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Abstract

Hardness of approximation aims to establish lower bounds on the approximability of opti-
mization problems in NP and beyond. We continue the study of hardness of approximation for
problems beyond NP, specifically for stochastic constraint satisfaction problems (SCSPs). An
SCSP with k alternations is a list of constraints over variables grouped into 2k blocks, where each
constraint has constant arity. An assignment to the SCSP is defined by two players who alternate
in setting values to a designated block of variables, with one player choosing their assignments
uniformly at random and the other player trying to maximize the number of satisfied constraints.

In this paper, we establish hardness of approximation for SCSPs based on interactive proofs.
For k ≤ O(log n), we prove that it is AM[k]-hard to approximate, to within a constant, the value
of SCSPs with k alternations and constant arity. Before, this was known only for k = O(1).

Furthermore, we introduce a natural class of k-round interactive proofs, denoted IR[k] (for
interactive reducibility), and show that several protocols (e.g., the sumcheck protocol) are in
IR[k]. Using this notion, we extend our inapproximability to all values of k: we show that for
every k, approximating an SCSP instance with O(k) alternations and constant arity is IR[k]-hard.

While hardness of approximation for CSPs is achieved by constructing suitable PCPs, our
results for SCSPs are achieved by constructing suitable IOPs (interactive oracle proofs). We
show that every language in AM[k ≤ O(log n)] or in IR[k] has an O(k)-round IOP whose verifier
has constant query complexity (regardless of the number of rounds k). In particular, we derive a
“sumcheck protocol” whose verifier reads O(1) bits from the entire interaction transcript.
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1 Introduction

Many combinatorial optimization problems are NP-hard, and so there is little hope to solve them in
polynomial time. This has motivated the study of polynomial-time approximation algorithms to
solve optimization problems, which has revealed a surprising landscape. While they are equivalent
as decision problems (under polynomial-time reductions), NP-complete problems behave radically
different from the point of view of approximability. Specifically, known approximation algorithms for
NP-complete problems sometimes achieve approximations to within any constant, sometimes only to
within a certain constant, and sometimes do not even achieve a constant approximation.

This differing behavior is justified via results in the area of hardness of approximation. For a
given NP-complete problem, the goal is to prove that it is NP-hard to approximate the problem to
better than a certain approximation ratio (e.g., better than 1/2). Ideally, this ratio would match the
best known approximation algorithm, thereby ruling out better approximation algorithms.

The key tool used to establish hardness of approximation for NP-complete problems are proba-
bilistic proofs [FGLSS96]. For example, the PCP theorem [AS98; ALMSS98] says that every language
in NP can be decided via a verifier that reads O(1) bits from a polynomial-length proof, and in turn
this implies, e.g., that the value of 3SAT cannot be approximated to within an arbitrary constant.

More generally, improvements in PCP constructions imply hardness results for corresponding
constraint satisfaction problems (CSPs). Yet, there are numerous problems of interest that are not
CSPs, and for which we wish to understand their behavior with respect to inapproximability.
Hardness of approximation beyond NP. Prior work has investigated hardness of approximation
for natural problems in other complexity classes. In one direction, PCP-like theorems for fine-grained
complexity have been used to establish hardness results for problems within the complexity class P
(see [AB17; ARW17; AR18; CW19; CGLRR19]). In the other direction, several works study the
inapproximability of two-player CSPs. A CSP can be viewed as a one-player game where the player
wishes to maximize the number of satisfied constraints; this view naturally leads to two-player CSPs
played in moves. Ko and Lin [KL94] proved the inapproximability of two-player CSPs with k moves,
based on the hardness of the k-th level of the Polynomial Hierarchy. Haviv, Regev, and Ta-Shma
[HRT07] proved that this inapproximability result holds even when each variable occurs O(1) times.
SCSPs and their hardness. In this paper, we study the hardness of approximating a natural
class of problems known as stochastic constraint satisfaction problems (SCSPs), also known as games
against nature [Pap83]. Informally, they are two-player CSPs where one player is an adversary and
the other player is a (public-coin) referee that plays random moves.

Definition 1.1 (informal). An SCSP Φ with k alternations is a list of constraints C1, . . . , Cm over
variables that are grouped into 2k blocks and take on values over an alphabet Σ. The SCSP has arity
q if each constraint depends on at most q variables. An assignment for Φ is defined by two players
who alternate in setting values to a designated block of variables with one player choosing their
assignments uniformly at random and the other player trying to maximize the number of satisfied
clauses. The value of Φ is the expected fraction of clauses satisfied in this process.

The hardness of approximating the value of SCSPs, to within a constant factor, has been studied
in a line of works. Let AM[k] be the class of languages that have a k-round public-coin IP with
constant soundness error. Drucker [Dru11] extended the PCP theorem to the stochastic setting,
showing that it is AM[1]-complete to approximate the value of SCSPs with one alternation (k = 1)
and arity q = O(1). Subsequently, [ACY22] showed that, for every k, it is AM[k]-complete to
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approximate the value of SCSPs with k alternations and arity q = O(k). In the regime of many
alternations, Condon, Feigenbaum, Lund, and Shor [CFLS97] showed that it is PSPACE-complete
to approximate the value of SCSPs with k = poly alternations and arity q = O(1). This leaves open
the approximation hardness of SCSPs with k alternations and constant arity, for general values of k:

How hard is approximating the value of SCSPs with k alternations and arity q = O(1)?

It seems reasonable to hypothesize that it is AM[k]-hard to approximate SCSPs with k alternations.
Note that Goldreich, Vadhan, and Wigderson [GVW02] showed that AM[k] ̸= AM[o(k)] (under

reasonable hardness assumptions), meaning that increasing the round complexity k adds more
power to the complexity class AM[k]. For sufficiently many rounds, we know that IP = PSPACE
[LFKN92; Sha92]. Thus, it is imperative to understand the approximation hardness of SCSPs with
k alternations while respecting the different regimes for k.
SCSP hardness from IOPs. The above results are derived (implicitly or explicitly) by leveraging
the connection between SCSPs and the PCP analog of interactive proofs, called interactive oracle
proofs (IOPs) [BCS16; RRR16]. A k-round (public-coin) IOP is a k-round (public-coin) IP where the
verifier has PCP-like access to each prover message: after the interaction, the verifier probabilistically
reads a small number of locations from the interaction transcript and then accepts or rejects.

A k-round public-coin IOP with query complexity q can be viewed as an SCSP with k alternations
and arity q (see Section 2.1). Therefore, constructions of IOPs for hard languages imply corresponding
hardness of approximation results for the resulting SCSPs. This leads us to ask:

Does every language in AM[k] have a k-round IOP with constant query complexity?

1.1 Our results

In this paper, we establish hardness of approximation for SCSPs from (general) interactive proofs.
Moreover, we also prove that tighter hardness results can be achieved for specific languages that are
interactively reducible (a notion that we introduce).
On the AM hardness of SCSPs. We prove that it is AM[k]-hard to approximate the value of
binary-alphabet SCSPs with k alternations and arity max{O(1), O(k/ log |x|)} (x is the instance).

Theorem 1 (informal). Let L ∈ AM[k] be a language. There exists a deterministic polynomial-time
reduction that maps an instance x for L to an SCSP instance Φ with binary alphabet, k alternations,
and arity max{O(1), O(k/ log |x|)} such that:
• if x ∈ L then the value of Φ is 1;
• if x /∈ L then the value of Φ is at most 1/2.

Our improvement in arity is particularly meaningful for logarithmic round complexity: Theorem 1
establishes that, for k(|x|) = O(log |x|), approximating the value of an SCSP instance with k
alternations and arity O(1) is as hard as deciding all of AM[k]. Previously, this was known only for
constant k [Dru11; ACY22].

Many results on the hardness of approximating the value of (standard) CSPs are achieved by
constructing suitable PCPs. Similarly (as was noted in [ACY22]), by constructing a suitable k-round
IOP for a language L, one can show that approximating the value of SCSPs with k alternations
up to a constant factor is as hard as deciding L. We establish Theorem 1 using this framework by
providing a transformation that maps a k-round IP into a k-round IOP with small query complexity.
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Lemma 1 (informal). Let L be a language with a k-round public-coin IP. Then L has a k-round
public-coin binary IOP where, on input x, the verifier reads max{O(1), O(k/ log |x|)} bits of the
interaction transcript. All other parameters are polynomially related.

Lemma 1 is surprising in light of the work of Goldreich, Vadhan, and Wigderson [GVW02], which
shows a separation between AM[k] and AM[o(k)] (under relatively weak hardness assumptions).
Since the query complexity is smaller than the round complexity, Lemma 1 implies that the IOP
verifier does not make queries to every round of the protocol. This can be viewed as saying that
the power of AM[k] is unchanged even when the verifier only accesses O(k/ log |x|) of the k rounds.
In other words, reducing round complexity of public-coin protocols reduces their power, but it is
nevertheless possible to not read every round of interaction while preserving the power.
Hardness of SCSPs from interactive reducibility. Theorem 1 establishes the hardness of
SCSPs with k = O(log |x|) alternations and arity O(1) (over the binary alphabet), but does not
work for O(1)-arity SCSPs with k = ω(log |x|) alternations.

We extend this by showing that approximating the value of O(1)-arity SCSPs with k alternations
is as hard as solving #SATk.1 In fact, we show this for a more general class of languages that are
interactively reducible, a notion that we introduce in this work. Informally, the notion requires that
it is possible to reduce, via an interactive protocol, multiple transcripts of an IP for the relation
into a single transcript. We require that the probability of the verifier accepting conditioned on the
reduced transcript be (roughly) the minimum probability of the verifier accepting conditioned on
any of the original transcripts. See Section 2.3 for further details and discussion.

Interactive reducibility is a natural property; we show that general interactive proofs can be seen
as interactive reductions (albeit ones with bad parameters), and show interactive reductions for the
sumcheck protocol [LFKN92] and for Shamir’s protocol [Sha92].

The notion of interactive reducibility allows us to get an optimal version of Lemma 1 for additional
languages. Let IR[k] be the class of languages that have a (1-round) interactive reduction with k
predicates (these predicates roughly align with rounds of an IP).

Lemma 2 (informal). Let L be a language in IR[k]. Then L has an O(k)-round public-coin IOP,
with polynomial proof length, where the verifier reads O(1) bits of the interaction transcript.

In particular, applying Lemma 2 to the sumcheck protocol yields the following (perhaps surprising)
conclusion: any k-round sumcheck protocol can be transformed to a O(k)-round IOP where the verifier
has O(1) query complexity (over the binary alphabet). Notice that using standard PCP techniques it
is only known how to achieve a similar (non-interactive) result with exponential proof length.

Using this improved lemma, we immediately get that for every k, deciding whether a binary-
alphabet SCSP instance with O(k) alternations and arity O(1) has value 1 or value 1/2 is IR[k]-hard:

Theorem 2 (informal). Let L ∈ IR[k] be a language. There exists a deterministic polynomial-
time reduction that maps an instance x for L to an SCSP instance Φ with binary alphabet, O(k)
alternations, and arity O(1) such that:
• if x ∈ L then the value of Φ is 1;
• if x /∈ L then the value of Φ is at most 1/2.

Using our interactive reduction for sumcheck, we know that #SATk ∈ IR[k]. Thus, by Theorem 2,
we establish that approximating the value of SCSPs with O(k) alternations and constant arity is

1#SATk is the restriction of #SAT to instances of size n and k(n) variables.
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#SATk-hard. Similarly, using our interactive reduction for Shamir’s protocol, we recover the result
of [CFLS97], showing that approximating the value of SCSPs with polynomially-many alternations
and constant arity is PSPACE-hard.
Summary of results and open questions. We construct O(1)-query IOPs for every language in
AM[k ≤ O(log |x|)] or in IR[k]. Moreover, we construct O(k/ log |x|)-query IOPs for every language
in AM[k]. These results establish approximation hardness for SCSPs as follows: (a) for k = O(log |x|),
it is AM[k]-hard to approximate the value of SCSPs with k alternations and constant arity; and
(b) for k = ω(log |x|), it is IR[k]-hard to approximate the value of SCSPs with O(k) alternations and
constant arity, and AM[k]-hard when the SCSPs have arity O(k/ log |x|). Our results are summarized
in Figure 1 together with previously known results.

Our work leaves open the AM-hardness of approximating the value of SCSPs with k = ω(log |x|)
alternations and constant arity. From the perspective of IOPs, we also leave open the basic question
that we raised in the introduction: Does every language in AM[k] have a k-round (public-coin) IOP
with constant query complexity over the binary alphabet? Our results contribute notable progress
towards resolving this question (see paragraph above), but answering the question for every regime
of k remains a fascinating challenge in the theory of probabilistic proofs.

hardness alternations arity

[CFLS97] PSPACE unbounded O(1)

[this work] IR[k] O(k) O(1)

[this work] #SATk O(k) O(1)

[ACY22] AM[k] k O(k)

[this work] AM[k] k max{O(1), O(k/ log |x|)}

[Dru11] AM[1] 1 O(1)

[ALMSS98; AS98; Din07] NP n/a O(1)

Figure 1: Summary of results for approximating the value of binary-alphabet SCSPs to within a
constant factor. AM[k] denotes the class of languages with k-round public-coin interactive proofs. IR[k]
denotes the class of languages with (1-round) interactive reductions with k predicates. #SATk is the
restriction of #SAT to instances of size n and k(n) variables.

6



2 Techniques

We outline the main ideas behind our results. In Section 2.1 we explain a generic connection between
SCSPs and IOPs: in order to establish the hardness of approximating SCSPs, it suffices to construct
IOPs with certain properties. This will be our goal in the remaining sections. In Section 2.2 we show
how to transform k-round IPs into k-round IOPs with query complexity max{O(1), O(k/ log |x|)}.
In Section 2.3 we show that for relations that are interactively reducible we can construct O(1)-query
IOPs even when those relations are only known to have IPs with round complexity ω(log |x|).

2.1 On the hardness of approximating SCSPs via IOPs

We review the generic connection between CSPs and PCPs, and then describe the analogous
connection between SCSPs and IOPs. In both cases, efficient constructions of PCPs/IOPs imply
hardness of approximation results for corresponding CSPs/SCSPs.
CSP hardness from PCPs. A CSP Φ is a list of boolean functions C1, . . . , Cm over variables from
a bounded alphabet Σ. The CSP has arity q if each constraint depends on at most q variables. The
goal is to determine the maximum fraction of constraints that can be satisfied by any assignment.

We can map a non-adaptive PCP verifier V for a language L and an instance x into a CSP. The
variables represent locations of the PCP string. Each choice of PCP verifier randomness induces a
corresponding constraint, whose variables are those that the PCP verifier would have read from the
PCP string. The constraint is satisfied if and only if the PCP verifier accepts when it receives the
assignment of the variables as its query answers. The CSP’s arity equals the PCP’s query complexity.

By completeness of the PCP system, if x ∈ L then there exists a PCP string that makes the
PCP verifier accept with probability 1, which in turn means that there is an assignment that
simultaneously satisfies every constraint in the CSP. By the soundness of the PCP system, if x /∈ L
then every PCP string makes the PCP verifier accept with at most probability 1/2, which in turn
means that no assignment can satisfy more than half of the constraints of the CSP.

Thus, distinguishing whether the CSP’s value is 1 or at most 1/2 is as hard as deciding L.
SCSP hardness from IOPs. The general connection between SCSPs (Definition 1.1) and IOPs
is stated in the lemma below. Recall that a k-round IOP is a k-round IP where the verifier has
PCP-like access to each prover message: the prover and verifier interact for k rounds, and after the
interaction, the verifier probabilistically reads a small number of bits from each prover message and
decides to accept or reject based on the examined locations. The randomness used in the final phase
is called decision randomness (which we distinguish from the random messages that the verifier
sends to the prover during the interaction and may be queried at only few locations).

Lemma 3. Let L be a language with a non-adaptive k-round public-coin IOP with alphabet Σ,
polynomial proof length, query complexity q, decision randomness rdc, and soundness error β.

Then there exists a deterministic polynomial-time reduction that maps an instance x for L to an
SCSP instance Φ with alphabet Σ, k alternations, arity q, 2rdc constraints and a polynomial number
of variables such that:
• if x ∈ L then the value of Φ is 1;
• if x /∈ L then the value of Φ is at most β.

