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Abstract—Authentication is the first, crucial step in securing
digital assets like cryptocurrencies and online services like
banking and social networks. It relies on principals maintaining
exclusive access to credentials like cryptographic signing keys,
passwords, and physical devices. But both individuals and
organizations struggle to manage their credentials, resulting
in loss of assets and identity theft. Multi-factor authentication
improves security, but its analysis and design are mostly limited
to one-shot mechanisms, which decide immediately.

In this work, we study mechanisms with back-and-forth
interaction with the principals. For example, a user receives an
email notification about sending money from her bank account
and is given a period of time to abort the operation.

We formally define the authentication problem, where an
authentication mechanism interacts with a user and an attacker
and tries to identify the user. A mechanism’s success depends
on the scenario – whether the user / attacker know the different
credentials; each credential can be safe, lost, leaked, or stolen.
The profile of a mechanism is the set of all scenarios in which it
succeeds. Thus, we have a partial order on mechanisms, defined
by the subset relation on their profiles.

We find an upper bound on the profile size and discover
three types of n-credential mechanisms (for any n) that are
maximally secure, meeting this bound. We show these are all
the unique maximal mechanisms for n≤3.

We show the efficacy of our model by analyzing existing
mechanisms, both theoretical and deployed in widely-used
systems, and make concrete improvement proposals. We
demonstrate the practicality of our mechanisms by implementing
a maximally-secure cryptocurrency wallet.

I. INTRODUCTION

Authentication plays a critical role in safeguarding online
services and digital assets. An authentication mechanism
binds a user’s physical identity to a digital identity [1], [2].
It relies on the user’s exclusive access to credentials like a
password, a one-time PIN (OTP), or a cryptographic signing
key. But credential management is challenging [3], [4], [5]:
identity theft in the US is rampant [6]; an estimated 20%
of Bitcoin have disappeared as a result of key loss [7];
and $600M in cryptocurrency were stolen recently due to a
single company’s key mismanagement [8].

Some practical mechanisms employ interaction. For
example, the Argent cryptocurrency wallet [9] uses multiple
cryptographic signing keys as credentials. In a possible
configuration, any 1-out-of-3 credentials can initiate a change
of credentials, but the change only happens after two days,
during which the operation can be cancelled with any 2-out-
of-3 credentials. In online banking, some banks (e.g., [10])
introduce an artificial delay period before transferring funds;

they notify the client and allow her to abort an erroneous trans-
action during this period. Government agencies (e.g., [11])
send a mail notice about reversible account activity, allowing
victims to revert in case of identity theft attempts [6].

But despite being used in practice, to the best of our
knowledge, interactive authentication has never been formally
studied and its importance is therefore under-appreciated.
Prior works (§II) have focused on proposing frameworks
that only model non-interactive mechanisms [12], [13],
or consider specific interactive mechanisms like the ones
mentioned above [9], [14], which we show to be sub-optimal.
Multi-factor authentication is typically defined as requiring
multiple credentials [15], i.e., combine credentials using a
conjunction (AND) operator, without taking advantage of
interactivity. Similarly, multi-sig or threshold mechanisms (k-
out-of-n keys) are popular in the cryptocurrency industry [16],
[17], [18], but are non-interactive.

In this work, we formally study interactive authentication
mechanisms. We first define the authentication problem (§III),
consisting of a mechanism and two players: a user and an
attacker that stands for all entities trying to authenticate as
the user. The mechanism is a deterministic finite automaton
using n ≥ 1 credentials to identify the user. Each credential
can be in one of four states [12]: safe (only the user has it),
stolen (only the attacker has it), leaked (both have it) or lost
(neither has it). The states of all credentials define a scenario,
with a total of 4n scenarios possible.

The players send to the mechanism messages carrying
proofs of the credentials they have, and eventually the
mechanism decides which of them is the user. A mechanism
succeeds in a particular scenario if it is correct irrespective
of what the attacker does; otherwise it fails. When the
communication channels are synchronous, the mechanism can
rely on an interactive message exchange with the players.

To evaluate mechanisms, we define the security profile
of a mechanism to be the set of all scenarios in which it is
successful. For example, with two credentials denoted by c1
and c2, consider the OR-mechanism where either c1 or c2
can be used to authenticate, i.e., c1∨c2. Its profile has three
scenarios: (c1 and c2 safe), (c1 safe, c2 lost) and (c1 lost, c2
safe). The mechanism succeeds in the latter two because the
user knows enough credentials to authenticate and the attacker
does not. Note that the mechanism fails in scenarios where
both players have 1–2 credentials, e.g., (c1 stolen, c2 safe),
because we conservatively assume that the adversary controls
the order in which messages are delivered to the mechanism.
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The security profile defines a relation between any
two mechanisms M1 and M2 using the same number of
credentials: M1 is better than M2 if the profile of M1 is
a superset of the profile of M2. M1 is equivalent to M2

if they have the same profile. Otherwise, M1 and M2 are
incomparable. A mechanism is maximally secure or simply
maximal if no other mechanism is better.

