
(Concurrently Secure) Blind Schnorr from Schnorr

Georg Fuchsbauer and Mathias Wolf

TU Wien, Austria
first.last@tuwien.ac.at

22 November 2022

Abstract. Many applications of blind signatures, such as those for blockchains, require the re-
sulting signatures to be compatible with the existing system. This makes schemes that produce
Schnorr signatures, which are now supported by major cryptocurrencies, including Bitcoin, de-
sirable. Unfortunately, the existing blind-signing protocol has been shown insecure when users
can open signing sessions concurrently (Eurocrypt’21). On the other hand, only allowing se-
quential sessions opens the door to denial-of-service attacks.
We present the first concurrently secure blind-signing protocol for Schnorr signatures, using
the standard primitives NIZK and PKE and assuming that Schnorr signatures themselves are
unforgeable. We cast our scheme as a generalization of blind and partially blind signatures.
We formally define the notion of predicate blind signatures, in which the signer can define a
predicate that the blindly signed message must satisfy.

Keywords: Schnorr signatures, (partially) blind signatures, concurrent security

An extended abstract of this work appears in EUROCRYPT’20. This is the full version.

1 Introduction

Blind signatures, introduced by Chaum [Cha82], define a protocol between a signer and
a user that lets the latter obtain a signature on a message hidden from the signer. Initially
envisioned for e-cash systems [Cha82, CFN90, OO92, Bra94, HKOK06, BCKL09], they have
also become a central primitive for e-voting protocols [Cha88, FOO93, Her97, ROG07] and
anonymous credentials [Bra94, CL01, BCC+09, BL13, Fuc11].

Recently, blind signatures have seen a renewed interest due to their applicability in privacy-
sensitive settings ranging from COVID-19 contact-tracing solutions [BRS20, DLZ+20] to
advanced VPNs and private relays [Goo, App]. In the context of blockchains, blind signatures
have been considered for increasing on-chain privacy, e.g. via blind coin swaps or trustless
tumbler services [HAB+17, Nic19, LLL+19]. While blind-signing protocols that yield signatures
of a standardized scheme are desirable in general, this is a stringent requirement in the
blockchain setting, where changing the supported signature schemes requires majority consensus,
which is a lengthy process.

The central scheme today are Schnorr signatures [Sch90], which also enable privacy and
scalability improvements [BDN18, MPSW19, BK22]. Schnorr signatures are now supported by
major blockchains such as Bitcoin [WNR20], Bitcoin Cash, Litecoin or Polkadot, and, in the
form of EdDSA (and other variants), in Monero, Zcash, or Cardano. Mimblewimble [FOS19] is
a cryptocurrency protocol that crucially relies on Schnorr signatures.

Since their patent expired in 2008, Schnorr signatures are outpacing RSA signatures in
application counts, since for a comparable security level they are much smaller, can be verified
more efficiently and are less error-prone in implementations since fewer edge cases have to be

considered. While the efficiency of (EC)DSA, a NIST standard, is comparable to Schnorr, it
requires non-standard assumptions to be proved secure [FKP17]. Schnorr signatures, in the
form of EdDSA [BDL+12], are now considered for standardization.1

The security of Schnorr signatures was proved under the discrete logarithm assumption (DL)
[PS00] in the random oracle model (ROM) [BR93], an idealized model in which cryptographic
hash functions are treated as random functions. While the proof incurs a security loss due to
rewinding techniques, tight security proofs have also been given [FPS20] under DL in more
idealized models such as the algebraic group model (AGM) [FKL18] together with the ROM.2

Blind Schnorr signatures. Schnorr signatures admit a very elegant blind-signing protocol
[CP93] consisting of three messages (2 rounds). A drawback of multi-round protocols is that
they might become insecure when the signer runs several signing sessions simultaneously. In
applications, concurrent security is however essential, as otherwise the signer can only engage
in a signing session after the previous session has been finished or canceled. Protocols that
only allow sequential execution are vulnerable to denial-of-service (DoS) attacks, such as
simple connection time-outs, and therefore are severely limited in throughput range. This
motivated the development of concurrently secure blind signature schemes [Bol03, BNPS03,
Oka06, GG14, FHS15, KLX22].

To analyze the (concurrent) security of the original blind Schnorr signing protocol [CP93],
Schnorr [Sch01] introduced the so-called “ROS problem” and showed that in the generic group
model [Nec94, Sho97] together with the ROM, and assuming ROS was hard, blind Schnorr
signatures were unforgeable. Conversely, Schnorr also showed that solving the ROS problem
enables an attack on the scheme when the adversary can engage in concurrent signing sessions.
Wagner’s subexponential-time attack [Wag02] showed that ROS was not as hard as conjectured,
and recently Benhamouda et al. [BLL+21] presented a polynomial-time algorithm. They show
how an attacker that opens polynomially many signing sessions (concretely, 256, if that is
the security parameter) can efficiently forge signatures (concretely, derive 257 signatures on
messages of his choice).

Earlier, Fuchsbauer, Plouviez and Seurin [FPS20] had proposed a variant for blind Schnorr
signing that does not succumb to the ROS attack. In their clause blind Schnorr scheme,
the signer and user engage in two parallel Schnorr blind-signing sessions of which the signer
randomly finishes just one. They prove unforgeability in the algebraic group model and the
ROM from the one-more discrete logarithm (OMDL) assumption [BNPS03] (which holds in
the generic group model [BFP21]) and the assumption that a new “modified ROS problem” is
infeasible; an assumption that appears weaker than ROS but remains unstudied. The question
whether the original blind Schnorr signature scheme is secure when signing sessions are only
performed sequentially was answered in the affirmative by Kastner, Loss and Xu [KLX22],
who give a proof from OMDL in the AGM+ROM.

The lack of concurrently secure blind signing protocols for Schnorr signatures with solid
security guarantees has led to today’s unsatisfactory situation: while Schnorr signatures are
replacing RSA signatures, the ongoing standardization effort by the IETF [DJW22] for blind
signatures only specifies RSA blind signatures [Cha82], which they prefer over clause blind

1 https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5-draft.pdf
2 The AGM assumes the adversary against a cryptosystem defined over a group (G,+) to be algebraic, which
means that if, after having received group elements X1, . . . , Xn, the adversary returns a group element Z,
one can extract a representation (ζ1, . . . , ζn) of Z, that is, Z =

∑
ζiXi.

2

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5-draft.pdf

Schnorr [FPS20] – despite RSA having much larger key and signature sizes (and not lending
themselves as nicely to evaluation batching or efficient threshold signing as (blind) Schnorr
signatures, as the authors concede [DJW22]).

Partially blind signatures. Blind Schnorr signatures, as well as most of the mentioned
schemes, only provide “full” blindness, meaning the signer learns nothing about the message
she is signing (and she cannot link the signature to the signing session it was produced in).
In practice, this is often too strong and it is preferable to only hide parts of the signed
message, while giving the signer control over the remaining parts. This is what “partially”
blind signatures, introduced by Abe and Okamoto [AO00], provide. In their model, a message
consists of a public and a secret part and the signer gets to see the former during signing.

Our contributions. We present the first concurrently secure blind signing protocol for
producing Schnorr signatures with rigorous security guarantees. Our starting point is the plain
protocol [CP93], against which the recent attack [BLL+21] proceeds as follows. The adversary,
impersonating the user, opens λ many signing sessions, where λ is the bit length of the order of
the underlying group. The adversary thus obtains the signer’s first protocol message, a group
element R, for each session. For every session it then samples two possible sets of “blinding
values” (these represent the randomness used by the user during a session). The R values
obtained from the signer then determine which set of blinding values the attacker will use in
every session in order to compute the forgeries. The crucial observation is that before receiving
R, the attacker does not know which blinding values it will use.

A first attempt to prevent this attack could be to oblige the user to commit to her blinding
values (as well as the message to be signed) before receiving the value R. In the second round,
the user then proves that her next protocol message is consistent with the committed values;
she does so using a zero-knowledge proof. Only if the proof verifies will the signer send the last
message, which lets the user compute the signature. Somewhat surprisingly, this modification
suffices to not only defend against this particular attack, but to make the scheme unforgeable
under concurrent signing sessions, for which we give a security proof.

We also observe that when the user sends a proof that her protocol message is consistent
with the (committed) message to be signed, she might as well prove any property about this
message. Our construction therefore instantiates a more general primitive than blind, and even
partially blind, signatures, which we formally define (see below).

Concretely, our construction uses a public-key encryption scheme PKE for the “commitment”
in the first round3 and a non-interactive zero-knowledge (NIZK) argument system NArg
[BFM88, BCC88] for the proof in the second round. While the plain protocol [CP93] is
unconditionally blind, we show that our construction satisfies a computational notion assuming
that NArg is zero-knowledge and PKE satisfies the standard notion of chosen-plaintext security.
We prove unforgeability of our construction assuming that NArg is sound and that Schnorr
signatures themselves are secure for the underlying group and hash function (families). While
the latter might seem like an unusual assumption, it is arguably a minimum assumption in any
scenario that uses Schnorr signatures. The reason we explicitly require it is that the statement
proved by the NIZK scheme involves the concrete hash function used by the signature scheme,
so we cannot rely on the security of Schnorr signatures in the random oracle model.

3 The reason is that our security proof requires extracting the committed values and we do not want to rely
on strong (possibly non-blackbox) extraction assumptions for commitments; hence we simply use a PKE.

3

Avoiding a trusted setup. Our security notions and proofs assume trusted parameters
(which is necessary for NIZKs in the standard model [GO94]), but depending on the instantiation
of NArg and PKE, a trusted setup can easily be avoided in practice: Instantiating PKE e.g.
with ElGamal over an elliptic-curve group, one could generate a public key for which no one
knows the secret key by “hashing into the curve” [BF01, BCI+10] (formally, this would be
proved secure in the ROM). For the NIZK, one can also use schemes that are secure in the
ROM or require a “uniform reference string” [BBB+18, BCR+19, BFS19, BGH19, KPV19,
BBHR19, COS20, Set20, CHM+20, SL20] (which could also be created via a hash function).

If the signer sets up the NIZK parameters (and can thus be sure that no one knows a
potential simulation trapdoor), more efficient schemes can be used if they are subversion-zero-
knowledge [BFS16]; that is, they remain ZK even under adversarially generated parameters.
(Blindness of the scheme, which protects against malicious signers, would then still hold.) For
example, Groth16 [Gro16], the zk-SNARK with the shortest proofs, has been shown to satisfy
this notion [Fuc18] when the prover first performs a consistency check on the NIZK parameters.
When engaging with the signer, users would have to perform this (potentially complex) check,
but in practice, one could optimistically trust the signer, since someone discovering that her
parameters are not consistent would harm her reputation.

Another possibility is to accept trusted parameters, but use a scheme that has “universal”
parameters [GKM+18], such as [GWC19, CHM+20]. These parameters need only be generated
in a trusted way once and can then be used to prove any statement (up to a certain size).
In terms of efficiency, the main bottleneck of our construction is the NIZK proof system, for
which however any of the nowadays high-performance zk-SNARK constructions mentioned
so far can be used. We discuss implementation details and the resulting transparency and
efficiency in Section 5.

EdDSA. Since EdDSA [BDL+12] is based on Schnorr signatures, our construction also yields
(predicate) blind EdDSA signatures. EdDSA, as well as Schnorr signatures in practice [WNR20]
derive the randomness r used during signing in a deterministic way, by hashing the message to
be signed together with the signer’s secret key. (This prevents leakage of the secret key when
the same r is used for different messages and makes the scheme more resilient to side-channel
attacks [NS02].) This method is not applicable during blind signing, as the signer does not
know the message. A blind signature would thus be distributed differently to a (derandomized)
standard signature, but computationally indistinguishable.

Generalizing blind signatures. We introduce the notion of predicate blind signatures
(PBS), which generalizes the concept of partially blind signatures [AO00] and improves on the
privacy guarantees. While in partially blind signatures, the signer and the user agree on the
public part of the message to be signed before engaging in the signing protocol, in PBS they
agree on a predicate on the message to be signed. After successful completion, the signer is
guaranteed that the message she signed satisfies the predicate and the user is guaranteed that
the signer learned nothing more than that. In addition, the signature does not reveal anything
about the predicate. This is in contrast to partially blind signatures, for which the public (i.e.,
agreed upon) part is part of the message.

Predicate blind signatures address problems of conditional authorization in a general way.
For example, a bank may only authorize customer transactions that are compliant with the
law and/or internal rules, and at the same time aim at protecting customer privacy. E.g.,

4

it could be required that a transaction does not exceed a certain amount if its recipient is
located in a list of declared countries. Using PBS, the bank would not learn the amount nor
the recipient’s location, but that the criteria are met.

Trying to realize such scenarios with partially blind signatures would require stating the
conditions explicitly in the public message part. This would make signature verification more
cumbersome, since it is left to the verifier to check whether the rest of the message conforms
to the public part. Worse, the signature would reveal the bank’s policy, which remains hidden
when using PBS. We believe that the concept of predicate blind signatures better suits real-
world demands than currently existing variants of blind signatures. Our construction gives a
(concurrently secure) instantiation of PBS whose signatures are standard Schnorr signatures.

2 Preliminaries

We introduce the notation used throughout this work and recall the primitives upon which our
predicate blind Schnorr signature protocol, given in Section 4, builds, as well as their security
notions. As the primitives are quite standard, we present them without detailed elaboration.

2.1 Notation

For n ∈ N+ we denote by [n] the set {1, . . . , n}. We let a := b denote the declaration of variable
a in the current scope and assigning it the value b. The operator ‘=’, applied for example in
a = b, denotes either the overloading of variable a’s value with variable b’s value. Or, if it is
clear from the context, denotes the boolean comparison between a and b.

An empty list is initialized via ~a := []. A value x is appended to list ~a via ~a = ~a‖x. The size
of ~a is denoted by |~a|. We denote the j-th element of ~a by ~aj . Attempts to access a position
j 6∈ [|~a|] returns the empty symbol ε. Tuples of elements are denoted as x := (a, . . . , z) and
x[i] denotes the i-th element, which we set to ε if it does not exist.