Proof sketch. Let VIOP be the (non-adaptive) IOP verifier for L and let l be the (per-round) proof
length of the IOP. Given an instance x, we construct the SCSP instance Φ as follows. The SCSP has
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2k blocks of l variables that align with the interaction transcript between the IOP prover and IOP
verifier (the i-th variable of the j-th block corresponds to the i-th symbol of the j-th message of the
protocol). The SCSP has a constraint Cρ for each ρ ∈ {0, 1}rdc , whose input variables correspond to
the locations of the transcript that VIOP queries given instance x and randomness ρ; the constraint
Cρ is satisfied if and only if VIOP(x; ρ) accepts if it reads the symbols assigned to the variables of Cρ.

The SCSP instance Φ has k alternations (corresponding to the rounds of the IOP) and l = poly(|x|)
variables per alternation (corresponding to the message length) that are assigned values in the
alphabet Σ (the alphabet of the IOP). Each of its 2rdc constraints has arity q since each constraint
has as many inputs as queries made by the IOP verifier VIOP.

Finally, we analyze the value of the SCSP. By construction, there exists an IOP prover strategy
that causes the IOP verifier VIOP to accept with probability δ if and only if there exists a strategy for
the existential player in the SCSP such that the expected fraction of constraints that are satisfied is
δ (i.e., the value of Φ is at least δ). Therefore, by perfect completeness of the IOP, if x ∈ L then the
value of Φ is 1. Conversely, by soundness of the IOP, if x /∈ L then the value of Φ is at most β.

2.2 Transforming IPs into IOPs

We outline the proof of Lemma 1 (transforming an IP into an IOP with small query complexity).
In Section 2.2.1, we show how to transform a logarithmic-round IP into a O(1)-query IOP. Then
in Section 2.2.2 we extend this idea to transform a k-round IP into a O(k/ log |x|)-query IOP.

2.2.1 From O(log |x|)-round IP to O(1)-query IOP

We show how to transform a k-round public-coin IP where k = O(log |x|) into an O(k)-round
public-coin IOP with the following efficiency: polynomial proof length over the binary alphabet;
constant query complexity; and logarithmic decision randomness.

First, we sketch how to transform a k-round public-coin IP (PIP,VIP) into an O(k)-round public-
coin IOP (PIOP,VIOP) where the verifier reads O(1) rounds (in their entirety) from the interaction
transcript. Then we explain how to ensure that the verifier queries O(1) bits in total.
A strawman protocol. We describe a natural strategy for transforming the IP into an IOP
where the verifier reads O(1) rounds, albeit with high soundness error. The IOP prover PIOP and
IOP verifier VIOP respectively simulate the IP prover and verifier (PIP, VIP), inducing an interaction
transcript tr = (ρ1, a1, . . . , ρk, ak). At this time, however, VIOP does not read any messages from tr.
After this interaction, PIOP sends a transcript tr′, which is allegedly equal to tr, as a single message.
Then VIOP reads tr′ and checks that tr′ is an accepting transcript for the IP verifier VIP. Moreover,
VIOP tests consistency between tr (the real interaction) and tr′ (the alleged copy of the interaction
sent as a single message): VIOP samples a random i ∈ [k], reads the i-th prover message and i-th
verifier message in tr, and checks that these equal the corresponding messages in tr′.

In this IOP, VIOP reads O(1) messages from the interaction transcript, but the soundness error of
the IOP is large (even when discounting the soundness error of the underlying IP). Indeed, it may be
that a cheating IOP prover sends a malicious transcript tr′ that is accepting but differs from the real
transcript tr in one round only. In this case, VIOP catches the inconsistency only with probability
1/k, which means that the soundness error could be as large as 1− 1/k.

Note that reducing this soundness error via parallel repetition would increase the number of
rounds queried by VIOP. Achieving constant soundness error would require O(k) repetitions, resulting
in an IOP verifier that reads O(k) rounds, taking us back to where we started.
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Our transformation. We present a transformation that improves on the above strawman protocol,
achieving a constant soundness error for any IP that has a logarithmic number of rounds.

A malicious IOP prover in the strawman protocol has two strategies: the transcript tr′ sent
as the last message either agrees with the real transcript tr on more than half of the rounds, or
it does not. If tr′ agrees with tr in less than half of the rounds, then the IOP verifier catches this
inconsistency with probability at least 1/2. Intuitively, the transformation that we sketch below
ensures that if tr′ is consistent with tr on at least half of the rounds, then the consistent rounds
must contain within them a full execution of the underlying IP. Then, since this consistent part was
generated interactively in tr, by the soundness property of the IP, this contained transcript will be
rejected with high probability. We now describe our transformation in more detail.

Suppose that our public-coin IP has k(|x|) = O(log |x|) rounds and that the verifier message in
each round is r bits long. The IOP (PIOP,VIOP) on a given instance x works as follows.

1. PIOP sets S0 := {∅} (i.e., S0 consists of the empty transcript).

2. For i = 1, . . . , 2k:
• PIOP sends Si−1.
• VIOP sends a random ρi ∈ {0, 1}r (corresponding to a message of VIP).
• PIOP sets Si := Si−1 ∪ {(tr||ρi||atr,i)}tr∈Si−1

where atr,i := PIP(x, tr||ρi) for each tr ∈ Si−1.

3. PIOP sends S2k and, for every i ∈ [2k], also sends Ti := Si.

4. In the decision phase, VIOP performs the checks below.
(a) Subset consistency: For every i ∈ [2k], check that Ti−1 ⊆ Ti.
(b) Transcript consistency: Choose a random i ∈ [2k]. Check that Si−1 = Ti−1 and Si = Ti.

Additionally, check that for every tr ∈ Si−1 there is a message atr,i such that (tr||ρi||atr,i) ∈ Si,
where ρi is the verifier message sent during the i-th round of interaction.

(c) Membership: Check that for every transcript tr ∈ T2k that is complete (i.e., contains messages
for all k rounds of the IP) it holds that VIP(x, tr) = 1.

Efficiency. We briefly discuss the main efficiency measures of the transformation.

• Query complexity. The IOP verifier reads O(1) rounds from the transcript.

• Communication complexity. We argue that all messages in the protocol have length poly(|x|).
For every i, |Si| ≤ 2|Si−1| since Si contains all transcripts in Si−1 and continuations of each of
these transcripts. Since k = O(log |x|), |Si| = poly(|x|) for every i. Each transcript within Si has
polynomial length, so the length of these messages is poly(|x|). Finally, the sets T1, . . . , T2k have
the same sizes as S1, . . . , S2k (respectively) and so the prover’s final message has length poly(|x|).

• Decision randomness. The IOP verifier uses O(log k) = O(log |x|) bits of decision randomness.

Analysis. In this overview, we discuss soundness only, as completeness follows straightforwardly
from the construction. Let β be the soundness error of (PIP,VIP). We show that the IOP (PIOP,VIOP)
has soundness error

βIOP = max

{
1

2
,

(
2k

k

)
· β

}
.

The above expression can be made constant by applying poly(|x|) parallel repetitions to (PIP,VIP)

prior to applying our transformations, until it has soundness error β′ ≤
(
2 ·

(
2k
k

))−1
.
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Fix x /∈ L and a cheating IOP prover P̃IOP. A fixed transcript of the IOP has the structure:(
S0, ρ1, S1, . . . , ρ2k, S2k, (T0, . . . , T2k)

)
.

Given such a transcript, we say that an index i is consistent if: (a) Si−1 = Ti−1 and Si = Ti; and
(b) for every tr ∈ Si−1 there is a message atr,i such that (tr||ρi||atr,i) ∈ Si.

Conditioned on the event that the transcript generated during the interaction has less than k
consistent indices i, VIOP rejects with probability at least 1/2 due to its check in Item 4b. We are
thus left to analyze the probability that VIOP rejects conditioned on the event that the generated
transcript has at least k consistent indices.

Fix indices i1 < · · · < ik and suppose that all these indices are consistent with respect to
the transcript. By the definition of consistency, for every j ∈ [k], Sij−1 = Tij−1, Sij = Tij

and (tr||ρij ||atr,ij ) ∈ Sij for every tr ∈ Sij−1. This implies that there exist ai1 , . . . , aik such that
(ρi1 ||ai1 || · · · ||ρik ||aik) ∈ Tik . By the subset consistency check, VIOP accepts only if Tik ⊆ T2k, in which
case (ρi1 ||ai1 || · · · ||ρik ||aik) ∈ T2k. This transcript was generated interactively by the prover and
verifier and hence, by the soundness of the IP, VIP(x, ρi1 ||ai1 || · · · ||ρik ||aik) = 1 with probability at
most β. If the transcript is rejecting, then this is detected by VIOP in its membership check.

The previous analysis holds for fixed indices i1 < · · · < ik. By applying the union bound to all
choices of indices, we have that, conditioned on the transcript generated having at least k consistent
rounds, VIOP accepts with probability at most

(
2k
k

)
· β.

Putting together both (non-intersecting) events of the number of rounds consistent with the
generated transcript, we conclude that VIOP accepts with probability at most max{12 ,

(
2k
k

)
· β}.

Remark 2.1. As alluded to above, the above transformation can be viewed as two steps: (i) apply a
transformation that ensures that (with constant probability) any transcript tr′ that agrees with the
real interaction transcript tr on at least half of the rounds is rejecting; and (ii) apply the strawman
protocol to the new protocol.

We believe that this property of rejecting transcripts that are close to the real interaction
transcript, which we call “robust soundness error”, is of independent interest and is likely to have
further applications. A formal definition of (round-)robust soundness follows.

Definition 2.2 ((Round-)Robust soundness). Let IP = (PIP,VIP) be an IP for a relation R. IP
has (round-)robust soundness error ε with distance δ if for every instance x /∈ L(R) and
malicious prover P̃IP:

Pr
ρ1,...,ρk

 ∃ tr′ : ∆Round(tr, tr
′) ≤ δ ∧ VIP(x, tr

′) = 1

a1 ← P̃IP(ρ1)
...

ak ← P̃IP(ρ1, . . . , ρk)
tr := (ρ1, a1, . . . , ρk, ak)

 ≤ ε ,

where ∆Round(tr, tr
′) is the fraction of rounds on which tr and tr′ differ.

Other notions of robustness for IPs can be considered by using different distance measures
between tr and tr′ (e.g., Hamming distance, distance between groups of rounds, and so on).

Achieving query complexity O(1) over the binary alphabet. The verifier in the IOP
described above reads O(1) rounds (in their entirety) from the interaction transcript, rather than
O(1) bits in total. We additionally achieve this latter goal by building on a result in [ACY22].
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In more detail, [ACY22] transforms a k-round public-coin IP into an O(k)-round public-coin IOP
with polynomial proof length over the binary alphabet and where the IOP verifier reads O(1) bits
from each round. We extend this to transform a k-round IOP whose verifier reads q of the k rounds
into a O(k)-round IOP whose verifier reads O(1) bits from each of O(q) rounds. See Section 7 for
more details.

2.2.2 IOPs from general IPs

The transformation described in the previous section works for O(log |x|)-round IPs. However, it
cannot be directly applied to IPs with more rounds because the proof length (and thus also the
verifier running time) would be more than polynomial.

Nevertheless, we extend the transformation to work for any public-coin IP while achieving a
moderate improvement on the number of read rounds. In the main loop of the IOP, rather than
advancing each IP transcript in Si−1 by one round, advance it by O(k/ log |x|) rounds before inserting
the resulting transcripts into the set Si. During its decision phase, the IOP verifier chooses an
index i and reads the entire O(k/ log |x|)-round interaction done during this iteration of the IOP.
Completeness and soundness of this new transformation are similar to the one presented in the
previous section, but now the verifier reads O(k/ log |x|) rounds. The rest of the efficiency parameters
are similar to the IOP described in the previous section, except that proof length is polynomial
regardless of k.

After applying the (adapted) transformation of [ACY22], this process yields a O(k)-round IOP
with query complexity O(k/ log |x|) (over the binary alphabet). This concludes the proof sketch
of Lemma 1.
Can we do better? The construction described in this section doubles the number of transcripts
stored in the set Si relative to Si−1. This causes a blow-up in parameters and is the reason why this
approach fails in constructing O(1)-query IOPs from IPs with super-logarithmic round complexity.
Intuitively, if we could reduce this doubling then we may be able to modify the transformation to get
O(1)-query IOPs. While we do not achieve this for general IP, we show that, using this intuition,
we can construct O(1)-query IOPs for a rich class of relations that are interactively reducible. We
discuss this notion, and corresponding new IOP constructions, in the following section.

2.3 Interactive reducibility

In Section 2.2.1 we described how to transform an IP into an IOP with O(1) query complexity. The
new protocol kept track of a set containing all partial transcripts of the IP generated so far in the
protocol. In every round, every partial transcript in the set was advanced by one round, and the
newly advanced transcripts were added to the set held previously. This meant that in every round,
the set contains twice as many transcripts as in the previous round. As we require polynomial proof
length and verifier running time, this technique was unable to allow reading of O(1) rounds for IPs
with greater than O(log |x|) rounds.

Intuitively, suppose it were possible to take multiple transcripts and reduce them into a single
transcript that in some sense preserves soundness of all of the transcripts combined. In that case,
this issue could be bypassed, and the protocol would work for IPs with super-logarithmic round
complexity. In more detail, suppose we want to reduce transcripts tr1, . . . , trt into a new transcript
tr′. The acceptance probability of a transcript prefix tri is the maximum over all prover strategies of
the probability that the verifier will end up accepting when continuing interaction with the prover
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from transcript tri. Roughly, we require that: (a) if the acceptance probability of every tri is 1,
then so is the acceptance probability of tr′; and (b) if there exists some transcript tri with small
acceptance probability, then (with high probability) the acceptance probability of tr′ is also small.

In this section, we introduce the concept of interactive reducibility, which formally captures this
intuition. We exemplify this in Section 2.3.1 by describing how to reduce multiple transcripts of the
sumcheck protocol into a single transcript. Then, in Section 2.3.2, we formally define interactive
reducibility. In Section 2.3.3, we show how to adapt the protocol described in Section 2.2.1 to work
with interactive reductions and bypass the blow-up in the original protocol. Finally, in Section 2.3.4,
we discuss relations known to have interactive reducibility.

2.3.1 An interactive reduction for sumcheck

We exemplify the notion of interactive reducibility in the case of the sumcheck protocol [LFKN92].
Below we review this protocol, and then explain how to reduce multiple transcripts into one transcript
via an interactive reduction.
The sumcheck protocol. The verifier has query access to a n-variate polynomial p of individual
degree d over some field F. The goal of the verifier is to test, for a given field element γ, whether∑

α1,...,αn∈{0,1}

p(α1, . . . , αn) = γ .

The protocol begins with the prover sending a polynomial p̃1 of degree d, claimed to equal p1(X) :=∑
α2,...,αn∈{0,1} p(X,α2, . . . , αn). The verifier checks that p̃1(0)+ p̃1(1) = γ (rejecting if not), samples

a random field element r1, and sends it to the prover. Both parties define γ1 := p̃1(r1).
This one-round interaction leads to a new sumcheck claim∑

α2,...,αn∈{0,1}

p(r1, α2, . . . , αn) = γ1 ,

that has the following properties: (a) if the original claim is true then the new claim is also true;
and (b) if the original claim is false then with high probability the new claim is also false.

Next, the prover sends p̃2 claimed to equal p2(X) :=
∑

α3,...,αn∈{0,1} p(r1, X, α3, . . . , αn) and
the protocol repeats as before. This process continues until the n variables are fixed to some field
elements (r1, . . . , rn), and the problem has been reduced to checking that p(r1, . . . , rn) = γn, which
the verifier can check via one query to the polynomial p.

One can associate a round j of the protocol with a list of field elements (r1, . . . , rj) and
a claimed sum γj , and think of that round as “reducing” a claim z = ((r1, . . . , rj), γj) that∑

αj+1,...,αn∈{0,1} p(r1, . . . , rj , αj+1, . . . , αn) = γj into a new claim z
′ = ((r1, . . . , rj+1), γj+1) that∑

αj+2,...,αn∈{0,1} p(r1, . . . , rj+1, αj+2, . . . , αn) = γj+1.
Reducing multiple sumcheck claims. We are given claims z1, . . . , zt where each zi consists
of (ri,1, . . . , ri,j) and a claimed sum γi,j . We seek to reduce these t claims into a single claim
z
′ = ((r′1, . . . , r

′
j+1), γ

′
j+1) such that: (a) If each zi is a true statement, then z′ is a true statement;

and (b) If there is some zi that is a false statement, then with high probability z′ is a false statement.
Notice that in order to merge multiple sumcheck transcripts it suffices to merge multiple sumcheck
claims z1, . . . , zt. Thus we will focus on merging such claims.

