glinear.off, glinear.on)

Notation 4. For a set of m final j-th rows Js1Kj , . . . , JsmKj we say that the parties participate in glinear

to compute
∑m

k=1 akJskKj , with party Pj as a guide G, and with flag δG to the guide and δk to Pk, to
mean an execution of glinear where (a) all parties input the commitments corresponding to the j-th rows
Js1Kj , . . . , JsmKj , (b) the guide Pj inputs a = (a1, . . . , am), δG, and the commitments, openings and
values corresponding to the j-th rows, and (c) every Pk inputs δk and the values corresponding to the k-th
shares of each row. We also use a similar notation in the case where we only have m tentative j-th rows
Ts1Wj , . . . ,TsmWj .

We continue with the proof of Lemma 4.3.

F.2 Proof of security

Proof of Lemma 4.3. In this section we prove that protocol glinear perfectly UC-emulates Fglinear in
the Fscg-hybrid model. From the composition properties of UC-security, this implies that protocol
glinear UC-emulates Fglinear (with everlasting security if the underlying commitment scheme is
statistically-hiding). Let A be the dummy adversary against glinear. We define the simulator S as
follows. The simulator S usesA in a black-box manner, and forwards all messages between Z and
A. The simulator first receives the set of corrupt C parties from Z . We split into cases.

F.2.1 Honest Guide

Offline round. In the Fscg-hybrid model there is no communication in the offline round.

Online round. First24, the simulator receives the output and leakage of Fglinear. We start with
the simple case where the output is ⊥ and the leakage is (Cij)i∈{1,...,m},j∈{0,...,n}. In this case the
simulator sets the output and leakage of every F j

scg for an honest Pj to be ⊥ and (C1j , . . . , Cmj),
respectively. In addition, for every F j

scg for a corrupt Pj the simulator sets the output and leakage
to be⊥ and the default values of a, (bG1j , . . . , b

G
mj) and (oGij)

m
i=1. This concludes the simulation when

the output is ⊥.
Otherwise, the output is not ⊥, and the simulator obtains the following leakage from Fglinear:

(1) the commitments (Cij)i∈{1,...,m},j∈{0,...,n}, (2) the honest parties’ flags (δi)i∈H and δG, (3) parts
of the dealer’s inputs a, (bGi,j , o

G
i,j)i∈{1,...,m},j∈C, (4) vj :=

∑
i∈{1,...,m} aib

G
ij for any j ∈ {1, . . . , n},

and (5) (bGi,j , o
G
i,j)i∈{1,...,m} for every honest Pj with δj = 1. In addition, the simulator receives the

output of Fglinear, v :=
∑

i∈δG aib
A
i0.

For each j ∈ {1, . . . , n}, the simulator simulates the call to F j
scg as follows.

24If the inputs of the honest parties are not well-formed (for example, if not all honest parties have the same commit-
ments as inputs), then a complete break-down occurs (see Section A.1). In this case we can obtain a perfect simulation
by following the same approach as in Footnote 21. Note that in this case complete break-down might also occur also in
the internal Fscg calls, and that they can be simulated since the simulator holds all the inputs of the honest parties. A
similar argument applies to the case of a corrupt guide, so in the rest of this section we assume that the honest parties’
inputs are well-formed.
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• If j ∈ H and δj = 0, then the simulator gives (C1j , . . . , Cmj), and (a, δG, δj , vj), to A
as the leakage from F j

scg. Otherwise, if δj = 1, the simulator gives (C1j , . . . , Cmj), and
((a, δG, (bGij , o

G
ij)i∈{1,...,m}), (δ

j ,bj)) as the leakage from F j
scg, where bj is the default vector

used by Pj when δj = 1. The simulator also gives (a, vj) as the output of F j
scg.

• If j ∈ C then the simulator gives the adversary the values (C1j , . . . , Cmj), a, (bGij)i∈{1,...,m},
δG, and (oGij)i∈{1,...,m} as leakage from F j

scg. Later, the simulator receives Pj ’s inputs to F j
scg,

denoted bB , δB , flag, and z from A. Upon receiving the inputs, the simulator, that holds all
inputs to F j

scg, computes the output of the functionality, and returns it to A.

This completes the simulation.

Fix any polynomial time environment Z and input ζ to the environment. We show that the
view of Z in the real world has the same distribution as the view of Z in the ideal world. It is not
hard to verify that this is the case when the output of Fglinear is ⊥, so we only focus on the case
where the output is not ⊥.

Z’s view. Fix the crs. The honest parties’ inputs are picked by Z , and so they have the same
distribution in both worlds. Fix those inputs. The only messages that the adversary receives are
the leakage and the output from the various Fscg calls. It is not hard to see that, since we’ve fixed
the honest parties’ inputs, those messages are fixed for any F j

scg such that j ∈ H, and are the same
in both worlds. Similarly, for j ∈ C, the leakage is fixed, and is the same in both worlds. After
receiving all leakage from the various calls to Fscg, and the outputs of F j

scg for j ∈ H, the adversary
picks the inputs to F j

scg for j ∈ C in the same way in both worlds, and the simulator computes
the output of F j

scg like in the real-world, so the output of F j
scg has the same distribution in both

worlds. We conclude that the Z’s view has the same distribution in both worlds.

Honest parties’ output. Fix any view View. In the ideal world the output of the honest parties
is (a,

∑
i∈{1,...,m} aib

G
i0) with probability 1. We show that this is also the case in the real world.

Indeed, for every j ∈ H, the functionality F j
scg returns (a,

∑
i∈{1,...,m} aib

G
ij) to all honest parties. In

addition, for j ∈ C, the output of F j
scg is either “Bob is corrupt” or (a,

∑
i∈{1,...,m} aib

G
ij). Let K be

the set of all indices j such that F j
scg does not return “Bob is corrupt”. In particular, K includes

all n − t ≥ t + 1 honest parties. For k ∈ K, let vk :=
∑

i∈δG aib
G
ik. As we are promised that for

every i ∈ {1, . . . ,m} the shares bGi0, . . . , b
G
in correspond to a degree t polynomial gi(x), it follows

that the shares (vk)k∈K correspond to a degree-t polynomial g(x) :=
∑

i∈{1,...,m} aigi(x), whose
free coefficient is g(0) =

∑
i∈{1,...,m} aigi(0) =

∑
i∈{1,...,m} aib

G
i0. Therefore, all honest parties output

(a,
∑

i∈{1,...,m} aib
G
i0) with probability 1. This concludes the case of an honest guide.

F.2.2 Corrupt Guide

Offline round. In the Fscg-hybrid model there is no communication in the offline round.
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Online round. The simulator receives the following leakage from Fglinear: (1) the commitments
(Cij)i∈{1,...,m},j∈{0,...,n} and (2) the honest parties’ inputs (bi, δi)i∈H. The simulator, that holds the
inputs of all honest parties, takes the role of the honest parties in an execution of the protocol. In
particular, for every j ∈ {1, . . . , n} the simulator sends (C1j , . . . , Cmj), as the leakage from F j

scg,
and in addition, for j ∈ H, the the simulator sends bj and δj as the additional leakage. Later,
at an order which is determined by A, it holds that (1) for every j ∈ {1, . . . , n} the simulator
receives Alice’s input to F j

scg from A, denoted (aA,j ,bA,j , δA,j , (oA,j
i )i∈{0,...,m}, flag

A,j , zA,j), and (2)
for j ∈ C, the simulator receives Bob’s input to F j

scg from A, denoted bB,j , δB,j . Upon receiving
both Alice and Bob’s input to F j

scg, the simulator, that holds all the inputs to F j
scg, computes the

output of F j
scg and gives it to A. After all calls to Fscg were concluded, the simulator continues to

simulate the honest parties, and computes their output.
If the output of the honest parties is ⊥ then the simulator sets δG = 1 and inputs it to Fglinear

(the rest of the inputs do not matter). Otherwise the simulator sets δG = 0. If the output of the
honest parties is “G is corrupt” then the simulator inputs flag = 1 to Fglinear (the rest of the inputs
don’t matter). Otherwise, the simulator sets flag := 0. Observe that in this case, for every j ∈ H
the vectors aA,j are the same (or otherwise the guide would be discarded), and we simply denote
them by a. The simulator sets bGij := bA,j

i and oGij := oA,j
i for every i ∈ {1, . . . ,m} and j ∈ {0, . . . , n}.

The simulator inputs (a,bG, δG, (oGij)i∈{1,...,m},j∈{0,...,n}) and flag to Fglinear.

Fix any polynomial-time environment Z and input ζ to the environment. We show that the
view of Z in the real world is close to the view of Z in the ideal world.

Z’s view. In both worlds the honest parties’ inputs are picked by Z , so they have the same
distribution and we fix them. The only messages that the adversary receives are the leakage and
the output from the various Fscg calls. Since the simulator holds the honest parties inputs, and
since the simulator simulates the honest parties exactly like in the real-world, those messages
have the same distribution as in the real-world. This concludes the analysis of the Z’s view.

Honest parties’ output. Fix any view View of the adversary. If the output of the honest parties
in the real-world according to View is ⊥, then the simulator sets δG = 1, and the output in the
ideal-world is ⊥ as well. Otherwise, δG = 0. If the output of the honest parties in the real-world
according to View is “G is corrupt” then the simulator sets flag = 1, and so the output of the honest
parties in the ideal-world is “G is corrupt”. Therefore, from now on we assume that the output of
the honest parties according to View is not ⊥ or “G is corrupt”.

Denote by K the set of all indices k ∈ {1, . . . , n} such that the output of Fk
scg is not “Bob is

corrupt”, and observe that H ⊆ K. Since the guide is not discarded then (1) there is no F j
scg whose

output is “Alice is corrupt”, (2) the dealer sent the same a and δG to any Fk
scg for k ∈ H , (3) for

every k ∈ H with δk = 1 it holds that open(Cik, o
A,k
i ) = bA,k

i for all i ∈ {1, . . . ,m}, (4) for every
k ∈ H with δk = 0 where (bk1, . . . , b

k
m) ̸= (bA,k

1 , . . . , bA,k
m ) it holds that open(Cik, o

A,k
i ) = bA,k

i for all
i ∈ {1, . . . ,m}, and (5) For every k ∈ H the output ofFk

scg is (a, vk), where vk :=
∑

i∈{1,...,m} ai ·b
A,k
i ,

(6) the shares (vk)k∈K correspond to a degree-t polynomial, denoted g(x), where vk is the sum
obtained from the output of Fk

scg. Sine H ⊆ K and |H| ≥ t + 1, we conclude that in both worlds
the output of the honest parties is (a, g(0)), as required. This concludes the analysis of a corrupt
dealer, and the proof of security of the protocol.

57



G General Linear Function Computation

In this section, we sketch the 3-round protocol for general linear function computation. The pro-
tocol is round-optimal due to the lower bound of [37].

First, we focus on the simple case where the parties compute a function y = a1 ·s1+. . .+am ·sm,
where a1, . . . , am ∈ F are some known coefficients, and s1, . . . , sm are the inputs of the parties,
where we denote by Ii ⊆ {1, . . . ,m} the set of all indices j such that sj is an input of Pi. Later, we
explain how to obtain a protocol for general linear functions.

The basic protocol. In rounds 1 and 2 each Pi shares its inputs via an instance of vss. In round 2
the parties also execute an instance of glinear.offi with Pi as a guide, for all i ∈ {1, . . . , n}. At the
end of this round, for every Pi that was disqualified as a dealer in a vss execution, the parties set
sj = 0 for all j ∈ Ii, and assume some default sharing of 0, which is known to all parties. In
round 3, for any i ∈ {1, . . . , n} the parties execute glinear.oni, computing the i-th row of the sum
a1Js1Ki + . . . + amJsmKi with Pi as a guide,25 over the final rows taken from the vss instances. The
abort flag and the reveal-all flag should be set to 0. For every i ∈ {1, . . . , n}, we say that the output
of glinear.oni is valid if it is of the form (a, σi), where a = (a1, . . . , am). The parties interpolate over
all valid σi to obtain a degree-t polynomial f(x), and output f(0).

Extension to multiple public outputs. So far we have only considered a functionality with
a single output which is given to all the parties. Consider now a functionality with multi-
ple public outputs (y1, . . . , yk), where each yi is a linear function of the inputs s1, . . . , sm, i.e.,
yi = ai1 · s1 + . . . + aim · sm, for some ai1, . . . , aim ∈ F. We modify the basic protocol as follows.
In Round 2, instead of executing a single instance of glinear.off for every Pi, we let the parties ex-
ecute k instances, denoted glinear.offi,j for i ∈ {1, . . . , n} and j ∈ {1, . . . , k}. In Round 3, for every
i ∈ {1, . . . , n} and j ∈ {1, . . . , k} the parties execute glinear.oni,j , computing the i-th row of the
sum aj1Js1Ki + . . .+ ajmJsmKi with Pi as a guide, over the final rows taken from the vss instances.
Finally, for every j ∈ {1, . . . , k} the parties act like in the basic protocol and use all valid outputs
from (glinear.oni,j)i∈{1,...,n} in order to recover yj .

General linear computation. It is well known that general linear function, where some of the
outputs of the functionality are private, can be reduced to linear function computation with public
outputs by the use of one-time pads. In particular, if some output yi should be learned only by
some party Pj , we let Pj sample a random pad rij , and we let the parties publicly compute the
value y′i = yi(s1, . . . , sm) + rij instead of yi(s1, . . . , sm). In this way, the rest of the parties learn no
information about yi while Pj , who knows rij , can compute yi = y′i − rij .

H Triple Secret Sharing for a Small Number of Parties

In this section we present the functionality Ftss, protocol tss and the proof of Theorem 5.1. Func-
tionalityFtss is given in Figure 8. For a reminder on weak and strong sharing, and of the definition
of valid shares, see Section D.

25See Notation 4 for an explanation about the notation when using the glinear protocol.
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Ftss receives the set of corrupt parties C.

Sharing phase.

• Inputs. D inputs three pairs (Ca,Oa), (Cb,Ob) and (Cc,Oc). If D is honest, then these correspond
to strong sharings ⟨⟨a⟩⟩, ⟨⟨b⟩⟩, and ⟨⟨c⟩⟩ such that c = ab.

• Public outputs. Ftss returns Ca,Cb and Cc as public outputs.

• Private outputs. Ftss returns Oa
i ,O

b
i and Oc

i to Pi.

Verification phase.

• Adversary’s inputs. A corrupt dealer has two inputs, a bit flagD, and (Ōa, Ōb, Ōc), where Ōv =
(ōvij)i,j∈{0,...,n} for v ∈ {a, b, c}.

• Outputs. We split into two cases.

– Honest D. Ftss returns “verification succeeded” to all parties as a public output.
– Corrupt D. Let W be the set of all honest parties that received invalid shares in the sharing phase.

