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Abstract. We introduce the problem of Verifiable Relation Sharing
(VRS) where a client (prover) wishes to share a vector of secret data
items among k servers (the verifiers) while proving in zero-knowledge
that the shared data satisfies some properties. This combined task of
sharing and proving generalizes notions like verifiable secret sharing and
zero-knowledge proofs over secret-shared data. We study VRS from a
theoretical perspective and focus on its round complexity.

As our main contribution, we show that every efficiently-computable re-
lation can be realized by a VRS with an optimal round complexity of two
rounds where the first round is input-independent (offline round). The
protocol achieves full UC-security against an active adversary that is al-
lowed to corrupt any t-subset of the parties that may include the client
together with some of the verifiers. For a small (logarithmic) number
of parties, we achieve an optimal resiliency threshold of t < 0.5(k + 1),
and for a large (polynomial) number of parties, we achieve an almost-
optimal resiliency threshold of t < 0.5(k+1)(1−ϵ) for an arbitrarily small
constant ϵ > 0. Both protocols can be based on sub-exponentially hard
injective one-way functions. If the parties have an access to a collision
resistance hash function, we can derive statistical everlasting security,
i.e., the protocols are secure against adversaries that are computation-
ally bounded during the protocol execution and become computationally
unbounded after the protocol execution.

Previous 2-round solutions achieve smaller resiliency thresholds and
weaker security notions regardless of the underlying assumptions. As
a special case, our protocols give rise to 2-round offline/online construc-
tions of multi-verifier zero-knowledge proofs (MVZK). Such construc-
tions were previously obtained under the same type of assumptions that
are needed for NIZK, i.e., public-key assumptions or random-oracle type
assumptions (Abe et al., Asiacrypt 2002; Groth and Ostrovsky, Crypto
2007; Boneh et al., Crypto 2019; Yang, and Wang, Eprint 2022). Our
work shows, for the first time, that in the presence of an honest majority

⋆ A full version of this paper appears in [6]
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these assumptions can be replaced with more conservative “Minicrypt”-
type assumptions like injective one-way functions and collision-resistance
hash functions. Indeed, our MVZK protocols provide a round-efficient
substitute for NIZK in settings where honest-majority is present. Addi-
tional applications are also presented.

1 Introduction

In recent years, a large amount of research was dedicated to the study of
zero-knowledge proofs in distributed settings, such as zero-knowledge proofs
with multiple verifiers [37, 51, 9] and zero-knowledge proofs over secret-shared
data [16, 25, 17, 24]. Those variants of zero-knowledge proofs have applications
both in theory and practice, in round-optimal multiparty computation [2], pri-
vate data aggregation [24], and anonymous communication [25].

A typical scenario of interest consists of a client P (the prover) that holds
a vector of secret data items s, together with several servers V1, . . . ,Vk (the
verifiers). The client wishes to share s among the servers, and also prove in
zero-knowledge that the shared data satisfies some properties. Previous works
usually let P send each Vi its share, and then perform a zero-knowledge proof on
the shared data. A natural question is whether considering the sharing and the
proving as a single task could result in a protocol with better round-complexity
and better security guarantees. To capture this joint task of sharing-and-proving,
we present the notion of verifiable relation sharing (VRS).

Verifiable relation sharing. The VRS functionality of a public relation R receives
from the prover an input x = (x0, x1, . . . , xk), where we think of x0 as a private
information of the prover, and of xi as the share of Vi. The functionality verifies
that R(x) = 1, and if the verification fails, then it returns a failure-symbol ⊥
to all the verifiers. If the verification succeeds, the functionality returns xi to
Vi. Observe that the VRS functionality captures the typical scenario discussed
above, as well as several cryptographic primitives, including verifiable secret
sharing [23], verifiable function secret sharing [17], secure multicast [33], and
zero-knowledge proofs with multiple verifiers.

We formalize the VRS functionality under the definitions of secure multiparty
computation (MPC) in the universal-composability (UC) framework of [21]. We
strive for full-security, including guaranteed output delivery, at the presence of
an honest majority in the plain model. We note that honest-majority is necessary
due to impossibility of UC-secure Zero-knowledge proofs in the plain model [22].
The active (aka Byzantine or malicious) adversary is allowed to corrupt any mi-
nority subset of the k + 1 parties {P,V1, . . . ,Vk} that may include the prover
together with some of the verifiers. The use of MPC-based “full-security” def-
initions provides strong guarantees that are not supported by related notions
of distributed zero-knowledge. Specifically, when the prover P is honest, we get
correctness, i.e., every honest Vi outputs xi even in the presence of corrupt
active verifiers, as well as simulation-based privacy, which implies that the ad-
versary only learns the outputs of the corrupt verifiers. For a corrupt P, we
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get soundness and knowledge extraction even when P colludes with some of the
verifiers. In contrast, previous works on weaker notions, such as zero-knowledge
proofs over secret-shared data, achieve correctness only for semi-honest veri-
fiers [16, 17, 25, 24], and in some cases (e.g., [24, 25]) provide soundness only
when all the verifiers are honest. Further discussion of related works and a com-
parison of known results appear in Section 1.2 and Table 1.

We study the VRS problem from a theoretical perspective while focusing on
the best-achievable round complexity. It is known that VRS cannot be realized
in 1 round even for relatively simple relations (e.g., VSS [7]). Looking for the
second best, we ask:

Q1: Can VRS be realized by a 2-round protocol? Moreover, can we make
the first round input-independent (“offline round”)? If so, under what
assumptions?

The question of obtaining a 2-round protocol in the plain model is open even for
weaker notions like distributed zero-knowledge over secret-shared data.

Multi-verifier zero-knowledge. It is useful to consider the somewhat degenerate
version of VRS in which all the verifiers get the same information except for
some private witness that is kept by P. This variant essentially corresponds to
multi-verifier zero-knowledge proofs (MVZK) [20]. When modeled as an ideal
functionality, MVZK is parameterized by a public relation R, it receives from
P a statement x and a witness w, and verifies that R(x,w) = 1. If the verifica-
tion fails, then the functionality returns a failure-symbol ⊥ to all the verifiers
V1, . . . ,Vk, and if the verification succeeds, the functionality returns x to all the
verifiers. Again, we strive for a 2-round offline/online solution in the plain model.

Observe that the single verifier case (where the adversary can either corrupt
the verifier or the prover) corresponds to the standard notion of zero-knowledge
proofs. Classical impossibility results [36] show that a plain-model protocol that
consists of a single message from the prover to the verifier, also known as non-
interactive zero-knowledge (NIZK), exist only for languages in BPP, even when
one considers only stand-alone security. Assuming a minimal trusted setup in the
form of a common reference string (CRS), one can achieve NIZK for every lan-
guage in NP from public-key assumptions [15, 30, 38, 50, 13, 48], or, alternatively,
in the random oracle model [31, 11]. In a related notion, called Zaps [28], the CRS
is replaced with a preprocessing round in which only the verifier communicates
by broadcasting its random coins, at the expense of downgrading zero-knowledge
to witness-indistinguishability. Assuming the existence of one-way functions, it
is known that Zaps are equivalent to NIZK [28].