We denote sets by calligraphic capital letters, e.g. A,B, C, and algorithms by Sans Serif
typestyle. Algorithms are considered to be efficient, i.e., run in probabilistic polynomial time
(p.p.t.) w.r.t. to the security parameter 1λ, which we usually keep as an implicit input. All
adversaries are assumed to be efficient algorithms. For a p.p.t. algorithm X with explicit
randomness r we write y := X(x; r) to denote assignment of X’s result on input x with
randomness r to variable y. We write y ← X(x) for sampling r uniformly at random and
assigning y := X(x; r).

A function ε : N→ R+ is negligible if for every c > 0 there exists k0 s.t. ε(k) < 1/kc for all
k ≥ k0. We assume that uniform sampling from Zn is possible for any n ∈ N. We let a←$A
denote sampling the variable a uniformly from the set A. To enhance readability of pseudocode,
if a value a “implicitly defines” values b1, b2, . . . (that is, these can be parsed or obtained from
a in polynomial time), we write (b1, b2, . . .) :⊆ a. We write a ≡p b to denote a ≡ b (mod p).

2.2 Discrete-Logarithm-Hard Groups

Definition 1. A group generation algorithm GrGen is a p.p.t. algorithm that takes as
input a security parameter λ in unary and returns (p,G, G), where G is the description of a
group of prime order p s.t. dlog2(p)e = λ, and G is a generator of G.

5

Definition 2. A group generation algorithm GrGen is discrete-logarithm-hard if for every
adversary (recall that these are assumed to be p.p.t. in λ) A the function

AdvDL
GrGen,A(λ) := Pr

[
DLA

GrGen(λ)
]

is negligible in λ, where game DL is defined by:

DLA
GrGen(λ)

(p,G, G)←GrGen(1λ)
x←$Zp ; X := xG

y ← A(p,G, G,X)
return (y = x)

2.3 Non-Interactive Zero-Knowledge Arguments

We define non-interactive zero-knowledge argument (NIZK) systems with respect to pa-
rameterized relations R : {0, 1}∗ × {0, 1}∗ × {0, 1}∗ → {0, 1}. We consider ternary relations
that run in polynomial-time w.r.t. the first argument, the parameters, denoted parR. Given
parR, for a statement θ we call w a witness if R(parR, θ, w) = 1, and define the language
LparR = {θ | ∃w : R(parR, θ, w) = 1}. A NIZK for a relation R is a tuple of efficient algorithms
NArg[R] = (Rel,Setup,Prove,Vfy, SimProve) with the following syntax:

– Rel(1λ) → parR: the p.p.t. relation parameter generation algorithm takes as input the
security parameter λ in unary and returns the relation parameters parR s.t. 1λ :⊆ parR
(i.e., 1λ can be efficiently obtained from parR) and LparR is a NP-language.

– Setup(parR)→ (crs, τ): the p.p.t. setup algorithm takes as input relation parameters parR
and returns a common reference string crs and a simulation trapdoor τ . The common
reference string contains the description of parR, i.e. parR :⊆ crs.

– Prove(crs, θ, w)→ π: the p.p.t. prover algorithm takes as input a common reference string
crs, a statement θ and a witness w and returns a proof π.

– Vfy(crs, θ, π) =: 0/1: the deterministic p.t. verification algorithm takes as input a common
reference string crs, a statement θ and a proof π and outputs 1 (accept) or 0 (reject).

– SimProve(crs, τ, θ)→ π: the p.p.t. simulation algorithm takes as input a common reference
string crs, a simulation trapdoor τ and a statement θ and returns a proof π.

Definition 3. A system NArg[R] has perfect correctness if for every adversary A and λ ∈ N:

Pr

parR ← Rel(1λ)
(crs, τ)← Setup(parR)
(θ, w)← A(crs)
π ← Prove(crs, θ, w)

: R(parR, θ, w) = 0 ∨ Vfy(crs, θ, π) = 1

 = 1 .

Definition 4. A system NArg[R] is (adaptively) computationally sound if for every
adversary A

AdvSND
NArg[R],A(λ) := Pr

[
SNDA

NArg[R](λ)
]

is negligible in λ, where game SND is defined by:

6

SNDA
NArg[R](λ)

parR ← NArg.Rel(1λ)
(crs, τ)← NArg.Setup(parR)
(θ, π)← A(crs)

return
(
NArg.Vfy(crs, θ, π) = 1

)
∧
(
∀w ∈ {0, 1}∗ : R(parR, θ, w) = 0

)
Definition 5. A system NArg[R] is computationally zero-knowledge if for every adver-
sary A

AdvZK
NArg[R],A(λ) :=

∣∣Pr
[
ZKA,0

NArg[R](λ)
]
− Pr

[
ZKA,1

NArg[R](λ)
]∣∣

is negligible in λ, where game ZK is defined by:

ZKA,b
NArg[R](λ)

parR ← NArg.Rel(1λ)
(crs, τ)← NArg.Setup(parR)

b′ ← AProve(crs)
return b′

Prove(θ, w)
if R(parR, θ, w) = 0 then return ⊥
π0 ← NArg.Prove(crs, θ, w)
π1 ← NArg.SimProve(crs, τ, θ)
return πb

2.4 Public-Key Encryption

A public-key encryption (PKE) scheme is a tuple of algorithms PKE = (KeyGen,Enc,Dec),
where:

– KeyGen(1λ)→ (ek,dk) is a p.p.t. algorithm that takes the security parameter in unary and
outputs a public encryption key ek and a secret decryption key dk. The public key defines
the message spaceMek, the randomness space Rek and the ciphertext space Cek.

– Enc(ek,M ; ρ) =: C is a p.p.t. algorithm that takes as input a public encryption key ek, a
message M , randomness ρ ∈ Rek, and outputs a ciphertext C ∈ Cek if M ∈ Mek and ⊥
otherwise.

– Dec(dk,C) =: M is a deterministic p.t. algorithm that on input a ciphertext C ∈ Cek and
the decryption key dk outputs a message M ∈Mek.

Definition 6. A public-key encryption scheme PKE has (perfect) correctness if for every
adversary A and λ ∈ N:

Pr

 (ek, dk)← PKE.KeyGen(1λ)
M ← A(ek,dk)
C← PKE.Enc(ek,M)

: M /∈Mek ∨ PKE.Dec(dk,C) = M

 = 1 .

Definition 7. A public-key encryption scheme PKE is secure against chosen-plaintext
attacks (CPA-secure) if for all adversaries A

AdvCPA
PKE,A(λ) :=

∣∣Pr
[
CPAA,0

PKE(λ)
]
− Pr

[
CPAA,1

PKE(λ)
]∣∣

is negligible in λ, where game CPA is defined as:

7

CPAA,b
PKE(λ)

(ek, dk)← PKE.KeyGen(1λ)

b′ ← AEnc(ek)
return (b = b′)

Enc(M0,M1)
C ← PKE.Enc(ek,Mb)
return C

2.5 Signature Schemes

A signature scheme is a tuple of efficient algorithms SIG = (Setup,KeyGen,Sign,Ver) where:

– Setup(1λ)→ sp: the setup algorithm takes as input the security parameter λ in unary and
outputs (signature) parameters sp, which define the message spaceMsp.

– KeyGen(sp)→ (sk, vk): the key generation algorithm takes parameters sp and outputs a
signing key sk and a verification key vk.

– Sign(sk,m) → σ: the signing algorithm takes as input a signing key sk and a message
m ∈Msp and outputs a signature σ.

– Ver(vk,m, σ) =: 0/1: the (deterministic) verification algorithm takes a verification key vk,
a message m and a signature σ; it returns 1 if σ is valid and 0 otherwise.

Definition 8. A signature scheme SIG has (perfect) correctness if for every adversary A
and λ ∈ N:

Pr

sp← SIG.Setup(1λ)
(sk, vk)← SIG.KeyGen(sp)
m← A(sk, vk)
σ ← SIG.Sign(sk,m)

: m /∈Msp ∨ SIG.Ver(vk,m, σ) = 1

 = 1 .

Definition 9. A signature scheme SIG satisfies strong existential unforgeability under
chosen-message attacks (sEUF-CMA) if for all adversaries A

AdvsEUF-CMA
SIG,A (λ) := Pr

[
sEUF-CMAA

SIG(λ)
]

is negligible in λ, where game sEUF-CMA is defined by:

sEUF-CMAA
SIG(λ)

sp← SIG.Setup(1λ)
(sk, vk)← SIG.KeyGen(sp) ; Q := ∅

(m∗, σ∗)← ASign(vk)

return
(
(m∗, σ∗) /∈ Q ∧ SIG.Ver(vk,m∗, σ∗) = 1

)

Sign(m)
σ ← SIG.Sign(sk,m)
Q = Q∪ {(m,σ)}
return σ

2.6 Schnorr Signatures

The Schnorr signature scheme is defined w.r.t. a group generation algorithm (Definition 1)
returning a group of prime order p, and it requires a hash function that maps into Zp, which
we define as being generated as follows.

8

Sch.Setup(1λ)

(p,G, G)← GrGen(1λ)
H← HGen(p)
sp := (p,G, G,H)
return sp

Sch.Sign(sk,m)

(p,G, G,H, x) := sk ; r←$Zp ; R := rG

c := H(R, xG,m) ; s := r + cx mod p
σ := (R, s)
return σ

Sch.KeyGen(sp)

(p,G, G,H) := sp
x←$Zp ; X := xG

sk := (sp, x) ; vk := (sp, X)
return (sk, vk)

Sch.Ver(vk,m, σ)

(p,G, G,H, X) := vk
(R, s) := σ

c := H(R,X,m)
return (sG = R+ cX)

Fig. 1. The Schnorr signature scheme Sch[GrGen,HGen] (with key prefixing, meaning that the public key
X = xG is part of the hash function input) based on a group generator GrGen and hash generator HGen.

Definition 10. A (target-range) hash function generator HGen is a p.p.t. algorithm that
takes as input a number n ∈ N+ and returns the description of a function H : {0, 1}∗ → Zn.

In Figure 1 we define Schnorr signatures with “key-prefixing” [BDL+12], which is the
variant in use today. (Key-prefixing protects against certain related-key attacks [MSM+16] and
implies tight security in the multi-user setting [Ber15].) Unforgeability of Schnorr signatures
has been studied extensively in the random oracle model (ROM) [BR93, PS96, PS00] and
more recently in the algebraic group model (AGM) and the ROM [FPS20], which enables tight
security. These proofs are easily adapted to the key-prefixing variant. Strong unforgeability
of this variant (in the AGM+ROM) readily follows from the discrete-logarithm assumption
and the fact that key-prefixing Schnorr signatures are strongly simulation-extractable proofs of
knowledge of discrete logarithms in the AGM+ROM [FO22].

We consider these results and the fact that, despite being thus widely used, no vulnerabilities
have been found as ample evidence for the following assumption, which we use in the security
proof of our predicate blind Schnorr signature scheme:

Assumption 1. There exists a group generator GrGen and a hash function generator HGen
s.t. the Schnorr signature scheme (Figure 1) is strongly unforgeable (Definition 9), in particular,
for all adversaries A, the function AdvsEUF-CMA

Sch[GrGen,HGen],A(λ) is negligible in λ.

3 Predicate Blind Signatures

We introduce predicate blind signatures (PBS) as a generalization of partially blind signatures
[AO00]. PBS define an interactive protocol that enable a signer to sign a message at the behest
of another party, called the user, without learning any information about the signed message,
besides that it satisfies certain conditions (defined by a predicate) on which the user and signer
agreed before the interaction.

A PBS scheme is parameterized by a family of polynomial-time-computable predicates,
which are implemented by a p.t. algorithm P, which we refer to as a predicate compiler. On

9

input a predicate description prd ∈ {0, 1}∗ and a message m ∈ {0, 1}∗, P returns 1 or 0
indicating whether m satisfies the predicate prd or not. A predicate blind signature scheme
PBS[P] for P is defined by the following algorithms. We focus on schemes with a 2-round (i.e.,
4-message) signing protocol for concreteness.

– PBS.Setup(1λ)→ par: the setup algorithm takes as input the security parameter in unary
and returns public parameters par, which define the message spaceMpar.

– PBS.KeyGen(par)→ (sk, vk): the key generation algorithm takes the parameters par and
returns a signing/verification key pair (sk, vk), which both implicitly contain par, i.e.,
par :⊆ vk.

– 〈PBS.Sign(sk,prd),PBS.User(vk, prd,m)〉 → (b, σ): an interactive protocol with shared
input par (implicitly contained in sk and vk) and a predicate prd is run between the signer
and user. The signer takes the secret key sk as private input, the user’s private input is a
verification key vk and a message m. The signer outputs b = 1 if the interaction completes
successfully and b = 0 otherwise, while the user outputs a signature σ if it terminates
correctly, and ⊥ otherwise. For a 2-round protocol the interaction can be realized by the
following algorithms:

(msgU,0, stateU,0)← PBS.User0(vk, prd,m)
(msgS,1, stateS)← PBS.Sign1(sk,prd,msgU,0)

(msgU,1, stateU,1)← PBS.User1(stateU,0,msgS,1)
(msgS,2, b)← PBS.Sign2(stateS ,msgU,1)

σ ← PBS.User2(stateU,1,msgS,2)

We write 〈PBS.Sign(sk, prd),PBS.User(vk, prd,m)〉 → (b, σ) as a shorthand for the above
sequence.

– PBS.Ver(vk,m, σ) =: 0/1: the (deterministic) verification algorithm takes a verification
key vk, a message m and a signature σ, and returns 1 if σ is valid on m under vk and 0
otherwise.

Similar to the security definition for blind signatures [JLO97] and partially blind signatures
[AO00], we require the properties we define in the following.

Definition 11. A predicate blind signature scheme PBS for predicate compiler P is (perfectly)
correct if for any adversary A and λ ∈ N:

Pr

par← PBS.Setup(1λ)
(sk, vk)← PBS.KeyGen(par)
(m, prd)← A(sk, vk)
(b, σ)←

〈
PBS.Sign(sk, prd),PBS.User(vk,prd,m)

〉
b′ := PBS.Ver(vk,m, σ)

:
m /∈Mpar ∨
P(prd,m) = 0 ∨
(b ∧ b′)

 = 1 .

(Strong) unforgeability. The security notion for blind signatures states that after the
completion of n signing sessions, the user cannot compute n+ 1 signatures. Similarly, partially
blind signatures require that after the completion of any number of signing sessions, of which
n share the same public message part, the user cannot compute n+ 1 signatures for this public
message part.