The functionality returns “D is corrupt” as a public output if either (1) flagD = 1, (2) the tuple
(W,Cv, Ōv

W,Ov
H\W) is not a weak double t-sharing, for some v ∈ {a, b, c}, or (3) it does not holds

that F c(0, 0) = F a(0, 0)·F b(0, 0), where F v(x, y) is the sharing polynomial of (W,Cv, Ōv
W,Ov

H\W),
for v ∈ {a, b, c}. Otherwise, Ftss returns “verification succeeded” to all parties as a public output,
and (Ca, Ōa

i ), (C
b, Ōb

i ) and (Cc, Ōc
i ) to every Pi in W as a private output.

Functionality Ftss

Figure 8: Functionality Ftss

Protocol tss is given in Figure 9. In the protocol, we use Notation 4 in order to specify the
inputs to the sub-protocol glinear.

Primitives: Guided linear function evaluation glinear = (glinear.off, glinear.on); VSS vss.

Sharing phase (R1):

• (Inputs) D inputs three pairs (Ca,Oa), (Cb,Ob) and (Cc,Oc), that are strong t-sharing of a, b and c,
respectively, such that ab = c.

• (Sharing phase of VSS)

– D picks three random polynomials A(x), B(x), and C(x) of degree d, d and 2d, respectively, such
that C(x) = A(x)·B(x), and A(0) = a, B(0) = b and C(0) = c, where d :=

(
n

t+1

)
·(t+1). Let Ak, Bk,

and Ck denote the k-th coefficient of A(x), B(x) and C(x), respectively, for k ∈ {0, . . . , 2n}, where
Ak = Bk = 0 for k > d.

– For each k ∈ {1, . . . , d}, D shares Ak and Bk via two vss instances, vssa,k, and vssb,k respectively,
and we denote the corresponding sharing polynomials by F a,k(x, y) and F b,k(x, y).a For each
k ∈ {1, . . . , 2d}, D shares Ck via a vss instance, vssc,k, and we denote the corresponding sharing
polynomial by F c,k(x, y).

– For k = 0 the values A0 = a,B0 = b and C0 = c are shared by executing vssa,0, vssb,0 and vssc,0

with inputs (Ca,Oa), (Cb,Ob) and (Cc,Oc), respectively. We denote the corresponding sharing
polynomials by F a,0(x, y), F b,0(x, y) and F c,0(x, y).

Protocol tss
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• (Generating challenges) For every subset Q of exactly t + 1 parties, the parties do as follows. Let
PQ be the party with the minimum index in Q. Then PQ picks a non-zero random field element
αQ ← F \ {0} and sends it to all parties in Q via private channels.

• (glinear.off calls) For every set Q of t+1 parties, and every i ∈ Q and v ∈ {a, b, c}, the parties execute
glinear.offQ,i,v , with Pi as the guide.

• (Local computation)

– (VSS sharing phase output) For every k ∈ {0, . . . , 2d}, the parties hold the tentative shares
TAkW,TBkW and TCkW.

– (Happiness) If Pi received an invalid pair (Cv,k,Ov,k
i ) for some v ∈ {a, b, c} and k ∈ {0, . . . , 2d},

then Pi is “unhappy”, and sets happyi := 0. Otherwise, Pi is “happy”, and sets happyi := 1.
– If Pi received αQ = 0 for some set Q with i ∈ Q, then Pi sets αQ := 1.

– (Output) Pi outputs the tentative shares (Ca,0,Oa,0
i ), (Cb,0,Ob,0

i ), (Cc,0,Oc,0
i ).

Verification phase (R2):

• Each Pi broadcasts happyi.

• (Verification phase of VSS) Each unhappy Pi raises a flag in all vss executions, and each happy Pi does
not raise a flag in the vss executions.

• (Challenge computation) For every subset Q of t + 1 parties, and every i ∈ Q, (a) Pi broadcasts
the challenge αQ, which was received from PQ; (b) all parties (inside and outside Q) participate
in glinear.onQ,i,a, glinear.onQ,i,b and glinear.onQ,i,c to compute

∑2d
k=0 α

k
QTAkWi,

∑2d
k=0 α

k
QTBkWi and∑2d

k=0 α
k
QTCkWi, respectively, with Pi as a guide, with flag δG := happyi and every Pj , j ∈ {1, . . . , n}

with flag δj := happym.b

• (Local computation)

– (VSS verification phase outputs) The parties compute the output the verification phase of all vss
executions. If the output of some execution is “D is corrupt” then they output “D is corrupt”
and terminate. Otherwise, denote the output of vssv,k by (Wv,k, (ōv,kij )i∈Wv,k,j∈{0,...,n}). Let W :=(⋂

k∈{0,...,d} W
a,k

)
∩
(⋂

k∈{0,...,d} W
b,k

)
∩
(⋂

k∈{0,...,2d} W
c,k

)
.

– (Challenge verification) Denote the output of glinearQ,i,v by outQ,i,v . A set Q is termed as good if
(1) there exists α ∈ F \ {0} such that all the parties in Q broadcasted the challenge α, and for all
the parties Pi in Q who broadcasted happyi = 1, and for all v ∈ {a, b, c}, the output of outQ,i,v is
(α, uQ,i,v), where α = (α0, . . . , α2d), and (2) every Pi in Q who broadcasted happyi = 0 is in W.
For every good set Q with corresponding challenge α, the parties do as follows.

* For each Pi in Q such that happyi = 1, and for v ∈ {a, b, c}, let outQ,i,v = (α, uQ,i,v).

* For each Pi in Q such that happyi = 0, and for each v ∈ {a, b, c}, let fv,k
i (x) be the i-th row

extracted from the verification phase of vssv,k. The parties locally compute fQ,i,v(x) := α0 ·
fv,0
i (x) + . . .+ α2d · fv,2d

i (x), and set uQ,i,v := fQ,i,v(0).

* For every v ∈ {a, b, c}, the parties interpolate over (uQ,i,v)i∈Q in order to obtain a degree-t
polynomial fQ,v(x). If fQ,c(0) = fQ,a(0) · fQ,b(0) then the verification succeeds. Otherwise, all
parties output “D is corrupt” and terminate.

– (Output) If all verifications of good sets Q succeeded then all parties output “verification suc-
ceeded” In addition, any unhappy party Pi in W that did not receive valid shares in vssa,0, vssb,0

or vssc,0 outputs (Ca, Ōa,0), (Cb, Ōb,0) and (Cc, Ōc,0).
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aFor k > d we simply assume a default strong double t-sharing of Ak = Bk = 0, which is locally computed by
the parties. In particular, the parties set F a,k(x, y) and F b,k(x, y) to be the zero polynomial, and set (Cv,k

ij , ov,kij ) ←
commit(0; 0⃗) for every v ∈ {a, b} and i, j ∈ {0, . . . , n}, where 0⃗ is the all-zero string.

bHere happy = 1− happy.

Figure 9: Protocol tss

Remark H.1 (Reducing the field size). So far we assumed that the size of F is exponential in the security
parameter. We can reduce the size of the field by increasing d to be d := κ ·

(
n

t+1

)
· (t + 1) = poly(κ),

and letting each set Q generate κ random challenges α1
Q, . . . , α

κ
Q, instead of just one. We can now take

the size of the field to be |F| > 4d + 1 = poly(κ), and the probability that for a good set Q it holds that
C(x) ̸= A(x) ·B(x) and C(αi

Q) = A(αi
Q) ·B(αi

Q) for all i ∈ {1, . . . , κ} is at most (2d/4d)κ = 2−κ.

We continue with the proof of Theorem 5.1.

H.1 Proof of security

Proof of Theorem 5.1. In this section we prove that protocol tss UC-emulates Ftss (with everlasting
security when the underlying commitment scheme is statistically-hiding). From the composition
properties of UC-security, it is enough to prove security in the (Fvss,Fglinear)-hybrid model. Let
A be the dummy adversary against tss. We define the simulator S as follows. The simulator S
uses A in a black-box manner, and forwards all messages between Z and A. The simulator first
receives the set of corrupt C parties from Z . We split into cases.

H.1.1 Honest Dealer

Sharing phase. First,26 the simulator receives (Ca,Oa
i ), (C

b,Ob
i), (C

c,Oc
i ), for every i ∈ C, from

Ftss. We sometimes denote the pairs by (C̄a,0, Ōa,0
i ), (C̄b,0, Ōb,0

i ), and (C̄c,0, Ōc,0
i ), respectively.

For v ∈ {a, b} the simulator picks (1) random strong double t-sharings ⟨⟨0⟩⟩, denoted
(C̄v,k, Ōv,k), for k ∈ {1, . . . , d}, and (2) fixed sharings (C̄v,k, Ōv,k) defined by (C̄v,k

ij , ōv,kij ) ←
commit(0; 0⃗) for every v ∈ {a, b}, i, j ∈ {0, . . . , n}, and k ∈ {d + 1, . . . , 2d}, where 0⃗ is the all-
zero string. In addition, for v = c, the simulator picks random strong double t-sharings ⟨⟨0⟩⟩,
denoted (C̄c,k, Ōc,k) for any k ∈ {1, . . . , 2d}. For k ∈ {0, . . . , d}, the simulator simulates the
calls to Fa,k

vss ,Fb,k
vss by giving the adversary the outputs that correspond to the corrupt parties, i.e.,

((C̄a,k, Ōa,k
i ), (C̄b,k, Ōb,k

i ))k∈{0,...,d},i∈C (and similarly for k ∈ {0, . . . , 2d} and Fc,k
vss ). For v ∈ {a, b, c},

i ∈ C and k ∈ {0, . . . , 2d} we denote by f̄v,k
i (x) the degree-t polynomial that corresponds to

(C̄v,k
i , Ōv,k

i ).
The simulator picks random polynomials Ā(x), B̄(x) and C̄(x) of degree d, d and 2d, respec-

tively, such that C̄(x) = Ā(x) · B̄(x). For k ∈ {0, . . . , 2d}, We denote their k-th coefficient by Āk,
B̄k and C̄k, respectively, where Āk = B̄k = 0 for k > d. For each k ∈ {0, . . . , 2d}, the simulator
picks random symmetric bivariate polynomials F̄ a,k(x, y), F̄ b,k(x, y) and F̄ c,k(x, y) of degree at
most t in each variable, such that for k ∈ {0, . . . , d} we condition on (1) F̄ v,k(x, i) = f̄v,k

i (x) for

26If the inputs of the honest D are not well-formed, then a complete break-down occurs (see Section A.1). In this case
perfect simulation is possible following the approach presented in Footnote 18.
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every v ∈ {a, b, c} and i ∈ C, and (2) F̄ a,k(0, 0) = Āk, F̄ b,k(0, 0) = B̄k, and F̄ c,k(0, 0) = C̄k; for
k ∈ {d+1, . . . , 2d}we condition on (1) F̄ a,k(x, y) = 0, (2) F̄ b,k(x, y) = 0, and (3) F̄ c,k(x, i) = f̄ c,k

i (x)
for every i ∈ C, and F̄ c,k(0, 0) = C̄k.

We continue with the challenge generation. For every subset Q of exactly t+1 parties, that has
an honest distinguished party PQ, the simulator samples a random non-zero field element αQ and
sends it to all corrupt parties in Q.

This concludes the communication from honest parties to corrupt parties. At this stage the
simulator receives the messages from the corrupt parties to the honest parties, that include, for
each subset Q with a corrupt distinguished party PQ, the challenge that PQ sends to each Pi in Q,
which we denote by αQ,i (note that a corrupt PQ might send different values to different honest
parties). If some αQ,i is 0, then S sets αQ,i to 1. Consider all the different challenges which are held
by at least one honest party, and denote them by α1, . . . , αm, where m ≤ d.

Verification phase. For any honest party Pi the simulator broadcasts happyi = 1. For each Fvss

call, the simulator leaks the flags (flagi = 0)i∈H to the adversary. For each j ∈ {1, . . . ,m} and
v ∈ {a, b, c} the simulator sets Ḡv,j(x, y) :=

∑2d
k=0 α

k
j · F̄ v,k(x, y).

For a set Q, an honest party Pi in Q with corresponding challenge αj for j ∈ {1, . . . ,m},
the simulator broadcast αj on behalf of Pi. In addition, for v ∈ {a, b, c}, the leakage of FQ,i,v

glinear

is simulated in the following way. The adversary receives (1) the j-th rows C̄v,0
j , . . . , C̄v,2d

j , (2)
the flags (δℓ = 0)ℓ∈H, (3) the coefficient vector a := (α0

j , . . . , α
2d
j ), (4) the openings ōv,kℓi and val-

ues open(C̄v,k
ℓi , ōv,kℓi ) for every k ∈ {0, . . . , 2d} and ℓ ∈ C, (5) the flag δG := 0, (6) the values

(Ḡv,j(ℓ, i))ℓ∈{1,...,n}. The simulator also gives A the vector (a, Ḡv,j(0, i)) as the output of FQ,i,v
glinear.

For a set Q, a corrupt party Pi and v ∈ {a, b, c}, the simulator simulates the leakage of FQ,i,v
glinear

by giving the adversary the corresponding inputs of the honest parties, i.e., (1) the j-th rows
C̄v,0

j , . . . , C̄v,2d
j , (2) the flags (δℓ = 0)ℓ∈H, and (3) the vector (f̄v,0

j (ℓ), . . . , f̄v,2d
j (ℓ)) for every ℓ ∈ H.

This completes the communication from the honest parties to the corrupt parties.
Later, the simulator receives the corrupt parties’ inputs to the functionalities FQ,i,v

glinear for every

set Q, corrupt Pi in Q, and v ∈ {a, b, c}, as well as the inputs to the verification phase of Fv,k
vss .

Upon receiving the inputs of the corrupt guide to FQ,i,v
glinear, the simulator holds all inputs to the

functionality, and can compute the output of the functionality and give it to A. Upon receiving
all inputs to the verification phase of Fv,k

vss , which are (flagv,ki )i∈C, the simulator sets Wv,k to be the
set of all corrupt Pi with flagv,ki = 1, and returns (Wv,k, (ōv,kij )i∈W,j∈{0,...,n}) to A. This conclude the
simulation.

Before proving that the ideal-world’s view is close to the real-world’s view, we analyse the
distribution of the polynomials {Gv,j(x, y)}j∈{1,...,m} that the simulator generates.

Lemma H.2. Let F be a field, let m ≤ d be some positive integers with 2d < |F|, and let α1, . . . , αm ∈ F
be distinct non-zero elements. Let n and t < n/2 be positive integers, and let C ⊆ {1, . . . , n} be a set
of size at most t. Let P (x) be a degree-2d polynomial, and let F̄ 0(x, y) and F̄ d+1(x, y), . . . , F̄ 2d(x, y)
be symmetric bivariate polynomials of degree at most t in each variable, such that F̄ k(0, 0) = P k for
k ∈ {0, d+ 1, . . . , 2d}, where P k is the k-th coefficient of P (x). For k ∈ {0, d+ 1, . . . , 2d}, and i ∈ C let
fk
i (x) := F̄ k(x, i). Let {fk

i (x)}k∈{1,...,d},i∈C be a set of degree-t polynomials, such that f̄k
i (j) = f̄k

j (i) for
all i, j ∈ C and k ∈ {1, . . . , d}.
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Let F 0(x, y), . . . , F 2d(x, y) be uniformly distributed symmetric bivariate polynomials of degree at most
t in each variable, conditioned on (1) F 0(x, y) = F̄ 0(x, y) and F k(x, y) = F̄ k(x, y) for every k ∈ {d +
1, . . . , 2d}, (2) F k(x, i) = fk

i (x) for all k ∈ {1, . . . , d} and i ∈ C, and (3) F k(0, 0) = P k, where P k is the
k-th coefficient of P (x), for every k ∈ {1, . . . , d}.

