Interactive Authentication

Deepak Maram
Cornell Tech and IC3
sm2686@cornell.edu

Mahimna Kelkar
Cornell Tech and IC3
mahimna@cs.cornell.edu

Ittay Eyal
Technion and IC3
ittay@technion.ac.il

Abstract

Authentication is the first, crucial step in securing digital assets like cryptocurrencies and online services like banking and social networks. It relies on principals maintaining exclusive access to credentials like cryptographic signing keys, passwords, and physical devices. But both individuals and organizations struggle to manage their credentials, resulting in loss of assets and identity theft. Multi-factor authentication improves security, but its analysis and design are mostly limited to one-shot mechanisms, which decide immediately.

In this work, we study mechanisms with back-and-forth interaction with the principals. For example, a user receives an email notification about sending money from her bank account and is given a period of time to abort the operation. We formally define the authentication problem, where an authentication mechanism interacts with a user and an attacker and tries to identify the user. A mechanism's success depends on the scenario - whether the user / attacker know the different credentials; each credential can be safe, lost, leaked, or stolen. The profile of a mechanism is the set of all scenarios in which it succeeds. Thus, we have a partial order on mechanisms, defined by the subset relation on their profiles.

We find an upper bound on the profile size and discover three types of n-credential mechanisms (for any n) that are maximally secure, meeting this bound. We show these are all the unique maximal mechanisms for $n \leq 3$.

We show the efficacy of our model by analyzing existing mechanisms, both theoretical and deployed in widely-used systems, and make concrete improvement proposals. We demonstrate the practicality of our mechanisms by implementing a maximally-secure cryptocurrency wallet.

I. Introduction

Authentication plays a critical role in safeguarding online services and digital assets. An authentication mechanism binds a user's physical identity to a digital identity [1], [2]. It relies on the user's exclusive access to credentials like a password, a one-time PIN (OTP), or a cryptographic signing key. But credential management is challenging [3], [4], [5]: identity theft in the US is rampant [6]; an estimated 20% of Bitcoin have disappeared as a result of key loss [7]; and $\$ 600 \mathrm{M}$ in cryptocurrency were stolen recently due to a single company's key mismanagement [8].

Some practical mechanisms employ interaction. For example, the Argent cryptocurrency wallet [9] uses multiple cryptographic signing keys as credentials. In a possible configuration, any 1-out-of-3 credentials can initiate a change of credentials, but the change only happens after two days, during which the operation can be cancelled with any 2 -outof -3 credentials. In online banking, some banks (e.g., [10]) introduce an artificial delay period before transferring funds;
they notify the client and allow her to abort an erroneous transaction during this period. Government agencies (e.g., [11]) send a mail notice about reversible account activity, allowing victims to revert in case of identity theft attempts [6].

But despite being used in practice, to the best of our knowledge, interactive authentication has never been formally studied and its importance is therefore under-appreciated. Prior works (§II) have focused on proposing frameworks that only model non-interactive mechanisms [12], [13], or consider specific interactive mechanisms like the ones mentioned above [9], [14], which we show to be sub-optimal. Multi-factor authentication is typically defined as requiring multiple credentials [15], i.e., combine credentials using a conjunction (AND) operator, without taking advantage of interactivity. Similarly, multi-sig or threshold mechanisms (k -out-of- n keys) are popular in the cryptocurrency industry [16], [17], [18], but are non-interactive.
In this work, we formally study interactive authentication mechanisms. We first define the authentication problem (§III), consisting of a mechanism and two players: a user and an attacker that stands for all entities trying to authenticate as the user. The mechanism is a deterministic finite automaton using $n \geq 1$ credentials to identify the user. Each credential can be in one of four states [12]: safe (only the user has it), stolen (only the attacker has it), leaked (both have it) or lost (neither has it). The states of all credentials define a scenario, with a total of 4^{n} scenarios possible.
The players send to the mechanism messages carrying proofs of the credentials they have, and eventually the mechanism decides which of them is the user. A mechanism succeeds in a particular scenario if it is correct irrespective of what the attacker does; otherwise it fails. When the communication channels are synchronous, the mechanism can rely on an interactive message exchange with the players.

To evaluate mechanisms, we define the security profile of a mechanism to be the set of all scenarios in which it is successful. For example, with two credentials denoted by c_{1} and c_{2}, consider the OR-mechanism where either c_{1} or c_{2} can be used to authenticate, i.e., $c_{1} \vee c_{2}$. Its profile has three scenarios: (c_{1} and c_{2} safe), (c_{1} safe, c_{2} lost) and (c_{1} lost, c_{2} safe). The mechanism succeeds in the latter two because the user knows enough credentials to authenticate and the attacker does not. Note that the mechanism fails in scenarios where both players have $1-2$ credentials, e.g., (c_{1} stolen, c_{2} safe), because we conservatively assume that the adversary controls the order in which messages are delivered to the mechanism.

The security profile defines a relation between any two mechanisms M_{1} and M_{2} using the same number of credentials: M_{1} is better than M_{2} if the profile of M_{1} is a superset of the profile of $M_{2} . M_{1}$ is equivalent to M_{2} if they have the same profile. Otherwise, M_{1} and M_{2} are incomparable. A mechanism is maximally secure or simply maximal if no other mechanism is better.

By proving constraints on the profile sets any mechanism could achieve, we bound the profile size (§IV). We find that with n-credentials, no mechanism succeeds in more than $P(n)=\frac{4^{n}-2^{n}}{2}$ scenarios. For example, $P(2)=6$, that is, a 2 -credential mechanism can win in at most 6 scenarios. Our use of a generic computational model for mechanisms, namely automatons, allows us to prove this impossibility result.

The bound is tight as we discover several maximal mechanisms meeting it (§V). All our maximal mechanisms function as follows: Either player can initiate the mechanism, at which point the mechanism starts a timer. Until the time runs out, each player can submit messages to the mechanism, carrying one or more credentials. Finally, the mechanism decides on the winner. We refer to mechanisms (maximal or otherwise) following the above structure as bounded-delay mechanisms. They only differ in the way a winner is decided.

We identify three sufficient properties for a bounded-delay mechanism to be maximal: (1) ID-Agnostic: the mechanism only decides based on messages, not other information; (2) Knowledge-rewarding: if a player submits a credential set that is a superset of its counterpart's set, then the mechanism decides on the former; and (3) Transitive-knowledgerewarding: submitting additional credentials cannot lead to a worse outcome for the submitting player.

We discover three classes of bounded-delay mechanisms that satisfy these properties. The first two are fairly intuitive: Majority mechanisms choose whoever submits the most credentials, with some tie-breaking function. Priority mechanisms use a priority vector defined over the n-credentials, and the winner is the player that submits a unique higher priority credential. For example, consider the priority vector $\left[c_{2}, c_{3}, c_{1}\right]$: if player P1 submits $\left\{c_{1}, c_{2}\right\}$ and player P2 submits $\left\{c_{2}, c_{3}\right\}$, then P 2 wins because c_{3} has a higher priority than c_{1}.

The third class is similar to the priority mechanisms but with an exception: If each of the two players submit one of the last two credentials, then the priority is reversed. Using the priority vector above, if P1 submits $\left\{c_{1}\right\}$ and P 2 submits $\left\{c_{3}\right\}$, then P 1 wins. This is the only exception and we use the priority rule otherwise, e.g., if P 1 submits $\left\{c_{1}, c_{2}\right\}$ and P 2 submits $\left\{c_{2}, c_{3}\right\}$, then P 2 wins like before.

We can now illustrate the advantage of interactivity by going back to the 2 -credential setting. Consider the 2 -credential priority mechanism defined by the vector $\left[c_{1}, c_{2}\right]$. Its profile contains (c_{1} and c_{2} safe); (c_{1} safe, c_{2} leaked or lost or stolen) because only the user knows the highest-priority credential c_{1}; and (c_{1} leaked or lost, c_{2} safe) because c_{2} is safe and c_{1} is known to either both the players or to neither. In total, the size of the profile is six, equal to the bound $P(2)$, with three more scenarios than the OR-mechanism described above.

The three mechanism classes cover the complete set of n-credential maximal mechanisms for $n \leq 3$ (§VI), i.e., any mechanism must be either worse than or equivalent to a mechanism in the three classes.

We show the efficacy of our model by analyzing some existing interactive mechanisms (§VII), including the popular cryptocurrency wallet Argent [9] used by over a million users [19]. Argent lets the user select m key guardians (e.g., friends) and keeps one key on the user's phone for a total of $n=m+1$ credentials. It provides functionality to transfer funds, add or delete any credential, and lock the wallet in case of a suspected key fault.

We find that Argent's mechanism has 5 scenarios if $n=2$ and 22 scenarios if $n=3$ when used according to the Argent documentation. We also propose a more involved user-side technique allowing it to reach 6 and 24 scenarios, respectively. So, even with our technique, Argent is only maximal when $n=2$ but not for greater n, e.g., 3-credential Argent is worse than the priority mechanism $(P(3)=28$ scenarios).

We demonstrate our mechanisms are practical with a priority mechanism implementation in Solidity (Appendix A). Its most expensive function costs $\$ 7.6$ in fees, compared to $\$ 5.4$ for Argent (at today's rates; see §VII-A).

In summary, our main contributions are:

1) A definition of the authentication problem, in particular under synchrony,
2) a metric of the security level of an authentication mechanism, namely security profiles,
3) a tight upper bound on the profile size of any mechanism,
4) novel n-credential mechanisms that are maximally secure,
5) the complete sets of maximal mechanisms for $n \leq 3$,
6) security analysis of deployed and theoretical mechanisms with concrete improvement proposals, and
7) a Solidity implementation of a maximally-secure wallet.

We conclude (§VIII) with practical insights and a brief review of open questions.

II. RELATED WORK

To the best of our knowledge, previous work did not provide a general definition of the authentication problem or analyzed the interactive authentication design space.

The closest work is Eyal's cryptocurrency wallet design [12], which investigates what the best mechanism is, but in a restrictive setting with only boolean formulae, i.e., one-shot mechanisms. Our maximal mechanisms have larger security profiles. Hammann et al. [13] use a similarly restrictive model and their focus is orthogonal to ours, namely, to uncover vulnerabilities arising from the links between different mechanisms a user uses.

There is substantial interest in analyzing the security of multi-factor authentication mechanisms. For example, Jacomme et al. [20] and Barbosa et al. [21] analyze Google's 2FA and Fido's U2F. But they do not propose generic frameworks; moreover, these mechanisms are also one-shot.

Elaborate authentication mechanisms are common for cryptocurrency assets [22], [16], [18], [23]; some of
which even use interactive schemes like Argent [9], SmartCustody [24] and CoinVault [25] (which was part of the inspiration for this work). This demonstrates the practicality of interactive schemes in this context, but also the need for rigor, as we demonstrate by analyzing and proposing improvements to the popular Argent in §VII-A.

Paralysis Proofs [14] leverages interactivity to deal with credential loss; similar ideas were recently proposed in the Bitcoin community [24]. We discuss this approach in §VII-C and show that our mechanisms achieve larger security profiles.

Vaults [26] (the first interactive cryptocurrency wallet design to our knowledge) and KELP [27] leverage interactivity to deal with key leakage and loss, respectively. But their models are distinct from ours: Vaults [26] treats the case where neither player can withdraw funds as success, since it removes the motivation for an attack; we conservatively treat this outcome as a failure. KELP [27] considers partial knowledge - a user knows about a lost key before anyone else, whereas we only consider complete knowledge. Both works consider specific mechanisms whereas we find bounds and maximal mechanisms.

Work on authorization dealt with the implementation of security policies [28], [29], [30]. In some contexts, our mechanisms can be implemented using those solutions.

III. Model

We formalize the authentication problem. We describe an execution, its participants and communication (§III-A), credentials (§III-B), the automaton model for authentication mechanisms (§III-C), and player strategies (§III-D), all summarized in Algorithm 1. Finally, we define security profiles, with which we evaluate mechanisms (§III-E).

A. Execution: participants, time and network model

The system comprises an authentication mechanism M and two players, a user U and an attacker A.

An execution begins with the environment (an entity we use to orchestrate a real-world situation) assigning distinct player identifiers to the user and to the attacker from the set $\mathcal{P}=\{0,1\}$. It picks $\gamma \in \mathcal{P}$ and assigns γ to the user and $(1-\gamma)$ to the attacker, e.g., if $\gamma=0$, then the user is player 0 and the attacker is player 1. The identifiers are akin to cookies used to identify a website visitor during a single session. We refer to γ as the environment's strategy.

Time progresses in discrete steps. During the execution, both parties interact with the mechanism by sending and receiving messages. Communication channels are reliable and synchronous - if a message is sent in time step a, it reaches the recipient in step $a+1$.

The attacker controls the ordering of messages within a time step. That is, if both user and attacker send messages to the mechanism at the same time step, the attacker can choose which of the two is received first.

The mechanism can decide either 0 or 1 to end an execution, and the player with this identifier wins. This is a one-time irrevocable operation corresponding to, say, allowing someone to withdraw money out of a bank account.

B. Credentials, scenarios and messages

The system contains a set of n credentials, $\mathcal{C}_{\text {all }}=$ $\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$. Each credential is in one of four states [12]: (1) Safe: Only U has it, (2) Lost: No one has it, (3) Leaked: Both U and A have it, or (4) Stolen: Only A has it. Denote the state of credential c_{i} by σ_{i}, so for all $1 \leq i \leq n: \sigma_{i} \in$ \{safe, lost, leaked, stolen\}. A scenario σ is a vector of the n credential states and $\Sigma=\{\text { safe,lost,leaked,stolen }\}^{n}$ is the set of all scenarios, i.e. $\sigma \in \Sigma$.
The credential set of the user (resp., attacker) contains all the credentials available to that player, denoted $C_{\sigma}^{U}=\left\{c_{i} \mid \sigma_{i} \in\right.$ $\{$ safe,leaked $\}\}$ (resp., $C_{\sigma}^{A}=\left\{c_{i} \mid \sigma_{i} \in\{\right.$ leaked,stolen $\left.\}\right\}$).
At the start of an execution, the environment picks a scenario $\sigma \in \Sigma$ and initializes U and A with the credential sets C_{σ}^{U} and C_{σ}^{A}, respectively. The scenario σ is common knowledge, i.e., the state of all n credentials is known to both parties.

Each message sent by U or A consists of a player identifier $p \in \mathcal{P}$ and a set of credentials C. A message can only carry a subset of the credentials available to the sender, i.e., a user (resp., attacker) message can carry a set of credentials C s.t. $C \subseteq C_{\sigma}^{U}$ (resp., $C \subseteq C_{\sigma}^{A}$). To avoid credential leakage by listening to the channel, a message should actually contain encrypted credentials or zero knowledge proofs of credential knowledge, e.g., signatures for private keys etc. We avoid this detail for simplicity.

Although an attacker cannot include a credential not assigned to it, we do not preclude the attacker from forging credentials. Forgery is modeled as leakage or stealing.

C. Authentication mechanism

The mechanism M is a deterministic one-clock timed automaton [31], defined by the following elements:

States: The automaton has a finite set \mathcal{T} of states. It includes a special starting state $I_{\text {init }}$ and two disjoint sets of final states, $\mathcal{T}_{0}^{\text {fin }}$ and $\mathcal{T}_{1}^{\text {fin }}$. The execution ends as soon as the automaton reaches a final state, i.e., if $s \in \mathcal{T}_{i}^{\text {fin }}$, then the winner is the player with identifier i.

Clock: A clock has some value $t \in \mathbb{Z}_{\geq 0}$, initialized with $t=0$, and incremented by 1 in each step. The automaton can reset the clock back to its initial state $(t=0)$.

A pair (s, v) of an automaton state s and a clock state t is called an extended state. At the start of an execution, we have $s \leftarrow I_{\text {init }}$ and $t \leftarrow 0$. Note that we refer just to the automaton state s when using the word state.

Transitions: An automaton transition is a 6-tuple consisting of a source and a destination state, three types of guards and a clock reset bit, as follows.

The Clock Reset $\mathcal{R}=\{$ True,False $\}$ represents the reset of the clock state or no reset. Resetting means that the clock is set back to its initial state $(t \leftarrow 0)$ upon taking the transition.

Transitions take place on message arrival. A guard g is a constraint specifying that the message must meet a condition for the transition to take place. A guard with the value \perp indicates no constraint. There are three types of guards:

A Player guard means the message must be sent by a certain player ID. The set of player identifier guards is $\mathcal{G}_{\text {id }}=\mathcal{P} \cup\{\perp\}$. If a player $p \in \mathcal{P}$ satisfies the guard $g^{p l r}$ we denote $p \vdash g^{p l r}$. For example, $0 \vdash g^{p l r}$ only if $g^{p l r} \in\{0, \perp\}$.