10

UNFA
PBS[P](λ)

par← PBS.Setup(1λ)
(sk, vk)← PBS.KeyGen(par)
~S := [] // list holding all session details

P ~rd := [] // predicates of successful sessions

(m∗i , σ∗i)i∈[n] ← ASign1,Sign2 (vk)

return
(
n > 0

∧ ∀ i ∈ [n] : PBS.Ver(vk,m∗i , σ∗i) = 1
∧ ∀ i 6= j ∈ [n] : (m∗i , σ∗i) 6= (m∗j , σ∗j)
∧ @ ρ ∈ InjF([n], [|P ~rd|]) :

∀ i ∈ [n] : P(P ~rdρ(i),m
∗
i) = 1

)
// there is no mapping of messages to

// predicates for successful sessions

Sign1(prd,msg)

(msg′, state)← PBS.Sign1(sk,prd,msg)
~S = ~S‖(state, prd) // store new session

return msg′

Sign2(j,msg)

if ~Sj = ε then // j-th session not open

return ⊥
(state, prd) := ~Sj
(msg′, b)← PBS.Sign2(state,msg)
if b = 1 then
~Sj := ε // close session j

P ~rd = P ~rd‖prd // store predicate prd

return msg′

Fig. 2. The strong unforgeability game for a predicate blind signature scheme PBS[P] with a 2-round signing
protocol. InjF(A,B) denotes the set of all injective functions from set A to set B. (Standard) unforgeability is
obtained by replacing the winning condition ∀ i 6= j ∈ [n] : (m∗i , σ∗i) 6= (m∗j , σ∗j) with ∀ i 6= j ∈ [n] : m∗i 6= m∗j .

Generalizing this to predicate blind signatures is not straightforward as messages can
satisfy many predicates (whereas for partially blind signatures, messages only have one public
part). We therefore simply require that anything the user can output after running signing
sessions for predicates of its choice can be “explained”. That is, when the user outputs signed
messages m∗1, . . . ,m∗n, then there must exist a mapping to successful signing sessions, so that
the message satisfies the used predicate. In particular, there must be an injective mapping
ρ : [n]→ [`] where ` is the number of closed signing sessions, so that P(prdρ(i),m

∗
i) = 1, where

prdj was the predicate for the j-th successfully closed session.
Our notion is in the spirit of strong unforgeability as we consider the pairs of messages

and signatures to be distinct. It also gives strong guarantees in the spirit of [FPS20], in that it
only considers closed signing sessions and ignores unfinished sessions when checking whether
the attack was not trivial.

Definition 12. A predicate blind signature scheme PBS[P] satisfies (strong) unforgeability
if for all adversaries A

AdvUNF
PBS,A(λ) := Pr

[
UNFA

PBS[P](λ)
]

is negligible in λ, where game UNF is defined in Figure 2.

In game UNF the adversary A gets a verification key vk as input and has access to two
oracles Sign1 and Sign2. The oracles correspond to the two phases of the interactive protocol,
representing an honest signer. The adversary can concurrently engage in polynomially many
signing sessions for predicates of its choice to obtain blind signatures on messages. In order for A
to win, it must output a non-empty vector (m∗i , σ∗i)i∈[n] of distinct and valid message/signature
pairs; moreover, there must not exist an assignment of messages m∗i to successfully closed
sessions, that could “explain” the adversary’s output. Formally, there must not exist an injective

11

BLDA,b
PBS[P](λ)

par← PBS.Setup(1λ)
(prd0, prd1,m0,m1, key, state)← A1(par)
if ∃ i, j ∈ {0, 1} : P(prdi,mj) = 0 then

return 0
(sess0, sess1) := (init, init)

b′ ← AUser0,User1,User2
2 (state)

return b′

User0(i)

if sessi 6= init then return ⊥
sessi = open

(msg, statei)

← PBS.User0
(
(par, key), prdi,mi⊕b

)
return msg

User1(i,msg)

if sessi 6= open then return ⊥
sessi = await

(msg′, statei)← PBS.User1(statei,msg)
return msg′

User2(i,msg)

if sessi 6= await then return ⊥
sessi = closed

σi⊕b ← PBS.User2(statei,msg)
if (sess0 = sess1 = closed) :

if (σ0 = ⊥ ∨ σ1 = ⊥) :
return (⊥,⊥)

return (σ0, σ1)
// in case other session is still open:

return ε

Fig. 3. The blindness game for a predicate blind signature scheme PBS[P] played by adversary A = (A1,A2).
The operator “⊕” is the XOR operation on bits, used to realize a swap of the message order if and only if b = 1.

mapping from the messages (m∗i) to the predicates (prdj) that were part of successfully closed
signing sessions (stored by the experiment in the list P ~rd), so that every message is mapped
to a predicate it satisfies.4

Blindness. Blindness requires that whenever the signer gets to see one of its signatures, it
cannot determine the session in which the signature was generated, except that it must have
been in a session with a predicate that is satisfied by the message. We adapt the standard
notion of blindness (see, e.g. [HKL19]) and let the adversary, in addition to two messages m0
and m1, define two predicates prd0 and prd1 (both satsified by m0 and m1). The challenger
then chooses a bit b and runs the signing protocol with the adversary, asking for a signature on
message mb for predicate prd0 and then for m1−b for predicate prd1. Being given the resulting
signatures on m0 and m1, the adversary must determine the bit b.

Definition 13. A predicate blind signature scheme PBS[P] satisfies blindness if for all
adversaries A

AdvBLD
PBS[P],A(λ) :=

∣∣Pr
[
BLDA,0

PBS[P](λ)
]
− Pr

[
BLDA,1

PBS[P](λ)
]∣∣

is negligible in λ, where game BLD is defined in Figure 3.

The game starts by letting the (adversarial) signer output two messages m0 and m1, predicates
prd0, prd1, a verification key part key (i.e., what together with par gives vk), and a state state.
The experiment then checks if both messages satisfy both predicates and returns 0 if this is not

4 Note that checking if no such injective function exists is efficiently computable using e.g. the Hopcroft–Karp
or Karzanov’s matching algorithm [HK73, Kar73].

12

the case. Otherwise the experiment runs the signing protocol acting as the user (modeled via
three different oracles User0,User1,User2) to the signer’s queries for two parallel sessions
in total. The user oracles are set to ask for blind signatures on mb with associated predicate
prd0 in the first session and m1−b together with prd1 in the second. If both signatures σ1 and
σ2 obtained by PBS.User2 are not ⊥ in the call of User2, the signer is given (σ0, σ1) where σ0
is a signature on m0 and σ1 a signature on m1 under key vk. Blindness requires that after the
completion of two sessions, there is no strategy for the signer that is noticeably better than
just guessing the value of b.

We stress that all notions of blindness (full, partial or predicate blindness) only protect
the user’s privacy if at the time the user publishes his signature, the signer has blindly signed
sufficiently many messages under the same key, and (in the case of partial blindness) same
public message parts, and (in the case of predicate blindness) predicates satisfied by the
message.

Hiding the predicates. By allowing the adversary A to output distinct predicates prd0 and
prd1, we get an additional guarantee: namely, that the resulting message/signature pair does
not reveal anything about the predicate that was used in the signing session (apart from the
fact that the message satisfies it). This could be formalized via a game in which the adversary
defines a message m and two predicates prd0 and prd1 (satisfied by m) and then plays the
signer in a blind issuing of a signature on m using first prd0 and then prd1. If both sessions
succeed, the adversary is given the signatures in random order, which the adversary has to
determine. Showing that this notion is implied by blindness (Definition 13) is straightforward
by a reduction that sets m0 := m and m1 := m.

Predicate Blind Signatures Imply Partially Blind Signatures

Abe and Okamoto (AO) [AO00]) define partially blind signatures using the following syntax:
messages consist of a public part info and a secret part m′, and verification is of the form
Vfy(vk, info,m, σ). When issuing a signature, signer and user agree on the public part.

Partially blind signatures can be constructed in a straightforward way from a predicate
blind signature scheme for the following predicate family, which parses messages as pairs
(info,m′), which we assume can be done unambiguously:

P(prd,m)
(info,m′) := m

return info = prd

To issue a signature for info on a secret part m′, the signer and user run the PBS signing
protocol for prd := info and the user sets the message to m := (info,m′). A signature σ for a
pair (info,m′) is verified by running VfyPBS(vk, (info,m), σ).

We show that unforgeability and blindness (as defined by AO [AO00]) of this construction fol-
low from the respective notions for PBS defined in Definitions 12 and 13. To break unforgeability
of a partially blind signature scheme, an adversary must output

(
info, (m∗i , σ∗i)i∈[n]

)
, where the

pairs (m∗i , σ∗i) are distinct and valid for public message part info (i.e. Vfy(vk, info,m∗i , σ∗i) = 1
for all i ∈ [n]), and the adversary queried the signing oracle (n− 1) times with public message
part info.

13

Assuming an adversary A against this unforgeability notion for our construction, we define
B for game UNF of the underlying PBS scheme that wins with equal probability. B runs A
on the received key vk, and when A asks for a signature for public part info, B asks for a
signature for predicate prd := info, relaying all of A’s protocol messages msg and oracle replies
msg′. When A returns

(
info, (m′i, σi)i∈[n]

)
, the reduction B returns

(
m∗i := (info,m′i), σi

)
i∈[n].

If A wins then all (m′i, σi) are distinct and valid w.r.t. info; therefore all ((info,m′i), σi)
are distinct and valid (under VfyPBS). Moreover, B has made at most n − 1 queries for the
predicate info, which is therefore contained in at most n− 1 positions I in B’s challenger’s list
P ~rd. For all j /∈ I, we have P(P ~rdj ,m∗i) = 0 (since P ~rdj 6= info and m∗i = (info,m′i)). Since
|I| ≤ n− 1, there is no injective function ρ with P(P ~rdρ(i),m

∗
i) = 1 for all i ∈ [n]. Together,

this means B has won UNF.
The definition of blindness by AO is similar to ours. One difference is that in AO the

challenger samples a key pair (vk, sk) and gives it to the adversary, whereas in our definition
the adversary can choose its own verification key part (which gives more realistic security
guarantees). AO require the adversary to return two pairs (info0,m0) and (info1,m1) for
which info0 = info1 holds. In our definition the adversary must output two messages and two
predicates that are both satisfied by both messages. Since the predicates partition the message
space, we must have info0 = info1. The reduction generates the key pair for the AO adversary
and then simply forwards the oracle calls.

4 Predicate Blind Signatures with Schnorr Signatures

Signature issuing in “plain” blind Schnorr signatures (which do not satisfy Definition 12
[BLL+21]) works as follows. Let (x,X) be the signer’s key pair. Similarly to computing a
Schnorr signature, the signer first samples r←$ Zp, computes R := rG and sends it to the user.
The user samples two blinding values (α, β)←$ Z2

p and computes R′ := R+ αG+ βX, which
will be the first component of the blind signature. The user then computes the corresponding
value c′ := H(R′, X,m), blinds it to c := (c′ + β) mod p and sends c to the signer. The signer
replies with s := (r+ cx) mod p, which the user transforms to s′ := (s+α) mod p and outputs
the signature (R′, s′). (See Eq. (1) below for why this yields a valid signature.)

To make this protocol secure, in our scheme the user must first, before receiving the value
R, send an encryption C of the message m and the values α, β that the user will use. For this
step we employ a public-key encryption scheme PKE. In her second message, together with c,
the user also sends a zero-knowledge proof asserting that c was computed from these values
m, α and β, and the signer will only send the final value s if this proof verifies. Since we also
aim for a generalization to predicate blind signatures, the user’s proof will also assert that
the encrypted m satisfies the agreed-upon predicate prd. We therefore consider the following
parameterized relation RPBS:

RPBS
(
(

parR︷ ︸︸ ︷
p,G, G,H), (

θ︷ ︸︸ ︷
X,R, c,C, prd, ek), (

w︷ ︸︸ ︷
m,α, β, ρ)

)
:

R′ := R+ αG+ βX // blind the signature group element R

return
(
PKE.Enc(ek, (m,α, β); ρ) = C ∧ // C encrypts witness elements under ek

c ≡p H(R′, X,m) + β ∧ // c is computed from witness elements

P(prd,m) = 1
)

// m satisfies the predicate prd

14

This relation RPBS checks, for given parameters (p,G, G,H), whether the user’s message c was
correctly computed for given X and R when the user’s message is m and her randomness
is α, β; whether the ciphertext C encrypts these values (m,α, β) using randomness ρ; and
whether m satisfies the predicate prd. As the parameters of RPBS are exactly the Schnorr
signature parameters, the relation-parameter sampling algorithm Rel for NArg is simply:

NArg.Rel(1λ)

sp← Sch.Setup(1λ)
return sp

Let GrGen be a group generation algorithm and HGen be a hash function generator (which
together define Sch.Setup as in Figure 1), let PKE be a public-key encryption scheme and P be a
predicate compiler (which together define relation RPBS), and let NArg be an argument system
for RPBS. Using the ideas sketched above, we obtain the 2-round predicate blind signature
scheme PBSch[P,GrGen,HGen,PKE,NArg] specified in Figure 4.

The message spaceMpar of PBSch can be arbitrary, as long as PKE can encrypt triples
of the form (m,α, β). We therefore assume that for all λ, all sp = (p,G, G,H) output by
NArg.Rel(1λ), all crs output by NArg.Setup(sp) and all ek output by PKE.KeyGen(1λ), we have
Mpar × Zp × Zp ⊆Mek for par := (crs, ek).

We now show that the construction in Figure 4 satisfies perfect correctness, unforgeability
according to Definition 12 (proved in Appendix B) and blindness according to Definition 13
(proved in Appendix C).

Correctness. Perfect correctness follows from perfect correctness of the NArg and since a
signature (R′, s′) obtained by the user after interacting with the signer satisfies PBSch.Ver
(which is defined as Sch.Ver):

s′G = sG+ αG = (r + cx)G+ αG = (r + H(R′, X,m)x+ βx)G+ αG

= R+ αG+ βX + H(R′, X,m)X (1)
= R′ + H(R′, X,m)X .