Before describing the reduction, we define a polynomial I
z1,...,zt

: F→ Fj that represents a curve
through the t points described by the instances z1, . . . , zt. That is, I

z1,...,zt
(i) = (ri,1, . . . , ri,j) for
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every i ∈ [t] (here we implicitly associate the set [t] with an arbitrary set S ⊆ F of size t, known to
all parties). By interpolation, the degree of I

z1,...,zt
is less than t.

Given this definition, we describe the interactive reduction for the sumcheck protocol.

• Prover: Send the polynomial g ∈ F[X1, X2] defined as:

g(X1, X2) :=
∑

αj+2,...,αn∈{0,1}

p(I
z1,...,zt

(X1), X2, αj+2, . . . , αn) . (1)

• Verifier: Receive a bivariate polynomial g̃ ∈ F[X1, X2] of degree at most j · d · (t− 1) in X1 and
degree at most d in X2.

1. Consistency: Check that for every i ∈ [t] it holds that
∑

α∈{0,1} g̃(i, α) = γi,j . (Reject if not.)
2. Generate new instance:

(a) Sample uniformly random field elements ρ, r∗ ← F and send them to the prover.
(b) Set (r′1, . . . , r

′
j) := I

z1,...,zt
(ρ) and γj+1 := g̃(ρ, r∗) and output the new instance

z
′ :=

(
(r′1, . . . , r

′
j , r

∗), γj+1

)
.

Analysis. It follows straightforwardly from the protocol that, if z1, . . . , zt are all true statements
and the prover acts honestly, then z′ is a true statement. We show that if any one of the statements
z1, . . . , zt is false then with high probability so is z′.

Let g be as defined in Equation (1) with respect to z1, . . . , zt. Suppose that zi is a false claim
(i.e.,

∑
αj+1,...,αn∈{0,1} p(ri,1, . . . , ri,j , αj+1, . . . , αn) ̸= γi,j). Then, by definition,∑

α∈{0,1}

g(i, α) =
∑

αj+1,...,αn∈{0,1}

p(ri,1, . . . , ri,j , αj+1, . . . , αn) ̸= γi,j .

During its consistency check, the verifier checks that
∑

α∈{0,1} g̃(i, α) = γi,j . Thus, in order for the
verifier to not reject, a cheating prover must send g̃ ̸= g. By the Schwartz–Zippel lemma, since g
and g̃ are low-degree polynomials (provided that the degree d and the number of instances being
reduced t are small with respect to |F|), the probability that the uniformly chosen ρ and r∗ are such
that g̃(ρ, r∗) = g(ρ, r∗) is small. Whenever g̃(ρ, r∗) ̸= g(ρ, r∗) we have that∑

αj+2,...,αn∈{0,1}

p(r′1, . . . , r
′
j , r

∗, αj+2, . . . , αn) = g(ρ, r∗) ̸= g̃(ρ, r∗) = γj+1 ,

and so the resulting statement z′ := ((r′1, . . . , r
′
j , r

∗), γj+1) is false.

2.3.2 Defining interactive reducibility

We define interactive reducibility, which captures the capability of merging multiple transcripts/instances
into a single transcript/instance while preserving correctness and soundness.

Definition 1. An ℓ-round public-coin protocol (PIR,VIR) where VIR runs in polynomial time is an
interactive reduction for a relation R with k predicates and soundness error ε if there exists a
sequence of predicates f0, f1, . . . , fk such that the following holds.
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• Completeness: For every (x,w) ∈ R, j ∈ [k], and z1, . . . , zt such that fj−1(x, zi) = 1 for every
i ∈ [t], it holds that:

Pr
[
fj(x, z

′) = 1 z
′ ← ⟨PIR(x,w, z1, . . . , zt),VIR(x, z1, . . . , zt)⟩

]
= 1 .

• Soundness: For every x /∈ L(R), j ∈ [k], and z1, . . . , zt, if there exists i ∈ [t] where fj−1(x, zi) = 0
then for every (computationally unbounded) P̃IR it holds that:

Pr
[
fj(x, z

′) = 1 z
′ ← ⟨P̃IR,VIR(x, z1, . . . , zt)⟩

]
≤ ε(x, t) .

• Relation identity: f0(x, z) = 1 if and only if x ∈ L(R).

• Triviality: fk(x, z) can be computed in time poly(|x|, |z|).

We call x the base instance and z1, . . . , zt round instances.

An interactive reduction (PIR,VIR) has (polynomially) bounded output length if there exists
c ∈ N such that, for every base instance x, witness w, and round instances z1, . . . , zt, the new
instance z′ output by (PIR,VIR) on inputs (x,w, z1, . . . , zt) has length at most |x|c.

2.3.3 IOPs from interactive reducibility

We show that any relation with an ℓ-round interactive reduction with k predicates (and bounded
output length) has a (ℓ · k)-round public-coin IOP with query complexity O(k). This is a variation
of the protocol described in Section 2.2, adapted to work with interactive reducibility. For simplicity,
in this overview, we present the protocol only for the case ℓ = 1 (such as the sumcheck protocol).

To aid with notation, in the description of the protocol, we replace the set Si (which in Section 2.2.1
contained the set of all transcripts generated up until the i-th iteration) with an array Ai where
Ai[j] contains all of the round instances generated in the i-th iteration that are associated with the
j-th predicate of the interactive reduction. In iteration i, the interactive reduction will be run k
times in parallel, where for every j ∈ [k] we run given the round instances stored in Ai−1[j].
The protocol. Let (PIR,VIR) be a one-round interactive reduction for R with k predicates. The
IOP prover PIOP receives as input an instance x and witness w, and the IOP verifier VIOP receives as
input the instance x. They interact as follows.

1. For every i ∈ {0, . . . , 2k}, PIOP defines the (k+ 1)-entry array Ai as follows

Ai[j] :=

{
{⊥} if j = 0

∅ if j ∈ {1, . . . , k}
.

The set Ai[j] will store all instances corresponding to fj collected by iteration i of the protocol.

2. For i = 1, . . . , 2k:
(a) PIOP sends Ai−1 to VIOP.
(b) VIOP sends a random ρi ← {0, 1}r (this corresponds to a message of VIR).
(c) PIOP sends ai,j := PIR(x,w, Ai−1[j − 1], ρi) for all j ∈ [k], and sets Ai[j] := Ai−1[j] ∪ {zi,j}

where zi,j := VIR(x, Ai−1[j − 1], ρi, ai,j) is the output of the interactive reduction verifier
given base instance x, round instances Ai−1[j − 1], verifier randomness ρi, and prover reply
ai,j .
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3. PIOP sends A2k and, for every i ∈ {0, . . . , 2k}, sends Bi := Ai. This concludes the interaction.

4. In the decision phase, VIOP is given oracle access to a transcript with the following structure:

(A0, ρ1, (a1,1, . . . , a1,k) , A1, . . . , ρ2k, (a2k,1, . . . , a2k,k) , A2k, (B0, . . . , B2k)) .

VIOP performs the checks below.
(a) Subset consistency. Read the arrays B0, B1, . . . , B2k in their entirety. For every i ∈ [2k] and

j ∈ {0, . . . , k} check that Bi−1[j] ⊆ Bi[j].
(b) Transcript consistency. Sample a random i ∈ [2ℓ]. Read the arrays Ai−1 and Ai sent by PIOP

and the interaction ρi and (ai,1, . . . , ai,ℓ).
i. Check that Ai−1 = Bi−1 and Ai = Bi.
ii. For every j ∈ [k], check that Ai[j] = Ai−1[j] ∪ {z′i,j} where

z
′
i,j := VIR(x, Ai−1[j − 1], ρi, ai,j) ,

is the output of the interactive reduction verifier given base instance x, round instances
Ai−1[j − 1], verifier randomness ρi, and prover reply ai,j . (Reject if VIR rejects.)

(c) Final predicate holds. Check that fk(x, z) = 1 for every z ∈ B2k[k].

Analysis. The protocol has perfect completeness and soundness error max{12 ,
(
2·k
k

)
· k · ϵ} where k

is the number of predicates and ϵ is the soundness of the interactive reduction respectively. This can
be shown in a similar manner to that described in Section 2.2.1. The main difference between the
two protocols is in the analysis of the proof length. In the protocol of Section 2.2.1 the number of
sent transcripts doubled in each round. In contrast, in the new protocol, one round instance is added
for each predicate. In more detail, for every i ∈ [2k] and j ∈ [k], we have |Ai[j]| = |Ai−1[j]| + 1.
Since k = poly(|x|), the total number of round instances generated and sent is polynomial in |x|.
If the interactive reduction has bounded output length, then each of these round instances has
polynomially-bounded length. We can therefore conclude that the overall proof length is poly(|x|).

2.3.4 Relations with interactive reducibility

Several relations of interest have interactive reductions.
General IPs. We show that any relation with a k-round interactive proof has an m-round interactive
reduction with k/m predicates (for any m that divides k). To see this, consider round instances z
that are sets of j-message partial transcripts of the IP. The interactive reduction advances each of
the transcripts in the set z by m rounds, as in the IP. The predicates are defined with respect to
the “state function” of the IP, which roughly denotes whether the prover has an accepting strategy
with respect to this transcript or whether no strategy will cause the verifier to accept with high
probability (over the remaining interaction). See Section 3.2 for a formal definition of the state
function of an IP through the concept of round-by-round soundness.

Notice that if this interactive reduction is used in the protocol of Section 2.3.3, this yields the
protocol described in Section 2.2.1. This interactive reduction does not have bounded output length
since the new round instance stores all of the previous transcripts and their continuations. Therefore
the resulting IOP does not achieve O(1) total query complexity.
Sumcheck protocol. Using the ideas described in Section 2.3.2, we show that any relation that
can be reduced into k-variate sumcheck has a one-round interactive reduction with k predicates and
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bounded output length. As a result, any relation that can be reduced into k-variate sumcheck has a
O(k)-round public-coin IOP with query complexity O(1).
Shamir’s protocol. Shamir’s protocol [Sha92] gives an IP for all of PSPACE, thereby showing
the IP = PSPACE theorem. Extending the ideas developed in Section 2.3.2, we show a one-round
interactive reduction with bounded output length and polynomially-many predicates for Shamir’s
protocol. This establishes that every language in PSPACE has a poly(|x|)-round public-coin IOP
with query complexity O(1).
Future directions. We leave the exploration of what other relations have interactive reductions to
future work. Following the extensive use of polynomials in both the sumcheck protocol and Shamir’s
protocol, it seems likely that these techniques can be adapted to also work for low-depth circuits
through the delegation protocol in [GKR15].
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3 Preliminaries

We consider proof systems for binary relations. A binary relation R is a set of tuples (x,w) where
x is the instance and w the witness. The corresponding language L(R) is the set of x for which
there exists w such that (x,w) ∈ R. In some theorems we highlight important parameters with a
yellow background .

3.1 Interactive oracle proofs

Interactive Oracle Proofs (IOPs) [BCS16; RRR16] are information-theoretic proof systems that
combine aspects of Interactive Proofs [Bab85; GMR89] and Probabilistically Checkable Proofs
[BFLS91; FGLSS91; AS98; ALMSS98], and also generalize the notion of Interactive PCPs [KR08].
Below we describe public-coin IOPs.

A kIOP-round public-coin IOP works as follows. For each round i ∈ [kIOP], the verifier sends a
uniformly random message ρi to the prover; then the prover sends a proof string Πi to the verifier.
After kIOP rounds of interaction, the verifier makes some queries to the proof strings Π1, . . . ,ΠkIOP

sent by the prover, and then decides if to accept or to reject.
In more detail, let IOP = (PIOP,VIOP) be a tuple where PIOP (the prover) is an interactive

algorithm, and VIOP (the verifier) is an interactive oracle algorithm. We say that IOP is a public-coin
IOP for a binary relation R with kIOP rounds and soundness error βIOP if the following holds.

• Completeness. For every (x,w) ∈ R,

Pr
ρ1,...,ρkIOP

,ρdc

 V
Π1,...,ΠkIOP

,ρ1,...,ρkIOP
IOP (x; ρdc) = 1

Π1 ← PIOP(x,w, ρ1)
...

ΠkIOP
← PIOP(x,w, ρ1, . . . , ρkIOP

)

 = 1 .

• Soundness. For every x /∈ L(R) and unbounded malicious prover P̃IOP,

Pr
ρ1,...,ρkIOP

,ρdc

 V
Π̃1,...,Π̃kIOP

,ρ1,...,ρkIOP
IOP (x; ρdc) = 1

Π̃1 ← P̃IOP(ρ1)
...

Π̃kIOP
← P̃IOP(ρ1, . . . , ρkIOP

)

 ≤ βIOP(|x|) .

Complexity measures. We consider several complexity measures beyond soundness error. All of
these complexity measures are implicitly functions of the instance x.
• proof length lIOP: the total number of bits in Π1, . . . ,ΠkIOP

.
• queries qIOP: the number of bits read by the verifier from ρ1,Π1, . . . , ρkIOP

,ΠkIOP
.

• interaction randomness length rint: the total number of bits in ρ1, . . . , ρkIOP
.

• decision randomness length rdc: The number of bits in ρdc.
• prover time ptIOP: PIOP runs in time ptIOP.
• verifier time vtIOP: VIOP runs in time vtIOP.
• decision complexity dtIOP: Following the choice of queries, VIOP runs in time dtIOP to decide whether

to accept or reject.
Round-query IOPs and IPs. A round-query IOP with round-query complexity qrnd is an IOP in
which the verifier reads every symbol of qrnd rounds from the interaction. An interactive proof (IP) is
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a round-query IOP with round-query complexity equal to the number of rounds in the protocol (i.e.,
the verifier reads every symbol in the interaction). Unless explicitly stated otherwise, we assume
that IPs have no decision randomness.

3.2 Round-by-round soundness

Definition 3.1. Let (PIOP,VIOP) be an IOP for a relation R. A state function for (PIOP,VIOP) with
decision error δdc is a (possibly inefficient) Boolean function that receives as input an instance x and
a transcript tr and outputs a bit for which the following holds.

• Empty transcript: if tr = ∅ is the empty transcript then state(x, tr) = 0 if and only if x /∈ L(R).
• Prover moves: If x /∈ L(R), tr is a transcript where the prover is about to move and state(x, tr) = 0,

then for any potential prover message a, state(x, tr||a) = 0.
• Full transcript: if tr is a full transcript and state(x, tr) = 0 then Prρdc [V

tr
IOP(x; ρdc) = 1] ≤ δdc.

Definition 3.2. An IOP (PIOP,VIOP) with kIOP rounds for a relation R has (βrbr, δdc)-round-by-
round soundness if there exists a state function state with decision error δdc such that for all
x /∈ L(R), every i ∈ [kIOP], and every transcript tr of the first i rounds where the verifier is about to
move and state(x, tr) = 0 it holds that

Pr
ρ
[state(x, tr||ρ) = 1] ≤ βrbr .

We call βrbr the interaction error and δdc the decision error. If δdc = 0, we omit δdc and simply say that
IOP has round-by-round soundness βrbr which aligns with the standard definition of round-by-round
soundness for IPs.

Notice that if a k-round IOP has (βrbr, δdc)-round-by-round soundness, then it has soundness
error at most k · βrbr + δdc. Additionally, if a k-round IOP has constant soundness error, then it has
(c1/k, O(1))-round-by-round soundness error for some constant 0 < c < 1.

The following lemma is a generalization of [CCHLRR18], Corollary 5.7, and shows that one can
achieve small round-by-round soundness errors for IOPs with relatively little overhead.