A Credential guard means that the message must carry certain credentials. The set of credential guards \mathcal{G}_{c} includes all non-constant monotone boolean formulae of the availability of the credentials in the set $\mathcal{C}_{\text {all }}$ and \perp. For example, if $n=2$, then $\mathcal{G}_{c}=\left\{c_{1}, c_{2}, c_{1} \wedge c_{2}, c_{1} \vee c_{2}, \perp\right\}$. A credential set C satisfies a credential guard $g^{c d}$, denoted $C \vdash g^{c d}$, if the credentials in C satisfy the boolean formula $g^{c d}$. For example, if $g^{c d}=c_{1} \vee c_{2}$ and $C=\left\{c_{1}\right\}$, then $C \vdash g^{c d}$.

A Clock guard is a condition on the clock state t expressed through a comparison operator $\sim \in\{<, \leq,=, \geq,>\}$ and a natural number $l \in \mathbb{N}$, i.e., $(t \sim l)$. The set of all clock guards (including \perp) is \mathcal{G}_{t}. For example, a guard $g^{c l k}=(t<5)$ specifies that the clock state t must be less than 5 . Denote by $t \vdash g^{c l k}$ that the clock state t satisfies the guard $g^{c l k}$.

In summary, $\mathcal{D} \subseteq \mathcal{T} \times \mathcal{G}_{\text {id }} \times \mathcal{G}_{c} \times \mathcal{G}_{t} \times \mathcal{R} \times \mathcal{T}$ is the set of transitions of M. (The source state must be a non-final state, and the target state not the beginning state.) And an automaton M is a 6-tuple given by $M=\left(\mathcal{C}_{\text {all }}, \mathcal{T}, \operatorname{clock}, \mathcal{D}, \mathcal{T}_{0}^{\text {fin }}, \mathcal{T}_{1}^{\text {fin }}\right)$.

If the current state is s and the automaton receives a message satisfying all the guards of an outgoing transition of s, then the destination state of the transition becomes the new state. There can exist at most one such transition because we consider a deterministic automaton, i.e., we require: For all states $s \in \mathcal{T}$, all clock states $t \in \mathbb{Z}_{\geq 0}$, all sets of credentials $C \subseteq \mathcal{C}_{\text {all }}$, and all player identifiers $p \in \mathcal{P}$, there exists at most one transition $\left(s, g^{p l r}, g^{c d}, g^{c l k}, r, s^{\prime}\right) \in \mathcal{D}$ such that all the guards are satisfied, i.e., $p \vdash g^{p l r}, C \vdash g^{c d}$ and $t \vdash g^{c l k}$.

The automaton notifies both parties on each state change, including if there are multiple transitions in a single time step.
Note 1. We use a clock in automatons for illustrative reasons. It can be removed to construct a deterministic finite automaton using standard techniques (see region automata [31]).

D. Player strategies and mechanism success

The user strategy S^{U} specifies which messages the user sends in any given extended mechanism state:

Definition 1 (Messaging strategy). A messaging strategy for the user (resp., attacker) is a function of the extended state $e=(s, t), S(e)$ that returns \perp or an ordered list of credential sets $\left\{C_{k}\right\}$. A messaging strategy is playable by the user (resp., attacker) in a scenario σ if for all automaton extended states e and for all $C_{k} \in S(e): C_{k} \subseteq C_{\sigma}^{U}$ (resp., $C_{k} \subseteq C_{\sigma}^{A}$).

A player adopting a messaging strategy S means that if the current extended state is e, then the player sends one message with each of the credential sets in $S(e)$ in the next time step.

The attacker's strategy S^{A} consists of two components: a messaging strategy $S_{\text {msg }}^{A}$ and an ordering strategy $S_{\text {ord }}^{A}$, i.e., $S^{A}=\left(S_{\mathrm{msg}}^{A}, S_{\text {ord }}^{A}\right)$. The latter captures how an attacker orders messages that arrive in the same time step. More formally, $S_{\text {ord }}^{A}$ takes both the user's and attacker's messages as

```
Algorithm 1 Execution with players U and A and mechanism
\(M=\left(\mathcal{C}_{\text {all }}, \mathcal{T}\right.\), clock \(\left., \mathcal{D}, \mathcal{T}_{0}^{\text {fin }}, \mathcal{T}_{1}^{\text {fin }}\right)\)
Init: The environment chooses a scenario \(\sigma \in \Sigma\) and \(\gamma \in\{0,1\}\).
    It initializes U (resp., A) with the player identifier \(\gamma\)
    (resp., \((1-\gamma)\) ) and the set of credentials \(C_{\sigma}^{U}\) (resp., \(C_{\sigma}^{A}\) ).
    \(s \leftarrow I_{\text {init }} \quad \triangleright\) Automaton state
    \(t \leftarrow 0 \quad \triangleright\) Automaton clock
Execution:
    repeat \(\quad \triangleright\) Execute loop once per time step
        \(Y_{\mathrm{U}} \leftarrow\left\{(\gamma, C) \mid C \in S^{U}((s, t))\right\} \quad \triangleright \mathrm{U}\) sends messages
        \(Y_{\mathrm{A}} \leftarrow\left\{((1-\gamma), C) \mid C \in S_{\text {msg }}^{A}((s, t))\right\} \triangleright\) A sends messages
        \(\left\{\left(p_{i}, C_{i}\right)\right\}_{i=1}^{\left|Y_{\mathrm{U}} \cup Y_{\mathrm{A}}\right|} \leftarrow S_{\text {ord }}^{A}\left(Y_{\mathrm{U}} \cup Y_{\mathrm{A}}\right) \triangleright\) A orders messages
        for \(i=1,2, \ldots,\left|Y_{\mathrm{U}} \cup Y_{\mathrm{A}}\right|\) do \(\triangleright M\) processes messages
            if \(\exists\left(s^{\prime}, g^{p l r}, g^{c d}, g^{c l k}, r, s^{\prime \prime}\right) \in \mathcal{D}, s=s^{\prime}\),
                \(p_{i} \vdash g^{p l r}, C_{i} \vdash g^{c d}\), and \(t \vdash g^{c l k}\) then
                \(s \leftarrow s^{\prime \prime} \quad \triangleright\) Update automaton state
                if \(r=\) True then \(t \leftarrow-1 . \quad \triangleright\) Reset clock
                if \(s \in \mathcal{T}_{0}^{\text {fin }}\) then return 0
                if \(s \in \mathcal{T}_{1}^{\text {fin }}\) then return 1
        \(t \leftarrow t+1\)
        \(\triangleright\) Advance clock
```

inputs and outputs some permutation of them. Two examples of ordering strategies are the attacker-first strategy Ord A, where the attacker orders its own messages before the user's, and the user-first strategy $O r d^{U}$, where the user's messages are first. Unless specified otherwise, the attacker employs $\operatorname{Ord}{ }^{A}$.

An execution E is fully defined by an automaton M, a scenario σ, player strategies S^{U} and S^{A}, and the environment's strategy γ, i.e., $E=\left(M, \sigma, S^{U}, S^{A}, \gamma\right)$. The details of how an execution unfolds are specified in Algorithm 1.

The user wins only if the mechanism chooses its identifier:
Definition 2 (Execution winner). Given an execution $E=\left(M, \sigma, S^{U}, S^{A}, \gamma\right)$, the winner of an execution is the player decided by the automaton M, or the attacker A if M never decides. We denote $\operatorname{Win}^{e x e c}(E) \in\{U, A\}$ accordingly.

The winner of two executions played with the same player strategies can differ due to a change in environment's strategy.

A mechanism M succeeds in a scenario σ, denoted $\operatorname{Suc}(M, \sigma)$, if the user can win irrespective of the attacker's strategy:
Definition 3 (Success). Given a mechanism M and a scenario σ, we say that the mechanism is successful, denoted $\operatorname{Suc}(M, \sigma)$, if the user consistently wins against any attacker's strategy and environment's strategy, i.e., $\exists S_{\mathrm{win}}^{U}$: $\forall S^{A}, \forall \gamma, E=\left(M, \sigma, S_{\text {win }}^{U}, S^{A}, \gamma\right)$ and $\operatorname{Win}^{e x e c}(E)=U$. Otherwise, the mechanism fails, denoted $\neg \operatorname{Suc}(M, \sigma)$.

Let $X=(M, \sigma)$ denote a mechanism and a scenario, and call X an extended scenario. We say $\operatorname{Win}_{X}\left(S^{U}, S^{A}\right)=\mathrm{U}$ if the strategy S^{U} wins for the user in all executions where the attacker employs S^{A}, i.e., independent of the environment's strategy. A strategy $S_{\text {win }}^{U}$ is a winning user strategy if it wins against any attacker strategy, i.e., $\forall S^{A}: \operatorname{Win}_{X}\left(S_{\text {win }}^{U}, S^{A}\right)=\mathrm{U}$.

Notation	Description
U, A	User, Attacker
$\mathcal{C}_{\text {all }}=\left\{c_{1}, \ldots, c_{n}\right\}$	The n credentials
$\sigma, \bar{\sigma}$	Scenario and its complement
$\sigma_{i} \in\{$ safe,lost,leaked,stolen $\}$	State of c_{i}
$C_{\sigma}^{U} / C_{\sigma}^{A}$	Credentials of user / attacker in σ
$\Sigma_{\text {ws }}, \Sigma_{\text {ns }}$	All with-safe, no-safe scenarios
$\Sigma_{\mathrm{wt}}, \Sigma_{\mathrm{nt}}$	All with-stolen, no-stolen scenarios
$\mathcal{P}=\{0,1\}$	Player identifiers
$M=\left(\mathcal{C}_{\text {all }}, \mathcal{T}, \operatorname{clock}, \mathcal{D}, \mathcal{T}_{0}^{\text {fin }}, \mathcal{T}_{1}^{\text {fin }}\right)$	Automaton / Mechanism
$\mathcal{T}_{0}^{\text {fin }} / \mathcal{T}_{1}^{\text {fin }}$	Final states where 0 / 1 wins
$\mathcal{G}_{c}, \mathcal{G}_{t}, \mathcal{G}_{\text {id }}$	Credential, clock and player guards
$C \vdash g^{\text {cd }}$	Credential guard
clock, t	The clock and its state
$g^{c l k}:=t \sim l, t \vdash g^{c l k}$	Clock guard
$r \in\{$ True,False $\}$	Clock reset
$\left(s, g^{p l r}, g^{c d}, g^{c l k}, r, s^{\prime}\right) \in \mathcal{D}$	A 6-tuple edge in the automaton
$\operatorname{Suc}(M, \sigma)$	Is the mechanism successful in σ ?
S^{U}, S^{A}	Strategies of user and attacker
Win ${ }^{\text {exec }}(E)$	Winner of an execution
$\operatorname{Win}_{\sigma}\left(S^{U}, S^{A}\right)$	Winner under specified strategies
$\operatorname{prof}(M)$	Security profile of the scheme M
$P(n)$	Bound on the profile size
\mathcal{M}_{n}	All n-credential mechanisms
\mathcal{O}_{n}	Complete set of mechanisms

TABLE I: Notation

On the other hand, $\operatorname{Win}_{X}\left(S^{U}, S^{A}\right)=$ A means that S^{A} wins for the attacker in some execution where the user employs S^{U}, i.e., with some player identifier allocation. And $S_{\text {win }}^{A}$ is a winning strategy for the attacker if $\forall S^{U}: \operatorname{Win}_{X}\left(S^{U}, S_{\text {win }}^{A}\right)=\mathrm{A}$.

We conclude this section with a few remarks.
Parallel executions: Multiple executions can run in parallel at the same time although we do not explicitly model it.
State updates: Recall that we assume that any state change is immediately informed to both the user and attacker. This is both a strict and conservative assumption: strict (resp., conservative) because the user (resp., attacker) knows all the state updates, including any authentication attempts by the attacker (resp., user).

E. Mechanism profiles

Having defined mechanism success, we can now evaluate and compare mechanisms. A mechanism's profile is a concise representation of its security level containing all the scenarios in which it succeeds.

Definition 4 (Profile). The profile of a mechanism M denoted by $\operatorname{prof}(M)$ is the set of all scenarios where M succeeds, i.e., $\operatorname{prof}(M)=\{\sigma \mid \sigma \in \Sigma \wedge \operatorname{Suc}(M, \sigma)\}$.

The profile can also be viewed as an n-dimensional matrix where n is the number of credentials. Each matrix cell represents a distinct scenario and the value in it is 1 or 0 if the scenario is in the profile or isn't, respectively (e.g., Fig. 1).

The profiles define a partial order on the set of all n-credential mechanisms, denoted by \mathcal{M}_{n}. Two mechanisms $M, M^{\prime} \in \mathcal{M}_{n}$ are equivalent, denoted by $M \cong M^{\prime}$,
if one's profile can be obtained from the other's by permuting the credential set:

Definition 5 (Equivalence). Given a permutation π : $\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ and a scenario σ, define the permuted scenario σ^{π} by $\sigma_{i}^{\pi}=\sigma_{\pi(i)}$. Then, $M \cong M^{\prime}$ if $\exists \pi: \bigcup_{\sigma \in \operatorname{prof}(M)} \sigma^{\pi}=\operatorname{prof}\left(M^{\prime}\right)$.

A mechanism M_{1} is better than another mechanism M_{2}, denoted by $M_{1} \succ M_{2}$, or M_{2} is worse than M_{1}, if $\exists M_{3} \cong M_{2}$ such that $\operatorname{prof}\left(M_{1}\right) \supset \operatorname{prof}\left(M_{3}\right) . M_{1}$ is better than or equivalent to M_{2}, denoted by $M_{1} \succeq M_{2}$, if $M_{1} \succ M_{2}$ or $M_{1} \cong M_{2}$ (\preceq defined analogously). And M_{1} is incomparable to M_{2}, denoted by $M_{1} \nsim M_{2}$, if $M_{1} \nsucceq M_{2} \wedge M_{1} \npreceq M_{2}$.

We give an example to illustrate the relations. As we saw (§I), the profile of the 2 -credential OR-mechanism $c_{1} \vee c_{2}$ has three scenarios: (c_{1} and c_{2} safe), (c_{1} safe, c_{2} lost) and (c_{1} lost, c_{2} safe). Now consider the AND-mechanism $c_{1} \wedge c_{2}$: its profile also has three scenarios, namely (c_{1} and c_{2} safe), (c_{1} safe, c_{2} leaked) and (c_{1} leaked, c_{2} safe). We can see that the two mechanisms are incomparable as neither is better than the other nor are they equivalent.

The relation naturally defines maximal mechanisms:
Definition 6 (Maximally secure mechanism). A mechanism $M \in \mathcal{M}_{n}$ is maximally secure or maximal if for all $M^{\prime} \in \mathcal{M}_{n}: M^{\prime} \preceq M$ or $M^{\prime} \nsim M$.

IV. Profile size bound

We find an upper bound on the profile set size, i.e., given n, we find the maximum number of scenarios in which an n-credential mechanism succeeds. Before that, we define runs and then prove a few useful results.

A run $r=\left\{\left(p_{1}, C_{1}, a_{1}\right), \ldots,\left(p_{z}, C_{z}, a_{z}\right)\right\}$ tracks all the timestamped messages (a_{i} denotes the time step) received by the automaton during an execution, irrespective of whether they lead to a state change or not. First, we show that any two executions with the same run have the same winning identifier.
Observation 1. If two executions E_{1} and E_{2} using the same mechanism M have the same finite run, then the winner of both executions has the same player identifier.

If E_{1} and E_{2} share the same run and use the same automaton, then they will cause the same state changes because we are using a deterministic automaton, and thus have the same final state s. Based on whether $s \in \mathcal{T}_{0}^{\text {fin }}$ or $s \in \mathcal{T}_{1}^{\text {fin }}$, player 0 or 1 , respectively, wins in both executions E_{1} and E_{2}.

Next we prove that if the user wins in all executions where the attacker employs a specific strategy (i.e., independent of the environment's strategy), then switching the messaging strategies allows the attacker to win an execution.
Lemma 1. Let there be a mechanism M, two extended scenarios $X_{1}=\left(M, \sigma_{1}\right), X_{2}=\left(M, \sigma_{2}\right)$, and two messaging strategies S_{1}, S_{2} such that S_{1} is playable by U in σ_{1} and by A in σ_{2} and S_{2} is playable by U in σ_{2} and by A in σ_{1}. There exists a reordering strategy $\overline{S_{\text {ord }}^{A}}$ such that the two
attacker strategies $S_{1}^{A}=\left(S_{2}\right.$, Ord $\left.^{A}\right), S_{2}^{A}=\left(S_{1}, \overline{S_{\text {ord }}^{A}}\right)$ satisfy $\left(\operatorname{Win}_{X_{1}}\left(S_{1}, S_{1}^{A}\right)=U\right) \Longrightarrow\left(\operatorname{Win}_{X_{2}}\left(S_{2}, S_{2}^{A}\right)=A\right)$.
Proof. $\operatorname{Win}_{X_{1}}\left(S_{1}, S_{1}^{A}\right)=\mathrm{U}$ means that the user wins in all executions where the attacker's strategy is S_{1}^{A}. Consider such an execution $E=\left(M, \sigma_{1}, S_{1},\left(S_{2}, \operatorname{Ord}^{A}\right), 0\right)$, i.e., the user is assigned 0 and wins. Denote the run of E by r.