By proving constraints on the profile sets any mechanism
could achieve, we bound the profile size (§IV). We find
that with n-credentials, no mechanism succeeds in more
than P (n)= 4n−2n

2 scenarios. For example, P (2)=6, that is,
a 2-credential mechanism can win in at most 6 scenarios. Our
use of a generic computational model for mechanisms, namely
automatons, allows us to prove this impossibility result.

The bound is tight as we discover several maximal
mechanisms meeting it (§V). All our maximal mechanisms
function as follows: Either player can initiate the mechanism,
at which point the mechanism starts a timer. Until the time
runs out, each player can submit messages to the mechanism,
carrying one or more credentials. Finally, the mechanism
decides on the winner. We refer to mechanisms (maximal or
otherwise) following the above structure as bounded-delay
mechanisms. They only differ in the way a winner is decided.

We identify three sufficient properties for a bounded-delay
mechanism to be maximal: (1) ID-Agnostic: the mechanism
only decides based on messages, not other information;
(2) Knowledge-rewarding: if a player submits a credential set
that is a superset of its counterpart’s set, then the mechanism
decides on the former; and (3) Transitive-knowledge-
rewarding: submitting additional credentials cannot lead to a
worse outcome for the submitting player.

We discover three classes of bounded-delay mechanisms
that satisfy these properties. The first two are fairly intuitive:
Majority mechanisms choose whoever submits the most
credentials, with some tie-breaking function. Priority mecha-
nisms use a priority vector defined over the n-credentials, and
the winner is the player that submits a unique higher priority
credential. For example, consider the priority vector [c2,c3,c1]:
if player P1 submits {c1,c2} and player P2 submits {c2,c3},
then P2 wins because c3 has a higher priority than c1.

The third class is similar to the priority mechanisms but
with an exception: If each of the two players submit one
of the last two credentials, then the priority is reversed.
Using the priority vector above, if P1 submits {c1} and P2
submits {c3}, then P1 wins. This is the only exception and
we use the priority rule otherwise, e.g., if P1 submits {c1,c2}
and P2 submits {c2,c3}, then P2 wins like before.

We can now illustrate the advantage of interactivity by going
back to the 2-credential setting. Consider the 2-credential
priority mechanism defined by the vector [c1,c2]. Its profile
contains (c1 and c2 safe); (c1 safe, c2 leaked or lost or stolen)
because only the user knows the highest-priority credential c1;
and (c1 leaked or lost, c2 safe) because c2 is safe and c1 is
known to either both the players or to neither. In total, the
size of the profile is six, equal to the bound P (2), with three
more scenarios than the OR-mechanism described above.

The three mechanism classes cover the complete set of
n-credential maximal mechanisms for n ≤ 3 (§VI), i.e., any
mechanism must be either worse than or equivalent to a
mechanism in the three classes.

We show the efficacy of our model by analyzing some
existing interactive mechanisms (§VII), including the popular
cryptocurrency wallet Argent [9] used by over a million
users [19]. Argent lets the user select m key guardians (e.g.,
friends) and keeps one key on the user’s phone for a total
of n=m+1 credentials. It provides functionality to transfer
funds, add or delete any credential, and lock the wallet in
case of a suspected key fault.

We find that Argent’s mechanism has 5 scenarios if n=2
and 22 scenarios if n=3 when used according to the Argent
documentation. We also propose a more involved user-side
technique allowing it to reach 6 and 24 scenarios, respectively.
So, even with our technique, Argent is only maximal when
n=2 but not for greater n, e.g., 3-credential Argent is worse
than the priority mechanism (P (3)=28 scenarios).

We demonstrate our mechanisms are practical with a
priority mechanism implementation in Solidity (Appendix A).
Its most expensive function costs $7.6 in fees, compared to
$5.4 for Argent (at today’s rates; see §VII-A).

In summary, our main contributions are:
1) A definition of the authentication problem, in particular

under synchrony,
2) a metric of the security level of an authentication

mechanism, namely security profiles,
3) a tight upper bound on the profile size of any mechanism,
4) novel n-credential mechanisms that are maximally secure,
5) the complete sets of maximal mechanisms for n≤3,
6) security analysis of deployed and theoretical mechanisms

with concrete improvement proposals, and
7) a Solidity implementation of a maximally-secure wallet.
We conclude (§VIII) with practical insights and a brief

review of open questions.

II. RELATED WORK

To the best of our knowledge, previous work did not
provide a general definition of the authentication problem or
analyzed the interactive authentication design space.

The closest work is Eyal’s cryptocurrency wallet
design [12], which investigates what the best mechanism
is, but in a restrictive setting with only boolean formulae,
i.e., one-shot mechanisms. Our maximal mechanisms have
larger security profiles. Hammann et al. [13] use a similarly
restrictive model and their focus is orthogonal to ours,
namely, to uncover vulnerabilities arising from the links
between different mechanisms a user uses.

There is substantial interest in analyzing the security
of multi-factor authentication mechanisms. For example,
Jacomme et al. [20] and Barbosa et al. [21] analyze Google’s
2FA and Fido’s U2F. But they do not propose generic
frameworks; moreover, these mechanisms are also one-shot.

Elaborate authentication mechanisms are common for
cryptocurrency assets [22], [16], [18], [23]; some of
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which even use interactive schemes like Argent [9],
SmartCustody [24] and CoinVault [25] (which was part of the
inspiration for this work). This demonstrates the practicality
of interactive schemes in this context, but also the need
for rigor, as we demonstrate by analyzing and proposing
improvements to the popular Argent in §VII-A.