Then the random variables {Gj(x, y)}j∈{1,...,m}, where

Gj(x, y) :=
2d∑
k=0

αk
j · F k(x, y),

are uniformly distributed symmetric bivariate polynomials of degree at most t in each variable, conditioned
on

Gj(x, i) =
2d∑
k=0

αk
j · fk

i (x) and Gj(0, 0) = P (αj),

for all j ∈ {1, . . . ,m} and i ∈ C.

Proof. We show that the claim holds for every fixing of Fm+1(x, y), . . . , F d(x, y). Let
H1(x, y), . . . ,Hm(x, y) be any symmetric bivariate polynomials of degree at most t in each vari-
able. It is not hard to see that if Hj(x, i) ̸=

∑2d
k=0 α

k
j f

k
i (x) or Hj(0, 0) ̸= P (αj), for some

j ∈ {1, . . . ,m} and i ∈ C, then the probability that (G1, . . . , Gm) is equal to (H1, . . . ,Hm) is
0. Therefore, we assume that H1(x, y), . . . ,Hm(x, y) are in the support, i.e., Hj(0, 0) = P (αj)

and Hj(x, i) =
∑2d

k=0 α
k
j f

k
i (x) for all j ∈ {1, . . . ,m} and i ∈ C. Observe that (G1, . . . , Gm) =

(H1, . . . ,Hm) if and only ifα0
1 . . . α2d

1
...

. . .
...

α0
m . . . α2d

m


 F 0(x, y)

...
F 2d(x, y)

 =

H1(x, y)
...

Hm(x, y)

 ,

which occurs if and only if

F 1(x, y)
...

Fm(x, y)

 = V −1

H1(x, y)− F 0(x, y)− αm+1
1 Fm+1(x, y)− . . .− α2d

1 F 2d(x, y)
...

Hm(x, y)− F 0(x, y)− αm+1
m Fm+1(x, y)− . . .− α2d

mF 2d(x, y)

 ,

where V is the m ×m invertible matrix whose i-th row is (α1
i , . . . , α

m
i ). Observe that the RHS is

fixed. For every i ∈ C, when assigning y = i, the RHS is equal to the LHS. Indeed, the RHS is
equal to

V −1

H1(x, i)− F 0(x, i)− αm+1
1 Fm+1(x, i)− . . .− α2d

1 F 2d(x, i)
...

Hm(x, i)− F 0(x, i)− αm+1
m Fm+1(x, i)− . . .− α2d

mF 2d(x, i)

 = V −1


∑m

k=1 α
k
1f

k
i (x)

...∑m
k=1 α

k
mfk

i (x)


=

 f1
i (x)

...
fm
i (x)

 .
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In addition, when assigning x = y = 0, the RHS is also equal to the LHS,

V −1

H1(0, 0)− F 0(0, 0)− αm+1
1 Fm+1(0, 0)− . . .− α2d

1 F 2d(0, 0)
...

Hm(0, 0)− F 0(0, 0)− αm+1
m Fm+1(0, 0)− . . .− α2d

mF 2d(0, 0)

 = V −1


∑m

k=1 α
k
1P

k

...∑m
k=1 α

k
mP k


=

P 1

...
Pm

 .

We conclude that the RHS is in the support of the random variables in the LHS. By Fact A.4 the
random variables F 1(x, y), . . . , F d(x, y) have the same support size, which we denote by S, and
we conclude that (G1, . . . , Gm) = (H1, . . . ,Hm) with probability 1/Sd. Since this is true for every
(H1, . . . ,Hm) in the support, the claim follows.

Fix any polynomial-time environment Z and input ζ to the environment. We show that the
view of Z in the real world is close to the view of Z in the ideal world.

Z’s view. The adversary’s view consists of (1) the crs string, (2) the inputs to the honest dealer, (3)
the outputs (Cv,k,Ov,k

i )v∈{a,b,c},k∈{0,...,2d},i∈C from the sharing phase of Fvss (or the default sharing
in the case of v ∈ {a, b} and k > d), (4) the challenges generated in any set Q that contains at least
one corrupt party, (5) the output of the honest parties in the sharing phase, (6) the broadcasts of
the players in the verification phase, (7) the leakage and output of the verification phase of the
Fvss calls, and (8) the leakage and output of the Fglinear calls. In order to prove that the real-world
view is close to the ideal-world view, we define the following hybrid-worlds, where we assume
that the honest parties know the set H.

• In Hybrid 1, the honest parties act like in the real-world, except that (1) at the end of the
first round, every honest Pi does not check the validity of the rows received from D, but Pi

is always happy with D, (2) in the first round, the dealer also sends F v,k(x, i) to an honest
Pi, for every v ∈ {a, b, c} and k ∈ {0, . . . , 2d}, and (3) for a set Q, an honest party Pi in Q

and v ∈ {a, b, c}, Pi inputs to FQ,i,v
glinear the vector a = (α0, . . . , α2d), where α is the challenge

that Pi received from PQ, the values (F v,k(r, i))k∈{0,...,2d},r∈{0,...,n} where each F v,k(x, i) was
received from D, the openings (ov,kr,i )k∈{0,...,2d},r∈{0,...,n} and the flag δG = 0; in addition, an
honest Pr inputs (F v,0(r, i), . . . , F v,2d(r, i)) and δr = 0 to FQ,i,v

glinear.

• In Hybrid 2 the honest parties act like in Hybrid 1, with the following modifications.

– In the first round, instead of sharing the coefficients of random polynomials A(x), B(x)
and C(x), the dealer does as follows. For every k ∈ {1, . . . , d} (resp., k ∈ {1, . . . , 2d})
the dealer sets Ak = Bk = 0 (resp., Ck = 0), and shares Ak and Bk (resp., Ck) via Fvss.
The dealer also shares its inputs (Ca,0,Oa,0), (Cb,0,Ob,0) and (Cc,0,Oc,0), as A0, B0 and
C0, respectively.
For v ∈ {a, b, c} and k ∈ {0, . . . , 2d} denote the corresponding sharing polynomial by
F v,k(x, y). The dealer then samples three random polynomials Ā(x), B̄(x) and C̄(x)
such that C̄(x) = Ā(x) · B̄(x), and Ā(0) = a, B̄(0) = b and C̄(0) = c.
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For each k ∈ {0, . . . , 2n}, the dealer picks random symmetric bivariate polynomials
F̄ a,k(x, y), F̄ b,k(x, y) and F̄ c,k(x, y) of degree at most t in each variable, such that (a) for
k = 0 we set F̄ v,k(x, y) = F v,k(x, y) for v ∈ {a, b, c}, (b) for k ∈ {1, . . . , d} we condition
on (i) F̄ v,k(x, i) = F v,k(x, i) for every v ∈ {a, b, c} and i ∈ C, and (ii) F̄ a,k(0, 0) = Āk,
F̄ b,k(0, 0) = B̄k, and F̄ c,k(0, 0) = C̄k, and (c) for k ∈ {d + 1, . . . , 2d} we condition on
(i) F̄ a,k(x, y) = 0, (ii) F̄ b,k(x, y) = 0, and (iii) F̄ c,k(x, i) = F c,k(x, i) for every i ∈ C, and
F̄ c,k(0, 0) = C̄k.
For every v ∈ {a, b, c} and k ∈ {0, . . . , 2d} the dealer sends F̄ v,k(x, i) to an honest Pi.

– For every set Q, honest Pi in Q and v ∈ {a, b, c} the functionality FQ,i,v
glinear has the follow-

ing output: (1) a vector a = (α0, . . . , α2d), where α is the challenge that Pi received from
PQ, and (2) the sum

2d∑
k=0

αi · F̄ v,k(0, i).

In addition, it has the following leakage: (1) the commitments (Cv,k
j )k∈{0,...,2d}, (2)

the flags (δk = 0)k∈H and δG = 0 of the honest parties, (3) the vector of coefficients
a = (α0, . . . , α2d), (4) the values and openings (F̄ v,k(j, i), ōv,kij )k∈{0,...,2d},j∈C, and (5) the
values

∑2d
k=0 α

i · F̄ v,k(j, i) for j ∈ {1, . . . , n}.

Real-world vs. Hybrid 1. We claim that the real-world view is distributed exactly like the ideal-
world view. This follows immediately by noting that (1) in the real-world an honest Pi is always
happy with an honest D, and (2) in Hybrid 1, an honest Pi inputs to Fglinear the same values she
would input to Fglinear in the real-world.

Hybrid 1 vs. Hybrid 2. We claim that the view in Hybrid 1 is O(dn2ϵ)-close to the view in
Hybrid 2. Note that the Hybrid 1 random variables

(crs, (Cv,k,Ov,k
i )v∈{a,b,c},k∈{1,...,2d},i∈C, (F

v,k(x, y))v∈{a,b,c},k∈{1,...,2d})

are O(dn2ϵ)-close to the Hybrid 2 random variables

(crs, (Cv,k,Ov,k
i )v∈{a,b,c},k∈{1,...,2d},i∈C, (F̄

v,k(x, y))v∈{a,b,c},k∈{1,...,2d}).

Finally, in both hybrids the rest of the view can be obtained from the above random variables
by the same efficient process, that executes the protocol with Z and A in the following way: (1)
execute Z to obtain the dealer’s inputs (Cv,0,Ov,0)v∈{a,b,c}, (2) simulate the Fvss calls using the
values (Cv,k,Ov,k

i )v∈{a,b,c},k∈{0,...,2d},i∈C, (3) for every set Q with an honest PQ, sample a random
non-zero challenge αQ, (4) execute Z and A to obtain the challenges generated by corrupt PQ’s,
(5) set the output of an honest Pi in the sharing phase to be (Oa,Ca

i ), (O
b,Cb

i) and (Oc,Cc
i ), (6)

broadcast on behalf of an honest Pi the bit happyi = 1 and the challenges αQ that Pi received,
for every set Q that contains Pi, (7) simulate a call to FQ,i,v

glinear for a set Q, an honest Pi in Q and

v ∈ {a, b, c} by leaking (a) the i-th rows Cv,0
i , . . . ,Cv,2d

i , (b) the flags (δℓ = 0)ℓ∈H, (c) the coefficient
vector a = (α0, . . . , α2n), where α is the challenge that Pi received from PQ, (d) the openings ov,kiℓ

and values open(Cv,k
iℓ , ov,kiℓ ) for every k ∈ {0, . . . , 2d} and ℓ ∈ C, (e) the flag δG := 0, (f) partial sums
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∑2d
k=0 α

k · F v,k(ℓ, i) for all ℓ ∈ {1, . . . , n} and (g) the output (a,
∑2d

k=0 α
k · F v,k(0, i)), (8) simulate

FQ,i,v
glinear for a set Q, corrupt Pi in Q and v ∈ {a, b, c} by leaking (a) the i-th rows Cv,0

i , . . . ,Cv,2d
i ,

(b) the flags (δℓ = 0)ℓ∈H, and (c) the vector (F v,0(ℓ, i), . . . , F v,2d(ℓ, i)) for every ℓ ∈ H, (9) at this
stage, obtain from Z andA the inputs of the corrupt parties to the Fvss calls and remaining Fglinear

calls (where the guide is corrupt), and compute the outputs according to the functionality (note
that in each Fvss call only corrupt parties are in W, and that for Fglinear with a corrupt guide, the
leakage together with the corrupt guide’s inputs determine the output of the functionality). This
completes the case of Hybrid 1 vs. Hybrid 2.

Hybrid 2 vs. ideal-world. We claim that the view in Hybrid 2 has the same distribution as the
view in the ideal-world. Note that the random variables

(crs, (Cv,k,Ov,k
i )v∈{a,b,c},k∈{1,...,2n},i∈C, (f̄

v,k
i (x))v∈{a,b,c},k∈{1,...,2n},i∈C), (2)

have the same distribution in both worlds, where f̄v,k
i (i) is the polynomial corresponding to

(Cv,k,Ov,k
i ). We claim that in both worlds, the rest of the view can be obtained from the above ran-

dom variables by the following efficient process: (1) obtain the dealer’s inputs (Cv,0,Ov,0)v∈{a,b,c}
from Z , (2) set the output of an honest Pi in the sharing phase to be (Oa,Ca

i ), (O
b,Cb

i) and
(Oc,Cc

i ), (3) picks random polynomials Ā(x), B̄(x) and C̄(x) of degree d, d and 2d, respectively,
such that C̄(x) = Ā(x) · B̄(x), (4) sample polynomials (F̄ v,k(x, y))v∈{a,b,c},k∈{0,...,2d} just like the
sharing phase of the simulator, using the fixed values (f̄v,k

i (x))v∈{a,b,c},k∈{1,...,2n},i∈C and Ā(x), B̄(x)
and C̄(x), (5) simulate the sharing phase and the verification phase just like the simulator, using
the polynomials (F̄ v,k(x, y))v∈{a,b,c},k∈{0,...,2n}, where the sharing phase output of an honest Pi is
(Ca,0,Oa,0

i ), (Cb,0,Ob,0
i ) and (Ca,0,Oa,0

i ).
Clearly, when the random variables in Equation 2 are taken from the ideal-world, the output

of the above process is distributed exactly like the view of Z in the ideal-world. To see that this is
also true for Hybrid 2, note that by Fact A.1 the random variables

(Ā(αi), B̄(αi), C̄(αi))i∈{1,...,m}

generated by the process have the same distribution as the corresponding random variables gen-
erated in Hybrid 2 (where α1, . . . , αm are challenges held by the honest parties). Conditioned on
those values, and by Lemma H.2, the random variables

(Ḡv,i(x, y) :=

2d∑
k=0

αk
i · F̄ v,k(x, y))v∈{a,b,c},i∈{1,...,m}

generated by the process have the same distribution as the corresponding random variables in
Hybrid 2. Conditioned on those values it is not hard to verify that the view generated by the
process has the same distribution as the view in Hybrid 2. This completes the analysis of Z’s
view.

Verification phase output. We say that a view View is “good” if for any commitment C from the
view, and for any two openings o, and o′ that appear in the view, it holds that either open(C, o) = ⊥
or open(C, o′) = ⊥ or open(C, o) = open(C, o). By the binding property, a view View is good with
probability at least 1− ϵ.
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We claim that both in the real-world and the ideal-world, the outputs of the honest parties can
be extracted from a good View by the following efficient deterministic process: in the verification
phase, all honest parties output “verification succeeded”.