Consider another execution $E^{\prime}=\left(M, \underline{\sigma_{2}, S_{2}},\left(S_{1}, \overline{S_{\text {ord }}^{A}}\right), 1\right)$, i.e., the attacker is assigned 0 and $\overline{S_{\text {ord }}^{A}} \leftarrow \operatorname{Ord}^{U}$ is the user-first ordering strategy. If the mechanism in execution E^{\prime} does not decide, i.e., E^{\prime} runs forever, then by definition, Win $^{\text {exec }}\left(E^{\prime}\right)=\mathrm{A}$, and we are done. Now say the mechanism in E^{\prime} decides; let its run be r^{\prime}. We now prove that the two runs are same, i.e., $r=r^{\prime}$. First, note that in both executions, player 0 uses messaging strategy S_{1} and player 1 uses messaging strategy S_{2}. Secondly, since the attacker's reordering strategy prioritizes the attacker in E_{1} and the user in E_{2}, the messages sent by 1 are prioritized in both executions. Therefore, the messages the mechanism receives in all time steps are the same in both executions including the order of messages. Therefore $r=r^{\prime}$. Since player 0 (user) wins E_{1}, by Observation 1, the attacker wins execution E_{2}.

Now, in order to bound the number of successful scenarios, we identify scenarios where a mechanism cannot succeed. First, we define complementary scenarios, where the players' credential availability is inverted, and show that no mechanism succeeds in both a scenario and its complement.

Definition 7 (Complement scenario). A scenario $\bar{\sigma}$ is the complement scenario of σ if for all $i: \bar{\sigma}_{i}=$ stolen if $\sigma_{i}=$ safe, $\bar{\sigma}_{i}=$ safe if $\sigma_{i}=$ stolen, and $\bar{\sigma}_{i}=\sigma_{i}$ otherwise.

Lemma 2. If a mechanism succeeds in a scenario σ, then it fails in its complement $\bar{\sigma}: \operatorname{Suc}(M, \sigma) \Longrightarrow \neg \operatorname{Suc}(M, \bar{\sigma})$.

The intuition behind the proof is that the attacker will be able to employ in $\bar{\sigma}$ the same messaging strategy that the user uses in σ. Because the user's strategy wins in all executions against any attacker strategy in σ, we show that the attacker's strategy wins in at least one execution of $\bar{\sigma}$.

Proof. Let S^{U} denote a winning user strategy in the extended scenario $X=(M, \sigma)$. Since S^{U} wins in all executions, we have $\forall S^{A}$: $\operatorname{Win}_{X}\left(S^{U}, S^{A}\right)=\mathrm{U}$. We now produce a winning strategy \bar{S}^{A} for the attacker in $\bar{X}=(M, \bar{\sigma})$ based on S^{U}. To do this, we need to show two things, namely, that S^{U} is a playable messaging strategy for the attacker in $\bar{\sigma}$, and that it succeeds in at least one execution.

The first follows in a straightforward way from the definition of a complement. It is easy to see that $C_{\sigma}^{U}=C_{\bar{\sigma}}^{A}$. Therefore, any user strategy, including S^{U}, in the scenario σ is a playable attacker messaging strategy in the complement scenario $\bar{\sigma}$.

Next we need to show that the attacker wins an execution with S^{U} in $\bar{\sigma}$. Recall that $O r d^{A}$ denotes the attacker-first reordering strategy. Let the attacker's strategy be

$$
\bar{S}^{A}=\left\{S^{U}, O r d^{A}\right\}
$$

We need to show that no user strategy succeeds in all executions of $\bar{X}=(M, \bar{\sigma})$, i.e., $\nexists \bar{S}^{U}: \operatorname{Win}_{\bar{X}}\left(\bar{S}^{U}, \bar{S}^{A}\right)=\mathrm{U}$.

We prove by contradiction. Assume the existence of a winning user strategy \bar{S}^{U}, i.e.,

$$
\operatorname{Win}_{\bar{X}}\left(\bar{S}^{U}, \bar{S}^{A}\right)=\mathrm{U}
$$

We will use the successful strategy \bar{S}^{U} to devise a strategy S^{A} for the attacker in the original scenario.

Apply Lemma 1 by setting $\sigma_{1}=\bar{\sigma}, \sigma_{2}=\sigma, \quad S_{1}=\bar{S}^{U}$ and $S_{2}=S^{U}$. A pre-condition for this lemma is that $S_{1}\left(\bar{S}^{U}\right)$ needs to be playable by the attacker in $\sigma_{2}(\sigma)$, which holds because $C_{\bar{\sigma}}^{U}=C_{\sigma}^{A}$. Lemma 1 guarantees the existence of an ordering strategy $S_{\text {ord }}^{A}$ such that

$$
\operatorname{Win}_{\bar{X}}\left(\bar{S}^{U}, \bar{S}^{A}\right)=\mathrm{U} \Longrightarrow \operatorname{Win}_{X}\left(S^{U}, S^{A}\right)=\mathrm{A}
$$

We thus found an attacker strategy $\left(S^{A}\right)$ that wins an execution against the user winning strategy S^{U} in the original scenario σ-a contradiction. Therefore, the assumption was wrong and there does not exist a winning strategy for $\bar{\sigma}$.

After dealing with complementary scenarios, we show that if no credential is safe, then no mechanism succeeds. We call such scenarios bad.

Lemma 3. Given a bad scenario $\sigma^{\text {bad }} \in\{\text { lost,leaked,stolen }\}^{n}$, where all credentials are unsafe, $\exists M \in \mathcal{M}_{n}: \operatorname{Suc}\left(M, \sigma^{\mathrm{bad}}\right)$.

We prove this by contradiction, i.e., say the user wins in $\sigma^{\text {bad }}$. Using the winning strategy of the user, we show the existence of a winning strategy for the attacker, thus arriving at a contradiction.

Proof. By contradiction, assume there exists a mechanism M that succeeds in a bad scenario, i.e., $\operatorname{Suc}\left(M, \sigma^{\text {bad }}\right)$. Denote the extended scenario $X=\left(M, \sigma^{\text {bad }}\right)$. Let the winning user strategy be S^{U}, so for all $S^{A}, \operatorname{Win}_{X}\left(S^{U}, S^{A}\right)=\mathrm{U}$. Consider the attacker strategy $S_{1}^{*}=\left\{S^{U}\right.$, Ord $\left.^{A}\right\}$. We have $\operatorname{Win}_{X}\left(S^{U}, S_{1}^{*}\right)=\mathrm{U}$.

Apply Lemma 1 by setting $\sigma_{1}=\sigma, \sigma_{2}=\sigma, S_{1}=S^{U}$, and $S_{2}=S^{U}$. A pre-condition for this lemma is that S^{U} be playable by both user and attacker in σ. This is true because in any scenario $\sigma \in \sigma^{\text {bad }}, C_{\sigma}^{U} \subseteq C_{\sigma}^{A}$. Consequently, for any set of credentials C, if $C \subseteq C_{\sigma}^{U}$ then $C \subseteq C_{\sigma}^{A}$. So S^{U} is playable for the attacker.

We have $\operatorname{Win}_{X}\left(S^{U}, S_{1}^{*}\right)=\mathrm{U}$, therefore due to Lemma 1 , there exists some $S_{\text {ord }}^{A}$ such that if $S_{2}^{*}=\left\{S^{U}, S_{\text {ord }}^{A}\right\}$ then $\operatorname{Win}_{X}\left(S^{U}, S_{2}^{*}\right)=\mathrm{A}$. This completes the proof because S_{2}^{*} wins against S^{U}, contradicting the assumption that S^{U} is a winning user strategy. Therefore the assumption was wrong and there does not exist a winning user strategy in a bad scenario.

We can now bound the size of feasible security profiles.
Theorem 1. The maximum number of scenarios an n credential mechanism succeeds is

$$
\begin{equation*}
P(n)=\left(4^{n}-2^{n}\right) / 2 \tag{1}
\end{equation*}
$$

i.e., $\forall M \in \mathcal{M}_{n}:|\operatorname{prof}(M)| \leq P(n)$.

For proving, we first identify four subsets of scenarios, which will also be useful later. Define a with-safe scenario (resp., with-stolen scenario) as a scenario in which at least one credential's state is safe (resp., stolen). Denote the set of all with-safe (resp., with-stolen) scenarios by $\Sigma_{\text {ws }}$ (resp., $\Sigma_{\text {wt }}$; we use the second letter, ' t '). Define a no-safe scenario (resp., no-stolen scenario) as a scenario in which no credential's state is safe (resp., stolen). Denote the set of all no-safe (resp., no-stolen) scenarios by Σ_{ns} (resp., Σ_{nt}). The number of nosafe scenarios is $\left|\Sigma_{\mathrm{ns}}\right|=3^{n}$ and all mechanisms fail in all of them (Lemma 3). Denote by \bar{T} the complement set of T with respect to all scenarios. Note that $\overline{\Sigma_{w s}}=\Sigma_{n s}$ and $\overline{\Sigma_{w t}}=\Sigma_{n t}$.

Denote with-safe-with-stolen scenarios by $\Sigma_{\text {wswst }}=\Sigma_{\text {ws }} \cap$ Σ_{wt}; these play a special role in our proofs, so we count them now. By De-Morgan's law, $\overline{\Sigma_{\text {wswst }}}=\Sigma_{\text {ns }} \cup \Sigma_{\mathrm{nt}}=\left|\Sigma_{\mathrm{ns}}\right|+\left|\Sigma_{\mathrm{nt}}\right|-$ $\left|\Sigma_{\mathrm{ns}} \cap \Sigma_{\mathrm{nt}}\right|$. Substitute $\left|\Sigma_{\mathrm{ns}}\right|=\left|\Sigma_{\mathrm{nt}}\right|=3^{n}$ and $\left|\Sigma_{\mathrm{ns}} \cap \Sigma_{\mathrm{nt}}\right|=2^{n}$ (as each credential is either leaked or lost). So we have

$$
\begin{equation*}
\left|\Sigma_{\text {wswst }}\right|=|\Sigma|-\left|\overline{\Sigma_{\text {wswst }}}\right|=4^{n}-2 \cdot 3^{n}+2^{n} \tag{2}
\end{equation*}
$$

We can now prove Theorem 1.
Proof. If $n=1$, there are 4 scenarios in total and all mechanisms fail in the 3 unsafe ones (Lemma 3). Hence $P(1)=1$.

For $n \geq 2$, observe that for each with-safe-with-stolen scenario $\sigma \in \Sigma_{\text {wswst }}$ (which exist for all $n \geq 2$) that a mechanism $M \in \mathcal{M}_{n}$ succeeds in, there is a complement $\bar{\sigma}$ where it fails (Lemma 2). Crucially, $\bar{\sigma} \in \Sigma_{\text {wswst }}$ because a with-safe-with-stolen scenario has (at least) one safe and one stolen credential, and the safe, stolen states are switched in the complement. Therefore, M cannot succeed in more than half with-safe-with-stolen scenarios. The number of with-safe scenarios where all mechanisms fail is lower-bounded by $Q_{\mathrm{ws}}(n)=\left|\Sigma_{\mathrm{wswst}}\right| / 2 \stackrel{\text { eq. }(2)}{=} \frac{4^{n}-2 \cdot 3^{n}+2^{n}}{2}$.

The number of scenarios in which all mechanisms fail is lower-bounded by $Q(n)=Q_{\mathrm{ws}}(n)+\left|\Sigma_{\mathrm{ns}}\right|=$ $\left(4^{n}-2 \cdot 3^{n}+2^{n}\right) / 2+3^{n}=\left(4^{n}+2^{n}\right) / 2$. Hence, the number of scenarios in which any mechanism succeeds is bounded by $P(n)=|\Sigma|-Q(n)=4^{n}-\frac{4^{n}+2^{n}}{2}=\frac{4^{n}-2^{n}}{2}$.

V. MAXIMAL MECHANISMS

We now specify an approach to generate maximal mechanisms. These mechanisms wait for a bounded time allowing both players to submit credentials, therefore called bounded-delay mechanisms.

Any player can initiate authentication with a bounded-delay mechanism, which then starts a timer. Both U and A can send messages carrying credentials until the time elapses. Say the set of credentials submitted by player 0 is C_{0} and player 1 is C_{1}. A deterministic judging function J selects the winner: It takes the two sets of credentials sent by the players and outputs an identifier, i.e., $J\left(C_{0}, C_{1}\right) \mapsto\{0,1\}$. Bounded-delay mechanisms are realizable through the automaton model in a straightforward manner. Details are in App. B. Given a judging function J, we denote the corresponding mechanism by $M(J)$.

We present three properties of judging functions (§V-A) and show that they are sufficient for making the resultant mechanism maximally secure ($\S V-B$). Then, we present three functions that produce, for any n, maximal mechanisms (§V-C).

A. Well-formed judging functions

Any bounded-delay mechanism with judging functions satisfying the following properties are maximal.
Definition 8 (ID-Agnostic (IA)). A judging function J is ID-Agnostic if the identifier assignment does not affect the result, i.e., if $C \neq C^{\prime}$ then $\left(J\left(C, C^{\prime}\right)=0\right) \Leftrightarrow\left(J\left(C^{\prime}, C\right)=1\right)$.

If a judging function J satisfies IA, then we can compare any two sets of credentials and say that one of them is better than the other. We use the notation $C \succ{ }_{J} C^{\prime}$ (subscript omitted when obvious) to mean that C is better than C^{\prime} according to J. Similarly, $C \succeq{ }_{J} C^{\prime}$ means that either the two credential sets are the same $\left(C=C^{\prime}\right)$ or C is better than C^{\prime}.

Note that we do not say anything about the case where $C=C^{\prime}$ in the above definition, so an ID-Agnostic function can choose to output either 0 or 1 . WLOG all functions we present follow $\forall C: J(C, C)=0$.
Definition 9 (Knowledge-rewarding (KR)). A judging function is knowledge rewarding if, when the credentials submitted by one player are a strict subset of those submitted by the other, then it returns the latter, i.e., if $C^{\prime} \subset C$ then $C^{\prime} \prec C$.

Definition 10 (Transitive knowledge-rewarding (TKR)). A judging function is transitive knowledge rewarding if additional credentials cannot weaken a player's strategy, i.e., if $C_{0} \neq C_{1}, C_{1} \neq C_{2}, C_{0} \succ C_{1}$, and $C_{1} \succ C_{2}$, then $C_{0} \nsubseteq C_{2}$.

Note that $C_{0} \neq C_{2}$ is implied above because if instead $C_{0}=C_{2}$, then C_{1} is both better and worse than C_{0}, which is not possible for an ID-Agnostic judging function.

A judging function with all the three properties and its resultant mechanism are well formed.
Definition 11 (Well-formedness). If a judging function J satisfies $I A, K R$, and $T K R$ then it is well-formed, and the resulting bounded-delay mechanism $M(J)$ is well-formed.

Note that a well-formed judging function J need not be transitive, i.e., it could allow: $C_{0} \succ_{J} C_{1}, C_{1} \succ_{J} C_{2}$ and $C_{2} \succ_{J} C_{0}$. Examples of such functions appear later.

B. Maximality of well-formed mechanisms

We now prove that any well-formed mechanism is maximal. Two lemmas do a bulk of the work: Lemma 5 shows that the user can win in all with-safe-no-stolen scenarios and Lemma 8 shows that the user can win in exactly half of the with-safe-with-stolen scenarios. Using these results, Lemma 9 shows that the profile size of any n-credential well-formed mechanism is $P(n)$, which in turn implies maximality.

Before proving when well-formed algorithms succeed, we define submit-early strategies and prove Lemma 4, which we use throughout the rest of the proofs.

Definition 12 (Submit-early strategy). A submit-early strategy is a strategy where the player sends a single credential set when the automaton is in its initial state and nothing thereafter.

The next lemma says that if one player employs a submitearly strategy with credentials C, then the only way the other player wins is by submitting a better or equal credential set.

Lemma 4. Given a well-formed bounded-delay mechanism M and a scenario σ, if one player employs a submit-early strategy with credential set C, but the other player wins an execution, then the winning player must have submitted better or equal credentials C^{\prime}, i.e., $C^{\prime} \succeq C$.

Proof. Say player 0 submits credentials C as part of a submit-early strategy, but player 1 wins an execution. Denote the final set of credentials submitted by player 1 (perhaps across multiple messages) as C^{\prime}.