Paralysis Proofs [14] leverages interactivity to deal with
credential loss; similar ideas were recently proposed in the
Bitcoin community [24]. We discuss this approach in §VII-C
and show that our mechanisms achieve larger security profiles.

Vaults [26] (the first interactive cryptocurrency wallet design
to our knowledge) and KELP [27] leverage interactivity to deal
with key leakage and loss, respectively. But their models are
distinct from ours: Vaults [26] treats the case where neither
player can withdraw funds as success, since it removes the mo-
tivation for an attack; we conservatively treat this outcome as a
failure. KELP [27] considers partial knowledge – a user knows
about a lost key before anyone else, whereas we only consider
complete knowledge. Both works consider specific mecha-
nisms whereas we find bounds and maximal mechanisms.

Work on authorization dealt with the implementation of
security policies [28], [29], [30]. In some contexts, our
mechanisms can be implemented using those solutions.

III. MODEL

We formalize the authentication problem. We describe
an execution, its participants and communication (§III-A),
credentials (§III-B), the automaton model for authentication
mechanisms (§III-C), and player strategies (§III-D), all
summarized in Algorithm 1. Finally, we define security
profiles, with which we evaluate mechanisms (§III-E).

A. Execution: participants, time and network model

The system comprises an authentication mechanism M
and two players, a user U and an attacker A.

An execution begins with the environment (an entity we
use to orchestrate a real-world situation) assigning distinct
player identifiers to the user and to the attacker from the set
P={0,1}. It picks γ∈P and assigns γ to the user and (1−γ)
to the attacker, e.g., if γ=0, then the user is player 0 and the
attacker is player 1. The identifiers are akin to cookies used
to identify a website visitor during a single session. We refer
to γ as the environment’s strategy.

Time progresses in discrete steps. During the execution,
both parties interact with the mechanism by sending and
receiving messages. Communication channels are reliable and
synchronous – if a message is sent in time step a, it reaches
the recipient in step a+1.

The attacker controls the ordering of messages within a
time step. That is, if both user and attacker send messages to
the mechanism at the same time step, the attacker can choose
which of the two is received first.

The mechanism can decide either 0 or 1 to end an
execution, and the player with this identifier wins. This is a
one-time irrevocable operation corresponding to, say, allowing
someone to withdraw money out of a bank account.

B. Credentials, scenarios and messages

The system contains a set of n credentials, Call =
{c1,c2,...,cn}. Each credential is in one of four states [12]:
(1) Safe: Only U has it, (2) Lost: No one has it, (3) Leaked:
Both U and A have it, or (4) Stolen: Only A has it. Denote
the state of credential ci by σi, so for all 1 ≤ i ≤ n : σi ∈
{safe, lost, leaked,stolen}. A scenario σ is a vector of the n
credential states and Σ= {safe,lost,leaked,stolen}n is the set
of all scenarios, i.e. σ∈Σ.

The credential set of the user (resp., attacker) contains all
the credentials available to that player, denoted CU

σ ={ci|σi∈
{safe,leaked}} (resp., CA

σ ={ci|σi∈{leaked,stolen}}).
At the start of an execution, the environment picks a sce-

nario σ∈Σ and initializes U and A with the credential sets CU
σ

and CA
σ , respectively. The scenario σ is common knowledge,

i.e., the state of all n credentials is known to both parties.
Each message sent by U or A consists of a player

identifier p ∈ P and a set of credentials C. A message
can only carry a subset of the credentials available to the
sender, i.e., a user (resp., attacker) message can carry a set of
credentials C s.t. C⊆CU

σ (resp., C⊆CA
σ ). To avoid credential

leakage by listening to the channel, a message should actually
contain encrypted credentials or zero knowledge proofs of
credential knowledge, e.g., signatures for private keys etc.
We avoid this detail for simplicity.

Although an attacker cannot include a credential not
assigned to it, we do not preclude the attacker from forging
credentials. Forgery is modeled as leakage or stealing.

C. Authentication mechanism

The mechanism M is a deterministic one-clock timed
automaton [31], defined by the following elements:

States: The automaton has a finite set T of states. It includes
a special starting state Iinit and two disjoint sets of final
states, T fin

0 and T fin
1 . The execution ends as soon as the

automaton reaches a final state, i.e., if s ∈ T fin
i , then the

winner is the player with identifier i.

Clock: A clock has some value t∈Z≥0, initialized with t=0,
and incremented by 1 in each step. The automaton can reset
the clock back to its initial state (t=0).

A pair (s,v) of an automaton state s and a clock state t
is called an extended state. At the start of an execution,
we have s← Iinit and t← 0. Note that we refer just to the
automaton state s when using the word state.

Transitions: An automaton transition is a 6-tuple consisting
of a source and a destination state, three types of guards and
a clock reset bit, as follows.

The Clock Reset R= {True,False} represents the reset of
the clock state or no reset. Resetting means that the clock is
set back to its initial state (t←0) upon taking the transition.