Lemma 3.3. Let m, t ∈ N be parameters and R be a relation with a non-adaptive IOP (PIOP,VIOP)

with soundness error βIOP. Then R has an IOP (P′
IOP,V

′
IOP) with (β

m/2kIOP
IOP , β

t/2
IOP )-round-by-round

soundness and the following parameters:

IOP (PIOP,VIOP) for R

Rounds kIOP

Alphabet size λIOP

Proof length lIOP

Round queries qrnd

Queries per round qIOP

Total interaction randomness rint
Decision randomness rdc
Soundness βIOP

Verifier running time vtIOP

−→

IOP (PIOP,VIOP) for R

Rounds kIOP

Alphabet size λm
IOP

Proof length lIOP

Round queries t · qrnd

Queries per round t · qIOP

Total interaction randomness m · rint
Decision randomness t · rdc
Round-by-round soundness (β

m/2kIOP
IOP , β

t/2
IOP )

Verifier running time m · t · vtIOP

Proof. We augment the IOP (PIOP,VIOP) as follows: first augment the protocol by making m
repetitions of the interaction phase and changing the decision phase to check every one of the
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repetitions simultaneously (at the same locations) and accept if and only if the verifier would have
accepted in each execution. This IOP is then augmented by running the decision phase for t different
times. Let (P′

IOP,V
′
IOP) be the final IOP.

Perfect completeness and the efficiency parameters of the IOP follow straightforwardly from the
construction.

We turn to showing round-by-round soundness. Fix x /∈ R(L) and let βIOP be the soundness error
of (PIOP,VIOP). Then, we claim that for every malicious prover P̃IOP:

Pr
ρ1,...,ρkIOP

 Pr
ρdc

[
V

Π̃1,...,Π̃kIOP
,ρ1,...,ρkIOP

IOP (x; ρdc) = 1

]
≥ β

1/2
IOP

Π̃1 ← P̃IOP(ρ1)
...

Π̃kIOP
← P̃IOP(ρ1, . . . , ρkIOP

)

 ≤ β
1/2
IOP .

Indeed, suppose towards contradiction that there exist some P̃IOP such that:

Pr
ρ1,...,ρkIOP

 Pr
ρdc

[
V

Π̃1,...,Π̃kIOP
,ρ1,...,ρkIOP

IOP (x; ρdc) = 1

]
≥ β

1/2
IOP

Π̃1 ← P̃IOP(ρ1)
...

Π̃kIOP
← P̃IOP(ρ1, . . . , ρkIOP

)

 > β
1/2
IOP .

In this case, P̃IOP causes VIOP to accept at least whenever the verifier chooses interaction randomness
for which the internal probability is true (which happens with probability greater than β

1/2
IOP ), and

where the decision randomness chosen is chosen causes the verifier to accept (which happens with
probability β

1/2
IOP ). All together, P̃IOP causes the verifier to accept with probability greater than

β
1/2
IOP · β

1/2
IOP = βIOP in contradiction to the soundness error of the IOP (PIOP,VIOP).

Now notice that in order for in order for the verifier V′
IOP to accept given proofs, it must succeed

in all of its t checks of the decision phase. Moreover, these, t checks must succeed for each one of the
m independent repetitions. Hence for every P̃′

IOP:

Pr
ρ′1,...,ρ

′
kIOP

 Pr
ρ′dc

[
V

′Π̃′
1,...,Π̃

′
kIOP

,ρ′1,...,ρ
′
kIOP

IOP (x; ρ′dc) = 1

]
≥ β

t/2
IOP

Π̃′
1 ← P̃′

IOP(ρ
′
1)

...
Π̃′

kIOP
← P̃′

IOP(ρ
′
1, . . . , ρ

′
kIOP

)

 ≤ β
m/2
IOP .

We now describe a (β
m/2kIOP
IOP , β

t/2
IOP )-state function state for (P′

IOP,V
′
IOP). It is defined as follows

for instance x and transcript tr:
• If tr = (ρ′1, Π̃

′
1, . . . , ρ

′
kIOP

, Π̃′
kIOP

) is a full transcript, then state(x, tr) = 1 if and only if

Pr
ρ′dc

[
V′tr

IOP(x; ρ
′
dc) = 1

]
≥ β

t/2
IOP .

• We define state(x, tr) inductively for transcripts tr that are not full and contain i rounds:

– If tr = (ρ′1, Π̃
′
1, . . . , ρ

′
i, Π̃

′
i) ends in a prover message. Then state(x, tr) = 1 if and only if

Pr
ρ′i+1

[
state(x, tr||ρ′i+1) = 1

]
≥ β

m/2kIOP
IOP .

.
– If tr = (ρ′1, Π̃

′
1, . . . , ρ

′
i−1, Π̃

′
i−1, ρ

′
i) ends with a verifier message, then state(x, tr) = 1 if and only

if there exists a proof Π̃′
i such that state(x, tr||Π̃′

i) = 1.

It follows from the construction that state has decision error β
t/2
IOP . The interaction error of

β
m/2kIOP
IOP can be shown by a similar argument to that of [CCHLRR18, Proposition 5.5].
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3.3 Extractors

Definition 3.4. The min-entropy of a random variable X is

Hmin(X) = min
x∈supp(X)

− log Pr[X = x]

Definition 3.5. A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-extractor if for every
X with min-entropy at least k, SD(Ext(X,Ud), Um) ≤ ε (where SD is the statistical distance). An
extractor is explicit if it is computable in polynomial time.

We use the following explicit construction of extractors with tight parameters.

Theorem 3.6 ([GUV09]). For every constant α > 0, and all positive integers n, k and all ε > 0,
there is an explicit construction of a (k, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d =
O(log n+ log(1/ε)), and m ≥ (1− α)k.

Setting specific parameters, we will use this simpler version of the theorem.

Theorem 3.7. For all positive integers m, and ℓ ≥ logm there is an explicit construction of a
(2m, 2−ℓ)-extractor Ext : {0, 1}3m × {0, 1}d → {0, 1}m with d = O(ℓ).

Fact 3.8. For all n ∈ N, all x ∈ {0, 1}n and 0 < γ < 1 we have that

|{x′ ∈ {0, 1}n : ∆(x, x′) ≤ γ)}| ≤ 2n·H(γ) .

(here H is the entropy function H(p) = −p log(p)− (1− p) log(1− p)).
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4 Interactive reducibility

We define the notion of interactive reducibility. Then we show basic properties of interactive
reducibility: (a) in Section 4.1 we show that if a relation has an interactive reduction then it also
has an IP; and (b) in Section 4.2 we show how to reduce the soundness error of an interactive
reduction. Finally, in Section 4.3, we show an interactive reduction for any public-coin IP and
bounded-output-length interactive reductions for the sumcheck protocol and Shamir’s protocol.

Definition 4.1. An interactive reduction for a relation R with kIR predicates and soundness
error εIR is a ℓIR-round public-coin protocol (PIR,VIR) (where VIR runs in polynomial time) for which
there exists a list of predicates f0, f1, . . . , fkIR such that the following holds.

• Completeness. For every (x,w) ∈ R, j ∈ [kIR], and z1, . . . , zt such that fj−1(x, zi) = 1 for every
i ∈ [t], it holds that

Pr
[
fj(x, z

′) = 1 z
′ ← ⟨PIR(x,w, z1, . . . , zt),VIR(x, z1, . . . , zt)⟩

]
= 1 .

• Soundness. For every x /∈ L(R), j ∈ [kIR], and z1, . . . , zt, if there exists i ∈ [t] such that
fj−1(x, zi) = 0 then for every (computationally unbounded) P̃IR it holds that

Pr
[
fj(x, z

′) = 1 z
′ ← ⟨P̃IR,VIR(x, z1, . . . , zt)⟩

]
≤ εIR(x, t) .

• Relation identity. f0(x, z) = 1 if and only if x ∈ L(R).

• Triviality. fkIR(x, z) can be computed in time poly(|x|, |z|).

We call x the base instance and z1, . . . , zt round instances.

A relation R is interactively reducible with kIR predicates and ℓIR rounds if R has an interactive
reduction with kIR predicates and kIR-rounds. An interactive reduction has soundness error that is
well-behaved if εIR is (weakly) monotonically increasing with t and grows at most polynomially with
t. All interactive reductions described in this paper have well-behaved soundness error.

Definition 4.2. An interactive reduction has (polynomially) bounded output length if there
exists c ∈ N such that, for every base instance x, witness w, and round instances z1, . . . , zt, the new
instance output by (PIR,VIR) on inputs (x,w, z1, . . . , zt) has length at most |x|c.

4.1 Interactive proofs from interactive reductions

We construct an IP for any relation that is interactively reducible.

Theorem 4.3. If a relation R has an interactive reduction (PIR,VIR) then R has an IP (PIP,VIP)
with the parameters indicated below.

Interactive reduction for R

Number of predicates kIR

Rounds ℓIR
Communication lIR
Randomness rIR
Soundness error εIR

Verifier running time vtIR
Final predicate time ftIR

−→

IP for R

Rounds kIR · ℓIR
Communication kIR · lIR
Randomness kIR · rIR
Soundness error kIR · εIR(x, 1)
Verifier running time kIR · vtIR + ftIR
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Moreover, if ℓIR = 1 then the IP for R has round-by-round soundness error εIR(x, 1).

Construction 4.4. The IP prover PIP receives as input an instance x and a witness w, and the
IP verifier VIP receives as input the instance x. Letting z0 := x, they interact as follows. For
j = 1, . . . , kIR, PIP and VIP run the interactive reduction (PIR,VIR) to obtain a new instance

zj ← ⟨PIR(x,w, zj−1),VIR(x, zj−1)⟩ .

Finally, after the interaction, VIP checks that fkIR(x, zkIR) = 1.

Proof of Theorem 4.3. We prove completeness, then prove soundness (and round-by-round sound-
ness), and finally analyze complexity measures.
Completeness. Fix (x,w) ∈ R. By completeness of (PIR,VIR), for every j ∈ [kIR], if fj−1(x, zj−1) =
1, then

Pr
[
fj(x, zj) = 1 zj ← ⟨PIR(x,w, zj−1),VIR(x, zj−1)⟩

]
= 1 .

Since f0(x, z0) = f0(x,x) = 1, by induction it holds that fkIR(x, zkIR) = 1 with probability 1. We
conclude that Pr[⟨PIP(x,w),VIP(x)⟩ = 1] = 1.

Soundness. Fix x /∈ L(R) and a malicious IP prover P̃IP and let εIR := εIR(x, 1). Let P̃
(j)
IR be the

machine that describes P̃IP during the j-th execution of the interactive reduction. Each P̃
(j)
IR can be

seen as a (potentially malicious) prover for the interactive reduction. We show that fkIR(x, zkIR) = 1
(a necessary condition for the IP verifier VIP to accept) with probability at most kIR · εIR.

We show by induction that fj(x, zj) = 1 with probability at most j · εIR. For j = 0 this holds
because f0(x, z0) = f0(x,x) = 0. For j > 0, suppose that fj−1(x, zj−1) = 1 with probability at most
(j − 1) · εIR. It may be that whenever fj−1(x, zj−1) = 1 it holds holds that fj(x, zj) = 1. However,
whenever fj−1(x, zj−1) = 0, we can invoke the soundness property of (PIR,VIR) to deduce that

Pr
[
fj(x, zj) = 1 zj ← ⟨P̃(j)

IR ,VIR(x, zj−1)⟩
]
≤ εIR .

By applying the union bound, the probability that fj(x, zj) = 1 is at most (j − 1) · εIR + εIR = j · εIR.
Round-by-round soundness. Suppose that ℓIR = 1 (that is, (PIR,VIR) has one round) and let
εIR := εIR(x, 1). We focus on the MA case (the prover moves first in the interactive reduction); the
AM case can be shown in a similar manner. To show round-by-round soundness we first define a
state function state. Let x be an instance and tr be a transcript of the protocol up to round j (i.e.,
j full executions of the interactive reduction), and let (z0, . . . , zj) be the round instances output by
the reduction verifier VIR in an execution of the protocol according to tr (if the transcript ends with
a prover message, then zj is the last round instance specified according to the transcript). Then we
set state(x, tr) := 1 if and only fj(x, zj) = 1. We show that this is indeed a state function.

• Empty transcript. If tr = ∅ is the empty transcript then by definition state(x, tr) = 0 if and only if
f0(x, ∅) = 0, which occurs if and only if x /∈ L(R).

• Prover moves. Given x /∈ L(R) and a transcript tr. As in the definition of the state function, let
z0, . . . , zj be the instances generated by VIR. If state(x, tr) = 0 then by definition fj(x, zj) = 0.
Since no new instance is generated given only the prover’s message, state(x, tr||a) = 0 for every a.

• Full transcript. If tr is a full transcript and state(x, tr) = 0, this implies that fkIR(x, zkIR) = 0. If
this is the case then the IP verifier VIP rejects.
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We argue that (PIP,VIP) has round-by-round soundness εIR with respect to this state function.
Fix an instance x, a round number j ∈ [kIR], and a transcript tr that contains messages up to round
j (where the next message is a verifier message). Let (z0, . . . , zj) be the instances implied by tr.
Suppose that state(x, tr) = 0. Since the next message is a verifier message, and the interactive
reduction is public-coin, we have that the verifier’s next message ρ is a uniformly random string.
Thus, we show that

Pr
ρ
[ state(x, tr||ρ) = 1 ] ≤ εIR .

Since state(tr) = 0, we have that fj(x, zj) = 0. The claim, then, is implied by soundness of (PIR,VIR),
stating that for any malicious prover P̃IR:

Pr
[
fj+1(x, zj+1) = 1 zj+1 ← ⟨P̃IR,VIR(x, zj)⟩

]
≤ εIR .

Complexity measures. We discuss complexity measures of (PIP,VIP).

• Round complexity. The round complexity of the IP is kIR · ℓIR because the IP consists of kIR

interactive reductions, each with ℓIR rounds, ran in sequence.

• Communication complexity. The communication complexity of the IP is kIR · lIR, because each of
the kIR interactive reductions has communication complexity lIR.

• Randomness complexity. The IP verifier uses kIR · rIR random bits because each of the kIR invocations
of the reduction verifier uses rIR random bits.

• Verifier running time. The IP verifier runs in time kIR · vtIR + ftIR because it runs kIR invocations of
the reduction verifier (whose time complexity is vtIR) and also runs the predicate fkIR (whose time
complexity is ftIR).

4.2 Error reduction for interactive reducibility

We show that the soundness error of an interactive reduction can be amplified. In order to improve
soundness from εIR to ετIR we have each “new” round instance contain τ “original” round instances for
the original protocol. Then, when reducing t separate new round instances (each one containing
τ old round instances), we run the original interactive reduction on all of the old round instances
contained within the new round instances.

Theorem 4.5. Let R be a relation and τ ∈ N a parameter. If R has an interactive reduction
(PIR,VIR) then R has an interactive reduction (P

(τ)
IR ,V

(τ)
IR ) with the parameters indicated below.

Interactive reduction for R

Number of predicates kIR

Rounds ℓIR
Output length sIR
Communication lIR
Randomness rIR
Soundness error εIR

Verifier running time vtIR
Final predicate time ftIR

−→

Interactive reduction for R with reduced error
Number of predicates kIR

Rounds ℓIR(x, τ · t)
Output length τ · sIR(x, τ · t)
Communication τ · lIR(x, τ · t)
Randomness τ · rIR(x, τ · t)
Soundness error ετIR(x, τ · t)
Verifier running time τ · vtIR(x, τ · t)
Final predicate time τ · ftIR(x, τ · t)
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Construction 4.6. We define the new predicates and then describe the new interactive reduction.

The predicates. Let fj be the j-th predicate in (PIR,VIR). Define the new predicate f
(τ)
j for

(P
(τ)
IR ,V

(τ)
IR ) so that f

(τ)
j (x, z) = 1 if and only if z = (z1, . . . , zτ ) and fj(x, zm) = 1 for all m ∈ [τ ].

The reduction. The reduction prover P
(τ)
IR and reduction verifier V

(τ)
IR receive as input a base

instance x and round instances z1, . . . , zt where zi := (zi,1, . . . , zi,τ ). They interact as follows.

• They run the interactive reduction (PIR,VIR) with base instance x and round instances (z1,1, . . . , z1,τ ,
. . . , zt,1, . . . , zt,τ ) for τ times in parallel with fresh randomness in each execution.

• Output z′ := (z′1, . . . , z
′
τ ), where z′i is the result of the i-th independent execution of (PIR,VIR).

Proof of Theorem 4.5. First we argue completeness, then soundness of the interactive reduction and
triviality of the predicate fkIR , and finally analyze the other complexity measures of the protocol.
Completeness. Fix (x,w) ∈ R and z1, . . . , zt with fj(x, z1) = . . . = fj(x, zt) = 1. Completeness
of the interactive reduction (PIR,VIR) implies that with probability 1 every output z′i satisfies
fj+1(x, z

′
i) = 1; in turn, by definition of the new predicates, this means that z′ := (z′1 . . . , z

′
τ ) is

such that f
(τ)
j (x, z′) = 1.