It is not hard to see that when View is taken from the ideal-world then those are indeed the
honest parties’ inputs. In addition, when View is taken from the real-world, the sharing-phase
outputs are the same as in the process. Therefore, it remains to analyse the verification-phase of
the real-world.

First observe that in the real-world the honest parties never output “D is corrupt” according
to a good View. This follows since (1) no call to Fvss ends with “D is corrupt”, and (2) since View is
good, for each good set Q,27 Pi in Q, and v ∈ {a, b, c} for which the output of FQ,i,v

glinear is (α, uQ,i,v),
the value uQ,i,v is

∑2d
k=0 α

k · F v,k(0, i), where α is the challenge corresponding to Q. This is clearly
true for an honest Pi and for a corrupt Pi in W. In addition, for a corrupt Pi not in W, since View is
good, the output has to be consistent with every honest party Pj ’s shares

∑2d
k=0 α

k · F v,k(j, i). We
conclude that for every good Q with challenge α the players recover the value

∑2d
k=0 α

k ·F v,k(0, 0)
which is A(α) when v = a, B(α) when v = b and C(α) when v = c. Finally, since D is honest it
holds that C(α) = A(α) ·B(α), so D is never disqualified. This concludes the analysis of an honest
dealer.

H.1.2 Corrupt Dealer

Sharing phase. The simulator takes the role of the honest parties, that have no inputs, in order
to simulate an execution of the protocol. In the sharing phase, this includes only generating a
challenge on behalf of any honest distinguihsed player of a set Q. Then, the simulator receives
from A the inputs to the various Fvss calls. Denote those inputs by ((Cv,k,Ov,k))v∈{a,b,c},k∈{0,...,2d}.
The simulator gives the simulated honest party Pi the shares ((Cv,k,Ov,k

i ))v∈{a,b,c},k∈{0,...,2d}. The
simulator inputs (Ca,0,Oa,0),(Cb,0,Ob,0), and (Cc,0,Oc,0) to Ftss.

Verification phase. The simulator continues to simulate the honest parties, by following the pro-
tocol in the verification phase in Fvss and in the calls to Fglinear. Observe that since the dealer holds
all inputs, the dealer can compute the leakage of Fglinear as well. At the end of the simulation the
simulator computes the output of the simulated honest parties. If the output is “D is corrupt” then
the simulator inputs flagD = 1 to Ftss (the rest of the inputs do not matter). Otherwise, the simula-
tor computes the set W and the openings (ōa,0ij , ōb,0ij , ōc,0ij )i∈W,j∈{0,...,n} according to the protocol, and
sets ōvij := 0 for any v ∈ {a, b, c}, i /∈ W and j ∈ {0, . . . , n}. The simulator inputs (Ōa,0, Ōb,0, Ōc,0)
and flagD = 0 to Ftss.

Fix any polynomial time environment Z and input ζ to the environment, and assume with-
out loss of generality that Z is deterministic. It is not hard to see that the sharing phase view,
the honest parties’ outputs in the sharing phase, and the verification phase view have the same
distribution in both worlds. Therefore, it remains to analyse the outputs of the verification phase.
We separate between the case where the commitment scheme is perfectly-binding and there is no
CRS, and the case where the commitment scheme is computationally-binding and there is a CRS.

27Recall that a set Q is good if (1) there exists α ∈ F \ {0} such that for all parties Pi in Q who broadcasted happyi = 1,
and for all v ∈ {a, b, c}, the output of outQ,i,v is (α, uQ,i,v), where α = (α0, . . . , α2d), and (2) every party Pi in Q who
broadcasted happyi = 0 is in W.
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Perfectly-binding commitment scheme. Assume that the commitment scheme is perfectly bind-
ing. First, observe that whenever D is discarded then the output in both worlds is “D is corrupt”.
Consider the commitments C := (Cv,k)v∈{a,b,c},k∈{0,...,2d} that are broadcasted in the first round by
the dealer. Since the commitment scheme is perfectly binding, the commitments C fully determine
the sharing polynomial F v,k(x, y) in Fv,k

vss for every v ∈ {a, b, c} and k ∈ {0, . . . , 2d} (or otherwise
D is discarded in some Fvss call, and we are done). In particular, C determine the polynomials
A(x), B(x) and C(x), whose k-th coefficient is F a,k(0, 0), F b,k(0, 0) and F c,k(0, 0), respectively. Fix
those commitments.

If F c,0(0, 0) = F a,0(0, 0) · F b,0(0, 0) then the outputs in both worlds is the same, so we assume
that F c,0(0, 0) ̸= F a,0(0, 0) · F b,0(0, 0). In this case the output of the honest players in the ideal-
world is “D is corrupt”, and we continue by showing that with probability 1− (2d/(|F| − 1)) this
is also the output of the honest parties in the real-world.

Let Q∗ be a set of size t + 1 that contains only honest parties. Note that the challenge αQ∗ is
uniformly distributed even conditioned on C (since the rushing adversary does not know αQ∗ in
the first round). Since F c,0(0, 0) ̸= F a,0(0, 0) ·F b,0(0, 0) then C(x) ̸= A(x) ·B(x), so with probability
at least 1 − (2d/(|F| − 1)) it holds that C(αQ∗) ̸= A(αQ∗) · B(αQ∗). Since Q∗ contains only honest
parties it is always a good set, and with probability at least 1− (2d/(|F| − 1)) the verification of Q∗

fails and D is discarded. This concludes the analysis when the underlying commitment scheme is
perfectly-binding.

Computationally-binding commitment scheme. We say that a view View is “good” if either (1)
the output of the honest parties is “D is corrupt”, or (2) the output is not “D is corrupt”, and
it holds that F c,0(0, 0) = F a,0(0, 0) · F b,0(0, 0), where F v,0 is the sharing polynomial of the weak
double t-sharing produced by Fv,0

vss , for v ∈ {a, b, c} (observe that whenever the output is not “D
is corrupt” then all Fvss calls define weak double t-sharing). We note that if View is good then the
output of the honest parties in the real world is fixed and equal to the output of the honest parties
in the ideal world. Therefore, it is enough to prove that a view View is good with probability at
least 1− δ for δ = 2(ϵ1/3 + (2d)/(|F| − 1)) = negl(κ).

A view View is not good if and only if the output of the honest parties is not “D is corrupt”,
and

F c,0(0, 0) ̸= F a,0(0, 0) · F b,0(0, 0). (3)

Let Q∗ be a set of t + 1 honest players. If View is not good then D is not discarded. Since Q∗

contains only honest players it is a good set, so it must hold that the verification of Q∗ succeeds,
i.e., that ( 2d∑

k=0

αk
Q∗F c,k(0, 0)

)
=

( 2d∑
k=0

αk
Q∗F a,k(0, 0)

)
·
( 2d∑

k=0

αk
Q∗F b,k(0, 0)

)
, (4)

where F v,k(x, y) is the sharing polynomial of the weak double t-sharing produced by Fv,k
vss , and

αQ∗ is the challenge picked by the set Q∗.
Let E be the event that the dealer is not discarded, and that Inequality 3 holds and Equality 4

holds. We continue by showing that if event E occurs with probability at least δ then we can
construct an adversary that violates the binding property of the commitment scheme.

Assume towards contradiction that E occurs with probability at least δ. This means that E
occurs with probability at least δ for some fixed challenges α∗Q for every set Q ̸= Q∗ with an honest
PQ. Consider the adversary A′ against the commitment scheme that, given the common reference
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string crs, picks two challenges β1, β2 ← F\{0}, and computes two executions of protocol tss with
Z , A and (the same) common reference string crs, with the fixed challenges α∗Q for every set Q ̸=
Q∗ with an honest PQ, and with challenge β1 as the challenge of Q∗ in the first execution and with
challenge β2 as the challenge of Q∗ in the second execution. (Observe that the only randomness
in the execution is (crs, β1, β2).) If A′ finds in the two executions of tss a commitment C and two
openings o, and o′, such that open(C, o) ̸= ⊥ and open(C, o′) ̸= ⊥ and open(C, o) ̸= open(C, o) then
A′ outputs (C, o, o′). Otherwise A′ outputs ⊥. Note that whenever A′ outputs (C, o, o′) then A′
successfully violates the binding property of the commitment scheme.

We continue by showing that A′ violates the binding property with probability greater than ϵ.
This will contradict the security guarantees of the commitments scheme. First, observe that there
are at least δ/2-fraction of common reference strings crs such that event E occurs with probability
at least δ/2 conditioned on crs. Indeed, if this does not hold then

δ ≤ Pr[E] =
1

2ℓ

∑
c∈{0,1}ℓ

Pr[E | crs = c] <
1

2ℓ
· (δ/2)2ℓ · 1 + 1

2ℓ
· 2ℓ · (δ/2) = δ,

in contradiction, where we denoted the length of the common reference string by ℓ.
Fix any common reference string c such that Pr[E | crs = c] ≥ δ/2, and observe that the

only randomness remains in the execution of A′ is the challenges β1 and β2. Fix any β1 such that
event E occurs in the first execution, and note that there are at least (|F| − 1)δ/2 such values.
Let (F v,k(x, y))v∈{a,b,c},k∈{0,...,2d} be the corresponding sharing polynomials of the first execution,
and let A(x), B(x) and C(x) be the polynomials whose k-th coefficients are F a,k(0, 0), F b,k(0, 0)
and F c,k(0, 0), respectively. Since E occurs then F c,0(0, 0) ̸= F a,0(0, 0) · F b,0(0, 0) and C(β1) =
A(β1) ·B(β1).

Since β2 is independent of β1, the probability that event E occurs in the second execution is
δ/2, even conditioned on β1. In addition, since C(x) ̸= A(x) · B(x) then the probability that
C(β2) = A(β2) · B(β2) is at most 2d/(|F| − 1). Therefore, the probability that both E occurs in the
second execution and C(β2) ̸= A(β2)·B(β2) is at least (δ/2)−(2d/(|F|−1)) > 0. Condition on such
β2. We claim that in an execution with such (crs, β1, β2) the adversary A′ successfully violates the
binding property.

Indeed, let (F̃ v,k(x, y))v∈{a,b,c},k∈{0,...,2d} and Ã(x), B̃(x) and C̃(x) be the polynomials corre-
sponding to the second execution. Since E occurs then C̃(β2) = Ã(β2) · B̃(β2). Since C(β2) ̸=
A(β2) ·B(β2) then necessarily (A(x), B(x), C(x)) ̸= (Ã(x), B̃(x), C̃(x)), which means that for some
v ∈ {a, b} and k ∈ {0, . . . , d}, or v = c and k ∈ {0, . . . , 2d}, F v,k(x, y) ̸= F̃ v,k(x, y). Let OH be
the openings of the honest parties in the first execution, and let ÕH be the openings of the hon-
est parties in the second execution. Since, by Fact A.2, the honest parties shares fully determine
the polynomials F v,k(x, y) and F̃ v,k(x, y), there must exist ℓ ∈ H and r ∈ {0, . . . , n} such that
open(Cv,k

ℓ,r , o
v,k
ℓ,r ) ̸= ⊥, open(Cv,k

ℓ,r , õ
v,k
ℓ,r ) ̸= ⊥, and open(Cv,k

ℓ,r , o
v,k
ℓ,r ) ̸= open(Cv,k

ℓ,r , õ
v,k
ℓ,r ).

We conclude that A′ breaks the binding of the NICOM scheme with probability
(δ/2)(δ/2)((δ/2) − (2d)/(|F| − 1))) > ϵ, in contradiction to the security guarantees of the NICOM
scheme. This concludes the analysis of a corrupt dealer, and the proof of security of the protocol.
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I Public Single-Input Functionality for a Small Number of Parties

In this section, we provide a formal description of protocol psiflog. For a reminder on weak and
strong sharing, and of tentative share, see Section D. We also use Notation 4 to specify inputs to
the sub-protocol glinear. We begin with a short reminder about Beaver’s trick.

Beaver’s trick. Suppose that we have a random triple (a, b, c) such that c = ab which is already
shared among the parties. Say that the parties also hold sharings of two values x and y, and they
want to compute the multiplication xy. Then the parties do as follows: (1) reconstruct the values
⟨⟨u⟩⟩ := ⟨⟨x⟩⟩ − ⟨⟨a⟩⟩ and ⟨⟨v⟩⟩ := ⟨⟨y⟩⟩ − ⟨⟨b⟩⟩, and (2) reconstruct the value ⟨⟨z⟩⟩ := v · ⟨⟨a⟩⟩+ u · ⟨⟨b⟩⟩+
uv+⟨⟨c⟩⟩. Note that (1) reveals no information about x and y because a and b are used as a one-time
pad. In addition, one can show that z = xy, and that z is shared via a fresh sharing that reveals
no information about x and y. We emphasize that, after the reconstruction of u and v, in order to
compute z it is enough to compute a linear function of a, b and c with coefficients that depend on
u and v which are known to the parties. For a formal statement, see Fact A.5.

Protocol overview. In the offline round, the dealer D picks random values a1, . . . , aℓ (where ℓ the
number of its inputs), and shares them via vss. In addition, for every p, q ∈ {1, . . . , ℓ}, the dealer
sets apq := ap · aq, and shares the triple (ap, aq, apq) via tss. Note that, all the tss instances use the
same sharings for ap and aq as in their vss executions. In the online round, the dealer receives the
inputs z1, . . . , zℓ. For every p ∈ {1, . . . , ℓ}, the dealer broadcasts a “correction” ∆p := zp − ap. In
addition, for every i ∈ {1, . . . ,m} (m is the number of terms in y, see Figure 3) and j ∈ {1, . . . , n},
the dealer, that holds all shares and knows the values of all ∆’s, guides an execution of glinear
computing the j-th row of

αi
0 ·T1W+

ℓ∑
p=1

αi
p(Ta

pW+∆p ·T1W)+
∑
p,q≤ℓ

αi
pq(∆

qTapW+∆pTaqW+∆p ·∆q ·T1W+TapqW)+TηiW. (5)

We assume that T1W is some default double strong t-sharing of the value 1, via the constant
sharing polynomial 1, which is locally computable by the parties. In the first sum, the p-th term
computed is ap + ∆p = zp, and in the second sum, by Beaver’s trick it follows that the (p, q)-th
term computed is zp · zq. Therefore, correctness and privacy for an honest dealer follow from
Beaver’s trick. For a corrupt dealer which is not discarded, one can prove that the output is
consistent with the inputs zp := ap+∆p. In order to simplify the simulation, we randomized each
yi (summand of y) using a random sharing of 0, which is the last term in Equation 5, denoted
TηiW. The zero-sharing is generated by letting D generate three sharings of 0 via tss, and then
open the first two sharings in order to prove that the last sharing also corresponds to 0.

Protocol psiflog appears in Figure 10.

Primitives: Guided linear function evaluation glinear = (glinear.off, glinear.on); TSS tss; VSS vss.

Protocol psiflog

70



Offline phase. The parties do as follows.

• (Sharing random elements) For every p ∈ {1, . . . , ℓ}, D picks a random field element ap ← F and
shares it via an instance of vss, denoted as vssp. Denote the corresponding strong degree-t sharing
by (Cp,Op) and the sharing polynomial by F p(x, y).