Transitions take place on message arrival. A guard g is a
constraint specifying that the message must meet a condition
for the transition to take place. A guard with the value ⊥
indicates no constraint. There are three types of guards:
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A Player guard means the message must be sent by
a certain player ID. The set of player identifier guards
is Gid=P∪{⊥}. If a player p∈P satisfies the guard gplr we
denote p⊢gplr. For example, 0⊢gplr only if gplr∈{0,⊥}.

A Credential guard means that the message must carry
certain credentials. The set of credential guards Gc includes all
non-constant monotone boolean formulae of the availability
of the credentials in the set Call and ⊥. For example, if n=2,
then Gc={c1,c2,c1∧c2,c1∨c2,⊥}. A credential set C satisfies
a credential guard gcd, denoted C⊢gcd, if the credentials in C
satisfy the boolean formula gcd. For example, if gcd = c1∨c2
and C={c1}, then C⊢gcd.

A Clock guard is a condition on the clock state t expressed
through a comparison operator ∼ ∈ {<,≤,=,≥,>} and a
natural number l∈N, i.e., (t∼ l). The set of all clock guards
(including ⊥) is Gt. For example, a guard gclk = (t < 5)
specifies that the clock state t must be less than 5. Denote
by t⊢gclk that the clock state t satisfies the guard gclk.

In summary, D ⊆ T ×Gid×Gc×Gt×R×T is the set of
transitions of M . (The source state must be a non-final state,
and the target state not the beginning state.) And an automa-
ton M is a 6-tuple given by M=(Call,T ,clock,D,T fin

0 ,T fin
1 ).

If the current state is s and the automaton receives a
message satisfying all the guards of an outgoing transition
of s, then the destination state of the transition becomes
the new state. There can exist at most one such transition
because we consider a deterministic automaton, i.e., we
require: For all states s∈T , all clock states t∈Z≥0, all sets
of credentials C ⊆Call, and all player identifiers p∈P , there
exists at most one transition (s,gplr,gcd,gclk,r,s′)∈D such that
all the guards are satisfied, i.e., p⊢gplr, C⊢gcd and t⊢gclk.

The automaton notifies both parties on each state change,
including if there are multiple transitions in a single time step.

Note 1. We use a clock in automatons for illustrative reasons.
It can be removed to construct a deterministic finite automaton
using standard techniques (see region automata [31]).

D. Player strategies and mechanism success

The user strategy SU specifies which messages the user
sends in any given extended mechanism state:

Definition 1 (Messaging strategy). A messaging strategy
for the user (resp., attacker) is a function of the extended
state e=(s,t), S(e) that returns ⊥ or an ordered list of cre-
dential sets {Ck}. A messaging strategy is playable by the user
(resp., attacker) in a scenario σ if for all automaton extended
states e and for all Ck∈S(e) :Ck⊆CU

σ (resp., Ck⊆CA
σ ).

A player adopting a messaging strategy S means that if the
current extended state is e, then the player sends one message
with each of the credential sets in S(e) in the next time step.

The attacker’s strategy SA consists of two components:
a messaging strategy SA

msg and an ordering strategy SA
ord,

i.e., SA = (SA
msg,S

A
ord). The latter captures how an attacker

orders messages that arrive in the same time step. More
formally, SA

ord takes both the user’s and attacker’s messages as

Algorithm 1 Execution with players U and A and mechanism
M=(Call,T ,clock,D,T fin

0 ,T fin
1 )

Init: The environment chooses a scenario σ∈Σ and γ∈{0,1}.
It initializes U (resp., A) with the player identifier γ
(resp., (1−γ)) and the set of credentials CU

σ (resp., CA
σ ).

s←Iinit ▷ Automaton state
t←0 ▷ Automaton clock

Execution:
repeat ▷ Execute loop once per time step

YU←{(γ,C)|C∈SU ((s,t))} ▷ U sends messages
YA←{((1−γ),C)|C∈SA

msg((s,t))} ▷ A sends messages
{(pi,Ci)}|YU∪YA|

i=1 ←SA
ord(YU∪YA) ▷ A orders messages

for i = 1, 2, . . . , |YU∪YA| do ▷ M processes messages
if ∃(s′,gplr,gcd,gclk,r,s′′)∈D, s=s′,

pi⊢gplr, Ci⊢gcd, and t⊢gclk then
s←s′′ ▷ Update automaton state
if r=True then t←−1. ▷ Reset clock
if s∈T fin

0 then return 0

if s∈T fin
1 then return 1

t← t+1 ▷ Advance clock

inputs and outputs some permutation of them. Two examples
of ordering strategies are the attacker-first strategy OrdA,
where the attacker orders its own messages before the user’s,
and the user-first strategy OrdU , where the user’s messages are
first. Unless specified otherwise, the attacker employs OrdA.

An execution E is fully defined by an automaton M , a
scenario σ, player strategies SU and SA, and the environ-
ment’s strategy γ, i.e., E = (M,σ,SU ,SA,γ). The details of
how an execution unfolds are specified in Algorithm 1.

The user wins only if the mechanism chooses its identifier:

Definition 2 (Execution winner). Given an execu-
tion E = (M,σ,SU ,SA,γ), the winner of an execution is the
player decided by the automaton M , or the attacker A if M
never decides. We denote Winexec(E)∈{U, A} accordingly.