Soundness. Fix x and z1, . . . , zt where f
(τ)
j (x, zi) = 0 for some i ∈ [t]. This implies that

there exists zi,m ∈ zi such that f
(τ)
j (x, zi,m) = 0. This is one of the instances in the list

(z1,1, . . . , z1,τ , . . . , zt,1, . . . , zt,τ ) given as input to the interactive reduction (PIR,VIR). Thus, for
each execution in the protocol we have, by the definition of reducible soundness that for every P̃IR:

Pr
[
fj+1(x, z) = 1 z← ⟨P̃IR,VIR(x, z1,1, . . . , z1,τ , . . . , zt,1, . . . , zt,τ )⟩

]
≤ εIR(x, τ · t) .

Since each of the τ executions is independent, with probability at least 1− ετIR(x, τ · t) there exists
i ∈ [τ ] with fj+1(x, z

′
i) = 0. This implies that f (τ)

j+1(x, z
′) = 0 with probability at least 1− ετIR(x, τ · t).

Triviality. Triviality of f (τ)
kIR

follows directly from the triviality of fkIR .
Complexity measures. We discuss complexity measures of the new interactive reduction
(P

(τ)
IR ,V

(τ)
IR ). Running the new interactive reduction with t round instances is essentially τ ex-

ecutions of the interactive reduction (PIR,VIR) with τ · t round instances each. Thus all complexity
measures depend on the complexity of (PIR,VIR) with τ · t round instances.

• Output length. The output of the protocol has length τ · sIR(x, τ · t).

• Round complexity. The protocol has ℓIR(x, τ · t) rounds.

• Communication complexity. The communication complexity of the protocol is τ · lIR(x, τ · t).

• Randomness complexity. The verifier of the new interactive reduction uses τ · rIR(x, τ · t) random
bits.

• Verifier running time. The verifier of the new interactive reduction runs in time τ · vtIR(x, τ · t).

• Final predicate time. The final predicate of the new interactive reduction runs in time τ · ftIR(x, τ ·t).
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4.3 Relations with interactive reducibility

We present interactive reductions for various relations. In Section 4.3.1 we show that every language
with an IP has an interactive reduction, albeit not one with bounded output length. Then we show
how to achieve bounded output length for specific classes of relations: 1. the sumcheck protocol in
Section 4.3.2; and 2. Shamir’s protocol in Section 4.3.3;

4.3.1 Interactive reductions for any IP

We show that any IP can be transformed into an IP with interactive reducibility where the base
instance is the instance for the IP, and the round instances are sets of partial transcripts. The length
of a merged round instance grows with the number of partial transcripts in all of the reduction
instances combined, and so this reduction does not have bounded output-length.

Theorem 4.7. If a relation R has a kIP-round public-coin IP (PIP,VIP) then R has an interactive
reduction (PIR,VIR) with the parameters below for every m > 0 that divides kIP.

IP for R

Rounds kIP

Per-round communication lIP
Per-round randomness rIP
Round-by-round soundness error βrbr

Per-round verifier running time vt
Decision time dIP

−→

Interactive reduction for R for round j given z1, . . . , zt

Number of predicates kIP/m
Rounds m
Output length t ·m · lIP +

∑
i∈[t] |zi|

Communication t ·m · lIP
Randomness m · rIP
Soundness error m · βrbr

Verifier running time t ·m · vtIP
Final predicate time dIP

Construction 4.8. Let state be the state function of (PIP,VIP). We define the predicates and then
describe the interactive reduction for the relation described by this IP.
The predicates. For each j ∈ [kIP/m], we define fj(x, z) := 1 if and only if the following are true:
1. z is a set of (j ·m)-round partial transcript ending with a prover message.
2. For every tr ∈ z, state(x, tr) = 1.
3. If x ∈ L(R) and j ̸= kIP/m, then we require that very tr ∈ z is consistent with the honest

prover: Suppose tr = (a1, ρ1, . . . , aj·m) then a1 := PIP(x) and for every 1 < k ≤ j ·m, ak :=
PIP(x, a1, ρ1, . . . , ak−1, ρk−1).

The reduction. The reduction prover PIR and reduction verifier VIR receive as input a base instance
x and round instances z1, . . . , zt where each zi is a set of j-round partial transcripts ending in a
prover message. The reduction prover PIR additionally receives as input a witness w. The protocol
is as follows:

1. For k = 1 to m:

(a) VIR: Send a uniformly random message ρk corresponding to the IP verifier’s (j ·m+ k)-th
message.

(b) PIR: For every tr ∈
⋃

i∈[t] zi, send the prover message atr,k := PIP(x,w, tr, ρ1, . . . , ρk).

2. VIR: Output z′ := {tr||ρ1||atr,1|| . . . ||ρm||atr,m}tr∈∪i∈[t]zi
.

Proof of Theorem 4.7. First we argue completeness, then soundness and then show triviality of the
predicate fkIP/m.
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Completeness. Fix (x,w) ∈ R, j ∈ [kIP/m], and z1, . . . , zt such that fj−1(x, z1) = · · · =
fj−1(x, zt) = 1. This implies that state(x, tr) = 1 for every tr ∈

⋃
i∈[t] zi and that every transcript is

consistent with the honest prover. We now show that for every such transcript tr and ρ1, . . . , ρm,
setting atr,k := PIP(x,w, tr, ρ1, atr,1, . . . , atr,k−1, ρk), we have

state(x, tr||ρ1||atr,1|| . . . ||ρm||atr,m) = 1 .

This implies that fj+1(x, z
′) = 1, since fj+1(x, z

′) = 1 if and only if for every tr the state of the
resulting transcript after running the protocol is 1.

Notice that any for any transcript tr that is consistent with the honest prover and any ρ:
state(x, tr||ρ||atr) = 1 where atr := PIP(x, tr||ρ). Suppose towards contradiction of perfect complete-
ness of the underlying IP that this was not the case. Then for some choice of ρ the honest prover
sends a message that sets the state to 0. Since the protocol has non-zero round-by-round soundness
error, once the state is set to zero, there is a non-zero probability that the final transcript has state
0, which will imply that the verifier rejects. Since tr was consistent with the honest prover, there is
a non-zero probability that it is generated in an honest execution of the protocol. Therefore, there is
non-zero probability that the honest prover will not convince the verifier in a correct execution, in
contradiction to perfect completeness of the IP.

The above argument shows that for every transcript, its state will remain 1. By construction,
every new transcript (tr||ρ1||atr,1|| . . . ||ρm||atr,m) is consistent with the honest prover. We therefore
conclude that fj(x, z

′) = 1.
Soundness. Fix x /∈ L(R), j ∈ [kIP/m], and z1, . . . , zt and a (computationally unbounded)
malicious reduction prover P̃IR. Before we begin our analysis, recall that round-by-round soundness
of the IP, for any transcript tr with state(x, tr) = 0:

Pr
ρ
[state(x, tr||ρ) = 1] ≤ βrbr .

Moreover, by the properties of the state function, since x /∈ L(R), if ρ is such that state(x, tr||ρ) = 0
then for any a we have that state(x, tr||ρj ||a) = 0. Using induction, we can conclude that for any tr
with state(x, tr) = 0:

Pr
ρ1,...,ρm

state(x, tr||ρ1||atr,1|| . . . ||ρm||atr,m) = 1

atr,1 := P̃IR(tr, ρ1)
...

atr,m := P̃IR(tr, ρ1, atr,1, . . . , atr,m−1, ρm)

 ≤ m·βrbr .

(2)
Suppose that there exists i ∈ [t] such that fj−1(x, zi) = 0. This implies that there exists a transcript
tr ∈

⋃
i∈[t] zi with state(x, tr) = 0 (notice that the requirement of consistency with the honest prover

described in Item 3 is only for x ∈ L(R)). By Equation (2) and since (tr||ρ1||atr,1|| . . . ||ρm||atr,m) is
added to the new instance z′, this implies that with probability at least 1−m · βrbr, fj(x, z′) = 0 as
required.
Triviality. fkIP/m(x, z) = 1 if and only if all of the transcripts in z are complete transcripts and
have state 1 (notice that since this is the last round, we do not have the requirement of consistency
with the honest prover described in Item 3). This can be verified by running VIP on every tr ∈ z,
since VIP(x, tr) = state(x, tr).
Complexity measures. We discuss complexity measures of (PIR,VIR).
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• Output length. The new instance size is t ·m · lIP +
∑

i∈[t] |zi|.

• Round complexity. The protocol has m rounds.

• Communication complexity. The communication complexity of the protocol is t ·m · lIP where lIP is
the per-round communication complexity of (PIP,VIP).

• Randomness complexity. VIR uses rIP random bits where m · rIP is the per-round randomness
complexity of VIP.

• Verifier running time. VIR runs the IP verifier for t ·m times in total time t ·m · vtIP.

• Final predicate time. The final predicate can be checked in time dIP.

4.3.2 Sumcheck language

Definition 4.9. A sumcheck instance has the form (F, H, n, d, p, γ) where F is a field, H ⊆ F,
n ∈ N is a number of variables, d ∈ N is a degree bound, p : Fn → F is an n-variate polynomial of
individual degree at most d (given to the verifier as an oracle) and γ ∈ F is a claimed sum. We
define (F, H, n, d, p, γ) ∈ LΣ if and only if∑

α1,...,αn∈H
p(α1, . . . , αn) = γ .

Theorem 4.10. The sumcheck language LΣ has an interactive reduction that, for instances x =
(F, H, n, d, p, γ), has the following parameters.

Interactive reduction for LΣ

Number of predicates n
Messages 2
Output length |x|
Communication O(ntd2 log |F|)
Randomness 2 log |F|
Soundness error O (ntd/|F|)
Verifier running time poly(|x|, t)
Final predicate time 1 call to p

Construction 4.11. We define the predicates and then describe the interactive reduction.
The predicates. For a base instance x = (F, H, n, d, p, γ), for each j ∈ [n], we define fj(x, z) = 1
if and only if, parsing z = (r1, . . . , rj , γj) ∈ Fj+1, we have∑

αj+1,...,αn∈H
p(r1, . . . , rj , αj+1, . . . , αn) = γj .

The reduction. The reduction prover PIR and reduction verifier VIR receive as input a base instance
x and round instances z1, . . . , zt. Parse each zi := (r

(i)
1 , . . . , r

(i)
j , γ

(i)
j ). Let I

z1,...,zt
: F→ Fj be the

polynomial of degree less than t such that I
z1,...,zt

(i) = (r
(i)
1 , . . . , r

(i)
j ) for every i ∈ [t];2 for any γ ∈ F,

I
z1,...,zt

(γ) can be computed in poly(t) operations. The interactive reduction is as follows:
2Here we implicitly associate the set [t] with an arbitrary set S ⊆ F of size t.
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• PIR: Send the polynomial g ∈ F[X1, X2] defined as:

g(X1, X2) :=
∑

αj+2,...,αn∈H
p(I

z1,...,zt
(X1), X2, αj+2, . . . , αn) . (3)

• VIR: Receive a bivariate polynomial g̃ ∈ F[X1, X2] of degree at most j · d · (t− 1) in X1 and degree
at most d in X2.

1. Consistency: Check that for every i ∈ [t] it holds that
∑

α∈H g̃(i, α) = γ
(i)
j . (Reject if not.)

2. Generate new instance:
(a) Sample uniformly random field elements ρ, r∗ ← F and send them to PIR.
(b) Output the new instance z′ := (r′1, . . . , r

′
j , r

∗, γj+1) where (r′1, . . . , r
′
j) := I

z1,...,zt
(ρ) and

γj+1 := g̃(ρ, r∗).

Proof of Theorem 4.10. We argue completeness, then soundness, and then triviality of the predicate
fn.
Completeness. Fix x = (F, H, n, d, p, γ) ∈ LΣ and z1, . . . , zt such that fj(x, z1) = · · · = fj(x, zt) =

1 where zi := (r
(i)
1 , . . . , r

(i)
j , γ

(i)
j ). We argue that

Pr
[
fj(x, z

′) = 1 z
′ ← ⟨PIR(x, z1, . . . , zt),VIR(x, z1, . . . , zt)⟩

]
= 1 .

Let g be defined as in Equation (3). Notice that for every i ∈ [t],

g(i,X2) =
∑

αj+2,...,αn∈H
p(r

(i)
1 , . . . , r

(i)
j , X2, αj+2, . . . , αn) ,

which, since fj(x, zi) = 1, implies that
∑

α∈H g(i, α) = γ
(i)
j . Therefore the reduction verifier VIR

does not reject in the consistency test (in Item 1). Moreover, by the definition of g, for every ρ and
r∗, ∑

αj+2,...,αn∈H
p(r′1, . . . , r

′
j , r

∗, αj+2, . . . , αn) =
∑

αj+2,...,αn∈H
p(I

z1,...,zt
(ρ), r∗, αj+2, . . . , αn)

= g(ρ, r∗) .

Therefore we have fi(x, z
′) = 1 with probability 1.

Soundness. Fix x = (F, H, n, d, p, γ) /∈ LΣ and z1, . . . , zt where zi := (r
(i)
1 , . . . , r

(i)
j , γ

(i)
j ). Suppose

that fj(x, zi) = 0 for some i ∈ [t]. Fix a malicious reduction prover P̃IR. We show that

Pr
[
fj(x, z

′) = 1 z
′ ← ⟨P̃IR,VIR(x, z1, . . . , zt)⟩

]
≤ d · (1 + n · (t− 1))

|F|
.

If g̃ does not pass the consistency test (in Item 1) then the reduction verifier outputs ⊥, and we
have fj+1(x,⊥) = 0. Thus, we can assume that g̃ passes the consistency test (that is, for every
i ∈ [t] it holds that

∑
α∈H g̃(i, α) = γ

(i)
j ). Let g be defined as in Equation (3) with respect to x and

z1, . . . , zt.
We have that g ̸≡ g̃ due to the fact that fj(x, zi) = 0, which implies that∑

α∈H
g(i, α) =

∑
αj+1,...,αn∈H

p(r
(i)
1 , . . . , r

(i)
j , αj+1, . . . , αn) ̸= γ

(i)
j =

∑
α∈H

g̃(i, α) ,
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Thus, by applying the Schwartz–Zippel lemma, and recalling that g and g̃ both have degree j ·d ·(t−1)
in their first variable and d in their second variable, we get:

Pr
ρ,r∗

[ g(ρ, r∗) = g̃(ρ, r∗) ] ≤ d · (1 + j · (t− 1))

|F|
≤ d · (1 + n · (t− 1))

|F|
.

For any choice of ρ and r∗ such that g(ρ, r∗) ̸= g̃(ρ, r∗), we have that∑
αj+2,...,αn∈H

p(r′1, . . . , r
′
j , r

∗, αj+2, . . . , αn) = g(ρ, r∗) ̸= g̃(ρ, r∗) = γj+1 ,

and so fj+1(x, (r
′
1, . . . , r

′
j , r

∗, γj+1)) = 0 with probability at least 1− d·(1+n·(t−1))
|F| .

Triviality. By definition, fn(x, z) = fn((F, H, n, d, p, γ), (r1, . . . , rn, γn)) = 1 if and only if
p(r1, . . . , rn) = γn, which can be efficiently verified by querying p once.
Complexity measures. We discuss complexity measures of the protocol (PIR,VIR).

• Output length. The output is a list of j + 2 ≤ n + 2 field elements. Thus, the maximal length
output is at most O(n · log |F|), which is a fixed polynomial in the input length.

• Rounds. The interactive reduction has one round.

• Communication complexity. The prover sends g which is bivariate and has degree at most n·d·(t−1)
in its first variable and d in its second variable. This requires sending O(ntd2) field elements.
The verifier sends two field elements. Thus the communication complexity of the protocol is
O(ntd2 log |F|) bits.

• Randomness complexity. VIR uses 2 log |F| random bits.

• Verifier running time. VIR runs in time poly(n, log |F|) = poly(|x|).

• Final predicate time. Computing the final predicate requires one call to p.

4.3.3 Shamir’s protocol

We show an interactive reduction for a class of languages that contains all of PSPACE. For notational
convenience, we define an operator that acts either as a sum or product, depending on the index of
the variable it is applied over. For every j ∈ N let:

Ψ
αj∈H

:=

{∑
αj∈H j is odd∏
αj∈H j is even

.