Two cases emerge based on the order in which the two sets of credentials, C and C^{\prime}, are processed by the automaton. But, irrespective of the order, player 1 wins only if $C^{\prime} \succeq C$: IA guarantees that, if on the contrary $C^{\prime} \prec C$, then the automaton would not prefer player 1 irrespective of the player identifier (0 or 1) assigned to it. So player 1 cannot win an execution, and therefore, it must be that $C^{\prime} \succeq C$.

Denote by $S_{\text {all }}^{U}$ (resp., $S_{\text {all }}^{A}$) the submit-early strategy where all credentials owned by the user C_{σ}^{U} (resp., attacker C_{σ}^{A}) are submitted. ($S_{\text {all }}^{A}$ uses attacker-first ordering, as is the case whenever we do not explicitly specify it.)

We now prove the first major lemma.
Lemma 5. Well-formed mechanisms succeed in with-safe-nostolen scenarios, i.e., for all well-formed mechanisms M and scenarios $\sigma \in \Sigma_{\text {wsnt }}: \operatorname{Suc}(M, \sigma)=$ True.

Proof. Assume for contradiction that the mechanism fails in a with-safe-no-stolen scenario $\sigma \in \Sigma_{\text {wsnt }}$. This means that for all user strategies the attacker wins at least one execution.

Say that the user follows the submit-early strategy $S_{\text {all }}^{U}$ with all its credentials C_{σ}^{U}, then, due to Lemma 4, the attacker must know a set of credentials $C \subseteq C_{\sigma}^{A}$ such that $C \succeq C_{\sigma}^{U}$.

And since the scenario σ is a with-safe-no-stolen scenario, we have $C_{\sigma}^{A} \subset C_{\sigma}^{U}$, and since $C \subseteq C_{\sigma}^{A}$, we conclude that $C \subset C_{\sigma}^{U}$.

But due to the knowledge-rewarding (KR) property, $C \subset C_{\sigma}^{U}$ implies $C \prec C_{\sigma}^{U}$, thereby contradicting the previous statement $C \succeq C_{\sigma}^{U}$. Thus the attacker cannot win an execution in a with-safe-no-stolen scenario and the mechanism succeeds.

Our next goal is to prove that the user wins in half of the with-safe-with-stolen scenarios $\Sigma_{\text {wswst }}$. Our approach is as follows. Recall that for every with-safe-with-stolen scenario σ, it's complement $\bar{\sigma}$ is also a with-safe-with-stolen scenario. Since any mechanism fails in one of σ or $\bar{\sigma}$ (Lemma 2), we use a winning attacker strategy in σ or $\bar{\sigma}$ to derive a winning user strategy in the other scenario.

First, we show that if there exists an attacker winning strategy for some execution, then the submit-early strategy
with all credentials is also an attacker winning strategy for that execution.

Lemma 6. Given a well-formed mechanism M, let the winning strategy of an attacker in a with-safe-with-stolen scenario $\sigma \in \Sigma_{\text {wswst }}$ be $S^{A} \neq S_{\mathrm{all}}^{A}$, then S_{all}^{A} is also a winning strategy. That is, if $X=(M, \sigma)$ and $\forall S^{U}: \operatorname{Win}_{X}\left(S^{U}, S^{A}\right)=A$ then $\forall S^{U}: \operatorname{Win}_{X}\left(S^{U}, S_{\mathrm{all}}^{A}\right)=A$.

Proof. Assume for contradiction the existence of a user strategy S^{U} such that the strategy $S_{\text {all }}^{A}$ never wins an execution. By Lemma 4, it must be that the user submits a credential set $C^{U} \subseteq C_{\sigma}^{U}$ that is better than or equal to C_{σ}^{A}, i.e., $C^{U} \succeq C_{\sigma}^{A}$. Furthermore, the inequality is strict, i.e., $C^{U} \succ C_{\sigma}^{A}$, because if $C^{U}=C_{\sigma}^{A}$ then since $C^{U} \subseteq C_{\sigma}^{U}$, we get $C_{\sigma}^{A} \subseteq C_{\sigma}^{U}$, which is not true for a with-safe-with-stolen scenario $\sigma \in \Sigma_{\text {wswst }}$.

Start again from the assumption. Since S^{A} is a successful attacker strategy, it must win an execution against the submit-early strategy with credential set C^{U}. And because of Lemma 4, the attacker must have submitted a credential set C^{A} such that $C^{A} \succeq C^{U}$.

We have two cases: $C^{A}=C^{U}$ or $C^{A} \succ C^{U}$. If $C^{A}=C^{U}$, since $C^{U} \succ C_{\sigma}^{A}$, we have $C^{A} \succ C_{\sigma}^{A}$. But KR says that if $C^{A} \subseteq C_{\sigma}^{A}$, then $C^{A} \preceq C_{\sigma}^{A}$, which leads to a contradiction.

Next, if $C^{A} \succ C^{U}$, since $C^{U} \succ C_{\sigma}^{A}$, the TKR property implies that $C^{A} \nsubseteq C_{\sigma}^{A}$ (note that $C^{A} \neq C^{U}$ and $C^{U} \neq C_{\sigma}^{A}$ hold, allowing the use of TKR.) But we have a contradiction as $C^{A} \subseteq C_{\sigma}^{A}$ by definition. So we conclude that the strategy $S_{\text {all }}^{A}$ is also winning.

Now, we prove that $S_{\text {all }}^{A}$ is a winning strategy for the user in the complement scenario $\bar{\sigma}$.

Lemma 7. If S_{all}^{A} is a winning strategy for the attacker in a with-safe-with-stolen scenario $\sigma \in \Sigma_{\text {wswst }}$, then the messaging component of S_{all}^{A} is a winning strategy for the user in the complement with-safe-with-stolen scenario $\bar{\sigma}$.
Proof. Since $S_{\text {all }}^{A}$ is a winning strategy in scenario σ, it must win against any user strategy, including $S_{\text {all }}^{U}$. By Lemma 4, since the user follows a submit-early strategy, the attacker must have submitted a set of credentials C such that $C \succeq C_{\sigma}^{U}$. Since the attacker also follows a submit-early strategy $S_{\text {all }}^{A}$, the attacker submits credentials exactly once. Therefore, it must be that $C=C_{\sigma}^{A}$ and hence $C_{\sigma}^{A} \succeq C_{\sigma}^{U}$. The inequality is strict, i.e.,

$$
\begin{equation*}
C_{\sigma}^{A} \succ C_{\sigma}^{U} \tag{3}
\end{equation*}
$$

since $C_{\sigma}^{A} \neq C_{\sigma}^{U}$ for a with-safe-with-stolen scenario $\sigma \in \Sigma_{\text {wswst }}$ and due to the mechanism's IA property.

Assume for contradiction that $\bar{S}_{\text {all }}^{U}=S_{\text {all }}^{A}$ (we mean that $\bar{S}_{\text {all }}^{U}$ is the messaging component of $S_{\text {all }}^{A}$) is not a winning strategy for the user in the complement scenario $\bar{\sigma}$. It means that there exists an attacker strategy \bar{S}^{A} that wins against $\bar{S}_{\text {all }}^{U}$ in some executions of $\bar{\sigma}$. Applying Lemma 4 again, the attacker must have submitted a set of credentials $C \subseteq C_{\bar{\sigma}}^{A}$ such that $C \succeq C_{\bar{\sigma}}^{U}$. Since $\bar{\sigma}$ is also a with-safe-with-stolen scenario and due to the mechanism's IA property, the inequality is strict, i.e., $C \succ C \bar{\sigma}$.

We claim that

$$
\begin{equation*}
C_{\bar{\sigma}}^{A} \succeq C_{\bar{\sigma}}^{U} \tag{4}
\end{equation*}
$$

This is because, if instead $C_{\bar{\sigma}}^{U} \succ C_{\bar{\sigma}}^{A}$, then because $C \succ C_{\bar{\sigma}}^{U}$ and TKR, we get $C \nsubseteq C \frac{A}{\bar{\sigma}}$, which is false because $C \subseteq C \frac{A}{\bar{\sigma}}$.

By definition, for any pair of complement scenarios, we have $C_{\sigma}^{U}=C_{\bar{\sigma}}^{A}$ and $C_{\bar{\sigma}}^{U}=C_{\sigma}^{A}$. Recasting eq. (4), we get $C_{\sigma}^{U} \succeq C_{\sigma}^{A}$, which contradicts eq. (3). Thus $S_{\text {all }}^{A}$ is a winning user strategy in $\bar{\sigma}$.

Now we can prove the second major lemma.
Lemma 8. For all well-formed mechanisms M and with-safe-with-stolen scenarios $\sigma \in \Sigma_{\text {wswst }}, M$ succeeds in either σ or in its complement $\bar{\sigma}$, i.e., $\operatorname{Suc}(M, \sigma) \vee \operatorname{Suc}(M, \bar{\sigma})$.

Proof. For each scenario $\sigma \in \Sigma_{\text {wswst }}$, its complement $\bar{\sigma}$ satisfies $\bar{\sigma} \neq \sigma$ and $\bar{\sigma} \in \Sigma_{\text {wswst }}$. Consider a pair of complement scenarios $\sigma, \bar{\sigma} \in \Sigma_{\text {wswst }}$. No well-formed mechanism M succeeds in both σ and $\bar{\sigma}$ (Lemma 2). WLOG assume that M fails in σ, i.e., there exists a winning strategy S^{A} for the attacker that allows it to win an execution in σ. By Lemma 6, the existence of a winning strategy S^{A} implies that the submit-early strategy $S_{\text {all }}^{A}$ is also a winning strategy. And by Lemma 7, the messaging component of $S_{\text {all }}^{A}$ is a winning strategy for the user in the complement scenario $\bar{\sigma}$.

We conclude by proving that the profile size of a well-formed mechanism is $P(n)$.

Lemma 9. The profile size of any well-formed n-credential mechanism is $P(n)$.

Proof. Lemma 5 shows that a well-formed mechanism succeeds in all with-safe-no-stolen scenarios ($\Sigma_{\text {wsnt }}=\Sigma_{\text {ws }} \cap \Sigma_{\mathrm{nt}}$). By basic set theory, $\left|\Sigma_{\text {wsnt }}\right|=\left|\Sigma_{\mathrm{nt}}\right|-\left|\Sigma_{\mathrm{nt}} \backslash \Sigma_{\text {ws }}\right|$ and $\left|\Sigma_{\mathrm{nt}} \backslash \Sigma_{\mathrm{ws}}\right|=\left|\Sigma_{\mathrm{nt}} \cap \overline{\Sigma_{\mathrm{ws}}}\right|=\left|\Sigma_{\mathrm{nt}} \cap \Sigma_{\mathrm{ns}}\right|$. Finally, since $\left|\Sigma_{\mathrm{nt}}\right|=3^{n}$ and $\left|\Sigma_{\mathrm{nt}} \cap \Sigma_{\mathrm{ns}}\right|=2^{n}$, we have $\left|\Sigma_{\mathrm{wsnt}}\right|=3^{n}-2^{n}$.

Lemma 8 shows that a well-formed mechanism succeeds in exactly half of the with-safe-with-stolen scenarios $\left(\Sigma_{\text {wswst }}=\Sigma_{\text {ws }} \cap \Sigma_{\text {wt }}\right)$. From eq. (2), $\left|\Sigma_{\text {wswst }}\right|=\left(4^{n}-2 \cdot 3^{n}+2^{n}\right)$.

In total, a well-formed mechanism succeeds in $\left|\Sigma_{\text {wsnt }}\right|+\left|\Sigma_{\text {wswst }}\right| / 2=\left(4^{n}-2^{n}\right) / 2=P(n)$ scenarios.

Corollary 1. Any well-formed mechanism is maximally secure.
This is straightforward because the existence of a mechanism better than a well-formed mechanism (Lemma 9) violates the profile size bound (Theorem 1).

C. Algorithms for maximal mechanisms

We now specify three algorithms that produce maximal n credential mechanisms for any n.

1) Priority mechanisms: Let a vector V define an ordering over all the credentials, then the priority judging function using V (Algorithm 2) decides on the player that submits a unique high-priority credential.
Lemma 10. Given a permutation V over elements of the set $\mathcal{C}_{\mathrm{all}}$, the priority judging function J_{pr}^{V} is well-formed.
```
Algorithm 2 The priority judging function \(J_{\mathrm{pr}}^{V}\)
Require: \(V\) is a permutation over the elements of the set \(\mathcal{C}_{\text {all }}\).
    function \(J_{\mathrm{pr}}^{V}\left(C_{0}, C_{1}\right)\)
    \(\triangleright C_{0} \subseteq \mathcal{C}_{\text {all }}, C_{1} \subseteq \mathcal{C}_{\text {all }}\)
        for \(c=V_{1}, V_{2}, \ldots, V_{n}\) do
            if \(c \in C_{0} \wedge c \notin C_{1}\) then return \(0 \quad \triangleright C_{0} \succ C_{1}\)
            if \(c \in C_{1} \wedge c \notin C_{0}\) then return \(1 \quad \triangleright C_{1} \succ C_{0}\)
        return \(0 \quad \triangleright\) Default
```

Proof. We prove each of the three properties (Definition 11). IA requires $\left(J_{\mathrm{pr}}^{V}\left(C_{0}, C_{1}\right)=0\right) \Leftrightarrow\left(J_{\mathrm{pr}}^{V}\left(C_{1}, C_{0}\right)=1\right)$. This holds because the priority function selects the unique high-priority credential irrespective of the order. KR requires $C_{0} \subset C_{1} \Longrightarrow$ $C_{0} \prec C_{1}$. This holds because C_{1} has at least one credential not in C_{0} but C_{0} has no credentials not in C_{1}.

To prove TKR, we need to show that given three distinct credential sets C_{0}, C_{1} and C_{2}, if $C_{0} \succ C_{1}$ and $C_{1} \succ C_{2}$ then $C_{0} \nsubseteq C_{2}$. By contradiction, assume $C_{0} \subset C_{2}$ (since $C_{0} \neq C_{2}$ by definition).
$C_{0} \succ C_{1}$ implies the existence of a credential c that satisfies $c \in C_{0} \backslash C_{1}$ such that $\{c\} \succ C_{1} \backslash C_{0}$.

Observe that $C_{0} \subset C_{2}$ implies $C_{1} \backslash C_{2} \subseteq C_{1} \backslash C_{0}$.
We can rewrite the previous equation as $\{c\} \succ C_{1} \backslash C_{2}$ due to the transitive nature of the priority judging function.

But the existence of $c \in C_{0} \subset C_{2}$ such that $\{c\} \succ C_{1} \backslash C_{2}$ implies that $C_{2} \succ C_{1}$. This contradicts the TKR assumption $C_{1} \succ$ C_{2}, so $C_{0} \subset C_{2}$ cannot be true and TKR is satisfied.

Denote the priority mechanism corresponding to the judging function J_{pr}^{V} by M_{pr}^{V}. For example, the 2-credential priority mechanism $M_{\mathrm{pr}}^{\left[c_{1}, c_{2}\right]}$ along with its profile is in Fig. 1. Note that player 0 (resp., 1) can only take dashed (resp., dotted) edges and tries to reach f_{0} (resp., f_{1}), and \mathcal{R} denotes a clock reset. A proof for the profile computation is in App. C. Note that for any n, Algorithm 2 yields exactly one distinct mechanism because changes in the permutation V yield equivalent mechanisms, e.g., $M_{\mathrm{pr}}^{\left[c_{1}, c_{2}\right]} \cong M_{\mathrm{pr}}^{\left[c_{2}, c_{1}\right]}$.
2) Priority with exception: Mechanisms in this category are similar to priority mechanisms except when the last two credentials in the priority rule are submitted by the two players. For example, if the priority vector is $V=\left[c_{2}, c_{3}, c_{1}\right]$, then the exception is $\left\{c_{1}\right\} \succ\left\{c_{3}\right\}$. The resultant judging function is denoted by $J_{\text {pre }}^{V}$ and is specified in Algorithm 3 (with the changes from Algorithm 2 highlighted). Wellformedness proof is in App. C. Like with priority mechanisms, this algorithm yields at most one maximal mechanism.
3) Majority mechanisms: Mechanisms in this category favor the player submitting the most credentials, so $C \succ C^{\prime}$ if $|C|>\left|C^{\prime}\right|$. To break ties, different strategies are possible which we model through a tie-breaking function $T\left(C_{0}, C_{1}\right) \mapsto$ $\{0,1\}$. We only consider ID-Agnostic tie-breaking functions, i.e., if $0 \leftarrow T\left(C_{0}, C_{1}\right)$ then $1 \leftarrow T\left(C_{1}, C_{0}\right)$. The resultant judging function is denoted $J_{\text {maj }}^{T}$ and is specified in Algorithm 4. The profile of a majority mechanisms $M_{\text {maj }}^{\left[c_{1}, c_{2}, c_{3}\right]}$, i.e., using priority vector $\left[c_{1}, c_{2}, c_{3}\right]$ to break ties, is in

c_{1} safe				
$c_{2} c_{3}$	St	Le	Lo	Sa
St	1	1	1	1
Le	1	1	1	1
Lo	1	1	1	1
Sa	1	1	1	1
c_{1} leaked				
c_{2}	St	Le	Lo	Sa
St	0	0	0	0
Le	0	0	0	1
Lo	0	0	0	1
Sa	1	1	1	1

c_{1} lost				
$c_{2} c_{3}$	St	Le	Lo	Sa
St	0	0	0	0
Le	0	0	0	1
Lo	0	0	0	1
Sa	1	1	1	1

c_{1}				
stolen				
c_{2}	c_{3}	St	Le	Lo
Sa				
St	0	0	0	0
Le	0	0	0	0
Lo	0	0	0	0
Sa	0	0	0	0

(a) $M_{\mathrm{pr}}^{\left[c_{1}, c_{2}, c_{3}\right]}$

c_{1} safe				
$c_{2} c_{3}$	St	Le	Lo	Sa
St	0	1	1	1
Le	1	1	1	1
Lo	1	1	1	1
Sa	1	1	1	1
c_{1} leaked				
$c_{2}^{c_{3}}$	St	Le	Lo	Sa
St	0	0	0	0
Le	0	0	0	1
Lo	0	0	0	1
Sa	1	1	1	1

c_{1} lost				
$c_{2} c_{3}$	St	Le	Lo	Sa
St	0	0	0	0
Le	0	0	0	1
Lo	0	0	0	1
Sa	1	1	1	1

c_{1} stolen				
$c_{2} c_{3}$	St	Le	Lo	Sa
St	0	0	0	0
Le	0	0	0	0
Lo	0	0	0	0
Sa	0	0	0	1

(b) $M_{\text {maj }}^{\left[c_{1}, c_{2}, c_{3}\right]}$

TABLE II: Profiles of a priority and a majority 3-credential mechanism

Fig. 1: $M_{\mathrm{pr}}^{\left[c_{1}, c_{2}\right]}$ and its profile.