Let us move back to the setting of multiple verifiers. Striving for a 2-round
simulation-based zero-knowledge, we make the necessary assumption of an hon-
est majority among the set of all parties (including the prover).3 To the best

3 Without an honest majority, a 2-round plain-model MVZK protocol (where in each
round both the verifiers and prover can talk simultaneously) implies a 2-step ZK
protocol (where the verifier sends a message and gets a response from the prover)
which is ruled-out by [36] for non-trivial languages outside BPP.
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of our knowledge, the only known solution in this setting follows from the work
of Groth and Ostrovsky on Multi-string NIZK Proofs [37]. Specifically, their
work implicitly give rise to a 2-round offline/online honest-majority MVZK that
achieves simulation-based security based on Zaps and public-key encryption [37,
Theorem 3]. These assumptions are as strong (or even stronger) than the ones
needed for NIZK protocols in the seemingly “harder” 2-party settings. We there-
fore ask:

Q2: Are NIZK/Zaps assumptions inherently needed for an MVZK pro-
tocol with 1-offline and 1-online round in the honest-majority setting?
Is it possible to replace these assumptions with weaker assumptions?

1.1 Our Contribution

1.1.1 Round-Optimal VRS and MVZK in Minicrypt We answer Ques-
tions 1 and 2 in the affirmative. Our main result is a protocol with 1-offline
round and 1-online round for VRS in the UC-framework, assuming the existence
of perfectly-binding non-interactive commitment scheme (NICOM) with sub-
exponential privacy. Such a NICOM scheme can be based on injective one-way
functions with sub-exponential hardness or even on standard one-way function
with sub-exponential hardness assuming worst-case complexity-theoretic deran-
domization assumptions [45, 8].4 Throughout, we assume that the parties com-
municate over pairwise secure and authenticated point-to-point channels, as well
as over a common broadcast channel, which allows each party to send a message
to all parties and ensures that the received message is identical.

Theorem 1. Assuming the existence of injective one-way functions with sub-
exponential hardness, for every ϵ > 0 the VRS functionality of every efficiently
computable relation R can be realized in 1-offline round and 1-online round, with
full security against an active rushing adversary, in any of the following settings.

– (Optimal resiliency for small number of verifiers) The number of verifiers k
is at most logarithmic in the security parameter, and the adversary corrupts
less than (k + 1)/2 parties.

– (Almost-optimal resiliency for polynomially-many verifiers) The number of
verifiers k grows polynomially with the security parameter and the adversary
corrupts less than (k + 1) · ( 12 − ϵ) parties.

Since MVZK is a special case of VRS, we obtain the following corollary.

Corollary 1. Assuming the existence of injective one-way functions with sub-
exponential hardness, the MVZK functionality of every efficiently computable
relation R can be realized in 1-offline round and 1-online round, with full security
against an active rushing adversary, in the same settings of Theorem 1.

4 For technical reasons, the NICOM should satisfy some level of security against se-
lective opening that, by “complexity leveraging”, follows from the assumption that
the underlying one-way function (or injective one-way function) cannot be inverted
in polynomial-time with more than sub-exponential probability. This seems to be a
relatively mild assumption; See Remark 2.
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For optimal resiliency, we obtain a protocol with complexity polynomial in
the security parameter, but exponential in the number of verifiers k. On the
other hand, for every ϵ > 0 we obtain a protocol with resiliency (k+1) · ( 12 − ϵ),
whose complexity is polynomial both in the security parameter and in k. (In
fact, we can push ϵ to be as small as ϵ = Ω( 1√

log k
); see the full version [6] for

full details.)
The difference between optimal resiliency and “almost-optimal resiliency”

is mostly relevant when the number of verifiers is small, e.g., constant. In this
setting, the first protocol provides an efficient solution. Specifically, we highlight
the case of 3-party computation, with a single prover and two verifiers, and
we note that by adding just a single verifier to the standard zero-knowledge
settings, we can obtain a protocol with 1-offline round and 1-online round for
the case of a single corruption from Minicrypt-type assumptions. (In contrast,
general-purpose 3-party MPC for honest majority requires 3 rounds [47].)

Still, the existence of a strict-honest-majority 2-round VRS protocol whose
complexity scales polynomially with the number of parties, remains an interest-
ing open problem. We show that such a protocol can be constructed if one is will-
ing to make stronger assumptions (e.g., random oracle or correlation-intractable
functions) or if the adversary is non-rushing. In fact, we note that a weak lim-
itation of the rushing capabilities of the adversary suffices, and present a new
notion of semi-rushing adversary to model such a behavior.5

1.1.2 VRS and MVZK with Everlasting Security in Minicrypt It is
known that if we do not put restriction on the round complexity, then, in the
setting of honest-majority, one can obtain unconditional results and no assump-
tions are needed at all! Specifically, as shown by Rabin and Ben-Or [49], every
efficiently computable function can be securely computed with statistical se-
curity against computationally-unbounded adversaries. While we do not know
whether it is possible to achieve statistical security in 2 rounds, we show that
VRS and MVZK can be implemented by a protocol that achieves statistical ever-
lasting security assuming an access to a collision-resistant hash function h. The
notion of statistical everlasting security [44] can be viewed as a hybrid version
of statistical and computational security. During the run-time, the adversary is
assumed to be computationally-bounded (e.g., cannot find collisions in the hash
function) but after the protocol terminates, the adversary hands its view to a
computationally-unbounded analyst who can apply arbitrary computations in

5 The difference between rushing and non-rushing adversary boils down to the schedul-
ing of the messages within a single round of a protocol. A non-rushing adversary
must send the messages of the corrupt parties in a given round before receiving the
messages of the honest parties in that round, whereas a rushing adversary may delay
sending the messages of the corrupt parties until receiving the messages from the
honest parties. Thus, the messages of the corrupt parties may depend on the mes-
sages of the honest parties in the same round. Our notion of semi-rushing adversary
allows the adversary to see all the messages of the honest parties, except for one.
For more about this model and its relevance, see the full version [6].
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order to extract information on the inputs of the honest parties (e.g., finding
collisions or even reading the whole truth table of h).6 This feature is one of the
main advantages of information-theoretic protocols: after-the-fact secrecy holds
regardless of technological advances and the time invested by the adversary.

Theorem 2. Given an access to a collision-resistant hash function, the VRS
and MVZK functionalities of efficiently computable relations can be realized in
1-offline round and 1-online round, with full security and everlasting security
against an active rushing adversary, in the same settings (honest-majority with
few verifiers or almost-honest majority with many verifiers) of Theorem 1.