The winner of two executions played with the same player
strategies can differ due to a change in environment’s strategy.

A mechanism M succeeds in a scenario σ, denoted
Suc(M,σ), if the user can win irrespective of the attacker’s
strategy:

Definition 3 (Success). Given a mechanism M and
a scenario σ, we say that the mechanism is success-
ful,denoted Suc(M,σ), if the user consistently wins against
any attacker’s strategy and environment’s strategy, i.e., ∃SU

win :
∀SA, ∀γ, E = (M, σ, SU

win, S
A, γ) and Winexec(E)=U.

Otherwise, the mechanism fails, denoted ¬Suc(M,σ).

Let X = (M,σ) denote a mechanism and a scenario, and
call X an extended scenario. We say WinX(SU ,SA) = U if
the strategy SU wins for the user in all executions where the
attacker employs SA, i.e., independent of the environment’s
strategy. A strategy SU

win is a winning user strategy if it wins
against any attacker strategy, i.e., ∀SA :WinX(SU

win,S
A)=U.
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Notation Description

U, A User, Attacker
Call={c1,...,cn} The n credentials
σ, σ Scenario and its complement
σi∈{safe,lost,leaked,stolen} State of ci
CU

σ /CA
σ Credentials of user / attacker in σ

Σws,Σns All with-safe, no-safe scenarios
Σwt,Σnt All with-stolen, no-stolen scenarios
P={0,1} Player identifiers

M=(Call,T ,clock,D,T fin
0 ,T fin

1 ) Automaton / Mechanism
T fin
0 /T fin

1 Final states where 0 / 1 wins
Gc,Gt,Gid Credential, clock and player guards
C⊢gcd Credential guard
clock,t The clock and its state
gclk := t∼ l, t⊢gclk Clock guard
r∈{True,False} Clock reset
(s,gplr,gcd,gclk,r,s′)∈D A 6-tuple edge in the automaton

Suc(M,σ) Is the mechanism successful in σ?
SU ,SA Strategies of user and attacker
Winexec(E) Winner of an execution
Winσ(SU ,SA) Winner under specified strategies
prof(M) Security profile of the scheme M
P (n) Bound on the profile size

Mn All n-credential mechanisms
On Complete set of mechanisms

TABLE I: Notation

On the other hand, WinX(SU ,SA)=A means that SA wins
for the attacker in some execution where the user employs SU ,
i.e., with some player identifier allocation. And SA

win is a
winning strategy for the attacker if ∀SU :WinX(SU ,SA

win)=A.
We conclude this section with a few remarks.

Parallel executions: Multiple executions can run in parallel
at the same time although we do not explicitly model it.

State updates: Recall that we assume that any state change
is immediately informed to both the user and attacker. This
is both a strict and conservative assumption: strict (resp.,
conservative) because the user (resp., attacker) knows all the
state updates, including any authentication attempts by the
attacker (resp., user).

E. Mechanism profiles

Having defined mechanism success, we can now evaluate
and compare mechanisms. A mechanism’s profile is a concise
representation of its security level containing all the scenarios
in which it succeeds.

Definition 4 (Profile). The profile of a mechanism M denoted
by prof(M) is the set of all scenarios where M succeeds,
i.e., prof(M)={σ|σ∈Σ∧Suc(M,σ)}.

The profile can also be viewed as an n-dimensional matrix
where n is the number of credentials. Each matrix cell
represents a distinct scenario and the value in it is 1 or 0 if
the scenario is in the profile or isn’t, respectively (e.g., Fig. 1).

The profiles define a partial order on the set of
all n-credential mechanisms, denoted by Mn. Two
mechanisms M,M ′∈Mn are equivalent, denoted by M∼=M ′,

if one’s profile can be obtained from the other’s by permuting
the credential set:

Definition 5 (Equivalence). Given a permutation π :
{1, ... , n} → {1, ... , n} and a scenario σ, define the
permuted scenario σπ by σπ

i = σπ(i). Then, M ∼= M ′

if ∃π :
⋃

σ∈prof(M)σ
π=prof(M ′).

A mechanism M1 is better than another mechanism M2,
denoted by M1≻M2, or M2 is worse than M1, if ∃M3

∼=M2

such that prof(M1)⊃ prof(M3). M1 is better than or equiv-
alent to M2, denoted by M1⪰M2, if M1≻M2 or M1

∼=M2

(⪯ defined analogously). And M1 is incomparable to M2,
denoted by M1≁M2, if M1 ̸⪰M2∧M1 ̸⪯M2.

We give an example to illustrate the relations. As we
saw (§I), the profile of the 2-credential OR-mechanism c1∨c2
has three scenarios: (c1 and c2 safe), (c1 safe, c2 lost) and (c1
lost, c2 safe). Now consider the AND-mechanism c1∧c2: its
profile also has three scenarios, namely (c1 and c2 safe), (c1
safe, c2 leaked) and (c1 leaked, c2 safe). We can see that the
two mechanisms are incomparable as neither is better than
the other nor are they equivalent.

The relation naturally defines maximal mechanisms:

Definition 6 (Maximally secure mechanism). A
mechanism M ∈ Mn is maximally secure or maximal
if for all M ′∈Mn: M ′⪯M or M ′≁M .