Unforgeability. We bound the advantage in breaking the unforgeability of the predicate blind
Schnorr signature construction by the advantages in breaking the security of the underlying
primitives. Note that, in Assumption 1, we directly assume sEUF-CMA security of the Schnorr
signature scheme. The reason is that all currently known security proofs of Schnorr signatures
require the ROM [PS96, PS00, FPS20]. But the NArg relation RPBS depends on the used
hash function, which would be replaced in the ROM by a random function. This situation
occurs whenever a non-interactive argument is done over a relation that expresses operations
of a primitive that can only be proven secure in the ROM. While Assumption 1 might be
unconventional from a theoretical point of view, it is rather uncontroversial in a practical
setting, given the wide-spread use of Schnorr signatures; and it is a sine qua non in any
application involving Schnorr signatures anyway.

Theorem 1. Let P be a predicate compiler and GrGen and HGen be a group and a hash gen-
eration algorithm; let PKE be a perfectly correct public-key encryption scheme and NArg[RPBS]
be a non-interactive argument scheme for the relation RPBS. Then for any adversary A playing

15

PBSch.Setup(1λ)

(p,G, G)← GrGen(1λ)
H← HGen(p)
sp := (p,G, G,H)
(crs, τ)← NArg.Setup(sp)

(ek, dk)← PKE.KeyGen(1λ)
par := (crs, ek)
return par

PBSch.KeyGen(par)

(p,G, G) :⊆ par
x←$Zp ; X := xG

vk := (par, X)
sk := (par, x)
return (sk, vk)

PBSch.Ver(vk,m, σ)

(p,G, G,H, X) :⊆ vk
(R, s) := σ

c := H(R,X,m)
return sG = R+ cX

PBSch.Sign(sk,prd) PBSch.User(vk, prd,m)

(p,G, G, crs, ek, x) :⊆ sk (p,G, G,H, crs, ek, X) :⊆ vk
α, β←$Zp ; ρ←$Rek

M := (m,α, β)
C := PKE.Enc(ek,M ; ρ)C←−−−−−−−−

r←$Zp ; R := rG R−−−−−−−−→ R′ := R+ αG+ βX

c := (H(R′, X,m) + β) mod p
θ := (X,R, c,C, prd, ek)
w := (m,α, β, ρ)
π ← NArg.Prove(crs, θ, w)c, π

←−−−−−−−−θ := (xG,R, c,C, prd, ek)
if NArg.Vfy(crs, θ, π) = 0 :

return 0
s := (r + cx) mod p s−−−−−−−−→

return 1

if sG 6= R+ cX : return ⊥
s′ := (s+ α) mod p
return σ := (R′, s′)

Fig. 4. The predicate blind Schnorr signature scheme PBSch[P,GrGen,HGen,PKE,NArg] based on a predicate
compiler P, a group generation algorithm GrGen, a hash generator HGen, a public-key encryption scheme PKE
and non-interactive zero-knowledge argument scheme NArg[RPBS] for the relation RPBS.

in game UNF against the PBS scheme PBSch[P,GrGen,HGen,PKE,NArg] defined in Figure 4,
making at most q queries to the oracle Sign1, there exist algorithms:

– F playing in game sEUF-CMA against the strong existential unforgeability of the Schnorr
signature scheme Sch[GrGen,HGen],

– S playing in game SND against the soundness of NArg[RPBS],
– D playing in game DL against the discrete-logarithm hardness of GrGen,

s.t. for every λ ∈ N:

AdvUNF
PBSch,A(λ) ≤ AdvsEUF-CMA

Sch[GrGen,HGen],F(λ) + AdvSND
NArg[RPBS],S(λ) + q · AdvDL

GrGen,D(λ) .

The proof of Theorem 1 can be found in Appendix B. The main idea is to reduce unforge-
ability of PBSch to unforgeability of Schnorr signatures. Given a verification key, the reduction
sets up crs and the encryption key ek and simulates the signing oracles for the adversary.
When the latter opens a signing session sending C, the reduction uses the decryption key

16

corresponding to ek to decrypt C to m, α, and β. It then queries its own signing oracle for a
signature (R̄, s̄) on m and sends R := R̄− αG− βX to the adversary. Upon receiving c, the
accompanying proof π attests that it is consistent with m,α and β, which, by the definition of
RPBS, implies that c ≡p H(R̄,X,m) + β.

By the definition of Schnorr signing, letting x := logX denote the secret key, we have
s̄ ≡p log R̄ + H(R̄,X,m) · x ≡p log R̄ + c · x− β · x. By the definition of PBSch, the adversary
expects s ≡p logR + c · x ≡p log R̄ − α − β · x + c · x, which the reduction can compute as
s := (s̄− α) mod p.

Formally, the proof proceeds via a sequence of game hops. In the first hop, the experiment
decrypts the user’s ciphertext C and checks whether c is consistent with the plaintext (m,α, β)
and that m satisfies the predicate. If not, the game aborts. We show that by perfect correctness
of PKE, any abort can be used to break soundness of NArg[RPBS]. We then show that an
adversary cannot compute a signature in a session which it has not closed, unless it breaks the
discrete logarithm assumption (the factor q in the theorem statement comes from guessing in
which of the signing sessions the adversary did so). Finally, we show that for any adversary
that can still win, that is, there is no mapping of the adversary’s messages to signing sessions,
the adversary’s output must contain a forgery for the Schnorr signature scheme.

Blindness. Perfect blindness of the “plain” blind Schnorr signature scheme is shown as follows
[Sch01]: For every assignment of a resulting message/signature pair to a signature-issuing
session, there exist unique values α and β that “explain” this assignment from the view of the
signer. The following theorem shows that what our protocol adds to the “plain” variant does
not reveal anything in a computational sense either.

Theorem 2. Let P be a predicate compiler, GrGen and HGen be a group and hash generation
algorithm; let PKE be a public-key encryption scheme and NArg[RPBS] be an argument system
for the relation RPBS. Then for any adversary A playing in game BLD against the PBS scheme
PBSch[P,GrGen,HGen,PKE,NArg] defined in Figure 4, there exists algorithms:

– Z0 and Z1, playing in game ZK against NArg[RPBS], and
– C0 and C1, playing in game CPA against PKE,

s.t for every λ ∈ N:

AdvBLD
PBSch,A(λ) ≤ AdvZK

NArg[RPBS],Z0
(λ) + AdvZK

NArg[RPBS],Z1
(λ) + AdvCPA

PKE,C0(λ) + AdvCPA
PKE,C1(λ) .

The proof of Theorem 2 can be found in Appendix C and proceeds via a sequence of game
hops. Starting with game BLDA,b

PBS[P] for an arbitrarily fixed b, we first replace the user’s proofs
π (in both signing sessions) by simulated proofs. We next replace the user’s ciphertexts C
by encryptions of a fixed message. These hops are indistinguishable by zero-knowledge of
NArg[RPBS] and CPA security of PKE. Now using the argument for plain blind Schnorr, this
final game is independent of the bit b, which concludes the proof.

5 Design Choices and Implementation Details

In this section we discuss design choices of our predicate blind signature construction PBSch
from Section 4, consider implementation details and discuss various trade-offs. Implementers
can obtain different degrees of security and performance measures depending on the following:

17

– The protocol is intended to be used as an extension on top of an existing protocol that
already implements Schnorr signatures for given parameters (p,G, G,H): This scenario
applies to blockchain protocols that consider adding the predicate blind signature function-
ality. In such a case, migrating to new group parameters and/or a hash function is often
impracticable or unachievable due to insufficient consensus.

– The Schnorr parameters (p,G, G,H) can be chosen in consideration of the specifics of the
used scheme NArg: This scenario gives implementers far more flexibility regarding efficiency
optimizations, particularly affecting the user’s computational cost to perform NArg.Prove,
the size of the common reference string and the supported message length.

The first scenario faces two challenges. First, H is unlikely to be an “arithmetic-circuit-friendly”
hash function [AGR+16, ACG+19, BGL20, AAB+20, GKR+21], meaning that expressing H in
the language underlying NArg[RPBS] will require a large number of addition and multiplication
gates (and/or lookups). This in turn affects the efficiency of the blind signature issuing protocol.
(This is for example the case for a standard choice for H like SHA256; see below.)

Second, the group G, its elements and operations might not be efficiently representable in
the circuit language of NArg (see Section 5.3 for a concrete example). The take-away point
is that choosing the NArg first and then the Schnorr signature parameters (p,G, G,H) will
potentially yield much more efficient instantiations.

5.1 Avoiding a Trusted Setup

In our security model for predicate blind signatures (Definitions 12 and 13) the parameters
par are assumed to be generated in a trusted way, which in practice has to be dealt with. In
our scheme PBSch (Figure 4), for a given security parameter λ and corresponding Schnorr
parameters sp, PBSch.Setup generates a common reference string via (crs, τ)← NArg.Setup(sp)
and a PKE encryption key via (ek, dk)← PKE.KeyGen(1λ).

The simulation trapdoor τ and the decryption key dk can be considered the protocol’s
“toxic waste” [COS20]. Any party that knows τ is able to simulate, and thus forge, proofs. Now
if she engages in concurrent signing sessions, she can break unforgeability by mounting the
attack [BLL+21] against the “plain” Schnorr blind-signing protocol [CP93]: during a signing
session, the attacker commits to anything in the first round and then simulates the proof (of a
false statement) in the second round. On the other hand, any party that knows dk is able to
decrypt the user’s ciphertexts and thereby completely break blindness.

Consequently, we can neither let the signer nor the user run PBSch.Setup. If the signer
runs it, this breaks blindness and thus the user’s security; if the user runs it, then the signer’s
security, i.e., unforgeability, is at stake. The obvious solution might seem to let the signer
run NArg.Setup and the user run PKE.KeyGen. While the former is potentially insecure (see
below), the latter is not practical, since typical application scenarios consider a single signer
and multiple users.

PKE setup. The problem of every user generating their own encryption key can be overcome
by generating a single ek transparently, that is, in a way so no corresponding secret key is
known to any party. When the public key ek is a group element and the secret key its discrete
logarithm dk = logG(ek), as e.g. for ElGamal encryption [ElG85], this can be established easily
by “hashing into the group” [BF01, BCI+10]. An agreed-upon public string is hashed to obtain
the public key.

18

NIZK setup. As with the PKE part, we can also simply instantiate NArg with a scheme with
a transparent setup, of which there now exists a host, such as Ligero [AHIV17], Bulletproofs
[BBB+18], Hyrax [WTs+18], Aurora [BCR+19], STARKs [BBHR19], DARK [BFS19], Halo
[BGH19], RedShift [KPV19], Spartan [Set20], Fractal [COS20], Xiphos and Kopis [SL20].

A particularly efficient SNARK scheme, with the shortest proofs of all schemes, is Groth16
[Gro16], which however requires a trusted setup, since it has a “structured” common reference
string (CRS). If we let the signer set up her own CRS, then she is protected against attacks
against soundness. However, for blindness, the user relies on NArg being zero-knowledge, a
property that also assumes that the CRS was set up in a trusted way.

The solution to this dilemma is to use a subversion zero-knowledge proof scheme [BFS16],
which protects the user against malicious signers. The notion guarantees that even when
the CRS is maliciously set up, the prover is guaranteed that a proof computed w.r.t. it
will not leak anything about the used witness (and thus blindness still holds). For Groth16
Fuchsbauer [Fuc18] defines an algorithm to check that a CRS is well-formed and he shows
that if provers only accept well-formed CRSs, subversion zero knowledge holds. On the other
hand, a malformed CRS enables attacks against Groth16, where proofs constructed using such
a CRS leak information on the witness [CGGN17, Fuc19]. Once a CRS is checked, the scheme
can be used as usual.

5.2 Practical Considerations for the Relation

In this section we address theoretical and practical aspects concerning the parameterized
relation RPBS(parR, θ, w)→ 0/1 defined in Section 4, and start with stressing the importance
of type checks on elements in the witness w, as their insufficiency or absence provides a
common source of error in implementations. Type checks on elements of the statement θ can
either be expressed inside the relation, which leads to increased prover time and CRS size, or
alternatively, they can be omitted in the relation but then have to be performed by the verifier
alongside to NIZK proof verification, where they cause proof rejection if any check fails.

Complexity of the Supported Predicates. Since most NIZK schemes (and in particular
efficient zk-SNARKs) in the literature are realized as proofs of circuit satisfiability for a circuit
that expresses the relation (where the parameters parR are hardwired and the statement θ
as well as the witness w are inputs to the circuit), the concrete complexity of the predicate
compiler P in the language native to NArg directly affects proving time and common reference
string size (while proof size and verifier time is unaffected for certain choices of NArg).5

In practice, low complexity for P might be achieved by keeping the number of supported
predicates small,6 e.g. by considering a set {Prdi}i∈[n], and define the compiler P as:

P(prd,m)

if prd = 1 : return Prd1(m)
...

if prd = n : return Prdn(m)
return 0

5 One could for example consider predicates prd that attest that m (or parts of it) constitutes an accepting
(zk)SNARK proof and thereby obtain protocols with high degrees of expressibility.

6 For scenarios where only a single predicate prd is supported by P, this predicate can obviously be hardwired.

19

Maximum generality can be achieved by letting P be the universal circuit that interprets the
input prd as a circuit description (a.k.a. a circuit-SAT instance) and emulates its execution on
its second input m. In practice this would result in an inefficient scheme, since it requires to
encode the universal circuit in terms of the language native to the underlying NIZK.

Hardwiring for Efficiency. Efficiency can be improved by moving elements of the
statement θ into the parameters parR. This is because circuit complexity generally reduces
when values are circuit constants rather than inputs (e.g. multiplication by constants vs.
multiplication by variables). On the other hand, with increased hardwiring, flexibility and
reusability of the CRS reduces. Implementers can thus choose to instantiate NArg for a relation
out of a spectrum of relations lying somewhere between minimal hardwiring Eq. (2), and
maximal hardwiring Eq. (3).

Minimal Hardwiring, and thus maximal flexibility, is the setting in which we defined our scheme
in Section 4:

RPBS
(
(

parR︷ ︸︸ ︷
p,G, G,H), (

θ︷ ︸︸ ︷
X,R, c,C, prd, ek), (

ω︷ ︸︸ ︷
m,α, β, ρ)

)
. (2)

An practical advantage is that the same CRS, and thus scheme parameters par, can be used
by multiple signers since they are independent of the signature verification keys X.