Remark 1 (On the use of hash function). Our protocol assumes that all par-
ties are given an access to a collision resistance hash function h. Theoretically
speaking, such a function should be chosen from a family of functions H in or-
der to defeat non-uniform adversaries. One may assume that h is chosen once
and for all by some simple set-up mechanism. In particular, by using the stan-
dard concatenation-based combiner for hash functions [41], this set-up mecha-
nism may be realized distributively by a single round of public random coins
where security holds against an active rushing adversary that may corrupt all
the participants except for a single one. The choice of the hash function can be
abstracted by a CRS functionality, or even, using the multi-string model of [37]
with a single honestly-generated string. However, it should be emphasized that
this CRS is being used in a very weak way: It is “non-programmable” (the simu-
lator receives h as an input) and it can be sampled once and for all by using the
above trivial public-coin mechanism. Even if one counts this extra set-up step
as an additional round, to the best of our knowledge, everlasting security was
not known to be achievable regardless of the underlying assumptions.

The difference between everlasting and computational security is fundamen-
tal and is analogous to the difference between statistical commitments and com-
putational commitments or statistical ZK vs. computational ZK (see, e.g., the
discussions in [19, 46]). Indeed, Theorem 2 provides (UC-secure) MVZK with a
statistical zero-knowledge property. As a side bonus, Theorem 2 does not require
sub-exponential hardness assumptions.

1.1.3 Round-Optimal Linear Function Computation in Minicrypt
Using the machinery we develop for VRS and MVZK, we obtain a 3-round pro-
tocol for linear function computation. By the lower-bound of [34] our protocol
has optimal round complexity. Like in previous results, we assume the existence
of injective one-way functions with sub-exponential hardness in order to obtain
a protocol with computational security in the plain model, or an access to a
collision resistance hash-function in order to obtain a protocol with everlasting
security. In contrast, previous works achieve only computational security by as-
suming public-key encryption and Zaps [2]. We emphasize that in Theorem 3 we

6 Technically, in the UC-framework we allow the environment to output its view and
require statistical indistinguishability between the real and ideal experiments.
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obtain optimal resiliency even when the number of parties is polynomial in the
security parameter.

Theorem 3. Assuming the existence of injective one-way functions with sub-
exponential hardness, every efficiently computable linear function can be realized
in 3 rounds, with full security against an active rushing adversary, that corrupts
a minority of the parties. If we replace the one-way function with an access to a
collision resistance hash-function, we also obtain everlasting security.

1.1.4 Applications We present some applications of our protocols. For full
details, see the full version [6].

MVZK as a NIZK-substitute for honest majority. We notice that our MVZK
protocol captures an important aspect of NIZK, its minimal round complexity,
while using only Minicrypt-type assumptions. Indeed, our MVZK protocol im-
plies that the CRS for NIZK is not required, and can be replaced with only a
single offline-round of communication. Similar to NIZK, the proof itself requires
only one online round. However, unlike NIZK, in our protocol all the parties
have to communicate in the online round.

Round-efficient manipulation of non-homomorphic commitments. In a common
scenario in multiparty computation, a party P holds openings to public commit-
ments C1, . . . , Cℓ. P wishes to apply some function f on the committed values
z1, . . . , zℓ and let the rest of the parties learn y := f(z1, . . . , zℓ), while proving
in zero-knowledge that she used the committed values in the computation of f .
Alternatively, P may want to generate another commitment C, that hides y,
while proving in zero-knowledge that C was honestly generated. Both the tasks
can be solved in 1-offline round and 1-online round by using our MVZK. Since
the offline round can be executed in parallel to the generation of C1, . . . , Cℓ,
both tasks require only one additional round!

Round-efficient GMW-type compilers in Minicrypt. Using VRS one can obtain
round-efficient GMW-type compilers in Minicrypt, for the case of honest ma-
jority. Given a protocol π which is secure against a semi-malicious adversary,7

we obtain a protocol π′ with unanimous abort against an active adversary at
the expense of adding a single offline round. If π is secure against a passive
(aka semi-honest) adversary, the overhead grows to 4 rounds. Notably, unlike
the GMW compiler, our transformation avoids the use of public-key encryption.

Round-optimal honest-majority MPC in Minicrypt. A followup work by the
same authors [5] shows that general secure multiparty computation with full-
security (including guaranteed output delivery) in the presence of an honest

7 A semi-malicious adversary is allowed to choose its input and randomness but oth-
erwise follows the protocol. Many passively secure protocols (e.g., [12]) actually offer
semi-malicious security.
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majority can be achieved in an optimal number of 3 rounds based on Minicrypt-
type assumptions (e.g., NICOMs). A main building block of the protocol is our
2-round offline/online VRS protocol.

Bibliographic Note. Previous unpublished version of [5] contained a weak form
of some of the current results based on the Fiat-Shamir heuristic. These results
were removed from the new version of [5], and are fully subsumed by the current
paper.

1.2 Related Works and Comparison

The VRS functionality was implicitly studied by Gennaro et al. [34], in the con-
text of single input functionalities. Gennaro et al. provided a two-round perfect
protocol with resiliency (k + 1)/6. The resiliency was improved to (k + 1)/3 by
Applebaum et al. [3], at the cost of degrading the perfect security to computa-
tional security, assuming the existence of NICOMs.

Boneh et al. [16] initiated the formal study of zero-knowledge proofs over
secret-shared data. They considered information-theoretic security in the follow-
ing models of corruptions: (1) the adversary corrupts the prover or up to k − 1
verifiers, and (2) the adversary corrupts the prover and less than k/2 verifiers. In
both corruption models, they only provide security with abort. Their protocols
exploit PCP machinery to achieve low communication complexity (sub-linear
in the description of the relation), but have a super-constant number of rounds.
Based on a random oracle, the number of rounds can be collapsed to 2, assuming
that the data is already secret-shared among the verifiers.

MVZKs were first introduced in [20]. The most relevant MVZK for us can
be derived from [37] which provides a construction of NIZK in the multi-string
model assuming the existence of Zaps. In the multi-string model, the CRS is re-
placed with several authorities, each providing the protocol with a public random
string, and the protocol is secure as long as a majority of those authorities are
honest (that is, if a majority of the strings are uniformly distributed). An MVZK
protocol with an honest majority of parties can be obtained in the plain model
by letting each party broadcast a random string in the offline round, so that a
majority of the strings are uniformly distributed. Simulation-based security can
be obtained via the additional help of public-key encryption [37, Theorem 3].

Other non-interactive variants of MVZK were presented in [1]. Translated to
our model, their work yield 2-round MVZK for t < k/3 and a 3-round protocol for
t < n/2. Both results hold under public-key (discrete-log) hardness assumptions.
Recently, [51] and [9] constructed MVZK with practical real-world efficiency in
honest and super-honest majority settings. However, their low round (2 or 3)
variants rely on random oracle and achieve either selective or identifiable abort.