Tab. IIb. For comparison, we also show the profile of a priority mechanism $M_{\mathrm{pr}}^{\left[c_{1}, c_{2}, c_{3}\right]}$ in Tab. IIa (they differ in just two scenarios). Well-formedness proof is in App. C.

Unlike the two priority-based mechanisms, this algorithm yields many distinct maximal mechanisms for all $n>2$. The total number of majority mechanisms including credential permutations is $q(n)=2^{\left(\binom{2 n-1}{n-1}-2^{n-1}\right)}$ (App. C). For $n=3$, we manually discard equivalent mechanisms to find a total of 12 distinct majority mechanisms (out of $q(3)=64$).

VI. Complete maximal sets

A complete maximal mechanism set is a minimal set of n-credential mechanisms such that any other n-credential mechanism is either equivalent to or worse than some mechanism in this set.

```
Algorithm 3 Priority with exception \(J_{\text {pre }}^{V}\)
Require: \(V\) is a permutation over the elements of the set \(\mathcal{C}_{\text {all }}\).
    function \(J_{\text {pre }}^{V}\left(C_{0}, C_{1}\right) \quad \triangleright C_{0} \subseteq \mathcal{C}_{\text {all }}, C_{1} \subseteq \mathcal{C}_{\text {all }}\)
        if \(C_{0}=\left\{V_{n-1}\right\} \wedge C_{1}=\left\{V_{n}\right\}\) then return 1
        if \(C_{0}=\left\{V_{n}\right\} \wedge C_{1}=\left\{V_{n-1}\right\}\) then return 0
        for \(c=V_{1}, V_{2}, \ldots, V_{n}\) do
            if \(c \in C_{0} \wedge c \notin C_{1}\) then return \(0 \quad \triangleright C_{0} \succ C_{1}\)
            if \(c \in C_{1} \wedge c \notin C_{0}\) then return \(1 \quad \triangleright C_{1} \succ C_{0}\)
        return 0
                            \(\triangleright\) Default
```

```
Algorithm 4 The majority judging function \(J_{\text {maj }}^{T}\)
```

Algorithm 4 The majority judging function $J_{\text {maj }}^{T}$
function $J_{\text {maj }}^{T}\left(C_{0}, C_{1}\right) \quad \triangleright C_{0} \subseteq \mathcal{C}_{\text {all }}, C_{1} \subseteq \mathcal{C}_{\text {all }}$
function $J_{\text {maj }}^{T}\left(C_{0}, C_{1}\right) \quad \triangleright C_{0} \subseteq \mathcal{C}_{\text {all }}, C_{1} \subseteq \mathcal{C}_{\text {all }}$
if $\left|C_{0}\right|>\left|C_{1}\right|$ then return 0
if $\left|C_{0}\right|>\left|C_{1}\right|$ then return 0
if $\left|C_{1}\right|>\left|C_{0}\right|$ then return 1
if $\left|C_{1}\right|>\left|C_{0}\right|$ then return 1
return $T\left(C_{0}, C_{1}\right)$
return $T\left(C_{0}, C_{1}\right)$
\triangleright If $\left|C_{0}\right|=\left|C_{1}\right|$

```
                                    \(\triangleright\) If \(\left|C_{0}\right|=\left|C_{1}\right|\)
```

Definition 13 (Complete set). A complete maximal mechanism set of n-credential mechanisms $\mathcal{O}=\left\{M_{1}, M_{2} \ldots\right\} \subset \mathcal{M}_{n}$ satisfies three properties: (1) each $M \in \mathcal{O}$ is maximal; (2) any two distinct members are incomparable, i.e., $\forall M, M^{\prime} \in \mathcal{O}, M \neq M^{\prime}: M \nsim M^{\prime}$; and (3) any n credential mechanism is worse or equivalent to some mechanism in \mathcal{O}, i.e., $\forall M \in \mathcal{M}_{n}: \exists M^{\prime} \in \mathcal{O}$ s.t. $M \preceq M^{\prime}$.

Several different complete maximal sets exist, but all their sizes are the same as each mechanism in a maximal set will have an equivalent in the other. The proof is in App. C.

We now present complete maximal sets for all $n \leq 3$. These sets are composed of bounded-delay mechanisms. For onecredential mechanisms, the attacker wins in three of the four possible scenarios (Lemma 3). Hence, the priority mechanism $M_{\mathrm{pr}}^{\left[c_{1}\right]}$ is the only one in the complete maximal set \mathcal{O}_{1}.

A. Two-credential mechanisms

The complete maximal set of 2-credential mechanisms is of size one. We find a set containing a priority mechanism.

Theorem 2. A complete maximal set of 2-credential mechanisms is $\mathcal{O}_{2}=\left\{M_{\mathrm{pr}}^{\left[c_{1}, c_{2}\right]}\right\}$.

Proof. We prove \mathcal{O}_{2} satisfies the three requirements (Definition 13). The first is that $M_{\mathrm{pr}}^{\left[c_{1}, c_{2}\right]}$ is maximal, which follows from Lemma 10. The second is that every pair of mechanisms in \mathcal{O}_{2} must be incomparable to each other, which is vacuously true.

The third is that any 2 -credential mechanism M must satisfy $M \preceq M_{\mathrm{pr}}^{\left[c_{1}, c_{2}\right]}$. Recall that $M \preceq M_{\mathrm{pr}}^{\left[c_{1}, c_{2}\right]}$ implies the existence of a mechanism $M^{\prime} \cong M_{\mathrm{pr}}^{\left[c_{1}, c_{2}\right]}$ such that $\operatorname{prof}(M) \subseteq$ $\operatorname{prof}\left(M^{\prime}\right)$. There are only two choices for M^{\prime} that yield distinct profiles, namely $M^{\prime} \in\left\{M_{\mathrm{pr}}^{\left[c_{1}, c_{2}\right]}, M_{\mathrm{pr}}^{\left[c_{2}, c_{1}\right]}\right\}$. And we are trying to prove that for any mechanism M, one of $\operatorname{prof}(M) \subseteq$ $\operatorname{prof}\left(M_{\mathrm{pr}}^{\left[c_{1}, c_{2}\right]}\right)$ or $\operatorname{prof}(M) \subseteq \operatorname{prof}\left(M_{\mathrm{pr}}^{\left[c_{2}, c_{1}\right]}\right)$ is true.

We prove by contradiction. Assume there exists a mechanism M such that $\operatorname{prof}(M) \nsubseteq \operatorname{prof}\left(M_{\mathrm{pr}}^{\left[c_{1}, c_{2}\right]}\right)$ and $\operatorname{prof}(M) \nsubseteq \operatorname{prof}\left(M_{\mathrm{pr}}^{\left[c_{2}, c_{1}\right]}\right)$.

Consider the set of seven with-safe scenarios $\Sigma_{\text {ws }}=$ $\left\{\hat{\sigma}_{1}, \ldots, \hat{\sigma}_{7}\right\}$. Without loss of generality, let $\hat{\sigma}_{1}=($ safe,stolen $)$ (i.e., c_{1} safe, c_{2} stolen) and $\hat{\sigma}_{7}=($ stolen, safe $)$ is the complement of $\hat{\sigma}_{1}$. Figure 1 shows that $\operatorname{prof}\left(M_{\mathrm{pr}}^{\left[c_{1}, c_{2}\right]}\right)=\left\{\hat{\sigma}_{1}, \ldots, \hat{\sigma}_{6}\right\}$ and $\operatorname{prof}\left(M_{\mathrm{pr}}^{\left[c_{2}, c_{1}\right]}\right)=\left\{\hat{\sigma}_{2}, \ldots, \hat{\sigma}_{7}\right\}$.

By Lemma 3, the profile of M is a subset of $\Sigma_{\text {ws }}$, i.e., $\operatorname{prof}(M) \subseteq \Sigma_{\text {ws }}$. By basic set theory, the only way to guarantee $\operatorname{prof}(M) \nsubseteq \operatorname{prof}\left(M_{\mathrm{pr}}^{\left[c_{1}, c_{2}\right]}\right)$ and $\operatorname{prof}(M) \nsubseteq \operatorname{prof}\left(M_{\mathrm{pr}}^{\left[c_{2}, c_{1}\right]}\right)$ is if $\left\{\hat{\sigma}_{1}, \hat{\sigma}_{7}\right\} \in \operatorname{prof}(M)$. But Lemma 2 rules this out as they are complement scenarios.

Note 2. The above mechanism can also be viewed as a majority mechanism with a priority rule to break ties or a priority with exception mechanism.

B. Three-credential mechanisms

The complete maximal set of 3-credential mechanisms is of size 14 . We group the constituents into majority and priority mechanisms, denoted by $\mathcal{O}_{\text {maj, } 3}$ and $\mathcal{O}_{\mathrm{pr}, 3}$ respectively, i.e., $\mathcal{O}_{3}=\mathcal{O}_{\text {maj, } 3} \cup \mathcal{O}_{\text {pr,3 }}$.

The set $\mathcal{O}_{\mathrm{pr}, 3}$ contains two priority-based mechanisms: the regular one (Algorithm 2) and with an exception (Algorithm 3).

The set $\mathcal{O}_{\text {maj,3 }}$ contains 12 majority mechanisms that differ in their tie-breaking rule. Two tie rules are possible: linear priority, e.g., $c_{1} \succ c_{2}, c_{2} \succ c_{3}, c_{1} \succ c_{3}$, or cyclic priority, e.g., $c_{1} \succ c_{2}, c_{2} \succ c_{3}, c_{3} \succ c_{1}$ (last one switched). Note that a cyclic rule makes the resultant judging function non-transitive. The twelve majority mechanisms differ in the choice of tie rule used to break ties between 1-credential and 2-credential sets, e.g., one of them uses a linear rule for 1 -credential sets and a cyclic rule for 2-credential sets. More details are in App. D.

Theorem 3. A complete maximal set of 3-credential mechanisms is $\mathcal{O}_{3}=\mathcal{O}_{\text {pr }, 3} \cup \mathcal{O}_{\text {maj, } 3}$.

Proving the first two requirements of Definition 13 is straightforward. We prove the last requirement that no mechanism is better than a mechanism in \mathcal{O}_{3} by
contradiction. Assume that a mechanism M exists such that it is incomparable with any mechanism in \mathcal{O}_{3}. We encode this as a constraint in a constraint solver and have it search for a satisfying profile. We also add another constraint relying on the observation that if M fails in a scenario σ, then it must fail in all scenarios $\widehat{\sigma}$ that are worse than σ where $\widehat{\sigma}$ is worse than σ if the attacker knows the same or more credentials whereas the user knows the same or fewer credentials. We find that the constraint solver is unable to find a solution, therefore no such mechanism exists. The details are in App. D.

Note 3. It remains an open question how to analytically find complete maximal sets for larger number of credentials.

VII. Applications

We now apply our framework to analyze a popular cryptocurrency wallet (§VII-A), a bank account (§VII-B) and all known 2-credential mechanisms (§VII-C).

A. The Argent Cryptocurrency Wallet

Social recovery is a prominent approach [32] to design non-custodial cryptocurrency wallets where a user's social circle, e.g., friends and family, is used to manage keys. We analyze Argent [9], a popular social-recovery wallet [19].

We describe Argent's operation as an automaton (§VII-A1), find the resultant profile (§VII-A2), and discuss security improvements (§VII-A3).

1) Operation: The Argent mechanism $M_{\text {Arg }}^{m}$ uses $m+1$ credentials, consisting of an owner credential c_{o} and a set of m so-called guardian credentials $\mathcal{G}=\left\{g_{1}, g_{2}, \ldots, g_{m}\right\}$. The owner credential is a cryptographic key on the user's mobile phone. Guardians can be anything from a friend's cryptocurrency wallet to a hardware wallet or a paid third-party service. Thus, in our notation, $\mathcal{C}_{\text {all }}=\left\{c_{o}, g_{1}, g_{2}, \ldots, g_{m}\right\}$.

The user maintains a list of approved addresses (called trusted contacts) to which she can send funds immediately. Transferring funds to a unapproved address requires additional steps. The Argent wallet allows adding or removing approved addresses, adding or removing guardians, replacing the owner credential (if her phone is lost or stolen) and transferring deposited funds.

We review all the attacker's options to withdraw funds into an unapproved address. (withdrawing to approved addresses raises the question of how those are protected, which is not well defined.) To simplify the presentation, we first review different paths separately. Figure 2 depicts five automata, each capturing a different functionality of the Argent mechanism.

Dashed (resp., dotted) edges indicates an edge that can be taken only by player 0 (resp., 1). Solid edges can be taken by either player. The state $I_{\text {init }}$ is the starting state of the automaton. Two final states exist: F_{0} (resp., F_{1}) stands for the state in which player zero (resp., player one) wins. We only show half of each automaton, the portion assuming the first move is made by player 0 ; we omit the other half because it is symmetric. Reaching a final state signifies a successful withdrawal. Note that we use multiple clocks to simplify the presentation: in particular, \mathcal{R}_{i} denotes a reset of i th clock, i.e., $t_{i} \leftarrow 0$. (Using

(a) Transfer to an unapproved address

(b) Immediately transfer to an unapproved address

(c) Change guardians

(d) Locking wallet

(e) Change owner

(f) Delete guardians when locked

Fig. 2: Argent mechanism $M_{\text {Arg }}^{m}$ sub-automata
multiple clocks does not impact our formalization as they can be removed to construct a standard automaton [31].)

If credentials are unchanged, there are only two ways for the attacker to withdraw funds to an address it controls (Fig. 2a, Fig. 2b). She can add this address to the approved list and then withdraw, a process we call slow withdrawal. In order to do so, the owner needs to initiate an action ($I_{\text {init }}$ to T). The addition becomes effective after 1.5 days, at which point the owner can withdraw (T to F_{0}). The approval process can be cancelled with the owner credential during the 1.5 day period (T to $I_{\text {init }}$): this is useful if the owner credential c_{o} is leaked.

Another way to withdraw funds is to order a fast withdrawal with the owner credential and at least half of the guardian
credentials (Fig. 2b).
The attacker can also try to withdraw funds by first changing the set of credentials. One way is to change the set of guardians (Fig. 2c). The owner initiates the process ($I_{\text {init }}$ to C_{g}) and can be finalized only during a time window that starts 1.5 days after initiation and lasts for 12 hours thereafter. As in the slow withdrawal case, the guardian change process can be cancelled by c_{o}.

Note that a guardian change implies a change in the underlying scenario. The execution moves to another copy of the same automaton, indicated by the new start state $I_{\text {init }}^{g}$, with a new scenario σ^{\prime} that reflects the change to new guardians. For example, if player 0 is able to add a guardian, then the new scenario σ^{\prime} has a new guardian credential g_{m+1} that is known to 0 alone, and $\mathcal{C}_{\text {all }}^{\prime}=\mathcal{C}_{\text {all }} \cup\left\{g_{m+1}\right\}$.