• (Completing a triple) For every p, q ∈ {1, . . . , ℓ} the dealer sets apq := ap · aq and shares apq via an
instance of vss, denoted vsspq . Denote the corresponding strong degree-t sharing by (Cpq,Opq) and
the sharing polynomial by F pq(x, y).

• (Triple verification) For every p, q ∈ {1, . . . , ℓ}, the parties execute an instance of tss, denoted tsspq ,
where D inputs (Cp,Op), (Cq,Oq) and (Cpq,Opq).

• (Zero sharing) For each i ∈ {1, . . . ,m}, the parties execute an instance of tss, denoted tssi, where
D inputs three random strong sharings of zero, denoted (Cγi ,Oγi), (Cρi ,Oρ

i ) and (Cηi ,Oηi). In
addition, D broadcasts (Cγi ,Oγi) and (Cρi ,Oρi).

• (glinear.off calls) For i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, the parties execute glinear.offij with D as guide.

• (Local computation) If one of the following happens then D is discarded:

– If for some i ∈ {1, . . . ,m}, either (Cγi ,Oγi) or (Cρi ,Oρi) broadcasted by D as part of the 0
sharing, are not a strong sharing of zero, or Cγi and Cρi are not the commitments used in tssi.

– If D did not use Cp, Cq and Cpq as the commitments in the execution of tsspq .

If D is discarded then all parties output y(0, . . . , 0) in the online phase (there is no need in any other
communication).
Otherwise D is not discarded. Denote the output of party Pj in the execution of vssp by (Cp,Op

j ),
and in the execution of vsspq by (Cpq,Opq

j ). If (1) Pj received an invalid pair (see Section 4.1 and
Definition D.1) in some vss or tss call, or (2) for some p, q ∈ {1, . . . , ℓ}, the output of party Pj in tsspq

is not (Cp,Op
j ), (C

q,Oq
j), (C

pq,Opq
j ), or (3) for some i ∈ {1, . . . ,m}, the output of party Pj in tssi

is not (Cγi ,Oγi

j ), (Cρi ,Oρi

j ), (Cηi ,Oηi

j ), where (Cγi ,Oγi) and (Cρi ,Oρi) were broadcasted by D as
part of the 0 sharing, then Pj sets flagj = 1. Otherwise Pj sets flagj = 0.

Online phase inputs. D has input z1, . . . , zℓ.

Online phase. The parties do the following.

• (Correction broadcast) For every p ∈ {1, . . . , ℓ}, D broadcasts ∆p := zp − ap.

• (vss verification phase) The parties execute the verification phase of vssp and vsspq for every p, q ∈
{1, . . . , ℓ}, with a flag equals to 0.

• (tss verification phase) For each p, q ∈ {1, . . . , ℓ} the parties execute the verification phase of tsspq . In
addition, for each i ∈ {1, . . . ,m}, the parties execute the verification phase of tssi.

• (glinear.on calls) For i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, in glinear.onij the parties partially compute
Equation 5, with D as the guide with input δG = 0 and every Pk with flag δk = flagk.a

• (Local computation)

– (VSS/TSS verification phase outputs) The parties compute the output of all vss and tss executions.
If the output of some execution is “D is corrupt” then they output y(0, . . . , 0) and terminate.

– (glinear outputs) If the output of some glinear execution is “G is corrupt”, or if it is of the form
(α, v) and the vector of coefficients α is not consistent with the coefficients in Equation 5, the
parties output y(0, . . . , 0).

– (Output computation) Let (αij , vij) be the output of glinearij for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.
Let fi(x) be the polynomial obtained by interpolating (vij)j∈{1,...,n}. If fi(x) is not of degree-t
then all parties output y(0, . . . , 0). Otherwise, the parties output (f1(0), . . . , fm(0)).
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aWe assume that T1W is some default double strong t-sharing of the value 1, via the constant sharing polynomial 1.

Figure 10: Protocol psiflog

We continue with a proof of Theorem 5.2.

I.1 Proof of security

Proof of Theorem 5.2. In this section we prove that protocol psiflog UC-emulatesFpsif (with everlast-
ing security if the underlying commitment-scheme is statistically-hiding). From the composition
properties of UC-security, it is enough to prove security in the (Fvss,Fglinear,Ftss)-hybrid model.
Let A be the dummy adversary against psiflog. We define the simulator S as follows. The simula-
tor S uses A in a black-box manner, and forwards all messages between Z and A. The simulator
first receives the set of corrupt C parties from Z . We split into cases.

I.1.1 Honest Dealer

Offline phase. The simulator simulates the offline phase exactly like an honest dealer. In more
details, the simulator does as follows.

• (VSS simulation) For every p ∈ {1, . . . , ℓ} the dealer picks a random field element ap, and
samples a strong double-t sharing of ap, denoted (C̄p, Ōp). The simulator gives to the ad-
versary the shares (C̄p, Ōp

j ) for every corrupt Pj , as the output of Fp
vss. Denote the sharing

polynomial by F̄ p(x, y).

For every p, q ∈ {1, . . . , ℓ} the dealer sets apq := ap ·aq, and samples a strong double-t sharing
of apq, denoted (C̄pq, Ōpq). The simulator gives to the adversary the shares (C̄pq, Ōpq

j ) for
every corrupt Pj , as the output of Fpq

vss. Denote the sharing polynomial by F̄ pq(x, y)

• (TSS simulation) For every p, q ∈ {1, . . . , ℓ} the simulator gives to the adversary the shares
(C̄p, Ōp

j ), (C̄
q, Ōq

j) and (C̄pq, Ōpq
j ) for every corrupt Pj , as the output of Fpq

tss.

• (Zero sharing) For every i ∈ {1, . . . ,m} the dealer picks three random strong sharings of
zero, denoted (Cγi ,Oγi), (Cρi ,Oρi), and (Cηi ,Oηi). The simulator gives to the adversary
the shares (Cγi ,Oγi

j ), (Cρi ,Oρi
j ), and (Cηi ,Oηi

j ) for every corrupt Pj , as the output of F i
tss.

Denote the sharing corresponding to ηi by F̄ ηi(x, y). In addition, the simulator broadcasts
(Cγi ,Oγi

j ) and (Cρi ,Oρi
j ).

Online phase. The simulator receives the output (y1, . . . , ym) from Fpsif . For each p ∈ {1, . . . , ℓ}
the simulator broadcasts a random field element ∆p. For every Fvss call, the simulator leaks the
to the adversary the flags of the honest parties, where all of them are set to 0. The simulator also
returns “verification succeeded” for every Ftss call.
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For each i ∈ {1, . . . ,m}, the simulator picks a random symmetric bivariate polynomial
F̄ yi(x, y), of degree at most t in each variable, conditioned on F̄ yi(0, 0) = yi, and

F̄ yi(x, j) = αi
0 +

∑
p∈{1,...,ℓ}

αi
p(F̄

p(x, j) + ∆p)

+
∑

p,q∈{1,...,ℓ}

αi
pq(∆

qF̄ p(x, j) + ∆pF̄ q(x, j) + ∆p ·∆q + F̄ pq(x, j)) + F̄ ηi(x, j),

for all j ∈ C.
For every i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} the leakage of F ij

glinear is simulated as follows. The

simulator sends A, (1) the commitments (C1
j , . . . ,C

ℓ
j ,C

1,1
j , . . . ,Cℓ,ℓ

j ,Cηi
j ), as well as the commit-

ments corresponding to the default strong double t-sharing of 1, (2) the flags (δk = 0)k∈H and
δG = 0 of the honest parties, (3) the vector of coefficients a that corresponds to the computation
in Equation 5, (4) the values and openings (F̄ p(k, j), ōpkj)p∈{1,...,ℓ},k∈C, (F̄ pq(k, j), ōpqkj)p,q∈{1,...,ℓ},k∈C,

and (F̄ ηi(k, j), ōηikj)k∈C, (5) the values F̄ yi(k, j) for k ∈ {1, . . . , n}. In addition, upon receiving the

inputs of the corrupt parties to F ij
glinear, the simulator also sends (a, F̄ yi(0, j)) as the output of the

functionality.
At this stage the simulator also receives the inputs of the adversary to Fvss, which include the

flags of the corrupt parties. For Fp
vss with flags (flagi)i∈C, the simulator sets W to be the set of all

corrupt parties Pi with flagi = 1 and returns (W, (opij)i∈W,j∈{0,...,n}). The simulator acts similarly
with Fpq

vss. This concludes the simulation of an honest dealer.

Fix a polynomial-time environment Z with input ζ. Assume without loss of generality that Z
is deterministic. We begin by showing that the view of Z in the real-world is close to the view of
Z in the ideal world.

Z’s view. The adversary’s view consists of (1) the crs, (2) the output of the sharing phase of Fvss

and Ftss, (3) the broadcast of the dealer in the offline round, (4) the inputs to the honest dealer, (5)
the leakage and output of the verification phase of Fvss and Ftss and of the online phase of Fglinear,
and (6) the broadcast of the dealer in the online round. We consider the following two hybrid
worlds, where we assume that the honest parties know the set H.

• In Hybrid 1, the honest parties act like in the real-world, with the following modifications.
In the offline round,

– an honest Pi does not check the validity of the rows received from D, but is always
happy with D (so the flag is always 0),

– for every p, q ∈ {1, . . . , ℓ} and k ∈ H, the dealer also sends F p(x, k) and F pq(x, k) to Pk,
where F p(x, y) and F pq(x, y) are the sharing polynomials of ap and apq, and

– for every i ∈ {1, . . . ,m} and k ∈ H, the dealer also sends F ηi(x, k) to Pk, where F ηi(x, y)
is the sharing polynomial of ηi.

Also, in the online round, for every i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, the
honest dealer inputs to glinearij the vector a according to Equation 5, the val-
ues (F p(k, j), F pq(k, j))p,q∈{1,...,ℓ},k∈{0,...,n} and (F ηi(k, j))k∈{0,...,n}, the openings
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(opk,j , o
pq
k,j)p,q∈{1,...,ℓ},k∈{0,...,n} and (oηik,j)k∈{0,...,n}, and the flag δG = 0; In addition, an

honest Pk inputs to F ij
glinear the values (F p(k, j), F pq(k, j))p,q∈{1,...,ℓ} and F ηi(k, j), as received

from the honest dealer, and the flag δk = 0.

• In Hybrid 2, honest parties act like in Hybrid 1, with the following modifications. In the
offline round:

– For every p, q ∈ {1, . . . , ℓ} the dealer samples random values ap and sets apq = ap · aq
and shares them via Fvss and Ftss calls. We denote the sharing polynomials by F p(x, y)
and F pq(x, y).

– For each p, q ∈ {1, . . . , ℓ} the dealer picks random field elements āp, āq and āpq := āp · āq.
Then the dealer picks random polynomials F̄ p(x, y) and F̄ pq(x, y) conditioned on (a)
F̄ p(x, i) = F p(x, i) for i ∈ C and F p(0, 0) = āp, and (b) F̄ pq(x, i) = F pq(x, i) for i ∈ C
and F̄ pq(0, 0) = āpq.

– For each i ∈ {1, . . . ,m} the dealer picks a random polynomial F̄ ηi(x, y) conditioned on
F̄ ηi(x, k) = F ηi(x, k) for every k ∈ C, and F ηi(0, 0) = 0.

– For any k ∈ H the dealer sends F̄ p(x, k), F̄ pq(x, k), and F̄ ηi(x, k) to Pk, for all p, q ∈
{1, . . . , ℓ} and i ∈ {1, . . . ,m}.

Also, in the online round:

– The dealer sets ∆p := zp − F̄ p(0, 0).

– For every i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} the functionality F ij
glinear has the following

output: (1) a vector a consistent with Equation 5, and (2) the sum

αi
0 +

∑
p∈{1,...,ℓ}

αi
p(F̄

p(0, j) + ∆p)

+
∑

p,q∈{1,...,ℓ}

αi
pq(∆

qF̄ p(0, j) + ∆pF̄ q(0, j) + ∆p ·∆q + F̄ pq(0, j)) + F̄ ηi(0, j).

In addition, it has the following leakage: (1) the commitments
(C1

j , . . . ,C
ℓ
j ,C

1,1
j , . . . ,Cℓ,ℓ

j ,Cηi
j ), as well as the commitments corresponding to the

default strong double t-sharing of 1, (2) the flags (δk = 0)k∈H and δG = 0 of the honest
parties, (3) the vector of coefficients that corresponds to the computation in Equation 5,
(4) the values and openings (F̄ p(k, j), opkj)p∈{1,...,ℓ},k∈C, (F̄ pq(k, j), opqkj)p,q∈{1,...,ℓ},k∈C,
and {F̄ ηi(k, j), oηikj}k∈C, (5) the sum

αi
0 +

∑
p∈{1,...,ℓ}

αi
p(F̄

p(k, j) + ∆p)

+
∑

p,q∈{1,...,ℓ}

αi
pq(∆

qF̄ p(k, j) + ∆pF̄ q(k, j) + ∆p ·∆q + F̄ pq(k, j)) + F̄ ηi(k, j).

for k ∈ {1, . . . , n}.
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Real-world vs. Hybrid 1. We claim that the real-world view is distributed exactly like the ideal-
world view. This follows immediately by noting that (1) in the real-world an honest Pi is always
happy with an honest D, and (2) in Hybrid 1, an honest Pi inputs to Fglinear the same values she
would input to Fglinear in the real-world.

Hybrid 1 vs. Hybrid 2. We claim that Hybrid 1 is O((m + ℓ2)n2ϵ)-close to Hybrid 2. First, note
that the CRS string crs has the same distribution in both worlds, so we fix it. In addition, the
random variables ((Cγi ,Oγi), (Cρi ,Oρi))i∈{1,...,m} have the same distribution in both worlds, and
we fix them as well. Consider the Hybrid 1 random variables

(((Cp,Op
i ), (C

pq,Opq
i ), F p(x, y), F pq(x, y))p,q∈{1,...,ℓ},i∈C, ((C

ηi ,Oηi
k ), F ηi(x, y))i∈{1,...,m},k∈C)

and the Hybrid 2 random variables

(((Cp,Op
i ), (C

pq,Opq
i ), F̄ p(x, y), F̄ pq(x, y))p,q∈{1,...,ℓ},i∈C, ((C

ηi ,Oηi
k ), F̄ ηi(x, y))i∈{1,...,m},k∈C)

and note that they are O((m + ℓ2)n2ϵ)-close, and that in both worlds the view can be obtained
from those random variables by the same efficient process. This concludes the case of Hybrid 1
vs. Hybrid 2.