Comparison. We compare our results with the relevant existing results in Ta-
ble 1. Except for this work and [37], none of the works achieves an offline/online
construction.
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Ref. Primitive Rounds Threshold Assumptions Security†

[34] VRS 2 t < (k + 1)/6 – it and full security

[3] VRS 2 t < (k + 1)/3 NICOM cs and full security

[16] ZK over shared data 2⋆ t < (k + 1)/2‡ Random Oracle it and abort

[37] MVZK 2 t < (k + 1)/2 PKE cs and full security

[1] MVZK 3 t < (k + 1)/2 Discrete-log cs and full security

[51] MVZK 2 t < (k + 1)/2 Random Oracle it and abort

[9] MVZK 2 t < (k + 1)/3 Random Oracle it and identifiable abort

This paper VRS 2 t < (k + 1)( 1
2
− ϵ)§ NICOM⋆⋆ cs/es and full security

† it: information-theoretic, es: everlasting security, cs: computational security,
‡ They assume the adversary corrupts (1) the prover or up to k − 1 verifiers, and
(2) the prover and less than k/2 verifiers

⋆ The round complexity does not include the rounds needed for data sharing.
⋆⋆ Perfectly-binding and sub-exponentially hiding NICOM for cs security and
Computationally-binding and statistically-hiding NICOM for es security.

§ We achieve t < (k + 1)/2 when k is logarithmic in the security parameter.
Table 1: Comparison of our work with the state-of-the-art relevant results

2 Preliminaries

Single-Input Functionalities. We adopt an MPC-based notation and replace VRS
with the following notion of single-input functionalities (SIF). We assume that
there are n parties, P = {P1, . . . , Pn}, where one party (e.g., Pn) takes the
role of a Dealer D. The SIF functionality F is parameterized with a function
f : {0, 1}∗ → ({0, 1}∗)n, it takes an input string z from the dealer, computes
the outputs (y1, . . . ,yn) = f(z) and delivers yi to the ith party Pi. It is not
hard to see that VRS is a special case of SIF, and that VRS implies SIF in a
round-preserving way. (Indeed, to realize F define the relation R that accepts a
vector (x0, x1, . . . , xn−1) if xi = fi(x0) for i ∈ [n − 1], and let D invoke a VRS
for R with the input (z, f1(z), . . . , fn−1(z)).) We will mostly focus on the special
case of public-SIF that delivers the same output to all the parties. In the full
version [6] we show that a 2-round offline/online general-SIF reduces to 2-round
offline/online public-SIF via the aid of NICOMs.

Security model. We consider an active static, rushing adversary that may corrupt
up to t parties. We consider two main settings: the optimal resiliency setting
where n = 2t + 1 and the almost-optimal resiliency setting where n = (2 +
ϵ)t for some arbitrarily small constant ϵ > 0. The parties are connected by
pairwise secure channels and additionally a broadcast channel is available. We
prove security of our protocols in the UC-framework [21]. We identify the set of
parties P with {1, . . . , n}, and denote the set of honest parties by H ⊆ P, and the
set of corrupt parties by C ⊆ P. In our protocols, we follow the convention that
the honest parties can “disqualify” the dealer whenever it is clear from broadcast
messages that the dealer misbehaves. This does not violate “guaranteed output
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delivery” since in case of disqualification, the honest parties can always apply
f on some predetermined default value and output the result. We denote by
κ the security parameter and implicitly assume that all other parameters (e.g.,
the number of parties, and the complexity of the functionalities and protocols)
depend in κ.

NICOM. A NICOM consists of two PPT algorithms (commit, open) where
commit takes a security parameter κ, message x and random coins r, and outputs
a commitment C and a corresponding opening information o. The open algorithm
takes κ, and a commitment/opening pair (C, o) and outputs the message x or
a failure message ⊥. The algorithms should satisfy the standard properties of
correctness, binding (i.e., it must be hard for an adversary to come up with
two different openings of any C) and hiding (a commitment must not leak in-
formation about the underlying message) properties. NICOM comes in 2 main
flavors: (1) with computational hiding and perfect binding, and (2) with statis-
tical hiding and computational binding. Type (1) commitments can be based on
injective one-way functions [14, 52, 35], and type (2) commitments can be based
on collision resistance hash functions [27, 39]. In the latter case, a description of
a collision resistance hash function h (that is sampled from a family H) is given
to the algorithms (commit, open) as an auxiliary public parameter. Our protocols
make use of NICOM in a modular way such that a type (1) instantiation (with
sub-exponential computational hiding) yield computational protocols and type
(2) instantiation yield protocols with everlasting security.

Remark 2 (Sub-exponential hiding). Assuming injective OWF over m-bit in-
puts that cannot be inverted by a PPT adversary with probability better than

2−mδ

, it is possible to construct [14, 52, 35] a plain-model (with no public
parameters) perfectly-binding NICOM whose computational hiding property
holds for ϵ ≤ 2−κ. We refer to such a commitment as perfectly binding sub-
exponentially hiding NICOM. Moreover, under worst-case derandomization as-
sumptions [8], such NICOMs can be based on general (not necessarily injective)
sub-exponentially hard OWFs. Similar sub-exponential hardness assumptions
are quite common in the literature and typical candidate one-way functions seem
to achieve sub-exponential hardness. In fact, our variant of sub-exponential
hardness is relatively mild compared to other notions, since we do not allow
the adversary to run in sub-exponential time, but only allow it to succeed with
sub-exponentially small probability.

3 Technical Overview

In this section we provide a high level overview of our SIF protocol. Full details of
the protocol appear in the full version [6]. Intuitively, a SIF protocol consists of
the following sequential parts: (1) The dealer presents a statement; (2) The other
parties challenge it via a random challenge; (3) The dealer sends a respond; and
(4) The other parties decide whether to accept or reject. Compressing these steps
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into 2 rounds is highly challenging. For comparison, even the task of verifiable
secret sharing (without revealing it) takes at least 2 rounds [33, 7]. To bypass this
problem, we are forced to run sub-protocols in parallel and with some overlap.
Specifically, we make an extensive use of (1) tentative-output protocols that
prepare a tentative version of the output in an early round and only later, at the
end, approve/reject/correct the tentative output; and (2) offline-phase protocols
that begin with an offline, input-independent, round and only later receive the
inputs. This allows us to save some rounds by allowing partial overlap between
sub-protocols.

Our protocol makes an extensive use of verifiable secret sharing (VSS) [23].
For now, let us think about a VSS protocol as an actively-secure realization of
the ideal functionality that takes as an input a secret s ∈ F and randomness r
from a dealer, and delivers to each party Pi a share si that is generated from s
and r by using some threshold secret sharing scheme with threshold t. Here and
throughout the paper, F is a finite field whose size is assumed to be exponential in
the security parameter κ, by default, F = GF(2κ). The underlying secret sharing
scheme should be binding in the sense that a corrupted party cannot “lie” about
its share. (This property implies that correct reconstruction is achievable even
at the presence of an active adversary as long as we have n− t honest parties.)
To simplify the exposition, let us assume for now that the underlying seceret
sharing is linearly homomorphic and that the VSS protocol takes a single round.
We emphasize that both features are unrealistic and even impossible to achieve
when t > n/3, let alone when t is close to n/2.8 Jumping ahead, a considerable
part of this work will be devoted to the removal of these assumption while
preserving the round complexity; see Section 3.3.