Argent implements locking, a feature intended for situations when the owner suspects a credential fault [9]. As shown in Fig. 2d, the mechanism can be moved from any state into a locked state with any one credential. A limited set of actions are possible in the locked state, namely, change owner and unlock. Unlocking the automaton, i.e., moving back into its previous state can be done with any credential. The state U represents all unlocked states, i.e., $I_{\text {init }}$ or T or C_{g}.

Argent allows changing the owner, a process they call recovery. There are two ways to do so (Fig. 2e). If the current owner credential is lost, the automaton can be moved from any unlocked state to the recovery state C_{o} with $\lceil m / 2\rceil$ guardian credentials. The new owner address is specified in this step. Finalizing this new owner takes 2 days. In this period, owner change can be cancelled with $\lceil(m+1) / 2\rceil$ credentials, which can include the original owner: this is useful if the owner credential was not actually lost.

The second way is for when the owner credential is safe, e.g., if the user wants to transfer the Argent app between phones. In this case, there is no need to wait. The owner can be changed immediately with the owner credential c_{o} and $\lceil m / 2\rceil$ guardians, a process we call fast owner-change.

Similar to when a guardian change happens, a change of owner moves the execution back to a start state $I_{\text {init }}^{o}$ with a modification to the scenario. For example, if player 0 is able to change the owner, then the new scenario will reflect that: the new credential c_{o} is known to player 0 alone.

Finally, Argent allows guardian revocation (but not addition) from a locked (or recovery) state (Fig. 2f). Confirming revocation can be done after 1.5 days like before, but canceling it requires unlocking (or canceling recovery) first.
2) Profile analysis: We now analyze the security of Argent $M_{\text {Arg }}^{m}$ with one and with two guardians ($m=1,2$).

The one guardian case has just two credentials: an owner c_{o} and a guardian g_{1}. The user can reach a final state in two ways: (a) submit both the credentials (Fig. 2b) or (b) submit just c_{o} and wait for 1.5 days (Fig. 2a). So if one of the credentials is lost but the other is safe, then the user's winning strategy is to revoke the lost credential. This is winning because all the credentials will be safe in the new automaton.

If c_{o} is safe and g_{1} is leaked or stolen, the mechanism succeeds and the user's winning strategy is to initiate guardian revocation from any state. In particular, even if the attacker initiates an owner change before ($I_{\text {init }}$ to C_{o}), the user can initiate guardian revocation (reach C_{g}^{O}). The user does not even need to cancel the owner change as it requires waiting 2 days whereas the unsafe guardian can be revoked after 1.5 days.

If g_{1} is safe and c_{o} is leaked or stolen, the mechanism fails and the attacker's winning strategy is to lock the automaton if the current state is unlocked, and cancel a recovery if the current state is C_{o} (i.e., owner change was initiated).

In summary, the profile of 1-guardian Argent $M_{\text {Arg }}^{1}$ has 5 scenarios, and $M_{\text {Arg }}^{1}$ is worse than our maximal mechanism with 6 scenarios, i.e., $M_{\text {Arg }}^{1} \prec M_{\mathrm{pr}}^{\left[c_{o}, g_{1}\right]}$ (Fig. 1). We similarly analyze 2-guardian Argent $M_{\text {Arg }}^{2}$ in App. E to find that its profile has 22 scenarios, and that it is worse than a priority mechanism with 28 scenarios, i.e., $M_{\text {Arg }}^{2} \prec M_{\mathrm{pr}}^{\left[c_{o}, g_{1}, g_{2}\right]}$ (Tab. IIa).
3) Improving Argent: We propose a simple strategy to improve Argent's profile: executing multiple transactions atomically, commonly known as a multicall [33]. For example, consider the scenario (c_{o} leaked, g_{1} safe) where Argent previously failed. It succeeds now because the user can atomically execute two transitions: unlock and fast withdrawal from a locked state (L or C_{o}). With a multicall, Argent becomes maximal with 1 guardian, but not with 2 guardians or more. For example, with two guardians, the profile of Argent with multicalls has 24 scenarios, weaker than 28 in a maximal mechanism.

While it is technically feasible to run a multicall with Argent's contracts today (e.g., using Uniswap's multicall contract [33]), we could not find a mention of this technique in Argent's documentation and Argent does not natively support it.

As noted before, the use of multicalls only helps improve Argent's profile to an extent. One can attain better security with our maximal mechanisms to achieve the same functionality as Argent, except we omit locking as it does not improve security in our model. Rather than using different mechanisms for the various functions, e.g., change owner / guardian, we propose the use of a maximal mechanism for all functionalities, thus vastly simplifying the design. We propose the use of a majority mechanism with some tie-breaking function due to its simplicity.

One missing feature from our proposed design is fast withdrawals (Fig. 2b) or fast owner change (Fig. 2e). However, it is easy to add it: simply move to the final state if all the credentials are submitted. The modified mechanism is still maximal, i.e., doesn't break PA, KR and TKR, since the fast path can only be enabled if all the credentials are provided. However, it does incur a usability hit: for all $m>1$, the user needs to do more work in gathering guardian approvals than with Argent. (If $m=1$, the user needs to submit all the credentials anyway.)

We demonstrate the practicality of our mechanisms with a proof-of-concept priority mechanism in Solidity (App. A). Our implementation takes about 100 lines of code and requires 210 k gas for the most costly function, compared to 150 k for Argent ($\$ 7.6$ and $\$ 5.4$ resp., assuming a gas price
of 30 gwei and Ethereum price of $\$ 1200$).

B. HDFC Online Bank Account

We model the authentication mechanisms used by the HDFC bank website [10]. The bank provides a web portal for the users to login with their password credential c_{p}. We assume that 2 FA is enabled, in particular, one time PINs are received on the registered mobile number; this credential is denoted c_{m}. The bank allows users to add additional factors if needed, e.g., email, but we do not model it for simplicity. Finally, users can change the registered mobile number by submitting a request at the bank along with an ID proof [34]. We model any acceptable identity proof using the credential $c_{i d}$ (modeled in the first automaton in Fig. 4.) There are other ways to change the mobile number [35], e.g., use a debit card and visit an ATM, but again, we do not model it for simplicity.

Like before, we focus on how to withdraw money to a new (attacker-controlled) account number. It involves using the password c_{p} to login and authenticating via mobile c_{m} to initiate the third-party addition process. This process takes 30 minutes, during which it can be cancelled by logging in to the bank portal. After the time elapses, money can be transferred to the new account. This requires another 2FA.

The bank allows changing the password after authenticating via mobile. In order to change the registered mobile number, the user must submit a form along with relevant identity proof $c_{i d}$, and the change happens after 3 days [35].

We now compute the profile assuming $c_{i d}$ is safe. If c_{m} is safe, then the mechanism succeeds irrespective of the state of c_{p}. The user's winning strategy is to change the password (notice that the attacker cannot initiate any action with c_{p} alone). The mechanism also succeeds if c_{m} is lost because $c_{i d}$ is safe, and it can be used to change the mobile number after three days. In other scenarios, the mechanism fails because the three day delay is sufficient to withdraw money by the attacker.

We find that the mechanism's success does not change irrespective of the state of the password credential c_{p}, hence it can be safely removed. While the redundancy of passwords was observed by prior work [36], ours is the first to prove it in a rigorous manner to our knowledge. In summary, HDFC's profile has 20 scenarios, weaker than our maximal mechanism. The automaton, profile and a complete analysis is in App. E.

C. Prior Two-Credential Mechanisms

We compare (Fig. 3) all distinct n-credential mechanisms where $n \leq 2$ (that we know of) in a single graph, covering common approaches used in practice, mechanisms from recent prior work, and our new ones. Each rectangle represents a mechanism. Arrows between rectangles show the \succ relation, i.e., an arrow from mechanism M_{1} to M_{2} signifies $M_{2} \succ M_{1}$. Adjoining a node is the profile of the mechanism restricted to with-safe scenarios. The first row corresponds to c_{1} being safe and c_{2} being stolen, leaked or lost in that order, and the reverse for the second row.

The bottom row in the figure shows standard approaches to storing a private key: either you store it as is, or split the key $\left(c_{1} \wedge c_{2}\right)$, or keep two separate copies $\left(c_{1} \vee c_{2}\right)$.

Fig. 3: One and two credential mechanisms.

The middle row represents a Paralysis Proofs [14], which is the most secure 2 -credential mechanism from prior work to the best of our knowledge. We model their mechanism, denoted by $M_{\mathrm{pp}}^{\left(c_{1}, c_{2}\right)}$, in App. E. With two credentials, they use an AND-mechanism $c_{1} \wedge c_{2}$ with an additional feature. Any credential can be challenged, and if no response is received within a fixed duration, then the challenged credential is removed. For example, if c_{1} is successfully challenged, the new mechanism becomes just c_{2}. In this manner, they handle credential loss, and achieve better security than both AND and OR mechanisms. But they do not encode the priority between credentials, so it fails in both the scenarios where one credential is safe and another is stolen.

Finally, the top row contains our two maximal mechanisms, namely, $M_{\mathrm{pr}}^{\left[c_{1}, c_{2}\right]}$ and its isomorphism. As Fig. 3 illustrates, our 2-credential mechanisms achieve better security.

VIII. CONCLUSION AND PRACTICAL IMPLICATIONS

We formalize the authentication problem in a synchronous environment and define the security profile for evaluating authentication mechanisms. After bounding the profile size for any number of credentials n, we discover three types of mechanisms that achieve this bound and show they cover all maximal mechanisms for $n \leq 3$. Our analysis allows improving existing interactive authentication protocols and we provide an Ethereum implementation.

An immediate insight arising from this work is the criticality of the assumed synchronous channel. In practice, such a channel must be implemented. For example, consider email serving as the notification channel from a bank to its clients. If the attacker gained even temporary access to a user's mobile device, she could delete any notifications, thus voiding the channel's effectiveness. We propose to overcome this vulnerability by making such notification emails sticky they cannot be deleted for, say, 24 hours. In other settings such as blockchain smart contracts, the notifications are public, but the user should use multiple devices to monitor the chain [37] (as used for other goals, e.g., [38], [39], [40]).

Our results open the door to a host of questions on authentication mechanisms in alternative models, e.g., with asynchronous communication, partial knowledge [27], and taking into account economic incentives [26]. Exploring these questions and harnessing our results to strengthen existing systems will bolster the security of digital assets and online services.

REFERENCES

[1] M. Bishop, Introduction to Computer Security. Addison-Wesley, 2004.
[2] F. B. Schneider, "Authentication for people (draft textbook chapter)," https://www.cs.cornell.edu/fbs/publications/chptr.AuthPeople.pdf, 2009, retrieved Oct' 22.
[3] J. Bonneau, C. Herley, P. C. Van Oorschot, and F. Stajano, "The quest to replace passwords: A framework for comparative evaluation of web authentication schemes," in 2012 IEEE $S \& P$, 2012, pp. 553-567.
[4] E. V. Mangipudi, U. Desai, M. Minaei, M. Mondal, and A. Kate, "Uncovering impact of mental models towards adoption of multi-device crypto-wallets," Cryptology ePrint Archive, 2022.
[5] J. Colnago, S. Devlin, M. Oates, C. Swoopes, L. Bauer, L. Cranor, and N. Christin, ""it's not actually that horrible": Exploring adoption of two-factor authentication at a university," in In ACM CHI, 2018, p. 1-11.
[6] Federal Trade Commission, "Consumer sentinel network data book 2021," February 2022.
[7] Chainalysis, " 60% of Bitcoin is held long term as digital gold. what about the rest?" https://blog.chainalysis.com/reports/ bitcoin-market-data-exchanges-trading/, June 2020.
[8] P. Jha, "The aftermath of Axie Infinity's $\$ 650 \mathrm{~m}$ Ronin bridge hack," Cointelegraph, 2022, https://cointelegraph.com/news/ the-aftermath-of-axie-infinity-s-650m-ronin-bridge-hack.
[9] "Argent specification," https://github.com/argentlabs/argent-contracts/ blob/develop/specifications/specifications.pdf, April 2021.
[10] "Cooling period: Get time to review newly added beneficiaries," https://www.hdfcbank.com/personal/useful-links/security/ security-measures/cooling-period, 2022.
[11] Internal Revenue Service, "Taxpayer guide to identity theft," https://www.irs.gov/newsroom/taxpayer-guide-to-identity-theft, 2022.
[12] I. Eyal, "On cryptocurrency wallet design," in Tokenomics, 2021, pp. 4:1-4:16.
[13] S. Hammann, S. Radomirović, R. Sasse, and D. Basin, "User account access graphs," in ACM CCS, 2019, pp. 1405-1422.
[14] F. Zhang, P. Daian, I. Bentov, I. Miers, and A. Juels, "Paralysis proofs: Secure dynamic access structures for cryptocurrency custody and more," in AFT, 2019, pp. 1-15.
[15] L. O'Gorman, "Comparing passwords, tokens, and biometrics for user authentication," Proceedings of the IEEE, vol. 91, no. 12, pp. 2021-2040, 2003.
[16] C. Harper, "Multisignature wallets can keep your coins safer (if you use them right)," 2020, Coindesk.
[17] R. Gennaro, S. Goldfeder, and A. Narayanan, "Threshold-optimal DSA/ECDSA signatures and an application to Bitcoin wallet security," in ACNS, 2016, pp. 156-174.
[18] T. Be'ery, "Threshold signatures: The future of private keys," https: //zengo.com/threshold-signatures-the-future-of-private-keys/, 2018.
[19] E. Banulescu, "Argent wallet: Everything you need to know," July 2022, https://beincrypto.com/learn/argent-wallet/.
[20] C. Jacomme and S. Kremer, "An extensive formal analysis of multifactor authentication protocols," ACM TOPS, vol. 24, no. 2, pp. 1-34, 2021.
[21] M. Barbosa, A. Boldyreva, S. Chen, and B. Warinschi, "Provable security analysis of FIDO2," in CRYPTO, 2021, pp. 125-156.
[22] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten, "SoK: Research perspectives and challenges for Bitcoin and cryptocurrencies," in IEEE $S \& P, 2015$, pp. 104-121.
[23] J.-P. Aumasson, A. Hamelink, and O. Shlomovits, "A survey of ECDSA threshold signing," Cryptology ePrint Archive, 2020.
[24] S. Appelcline, "Using timelocks to protect digital assets," https://github.com/BlockchainCommons/SmartCustody/blob/master/ Docs/Timelocks.md, 2021, [Accessed Sep 2022].
[25] P. Baratam, "Secure cryptocurrency exchange \& wallet," https://www.coinvault.tech/wp-content/uploads/2020/10/ CoinVault-Secure-Cryptocurrency-Exchange.pdf, 2020.
[26] M. Möser, I. Eyal, and E. Gün Sirer, "Bitcoin covenants," in FC, 2016.
[27] S. Blackshear, K. Chalkias, P. Chatzigiannis, R. Faizullabhoy, I. Khaburzaniya, E. K. Kogias, J. Lind, D. Wong, and T. Zakian, "Reactive key-loss protection in blockchains," in WTSC@FC, 2021, pp. 431-450.
[28] M. Blaze, J. Feigenbaum, and J. Lacy, "Decentralized trust management," in IEEE $S \& P$, 1996, pp. 164-173.
[29] R. L. Rivest and B. Lampson, "SDSI - A simple distributed security infrastructure," in USENIX Security, 1996.
[30] M. Blaze, J. Feigenbaum, and A. D. Keromytis, "KeyNote: Trust 33 management for public-key infrastructures," in Security Protocols, 1998, pp. 59-63.
[31] R. Alur and D. L. Dill, "A theory of timed automata," Theor. 35 Comput. Sci., vol. 126, no. 2, pp. 183-235, 1994. [Online]. Available: 36 https://doi.org/10.1016/0304-3975(94)90010-8
[32] V. Buterin, "Why we need wide adoption of social recovery wallets," 38 https://vitalik.ca/general/2021/01/11/recovery.html, 2021.
[33] "Multicall | Uniswap." [Online]. Available: https: 39 //docs.uniswap.org/protocol/reference/periphery/base/Multicall 40
[34] "How to update contact details at a branch," 2022, https://www. 41 hdfcbank.com/personal/useful-information/change-contact-details.
[35] "How to change mobile number in HDFC bank: 2 easy ways," 2022, 43 https://thebankhelp.com/how-to-change-mobile-number-in-hdfc-bank/. 44
[36] S. Pearman, S. A. Zhang, L. Bauer, N. Christin, and L. F. Cranor, 45 "Why people (don't) use password managers effectively"" in SOUPS, 2019, pp. 319-338.
[37] "How to get notified on ethereum," https://vittominacori.medium.com/ 47 how-to-get-notified-on-ethereum-or-tokens-received-4b71859a064b.
[38] P. McCorry, S. Bakshi, I. Bentov, S. Meiklejohn, and A. Miller, "Pisa: 48 Arbitration outsourcing for state channels," in AFT, 2019, pp. 16-30. 49
[39] M. Khabbazian, T. Nadahalli, and R. Wattenhofer, "Outpost: A responsive lightweight watchtower," in AFT, 2019, pp. 31-40.
[40] L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and A. Gervais, 50 "SoK: Layer-two blockchain protocols," in FC, 2020, pp. 201-226.