Hybrid 2 vs. Ideal-world. We claim that Hybrid 2 has the same distribution as the ideal-world.
First, note that the CRS string crs has the same distribution in both worlds, so we fix them. In
addition, the random variables ((Cγi ,Oγi), (Cρi ,Oρi))i∈{1,...,m} have the same distribution in both
worlds, and we fix them as well. Consider the random variables

(((Cp,Op
i ), (C

pq,Opq
i ), F̄ p(x, i), F̄ pq(x, i))p,q∈{1,...,ℓ},i∈C, ((C

ηi ,Oηi
k ), F̄ ηi(x, k))i∈{1,...,m},k∈C)

note that they have the same distribution in both worlds, and that in both worlds the rest of the
view can be obtained from them by the same efficient process. This concludes the case of Hybrid 2
vs. ideal-world.

Honest parties’ outputs. We claim that both in the real-world and the ideal-world, the outputs of
the honest parties in the output phase can be extracted from a good View by the following efficient
deterministic process: Extract the inputs z1, . . . , zℓ from View and output y(z). (Recall that the
honest parties inputs are part of View.) Clearly, in the ideal-world the output of the honest parties
is y(z) with probability 1. We show that this also occurs in the real-world. Indeed, since D is
honest, non of the Fvss and Ftss calls end with “D is corrupt”. In addition, for every i ∈ {1, . . . ,m}
and j ∈ {1, . . . , n} the output of F ij

glinear is (αij , vij), where αij is consistent with Equation 5, and
vij is equal to

αi
0 +

∑
p∈{1,...,ℓ}

αi
p(F

p(0, j) + ∆p)

+
∑

p,q∈{1,...,ℓ}

αi
pq(∆

qF p(0, j) + ∆pF q(0, j) + ∆p ·∆q + F pq(0, j)) + F ηi(0, j).
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We conclude that the i-th output is

yi = αi
0 +

∑
p∈{1,...,ℓ}

αi
p(F

p(0, 0) + ∆p)

+
∑

p,q∈{1,...,ℓ}

αi
pq(∆

qF p(0, 0) + ∆pF q(0, 0) + ∆p ·∆q + F pq(0, 0)) + F ηi(0, 0)

= αi
0 +

∑
p∈{1,...,ℓ}

αi
p(a

p +∆p) +
∑

p,q∈{1,...,ℓ}

αi
pq(∆

qap +∆paq +∆p ·∆q + apq) + 0

= αi
0 +

∑
p∈{1,...,ℓ}

αi
pz

p +
∑

p,q∈{1,...,ℓ}

αi
pqz

p · zq

= yi(z).

Where we used the fact that D is honest so ∆p = zp − ap and apq = ap · aq for all p, q ∈ {1, . . . , ℓ}
and F ηi(0, 0) = 0, and the correctness of Beaver’s trick (see Fact A.5). This concludes the analysis
of an honest dealer.

I.1.2 Corrupt Dealer

Offline phase. The simulator takes the role of the honest parties, that have no inputs, and exe-
cutes an instance of psiflog with Z and A. In the offline phase this only includes receiving from A
commitments and openings for the Fvss and Ftss calls, and giving the corresponding shares to the
simulated honest parties.

Online phase. The simulator continues the simulation of the honest parties. The simulator com-
putes the messages from the honest parties to the corrupt parties, as well as the leakage from the
various functionalities, and gives them to A. Then the simulator receives the messages from the
corrupt parties to the honest parties, as well as the output of the various functionalities.

At the end of the simulation, if D was disqualified then the simulator inputs (0, . . . , 0) to Fpsif

and terminates. Otherwise, D was not disqualified in any Fvss call, and let F p(x, y) be the sharing
polynomial of the weak double t-sharing of Fp

vss. Let ∆1, . . . ,∆ℓ be the broadcasts of the dealer in
the online round. The simulator sets zp := ∆p + F p(0, 0) for p ∈ {1, . . . , ℓ} and inputs (z1, . . . , zℓ)
to Fpsif . This concludes the simulation.

Fix any polynomial-time environment Z and input ζ to the environment. We show that the
view of Z (including the adversary’s view and the honest parties’ outputs) in the real world is
close to the view of Z in the ideal world.

Z’s view. Since the honest parties hold no inputs, it is not hard to see that the simulator perfectly
simulates an execution of psiflog. It remains to show that the output of the honest parties has the
same distribution in both worlds.

Honest parties’ outputs. We say that a view View is “good” if for any commitment C that ap-
pears in the view, and for any two openings o, and o′ that appear in the view, it holds that either
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open(C, o) = ⊥ or open(C, o′) = ⊥ or open(C, o) = open(C, o). Observe that, by the binding prop-
erty of the commitment scheme, a view View is good with probability at least 1− ϵ.

Fix any good view View. If D is disqualified according to View, then the output in both worlds
is y(0, . . . , 0). Therefore, we focus on the case where D is not disqualified according to View. Since
D is not disqualified in View, then each Fvss call defines a weak double t-sharing, and we denote
by F p(x, y) (resp., F pq(x, y)) the sharing polynomial of Fp

vss (resp., Fpq
vss). In addition, for every

p, q ∈ {1, . . . , ℓ} the output of Fpq
tss defines three weak double t-sharings, and we denote the corre-

sponding sharing polynomials by F̃ p(x, y), F̃ q(x, y), and F̃ pq(x, y). Similarly, each tssi call defines
a weak double t-sharing, and we denote by F̃ γi(x, y), F̃ ρi(x, y) and F̃ ηi(x, y) the corresponding
sharing polynomials. We also denote by F γi(x, y), F ρi(x, y) the polynomials that correspond to
the dealer’s broadcast (Cγi ,Oγi), and (Cρi ,Oρi).

Since View is good, and there are n − t ≥ t + 1 honest parties, by Fact A.2 it follows that
that F p(x, y) = F̃ p(x, y) and F pq(x, y) = F̃ pq(x, y) for all p, q ∈ {1, . . . , ℓ}. Similarly, it holds that
F γi(x, y) = F̃ γi(x, y) and F ρi(x, y) = F̃ ρi(x, y) for every i ∈ {1, . . . ,m}. Therefore, by the Ftss

functionality, we conclude that F pq(0, 0) = F p(0, 0) · F q(0, 0) for all p, q ∈ {1, . . . , ℓ}. We also
conclude that F̃ ηi(0, 0) = F̃ γi(0, 0) · F̃ ρi(0, 0) = 0.

Let zp := ∆p + F p(0, 0) for p ∈ {1, . . . , ℓ}. In the ideal world the output is y(z) It remains to
show that this also holds in the real world. Fix i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} and consider the
computation of the j-th row of yi. Since D is not discarded, and View is good, we conclude that
the j-th share of yi is consistent with the shares of every honest Pk,

αi
0 +

∑
p∈{1,...,ℓ}

αi
p(F̃

p(k, j) + ∆p)

+
∑

p,q∈{1,...,ℓ}
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pq(∆

qF̃ p(k, j) + ∆pF̃ q(k, j) + ∆p ·∆q + F̃ pq(k, j)) + F̃ ηi(k, j).

and since there are n− t ≥ t+ 1 honest parties the j-th share of yi must be

αi
0 +

∑
p∈{1,...,ℓ}

αi
p(F̃

p(0, j) + ∆p)

+
∑

p,q∈{1,...,ℓ}

αi
pq(∆

qF̃ p(0, j) + ∆pF̃ q(0, j) + ∆p ·∆q + F̃ pq(0, j)) + F̃ ηi(0, j).

Since there are n− t ≥ t+ 1 honest parties, we conclude that the parties recover the value

yi = αi
0 +

∑
p∈{1,...,ℓ}

αi
p(F̃

p(0, 0) + ∆p)

+
∑

p,q∈{1,...,ℓ}

αi
pq(∆

qF̃ p(0, 0) + ∆pF̃ q(0, 0) + ∆p ·∆q + F̃ pq(0, 0)) + F̃ ηi(0, 0)

= αi
0 +

∑
p∈{1,...,ℓ}

αi
pz

p +
∑

p,q∈{1,...,ℓ}

αi
pqz

p · zq + 0

= yi(z),

where the second equality follows from Fact A.5 (or simply by using the definition of the zp’s).
This concludes the analysis of a corrupt dealer, and the proof of security of psiflog.
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I.1.3 Sufficient Conditions for Efficient Optimal-Resiliency SIF

The efficiency-bottleneck of the psiflog protocol is the TSS sub-protocol whose running time is
exponential in the number of parties. In order to obtain a protocol with optimal resiliency and
running time polynomial in n, we can slightly weaken the adversary by assuming that it is non-
rushing. Indeed, in this case, instead of letting each set of t+ 1 parties to generate a challenge, we
can simply let every party Pi broadcast a challenge αi already in the first round, and let the parties
recover A(αi), B(αi) and C(αi) in the second round. In fact, the same approach can be used even
against a stronger adversary that is allowed to see all the messages of the honest parties except
one, and only then send the messages of the corrupt parties. This adversary is even allowed to
adaptively choose which messages to see first. We refer to such an adversary as semi-rushing.

There are natural network settings in which semi-rushing adversary suffices to capture an
adversarial capability and full rushing is an overkill, especially when the number of parties is
large. Imagine that a message arrives with probability 0.5 within 1 “hour” and with probabil-
ity 0.5 within 2 “hours”. Accordingly, each round of messages can begin at an even hour and
if messages do not arrive after 2 hours, we replace them with some default value. Now, even
if the adversary controls the delay of her own message, she cannot wait to see all the honest
parties messages before sending her message, because she is likely to reach a time-out. More
generally, assume that the delay of each message m is a random variable r that takes values
in {1, · · · , T} for some constant T. Let us further assume that if a message does not reach af-
ter T time units, then the receiving party states ”TIME-OUT” and reads the message as ⊥. Let
ϵ = Pr[that all the delays of the honest parties are smaller than T]. Then, even if the adversary can
control his own delays, semi-rushing security prevents any cheating except with probability ϵR,
where R denotes the number of rounds. This may be sufficiently good, especially when R is small
(e.g., constant in our case) and ϵ is tiny (e.g., negligible due to a large number of parties). Overall,
we believe that the notion of semi-rushing adversaries that may turn to valuable in the future.

Alternatively, an efficient protocol with optimal resiliency can be obtained by strengthening
the underlying cryptographic assumptions. Following the Fiat-Shamir transform [33, 12], we can
obtain an efficient protocol in the random-oracle model, by using the random-oracle to pick the
challenge given the public commitments that the dealer generates in the first round.

As explained in the introduction, we do not take these routes and construct (in Section J) an
efficient SIF protocol for a rushing adversary based on the same Minicrypt-type assumptions that
were used so far, at the expense of slightly relaxing the resiliency threshold.

J Public SIF for any Number of Parties

Here, we present a public SIF protocol, denoted psif, that efficiently implements Fpsif when n =
(2 + ϵ)t for some ϵ > 0. For the high-level idea, we refer to Section 3.

J.1 Execution of psiflog with a Subset of Parties

We start by discussing the execution of psiflog with only some of the parties in {P1, . . . , Pn}. Let
Q = (i1, . . . , in′) ∈ {1, . . . , n}n′

be an ordered multiset of size n′ and let t′ := ⌊(n′ − 1)/2⌋. In an ex-
ecution of psiflog with Q, we consider an execution of psiflog with n′ parties, denoted {P ′1, . . . , P ′n′}
and resiliency threshold t′, so that for every j ∈ {1, . . . , n′}, party Pij takes the role of P ′j in the pro-
tocol’s execution. We note that a single party Pi may appear several times in Q, which means that
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Pi can take the role of more than one party P ′ij in an execution of psiflog with Q (this happens when
i = ij = ij′ for some j ̸= j′, so Pi takes both the role of P ′ij and the role of P ′i′j ). When the parties
in Q need to send a private message to each other they do so using the private channels among
every two parties. However, when they want to send a broadcast message, they use the standard
broadcast channel, so that all parties, inside and outside Q, can see the broadcast message. We
denote such an execution by psiflog(Q).

We say that Q is good if it contains an honest majority (that is, if the number of corrupt parties
among (i1, . . . , in′) is at most t′, where we count with repetitions). Otherwise, we say that Q is
bad. Our goal is to show that when the parties in Q execute psiflog among themselves, we obtain
a secure implementation of the following functionality.

Fpsif(Q) receives the set of corrupt parties C. The functionality depends on the set Q, and we split into
cases.

Good Q. Fpsif(Q) receives inputs z = (z1, . . . , zℓ) from D in Q. Fpsif(Q) returns y(z) = (y1(z), . . . , ym(z))
to all parties, inside and outside Q, where yi(z1, . . . , zℓ) = αi

0 +
∑

p∈{1,...,ℓ} α
i
pz

p +
∑

p,q∈{1,...,ℓ} α
i
pqz

pzq

is a degree-2 polynomial in the variables z1, . . . , zℓ.

Bad Q. We split into cases.

• Honest D. D inputs z to Fpsif(Q), and Fpsif(Q) leaks z to the adversary. Then, Fpsif(Q) receives a
vector (y1, . . . , ym) from the adversary and gives it to all parties, inside and outside Q.

• Corrupt D. Fpsif(Q) receives a vector (y1, . . . , ym) from the adversary and gives it to all parties,
inside and outside Q.

Functionality Fpsif(Q)

Figure 11: Functionality Fpsif(Q)

That is, when Q is good, Fpsif(Q) acts exactly like Fpsif : it takes the input z of the dealer, and
gives y(z) to all the parties, inside and outside Q. On the other hand, when Q is bad, there are
no security guarantees, other than that all the parties have the same output. That is, the input of
an honest D is leaked to the adversary, and the adversary is allowed to choose the output of the
functionality.

Note that psiflog(Q) is a UC-secure implementation of Fpsif(Q). Indeed, when Q is bad, simu-
lation is trivial and all parties have the same output, by the public output property of the psiflog
protocol, that guarantees that all parties, inside and outside Q, learn the output of psiflog(Q).
When Q is good, the claim follows from Theorem 5.5. In addition, the complexity of the protocol
is polynomial in n and exponential in |Q|, so the protocol is efficient if |Q| = O(log κ). A security
statement appears in Theorem J.1.

Theorem J.1. Let κ be a security parameter, let n be the number of parties, let t < n/2. Let n′ be an
integer, and let Q ∈ {1, . . . , n}n′ be a ordered multiset of parties. Assuming the existence of perfectly-
binding sub-exponentially hiding NICOM, protocol psiflog(Q) is a UC-secure implementation of Fpsif(Q),
against a static, active, rushing adversary corrupting up to t parties. The complexity of the protocol is
poly(|C|, n, 2|Q|, log |F|, κ), where C is the circuit computing the functionality.

Alternatively, if we replace the perfectly-binding NICOM with statistically-hiding NICOM, we also
obtain everlasting security.
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J.2 Public SIF

We continue with the description of psif, that efficiently implements Fpsif when n = (2 + ϵ)t for
some ϵ > 0. We slightly deviate from the description in Section 3.2, and present a similar approach
to that presented in Remark 3.1. We start by presenting Observation J.2 that shows that there exists
some constant n′ that depends only on ϵ, such that if we take the committees A1, . . . , AM to be all
ordered multisets of size n′, then at least 9/10-fraction of the multisets will have an honest majority.