3.1 SIF for Few Parties

Let us restrict our attention to the case where the number of parties n is small,
i.e., n = O(log κ). Recall that our goal is to construct a 2-round protocol for
a general SIF functionality whose first round is an offline round that does not
depend on the input of the dealer. We will use standard techniques to reduce
this problem to the problem of constructing a 2-round protocol for a specific SIF
functionality known as triple secret sharing (TSS) where the dealer wishes to
share a triple (a, b, c) such that c = ab. For TSS, let us strive for a “standard” 2
round protocol whose first round is allowed to depend on the input.

2-round TSS against non-rushing adversary. Our starting point is the following
2 round protocol that assumes that a corrupted dealer is non-rushing. In the

8 Even without homomorphism, computational VSS requires 2 rounds [7] when n < 3t.
Moreover, even for such a large resiliency threshold, linear homomorphism is non-
trivial to achieve. Specifically, for 2-round VSS, it is unknown how to achieve linear
homomorphism without relying on strong primitives such as homomorphic NICOMs.
The latter are typically contructed based on “structured” (public-key type) assump-
tions and are not known to follow from standard NICOMs.
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first round, the dealer D, that holds a triple (a, b, c) with c = ab, picks three
polynomials A(x), B(x) and C(x) of degree n, n and 2n, respectively, such that
A(0) = a, B(0) = b, C(0) = c and C(x) = A(x) ·B(x). Let Ai, Bi and Ci be the
ith coefficient of A(x), B(x) and C(x), and note that A0 = a,B0 = b and C0 = c.
The dealer shares all the coefficients {Ai, Bi}i∈{0,...,n}, and {Ci}i∈{0,...,2n} via
VSS. The parties now hold the shares of a = A0, b = B0 and c = C0.

In order to ensure that c = ab, it suffices to verify that the polynomial
C(x) is equal to the polynomial A(x) · B(x). To this end, we want to compute
A(α), B(α) and C(α) for a random non-zero field element α, and verify that
C(α) = A(α)B(α). Indeed, if C(x) = A(x) · B(x) then equality always holds,
while if C(x) ̸= A(x) ·B(x) then the probability that the verification succeeds is
at most 2n/(|F|−1) = negl(κ). Therefore, in the first round, concurrently to the
sharing of the dealer, we let every party Pi broadcast a random non-zero field
element αi.

In the second round, our goal is to compute A(αi), B(αi), C(αi) for all
i ∈ {1, . . . , n} and “disqualify the dealer” if for some αi the test A(αi) ·B(αi) =
C(αi) fails. Recall that A(x) and B(x) are random polynomials of degree n condi-
tioned on A(0) = a and B(0) = b, and therefore one can safely release all these αi

evaluations without revealing any information on a, b and c. The actual computa-
tion of A(αi), B(αi), C(αi) makes use of the linear-homomorphism of the secret-
sharing. Specifically, observe that A(α) is just a linear function of A0, . . . , An

with coefficients (α0, . . . , αn) (and similarly for B(α) and C(α)), and therefore
each party can reveal in the second round its share of A(αi) (resp., B(αi), C(αi)).
The binding property of the VSS guarantees that a corrupted party cannot lie
about its shares and the existence of t + 1 honest parties guarantees success-
ful reconstruction. The protocol follows the standard commit-challenge-response
template with a minor tweak: many challenges are generated (one for each “ver-
ifier”) concurrently to the commitment stage, and each of the responses is being
computed collectively by the “verifiers”.

Coping with a rushing adversary. The above protocol is insecure against a rush-
ing adversary since such an adversary can wait to see the selected challenges
and then share triples that do not satisfy the product relation and yet pass
the tests. We solve this problem by hiding at least some of the challenges from
the adversary while revealing them to enough parties so that the response (via
reconstruction) can be computed in the second round. Details follow.

Consider all the possible (t + 1)-subsets of the parties, Q1, . . . , QN where
N =

(
n

t+1

)
. In the first round, we let each subset Qi generate a secret challenge

αi that is known only to the members ofQi. Specifically, we define some canonical
“leader” for Qi (e.g., the party with the smallest index) and let her sample a
random non-zero αi and send it to the other members ofQi over private channels.
Concurrently, the dealer shares the coefficients of the polynomials A,B,C among
the n parties as before, except that now the degree of A and B is taken to be
d = N(t + 1) and the degree of C is taken to be 2d. In the second round, each
party Pj in Qi broadcasts the value αi and uses local linear operations to reveal
to all the parties the jth share of A(αi), B(αi) and C(αi). After the second
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round, for each i, each party P (possibly outside Qi) verifies that all the parties
in Qi broadcast the same point αi and that their shares are valid. If one of these
checks fail, we refer to the ith test as bad and ignore it; Otherwise, the i-th test
is called good, and P can recover the points A(αi), B(αi) and C(αi). If these
values satisfy the product relation, we say that the (good) test passes. Finally, P
accepts the triple if all the good tests pass, and disqualifies the dealer otherwise.

The analysis is fairly simple. For a corrupt D, we note that there exists (at
least) one set Qi in which all the parties are honest, and that a corrupt dealer
has no information about αi in the first round. The parties in Qi provide in
the second round t + 1 shares of A(αi), B(αi) and C(αi) and so these values
can be publicly recovered, and the probability that C(x) ̸= A(x) · B(x) and
C(αi) = A(αi) · B(αi) is at most 2d/(|F| − 1) = 2N(t + 1)/(|F| − 1) = negl(κ).
Thus, except with negligible probability, there will be at least one good test
that fails to pass. On the other hand, an honest dealer will never be disqualified
since, by the binding property of the secret sharing, even a fully corrupted set
of verifiers Qi cannot reveal incorrect shares. As for privacy, there are N sets,
and from each set the adversary can learn information about at most (t + 1)
points of A(x), B(x) and C(x) (a corrupt leader in a set Q can send different
evaluation points to the parties in Q). Since the degree of A(x) and B(x) is d,
and the adversary can learn information about at most N(t+ 1) = d points, we
conclude that the adversary learns no information about A(0), B(0) and C(0),
as required. The complexity of the protocol is exponential in t = ⌈n/2⌉ − 1 and
so the protocol is efficient (polynomial in the security parameter κ) only when
the number of parties n is logarithmic in κ. Indeed, this is the only place where
the assumption n = O(log κ) is really necessary.