IV. PROFILE SIZE BOUND

We find an upper bound on the profile set size, i.e.,
given n, we find the maximum number of scenarios in which
an n-credential mechanism succeeds. Before that, we define
runs and then prove a few useful results.

A run r = {(p1, C1, a1), ... , (pz, Cz, az)} tracks all the
timestamped messages (ai denotes the time step) received by
the automaton during an execution, irrespective of whether
they lead to a state change or not. First, we show that any two
executions with the same run have the same winning identifier.

Observation 1. If two executions E1 and E2 using the same
mechanism M have the same finite run, then the winner of
both executions has the same player identifier.

If E1 and E2 share the same run and use the same
automaton, then they will cause the same state changes
because we are using a deterministic automaton, and thus have
the same final state s. Based on whether s∈T fin

0 or s∈T fin
1 ,

player 0 or 1, respectively, wins in both executions E1 and E2.
Next we prove that if the user wins in all executions where

the attacker employs a specific strategy (i.e., independent of
the environment’s strategy), then switching the messaging
strategies allows the attacker to win an execution.

Lemma 1. Let there be a mechanism M , two extended
scenarios X1 = (M,σ1), X2 = (M,σ2), and two messaging
strategies S1, S2 such that S1 is playable by U in σ1 and
by A in σ2 and S2 is playable by U in σ2 and by A in σ1.
There exists a reordering strategy SA

ord such that the two
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attacker strategies SA
1 = (S2,OrdA), SA

2 = (S1,SA
ord) satisfy

(WinX1(S1,S
A
1 )=U) =⇒ (WinX2(S2,S

A
2 )=A).

Proof. WinX1
(S1,S

A
1 ) = U means that the user wins in all

executions where the attacker’s strategy is SA
1 . Consider such

an execution E = (M,σ1,S1,(S2,OrdA),0), i.e., the user is
assigned 0 and wins. Denote the run of E by r.

Consider another execution E′ = (M,σ2,S2,(S1,SA
ord),1),

i.e., the attacker is assigned 0 and SA
ord ← OrdU is

the user-first ordering strategy. If the mechanism in
execution E′ does not decide, i.e., E′ runs forever, then by
definition, Winexec(E′) = A, and we are done. Now say the
mechanism in E′ decides; let its run be r′. We now prove
that the two runs are same, i.e., r=r′. First, note that in both
executions, player 0 uses messaging strategy S1 and player 1
uses messaging strategy S2. Secondly, since the attacker’s
reordering strategy prioritizes the attacker in E1 and the user
in E2, the messages sent by 1 are prioritized in both execu-
tions. Therefore, the messages the mechanism receives in all
time steps are the same in both executions including the order
of messages. Therefore r=r′. Since player 0 (user) wins E1,
by Observation 1, the attacker wins execution E2.

Now, in order to bound the number of successful scenarios,
we identify scenarios where a mechanism cannot succeed.
First, we define complementary scenarios, where the players’
credential availability is inverted, and show that no mechanism
succeeds in both a scenario and its complement.

Definition 7 (Complement scenario). A scenario σ is
the complement scenario of σ if for all i: σi = stolen
if σi=safe, σi=safe if σi=stolen, and σi=σi otherwise.

Lemma 2. If a mechanism succeeds in a scenario σ, then it
fails in its complement σ: Suc(M,σ) =⇒¬Suc(M,σ).

The intuition behind the proof is that the attacker will be
able to employ in σ the same messaging strategy that the user
uses in σ. Because the user’s strategy wins in all executions
against any attacker strategy in σ, we show that the attacker’s
strategy wins in at least one execution of σ.

Proof. Let SU denote a winning user strategy in the extended
scenario X = (M,σ). Since SU wins in all executions, we
have ∀SA : WinX(SU ,SA) = U. We now produce a winning
strategy S̄A for the attacker in X̄ =(M,σ) based on SU . To
do this, we need to show two things, namely, that SU is a
playable messaging strategy for the attacker in σ, and that it
succeeds in at least one execution.

The first follows in a straightforward way from the definition
of a complement. It is easy to see that CU

σ =CA
σ . Therefore,

any user strategy, including SU , in the scenario σ is a playable
attacker messaging strategy in the complement scenario σ.

Next we need to show that the attacker wins an execution
with SU in σ. Recall that OrdA denotes the attacker-first
reordering strategy. Let the attacker’s strategy be

S̄A={SU ,OrdA}.

We need to show that no user strategy succeeds in all
executions of X̄=(M,σ), i.e., ∄S̄U :WinX̄(S̄U ,S̄A)=U.

We prove by contradiction. Assume the existence of a
winning user strategy S̄U , i.e.,

WinX̄(S̄U ,S̄A)=U.

We will use the successful strategy S̄U to devise a strategy SA

for the attacker in the original scenario.
Apply Lemma 1 by setting σ1 = σ, σ2 = σ, S1 = S̄U

and S2=SU . A pre-condition for this lemma is that S1 (S̄U )
needs to be playable by the attacker in σ2 (σ), which holds
because CU

σ =CA
σ . Lemma 1 guarantees the existence of an

ordering strategy SA
ord such that

WinX̄(S̄U ,S̄A)=U =⇒WinX(SU ,SA)= A.