Observation J.2. Let ϵ > 0 and n = (2 + ϵ)t. Let C ⊆ {1, . . . , n} be the set of corrupt parties, of size
at most t. There exists a positive integer n′ = n′(ϵ) that depends only on ϵ, so that the fraction of ordered
multi-sets (i1, . . . , in′) ∈ {1, . . . , n}n′ that contain at most (12 + ϵ

20)n
′ honest parties is at most 1/10.

We note that the total number of ordered multi-sets of size n′ is nn′
= poly(n), and we assume that n′

is large enough with respect to ϵ so that (12 + ϵ
20)n

′ > n′

2 + 1.

Proof. We have n = (2+ ϵ)t parties, where t of them are corrupt and (1+ ϵ)t are honest. Therefore,
the fraction of honest parties is

µ :=
(1 + ϵ)t

(2 + ϵ)t
=

1 + 1
2ϵ

2 + ϵ
+

1
2ϵ

2 + ϵ
=

1

2
+

ϵ

4 + 2ϵ
.

Let γ(ϵ) := ϵ/(4+2ϵ), note that γ > 0 and that the fraction of honest parties is µ = 1
2 + γ. Consider

a random ordered multiset Q of size n′, and observe that for every i ∈ {1, . . . , n′} the probability
that the i-th element is honest is µ. Therefore, by an additive Chernoff bound, the probability that
the fraction of honest parties in Q is less than µ− γ/2 = (12 + γ)− γ/2 is at most exp(−γ2n′/2). By
taking n′ > 2 log(10)/γ2 we conclude that at most 1/10th of the ordered multisets of size n′ have
less than µ− γ/2 > 1

2 + ϵ
20 fraction of honest parties. This concludes the proof.

In fact, it turns out that we can improve the resiliency by using the techniques of [28], as
explained in the following remark.

Remark J.3 (Improving resiliency). For every 0 < ϵ, δ < 1, the techniques of [28, Lemma 5] allows the
efficient generation of M = n committees of size n′ = O( 1

δϵ2
), so that for every set of corrupt parties C

of size at most (12 − ϵ)n, at most δ-fraction of the committees overlap with C in n′/2 or more committee-
members. In our context δ = 1/10, and since our running time will be exponential in n′, we can push ϵ to
be as small as Ω(1/

√
log κ). For simplicity, we continue by following the parameters set in Observation J.2.

Protocol overview. As discussed in Section 3.2 and Remark 3.1, in order to compute a sin-
gle input function f , we let D compute an M/3-out-of-M secret sharing of its input z, de-
noted (z1, . . . , zM ), and then compute “in-the-head” an interaction between the virtual parties
Q1, . . . , QM , where Qi holds as an input the share zi, and the virtual parties compute the BGW
protocol for a functionality Gbgw that first reconstructs z from the shares, and then returns f(z) to
all the parties. We let the dealer commit to the input and randomness of the virtual parties, as well
as to every private and public message sent in the protocol. We identify the i-th virtual party Qi

with the corresponding committee Ai, and we let the dealer execute an instance psiflog(Qi) for a
functionality Gzk that verifies that the committed view of Qi is consistent with the BGW protocol,
and if so, returns f(z) to all the parties, inside and outside Qi. The security of our protocol follows
from the same argument presented in Section 3.2. We continue with a formal description of the
protocol, and then provide a formal proof of security.
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Primitives: Public single input functionality for a subset of parties psiflog(Q).

Offline phase:

• (psiflog(Q) call) Let M := nn′
for a constant n′ = n′(ϵ) as in Observation J.2. Let Q1, . . . , QM be

all ordered multi-sets of size n′ of {1, . . . , n}, and we add to each multi-set the dealer D as the last
party. For every Qk the parties engage in an execution of the offline phase of psiflog(Qk) with D as
the dealer of the execution, computing the functionality Gzk, defined in Figure 14.

Verification phase (R2):

• (Inputs) D holds inputs z1, . . . , zℓ.

• (MPC in the head) For every v ∈ {1, . . . , ℓ}, D shares the input zv via Shamir’s secret sharing for M
parties and threshold T := ⌊(M − 1)/3⌋.a Let sv(k) be the k-th share of zv .
D executes in the head the BGW protocol with M virtual parties, which we identify with the multi-
sets Q1, . . . , QM , and threshold T for the functionality Gbgw defined in Figure 13, where the k-th
party has inputs (sv(k))v∈{1,...,ℓ} and randomness ρk. D samples commitments and openings to (1)
the inputs and randomness of Qk for all k ∈ {1, . . . ,M}, and (2) every message sent in the BGW
execution (that is, for every round r and virtual party Qk in the BGW execution, the dealer commits
to the r-th round broadcast message mr

k of Qk, as well as to the private messages (mr
k,k′)k′∈{1,...,M}

from Qk to the rest of the parties Qk′). D broadcasts all those commitments.

• (psiflog(Q) call) For every k ∈ {1, . . . ,M}, the parties execute the online phase of psiflog(Qk) com-
puting Gzk defined in Figure 14, where D inputs all the commitments and openings that correspond
to the view of Qk in the execution of BGW,b, together with the index k.

• (Local computation) If there exists some vector y such that for at least 9M/10 indices k ∈ {1, . . . ,M}
it holds that the output of psiflog(Qk) is “valid” concatenated with (1) y, (2) the commitments that
correspond to the view of Qk and (3) the index k, then all parties output y. Otherwise, D is discarded
and all parties output some default value y(0, . . . , 0).

aThat is, T parties learn nothing about the secret, but T + 1 parties can recover the secret.
bBy the view of Qk we mean the inputs (sv(k))v∈{1,...,ℓ} and randomness ρk of Qk, together with all the incoming

messages mr
k′,k and mr

k′ and outgoing messages mr
k,k′ , mr

k for every round r and party Qk′

Protocol psif

Figure 12: Protocol psif

Input. Each party Pk inputs shares (sv(k))v∈{1,...,ℓ}.

Output. The functionality recovers the secrets zv from the shares (sv(k))k∈{1,...,M} for all v ∈ {1, . . . , ℓ}.
That is, given sv(1), . . . , sv(M) the functionality interpolates the M points in order to obtain a polyno-
mial fv(x) with fv(k) = sv(k) for all k ∈ {1, . . . ,M}. If the degree of fv(x) is less than M/3 then the
functionality sets zv := fv(0)a. Otherwise, if the degree fv(x) is at least M/3, the recovery fails.
If some recovery fails then the functionality returns⊥ to all parties. Otherwise, the functionality returns
y(z) to all parties.

aWe have noted that, for an honest dealer, all virtual parties are honest but curious. This means that when D
is honest all virtual parties input the correct shares, so there is no need in Reed-Solomon reconstruction, but just
interpolation over the points.

Functionality Gbgw
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Figure 13: Functionality Gbgw

Input. The dealer inputs commitments and openings ((G1, h1), . . . , (Gm, hm)) and an index k ∈
{1, . . . ,M}.

Output. If (1) every opening hi is a valid opening for Gi, and (2) the opened values corre-
spond to a view of a virtual party Qk that follows the BGW protocol for Gbgw,a, then Gzk returns
(“valid”, y, (G1, . . . , Gm), k) to all parties, where y is the output according to the view of Qk. Other-
wise, Gzk returns “invalid” to all parties.

aBy the view of Qk we mean the inputs and randomness of Qk, together with all the incoming messages that Qk

received and outgoing messages that Qk sent.

Functionality Gzk

Figure 14: Functionality Gzk
We continue with a proof of Theorem 5.3.

J.3 Proof of security

Proof of Theorem 5.3. From the composition properties of UC-security, it is enough to prove secu-
rity in the Fpsif(Q)-hybrid model.

LetA be the dummy adversary against psif. We define the simulator S as follows. The simula-
tor S uses A in a black-box manner, and forwards all messages between Z and A. The simulator
first receives the set of corrupt parties C. We split into cases.

J.3.1 Honest Dealer

Offline round. There is no communication in the offline round in the Fpsif(Q)-hybrid model.

Online phase. The simulator receives the output y from Fpsif . For every v ∈ {1, . . . , ℓ},
the simulator computes Shamir’s secret sharing of 0 for M parties with resiliency T , denoted
s̄v(1), . . . , s̄v(M), where M = nn′

= poly(n) and T = ⌊(M − 1)/3⌋, just like in the protocol psif.
Consider the BGW protocol for the computation of Gbgw with M parties and resiliency T , letA′ be
the adversary against the protocol that always follows the protocol, and let S ′ be the correspond-
ing simulator. Like in psif, we think of the virtual parties Q1, . . . , Qm of the BGW protocol as all
ordered multisets of size n′, and we add to each multiset the dealer D as the last party. Let C′ be
the set of corrupt parties for the BGW protocol, which is defined to be all virtual parties Qi that
represent an ordered multiset with a dishonest majority (after the addition of D to the multiset).

The simulator S executes the simulator S ′ for the BGW protocol with C′ as the set of corrupt
parties, and inputs (s̄v(k))v∈{1,...,ℓ} for every corrupt Qk. When S ′ sends the inputs of the corrupt
virtual parties to the ideal functionality Gbgw, then S returns y as the output of the ideal function-
ality. We emphasize that such a simulation is possible, because by Observation J.2, the fraction of
corrupt parties Qk is at most 1/10. At this stage the dealer holds the simulated view of adversary
A′ in the execution BGW protocol. Those include (1) the inputs and randomness of the parties
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in C′, (2) every r-th round private message m̄r
k,k′ where either Qk is corrupt or Qk′ is corrupt (or

both), and (3) all broadcast messages m̄r
k for every round r and every party Qk (either honest or

dishonest). For the missing values in the view of honest parties, i.e., inputs and randomness of
honest parties, and messages m̄r

k,k′ between two honest parties Qk and Q′k, the simulator S sets
the value 0. The simulator computes the commitments of those values and broadcasts the commit-
ments. We emphasize that for every corrupt Qk the simulator holds openings to the commitments
that reveal the view of Qk as generated by S ′.

For every Fpsif(Qk) call for an honest Qk, the simulator returns the output: “valid” concate-
nated to (1) the vector y, (2) the commitments that correspond to the view of Qk and (3) the index
k. For every Fpsif(Qk) call for a corrupt Qk, the simulator leaks all commitments and openings
that correspond to the view of the corrupt Qk, together with the index k. This concludes the com-
munication from the honest parties to the corrupt parties. At this stage, the adversary A sends
the output outk of Fpsif(Qk) for every corrupt Qk, and the simulator returns outk as the output of
Fpsif(Qk). This concludes the simulation.

Fix a polynomial-time environment Z with input ζ, and assume without loss of generality that
it is deterministic.

Analysis. We observe that there is no communication in the offline round, so in both worlds the
environment Z picks the inputs z of D in the same way. Fix those inputs. Consider the real-world
shares (sv(k))v∈{1,...,ℓ},k∈C′ and note that they have the same distribution as the ideal-world shares
(s̄v(k))v∈{1,...,ℓ},k∈C′ . Fix those shares as well.

Consider the simulation of S ′ by S. We claim that it has the same distribution as an execution
of S ′ in the virtual ideal-world of Gbgw, where the virtual party Qk receives (sv(k))v∈{1,...,ℓ}. In
order to prove it, it is enough to show that in the virtual ideal-world the functionality Gbgw returns
y(z) with probability 1. Indeed, by the perfect correctness of the BGW protocol, the output of the
honest virtual parties in the virtual real-world is y(z) with probability 1. Therefore, in the virtual
ideal-world of Gbgw the output of Gbgw is y(z) with probability 1 as well. Note that this means that
for every corrupt Qk, S ′ always inputs the correct shares (sv(k))v∈{1,...,ℓ} to Gbgw (or otherwise the
output of Gbgw will not be y).

By the perfect privacy of the BGW protocol, we conclude that the joint view of all corrupt Qk’s
in the BGW execution has the same distribution in both worlds. Fix those values. Conditioned
on those values it is not hard to see that the corresponding commitments and openings have the
same distributions in both worlds, and we fix them as well. Finally, the rest of the commitments,
that correspond to inputs and randomness of honest parties, as well as to private messages be-
tween honest parties, are poly(n, ℓ,m, log |F|) · ϵ-close in both worlds; indeed, note that the total
number of commitments is bounded by the complexity of the BGW protocol for Gzk, which is
poly(n, ℓ,m, log |F|). Given those values, it is not hard to see that the rest of the view can be gener-
ated by the same efficient process in both worlds.

We continue by an analysis of the honest parties’ output. We claim that in both worlds, given
the view of Z , the output of the honest parties can be computed by the same deterministic ef-
ficient process that simply outputs y(z). Indeed, in the ideal-world all parties output y(z) with
probability 1. In addition, in the real-world, for every honest Qk the output of Fpsif(Qk) is “valid”
concatenated to (1) y(z) (2) the commitments that correspond to the view of Qk and (3) the index
k. Since there are at least 9M/10 honest virtual parties, all honest parties output y(z) as well. This
concludes the analysis of an honest dealer.
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J.3.2 Corrupt Dealer

Offline round. There is no communication in the offline round in the Fpsif(Q)-hybrid model.

Online round. The simulator takes the role of the honest parties, that have no inputs, in order
to simulate an execution of the protocol. The simulator receives the broadcasts of D, that consist
of the commitments to the view of the virtual parties in the BGW execution, as well as the inputs
of D to Fpsif(Qk) for a multiset Qk with an honest majority (which we think of as honest virtual
parties), and the output of Fpsif(Qk) for a multiset Qk with a dishonest majority (which we think
of as corrupt virtual parties). For every honest Qk the dealer computes the output of Fpsif(Qk)
and gives it to the adversary and to the simulated honest parties. For every corrupt Qk the dealer
received from A the output of Fpsif(Qk), and the simulator gives it to the adversary and to the
simulated honest parties.

At the end of the simulation, if D is discarded, then S inputs (0, . . . , 0) to Fpsif . Otherwise, D
is not discarded by the honest parties, and let y be the outpu of the honest parties. Let V be the set
of all honest virtual parties Qk so that the output of Fpsif(Qk) is “valid” concatenated to (1) y, (2)
the commitments that correspond to the view of Qk, and (3) the index k. Since D is not discarded,
and, by Observation J.2, the number of corrupt Qk is at most M/10, we conclude that the size of
V is at least 9M

10 −
M
10 = 8M

10 . For every Qk in V, since the output of Fpsif(Qk) is not “invliad”, the
input of D to Fpsif(Qk) has to include correct openings to the committed view of Qk. For each Qk

in V, the simulator uses those openings to extract the shares (sv(k))v∈{1,...,ℓ}, that correspond to
Qk’s input in the BGW execution. Then, the simulator interpolates over the shares of all Qk’s in
V in order to obtain the values z1, . . . , zℓ (if the interpolation fails then the simulator aborts), and
send z1, . . . , zℓ to Fpsif as the inputs of D. This concludes the simulation.

Fix a polynomial-time environment Z with input ζ, and assume without loss of generality that
Z is deterministic.