From TSS to public SIF. By the standard NP-completeness of quadratic equa-
tions, public SIF non-interactively reduces to public SIF where f computes a
vector of degree-2 polynomials over an arbitrary finite field [34] and the same
output is given to all the parties. One can easily adopt the TSS protocol to the
case of general degree-2 SIF functionality (e.g., share the input vector z and the
output vector y, prove that they satisfy a degree-2 relation and ask the parties to
publicly reconstruct y.) However, this will not lead to an offline/online protocol.
Instead, we use Beaver’s trick [10] to transform random triple sharing (realized
by TSS) into a degree-2 SIF. The standard transformation has an overhead of
2 additional rounds, and we avoid it by exploiting the SIF setting, i.e., the fact
that a single dealer knows all the secrets. A reduction from general SIF to public
SIF appears in the full version [6].

3.2 SIF for any Number of Parties

We move on to the case where the number of parties, n, is large (polynomial in
κ) and the resiliency threshold t is almost optimal, i.e., n = (2 + ϵ)t for some
constant ϵ > 0. Our goal is to construct a 2-round offline/online protocol Π for
some public SIF functionality F that takes an input z from the dealer D and
delivers the same output y = f(z) to all the parties.
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We will handle this case by composing two protocols: (1) The aforementioned
2-round SIF protocol Πs (“s” for small) that achieves an optimal resiliency for
a small (logarithmic) number of parties; and (2) a perfectly-secure SIF protocol
Πb (“b” for big) with constant resiliency of, say 1/3, that works efficiently for
polynomially many parties. The latter protocol can have many rounds and can
be instantiated, for example, by the classical protocol of Ben-Or, Goldwasser
and Wigderson (BGW) [12]. We will combine the 2 protocols into a single SIF
protocol with almost-optimal threshold and poly(n) complexity via player vir-
tualization technique. This idea goes back to the work of Bracha [18] in the
context of Byzantine Agreement, and since then has been used several times in
the MPC literature [32, 40, 26] culminating in the celebrated MPC-in-the head
paradigm [42, 43]. Here we show how to apply this idea in the context of SIF.
Unlike other contexts, we show that the combined protocol inherits the round
complexity of the first (“internal”) protocol, and therefore can be executed in 2
rounds! Details follow.

Let us partition the n parties to M = poly(n) committees A1, . . . , AM each
of size n′ for some constant n′ that depends on the constant ϵ. Call a committee
good if it contains at least (n′ +1)/2 honest parties, and bad otherwise. We will
make sure that the fraction of bad sets is at most M/10 no matter which subset
of t parties the adversary decides to corrupt. Such a property can be guaranteed
by taking all n′ multisets or, more efficiently, based on expander graphs (see,
e.g., [26, Lemma 5]).9 Let Πb be the BGW protocol that realizes the SIF f
among the dealer D and M “virtual” parties Q1, . . . , QM .

In our new protocol, Π, the dealer D executes the BGW protocol Πb in her
“head” with the input z and then broadcasts a commitment to the transcript.
That is, D samples random tapes r1, . . . , rM for the virtual parties Q1, . . . , QM

and computes all the messages that are sent in Πb, both over private channels
and over broadcast channels. Then, D commits to each of these messages and to
the randomness ri of each party Qi, and broadcasts the tuple of commitments G.
We emphasize that every message from Qi to Qj has only one commitment, that
belongs both to the view of Qi and the view of Qj . In addition, D broadcasts the
value y = f(z). Now, we let each committee Ai verify, with the aid of the small
protocol Πs, that the view of Qi is self-consistent, i.e., that the (committed)
randomness and incoming messages of Qi yield the (committed) outgoing mes-
sages of Qi and that the final output is indeed y. More precisely, the committee
Ai together with D, compute the following public-SIF functionality Gzk:

– (Dealer’s input:) An index i ∈ {1, . . . ,M}, a vector of commitments Gi,
supposedly to the randomness ofQi and his incoming and outgoing messages,
and the corresponding openings.

9 In principle, n′ should be taken to be Ω(1/ϵ2). Thus, in order to keep n′ small (e.g.,
logarithmic in the security parameter), one has to assume that ϵ is not too small,
e.g., at least Ω(1/

√
log κ). We limit the discussion to a constant ϵ only for the sake

of simplicity.
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– (Public output:) the tuple (vi,yi, Gi, i) where vi is a consistency bit that
indicates whether the committed values are self-consistent, and the value yi

is the output that the virtual party Qi outputs given the committed view.10

We realize this sub-computation by running the small SIF protocol Πs among
D and the sub-committee Ai while making sure that the final output is available
to all parties including ones that do not belong to Ai. This can be done (without
an extra round of communication) by passing all the broadcast messages of the
small protocol Πs over the external n-party broadcast channel. Indeed, we note
that, for public-output SIF, the public output of our protocol Πs can be fully
recovered based on its broadcast messages. Getting back to Π, we conclude
the protocol, by letting each party Pi accept the output y if at least 0.9M of
the committees approve this output (i.e., if the output of the ith committee is
(1,y, Gi, i) where Gi is consistent with G), and disqualify the dealer otherwise.

The protocol Π can be executed in 2 rounds where the first round is devoted
to the offline round of all the instances of the Πs protocol, and the second round
is devoted to the commitment generation and to the second online-round of the
Πs instances. Note that the first round of Π remains input-independent. Let us
briefly analyze the security of Π.

For an honest dealer, the verification Πs succeeds for every good committee
Qi that contains an honest majority, and may fail for a bad committee Qi that
contains a dishonest majority. We conclude that at most M/10 of the verifica-
tions fail, and so an honest dealer will never be disqualified. As for privacy, a
bad committee Qi may completely learn the input of the dealer D in the corre-
sponding SIF Gzk. This leakage is equivalent to learning the internal state of the
virtual party Qi in the external protocol Πb. Since there are at most M/10 bad
committees, the adversary can learn the state of at most M/10 parties of Πb.
The privacy of Πb therefore protects us against such a leakage. (In fact, for this
part we only use the privacy of Πb against a passive corruption.)

A corrupt dealer can commit to an illegal transcript while being approved
by all bad committees. So, in order to be approved, such a dealer must still get
the votes of at least 0.8M good committees. Hence, cheating in Π reduces to
cheating in Πb while actively controlling at most 0.2M of the virtual parties,
and while controlling the randomness of the honest virtual parties. Since Πb is
perfectly correct against 0.2M active corruptions, a cheating dealer will always
be caught. (For this part, no privacy is needed and Πb is only required to achieve
“perfect correctness with abort” against an active adversary.)

Remark 3 (Comparison to the MPC-to-ZK transformation of [42]). It is instruc-
tive to consider the following variant of the protocol. First, the dealer secret-
shares its input z to (z1, . . . , zM ) via some robust M/3-out-of-M secret sharing
then it virtually runs an MPC protocol among the parties Q1, . . . , QM for the
public SIF F ′ that takes (z1, . . . , zM ) from the parties, recovers z via robust re-
construction, and delivers the output f(z). The dealer commits to the views and

10 The circuit that realizes Gzk depends on the code of the NICOM, consequently, our
final construction makes a non-black-box use of the NICOM.