This has another benefit when using a subversion-zero-knowledge scheme, such as Groth16,
to improve efficiency, which however requires a (potentially complex) CRS-consistency check
[Fuc19]. The more a CRS is used, the faster it is expected to be recognized and reported
if it is malformed; users can thus have confidence in a CRS even when they don’t check
consistency themselves. The downside is that, since the signer’s security relies on the secrecy
of the simulation trapdoor, the CRS would have to be set up in a “ceremony” using multiparty
computation [BGM17] – or one uses one of the tranparent schemes mentioned in Section 5.1.

A theoretical advantage of minimal hardwiring is that unforgeability of the PBS can be
reduced to standard soundness of NArg. In Theorem 1, the reduction against soundness receives
the CRS and creates the signature and PKE key pairs (x,X) and (ek,dk) itself. It thus knows
the values x and dk required to simulate the game.

Maximal Hardwiring corresponds to a relation of the form:

R′PBS
(
(

parR′︷ ︸︸ ︷
p,G, G,H, X, ek), (

θ︷ ︸︸ ︷
R, c,C, prd), (

ω︷ ︸︸ ︷
m,α, β, ρ)

)
, (3)

where we move the signature verification key X and the encryption key ek to the relation
parameters parR′ . An immediate consequence is improved verification time, since NArg verifier
time grows at least linearly in the statement size. It moreover reduces circuit complexity and
therefore prover time and CRS size. This is the recommended setting when signers generate
their own CRS and thus need not worry about proper deletion of the simulation trapdoor.

From a theoretical point of view, including X and ek in parR′ requires allowing auxiliary
input in the definition of soundness of argument systems (Definition 4). This means that the
relation generator NArg.Rel can output auxiliary information aux in addition to the relation
parameters, which the soundness adversary gets as input in addition to crs. This notion of
soundness is standard but stronger than Definition 4, since one needs to argue that the auxiliary
input comes from a distribution that does not undermine soundness [BCPR14].

20

Concretely, the relation generator for R′PBS in Eq. (3) runs (p,G, G,H)← Sch.Setup(1λ) (as
for RPBS), and in addition (ek,dk)← PKE.KeyGen(1λ); x←$ Zp and X := xG. It returns (x,dk)
as auxiliary input. In the proof of unforgeability (Theorem 1), when reducing to soundness of
NArg, the reduction thus still has the values x and dk it requires to simulate the game.

5.3 Blind Schnorr Using secp256k1 and SHA-256

We briefly consider the scenario where G is the standardized elliptic curve secp256k1 group
and H is the hash function SHA-256, as is the case for Bitcoin since the Taproot upgrade by
Blockstream [WNR20]. The curve secp256k1 is defined by the equation E : y2 = x3 + 7 over
the finite field of size p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1. The group order q = |E(Fp)|
is prime and the curve’s embedding degree does not permit an efficient pairing, which excludes
pairing-based SNARK schemes [Gro16, GWC19, SL20] as potential candidates, unless one
can afford to pay the high cost in performance of conducting non-native modulo-p reductions
in the field generated by the pairing-friendly curve [KPS18], in order to compute the group
element R′ := R+ αG+ βX and check if c ≡p H(R′, X,m) + β.

As observed in [SS11], the secp256k1 curve has a “twin” defined over the same equation,
which is called secq256k1 and whose order is p. This “cycle of curves” enables the use of a
proof system that does not require pairings and can be instantiated over the secq256k1 curve,
such as Bulletproofs [BBB+18] or Halo [BGH19]. This avoids expensive overhead in expressing
modulo-p reductions in the circuit and hence group operations of the curve secp256k1 are
relatively cheap to arithmetize. The factors of the group order

|F∗p| = p− 1 = 2 · 3 · 7 · 13441·
0x1db8260e5e3b460a46a0088fccf6a3a5936d75d89a776d4c0da4f338aafb (4)

however imply that there is no support for run-time-optimal FFT techniques, but require a
method such as Schönhage and Strassen’s algorithm [SS71], which runs in O(n logn log logn),
instead of O(n logn) for n gates7, but is still feasible for practical purposes. Transparent-
setup zkSNARKs such as Redshift [KPV19], STARKs [BBHR19] or Aurora [BCR+19], that
depend on the IOPP protocol FRI [BBHR18] when committing to the circuit assignment
and forgo the use of elliptic curves, face a similar problem. That is, to avoid expressing the
modulo-p reduction explicitly, the FRI protocol has to be instantiated over Fp. But since
the multiplicative subgroup F∗p requires high 2-adicity for FRI’s folding technique, this is not
possible considering the factors in Eq. (4). To the best of our knowledge, it remains an open
problem if FRI (which shares many features of the FFT algorithm) can be efficiently executed
over non-smooth domains.

As mentioned earlier, SHA-256 is a prominent example of a function that is not known to
be arithmetic-circuit-friendly. As a result, one call of its compression function requires around
26 000 R1CS constraints [CGGN17, KPS18], which approximately amounts to 110 000 gates
in the 2-fan-in arithmetization used by Halo and Bulletproofs.

We currently recommend to implement our predicate blind Schnorr signature scheme
using Halo 2 [Com21], the extension of Halo. Halo 2 also has a transparent setup and can be
instantiated over the curve cycle secp256k1–secq256k1. It supports batch verification, recursive

7 There exist more refined techniques for such scenarios such as [HvdH22, BCKL21], which achieve better
asymptotics but whose concrete constants are likely to render them unpractical.

21

proof composition via proof accumulation and due to its “PLONK-ish arithmetization”[GWC19]
it supports lookups, which become particularly useful when multiple invocations of binary
operations (as it is the case for SHA-256) are required.

A disadvantage of Halo 2 compared to Bulletproofs comes from its reliance on the permuta-
tion argument of PLONK [GWC19], which requires a multiplicative subgroup of order ≥ n.
If n is smaller than the group order, the circuit needs to be extended by dummy gates to
match the group order. Considering the factors of |F∗p| in Eq. (4), we obtain an upper bound
for supported circuit sizes of 2 · 3 · 7 · 13441 = 564 522 gates, which is sufficient to execute a
few invocations of the compression function while leaving enough space to consider predicate
deciders P of decent complexity. We remark that the support for efficient proof accumulation
(and therefore recursion) could be exploited to overcome the gate-number limitation in certain
aspects and allow for example arbitrary-length messages by implementing the Merkle-Damgård
construction that underlies the SHA-256 in a recursive circuit design over the curve cycle
secp256k1–secq256k1.

Acknowledgements. The authors are supported by the Vienna Science and Technology Fund
(WWTF) through project VRG18-002. We would like to thank Tim Ruffing for preliminary
discussions.

References

[AAB+20] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan Szepieniec. Design
of symmetric-key primitives for advanced cryptographic protocols. IACR Trans. Symm. Cryptol.,
2020(3):1–45, 2020.

[ACG+19] Martin R. Albrecht, Carlos Cid, Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lüftenegger,
Christian Rechberger, and Markus Schofnegger. Algebraic cryptanalysis of STARK-friendly designs:
Application to MARVELlous and MiMC. In Steven D. Galbraith and Shiho Moriai, editors,
ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages 371–397. Springer, December 2019.

[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge Tiessen. MiMC:
Efficient encryption and cryptographic hashing with minimal multiplicative complexity. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages
191–219. Springer, December 2016.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero:
Lightweight sublinear arguments without a trusted setup. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 2087–2104. ACM Press,
October / November 2017.

[AO00] Masayuki Abe and Tatsuaki Okamoto. Provably secure partially blind signatures. In Mihir Bellare,
editor, CRYPTO 2000, volume 1880 of LNCS, pages 271–286. Springer, August 2000.

[App] Apple. iCloud private relay. Available at https://www.apple.com/privacy/docs/iCloud_Private_
Relay_Overview_Dec2021.PDF.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell.
Bulletproofs: Short proofs for confidential transactions and more. In 2018 IEEE Symposium on
Security and Privacy, pages 315–334. IEEE Computer Society Press, May 2018.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-solomon interactive
oracle proofs of proximity. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and
Donald Sannella, editors, ICALP 2018, volume 107 of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl,
July 2018.

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable zero knowledge with no
trusted setup. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III,
volume 11694 of LNCS, pages 701–732. Springer, August 2019.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of knowledge. J.
Comput. Syst. Sci., 37(2):156–189, 1988.

22

https://www.apple.com/privacy/docs/iCloud_Private_Relay_Overview_Dec2021.PDF
https://www.apple.com/privacy/docs/iCloud_Private_Relay_Overview_Dec2021.PDF

[BCC+09] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Hovav
Shacham. Randomizable proofs and delegatable anonymous credentials. In Shai Halevi, editor,
CRYPTO 2009, volume 5677 of LNCS, pages 108–125. Springer, August 2009.

[BCI+10] Eric Brier, Jean-Sébastien Coron, Thomas Icart, David Madore, Hugues Randriam, and Mehdi
Tibouchi. Efficient indifferentiable hashing into ordinary elliptic curves. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 237–254. Springer, August 2010.

[BCKL09] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. Compact e-cash and
simulatable VRFs revisited. In Hovav Shacham and Brent Waters, editors, PAIRING 2009, volume
5671 of LNCS, pages 114–131. Springer, August 2009.

[BCKL21] Eli Ben-Sasson, Dan Carmon, Swastik Kopparty, and David Levit. Elliptic curve Fast Fourier
Transform (ECFFT) part I: Fast polynomial algorithms over all finite fields. Electron. Colloquium
Comput. Complex., 28:103, 2021.

[BCPR14] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of extractable one-way
functions. In David B. Shmoys, editor, 46th ACM STOC, pages 505–514. ACM Press, May / June
2014.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and Nicholas P.
Ward. Aurora: Transparent succinct arguments for R1CS. In Yuval Ishai and Vincent Rijmen,
editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 103–128. Springer, May 2019.

[BDL+12] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed
high-security signatures. Journal of Cryptographic Engineering, 2(2):77–89, September 2012.

[BDN18] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for smaller blockchains.
In Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part II, volume 11273 of
LNCS, pages 435–464. Springer, December 2018.

[Ber15] Daniel J. Bernstein. Multi-user schnorr security, revisited. Cryptology ePrint Archive, Paper
2015/996, 2015. https://eprint.iacr.org/2015/996.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In Joe
Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer, August 2001.

[BFL20] Balthazar Bauer, Georg Fuchsbauer, and Julian Loss. A classification of computational assumptions
in the algebraic group model. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part II, volume 12171 of LNCS, pages 121–151. Springer, August 2020.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications
(extended abstract). In 20th ACM STOC, pages 103–112. ACM Press, May 1988.

[BFP21] Balthazar Bauer, Georg Fuchsbauer, and Antoine Plouviez. The one-more discrete logarithm assump-
tion in the generic group model. In Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021,
Part IV, volume 13093 of LNCS, pages 587–617. Springer, December 2021.

[BFS16] Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. NIZKs with an untrusted CRS: Security in
the face of parameter subversion. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016,
Part II, volume 10032 of LNCS, pages 777–804. Springer, December 2016.

[BFS19] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent snarks from dark compilers. IACR
Cryptol. ePrint Arch., 2019:1229, 2019.

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive proof composition without a trusted
setup. Cryptology ePrint Archive, Report 2019/1021, 2019. https://eprint.iacr.org/2019/1021.

[BGL20] Eli Ben-Sasson, Lior Goldberg, and David Levit. STARK friendly hash – survey and recommendation.
Cryptology ePrint Archive, Report 2020/948, 2020. https://eprint.iacr.org/2020/948.

[BGM17] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party computation for zk-SNARK
parameters in the random beacon model. Cryptology ePrint Archive, Report 2017/1050, 2017.
https://eprint.iacr.org/2017/1050.

[BK22] Dan Boneh and Chelsea Komlo. Threshold signatures with private accountability. In CRYPTO 2022,
Part IV, LNCS, pages 551–581. Springer, August 2022.

[BL13] Foteini Baldimtsi and Anna Lysyanskaya. Anonymous credentials light. In Ahmad-Reza Sadeghi,
Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages 1087–1098. ACM Press, November
2013.

[BLL+21] Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù, and Mariana Raykova. On the
(in)security of ROS. In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021,
Part I, volume 12696 of LNCS, pages 33–53. Springer, October 2021.

[BNPS03] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko. The one-more-
RSA-inversion problems and the security of Chaum’s blind signature scheme. Journal of Cryptology,
16(3):185–215, June 2003.

23

https://eprint.iacr.org/2015/996
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2020/948
https://eprint.iacr.org/2017/1050

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the
gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt, editor, PKC 2003, volume 2567 of
LNCS, pages 31–46. Springer, January 2003.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria
Ashby, editors, ACM CCS 93, pages 62–73. ACM Press, November 1993.

[Bra94] Stefan Brands. Untraceable off-line cash in wallets with observers (extended abstract). In Douglas R.
Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 302–318. Springer, August 1994.

[BRS20] Samuel Brack, Leonie Reichert, and Björn Scheuermann. CAUDHT: Decentralized contact tracing
using a DHT and blind signatures. Cryptology ePrint Archive, Report 2020/398, 2020. https:
//eprint.iacr.org/2020/398.

[CFN90] David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash. In Shafi Goldwasser, editor,
CRYPTO’88, volume 403 of LNCS, pages 319–327. Springer, August 1990.

[CGGN17] Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca Nizzardo. Zero-knowledge
contingent payments revisited: Attacks and payments for services. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 229–243. ACM Press,
October / November 2017.

[Cha82] David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L. Rivest, and
Alan T. Sherman, editors, CRYPTO’82, pages 199–203. Plenum Press, New York, USA, 1982.

[Cha88] David Chaum. Elections with unconditionally-secret ballots and disruption equivalent to breaking
RSA. In C. G. Günther, editor, EUROCRYPT’88, volume 330 of LNCS, pages 177–182. Springer,
May 1988.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas P.
Ward. Marlin: Preprocessing zkSNARKs with universal and updatable SRS. In Anne Canteaut and
Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 738–768. Springer,
May 2020.

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous
credentials with optional anonymity revocation. In Birgit Pfitzmann, editor, EUROCRYPT 2001,
volume 2045 of LNCS, pages 93–118. Springer, May 2001.