Given polynomials p0, . . . , pn where each pj is a j-variate polynomial over a field F, we derive
polynomials h0, . . . , hn where hj : Fj → F is defined recursively as follows:

• hn(X1, . . . , Xn) := pn(X1, . . . , Xn).

• hj(X1, . . . , Xj) := pj(X1, . . . , Xj) ·Ψαj+1

(
hj+1(X1, . . . , Xj , αj+1)

)
.
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Observe that using this notation:

h0 = p0·
∑
α1∈H

p1(α1) ·
∏

α2∈H

p2(α1, α2) ·
∑
α3∈H

[
. . .

[
pn−1(α1, . . . , αn−1) · Ψ

αn∈H
pn(α1, . . . , αn)

]
. . .

] .

Definition 4.12. A Shamir instance has the form (F, H, n, d, p0, . . . , pn, γ) where F is a field,
H ⊆ F, n ∈ N is a number of variables, d ∈ N is a degree bound, each pj : Fj → F is an j-variate
polynomial where the derived polynomials h0, . . . , hn have individual degree at most d and γ ∈ F is a
claimed value. We define (F, H, n, d, p0, . . . , pn, γ) ∈ LShmr if and only if h0 = γ.

Note that a sumcheck instance (as defined in Section 4.3.2) is a Shamir instance where p0, . . . , pn−1

are equal to the constant 1 polynomial, and pn(X1, . . . , Xn) ≜ p′n(X1, X3, . . . , Xn−1) (assuming n is
even) for some polynomial p′n of individual degree at most d.

Theorem 4.13. The Shamir language LShmr has an interactive reduction that, for instances x =
(F, H, n, d, p0, . . . , pn, γ), has the following parameters.

Interactive reduction for LShmr

Number of predicates n
Messages 2
Output length |x|
Communication O(ntd2 log |F|)
Randomness 2 log |F|
Soundness error O (ntd/|F|)
Verifier running time poly(|x|, t)
Final predicate time 1 call to pn

Shamir [Sha92] showed how deciding every language in PSPACE can be reduced to computing
the value of an arithmetic expression of the form of Shamir instances. Specifically, Shamir’s reduction
takes a TQBF formula and transforms it into a “simple” TQBF formula, roughly defined as one in
which every occurrence of every variable is separated from its quantification point by at most one
universal quantifier (and arbitrarily many other symbols). This ensures that when arithmetizing the
formula, one ends up with an expression in which the degree of every variable is polynomial.

Using the above theorem, and Shamir’s reduction we get the following corollary showing that
every language in PSPACE has an interactive reduction with bounded output length albeit with
polynomially-many predicates.

Corollary 4.14. Every L ∈ PSPACE has an interactive reduction that, for instances x, has the
following parameters:

Interactive reduction for L

Number of predicates poly(|x|)
Messages 2
Output length poly(|x|)
Communication poly(|x|)
Randomness poly(|x|)
Soundness error O

(
t/2|x|

)
Verifier running time poly(|x|, t)
Final predicate time poly(|x|)
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Construction 4.15. We define the predicates and then describe the interactive reduction.
The predicates. For a base instance x = (F, H, n, d, p0, . . . , pn, γ), for each j ∈ [n], we define
fj(x, z) = 1 if and only if, parsing z = (r1, . . . , rj , γj) ∈ Fj , we have hj(r1, . . . , rj) = γj .
The reduction. The reduction prover PIR and reduction verifier VIR receive as input a base instance
x and round instances z1, . . . , zt. Parse each zi := (r

(i)
1 , . . . , r

(i)
j , γ

(i)
j ). Let I

z1,...,zt
: F→ Fj be the

polynomial of degree less than t such that I
z1,...,zt

(i) = (r
(i)
1 , . . . , r

(i)
j ) for every i ∈ [t] (we implicitly

associate the set [t] with an arbitrary set S ⊆ F of size t.); for any γ ∈ F, I
z1,...,zt

(γ) can be computed
in poly(t) operations. The interactive reduction is as follows:

• PIR: Send the polynomial g ∈ F[X1, X2] defined as:

g(X1, X2) := hj+1(Iz1,...,zt(X1), X2) . (4)

• VIR: Receive a bivariate polynomial g̃ ∈ F[X1, X2] of degree at most j · d · (t− 1) in X1 and degree
at most d in X2.

1. Consistency: Check that for every i ∈ [t] it holds that

pj(Iz1,...,zt(i)) · Ψ
αj+1∈H

g̃(i, αj+1) = γ
(i)
j .

(Reject if not.)
2. Generate new instance:

(a) Sample uniformly random field elements ρ, r∗ ← F and send them to PIR.
(b) Output the new instance z′ := (r′1, . . . , r

′
j , r

∗, γj+1) where (r′1, . . . , r
′
j) := I

z1,...,zt
(ρ) and

γj+1 := g̃(ρ, r∗).

Proof of Theorem 4.10. We argue completeness, then soundness, and then triviality of the predicate
fn.
Completeness. Fix x = (F, H, n, d, p0, . . . , pn, γ) ∈ LShmr and z1, . . . , zt such that fj(x, z1) =

· · · = fj(x, zt) = 1 where zi := (r
(i)
1 , . . . , r

(i)
j , γ

(i)
j ). We argue that

Pr
[
fj(x, z

′) = 1 z
′ ← ⟨PIR(x, z1, . . . , zt),VIR(x, z1, . . . , zt)⟩

]
= 1 .

For every i ∈ [t], since fj(x, zi) = 1, we have that

pj(Iz1,...,zt(i)) · Ψ
αj+1∈H

g(i, αj+1) = pj(r
(i)
1 , . . . , r

(i)
j ) · Ψ

αj+1∈H
hj+1(r

(i)
1 , . . . , r

(i)
j , αj+1)

= hj(r
(i)
1 , . . . , r

(i)
j )

= γ
(i)
j .

Therefore the reduction verifier VIR does not reject in the consistency test (in Item 1). Moreover, by
the definition of g, for every ρ and r∗,

hj+1(r
′
1, . . . , r

′
j , r

∗) = hj+1(Iz1,...,zt(ρ), r
∗)

= g(ρ, r∗)
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= γj+1 .

Therefore we have fi(x, z
′) = 1 with probability 1.

Soundness. Fix x = (F, H, n, d, p0, . . . , pn, γ) /∈ LShmr and z1, . . . , zt where zi := (r
(i)
1 , . . . , r

(i)
j , γ

(i)
j ).

Suppose that fj(x, zi) = 0 for some i ∈ [t]. Fix a malicious reduction prover P̃IR. We show that

Pr
[
fj(x, z

′) = 1 z
′ ← ⟨P̃IR,VIR(x, z1, . . . , zt)⟩

]
≤ d · (1 + n · (t− 1))

|F|
.

If g̃ does not pass the consistency test (in Item 1) then the reduction verifier rejects. Thus, we can
assume that g̃ passes the consistency test. That is, for every i ∈ [t] it holds that

pj(Iz1,...,zt(i)) · Ψ
αj+1∈H

g̃(i, αj+1) = γ
(i)
j .

Let g be defined as in Equation (4) with respect to x and z1, . . . , zt.
We have that g ̸≡ g̃ due to the fact that fj(x, zi) = 0, which implies that

pj(Iz1,...,zt(i)) · Ψ
αj+1∈H

g(i, αj+1) = hj(r
(i)
1 , . . . , r

(i)
j )

̸= γ
(i)
j

= pj(Iz1,...,zt(i)) · Ψ
αj+1∈H

g̃(i, αj+1) .

Thus, by applying the Schwartz–Zippel lemma, and recalling that g and g̃ both have degree j ·d ·(t−1)
in their first variable and d in their second variable, we get:

Pr
ρ,r∗

[ g(ρ, r∗) = g̃(ρ, r∗) ] ≤ d · (1 + j · (t− 1))

|F|
≤ d · (1 + n · (t− 1))

|F|
.

For any choice of ρ and r∗ such that g(ρ, r∗) ̸= g̃(ρ, r∗), we have that

hj+1(r
′
1, . . . , r

′
j , r

∗) = g(ρ, r∗) ̸= g̃(ρ, r∗) = γj+1 .

and so fj+1(x, (r
′
1, . . . , r

′
j , r

∗, γj+1)) = 0 with probability at least 1− d·(1+n·(t−1))
|F| .

Triviality. By definition, fn(x, z) = fn((F, H, n, d, p0, . . . , pn, γ), (r1, . . . , rn, γn)) = 1 if and only if

hj(r1, . . . , rn) ≜ pn(r1, . . . , rn) = γ ,

which can be efficiently verified by querying pn once.
Complexity measures. We discuss complexity measures of the protocol (PIR,VIR).

• Output length. The output is a list of j + 1 ≤ n+ 1 field elements. Thus, the output length is at
most O(n · log |F|), which is a fixed polynomial in the input length.

• Rounds. The interactive reduction has one round.
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• Communication complexity. The prover sends g which is bivariate and has degree at most n·d·(t−1)
in its first variable and d in its second variable. This requires sending O(ntd2) field elements.
The verifier sends two field elements. Thus the communication complexity of the protocol is
O(ntd2 log |F|) bits.

• Randomness complexity. VIR uses 2 log |F| random bits.

• Verifier running time. VIR runs in time poly(n, log |F|) = poly(|x|).

• Final predicate time. Computing the final predicate requires one call to pn.
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5 IOPs from interactive reducibility

We show how to use interactive reducibility to construct IOPs with small query complexity. In Sec-
tion 5.1, we show that every language with a bounded-output-length interactive reduction (with
good enough soundness) has a round-query IOP with round-query complexity O(1). Recall that a
round-query IOP with round-query complexity qrnd is an IOP in which the verifier reads qrnd rounds
(prover and verifier messages) in their entirety. In Section 5.2, we show that, while the interactive
reduction for any IP (in Section 4.3.1) does not have bounded output length, a similar claim can be
made for any k-round IP; in this case, the resulting verifier queries max{O(1), O(k/ log |x|)} rounds.

Combining Theorem 5.3 and Theorem 7.1 (for transforming round-query IOPs into binary IOPs),
we obtain the following corollary showing that languages with interactive reducibility have binary
IOPs with constant query complexity.

Corollary 5.1 (restatement of Lemma 2). Let R be a relation with a bounded-output-length interactive
reduction with well-behaved soundness error, kIR predicates, and ℓIR rounds. Then R has a non-adaptive
public-coin IOP with the parameters below.

IOP for R

Rounds O(ℓIR · kIR)
Proof length poly(|x|)
Alphabet size 2
Queries O(ℓIR)
Interaction randomness poly(|x|)
Decision randomness O(log |x|)
Soundness error O(1)
Verifier running time poly(|x|)

Proof. We first amplify the soundness error of the interactive reduction using Theorem 4.5 until
we have

(
2·kIR
kIR

)
· kIR · εIR(x, 2 · kIR) <

1
2 . Since εIR is well-behaved and

(
2·kIR
kIR

)
< 22kIR , this incurs only

a polynomial overhead. We then apply Theorem 5.3 with parameter τ = 2 to get an IOP with
O(ℓIR · kIR) rounds in which the verifier reads only O(ℓIR) of the rounds with alphabet size 2poly(|x|).
We then apply the transformation described Theorem 7.1 to transform this IOP into a binary one in
which the verifier queries O(ℓIR) rounds and makes O(1) queries to each round (including its own
random messages).

Similarly, we get the following corollary for any public-coin IP.

Corollary 5.2 (restatement of Lemma 1). Let R be a relation with a non-adaptive kIP-round
public-coin IP. Then R has an IOP with the parameters below.

IOP for R

Rounds kIP

Proof length poly(|x|)
Alphabet size 2
Queries max{O(1), O(kIP/ log |x|)}
Interaction randomness poly(|x|)
Decision randomness O(log |x|)
Soundness error O(1)
Verifier running time poly(|x|)

34



Proof. Given an IP for the relation R, we first apply the Babai–Moran transformation [BM88] to
reduce the number of rounds by a constant fraction (enough to counteract the constant added
to the number of rounds by the next two transformations). Next, we apply Theorem 5.7 when
setting m := max{O(1), O(k′IP/ log |x|)} (where k′IP is the number of rounds of the IP following the
Babai–Moran transformation) and then apply Theorem 7.1 to the resulting IOP.

5.1 Round-query IOPs from bounded-output-length interactive reductions

We show that any relation with a bounded-output-length interactive reduction has a round-query
IOP with polynomial proof length with small round-query complexity.

Theorem 5.3. Let τ ∈ N and let R be a relation with a bounded-output-length interactive reduction
(PIR,VIR) with well-behaved soundness error. Then R has a public-coin round-query IOP (PIOP,VIOP)
with the parameters indicated below.

Interactive reduction for R

Number of predicates kIR

Rounds ℓIR
Communication lIR
Output length sIR
Randomness rIR
Soundness error εIR

Verifier running time vtIR
Final predicate time ftIR

−→

Round-query IOP for R
Rounds τ · kIR · ℓIR
Proof length (per round) τ · k2IR · (sIR + lIR)
Round queries O(ℓIR)
Interaction randomness O(τ · kIR · rIR)
Decision randomness O(log(τ · kIR))

Soundness error max{1/τ,
(
τ ·kIR
kIR

)
· kIR · εIR(x, τ · kIR)}

Verifier running time poly(τ, kIR, sIR, lIR, vtIR, ftIR)

Construction 5.4. Let (PIR,VIR) be an interactive reduction for R with kIR predicates.
The IOP prover PIOP receives as input an instance x and witness w, and the IOP verifier VIOP

receives as input the instance x. They interact as follows.

1. For every i ∈ {0, . . . , τ · kIR}, PIOP defines the (kIR + 1)-entry array Ai as follows

Ai[j] :=

{
{⊥} if j = 0

∅ if j ∈ {1, . . . , kIR}
.

The set Ai[j] will be used to store all of the instances corresponding to fj collected by iteration i
of the protocol.

2. For i = 1, . . . , τ · kIR:

(a) PIOP sends Ai−1 to VIOP.
(b) Do in parallel for every j ∈ [kIR] such that Ai−1[j − 1] ̸= ∅:

i. Execute the interaction phase of:

z
′
i,j ← ⟨PIR(x,w, Ai−1[j − 1]),VIR(x, Ai−1[j − 1])⟩ .

Here the verifier only sends messages and does not verify the correctness of the execution.
Hence z′i,j is computed only by the prover. Moreover, the verifier’s random messages
are shared among the parallel executions of ⟨PIR,VIR⟩ over each choice of j ∈ [kIR].

ii. PIOP sets Ai[j] := Ai−1[j] ∪ {z′i,j}.
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3. PIOP sends Aτ ·kIR . Additionally, for every i ∈ {0, . . . , τ · kIR}, it sends Bi := Ai. This concludes
the interaction phase.

4. In the decision phase, VIOP is given oracle access to a transcript with the following structure:(
A0, {tr1,j}j∈[kIR] , A1, · · · , {trτ ·kIR,j}j∈[kIR] , Aτ ·kIR , (B0, · · · , Bτ ·kIR)

)
, (5)

where tri,j corresponds to the interaction between the prover and verifier in the j-th parallel
execution of (PIR,VIR) on the i-th iteration. VIOP performs the checks below.

(a) Subset consistency. Read the arrays B0, B1, . . . , Bτ ·kIR in their entirety. For every i ∈ [τ · kIR]
and j ∈ {0, . . . , kIR} check that Bi−1[j] ⊆ Bi[j].

(b) Transcript consistency. Sample a random i ∈ [τ · kIR]. Read the arrays Ai−1 and Ai sent
by PIOP and the entire ℓIR-round interaction {tri,j}j∈[kIR] between the prover and the verifier
done during the i-th iteration of the the interaction phase.

i. Check that Ai−1 = Bi−1 and Ai = Bi.
ii. For every j ∈ [kIR], check that Ai[j] = Ai−1[j] ∪ {z′i,j} where

z
′
i,j := VIR(x, Ai−1[j − 1]; tri,j) .

(If VIR rejects then VIOP immediately rejects.)
(c) Final predicate holds. Check that fkIR(x, z) = 1 for every z ∈ Bτ ·kIR [kIR].

Proof of Theorem 5.3. We prove completeness and soundness; then we analyze the complexity
measures of the protocol.
Completeness. Fix (x,w) ∈ R. We consider each of VIOP’s checks, and show that PIOP’s messages
satisfy each check with probability 1.