16 Benny Applebaum, Eliran Kachlon, and Arpita Patra

transcript and the committees A1, . . . , AM use the small SIF protocol to verify
consistency for each virtual party. This description be can viewed as a special
case of the protocol Π in which Πb is realized by sharing z and computing F ′.

Under this choice, our transformation can be viewed as a multi-verifier version
of the MPC-to-ZK transformation of [42]. The two versions differ with respect
to the underlying secret sharing (M -out-of-M in [42] vs. M/3-out-of-M in our
case), and, more importantly, with respect to the verification part. In [42] a single
verifier opens few views (for soundness) while keeping other views unopened (for
zero-knowledge), whereas in our case multiple verifiers distributively open (all)
the views in a way that preserves soundness “globally”, and secrecy for bounded-
size coalitions. Furthermore, we show that verification can be realized with low
round complexity based on an “internal” SIF protocol.

3.3 Replacing the Idealised VSS with 1.5-Round Protocols

In the previous section, TSS and public SIF for logarithmic number of parties
are the direct consumers of the idealized VSS. In both, the scenario is as follows:
D has m inputs s1, . . . , sm and the parties want to compute a linear combination
of the inputs. The coefficients of the linear combination may be chosen by some
other party, and the output should be delivered by the end of second round.
For simplicity, we consider the somewhat degenerate case where the goal is to
compute z := s1 + . . .+ sm. As mentioned earlier, two challenges arise: (a) VSS
sharing itself requires 2 rounds, whereas our requirement is to complete shar-
ing and reconstruction within 2 rounds and (b) the known 2-round VSS from
Minicrypt-like assumptions is not homomorphic. In a nutshell, we solve the first
issue by noting that the VSS of [7] is a “1.5-round” VSS in the sense that “ten-
tative shares” are distributed already in the first round, and any update that
may occur in the second round is publicly known to all parties. To solve the
second issue, we construct a novel protocol that allows a party to reveal a “certi-
fied” linear combination of its shares. This protocol, glinear, has 2 rounds where
the first round is an offline round. Since our protocols employ linear homomor-
phism during their second round, glinear forms a viable substitute. Related tools
have been developed in [4] for a smaller resiliency threshold (e.g., n ≥ 3t + 1),
and we extend them to the challenging setting of n = 2t + 1 while maintain-
ing efficiency for polynomially many parties n = poly(κ). Before describing our
solutions in more detail, we present some background on the underlying secret
sharing scheme.

The underlying secret sharing scheme. The secret sharing scheme is essentially
the classical t-out-of-n Shamir-like scheme (extended to bivariate polynomials as
in [12]) accompanied with public commitments to all the shares. To (honestly)
share a secret s ∈ F, one samples a random symmetric bivariate polynomial
F (x, y) of degree at most t in each variable conditioned on F (0, 0) = s, and hands
to each party Pi the vector (F (i, 0), . . . , F (i, n)) which fully defines the degree-t
univariate polynomial fi(x) = F (i, x). We embed these elements in an (n + 1)-
by-(n+1) matrix F = (F (i, j))i,j∈{0,...,n}, and note that this matrix is symmetric
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since F (i, j) = F (j, i). The 0th row of this matrix is referred to as the main row
and its ith entry F (0, i) = F (i, 0) is referred to as the main share of party Pi.
(The main row corresponds to the univariate polynomial f0(x) = F (0, x) which
forms a standard Shamir sharing of s.) As part of the secret sharing, we publish
a symmetric matrix, C = (Cij)i,j∈{0,...,n} of commitments to each entry of F,
and hand the openings, Oi = (oij)j∈{0,...,n}, of the ith row to party Pi. We let O
denote the matrix of openings (oij)i,j∈{0,...,n}. It is well-known that this scheme
is t-out-of-n secret sharing scheme. The commitment layer makes it impossi-
ble for a corrupted party to lie about its share (the scheme is “binding”), and
so it enables robust reconstruction.11 We point out that a statistically-hiding
computationally-binding commitment leads to a secret sharing scheme with sta-
tistical privacy whose robustness holds only against computationally-bounded
adversaries whereas a computationally-hiding statistically-binding commitment
scheme yields a secret sharing scheme with computational privacy and robust-
ness against computationally-unbounded adversaries. Let us record the fact that
the “polynomial part” of the secret sharing is linearly homomorphic but the
“commitment part” is not.

1.5-round VSS. Backes et al. [7] describe a 2-round protocol for securely dis-
tributing a secret according to the above secret sharing scheme. We note that
this protocol has the following structure. After the first (“sharing”) round, the
commitment matrix C is delivered to all the parties and each party holds a
private tentative share that may be invalid. During the second (“verification”)
round of the protocol, each party Pi who may be “unhappy” for some reason,
can form a “complaint” against the dealer D. At the end of this round, either
some complaint turns to be “justified”, or all the complaints are rejected as being
“unjustified”. In the former case, the dealer is being publicly disqualified, and in
the latter case, the private shares of all unhappy parties are publicly revealed.
(That is, all parties learn the openings (Oi)i∈W where W is the set of all unhappy
parties.) By design, an honest party never complains about an honest dealer. We
will make use of the fact that a tentative share either remains unchanged during
the second round, or becomes publicly available to all parties.

We formalize these properties via a new 2-phase functionality Fvss (a refined
version of VSS), and prove that the protocol UC-realizes it. The choice of being
unhappy is captured by an input flagi ∈ {0, 1} that is given to Pi at the beginning
of the verification phase. As a result Pi can ask to publicly reveal Oi even it is
unhappy with D due to some external reason, that does not depend on the VSS
execution (say, Pi thinks that D is corrupt in the outer-protocol).

11 We, in fact, consider a weak variant of this sharing in which for a pair of corrupted
parties, (Pi, Pj), the share fi(j) may be inconsistent with the commitment Cij . Still,
it can be shown that Pi and Pj cannot lie about their main shares and so this
scheme still allows robust reconstruction. For details, refer to the full version of this
paper [6].
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3.3.1 Supporting Linear Operations Let us now go back to our goal of
computing z := s1+. . .+sm in two rounds where the secrets s1, . . . , sm are given
toD as inputs. We start by running the first round of the VSS to distribute tenta-
tive shares for s1, . . . , sm via the polynomials F 1, . . . , Fm and the commitments
C1, . . . ,Cm. Our goal now is to publicly reveal the value z := s1 + . . . + sm
by using a single round of communication that will be carried in parallel to
the verification phase of the VSS. Denote by F z(x, y) the bivariate polynomial
F 1(x, y)+. . .+Fm(x, y). Observe that it suffices to design a single-round protocol
that allows to each party Pi to publish the univariate polynomial F z(i, ·) while
providing a certificate for correctness (and while hiding the original shares). For-
mally, for every “guide” Pi the parties engage in a subprotocol glinear (“guided
linear computation”) so that (1) if Pi is honest then all parties output F z(i, x),
and (2) if Pi is corrupt then all parties output either F z(i, x) or an erasure ⊥.
Since there are n − t ≥ t + 1 honest parties, and all non-⊥ shares are consis-
tent with F z(x, y), the parties can recover the polynomial F z(x, y) and output
z = F z(0, 0). Observe that we can restrict our attention to the case where the
guide is “happy” with the dealer D, since the shares of a non-happy guide will
be publicly released anyway in the end of the second round by the verification
phase of the secret sharing.