Appendix A
 Priority Mechanism Smart Contract

A proof-of-concept implementation of the priority ${ }_{55}$ mechanism is below. Note that this is strictly an academic 56 prototype meant to elucidate its inner workings, not to be used in production environments.
1// SPDX-License-Identifier: GPL-3.0
2 pragma solidity >=0.7.0<0.9.0;
3
4 contract PriorityWallet \{
uint public numCredentials;
mapping(address => uint) public priority;
bool public withdrawalInProgress = false; 64
uint public maxClaimID $=0$;65

 struct Details \{
 struct Details \{
66
66
uint amount; 67
address payable addr;68

 \}69
 Details[] public claimDetails; 70
71
uint64 constant public delay $=30$; 71
uint64 public expiryTime; 72
// Set the 73
$\begin{array}{ll}\text { guardians and the priority vector. Ideally } & 74 \\ 75\end{array}$75

 , you'd also want to deposit some money. , you'd also want to deposit some money. 76
 (address[] memory credentialList_) payable
numCredentials = credentialList_.length; for (uint i
= 0; i < credentialList_.length; i++) \{ priority[credentialList_[i]] = i + 1; $\quad 78$

$$
\text { \} }
$$

\}
function
getBalance() public view returns (uint) \{ return address (this).balance;
\}
// start a new
withdrawal. Internally creates a new claim
function initiateWithdrawal() public \{ assert (priority[msg.sender] > 0);
assert (!withdrawalInProgress); withdrawalInProgress = true;

```
    expiryTime
            = uint64(block.timestamp + delay);
    // purge previous claim data (if any)
    delete claimDetails;
    maxClaimID = 0;
}
function getClaimSupporters(uint claimID
    ) public view returns (bool[] memory) {
    return claimDetails[claimID].supporters;
}
// adds approval to an existing claim
function addApproval(uint claimID) public {
    assert (withdrawalInProgress);
    assert (claimID < maxClaimID);
    assert
        (uint64 (block.timestamp) <= expiryTime);
    assert (priority[msg.sender] > 0);
    claimDetails[claimID].
        supporters[priority[msg.sender]] = true;
}
function createNewClaimForWithdrawal
    (uint amount, address payable
        ToAddress) public returns (uint claimID) {
    assert (priority[msg.sender] > 0);
    assert (withdrawalInProgress
        ); // otherwise call initiateWithdrawal
    assert
        (uint64(block.timestamp) <= expiryTime);
    bool[] memory supporters
        = new bool[](numCredentials + 1);
    supporters[priority[msg.sender]] = true;
    claimDetails.push(
        Details(supporters, amount, ToAddress));
    claimID = maxClaimID; // create new claimID
    maxClaimID = maxClaimID + 1;
}
function withdraw() public {
    assert
        (uint64(block.timestamp) > expiryTime);
    assert(withdrawalInProgress);
    bool[] memory potentialWinners
        = new bool[](maxClaimID);
    for (uint c = 0; c < maxClaimID; c++) {
        potentialWinners[c] = true;
    }
    for (uint p = 1; p <= numCredentials; p++) {
        bool foundAny = false;
        for (uint c = 0; c < maxClaimID; c++) {
            if (potentialWinners[c] &&
                    claimDetails[c].supporters[p]) {
                foundAny = true;
            }
        }
        if (foundAny) {
            for (uint
                c = 0; c < maxClaimID; c++) {
            if (potentialWinners
                    [c] && !claimDetails
                    [c].supporters[p]) {
                    potentialWinners[c] = false;
                }
            }
        }
    }
    for (uint c = 0; c < maxClaimID; c++) {
        if (potentialWinners[c]) {
        uint winningClaimID = c;
                bool sent
                    = claimDetails[winningClaimID
            ].addr.send(claimDetails
            [winningClaimID].amount);
```

require
(sent, "Failed to send Ether"); withdrawalInProgress = false; break;
$\}$
\}
\}

Appendix B

Bounded-delay automaton construction

Given a judging function J, we now explain how to construct a bounded-delay mechanism automaton $M(J)$.

The high-level idea is as follows. The automaton has states in two levels below the start state. The intermediate level contains a state for each combination of player and set of credentials submitted, forming the children of the start state $I_{\text {init }}$. Then, for each intermediate state, we find all possible credential sets the second player can submit in order to win and add outgoing edges correspondingly. There are only two final states, one each for the respective players.

Consider the example automaton in Fig. 1. It corresponds to the following mechanism: Given two credentials c_{1}, c_{2}, consider the judging function J that prioritizes c_{1} over c_{2}. As shown, the start state has six children corresponding to the 3 possible credential sets ($c_{1}, c_{2}, c_{1} \wedge c_{2}$) from the 2 parties (0 , 1). These six states form the intermediate states. Only two final states f_{0} and f_{1} exist. Player 0 (resp., 1) wins if the execution reaches f_{0} (resp., f_{1}). Player guards are depicted through dashed and dotted edges: 0 can only take dashed edges while 1 can only take dotted edges.

Note that we assume that each party can only submit one message. This is done to simplify the automaton construction.

We briefly explain the construction of a bounded-delay mechanism from a judging function. Given a judging function J defined over a set of credentials $\mathcal{C}_{\text {all }}$, we describe an authentication mechanism $M=\left(\mathcal{C}_{\text {all }}, \mathcal{T}, \operatorname{clock}, \mathcal{D}, \mathcal{T}_{0}^{\text {fin }}, \mathcal{T}_{1}^{\text {fin }}\right)$. Note that we assume that each player submits all their credentials at once to simplify the construction.

Let the set of all AND-credential-guards that use \wedge connector only be $G .|G|=2^{n}-1$ as each credential can either be present or absent and we omit the ε-transition.

The set of all states \mathcal{T} consists of $2 \cdot\left(2^{n}-1\right)$ intermediate states and 2 final states. An intermediate state t is created for each player ID guard $g^{p l r} \in \mathcal{P}$ and credential guard $g_{\gamma}^{c d} \in G$, with a transition between the start state and this new state, ($I_{\text {init }}, g^{p l r}, g_{\gamma}^{c d}, \perp$, True, t), i.e., no clock guard, with clock reset.

The two final states are f_{0}, f_{1}. The set $\mathcal{T}_{0}^{\text {fin }}$ contains f_{0} and the set $\mathcal{T}_{1}^{\text {fin }}$ contains f_{1}.

The set of all transitions \mathcal{D} consists of edges between the start and intermediate states (explained before) and those between the intermediate and final states (explained next).

There are two different types of transitions between the intermediate and final states. The first type allows the first-mover to win but only after some time elapses. For each intermediate state t, if the player identifier that submitted
credentials before is $\mathrm{id}_{\gamma} \in \mathcal{P}$, then there is a transition $\left(t, p, \perp, t=l\right.$,False, f_{γ}), i.e., no credential guard.

The second type allows the other party to win, but only if they submit better credentials. Let C_{γ} denote the set of credentials submitted by the player id_{γ} (in $g_{\gamma}^{c d}$) to reach an intermediate state t. Let $p^{\prime}=\mathrm{id}_{1-\gamma}$.

Find the set of credential guards G^{\prime} that result in the secondmover winning, i.e., if $\gamma=0$, find all $g_{1}^{c d} \in \mathcal{G}_{c}$ such that C_{1} contains the credentials in $g_{1}^{c d}$ and $J\left(C_{0}, C_{1}\right)=1$. And if $p=1$, find $g_{1}^{c d}$ s.t. $J\left(C_{1}, C_{0}\right)=0$. Add all such guards to G^{\prime}. For each $g^{c d} \in G^{\prime}$, there is a transition $\left(t, p^{\prime}, g^{c d}, t<l\right.$,False, $\left.f_{1-\gamma}\right)$.

Appendix C
 Other Results

Proofs of well-formedness are in §C-A, some miscellaneous results in §C-B, and a count of majority functions is in §C-C.

A. Well-formedness proofs

Lemma 11. Given a permutation V over set $\mathcal{C}_{\text {all }}$, the priority with exception judging function J_{pre}^{V} is well-formed.

Proof. It is straightforward to see that the judging function satisfies IA and KR. To satisfy TKR, we want to show that given three different credential sets C_{0}, C_{1} and C_{2}, if $C_{0} \succ C_{1}$ and $C_{1} \succ C_{2}$ then $C_{0} \nsubseteq C_{2}$.

Since $C_{0} \succ C_{1}$, we have two cases: (A) $C_{0} \succ C_{1}$ is not the exception or (B) $C_{0} \succ C_{1}$ is the exception. Similarly $C_{1} \succ C_{2}$ means: (I) $C_{1} \succ C_{2}$ is not the exception or (II) $C_{1} \succ C_{2}$ is the exception. One of the four cases: A-I, B-I, A-II and B-II must be true. We consider each one separately.

The proof for the case A-I (no exceptions) is exactly the same as the one in Lemma 10.

Case B-II (both exceptions) is impossible because there is only one exception and the three credential sets are different.

The case B-I where $C_{0} \succ C_{1}$ is the exception can also be ruled out due to the way we define an exception, namely, that the credential declared worse by the exception is the worst non-empty set of credentials. For example, if the priority vector is $V=\left[c_{2}, c_{3}, c_{1}\right]$, then case B-I corresponds to $C_{0}=\left\{c_{1}\right\}$ and $C_{1}=\left\{c_{3}\right\}$. But no non-empty set C_{2} exists s.t. $C_{1} \succ C_{2}$. So $C_{2}=\phi$ and therefore $C_{0} \nsubseteq C_{2}$.

The remaining case is A-II where $C_{1} \succ C_{2}$ is the exception. We prove this by contradiction, i.e., assume $C_{0} \subseteq C_{2}$ or to be precise $C_{0} \subset C_{2}$ because $C_{0} \neq C_{2}$. But no non-empty C_{0} exists because the only possible C_{0} satisfying $C_{0} \subset C_{2}$ is $C_{0}=\phi$ and it does not satisfy $C_{0} \succ C_{1}$. This concludes the proof since we ruled out all the four cases.

Lemma 12. Given any ID-agnostic tie-breaking function T, the majority judging function $J_{\text {maj }}^{T}$ is well-formed.

Proof. We prove the three properties. The IA and KR proofs are immediate. We now prove TKR. Given three different credential sets C_{0}, C_{1} and C_{2} s.t. $C_{0} \succ C_{1}$, and $C_{1} \succ C_{2}$, we want to show that $C_{0} \nsubseteq C_{2}$ to satisfy TKR.

For any majority-based judging function, if $C \succ C^{\prime}$ then $|C| \geq\left|C^{\prime}\right|$. So we have $\left|C_{0}\right| \geq\left|C_{1}\right| \geq\left|C_{2}\right|$.

So either $\left|C_{0}\right|>\left|C_{2}\right|$ or $\left|C_{0}\right|=\left|C_{2}\right|$ is true. If $\left|C_{0}\right|>\left|C_{2}\right|$ then $C_{0} \nsubseteq C_{2}$ and we are done.

It remains to prove for $\left|C_{0}\right|=\left|C_{2}\right|$. But in this case $C_{0} \nsubseteq C_{2}$ follows as $C_{0} \neq C_{2}$ (by definition) and $\left|C_{0}\right|=\left|C_{2}\right|$.

B. Miscellaneous results

Lemma 13. The profile matrix of $M_{\mathrm{pr}}^{\left[c_{1}, c_{2}\right]}$ is as per Fig. 1.
Proof. The 3×3 grid with no safe scenarios are unsuccessful, i.e., won by the attacker due to Lemma 3.

Since the priority judging function is well-formed, $M_{\mathrm{pr}}^{\left[c_{1}, c_{2}\right]}$ is maximal (Lemma 10). Corollary 1 says that all maximal mechanisms are secure in with-safe-no-stolen scenarios $\Sigma_{\text {wsnt }}=\Sigma_{\text {ws }} \cap \Sigma_{\text {nt }}$ and half of the with-safe-withstolen scenarios $\left(\Sigma_{\text {wswst }}=\Sigma_{w s} \cap \Sigma_{w t}\right)$.

This fixes the values in all scenarios of the matrix except two: the scenario $\sigma=\{$ safe, stolen $\}$ and its complement $\bar{\sigma}=$ \{stolen,safe\}. Corollary 1 says that at most one of $\sigma, \bar{\sigma}$ is secure; we need to find out which. The judging function $J_{\mathrm{pr}}^{\left[c_{1}, c_{2}\right]}$ favors the user in the scenario σ and the attacker in $\bar{\sigma}$.

Lemma 14. For all n, the size of all n-credential complete maximal sets is the same.

Proof. Consider two different complete maximal sets \mathcal{O}_{1} and \mathcal{O}_{2}. Each mechanism $M_{2} \in \mathcal{O}_{2}$ must be equivalent to or worse from a mechanism $M_{1} \in \mathcal{O}_{1}$ (Definition 13). But all mechanisms in a complete maximal set are maximal, therefore it must be that $M_{2} \cong M_{1}$. So, for each mechanism in \mathcal{O}_{2}, there exists an equivalent mechanism in the other set \mathcal{O}_{1}, and vice versa. And because no two mechanisms within \mathcal{O}_{1} (or \mathcal{O}_{2}) can be equivalent, there exists a one-to-one mapping between \mathcal{O}_{1} and \mathcal{O}_{2}. So $\left|\mathcal{O}_{1}\right|=\left|\mathcal{O}_{2}\right|$.

C. Count of majority judging functions

We now count the number of different majority functions, i.e., tie-breaking functions. A tie occurs when $C_{0} \neq C_{1}$ but $\left|C_{0}\right|=\left|C_{1}\right|$. Let $\left|C_{0}\right|=\left|C_{1}\right|=s$ where $1 \leq s<n$ (note that s can't be equal to n since $C_{0} \neq C_{1}$). For a given s, there are

$$
f(n, s)=\frac{\binom{n}{s}\left(\binom{n}{s}-1\right)}{2}
$$

possible tie situations. This is because, there are $\binom{n}{s}$ ways of picking an s-sized set C_{0}, and $\binom{n}{s}-1$ ways of picking another set $C_{1} \neq C_{0}$. We divide by two as each tie situation repeats twice. Summing over all s, the total number of distinct tie situations is

$$
\begin{equation*}
q(n)=\sum_{s=1}^{n-1} f(n, s) \tag{5}
\end{equation*}
$$

A tie-breaking function can decide each situation in two ways: pick C_{0} or C_{1}. So there are $2^{q(n)}$ different tie-breaking functions, or in other words, $2^{q(n)}$ different majority functions.

$$
\begin{aligned}
q(n) & =\sum_{s=1}^{n-1} \frac{\binom{n}{s}\left(\binom{n}{s}-1\right)}{2} \\
& =\frac{1}{2} \sum_{s=1}^{n-1}\binom{n}{s}^{2}-\frac{1}{2} \sum_{s=1}^{n-1}\binom{n}{s} \\
& =\frac{1}{2}\left[\binom{n}{n}-\binom{n}{0}^{2}-\binom{n}{n}^{2}\right]-\frac{1}{2}\left[2^{n}-2\right] \\
& =\frac{1}{2}\left[\binom{n}{n}-2\right]-\frac{1}{2}\left[2^{n}-2\right] \\
& =\frac{1}{2}\left[\binom{n}{n}-2^{n}\right] \\
& =\binom{2 n-1}{n-1}-2^{n-1}
\end{aligned}
$$

Appendix D Complete Maximal 3-Credential Set

A. $\mathcal{O}_{\text {maj, } 3}$ mechanisms

The twelve majority mechanisms in \mathcal{O}_{3} are:
Both linear (6 mechanisms): Fix $\left[c_{1}, c_{2}, c_{3}\right]$ as the linear priority rule to break ties between 1 -credential sets, and use all the six permutations of $\left[c_{1}, c_{2}, c_{3}\right]$ to break ties between 2-credential sets.

Both cyclic (2 mechanisms): Two possible cyclic rules exist: clockwise ($c_{1} \succ c_{2}, c_{2} \succ c_{3}, c_{3} \succ c_{1}$) or counter-clockwise. The two mechanisms are: use same or different rules for both 1-credential and 2-credential tie-breakers.

Linear and cyclic (4 mechanisms): Fix $\left[c_{1}, c_{2}, c_{3}\right]$ as the linear priority rule to break ties between 1 -credential sets and use clockwise or counter-clockwise rule for 2 -credential sets to produce 2 mechanisms. Use cyclic rule for 1 -credential sets and linear rule for 2 -credential sets to obtain two more.