(a) Subset consistency. PIOP sets, in each round i and for every j, Ai[j] := Ai−1[j] ∪ {z′i,j} where
z
′
i,j is the output of the interactive reduction. Since PIOP is honest, Bi−1 = Ai−1 and Bi = Ai.

Together this implies that Bi−1[j] ⊆ Bi[j] and so VIOP’s subset consistency check passes.

(b) Transcript consistency. The conditions established in the previous item also directly imply that
VIOP’s transcript consistency check passes.

(c) Final predicate holds. Since Bi := Ai, if Ai contains only round instances for which the predicate
holds, then so does Bi, and VIOP accepts. We prove by induction on i ∈ {0, . . . , τ · kIR} that for
every j ∈ {0, . . . , kIR} and z ∈ Ai[j] it holds that fj(x, z) = 1.

First we consider the case when j = 0 (and any i). For every i, we have that Ai[0] = {⊥}.
Since x ∈ L(R), we have that fj(x,⊥) = 1.

Next we consider the case when j > 0.

• i = 0: For every j ∈ [kIR] we set A0[j] = ∅ and so the property holds (trivially) for these
values of j.

• i > 0: Suppose that, with probability 1, for every j ∈ [kIR] and zi ∈ Ai[j] it holds that
fj(x, zi) = 1. We argue that, with probability 1, for every j ∈ [kIR] and zi+1 ∈ Ai+1[j],
it holds that fj(x, zi+1) = 1. Fix j > 0. Since for every zi ∈ Ai[j], fj(x, zi) = 1 and
Ai[j] := Ai−1[j] ∪ {z′i,j}, we need only show that f(x, z′i,j) = 1. z′i,j is generated by applying
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the interactive reduction with inputs x and {z1, . . . , zti,j} := Ai−1[j − 1]. Since for every
z
′ ∈ Ai−1[j − 1], fj−1(x, z

′) = 1, by completeness of the interactive reduction we have that

Pr
[
fj(x, z

′
i,j) = 1 z

′
i,j ← ⟨PIR(x,w, z1, . . . , zti,j ),VIR(x, z1, . . . , zti,j )⟩

]
= 1 .

Soundness. Fix x /∈ R(L) and an IOP prover P̃IOP. We show that VIOP accepts with probability at
most max{1/τ,

(
τ ·kIR
kIR

)
· kIR · εIR(x, τ · kIR)}. Consider a transcript tr of the interaction of the IOP with

the structure described in Equation (5). For fixed tr we say that an index i ∈ [τ · kIR] is consistent if:
• Ai−1 = Bi−1 and Ai = Bi and,
• For every j ∈ [kIR]: Ai[j] = Ai−1[j] ∪ {z′i,j} where z′i,j := VIR(x, Ai−1[j]; tri,j) (if VIR rejects then i

is not consistent).
We give two claims analyzing the probability that the verifier accepts relative to how many indices
of the protocol are consistent. Claim 5.5 shows that in any execution of the protocol with less
than kIR consistent indices, VIOP accepts with probability at most 1/τ . By Claim 5.6, for any fixed
set of kIR indices, conditioned on the interaction outputting a transcript in which these indices are
consistent, VIOP accepts with probability at most kIR · εIR(x, τ · kIR). Since there are

(
τ ·kIR
kIR

)
choices of

kIR indices, we can conclude that, conditioned on the transcript having at least kIR consistent indices,
VIOP accepts with probability at most

(
τ ·kIR
kIR

)
· kIR · εIR(x, τ · kIR). Putting the two cases together, we

conclude that VIOP accepts with probability at most max{1/τ,
(
τ ·kIR
kIR

)
· kIR · εIR(x, τ · kIR)}.

Claim 5.5. Conditioned on the transcript tr generated by ⟨P̃IOP,VIOP(x)⟩ being consistent with less
than kIR indices, VIOP accepts with probability at most 1/τ (over its decision randomness).

Proof. VIOP accepts only if its choice of i ∈ [τ · kIR] in Item 4b is consistent. Since there are at most
kIR consistent indices, the probability of the verifier sampling one of these indices is at most 1/τ .

Claim 5.6. Fix indices 1 ≤ i1 < · · · < ikIR ≤ τ · kIR. Then, conditioned on the transcript tr generated
by ⟨P̃IOP,VIOP(x)⟩ being consistent with respect to indices i1, . . . , ikIR , VIOP accepts with probability at
most kIR · εIR(x, τ · kIR) (over its interaction randomness).

Proof. Let i0 := 0. We show by induction that for every j ∈ {0, . . . , kIR} there exists z ∈ Aij [j] such
that fj(x, z) = 0 except with probability j · εIR. This implies the statement, since if fkIR(x, z) = 0,
then VIOP rejects in Item 4c.

This is immediate for j = 0, since x /∈ L(R) and so f0(x, z) = 0 for any z. Fix some j > 0 and
suppose that there exists z ∈ Ai(j−1)

[j − 1] such that fj−1(x, z) = 0 (which happens with probability
1− (j − 1) · εIR). We first show that z ∈ Aij [j − 1]. This can be seen by the following:

z ∈ Aij−1 [j − 1] = Bij−1 [j − 1] ⊆ Bij−1[j − 1] = Aij−1[j − 1] ,

where the equalities are due to the fact that the indices i(j−1) and ij are consistent. The containment
of Bi(j−1)

[j− 1] in Bij−1[j− 1] is due to the fact that i(j−1) ≤ ij − 1 and that, in order for the verifier
to accept the transcript, the check in Item 4a must pass.

This implies that for any P̃IR (and in particular for whatever P̃IOP does in this stage):

Pr
[
fj(x, z

′
ij ,j) = 1 z

′
ij ,j
← ⟨P̃IR,VIR(x, Aij−1[j − 1])⟩

]
≤ εIR(x, |Aij−1[j − 1]|) ≤ εIR(x, τ · kIR) ,

where the final inequality is true since |Aij−1[j − 1]| ≤ τ · kIR, when additionally noting that εIR is
well-behaved. Using again the fact that index ij is consistent, we have that Aij [j] := Aij−1[j]∪{z′ij ,j}
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where z′ij ,j is a round instance generated by the actual interaction between P̃IOP and VIOP during
the j-th parallel execution of the interactive reduction in iteration ij . Therefore, we have that,
conditioned there existing z ∈ Ai(j−1)

[j − 1] where fj−1(x, z) = 0, there exists z′ij ,j ∈ Aij [j] where
fj(x, z

′
ij ,j

) = 0 except with probability εIR(x, τ · kIR). By the induction hypothesis, the condition
happens with probability at least 1− (j − 1) · εIR(x, τ · kIR) and so we have that with probability at
least 1− j · εIR(x, τ · kIR), there exists z′ij ,j ∈ Aij [j] where fj(x, z

′
ij ,j

) = 0.

Complexity measures. We analyze the efficiency parameters of the IOP:

• Proof length. The largest message sent by PIOP is the final round, which contains all of the instances
generated in the previous interaction. In each of the τ · kIR rounds, one instance is added to the
list sent to the verifier for every j ∈ [kIR]. The output of the interactive reduction has length
at most sIR. Thus this requires sending O(τ · k2IR · sIR) bits. In every execution of the interactive
reduction an additional lIR bits are sent, for a total of kIR · lIR per round. Thus the final proof is
O(τ · k2IR · (sIR + lIR)) bits long.

• Round complexity. The IOP contains τ · kIR executions of the ℓIR-round interactive reduction
(PIR,VIR). Therefore the IOP has τ · kIR · ℓIR rounds.

• Round queries. VIOP reads in its entirety the last message in the protocol, reads Ai−1 and Ai, and
reads the execution of the interactive reduction between blocks i− 1 and i. Therefore it reads
O(ℓIR) rounds.

• Randomness complexity. VIOP generates rIR bits for every separate i ∈ [τ · kIR] since we share verifier
randomness between each of the parallel executions of (PIR,VIR). The interaction randomness is
therefore O(τ · kIR · rIR) bits. There are O(log(τ · kIR)) bits of decision randomness because VIOP

samples a random i ∈ [τ · kIR].

• Verifier running time. VIOP checks all of the arrays B1, . . . , Bτ ·kIR for consistency, executes the
interactive reduction kIR times (each in time vtIR), and verifies the final predicate of at most τ · kIR

elements in Bτ ·kIR (each in time ftIR). Overall VIOP runs in time poly(τ, kIR, sIR, lIR, vtIR, ftIR).

• Adaptivity. VIOP is non-adaptive.

5.2 Round-query IOPs from public-coin IPs

The interactive reduction for any public-coin IP described in Section 4.3.1 does not have bounded
output length. Hence we cannot use it directly in Theorem 5.3. Nonetheless, the output length
grows slowly enough to achieve weaker results. While the transformation is essentially identical to
the protocol described in Construction 5.4, we describe it explicitly.

Theorem 5.7. Let R be a relation with a public-coin IP (PIP,VIP) with kIP rounds. Let τ,m ≥ 1 be
parameters where m divides kIP. Then R has a round-query IOP (PIOP,VIOP) with the parameters
indicated below.
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IP for R

Rounds kIP

Total communication lIP
Randomness per round rIP
Round-by-round soundness βrbr

Verifier running time vtIP

−→

Round-query IOP for R

Rounds τ · kIP

Proof length (per round) O(lIP · 2τ ·kIP/m)
Round queries O(m)
Interaction randomness O(τ · rIP · kIP)
Decision randomness O(log(τ · kIP/m))

Soundness error max{1/τ,
(
τ ·kIP/m
kIP/m

)
·m · kIP · βrbr}

Verifier running time poly(2τ ·kIP/m, lIP, vtIR)

Construction 5.8. Let (PIP,VIP) be a public-coin IP with kIP rounds and where the verifier message
at each round is rIP bits long. Let τ > 1 be a parameter. On input x and with witness w the IOP
(PIOP,VIOP) is as follows:

• Prover sets S0 := {∅} (i.e., S0 contains only the empty transcript).

• For i = 1 to τ · kIP/m:

– Prover sends Si−1.
– For j ∈ [m]:

1. Verifier chooses and sends ρi,j ← {0, 1}rIP uniformly at random.
2. For every tr ∈ Si−1, prover sends atr,j := PIP(x,w, tr||ρi,1||atr,1|| . . . ||ρi,j).

– Prover sets Si := Si−1 ∪ {(tr||ρi,1||atr,1|| . . . ||ρi,m||ai,m)}tr∈Si−1
.

• For every i ∈ [τ · kIP/m], the Prover sends Ti := Si.

• Verifier accepts if and only if:

1. Subset consistency: For every i ∈ [τ · kIP/m], Ti−1 ⊆ Ti.
2. Transcript consistency: Choose a random i ∈ [τ · kIP/m]. Check that Si−1 = Ti−1 and Si = Ti.

Additionally, assert that for every tr ∈ Si−1, there are some messages atr,1 . . . , atr,m such that
(tr||ρi,1||atr,1|| . . . ||ρi,m||ai,m) ∈ Si, where ρi,1 . . . , ρi,m are the verifier messages sent during the
i-th round of interaction.

3. Membership: Every transcript tr ∈ Tτ ·kIP/m that is complete (i.e., contains messages for all kIP

rounds of the IP) has VIP(x, tr) = 1.

Proof of Theorem 5.7. The proofs of completeness and soundness are identical to those for Theo-
rem 5.3, using the interactive reduction for IPs described in Theorem 4.7. We therefore only need to
analyze the complexity measures of the resulting IOP.

• Proof length. The proof length of the protocol is O(lIP · 2τ ·kIP/m) bits.

• Rounds. The protocol has τ · kIP rounds.

• Round queries. The verifier reads O(m) rounds.

• Randomness complexity. The IOP verifier uses O(τ · rIP · kIP) bits of interaction randomness and
O(log(τ · rIP/m)) bits of decision randomness .

• Verifier running time. The verifier running time is poly(2τ ·kIP , lIP, vtIR).

• Adaptivity. VIOP is non-adaptive.
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6 Hardness of approximation for stochastic problems

We use the transformations described in Section 5 to construct IOPs with small query complexity and
show that they imply hardness of approximation results for certain stochastic problems. In Section 6.1
we define stochastic constraint satisfaction problems (SCSP) and adapt a theorem of [ACY22] to
this setting. Then in Section 6.2, we establish hardness of approximation results for SCSPs.

6.1 Stochastic constraint satisfaction problems

In a constraint satisfaction problem (CSP) with l variables over an alphabet Σ, we are given a set of
m constraints, each of which takes as input q variables (out of the l) and outputs a bit denoting
whether the constraint is satisfied. Works on hardness of approximation of CSPs generally study the
complexity of distinguishing whether there exists an assignment to the variables that satisfies all of
the constraints or whether every assignment satisfies at most a constant fraction of the constraints.

We extend CSPs to the stochastic setting, where the variables are split into two types: variables
chosen randomly; and variables chosen existentially.

Definition 6.1. An (Σ, k, l,m, q)-SCSP ( stochastic CSP) instance Φ with alphabet Σ, k alter-
nations, l variables per quantifier, m constraints and q constraint arity is a list of m constraints
C1, . . . , Cm. Each constraint consists of q tuples (i1, j1, k1), . . . , (iq, jq, kq) ⊆ [k]× {a, ρ} × [l] and a
function f : Σq → {0, 1}.

An assignment z : [k]× {a, ρ} × [l]→ Σ satisfies a constraint C if

f
(
z(i1, j1, k1), . . . , z(iq, jq, kq)

)
= 1 .

An instance Φ is in the language (Σ, k, l,m, q)-SCSP if for uniformly random z1,ρ : [l]→ Σ there is
a choice of z1,a : [l] → Σ such that for random z2,ρ : [l] → Σ, and so on, the probability that the
assignment z(i, j, k) := zi,j(k) satisfies all of the constraints in Φ is greater than 1/2.

Definition 6.2. The value of a (Σ, k, l,m, q)-SCSP instance Φ is the expected fraction of satisfied
constraints if the existential variables are chosen to maximize the number of satisfied constraints.

Theorem 6.3 (implied by [ACY22]). Let R be a relation with a non-adaptive k-round public-coin
IOP with alphabet Σ, per-round message length l (for both the prover and verifier messages), query
complexity q, decision randomness rdc, decision complexity d, and soundness error β.

Then there exists a deterministic polynomial-time reduction that maps an instance x for L to an
instance Φ for (Σ, k, l, 2rdc , q)-SCSP such that:
• if x ∈ L then the value of Φ is 1;
• if x /∈ L then the value of Φ is at most β.
Moreover, each constraint in Φ has circuit complexity O(d).

6.2 Hardness of approximation for SCSP

By combining Corollary 5.1 with Theorem 6.3, we show that approximating the value of SCSPs to
within a constant factor is at least as hard as solving all languages with interactive reducibility.
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Theorem 6.4 (restatement of Theorem 2). Let R be a relation with a bounded-output-length
interactive reduction with well-behaved soundness error, kIR predicates and ℓIR rounds. Then there
exists a deterministic polynomial-time reduction that maps an instance x for L to an SCSP instance
Φ such that:
• if x ∈ L then the value of Φ is 1;
• if x /∈ L then the value of Φ is at most 1/2.
Moreover, Φ has a binary alphabet, ℓIR(|x|) · kIR(|x|) alternations, poly(|x|) variables per quantifier,
poly(|x|) constraints and constraint arity O(1).

Similarly, by combining Corollary 5.2 with Theorem 6.3, we achieve a theorem for any IP.

Theorem 6.5 (restatement of Theorem 1). Let L ∈ AM[k] be a language. Then there exists a
deterministic polynomial-time reduction that maps an instance x for L to an SCSP instance Φ such
that:
• if x ∈ L then the value of Φ is 1;
• if x /∈ L then the value of Φ is at most 1/2.
Moreover, Φ has a binary alphabet, k(|x|) alternations, poly(|x|) variables per quantifier, poly(|x|)
constraints and constraint arity max{O(1), k(|x|)

log |x|}.

41



7 From round-query IOPs to binary IOPs

We show how to transform a round-query IOP with round-query complexity qrnd into a binary IOP
with query complexity O(qrnd). This adapts a result of [ACY22] that transforms an IP into a binary
IOP to also apply to round-query IOPs.

Theorem 7.1. Let IOP be a non-adaptive public-coin round-query IOP for a relation R = {(x,w)}.
Then there exists a non-adaptive public-coin IOP for R with the parameters below.