Guided linear computation from SCG. To explain how glinear is implemented,
let us focus, for concreteness, on the case where the guide is P1. After the in-
put sharing, the guide P1 holds all the information regarding the first rows
F 1(1, x), . . . , Fm(1, x), including the openings to the corresponding commit-
ments. In addition, every Pj holds all the information regarding the j-th share
of each first-row, F 1(1, j), . . . , Fm(1, j). The idea now is to let the guide P1 and
every Pj engage in a subprotocol for the computation of F z(1, j) where the role
of Pj is to guard the computation, i.e., to make sure that P1 uses the “correct”
values as inputs. Formally, we construct such a subprotocol, called secure com-
putation with a guard and denoted scg, that has essentially the following “patrial
security” guarantees:

– If both, P1 and Pj , are honest then the value F z(1, j) is given to all parties

while the values, F⃗ (1, j) := (F 1(1, j), . . . , Fm(1, j)), remain hidden.
– If P1 and Pj are both corrupt, there are no correctness or privacy guarantees.
– If exactly one party is corrupt (either P1 or Pj) then there are no privacy

guarantees and the public output is either F z(1, j) or an identifiable abort
(i.e., ⊥ symbol accompanied with the identity of the corrupt party).

We postpone the description of the scg protocol. For now, let us mention that
the protocol is publicly decodable (all honest parties receive the same output that
is computed based on broadcasted values), and has 2 rounds in the offline/online
model. Since the first round is input-independent we can execute it in parallel to
the first round of VSS. Now glinear can be reduced to n executions of scg between
P1 and each of the parties P1, . . . , Pn, where each Pj acts as the guard of the
computation of F z(1, j). Given the scg outputs, we output a degree-t polynomial
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f1(·) if and only if (1) P1 was not disqualified by any of the scg calls, and (2)
f1(·) is consistent with all the revealed points. Otherwise, we disqualify P1. The
analysis is straightforward. If P1 is honest, for every honest guard Pj all the

parties learn F z(1, j) (without leaking information on F⃗ (1, j)), while for every
corrupt Pj the parties either learn F z(1, j) or an erasure ⊥ (since the adversary

already knows F⃗ (1, j) we do not care about leakage in this case). Since there
are n − t ≥ t + 1 honest parties, the parties recover uniquely the polynomial
F z(1, x). If P1 is corrupt, then it is either being disqualified by one of the honest
guards, or release at least n− t ≥ t+ 1 points that are consistent with F z(1, ·).
This means that the final outcome is either F z(1, ·) or ⊥. Before delving into
the scg construction, we mention that the VSS together with the guided linear
computation lead to a protocol for general linear function evaluation in 3 rounds
which is optimal by [34].

Realizing scg. Roughly speaking, in an scg protocol, the guide Alice is given
as an input a vector bA and the guard Bob receives a copy, bB , of this vector
that supposedly agrees with bA. Alice wishes to publicly reveal the value f(bA),
for some public function f , and the guard Bob should make sure that f is
computed consistently with respect to his input. This notion was introduced
by [3] who constructed a 2-round offline/online protocol that statistically realizes
the partial security properties defined above. However, their protocol works with
a designated receiver, and so multiple invocations of this protocol (with different
receivers) may lead to inconsistent outputs. (Such inconsistencies were tolerated
in [3] by leveraging the existence of a strong honest majority, i.e., t < n/3.) We
present a publicly decodable scg by exploiting the fact that all parties are given
external commitments C to the input bA and that the corresponding openings,
o, are given to Alice as certificates. Moreover, we make use of NICOM internally
in the scg itself, and so get only computational security. Details follow.

Thanks to the external commitments, it suffices to securely compute the
functionality F that takes x = (bA, o) from Alice and y = bB from Bob, and
outputs

y =

{
f(bA), if bA = bB ,

(bA, o) otherwise.

Indeed, if Alice and Bob are honest the output will be f(bA). If the parties dis-
agree (due to a single cheater) then the output reveals Alice’s certified input,
and one can check whether the released values (bA, o) are consistent with the ex-
ternal commitments or not. In the former case, we can decode the output f(bA),
and in the latter case, we conclude that Alice aborted the computation. While
we will not be able to realize F with full security, we provide an instantiation
that suffices for “partial security”.

Our starting point is the following variant of private simultaneous message
(PSM) protocol of [29]. Bob samples a random string r and sends it to Alice
privately during the offline phase. Then, in the online phase, given the inputs,
x and y, Alice and Bob publish messages, A(x, r) and B(y, r), that publicly
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reveal F and nothing else. Unfortunately, the standard PSM realization only
works when both parties are honest, and a dishonest party, say Alice, can violate
correctness by sending an invalid message a′ that does not correspond to any
input x (with respect to the chosen r).

Focusing on the case of corrupt Alice, we modify the protocol as follows. At
the offline round, Bob broadcasts internal commitments to all the possible PSM
online-messages. That is, for every possible Alice-input x (resp., every possible
Bob-input y), Bob computes a commitment C ′

x to the PSM message A(x, r)
(resp., C ′

y to the PSM message B(y, r)). At the offline round, Bob broadcasts
the (randomly permuted) list of commitments (C ′

x)x and (C ′
y)y and privately

sends to Alice all the information: the PSM randomness r together with the
corresponding openings (o′x)x and (o′y)y. At the online round, Alice and Bob
compute the PSM messages that correspond to their inputs, and certify them
by opening the corresponding internal commitments. Now, assuming that Bob
is honest, Alice is forced to behave honestly in the PSM and must send a “valid”
PSM message that corresponds to an actual input x. This protocol achieves a
similar guarantee against a cheating Bob and honest Alice, provided that Bob
behaves honestly in the offline round. We handle the case where Bob misbe-
haves in the offline round (e.g., by committing to bad values or sending to Alice
bad openings) by letting Alice fully expose her certified input. That is, if Alice
sees that Bob misbehaved in the offline round, she simply broadcasts her inputs
together with the external openings as certificates while ignoring the PSM exe-
cution. Here we exploit the fact that no privacy is required at the presence of a
cheating Bob.

The above description is somewhat simplified and yields a solution whose
complexity is linear in the domain of F which is too expensive. Moreover, when
scg is modelled as a reactive functionality, simulation becomes somewhat subtle
and the commitments should satisfy some level of security under a selective-
openning attack. More details (including an efficient version based on multiparty
PSM protocols and a refined definition of scg) appear in the full version [6].
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