Analysis. It is not hard to verify that the online-round simulation is perfect. Therefore, it only
remains to analyse the honest parties’ outputs. We say that a view View is “good” if for any
commitment C that appears in the view, and for any two openings o, and o′ that appear in the
view, it holds that either open(C, o) = ⊥ or open(C, o′) = ⊥ or open(C, o) = open(C, o). Observe
that, by the binding property of the commitment scheme, a view View is good with probability at
least 1− ϵ.

Fix any good view View. If D is discarded according to View, then in both worlds the output
is the default value y(0, . . . , 0). Otherwise, D is not discarded. Consider a virtual party Qk in
V, and note that D has provided valid openings to the committed view of Qk, which we denote
by Viewk. Note that, since View is good, the views of any two parties in V, Viewk and Viewk′

are consistent with each other (that is, they agree on all broadcast messages, and on all private
messages between Qk and Qk′). Therefore, the set of views {Viewk}k∈V is consistent with some
execution of BGW, where the adversary corrupts the set C′ := {1, . . . ,m} \ V. In the real-world,
by the perfect correctness of the BGW protocol, the output y of the BGW protocol is consistent
with the values z1, . . . , zℓ which are shared via the shares (sv(k))v∈{1,...,ℓ},k∈V.28 In the ideal world,

28Observe that perfect correctness is crucial for this argument, since the dealer chooses the randomness of the honest
virtual parties. Indeed, if we allowed a positive error probability then the dealer could pick bad randomness for the
virtual honest parties, so that the correctness property would be violated.
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the simulator inputs z1, . . . , zℓ to Fpsif , so the output is y as well. This concludes the analysis of a
corrupt dealer, and the proof of security of psif.

K General Single Input Functionality

In this section, we present a protocol for general SIF, when n = (2 + ϵ)t for some constant ϵ > 0.
This protocol is a reduction from the general SIF to public SIF as discussed in Section 3.

Let F be some SIF, that takes as an input a vector z from D, returns fi(z) to Pi, for some
functions f1(z), . . . , fn(z). We will reduce the computation of F to the computation of a SIF G
with public output.

Let G be a SIF that takes as an input a vector z and a list of commitments and openings
(C1, o1), . . . , (Cn, on). For i ∈ {1, . . . , n}, let ri := open(Ci, oi). If some ri is ⊥ the functionality
returns a special abort symbol ⊥ to all parties. Otherwise, the functionality returns (C1, . . . , Cn)
and (f1(z)+ r1, . . . , fn(z)+ rn) to all parties. We note that G has public output, and that the circuit
size of G is at most polynomial in the circuit size of F , in κ and in log |F|.

We continue by describing a reduction that “almost works”, and then we explain how to fix
it. In the offline round the dealer samples random pads r1, . . . , rn, computes a commitment and
opening (Ci, oi) for every ri, broadcasts C1, . . . , Cn and sends oi to Pi. In addition, the parties exe-
cute the offline phase for psif for functionality G. In the online phase the dealer receives the input
z and the parties compute the online phase for psif, where D inputs z and (C1, o1), . . . , (Cn, on).
If the output of psif is ⊥ then D is discarded and all parties output some default output. Other-
wise, let the output be (C ′1, . . . , C

′
n) and (y1, . . . , yn). If (C ′1, . . . , C

′
n) ̸= (C1, . . . , Cn), D is discarded.

Otherwise, Pi outputs y0 and yi − ri.
We note that the reduction works, as long as D sends each Pi its opening oi in the offline

round. However, a corrupt D might refuse to send the opening in the offline round to an honest
Pi, in which case Pi will be unable to decrypt its output. In order to solve this problem, we use a
mechanism, called undeniable transmission, that allows an unhappy Pi to force the dealer to reveal
the opening to all the parties in the online round. In this way, all the parties will be able to verify
that D reveals a valid opening in the online round, and if not, D will be discarded. We mention
that undeniable transmission appears implicitly in [7]. Details follow.

Undeniable transmission Consider the case where in the first round a dealer D should send a
message o to, say, P1. We want a mechanism that allows P1 to force D to reveal o in the second
round to all parties. In order to do so, in the first round we let P1 sample a random pad g,
compute a commitment and opening (G, h) of g, broadcast the commitment G and send the
opening h to D. In the second round, if D is happy with the values received from P1 (that is, if h
is a valid opening of G), then D broadcasts α := o+ g. Otherwise D concludes that P1 is corrupt,
and simply reveals the opening o to all parties. (This reveals no information that the adversary
did not already know, as P1 must be corrupt.) At this stage, if P1 wants to force D to reveal o, then
she can broadcast h in the second round. Indeed, if D is unhappy with P1 then D broadcasts o
anyway. If D is happy with P1, then the only value that P1 can open from G is g, so all the parties
can compute α − g in order to obtain o. Finally, when both D and P1 are honest then they are
both happy with each other, no information about o is revealed to the adversary, as g is a random
string that is used as a one-time pad.
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Protocol sif appears in Figure 15.

Primitives: Public SIF psif.

offline phase:

• The dealer D samples random pads r1, . . . , rn, where the length of ri is as the length of fi(z).
The dealer samples (Ci, oi) ← commit(ri) for every i ∈ {1, . . . , n}, broadcasts the commitments
(C1, . . . , Cn) and sends oi to Pi for every i ∈ {1, . . . , n}.

• Every Pi samples a random pad gi of the same length as oi. Pi samples (Gi, hi) ← commit(gi),
broadcasts Gi and sends (gi, hi) to D.

• (psif offline call) All parties execute the offline round of psif for the functionality G.

online phase:

• (Inputs) The dealer receives the input z.

• If D received an opening hi from Pi such that open(Gi, hi) ̸= gi, then D broadcasts oi. Otherwise, D
broadcasts αi := oi + gi.

• If Pi received an invalid opening oi from D, then Pi broadcasts hi.

• (psif online call) All parties execute the online round of psif, where the dealer inputs z and
(C1, o1), . . . , (Cn, on).

• (Local computation) All parties do as follows.

– If the output of psif is ⊥ then D is discarded and the parties output F(0, . . . , 0).
– Otherwise, let the output be (C ′

1, . . . , C
′
n) and (y1, . . . , yn). If (C ′

1, . . . , C
′
n) ̸= (C1, . . . , Cn) then D

is discarded.
– A party Pi is conflicted with D if Pi broadcasted hi such that the value gi := open(Gi, hi) is not
⊥. For every Pi conflicting with D, let ōi be (1) oi if D broadcasted oi in the online phase, or (2)
αi − gi if D broadcasted αi in the online phase. If open(Ci, ōi) = ⊥ for some Pi conflicting with
D, then D is discarded.

– Otherwise, for every Pi not conflicting with D let ōi be the opening received from D in the offline
round. Every Pi (either conflicting or not conflicting with D) sets r̄i := open(Ci, ōi), and outputs
yi − r̄i.

Protocol sif

Figure 15: Protocol sif

We continue with a proof of Theorem 5.4 and Theorem 5.5.

K.1 Proof of Security

Proof of Theorem 5.4 and Theorem 5.5. In this section we prove that protocol sif UC-emulatesF (with
everlasting security if the underlying commitment-scheme is statistically-hiding). From the com-
position properties of UC-security, it is enough to prove security in the G-hybrid model. Let A be
the dummy adversary against sif. We define the simulator S as follows. The simulator S uses A
in a black-box manner, and forwards all messages between Z and A. The simulator first receives
the set of corrupt parties C. We split into cases.
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K.1.1 Honest Dealer

Offline phase. For every i ∈ {1, . . . , n} the simulator samples a random string ri of the same
length as fi(z) and computes (Ci, oi) ← commit(ri). The simulator broadcasts (C1, . . . , Cn) on
behalf of the dealer, and sends oi to Pi for every i ∈ C.

On behalf of every honest Pi, the simulator samples a random pad gi of the same length as oi.
The simulator samples (Gi, hi) ← commit(gi) and broadcasts Gi on behalf of Pi. At this stage, for
every corrupt Pi the simulator receives from A the broadcasts Gi and the private message (gi, hi)
to the dealer.

Online phase. The simulator receives y0 and (yi)i∈C from F as the output of the corrupt parties.
For every honest Pi the simulator broadcasts a random string αi on behalf of the dealer. For every
corrupt Pi such that gi ̸= open(Gi, hi) the simulator broadcasts oi on behalf of the dealer. For every
corrupt Pi such that gi = open(Gi, hi) the simulator broadcasts αi := oi + gi on behalf of D. The
simulator sends no messages on behalf of the other honest parties.

For every i ∈ H let y′i be a random string, and for i ∈ C let y′i := yi + ri. The simulator gives
the values (C1, . . . , Cn) and (y′1, . . . , y

′
n) to A as the output of the functionality G. At this stage the

simulator receives from A the broadcasts of the corrupt parties. This concludes the simulation of
an honest dealer.

Fix a polynomial-time environment Z with input ζ. We begin by showing that the view of Z
in the real-world is close to the view of Z in the ideal world.

Z’s view. The adversary’s view consists of (1) the crs, (2) the offline-round broadcasts of the
honest parties, (3) the offline-round messages from the dealer to the corrupt parties, (4) the inputs
to the honest dealer, (5) the online-round broadcasts of the honest parties, and (6) the output of G.
In order to prove that the real-world view is close to the ideal-world view, we define the following
hybrid-worlds, where we assume that the honest parties know the set H.

• In Hybrid 1, the honest parties act like in the real-world, except that in the online-phase, (a)
an honest party Pi never sends a broadcast message with the opening hi, (b) for every i ∈ H,

D does not verify that open(Gi, hi)
?
= gi, but D always broadcasts αi, (c) for every i ∈ H,

the computation of αi by D is done using the value gi that Pi sends to D (and not the val-
ues extracted from the commitments), and (d) we let the dealer provides G with the random
pads r1, . . . , rn as well, and we change the functionality G so that it always returns the com-
mitments (C1, . . . , Cn) and (y1 + r1, . . . , yn + rn), where (C1, . . . , Cn) are the commitments
received from D and (y1, . . . , yn) are the outputs of F(z) (that is, the functionality does not
open the commitment Ci; instead, it uses the random pad ri provided by the dealer).

• In Hybrid 2, the honest parties act like in Hybrid 1, with the following modification: (a)
in the offline-round, an honest Pi samples random elements gi and g′i, samples (Gi, hi) ←
commit(g′i), broadcasts Gi, and sends (gi, hi) to D (so that value gi will be used in the compu-
tation of αi), (b) in the offline-round, for every honest Pi the dealer samples random elements
ri and r′i, samples (Ci, oi) ← commit(r′i), and broadcasts Ci; for a corrupt Pi the dealer sam-
ples ri, computes (Ci, oi) ← commit(ri), and broadcasts Ci; in the online-round the dealer
sends (r1, . . . , rn) to G as the random pads.
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Real-world vs. Hybrid 1. We claim that the real-world view has the same distribution as in
Hybrid 1. This follows by noting that in the real-world (a) an honest Pi never sends a broadcast
message with hi in the online-round when D is honest, (b) in the online round D always sends
αi for an honest Pi, (c) for every honest Pi it holds that gi = open(Gi, hi), so αi is computed in
the same way in both worlds, and (d) the dealer always provides G with the correct openings
(o1, . . . , on) that correspond to the random pads r1, . . . , rn.

Hybrid 1 vs. Hybrid 2. We claim that the view in Hybrid 1 is O(nϵ)-close to the view in Hybrid 2.
Indeed, the random variables (crs, (ri, gi)i∈H) have the same distribution in both hybrids, where
gi’s are the values sent from Pi to D in the offline phase, and ri’s are sampled by D in the offline
phase. Fix those values, and note that the Hybrid 1 random variables (Ci, Gi)i∈H are O(nϵ)-close
to the corresponding Hybrid 2 random variables. Finally, one can verify that in both hybrids the
rest of view can be obtained from (crs, (Ci, Gi)i∈H, (ri, gi)i∈H) by the same efficient process. We
conclude that the view in Hybrid 1 is O(nϵ)-close to the view in Hybrid 2.

Hybrid 2 vs. ideal-world. We claim that the view in Hybrid 2 has the same distribution as
the ideal-world view. This follows by noting that the random variables (crs, (Ci, Gi)i∈H) have
the same distribution in both worlds, and that the rest of the view can be obtained by the same
efficient process.

We conclude that the real-world view is O(nϵ)-close to the ideal-world view. This completes
the analysis of Z’s view. We continue by analysing the honest parties’ outputs.

Honest parties’ outputs. We say that a view View is “good” if for any commitment C from the
view, and for any two openings o, and o′ that appear in the view, it holds that either open(C, o) = ⊥
or open(C, o′) = ⊥ or open(C, o) = open(C, o). By the binding property, a view View is good with
probability at least 1− ϵ.

First, note that whenever View is good then D is not discarded in the real-world. In addition,
when View is good it is not hard to see that both in the real-world and the ideal-world, the outputs
of the honest parties can be extracted from View by the following efficient deterministic process:
each honest Pi outputs yi, where (y1, . . . , yn) = F(z).

K.1.2 Corrupt Dealer

The simulator. The simulator takes the role of the honest parties, that have no inputs, and exe-
cutes an instance of sif withA andZ . At the end of the execution, if D was discarded then S inputs
(0, . . . , 0) to F . Otherwise, let ((C1, o1), . . . , (Cn, on)) and z be the inputs of the corrupt dealer to
G. Then D inputs z to F .

Fix any polynomial-time environment Z and input ζ to the environment. We show that the
view of Z in the real world is close to the view of Z in the ideal world.

Z’s view. Since the honest parties hold no inputs, it is not hard to see that the simulator perfectly
simulates an execution of sif. It remains to show that the output of the honest parties has the same
distribution in both worlds.
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Honest parties’ outputs. We say that a view View is “good” if for any commitment C that ap-
pears in the view, and for any two openings o, and o′ that appear in the view, it holds that either
open(C, o) = ⊥ or open(C, o′) = ⊥ or open(C, o) = open(C, o). Observe that, by the binding prop-
erty of the commitment scheme, a view View is good with probability at least 1− ϵ.

Fix any good view View. If D is discarded according to View, then the output in both worlds
is F(0, . . . , 0). Therefore, we focus on the case where D is not discarded according to View. In the
ideal-world, each honest Pi outputs yi where (y1, . . . , yn) = F(z). We show that this is the case in
the real-world as well. Note that every honest Pi holds a valid opening oi to Ci, or otherwise D
would be discarded. Let ri := open(Ci, oi) for an honest Pi. In addition, since D is not discarded,
then D must input the broadcasted commitments (C1, . . . , Cn) to G, together with some openings
(o′1, . . . , o

′
n) and a vector z. Since View is good it must hold that open(Ci, oi) = ri for every honest

Pi. Therefore, the output of G is (C1, . . . , Cn) together with a vector (y1 + r1, . . . , yn + rn), where
(y1, . . . , yn) := F(z). We conclude that every Pi outputs yi. This concludes the analysis of a corrupt
dealer, and completes the proof of security of sif.
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