B. Proof of Theorem 3

Before proving that these mechanisms form the complete maximal set for 3 credentials we present a few lemmas. The first one says that if both players use fixed strategies, then a change in the scenario does not change the execution winner.

Lemma 15. Given two scenarios σ, σ^{\prime} using the same mechanism M and a user strategy S^{U}, attacker strategy S^{A} such that they can be employed in both the scenarios. Then $\operatorname{Win}_{\sigma}\left(S^{U}, S^{A}\right)=\operatorname{Win}_{\sigma^{\prime}}\left(S^{U}, S^{A}\right)$.

Proof. The proof follows straightforwardly because we are using a deterministic automaton and the strategies are deterministic, so irrespective of the scenario, the executions will be the same, and hence the winner.

The next lemma says that, if the mechanism fails in a scenario σ, then it also fails in all scenarios $\widehat{\sigma}$ that are worse than $\sigma . \widehat{\sigma}$ is worse than σ as the attacker knows (equal or) more credentials whereas the user knows (equal or) fewer
credentials. Formally, given a scenario σ, we define a worse scenario $\widehat{\sigma}$ through the following transform:

$$
\begin{aligned}
\text { safe } & \mapsto \text { safe/leaked/lost/stolen } \\
\text { stolen } & \mapsto \text { stolen } \\
\text { leaked } & \mapsto \text { leaked/stolen } \\
\text { lost } & \mapsto \text { lost/stolen. }
\end{aligned}
$$

Lemma 16. If a mechanism fails in a scenario σ, then it also fails in a worse scenario $\widehat{\sigma}, \forall M, \neg \operatorname{Suc}(M, \sigma) \Longrightarrow \neg \operatorname{Suc}(M, \widehat{\sigma})$.

Note that proving the above also implies that success in a worse scenario $\widehat{\sigma}$ implies success in σ.
Proof. Observe that (a) $C_{\sigma}^{A} \subseteq C_{\widehat{\sigma}}^{A}$ and (b) $C_{\widehat{\sigma}}^{U} \subseteq C_{\sigma}^{U}$.
We prove by contradiction. That is, assume that the attacker succeeds in a scenario σ but the user succeeds in the transformed scenario $\widehat{\sigma}$. Let the successful strategy for the user in $\widehat{\sigma}$ be S^{U}. Since $C_{\widehat{\sigma}}^{U} \subseteq C_{\sigma}^{U}$, the user can employ the strategy S^{U} in the scenario σ. By our initial assumption, the attacker succeeds in σ. Let the successful attacker strategy be S^{A}. S^{A} must win some executions against any user strategy including S^{U}. So we have $\operatorname{Win}_{\sigma}\left(S^{U}, S^{A}\right)=\mathrm{A}$.

Since $C_{\sigma}^{A} \subseteq C_{\hat{\sigma}}^{A}$, the attacker can employ the strategy S^{A} in the scenario $\widehat{\sigma}$. Any execution in the scenario $\widehat{\sigma}$ where the user employs S^{U} and the attacker employs S^{A} results in a win for the user. So we have $\operatorname{Win}_{\widehat{\sigma}}\left(S^{U}, S^{A}\right)=\mathrm{U}$.

But σ and $\widehat{\sigma}$ use the same underlying mechanism M. And if the strategies of the two parties are same, then both $\operatorname{Win}_{\sigma}\left(S^{U}, S^{A}\right)=\mathrm{A}$ and $\operatorname{Win}_{\widehat{\sigma}}\left(S^{U}, S^{A}\right)=\mathrm{U}$ cannot be true due to Lemma 15 and we arrive at a contradiction.

We now prove Theorem 3, i.e., that \mathcal{O}_{3} is made up of the two priority and twelve majority mechanisms only.

Proof. Proving a complete maximal set requires satisfying three requirements per Definition 13:

1) All mechanisms in \mathcal{O}_{3} must be maximal.
2) All mechanisms in \mathcal{O}_{3} must be incomparable.
3) No other mechanism exists s.t. it is incomparable to each mechanism in \mathcal{O}_{3}.
The first requirement is met due to Lemma 10, Lemma 11 and Lemma 12. The second one is also met, as can be verified by inspecting the 76 mechanism profiles. (We cross-check this through code.)

We prove the third requirement using a similar approach taken in Theorem 2, but done at a larger scale. We use a constraint solver to show that no 3 -credential mechanism M exists satisfying two types of constraints, explained below.

The first type of constraint encodes that M must be incomparable with any mechanism in \mathcal{O}_{3}. Satisfying it requires that for each mechanism $M^{\prime} \in \mathcal{O}_{3}$, there exists at least one scenario $\sigma \in \operatorname{prof}(M)$ that satisfies $\sigma \notin \operatorname{prof}\left(M^{\prime}\right)$. This scenario σ must be a with-safe scenario due to Lemma 3. Rephrasing the above, we get $\exists \sigma \in \operatorname{prof}(M)$ such that $\sigma \in \Sigma_{\text {ws }} \backslash \operatorname{prof}\left(M^{\prime}\right)$.

Observe that for any $M^{\prime} \in \mathcal{O}_{3}, \operatorname{prof}\left(M^{\prime}\right)$ contains all the with-safe scenarios except some with-safe-withstolen scenarios. Therefore $\Sigma_{\text {ws }} \backslash \operatorname{prof}\left(M^{\prime}\right) \subset \Sigma_{\text {wswst }}$. And
consequently, $\operatorname{prof}(M)$ must include at least one with-safe-with-stolen scenario.

So to prove that no mechanism M exists, it suffices to prove that $\operatorname{prof}(M)$ does not contain a with-safe-with-stolen scenario. Let $\operatorname{prof}_{\text {wswt }}(M)$ denote the subset of $\operatorname{prof}(M)$ containing just the with-safe-with-stolen scenarios. We want to show that $\left|\operatorname{prof}_{\text {wswt }}(M)\right|=0$.

We prove this by consider the set of all subsets of the 18 with-safe-with-stolen scenarios satisfying Lemma 2, i.e., no two scenarios in a subset are complements of each other. Denote this set by $\Delta\left(|\Delta|=3^{9}\right.$ because the 18 with-safe-with-stolen scenarios can be arranged into 9 rows with each row containing 2 complement scenarios. And we have three ways of making a selection in each row: \{none, first scenario, second scenario\}). Observe that this is the set of all possible values for $\operatorname{prof}_{\text {wswt }}$, i.e., for any mechanism M, it must be that $\operatorname{prof}_{\text {wswt }}(M) \in \Delta$.

And we want to find a set in Δ satisfying the two constraints. The first constraint, explained before, is $\forall M^{\prime} \in \mathcal{O}_{3}, \operatorname{prof}_{\text {wswt }}(M) \cap\left(\Sigma_{\text {ws }} \backslash \operatorname{prof}\left(M^{\prime}\right)\right) \neq \phi$.

The second constraint relies on the following observation. If the mechanism wins in a with-safe-with-stolen scenario σ, Lemma 2 implies that it fails in the complement scenario $\bar{\sigma}$. But then, due to Lemma 16, the mechanism fails in any scenario worse than $\bar{\sigma}$. For example, $\operatorname{prof}(M)$ cannot contain the two scenarios $\sigma=\{$ stolen, stolen, safe $\}$ and $\sigma^{\prime}=\{$ lost, safe, stolen $\}$. This is because the mechanism fails in the complement of $\sigma, \bar{\sigma}=\{$ safe,safe,stolen $\}$, and σ^{\prime} is a worse scenario than $\bar{\sigma}$.

The second constraint is $\forall \sigma \in \operatorname{prof}_{\text {wswt }}(M)$, $\nexists \sigma^{\prime} \in p r o f_{\text {wswt }}(M)$ s.t. the complement $\bar{\sigma}$ is worse than σ^{\prime}.

The constraint solver ${ }^{1}$ outputs the empty set, i.e., no such $\operatorname{prof}_{\text {wswt }}(M)$ exists and hence $\left|\operatorname{prof}_{\text {wswt }}(M)\right|=0$. This completes the proof that \mathcal{O}_{3} is complete.

Appendix E

Applications

We present details of Argent in §E-A and a bank in §E-B. The Paralysis Proofs [14] mechanism is in Fig. 5.

A. Argent

1) 2 guardians: We analyze the profile of Argent with 2 guardians, i.e., 3 credentials in total (Tab. III). Since any mechanism fails in all no-safe scenarios (Lemma 3), we only discuss with-safe scenarios.
c_{o} safe / stolen: If the owner is safe, the user can revoke all the leaked and stolen guardians (if any), and win. Similarly, if the owner is stolen, the attacker can execute the above strategy and win.
c_{o} lost: If each of the guardians is either lost or safe, the user wins as the winning user strategy is to use the safe credential to change the lost credentials. Note that a single guardian is enough to change the owner.
[^0]| c_{o} safe | | | | | c_{o} lost | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | St | Le | Lo | Sa | | St | Le | Lo | Sa |
| St | 1 | 1 | 1 | 1 | St | 0 | 0 | 0 | 0 |
| Le | 1 | 1 | 1 | 1 | Le | 0 | 0 | 0 | 0 |
| Lo | 1 | 1 | 1 | 1 | Lo | 0 | 0 | 0 | 1 |
| Sa | 1 | 1 | 1 | 1 | Sa | 0 | 0 | 1 | 1 |
| c_{o} leaked | | | | | c_{o} stolen | | | | |
| | St | Le | Lo | Sa | | St | Le | Lo | Sa |
| St | 0 | 0 | 0 | 0 | St | 0 | 0 | 0 | 0 |
| Le | 0 | 0 | 0 | 0 | Le | 0 | 0 | 0 | 0 |
| Lo | 0 | 0 | 0 | 1 | Lo | 0 | 0 | 0 | 0 |
| Sa | 0 | 0 | 1 | 1 | Sa | 0 | 0 | 0 | 0 |

TABLE III: Profile of Argent with 2 guardians

c_{o} safe				
g_{1}	St	Le	Lo	Sa
St	1	1	1	1
Le	1	1	1	1
Lo	1	1	1	1
Sa	1	1	1	1

c_{o} lost				
g_{1}	St	Le	Lo	Sa
St	0	0	0	0
Le	0	0	0	1
Lo	0	0	0	1
Sa	0	1	1	1

c_{o} leaked				
g_{1}	St	Le	Lo	Sa
St	0	0	0	0
Le	0	0	0	0
Lo	0	0	0	1
Sa	0	0	1	1

c_{o} stolen				
g_{1}	St	Le	Lo	Sa
St	0	0	0	0
Le	0	0	0	0
Lo	0	0	0	0
Sa	0	0	0	0

TABLE IV: Profile of Argent with 2 guardians and multicall

In case one of the guardians gets either leaked or stolen, the attacker wins. The attacker's winning strategy is to make the wallet unusable by bringing the automaton to the owner change state C_{o} (requires one guardian). Even if the user can cancel the owner change (possible in certain scenarios), the attacker can immediately initiate another owner change.
c_{o} leaked: If both guardians are safe or if one is safe and another is lost, the user wins because she is able to initiate an owner change and the attacker does not know enough credentials to cancel it. Note that starting a guardian change does not help the attacker as the user can cancel it just before the 1.5 day period ends.
If one of the guardians is leaked / stolen, the attacker wins by executing a fast withdrawal.
In summary, the Argent mechanism with 2 guardians has 22 scenarios, weaker than a maximal mechanism's 28 scenarios (see Tab. IIa). Our proposed improvement with multicalls is in §VII-A3.
2) 2-guardian with multicalls: If all the guardians are safe (right bottom corner cells of Tab. IV), then the mechanism is successful. The user's strategy is to change the owner (which can be done from any state). It is winning because canceling an owner change requires two credentials. This strategy wins even if c_{o} is stolen because even if the attacker initiates a

c_{1} safe				
$c_{2} c_{3}$	St	Le	Lo	Sa
St	0	1	0	1
Le	1	1	1	1
Lo	0	1	1	1
Sa	1	1	1	1

c_{1} lost				
$c_{2} c_{3}$	St	Le	Lo	Sa
St	0	0	0	1
Le	0	0	0	1
Lo	0	0	0	1
Sa	0	1	1	1

c_{1} leaked				
$c_{2} c_{3}$	St	Le	Lo	Sa
St	0	0	0	1
Le	0	0	0	1
Lo	0	0	0	1
Sa	0	1	1	1

c_{1} stolen				
$c_{2} c_{3}$	St	Le	Lo	Sa
St	0	0	0	0
Le	0	0	0	0
Lo	0	0	0	1
Sa	0	0	1	1

TABLE V: 3-credential majority with $\left[c_{3}, c_{2}, c_{1}\right]$ priority for 1 -credential tie breaks and $\left[c_{1}, c_{3}, c_{2}\right]$ for 2 -credential tie breaks.
guardian change, it will not be able to confirm it after the user starts an owner change.
c_{o} safe: If one of the guardians is leaked or safe, then the user knows two credentials, and can therefore execute the below winning strategy. If the automaton state is unlocked, execute a fast withdrawal. If it is locked, execute two function calls atomically, namely unlock and initiate withdrawal.
If one of the guardians is lost and the other is stolen, then the mechanism fails as the attacker can perform an owner change.
c_{o} unsafe: The mechanism succeeds in all scenarios where one of the guardians is lost and the other is safe. If c_{o} is lost, the winning strategy is to use the safe credential to change the lost credentials. If c_{o} is leaked or stolen, the winning strategy is to execute an owner change using the safe guardian. An attacker cannot cancel it or stop the initiation, therefore we move to a scenario where c_{o} is safe, and hence the user wins.
It also succeeds if the owner is lost, one of the guardians is leaked and the other guardian is safe. The winning strategy based on the automaton's state: (a) if it is C_{o} and the owner change is not started by the user, cancel the current owner change, and immediately start a new owner change, and (b) if the state is anything else, execute an owner change. After the owner becomes safe, we move to an already analyzed scenario where the mechanism succeeds.

If both the owner and one of the guardians is leaked / stolen and the other guardian is safe, then the attacker's winning strategy is to execute a fast withdrawal.

If the owner is lost, one of the guardians is stolen and the other guardian is safe, then the attacker wins by changing the owner.
3) Future extensions: We now discuss some modeling extensions that can enrich the analysis.
Sending money to a trusted address could be treated as win for the user. This can be reasonable when the address belongs to friends / family and their accounts are safe. Note that this is an asymmetric capability that the user alone possesses, i.e., the attacker cannot leverage it. Modeling it is an interesting direction for future work. Exploring larger guardian numbers and attacks that initiate concurrent calls,

Fig. 4: HDFC bank sub-automata: send money to a new account, change password, and change mobile number respectively.
withdrawing small amounts or changing guardians with overlapping delay periods, would require additional tooling outside the scope of this work.

B. Bank

We illustrate the bank automaton in Fig. 4 and explain its resultant profile (Tab. VI):

If c_{m} is safe, then irrespective of the state of password, the mechanism succeeds because the user can reset password (if it is unsafe) and then send money to a new account. The above is true even if $c_{i d}$ is unsafe because it takes 3 days to change the mobile number, and the user can send all the money to a new account meanwhile. (Note that this is true because we assume that the user knows the credential $c_{i d}$; considering partial knowledge might be more appropriate for this analysis.)

Similarly, if c_{m} is leaked or stolen (corresponding to phone hijacking attacks like SIM swapping), then the mechanism fails because the attacker can now reset the password and move money.

And if c_{m} is lost and $c_{i d}$ is safe, then the mechanism succeeds because the user can (a) change their mobile number by waiting for 3 days and (b) then reset password (if it is unsafe).

Finally, if c_{m} is lost and $c_{i d}$ is unsafe, the mechanism fails because either the attacker changes the mobile ($c_{i d}$ leaked / stolen) or no one does and the account is locked ($c_{i d}$ lost).

$c_{i d}$ safe				
c_{m}	St	Le	Lo	Sa
St	0	0	0	0
Le	0	0	0	0
Lo	1	1	1	1
Sa	1	1	1	1

$c_{i d}$ leaked

$\overline{c_{m}}$	St	Le	Lo	Sa
St	0	0	0	0
Le	0	0	0	0
Lo	0	0	0	0
Sa	1	1	1	1

$c_{i d}$ lost				
c_{m}	St	Le	Lo	Sa
St	0	0	0	0
Le	0	0	0	0
Lo	0	0	0	0
Sa	1	1	1	1

$c_{i d}$ stolen				
c_{m}	St	Le	Lo	Sa
St	0	0	0	0
Le	0	0	0	0
Lo	0	0	0	0
Sa	1	1	1	1

TABLE VI: Profile of the bank mechanism.

Fig. 5: Paralysis Proofs Mechanism [14] with 2-credentials

[^0]: ${ }^{1}$ Code at https://pastebin.com/RqjesNZe for anonymous submission.