We thus found an attacker strategy (SA) that wins an
execution against the user winning strategy SU in the original
scenario σ—a contradiction. Therefore, the assumption was
wrong and there does not exist a winning strategy for σ.

After dealing with complementary scenarios, we show that
if no credential is safe, then no mechanism succeeds. We call
such scenarios bad.

Lemma 3. Given a bad scenario σbad∈{lost,leaked,stolen}n,
where all credentials are unsafe, ∄M ∈Mn : Suc(M,σbad).

We prove this by contradiction, i.e., say the user wins
in σbad. Using the winning strategy of the user, we show the
existence of a winning strategy for the attacker, thus arriving
at a contradiction.

Proof. By contradiction, assume there exists a mechanism M
that succeeds in a bad scenario, i.e., Suc(M,σbad). Denote the
extended scenario X=(M,σbad). Let the winning user strat-
egy be SU , so for all SA,WinX(SU ,SA)=U. Consider the at-
tacker strategy S∗

1 ={SU ,OrdA}. We have WinX(SU ,S∗
1 )=U.

Apply Lemma 1 by setting σ1 = σ, σ2 = σ, S1 = SU ,
and S2 = SU . A pre-condition for this lemma is that SU be
playable by both user and attacker in σ. This is true because
in any scenario σ∈σbad, CU

σ ⊆CA
σ . Consequently, for any set

of credentials C, if C⊆CU
σ then C⊆CA

σ . So SU is playable
for the attacker.

We have WinX(SU ,S∗
1 ) = U, therefore due to Lemma 1,

there exists some SA
ord such that if S∗

2 = {SU , SA
ord} then

WinX(SU ,S∗
2 )=A. This completes the proof because S∗

2 wins
against SU , contradicting the assumption that SU is a winning
user strategy. Therefore the assumption was wrong and there
does not exist a winning user strategy in a bad scenario.

We can now bound the size of feasible security profiles.

Theorem 1. The maximum number of scenarios an n-
credential mechanism succeeds is

P (n)=(4n−2n)/2, (1)

i.e., ∀M ∈Mn : |prof(M)|≤P (n).
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For proving, we first identify four subsets of scenarios,
which will also be useful later. Define a with-safe scenario
(resp., with-stolen scenario) as a scenario in which at least
one credential’s state is safe (resp., stolen). Denote the set of
all with-safe (resp., with-stolen) scenarios by Σws (resp., Σwt;
we use the second letter, ‘t’). Define a no-safe scenario (resp.,
no-stolen scenario) as a scenario in which no credential’s
state is safe (resp., stolen). Denote the set of all no-safe (resp.,
no-stolen) scenarios by Σns (resp., Σnt). The number of no-
safe scenarios is |Σns|=3n and all mechanisms fail in all of
them (Lemma 3). Denote by T the complement set of T with
respect to all scenarios. Note that Σws=Σns and Σwt=Σnt.

Denote with-safe-with-stolen scenarios by Σwswst = Σws ∩
Σwt; these play a special role in our proofs, so we count them
now. By De-Morgan’s law, Σwswst=Σns∪Σnt= |Σns|+|Σnt|−
|Σns∩Σnt|. Substitute |Σns|= |Σnt|=3n and |Σns∩Σnt|=2n

(as each credential is either leaked or lost). So we have

|Σwswst|= |Σ|−|Σwswst|=4n−2·3n+2n. (2)

We can now prove Theorem 1.

Proof. If n= 1, there are 4 scenarios in total and all mech-
anisms fail in the 3 unsafe ones (Lemma 3). Hence P (1)=1.

For n ≥ 2, observe that for each with-safe-with-stolen
scenario σ ∈ Σwswst (which exist for all n ≥ 2) that a
mechanism M ∈Mn succeeds in, there is a complement σ
where it fails (Lemma 2). Crucially, σ ∈ Σwswst because a
with-safe-with-stolen scenario has (at least) one safe and one
stolen credential, and the safe, stolen states are switched in
the complement. Therefore, M cannot succeed in more than
half with-safe-with-stolen scenarios. The number of with-safe
scenarios where all mechanisms fail is lower-bounded by
Qws(n)= |Σwswst|/2

eq.(2)
= 4n−2·3n+2n

2 .

The number of scenarios in which all mechanisms
fail is lower-bounded by Q(n) = Qws(n) + |Σns| =
(4n−2·3n+2n)/2+3n=(4n+2n)/2. Hence, the number of
scenarios in which any mechanism succeeds is bounded by
P (n)= |Σ|−Q(n)=4n− 4n+2n

2 = 4n−2n

2 .

V. MAXIMAL MECHANISMS

We now specify an approach to generate maximal
mechanisms. These mechanisms wait for a bounded time
allowing both players to submit credentials, therefore called
bounded-delay mechanisms.

Any player can initiate authentication with a bounded-delay
mechanism, which then starts a timer. Both U and A can send
messages carrying credentials until the time elapses. Say the
set of credentials submitted by player 0 is C0 and player 1
is C1. A deterministic judging function J selects the winner:
It takes the two sets of credentials sent by the players and
outputs an identifier, i.e., J(C0,C1) 7→ {0,1}. Bounded-delay
mechanisms are realizable through the automaton model in a
straightforward manner. Details are in App. B. Given a judging
function J , we denote the corresponding mechanism by M(J).