[Com21] The Electric Coin Company. The halo2 book, 2021. Available at https://zcash.github.io/halo2/
index.html.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and transparent
recursive proofs from holography. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part I, volume 12105 of LNCS, pages 769–793. Springer, May 2020.

[CP93] David Chaum and Torben P. Pedersen. Wallet databases with observers. In Ernest F. Brickell,
editor, CRYPTO’92, volume 740 of LNCS, pages 89–105. Springer, August 1993.

[DJW22] Frank Denis, Frederic Jacobs, and Christopher A. Wood. RSA blind signatures [work in progress],
2022. Available at https://datatracker.ietf.org/doc/draft-irtf-cfrg-rsa-blind-signatures/.

[DLZ+20] Aaqib Bashir Dar, Auqib Hamid Lone, Saniya Zahoor, Afshan Amin Khan, and Roohie Naaz.
Applicability of mobile contact tracing in fighting pandemic (COVID-19): Issues, challenges and
solutions. Cryptology ePrint Archive, Report 2020/484, 2020. https://eprint.iacr.org/2020/484.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory, 31(4):469–472, 1985.

[FHS15] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Practical round-optimal blind signatures
in the standard model. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015,
Part II, volume 9216 of LNCS, pages 233–253. Springer, August 2015.

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications. In
Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS,
pages 33–62. Springer, August 2018.

[FKP17] Manuel Fersch, Eike Kiltz, and Bertram Poettering. On the one-per-message unforgeability of
(EC)DSA and its variants. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part II, volume
10678 of LNCS, pages 519–534. Springer, November 2017.

[FO22] Georg Fuchsbauer and Michele Orrù. Non-interactive Mimblewimble transactions, revisited. To
appear at ASIACRYPT’22, 2022. Available at https://eprint.iacr.org/2022/265.

[FOO93] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret voting scheme for large
scale elections. In Jennifer Seberry and Yuliang Zheng, editors, AUSCRYPT’92, volume 718 of
LNCS, pages 244–251. Springer, December 1993.

24

https://eprint.iacr.org/2020/398
https://eprint.iacr.org/2020/398
https://zcash.github.io/halo2/index.html
https://zcash.github.io/halo2/index.html
https://datatracker.ietf.org/doc/draft-irtf-cfrg-rsa-blind-signatures/
https://eprint.iacr.org/2020/484
https://eprint.iacr.org/2022/265

[FOS19] Georg Fuchsbauer, Michele Orrù, and Yannick Seurin. Aggregate cash systems: A cryptographic
investigation of Mimblewimble. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019,
Part I, volume 11476 of LNCS, pages 657–689. Springer, May 2019.

[FPS20] Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin. Blind schnorr signatures and signed
ElGamal encryption in the algebraic group model. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 63–95. Springer, May 2020.

[Fuc11] Georg Fuchsbauer. Commuting signatures and verifiable encryption. In Kenneth G. Paterson, editor,
EUROCRYPT 2011, volume 6632 of LNCS, pages 224–245. Springer, May 2011.

[Fuc18] Georg Fuchsbauer. Subversion-zero-knowledge SNARKs. In Michel Abdalla and Ricardo Dahab,
editors, PKC 2018, Part I, volume 10769 of LNCS, pages 315–347. Springer, March 2018.

[Fuc19] Georg Fuchsbauer. WI is not enough: Zero-knowledge contingent (service) payments revisited. In
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019,
pages 49–62. ACM Press, November 2019.

[GG14] Sanjam Garg and Divya Gupta. Efficient round optimal blind signatures. In Phong Q. Nguyen and
Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 477–495. Springer,
May 2014.

[GKM+18] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers. Updatable and
universal common reference strings with applications to zk-SNARKs. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 698–728.
Springer, August 2018.

[GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus Schofnegger.
Poseidon: A new hash function for zero-knowledge proof systems. In Michael Bailey and Rachel
Greenstadt, editors, USENIX Security 2021, pages 519–535. USENIX Association, August 2021.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems. Journal
of Cryptology, 7(1):1–32, December 1994.

[Goo] Google. VPN by Google One. Available at https://one.google.com/about/vpn/howitworks.
[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-

Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326.
Springer, May 2016.

[GWC19] A. Gabizon, Zachary J. Williamson, and Oana Ciobotaru. Plonk: Permutations over lagrange-bases
for oecumenical noninteractive arguments of knowledge. IACR Cryptol. ePrint Arch., 2019:953,
2019.

[HAB+17] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro, and Sharon Goldberg.
TumbleBit: An untrusted bitcoin-compatible anonymous payment hub. In NDSS 2017. The Internet
Society, February / March 2017.

[Her97] Mark Allan Herschberg. Secure electronic voting over the world wide web. PhD thesis, Massachusetts
Institute of Technology, 1997.

[HK73] John E Hopcroft and Richard M Karp. An nˆ5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on computing, 2(4):225–231, 1973.

[HKL19] Eduard Hauck, Eike Kiltz, and Julian Loss. A modular treatment of blind signatures from identifi-
cation schemes. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume
11478 of LNCS, pages 345–375. Springer, May 2019.

[HKOK06] Yoshikazu Hanatani, Yuichi Komano, Kazuo Ohta, and Noboru Kunihiro. Provably secure electronic
cash based on blind multisignature schemes. In Giovanni Di Crescenzo and Avi Rubin, editors, FC
2006, volume 4107 of LNCS, pages 236–250. Springer, February / March 2006.

[HvdH22] David Harvey and Joris van der Hoeven. Polynomial multiplication over finite fields in time o(n logn.
Journal of the ACM (JACM), 69:1 – 40, 2022.

[JLO97] Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of blind digital signatures (extended
abstract). In Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 150–164.
Springer, August 1997.

[Kar73] Alexander V Karzanov. An exact estimate of an algorithm for finding a maximum flow, applied to
the problem on representatives. Problems in Cybernetics, 5:66–70, 1973.

[KLX22] Julia Kastner, Julian Loss, and Jiayu Xu. On pairing-free blind signature schemes in the algebraic
group model. In Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe, editors, PKC 2022, Part
II, volume 13178 of LNCS, pages 468–497. Springer, 2022.

[KPS18] Ahmed E. Kosba, Charalampos Papamanthou, and Elaine Shi. xJsnark: A framework for efficient
verifiable computation. In 2018 IEEE Symposium on Security and Privacy, pages 944–961. IEEE
Computer Society Press, May 2018.

25

https://one.google.com/about/vpn/howitworks

[KPV19] Assimakis Kattis, Konstantin Panarin, and Alexander Vlasov. RedShift: Transparent SNARKs
from list polynomial commitment IOPs. Cryptology ePrint Archive, Report 2019/1400, 2019.
https://eprint.iacr.org/2019/1400.

[LLL+19] Yi Liu, Zhen Liu, Yu Long, Zhiqiang Liu, Dawu Gu, Fei Huan, and Yanxue Jia. TumbleBit++: A
comprehensive privacy protocol providing anonymity and amount-invisibility. In Ron Steinfeld and
Tsz Hon Yuen, editors, ProvSec 2019, volume 11821 of LNCS, pages 339–346. Springer, October
2019.

[MPSW19] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. Simple Schnorr multi-
signatures with applications to Bitcoin. Des. Codes Cryptogr., 87(9):2139–2164, 2019.

[MSM+16] Hiraku Morita, Jacob C. N. Schuldt, Takahiro Matsuda, Goichiro Hanaoka, and Tetsu Iwata. On
the security of the Schnorr signature scheme and DSA against related-key attacks. In Soonhak Kwon
and Aaram Yun, editors, ICISC 15, volume 9558 of LNCS, pages 20–35. Springer, November 2016.

[Nec94] V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm. Mathematical
Notes, 55(2):165–172, 1994.

[Nic19] Jonas Nick. Blind signatures in scriptless scripts. Presentation given at Building on Bit-
coin 2019, 2019. Slides and video available at https://jonasnick.github.io/blog/2018/07/31/
blind-signatures-in-scriptless-scripts/.

[NS02] Phong Q. Nguyen and Igor Shparlinski. The insecurity of the digital signature algorithm with
partially known nonces. Journal of Cryptology, 15(3):151–176, June 2002.

[Oka06] Tatsuaki Okamoto. Efficient blind and partially blind signatures without random oracles. In Shai
Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 80–99. Springer, March
2006.

[OO92] Tatsuaki Okamoto and Kazuo Ohta. Universal electronic cash. In Joan Feigenbaum, editor,
CRYPTO’91, volume 576 of LNCS, pages 324–337. Springer, August 1992.

[PS96] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In Ueli M. Maurer,
editor, EUROCRYPT’96, volume 1070 of LNCS, pages 387–398. Springer, May 1996.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind signatures.
Journal of Cryptology, 13(3):361–396, June 2000.

[ROG07] Francisco Rodríguez-Henríquez, Daniel Ortiz-Arroyo, and Claudia García-Zamora. Yet another
improvement over the Mu–Varadharajan e-voting protocol. Computer Standards & Interfaces,
29(4):471–480, 2007.

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles Brassard,
editor, CRYPTO’89, volume 435 of LNCS, pages 239–252. Springer, August 1990.

[Sch01] Claus-Peter Schnorr. Security of blind discrete log signatures against interactive attacks. In Sihan
Qing, Tatsuaki Okamoto, and Jianying Zhou, editors, ICICS 01, volume 2229 of LNCS, pages 1–12.
Springer, November 2001.

[Set20] Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted setup. In Daniele
Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages
704–737. Springer, August 2020.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy, editor,
EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, May 1997.

[SL20] Srinath Setty and Jonathan Lee. Quarks: Quadruple-efficient transparent zkSNARKs. Cryptology
ePrint Archive, Report 2020/1275, 2020. https://eprint.iacr.org/2020/1275.

[SS71] Arnold Schönhage and Volker Strassen. Schnelle Multiplikation grosser Zahlen. Computing, 7(3):281–
292, 1971.

[SS11] Joseph H Silverman and Katherine E Stange. Amicable pairs and aliquot cycles for elliptic curves.
Experimental Mathematics, 20(3):329–357, 2011.

[Wag02] David Wagner. A generalized birthday problem. In Moti Yung, editor, CRYPTO 2002, volume 2442
of LNCS, pages 288–303. Springer, August 2002.

[WNR20] Pieter Wuille, Jonas Nick, and Tim Ruffing. Schnorr signatures for secp256k1. Bitcoin Improvement
Proposal, 2020. See https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki.

[WTs+18] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael Walfish. Doubly-efficient
zkSNARKs without trusted setup. In 2018 IEEE Symposium on Security and Privacy, pages 926–943.
IEEE Computer Society Press, May 2018.

26

https://eprint.iacr.org/2019/1400
https://jonasnick.github.io/blog/2018/07/31/blind-signatures-in-scriptless-scripts/
https://jonasnick.github.io/blog/2018/07/31/blind-signatures-in-scriptless-scripts/
https://eprint.iacr.org/2020/1275
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki

A Weak OMDL

We introduce the weak one-more discrete logarithm (wOMDL) problem as a stepping stone in
our proof of unforgeability of our predicate blind signature construction in Appendix B. The
wOMDL problem consists in computing the discrete logarithm of q group elements, obtained
from a challenge oracle, while being given access to a discrete-logarithm oracle that can be
called at most q − 1 times. In contrast to the original OMDL game [BNPS03], the DL oracle
can only be queried on challenge group elements, and not on arbitrary group elements. This
makes the wOMDL assumption significantly weaker than OMDL. We show that wOMDL is
implied by DL, while such an implication is unlikely to hold for OMDL [BFL20].

Definition 14. A group generation algorithm GrGen satisfies the weak one-more-discrete
logarithm assumption if for every p.p.t. adversary A

AdvwOMDL
GrGen,A(λ) := Pr

[
wOMDLA

GrGen(λ)
]

is negligible in λ, where the game wOMDL is defined by:

wOMDLA
GrGen(1λ)

(p,G, G)←GrGen(1λ)
~x := [] ; k := 0

~y ← AChal,DLog(p,G, G)

return
(
~y = ~x ∧ k < |~x|

)

Chal()
x←$Zp ; X := xG

~x = ~x‖x
return X

DLog(i)
k := k + 1
return ~xi

Lemma 1. For every p.p.t. algorithm A playing in game wOMDL that calls the Chal oracle
at most q times, there exists a p.p.t. algorithm B playing in game DL s.t.

AdvwOMDL
GrGen,A(λ) = q · AdvDL

GrGen,B(λ) . (5)

Proof. We construct B playing against DL, which on input (p,G, G, Z) must compute logG(Z).
B simulates game wOMDL for A, except that for a random, say the j-the Chal() query, B
embeds Z and aborts if A queries DLog(j). If A wins wOMDL outputting ~y, its j-th component
is the DL solution.

B(p,G, G, Z)
~x := [] // empty list

j ←$ [q]
~y ← AChal,DLog(p,G, G)
return ~yj

Chal()
if |~x| = j − 1 : // i.e., j-th Chal() call

~x = ~x‖⊥
return Z

x←$Zp ; X := xG

~x = ~x‖x
return X

DLog(i)
if ~xi = ⊥ :

abort
return ~xi

As there must be at least one index i ∈ [|~x|] so that A has not queried DLog(i), and since
|~x| ≤ q, the probability of B not aborting is at least 1/q, which proves the lemma.

B Proof of Theorem 1

We give a formal proof that our predicate blind signature scheme PBSch from Figure 4
satisfies strong unforgeability according to Definition 12 by providing reductions to the security
properties of its building blocks. We proceed by a sequence of games specified in Figure 5.