Round-query IOP for R

Rounds kIOP

Proof length lIOP

Round queries qrnd

Interaction randomness rint
Decision randomness rdc
Soundness error O(1)
Verifier running time vtIOP

−→

IOP for R

Rounds O(kIOP)
Alphabet size 2
Proof length poly(|x|, lIOP)
Queries O(qrnd)
Interaction randomness poly(|x|, rint)
Decision randomness O(log |x|+ rdc)
Soundness error O(1)
Verifier running time poly(vtIOP)

The transformation of [ACY22] is obtained via two transformations:

• Local access to interaction randomness. The IP is transformed into an IOP in which the verifier
reads only O(1) bits from each of its random messages but still reads the prover’s messages in
their entirety. The transformation described in [ACY22] does not immediately apply to our setting
(i.e., if we start out with a round-query IOP rather than an IP). In Section 7.1 we show how to
adapt their proof to our setting.

• Local access to prover messages. The IOP where the verifier has local access to its interaction
randomness is transformed into an IOP in which the verifier queries only a few bits of the entire
transcript. In our case, we begin with an IOP in which the verifier has local access to its interaction
randomness and only reads a small number of rounds overall. We discuss why the transformation
of [ACY22] is sufficient for our setting in Section 7.2.

Putting together the two (modified) transformations yields Theorem 7.1.

7.1 Local access to interaction randomness

This transformation maps an IP into an IOP where the verifier reads the prover’s messages exactly
in their entirety but reads only a few bits of each one of its own random messages. In more detail,
we prove that a kIOP-round round-query public-coin IOP (PIOP,VIOP) with round-query complexity
qrnd and constant soundness error can be transformed into a O(kIOP)-round round-query public-coin
IOP (P′

IOP,V
′
IOP) with round-query complexity O(qrnd) and constant soundness error, in which the

verifier reads O(qrnd) bits from its interaction randomness, but still reads O(qrnd) messages sent by
the prover in their entirety.

Construction 7.2. On input x, with parameters nz, ns ∈ N and (constant) γ ∈ (0, 1) the protocol
(P′

IOP,V
′
IOP) works as follows, given an extractor Ext : {0, 1}nz × {0, 1}ns → {0, 1}rIOP with error εExt.

The parameters nz, ns, εExt and γ will be fixed during the analysis.
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1. The IOP (PIOP,VIOP) has constant soundness error. Using Lemma 3.3, augment (PIOP,VIOP)
such that it has (1/(|x|+ k2IOP), γ/4)-round-by-round soundness error, and interaction randomness
complexity r′IOP = poly(|x|+ kIOP) and decision randomness complexity r′dc = O(rdc), where rdc is the
decision randomness of (PIOP,VIOP). Since γ is a constant, the augmented IOP has round-query
complexity O(qrnd).

2. For j = 1, . . . , kIOP:

(a) V′
IOP: Send to the prover a random string zj ← {0, 1}nz .

(b) P′
IOP(x,w, z1, s1, . . . , zj): Respond with z′j ∈ {0, 1}nz where (honestly) z′j := zj .

(c) V′
IOP: Send to the prover a random seed sj ← {0, 1}ns .

(d) P′
IP(x,w, z1, s1, . . . , zj , sj):

i. Compute ρj := Ext(z′j , sj).
ii. Compute aj ← PIOP(x,w, ρ1, . . . , ρj).
iii. Send (sj , aj) to the verifier.

3. V′tr
IOP(x) where tr =

(
z1, z

′
1, s1, s

′
1, a1, . . . , zkIOP

, z′kIOP
, skIOP

, s′kIOP
, akIOP

)
. Do the following:

(a) Sample decision randomness ρdc ← {0, 1}rdc for VIOP and sample random indices mz ← [nz]
and ms ← [ns].

(b) Emulate V
ρ1,a1,...,ρkIOP

,akIOP
IOP (x; ρdc) where queries are answered as follows:

• Any query made by VIOP to a prover message ai is answered by querying the corresponding
prover message sent during interaction.

• If VIOP attempts to read ρj then: Check that zj [mz] = z′j [mz] and sj [ms] = s′j [ms]. If the
check fails then reject. Otherwise, pass the string ρj := Ext(z′j , s

′
j) to VIOP.

(c) Accept if and only if V
ρ1,a1,...,ρkIOP

,akIOP
IOP (x; ρdc) = 1.

Completeness. Fix (x,w) ∈ R. Let tr be a transcript generated in a random execution of the
protocol. Since the prover is honest, we have that z′j = zj and s′j = sj , and so the verifier’s checks
in Item 3b pass with probability 1. Moreover, since the original IP has perfect completeness, and
for every j, aj := PIOP(x,w, ρ1, . . . , ρj), we have that (always) V

ρ1,a1,...,ρkIOP
,akIOP

IOP (x) = 1. Therefore,
V′tr

IOP(x) accepts with probability 1.
Soundness. Fix x /∈ L(R) and a malicious prover P̃IOP. Let E be the event over the veri-
fier’s random coins, both interaction and decision, (z1, s1, . . . , zkIOP

, skIOP
, ρdc), that there exists

some j where the emulated the verifier VIOP reads ρj and at least one of the following is true:
(i) ∆(z′j , zj) ≥ γ or; (ii) ∆(s′j , sj) ≥ γ, where z′j := P̃IOP(z1, s1, . . . , zj−1, sj−1, zj) and (s′j , aj) :=

P̃IOP(z1, s1, . . . , zj−1, sj−1, zj , sj).
We first show that the probability that the verifier accepts and the event E happens is small:

Claim 7.3. We have that:

Pr
[
⟨P̃IOP,V

′
IOP(x)⟩ = 1 ∧ (z1, s1, . . . , zkIOP

, skIOP
, ρdc) ∈ E

]
≤ 1− γ .
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Proof. For every choice of verifier randomness (z1, s1, . . . , zkIOP
, skIOP

, ρdc) ∈ E, there exists some j
where the emulated the verifier VIOP reads ρj in which either ∆(zj , z

′
j) ≥ γ or ∆(sj , s

′
j) ≥ γ. As a

result, one of the checks made by V′
IOP in Item 3b, causes the verifier to reject with probability at

least γ. We conclude the claim by noting that

Pr
[
⟨P̃IOP,V

′
IOP(x)⟩ = 1 ∧ (z1, s1, . . . , zkIOP

, skIOP
, ρdc) ∈ E

]
≤ Pr

[
⟨P̃IOP,V

′
IOP(x)⟩ = 1 | (z1, s1, . . . , zkIOP

, skIOP
, ρdc) ∈ E

]
≤ 1− γ .

We introduce a new malicious prover P̃∗
IOP for the IOP system that “corrects” any z′j and s′j

messages sent by the prover that are γ-far from what they are claimed to be. P̃∗
IOP has the following

next-message function:
• P̃∗

IOP(z1, s1, . . . , zj−1, sj−1, zj): Compute z′′j := P̃IOP(z1, s1, . . . , zj−1, sj−1, zj). If ∆(z′′j , zj) < γ
then output z′′j and otherwise output zj .

• P̃∗
IOP(z1, s1, . . . , zj−1, sj−1, zj , sj): Compute (s′′j , aj) := P̃IOP(z1, s1, . . . , zj−1, sj−1, zj , sj). If ∆(s′′j , sj) <

γ then output (s′′j , aj) and otherwise output (sj , aj).
Notice that P̃∗

IOP and P̃IOP send exactly the same messages in rounds where P̃IOP outputs z′j and
s′j with ∆(z′j , zj) < γ and ∆(s′j , sj) < γ. Therefore we can reinterpret the event E relative to P̃∗

IOP as
follows: (z1, s1, . . . , zkIOP

, skIOP
, ρdc) /∈ E if for every j where VIOP reads ρj and P̃∗

IOP has not “corrected”
z′j or s′j (by sending zj or sj respectively). Whenever the verifier does not read a corrected round,
it acts identically to an interaction with P̃IP where it does not read a round that was far from the
messages sent by the verifier. Therefore, using this interpretation we have:

Pr
[
⟨P̃IOP,V

′
IOP(x)⟩ = 1 ∧ (z1, s1, . . . , zkIOP

, skIOP
, ρdc) /∈ E

]
= Pr

[
⟨P̃∗

IOP,V
′
IOP(x)⟩ = 1 ∧ (z1, s1, . . . , zkIOP

, skIOP
, ρdc) /∈ E

]
≤ Pr

[
⟨P̃∗

IOP,V
′
IOP(x)⟩ = 1

]
We now show that the probability of V′

IOP accepting when interacting with P̃∗
IOP is small. We

begin by showing that P̃∗
IOP-s messages zj have high min-entropy.

Claim 7.4. For every j: Hmin(Z
′
j | ¬E) ≥ 0.5nz, where Z ′

j is the random variable describing the
output z′j of P̃∗

IP in a random execution of ⟨P̃∗
IOP,V

′
IOP(x)⟩.

Proof. Fix a round number j and some string z∗j . We have that

Pr
[
Z ′
j = z∗j

]
≤ Pr

zj

[
∆(z∗j , zj) < γ

]
(6)

= |{ x′ ∈ {0, 1}nz : ∆(x, x′) ≤ γ }|/2nz

≤ 2−nz+nzH(γ) (7)

< 2−0.5nz . (8)
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Above, Equation (6) is due to the fact the output z′j of P̃∗
IP always has Hamming distance at less than

γ from zj . Equation (7) true due to Fact 3.8 and Equation (8) is true for a small enough constant γ.
Then, we get that

Hmin(Z
′
j) ≜ min

z∗j
− log Pr[ Z ′

j = z∗j ] > 0.5nz .

Claim 7.5. Suppose that, after amplification in Item 1, the IOP (PIOP,VIOP) has (βrbr, δdc)-round-by-
round soundness with state function state. Then for every transcript tr generated by an interaction
between P̃∗

IOP and V′
IOP where the verifier is about to make its j-th move such that state(x, tr) = 0:

Pr[ state(x, tr||ρj) = 1 ] ≤ (βrbr + εExt) · 2ns·H(γ) ,

where ρj is drawn as in the protocol description.

Proof. Fix some j and a transcript as in the claim statement. By Claim 7.4, we have that z′j has
min-entropy at least 0.5nz. Thus, by definition of the extractor,

|Pr[ state(x, tr||Ext(z′j , Uns)) = 1 ]− Pr[ state(x, tr||Ur′IOP
) = 1 ]| ≤ εExt ,

where Uns and Ur′IOP
are the uniform distributions over bit strings of length ns and r′IOP respectively.

Furthermore, by (βrbr, δdc)-round-by-round soundness of (PIOP,VIOP), we have that

Pr[ state(x, tr||Ur′IOP
) = 1 ] < βrbr .

Therefore, the fraction of seeds that cause the state function to change from 0 to 1 is at most
εExt + βrbr. Recall that in the protocol, ρj := Ext(z′j , s

′
j), i.e., the seed of the extractor is s′j rather

than a uniformly random seed. Recall that P̃∗
IOP only outputs messages s′j with ∆(s′j , sj) < γ. We say

that a seed sj is bad if there exists some s′j with ∆(s′j , sj) < γ such that state(x, tr||Ext(z′j , s′j)) = 1.
Every point s′j that inhibits changing of the state function has a ball of size 2ns·H(γ) of random
seeds that have distance at most γ from it (see Fact 3.8). The total probability of landing on a bad
seed is at most the probability that a random seed sj falls within one of these balls. Therefore the
probability that sj bad is at most (εExt + βrbr) · 2ns·H(γ).

Let βrbr be the round-by-round interaction error of the IOP (PIOP,VIOP) following the augmentation
in Item 1. Then log 1/βrbr = O(log(|x| + k2IOP)) > O(log(|x + kIOP|)) = log r′IOP. Therefore, setting
nz = 4r′IOP, by Theorem 3.7, there exists an extractor with error εExt = βrbr, on a source with min
entropy 0.5nz = 2r′IOP which extracts r′IOP bits of randomness. The seed length is ns = O(log 1/εExt) =
O(log(1/βrbr)). We therefore have that:

Pr[⟨P̃∗
IOP,V

′
IP(x)⟩ = 1] ≤ δdc + Pr[ ∃j : state(x, tr||ρj) = 1 ] (9)

≤ δdc + kIOP · (βrbr + εExt) · 2ns·H(γ) (10)

≤ δdc + kIOP · 2βrbr · 2O(log(1/βrbr))·H(γ) (11)

≤ δdc + kIOP ·
√
βrbr (12)

≤ γ/4 + kIOP/
√
|x|+ k2IOP < γ/2 . (13)
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Equation (9) follows from the fact that the verifier V′
IP accepts only if VIP accepts given x, prover

messages a1, . . . , akIOP
and verifier randomness ρ1, . . . .ρkIOP

. By the round-by-round soundness of
the original IP, since state(x, ∅) = 0 (which follows from the fact that x /∈ L), in order for the
verifier to accept, it must be that the value of the state function changed from 0 to 1 in some
round. Equation (10) is true by applying the union bound and Claim 7.5. We have Equation (11)
by noting that we set εExt = βrbr and ns = O(log(1/βrbr)). Equation (12) holds for a small enough
constant γ > 0, and, finally, Equation (13) holds by the definitions of δdc and βrbr and for large
enough values of |x|.

Thus we have that

Pr
[
⟨P̃IOP,V

′
IOP(x)⟩ = 1 ∧ (z1, s1, . . . , zkIOP

, skIOP
, ρdc) /∈ E

]
≤ Pr

[
⟨P̃∗

IOP,V
′
IOP(x)⟩ = 1

]
≤ γ/2 .

Putting this fact together with Claim 7.3, we have that

Pr
[
⟨P̃IOP,V

′
IOP(x)⟩ = 1

]
= Pr

[
⟨P̃IOP,V

′
IOP(x)⟩ = 1 ∧ (z1, s1, . . . , zkIOP

, skIOP
, ρdc) ∈ E

]
+ Pr

[
⟨P̃IOP,V

′
IOP(x)⟩ = 1 ∧ (z1, s1, . . . , zkIOP

, skIOP
, ρdc) /∈ E

]
≤ 1− γ + γ/2 = 1− γ/2 .

Thus the verifier accepts with constant probability.
Complexity measures. We analyze the efficiency parameters of the resulting round-query IOP:

• Rounds. The round-query IOP has 2kIOP rounds.

• Proof length. We first amplify the protocol, giving polynomial overhead to all messages. In addition
to the original prover messages, the prover also sends z′j and s′j . Therefore the proof length is
poly(|x|, lIOP).

• Round queries. V′
IOP queries O(qrnd) rounds.

• Query complexity to randomness. The verifier queries sj and zj in O(1) locations.

• Randomness complexity. V′
IP generates nz + ns = poly(rIP, |x|) bits in every round.

• Decision randomness. V′
IP chooses decision randomness r′dc = O(rdc) and then uses log nz +log ns =

O(log |x|+ log kIOP) bits of decision randomness. All-in-all O(rdc + log |x|).

• Verifier running time. V′
IP runs the original IOP verifier for polynomially many repetitions,

generates a few random strings and runs the extractor. Its running time is therefore polynomially
related to the running time of VIP.

• Adaptivity. V′
IP makes non-adaptive queries to its interaction randomness. Therefore, if VIOP was

non-adaptive, then so is V′
IOP.

7.2 Local access to prover messages

In this transformation, we take a round-query IOP (PIOP,VIOP) with round-query complexity qrnd

where the verifier reads O(1) bits from the interaction randomness of the rounds that it queries
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but reads the entire prover messages, and transform it into a binary IOP (P′
IOP,V

′
IOP) with query

complexity O(qrnd). We sketch this transformation, assuming familiarity with [ACY22].
The transformation involves simulating the round-query IOP, except that P′

IOP encodes the
messages of PIOP using an “index-decodable” PCP (ID-PCP). In the final round, P′

IOP sends, for every
choice of decision randomness of VIOP, a proof convincing that VIOP would have accepted, having
chosen this decision randomness. The new IOP verifier V′

IOP then chooses decision randomness and
runs the ID-PCP verifier to verify the proof. Executing the ID-PCP verifier involves reading the
relevant bits of the verifier interaction randomness, O(1) bits of the final prover message, and O(1)
bits from the encoding of each prover message that VIOP would have queried using this decision
randomness. Hence, V′

IOP has (total) query complexity O(qrnd).
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