27

UNFA
PBSch(λ), G1 , G2 , G3

(p,G, G,H)← Sch.Setup(1λ)
(crs, τ)← NArg.Setup(p,G, G,H)

(ek, dk)← PKE.KeyGen(1λ)
x←$Zp ; X := xG

vk := (crs, ek, X)
~S := [] ; P ~rd := []

~m := []; ~α := []; ~β := [];

~D := [] ; Q := ∅(
m∗i , σ

∗
i := (R∗i , s∗i)

)
i∈[n]

← ASign1,Sign2 (vk)

if
(
∃ i ∈ [n] ∃ j ∈ [|~S|] : m∗i = ~mj ∧
~Sj 6= ε ∧ ~Sj [0] + ~αjG+ ~βjX = R∗i

)
:

return 0 (II)

return
(
n > 0

∧ ∀ i ∈ [n] : PBSch.Ver(vk,m∗i , σ∗i) = 1
∧ ∀ i 6= j ∈ [n] : (m∗i , σ∗i) 6= (m∗j , σ∗j)
∧ @ ρ ∈ InjF([n], [|P ~rd|]) :

∀ i ∈ [n] : P(P ~rdρ(i),m
∗
i) = 1

)

Sign1(prd,C)

r←$Zp ; R := rG

(m,α, β) := PKE.Dec(dk,C)
~m = ~m‖m ; ~α = ~α‖α ; ~β = ~β‖β

(R̄, s̄)← Sch.Sign
(
(p,G, G,H, x),m

)
Q = Q‖

(
m, (R̄, s̄)

)
R = R̄− αG− βX
~D = ~D‖

(
(s̄− α) mod p

)
~S = ~S‖(R, r,C, prd)
return R

Sign2
(
j, (c, π)

)
if ~Sj = ε : return ⊥

(R, r,C,prd) := ~Sj
θ := (X,R, c,C,prd, ek)
if NArg.Vfy(crs, θ, π) = 0 :

return 0

R′ := R+ ~αjG+ ~βjX

if
(
c 6≡p (H(R′, X, ~mj) + ~βj) ∨ P(prd, ~mj) 6= 1

)
:

abort and return 0 (I)
~Sj := ε ; P ~rd = P ~rd‖prd

return ~Dj

return
(
(r + cx) mod p

)
Fig. 5. The unforgeability game from Figure 2 for the scheme PBSch[P,GrGen,HGen,PKE,NArg] from Figure 4
and hybrid games used in the proof of Theorem 1. Gi includes all boxes with an index ≤ i and ignores all boxes
with and index > i.

G0 is game UNF from Figure 2 with PBS instantiated by PBSch from Figure 4. The generic
PBS.Setup hence is replaced by the setup from Figure 4. In Sign1, the call PBS.Sign1 is
instantiated by sampling r←$ Zp and returning R = rG, and in Sign2, we instantiate PBS.Sign2
as defined in Figure 4, by a NIZK verification and return 0 if verification failed.

G1. In G1 we introduce three lists ~m, ~α and ~β and modify Sign1, so that on each call with
input (prd,C) we decrypt C to obtain the values (m,α, β), which we then append to the lists
~m = ~m‖m, ~α = ~α‖α, ~β = ~β‖β. In each Sign2 call on input

(
j, (c, π)

)
, we check if for the

decrypted values at index j, we either have c 6≡p H(R′, X, ~mj) + ~βj for R′ := R+ ~αjG+ ~βjX,
or P(prd, ~mj) = 0. If either is the case, we stop the game and return 0.

28

Reduction to Soundness of NArg. We show that the difference in AdvUNF
PBSch,A(λ) and

AdvG1
A (λ) is bounded by the advantage in winning the game SND (Definition 4) against

soundness of NArg[RPBS] played by adversary S defined in Figure 6.

S(crs)

(p,G, G,H) :⊆ crs
(ek, dk)← PKE.KeyGen(1λ)
x←$Zp ; X := xG

vk := (crs, ek, X)
~S := []; ~m := []; ~α := []; ~β := [](
m∗i , σ

∗
i

)
i∈[n]

← ASign1,Sign2 (vk)

return ⊥

Sign1(prd,C)

r←$Zp ; R := rG

(m,α, β) := PKE.Dec(dk,C)
~m = ~m‖m ; ~α = ~α‖α ; ~β = ~β‖β

~S = ~S‖(R, r,C, prd)
return R

Sign2
(
j, (c, π)

)
if ~Sj = ε : return ⊥

(R, r,C, prd) := ~Sj
θ := (X,R, c,C, prd, ek)
if NArg.Vfy(par, θ, π) = 0 :

return 0

R′ := R+ ~αjG+ ~βjX

if
(
c 6≡p (H(R′, X, ~mj) + ~βj) ∨ P(prd, ~mj) 6= 1

)
:

stop and return (θ, π)

~Sj := ε

return
(
(r + cx) mod p

)

Fig. 6. Adversary S playing against soundness of NArg[RPBS]

According to the definition of game SND for NArg for relation RPBS, S gets as input the
common reference string crs, generated by NArg.Setup(parR), where parR is generated by
NArg.Rel, which is defined as Sch.Setup. Reduction S, run in game SND therefore perfectly
simulates G1 to adversary A until abort. In Sign2, it checks whether for a valid statement/proof
pair (θ, π) parts of the supposed witness m,α and β satisfy c 6= (H(R′, X,m) + β) mod p
or P(prd,m) 6= 1 and returns the pair (θ, π), if either is the case. S thus returns a pair
(θ, π) if and only if G1 aborts in line (I). It remains to show that when this happens, S wins
game SND. Assume S reaches the “stop” condition in a call Sign2 on input

(
j, (c, π)

)
and let(

θ := (X,R, c,C,prd, ek), π
)
be its output. The condition is only reached if π is an accepting

proof for statement θ. It suffices thus to show that θ is not a valid statement.
Towards contradiction, assume θ is a valid statement, meaning that there exists w′ :=

(m′, α′, β′, ρ′) s.t. RPBS(parR, θ, w
′) = 1, which means:

PKE.Enc(ek, (m′, α′, β′); ρ′) = C ∧ c ≡p H(R′, X,m′) + β′ ∧ P(prd,m′) = 1 , (6)

where R′ := R+α′G+β′X. By definition of S we have (m,α, β) = PKE.Dec(dk,C). By perfect
correctness of PKE, together with the first clause in Eq. (6), this can only be the case if

m′ = m and α′ = α and β′ = β . (7)

29

Again by the definition of S, we have c 6≡p H(R+αG+βX,X,m) +β ∨ P(prd,m) 6= 1, which
is a contradiction to Eq. (6) and (7). Therefore such a witness w′ does not exist. This means
that whenever (I) is reached in G1, then S wins SND and thus

AdvUNF
PBSch,A(λ) ≤ AdvSND

NArg[RPBS],S(λ) + Pr
[
GA

1 (λ)
]
. (8)

G2. In G2 we introduce the event

E :⇔ ∃ i ∈ [n] ∃ j ∈ [|~S|] : m∗i = ~mj ∧ ~Sj 6= ε ∧ ~Sj [0] + ~αjG+ ~βjX = R∗i , (9)

which we check after the adversary made its final output, and return 0 if it is satisfied. If E
occurs, our final reduction to the unforgeability of Schnorr signatures will not work, since
A might only return signatures that the reduction asked to its signing oracle. Concretely,
the event E states that for at least one of the messages m∗i in A’s final output, there exists
a session j where this particular message was decrypted in Sign1 (formalized by ~mj = m∗i)
and session j was not successfully closed via a call to Sign2 (formalized by ~Sj 6= ε) and
yet the first part of the message’s Schnorr signature R∗i is related to Rj := ~Sj [0] that was
returned in the j-th Sign1 call s.t. Rj + ~αjG + ~βjX = R∗i , where ~αj and ~βj were obtained
via decryption in the j-th session. We have Pr

[
GA

2 (λ)
]

= Pr
[
GA

1 (λ) ∧ ¬E
]
. Together with

Pr
[
GA

1 (λ)
]

= Pr
[
GA

1 (λ) ∧ E
]

+ Pr
[
GA

1 (λ) ∧ ¬E
]
we obtain:

Pr
[
GA

1 (λ)
]

= Pr
[
GA

1 (λ) ∧ E
]

+ Pr
[
GA

2 (λ)
]
. (10)

Reduction to DL. We bound Pr
[
GA

1 (λ)∧E
]
by the advantage against the discrete-logarithm

(DL) hardness of GrGen of an algorithm D. The reduction proceeds in two steps. First we
provide a reduction to wOMDL via the adversary L given in Figure 7; then we apply Lemma 1
to reduce to the hardness of DL.

By the definition of game wOMDL, L receives as input the group parameters (p,G, G).
With that it chooses a hash function H← HGen(p) and then simulates G1 for A, where in each
call of Sign1, L queries its challenge oracle R← Chal(). Since the oracle returns uniformly
sampled elements, the simulation is perfect up to this point. If A closes a session with session
number j successfully with a call to Sign2, L obtains r ← DLog(j) from its oracle DLog.

To analyze the difference in success probabilities of G1 and G2, we assume L satisfies
condition E from (9) and outputs ~r. If E occurs, we have that some session number j with
challenge Rj := ~Sj [0] was not closed, and thus the oracle rj ← DLog(j) was not called
either. Also for some index i ∈ [n], we have Rj + ~αjG + ~βjX = R∗i and by the assertion
that A wins G1, we know by the validity of the signatures that s∗iG = R∗i + H(R∗i , X,m∗i)X.
Combining these equations yields s∗iG = rjG + ~αjG + ~βjxG + H(R∗i , X,m∗i)xG, and thus
s∗i ≡p rj + ~αj + ~βjx+ H(R∗i , X,m∗i)x. From this, L computes rj := logG(Rj) and for all other
challenges Rt, t 6= j, for which the session has not been closed, L calls DLog(t) and stores
the reply rj in the list ~r. By outputting ~r, L wins game wOMDL, since ~r contains the discrete
logarithm of all challenges and the oracle DLog has been called |~r| − 1 times as required by
the game.

Therefore we obtain:
Pr
[
GA

1 (λ) ∧ E
]
≤ AdvwOMDL

GrGen,L . (11)

30

LChal,DLog(p,G, G)

H← HGen(p)
(crs, τ)← NArg.Setup

(
(p,G, G,H)

)
(ek,dk)← PKE.KeyGen(1λ)
x←$Zp ; X := xG

vk := (crs, ek, X)
~S := [] ; P ~rd := []

~m := []; ~α := []; ~β := []

~r := [](
m∗i , (R∗i , s∗i)

)
i∈[n]

← ASign1,Sign2 (vk)

if
(
∃ i ∈ [n] ∃ j ∈ [|~S|] : m∗i = ~mj ∧
~Sj 6= ε ∧ ~Sj [0] + ~αjG+ ~βjX = R∗i

)
:

for t ∈ [|~S|] \ {j} :

if ~St 6= ε :
// close all open sessions except j-th

~rt ← DLog(j)

~rj :=
(
s∗i − ~αj − ~βj · x

− H(R∗i , X,m∗i) · x
)

mod p
return ~r

return ⊥

Sign1(prd,C)

R← Chal()

(m,α, β) := PKE.Dec(dk,C)
~m = ~m‖m ; ~α = ~α‖α ; ~β = ~β‖β

~S = ~S‖(R,C, prd)
~r = ~r‖0 // keep |~r| consistent with other lists

R′ := R+ αG+ βX

return R

Sign2
(
j, (c, π)

)
if ~Sj = ε : return ⊥

(R,C, prd) := ~Sj
θ := (X,R, c,C, prd, ek)
if NArg.Vfy(crs, θ, π) = 0 :

return ⊥

R′ := R+ ~αjG+ ~βjX

if
(
c 6≡p (H(R′, X, ~mj) + ~βj) ∨ P(prd, ~mj) 6= 1

)
:

abort and return 0 (I)
~Sj := ε;P ~rd = P ~rd‖prd

~rj := DLog(j)

return
(
(~rj + cx) mod p

)
Fig. 7. Adversary L playing in game wOMDL from Definition 14

Now let q be the upper-bound of queries to the Sign1 oracle made by A. Then L’s number
of queries to its Chal oracle is also bounded by q, and by applying Lemma 1 we obtain an
adversary D playing in the game DL where

Pr
[
GA

1 (λ) ∧ E
]
≤ q · AdvDL

GrGen,D . (12)

G3. In G3 we prepare the reduction to sEUF-CMA security of the Schnorr signature scheme
Sch[GrGen,HGen] underlying PBSch, by making the following changes: First we introduce two
empty lists ~D and Q.

Then we modify Sign1 so that after decrypting C to (m,α, β), we compute a Schnorr
signature on m under the signing key sk := (p,G, G,H, x) by running (R̄, s̄)← Sch.Sign(sk,m).
Next we replace the random signer challenge R := rG by R := R̄ − αG − βX. Note that
Sch.Sign returns a uniform R̄ and hence R is a uniform element and thus the simulation is
perfect up to here. As a last change in Sign1, we compute and append (s̄− α) mod p to the
list ~D. In Sign2 instead of returning s := (r + cx) mod p we return the value we previously
stored in ~D, that is s := s̄− α = ~Dj .

31

The user now obtains simulated elements (R, s) = (R̄− αG− βX, s̄− α). By definition of
Sch.Sign we have s̄G = R̄+ H(R̄,X,m)X, and by the assertion that line (I) was not reached,
we have c ≡p H(R+ αG+ βX,X,m) + β. We show that for any choice of α, β and message m
and signing key sk, the user’s new view is distributed equivalently to the old view. According
to the definition of G2, the latter is

{
(R, s)

∣∣ r←$ Zp ; R = rG ; s ≡p r + (H(R+ αG+ βX,X,m) + β)x
}

≡
{
(R̄− αG− βX, s)

∣∣ r̄←$ Zp ; R̄ = r̄G ; s ≡p r̄ − α− βx+ H(R̄,X,m)x+ βx
}

(since r̄ − α− βx is distributed as r; setting s̄ = s+ α, this is distributed as follows)

≡
{
(R̄− αG− βX, s̄− α)

∣∣ r̄←$ Zp ; R̄ = r̄G ; s̄ ≡p r̄ + H(R̄,X,m)x
}

≡
{
(R̄− αG− βX, s̄− α)

∣∣ (R̄, s̄)← Sch.Sign(sk,m)
}
,

which is precisely the view in G3. Thus the simulation remains perfect and we obtain:

Pr
[
GA

2 (λ)
]

= Pr
[
GA

3 (λ)
]
. (13)

Reduction to sEUF-CMA security of standard Schnorr Signature. To finish the
proof, we construct adversary F in Figure 8 that succeeds in the game sEUF-CMA against the
Schnorr signature scheme Sch[GrGen,HGen] with probability Pr

[
GA

3 (λ)
]
.

FSign((sp, X)
)

(crs, τ)← NArg.Setup(sp)
(ek, dk)← PKE.KeyGen(1λ)
vk := (crs, ek, X)
~S := [] ; P ~rd := []

~m := []; ~α := []; ~β := [];

~D := [];Q := []
F ← ASign1,Sign2 (vk)
(m∗, σ∗)←$F \ Q
return (m∗, σ∗)

Sign1(prd,C)

(m,α, β) := PKE.Dec(dk,C)
~m = ~m‖m ; ~α = ~α‖α ; ~β = ~β‖β

(R̄, s̄)← Sign(m)

Q = Q‖
(
m, (R̄, s̄)

)
R := R̄− αG− βX
~D = ~D‖

(
(s̄− α) mod p

)
~S = ~S‖(R, r,C, prd)
return R

Fig. 8. F paying against sEUF-CMA security of Sch[GrGen,HGen]. The oracle Sign2 is simulated to A is as
defined in game G3 in Figure 2.

By the definition of sEUF-CMA, F receives as challenge input a Schnorr verification key
(sp, X) := vk and has access to a signing oracle Sign. With the Schnorr parameters sp it
completes PBSch.Setup computing the common reference string crs for NArg and a key pair
(ek, dk) for PKE. Moreover, F initializes a list Q used to store the message/signature pairs from
its signing oracle Sign. When F simulates G3 for A, it embeds its challenge Schnorr public key
X into the verification key for PBSch. The corresponding secret key is not required since F on

32

each Sign1 query by A forwards the call to its signing oracle Sign. Since the challenge key X
in the sEUF-CMA game is a uniform random element, the simulation remains perfect.

We show that if A wins G3 outputting F = (m∗i , σ∗i)i∈[n], then this set must contain a
successful forgery for F, that is, an element that is not contained inQ = (mj , σj := (R̄j , s̄j))j∈[|~S|]
(where index j corresponds to the signing session number in which the pair was added to
Q). Letting J be the set of indices of the sessions that were eventually closed, we can define
Qcls := (mj , σj)j∈J .

We first show that there exists an element (m∗i∗ , σ∗i∗) ∈ F that is not in Qcls. If we
had F ⊆ Qcls then there would exist and injective function ρ : [n] → J mapping elements
of F to elements of Qcls, in particular, m∗i = mρ(i). For all j ∈ J (the closed sessions),
we have P ~rdj(mj) = 1, as otherwise G3 would have aborted in line (I). We thus have
1 = P ~rdρ(i)(mρ(i)) = P ~rdρ(i)(m∗i) for all i ∈ [n], which contradicts the winning condition of
G3, which requires that no such ρ exists.

We next show that (m∗i∗ , σ∗i∗) /∈ Q\Qcls, that is, it was not obtained in an unfinished session
either. Towards a contradiction, assume for some j /∈ J : (m∗i∗ , (R∗i∗ , s∗i∗)) = (mj , (R̄j , s̄j)). Then
we would have (a) m∗i∗ = mj = ~mj (since ~m stores the same messages as Q), (b) ~Sj 6= ⊥
(since the session was not closed), and (considering the value R in the definition of Sign1)
~Sj [0] = R̄j − ~αjG− ~βjX, which together with R∗i∗ = R̄j yields (c) R∗i∗ = ~Sj [0] + ~αjG+ ~βjX.
Now the existence of values i∗ and j with (a)–(c) leads precisely to an abort of G3 in line (II).

We have thus shown that (m∗i∗ , σ∗i∗) is neither in Qcls, nor in Q \Qcls, and thus not in Q,
which means it is thus a valid forgery for F. We have thus:

Pr
[
GA

3 (λ)
]
≤ AdvsEUF-CMA

Sch[GrGen,HGen],F(λ) . (14)

Putting Eq. (8)–(14) together we obtain Theorem 1.

C Proof of Theorem 2

We give a formal proof that our predicate blind signature scheme PBSch from Figure 4 satisfies
blindness as defined in Definition 13. The proofs works via reductions to the security of the
underlying building blocks, that is, the zero-knowledge property of NArg and CPA-security of
the scheme PKE. For succinctness and readability we sometimes omit the security parameter
λ in the proof but keep it as an implicit input to the games and advantage definitions. We
proceed by a sequence of games specified in Figure 9.

G0 is game BLD from Figure 3 with PBS instantiated with PBSch from Figure 4, that is,
PBS.Setup, PBS.User0, PBS.User1 and PBS.User2 are replaced by the instantiations defined
in Figure 4. The variables state0 and state1 in BLD are replaced by the session variables
αi, βi, ρi, R

′
i, ci,Ci for both sessions i ∈ {0, 1}. As αi, βi, ρi are uniform values, we can sample

them right away. R′i⊕b is part of statei, but we renamed it since in User2 it becomes part of
σi⊕b.

G1. In G1 we make the following change: On oracle call User1, instead of creating a proof
via NArg.Prove we use the simulator NArg.SimProve to simulate a proof for the statement θ.
We show that this change is not efficiently noticeable by defining adversaries Z0 and Z1 in
Figure 10 that play in game ZK against the NArg[RPBS].

33

BLDA,b
PBSch(λ), GA,b

1 , GA,b
2

(p,G, G,H) = sp← Sch.Setup(1λ)
(crs, τ)← NArg.Setup(sp)
(ek, dk)← PKE.KeyGen(1λ)
(prd0, prd1,m0,m1, X, state)← A1(crs, ek)
if (∃ i, j ∈ {0, 1} : P(prdi,mj) = 0) :

return 0
(sess0, sess1) := (init, init)
// sample randomness used by User0(·):

(α0, α1, β0, β1)←$Z4
p

(ρ0, ρ1)←$R2
ek

b′ ← AUser0,User1,User2
2 (state)

return b′

User0(i)

if sessi 6= init : return ⊥
sessi = open

M := (mi⊕b, αi, βi)

// encrypt fixed vector instead:

M := (m̄, 0, 0) // m̄ . . . arbitrary fixed msg

Ci := PKE.Enc(ek,M ; ρi)
return Ci

User1(i, R)

if sessi 6= open : return ⊥
sessi = await

Ri = R

R′i⊕b = Ri + αiG+ βiX

ci = (H(R′i⊕b, X,mi⊕b) + βi) mod p
θ := (X,Ri⊕b, ci,Ci, prdi, ek)
w := (mi⊕b, αi, βi, ρi)
π ← NArg.Prove(crs, θ, w)

// simulate the proof instead

π ← NArg.SimProve(crs, τ, θ)

return (ci, π)

User2(i, s)

if sessi 6= await : return ⊥
sessi = closed

if sG = Ri + ciX :

σi⊕b =
(
R′i⊕b , (s+ αi) mod p

)
else : σi⊕b = ⊥
if (sess0 = sess1 = closed) :

if (σ0 = ⊥ ∨ σ1 = ⊥) :
return (⊥,⊥)

return (σ0, σ1)
return ε

Fig. 9. The blindness game from Figure 3 for the scheme PBSch[P,GrGen,HGen,PKE,NArg] from Figure 4
(ignoring all boxes) and hybrid games used in the proof of Theorem 2. G1 includes the light green box and G2
includes both boxes.

According to the definition of game ZK, Zb receives as input crs generated by NArg.Setup
on input sp generated by NArg.Rel, which is defined as Sch.Setup. With this, Zb simulates the
game BLDb for A, using its oracle Prove to generate the proofs π required to answer A’s
queries to User1.

When A2 outputs its decision bit b′, Zb returns b′ to its challenger. By the definition of
Zb for b ∈ {0, 1}, we have Pr

[
ZKZb,0

NArg[R]
]

= Pr
[
BLDA,b

PBSch
]
, and Pr

[
ZKZb,1

NArg[R]
]

= Pr
[
GA,b

1
]
and

therefore

AdvZK
NArg[RPBS],Zb :=

∣∣Pr
[
ZKZb,0

NArg[RPBS]
]
− Pr

[
ZKZb,1

NArg[RPBS]
]∣∣ =

∣∣Pr
[
BLDA,b

PBSch
]
− Pr

[
GA,b

1
]∣∣ .

34

ZProve
b (crs)

(p,G, G,H) :⊆ crs
(ek, dk)← PKE.KeyGen(1λ)
(prd0, prd1,m0,m1, X, state)← A1(crs, ek)
if ∃ i, j ∈ {0, 1} : P(prdi,mj) = 0 :

return 0
(sess0, sess1) := (init, init)
(α0, α1, β0, β1)←$Z4

p

(ρ0, ρ1)←$R2
ek

b′ ← AUser0,User1,User2
2 (state)

return b′

User1(i, R)

if sessi 6= open : return ⊥
sessi = await

Ri = R

R′i⊕b = Ri + αiG+ βiX

ci = (H(R′i⊕b, X,mi⊕b) + βi) mod p
θ := (X,Ri⊕b, ci,Ci, prdi, ek)
w := (mi⊕b, αi, βi, ρi)

π ← Prove(θ, w)
return (ci, π)

Fig. 10. Zb playing against zero-knowledge of the NArg[RPBS]. The oracles User0 and User2 simulated to A2
are as defined in game G0 in Figure 9.

Together with the triangular inequality this yields:

AdvBLD
PBSch,A :=

∣∣Pr
[
BLDA,1

PBSch
]
− Pr

[
BLDA,0

PBSch
]∣∣

=
∣∣Pr
[
BLDA,1

PBSch
]
− Pr

[
GA,1

1
]

+ Pr
[
GA,1

1
]
− Pr

[
BLDA,0

PBSch
]

+ Pr
[
GA,0

1
]
− Pr

[
GA,0

1
]∣∣

≤ AdvZK
NArg[RPBS],Z1

+
∣∣Pr
[
GA,1

1
]
− Pr

[
GA,0

1
]∣∣+ AdvZK

NArg[RPBS],Z0
. (15)

G2. In G2 we modify the User0 and encrypt an arbitrary fixed message m̄ ∈Msp and (0, 0)
instead of α and β. To show that this only changes A’s behavior in a negligible way, in Figure 11
we define adversaries C0 and C1 playing in game CPA for scheme PKE.

CEnc
b (ek)

1λ :⊆ ek
(p,G, G,H) = sp← Sch.Setup(1λ)
(crs, τ)← NArg.Setup(sp)
(prd0, prd1,m0,m1, X, state)← A1(crs, ek)
if ∃ i, j ∈ {0, 1} : P(prdi,mj) = 0 :

return 0
(sess0, sess1) := (init, init)
(α0, α1, β0, β1)←$Z4

p

b′ ← AUser0,User1,User2
2 (state)

return b′

User0(i)

if sessi 6= init : return ⊥
sessi = open

M0 := (m̄, 0, 0)
M1 := (mi⊕b, αi, βi)
Ci ← Enc(M0,M1)
return Ci

Fig. 11. Cb playing against CPA security of PKE. The oracles User1 and User2 simulated to A2 are defined as
in game G1 in Figure 9.

35

By the definition of game CPA, Cb, for b ∈ {0, 1}, gets as input the encryption key ek, from
which it reads out the security parameter 1λ, uses it to generate the parameters p,G, G,H
and crs and simulates GA,b

1 to A. During a call of User0(i), Cb sets M0 := (m̄, 0, 0) and
M1 := (mi⊕b, αi, βi), calls its encryption oracle on (M0,M1) and sends the received ciphertext
Ci to A2. (Note that the randomness used to generate Ci is not known to Cb, but since the
proofs in User1 are simulated, the witness containing this randomness is no longer required.)

By construction of Cb we have Pr
[
CPACb,0

PKE
]

= Pr
[
GA,b

2
]
and Pr

[
CPACb,1

PKE
]

= Pr
[
GA,b

1
]
for

b ∈ {0, 1}, and hence

AdvCPA
PKE,Cb :=

∣∣Pr
[
CPACb,1

PKE
]
− Pr

[
CPACb,0

PKE
]∣∣ =

∣∣Pr
[
GA,b

1
]
− Pr

[
GA,b

2
]∣∣ for b ∈ {0, 1} .

Together with the triangular inequality, this yields:

∣∣Pr
[
GA,1

1
]
− Pr

[
GA,0

1
]∣∣ =

∣∣Pr
[
GA,1

1
]
− Pr

[
GA,1

2
]

+ Pr
[
GA,1

2
]
− Pr

[
GA,0

2
]

+ Pr
[
GA,0

2
]
− Pr

[
GA,0

1
]∣∣

≤ AdvCPA
PKE,C1 +

∣∣Pr
[
GA,1

2
]
− Pr

[
GA,0

2
]∣∣+ AdvCPA

PKE,C0 . (16)

Reducing G2 to perfect blindness of “plain” Blind Schnorr. The signer’s view after
the successful completion of the two signing sessions consists of the parameters (crs, ek) and
the signatures with the corresponding messages:

(
m0, (R′0, s′0)

)
and

(
m1, (R′1, s′1)

)
, as well as

{(Ci, Ri, ci, πi, si,)i∈{0,1}} where i = 0 denotes values obtained in the first session, and for i = 1
values of the second session respectively. Since the ciphertext Ci is an encryption of fixed values,
and the argument πi is simulated, they hold no information on bit b. Now take (mj , (R′j , s′j))
for j ∈ {0, 1} and assume it corresponds to session i with (Ri, ci, si). Fix α := s′j − si. Now
there exists exactly one β s.t. R′j = Ri + αG + βX. This means, that both session tuples
(R0, c0, s0) and (R1, c1, s1) explain (R′j , s′j). Hence the advantage in distinguishing G2 with
b = 0 from G2 with b = 1 is ∣∣Pr

[
GA,1

2
]
− Pr

[
GA,0

2
]∣∣ = 0 .

This, together with (15) and (16), concludes the proof.

36

	 (Concurrently Secure) Blind Schnorr from Schnorr
	Introduction
	Our contributions.

	Preliminaries
	Notation
	Discrete-Logarithm-Hard Groups
	Non-Interactive Zero-Knowledge Arguments
	Public-Key Encryption
	Signature Schemes
	Schnorr Signatures

	Predicate Blind Signatures
	(Strong) unforgeability.
	Blindness.
	Hiding the predicates.

	Predicate Blind Signatures with Schnorr Signatures
	Correctness.
	Unforgeability.
	Blindness.

	Design Choices and Implementation Details
	Avoiding a Trusted Setup
	Practical Considerations for the Relation
	Blind Schnorr Using secp256k1 and SHA-256

	References
	Weak OMDL
	Proof of Theorem 1
	Proof of Theorem 2