We present three properties of judging functions (§V-A) and
show that they are sufficient for making the resultant mecha-
nism maximally secure (§V-B). Then, we present three func-
tions that produce, for any n, maximal mechanisms (§V-C).

A. Well-formed judging functions

Any bounded-delay mechanism with judging functions
satisfying the following properties are maximal.

Definition 8 (ID-Agnostic (IA)). A judging function J is
ID-Agnostic if the identifier assignment does not affect the
result, i.e., if C ̸=C ′ then (J(C,C ′)=0)⇔(J(C ′,C)=1).

If a judging function J satisfies IA, then we can compare
any two sets of credentials and say that one of them is
better than the other. We use the notation C≻J C

′ (subscript
omitted when obvious) to mean that C is better than C ′

according to J . Similarly, C⪰J C
′ means that either the two

credential sets are the same (C=C ′) or C is better than C ′.
Note that we do not say anything about the case

where C=C ′ in the above definition, so an ID-Agnostic
function can choose to output either 0 or 1. WLOG all
functions we present follow ∀C :J(C,C)=0.

Definition 9 (Knowledge-rewarding (KR)). A judging function
is knowledge rewarding if, when the credentials submitted by
one player are a strict subset of those submitted by the other,
then it returns the latter, i.e., if C ′⊂C then C ′≺C.

Definition 10 (Transitive knowledge-rewarding (TKR)).
A judging function is transitive knowledge rewarding if
additional credentials cannot weaken a player’s strategy, i.e.,
if C0 ̸=C1, C1 ̸=C2, C0≻C1, and C1≻C2, then C0 ̸⊆C2.

Note that C0 ̸= C2 is implied above because if instead
C0=C2, then C1 is both better and worse than C0, which is
not possible for an ID-Agnostic judging function.

A judging function with all the three properties and its
resultant mechanism are well formed.

Definition 11 (Well-formedness). If a judging function J
satisfies IA, KR, and TKR then it is well-formed, and the
resulting bounded-delay mechanism M(J) is well-formed.

Note that a well-formed judging function J need not
be transitive, i.e., it could allow: C0 ≻J C1, C1 ≻J C2

and C2≻J C0. Examples of such functions appear later.

B. Maximality of well-formed mechanisms

We now prove that any well-formed mechanism is maximal.
Two lemmas do a bulk of the work: Lemma 5 shows that
the user can win in all with-safe-no-stolen scenarios and
Lemma 8 shows that the user can win in exactly half of the
with-safe-with-stolen scenarios. Using these results, Lemma 9
shows that the profile size of any n-credential well-formed
mechanism is P (n), which in turn implies maximality.

Before proving when well-formed algorithms succeed, we
define submit-early strategies and prove Lemma 4, which we
use throughout the rest of the proofs.
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Definition 12 (Submit-early strategy). A submit-early strategy
is a strategy where the player sends a single credential set
when the automaton is in its initial state and nothing thereafter.

The next lemma says that if one player employs a submit-
early strategy with credentials C, then the only way the other
player wins is by submitting a better or equal credential set.

Lemma 4. Given a well-formed bounded-delay mechanism M
and a scenario σ, if one player employs a submit-early strategy
with credential set C, but the other player wins an execution,
then the winning player must have submitted better or equal
credentials C ′, i.e., C ′⪰C.

Proof. Say player 0 submits credentials C as part of a
submit-early strategy, but player 1 wins an execution. Denote
the final set of credentials submitted by player 1 (perhaps
across multiple messages) as C ′.

Two cases emerge based on the order in which the two sets
of credentials, C and C ′, are processed by the automaton.
But, irrespective of the order, player 1 wins only if C ′ ⪰C:
IA guarantees that, if on the contrary C ′ ≺ C, then the
automaton would not prefer player 1 irrespective of the player
identifier (0 or 1) assigned to it. So player 1 cannot win an
execution, and therefore, it must be that C ′⪰C.

Denote by SU
all (resp., SA

all) the submit-early strategy where
all credentials owned by the user CU

σ (resp., attacker CA
σ )

are submitted. (SA
all uses attacker-first ordering, as is the case

whenever we do not explicitly specify it.)
We now prove the first major lemma.

Lemma 5. Well-formed mechanisms succeed in with-safe-no-
stolen scenarios, i.e., for all well-formed mechanisms M and
scenarios σ∈Σwsnt: Suc(M,σ)=True.

Proof. Assume for contradiction that the mechanism fails in
a with-safe-no-stolen scenario σ∈Σwsnt. This means that for
all user strategies the attacker wins at least one execution.

Say that the user follows the submit-early strategy SU
all with

all its credentials CU
σ , then, due to Lemma 4, the attacker

must know a set of credentials C⊆CA
σ such that C⪰CU

σ .
And since the scenario σ is a with-safe-no-stolen scenario,

we have CA
σ ⊂ CU

σ , and since C ⊆ CA
σ , we conclude

that C⊂CU
σ .

But due to the knowledge-rewarding (KR) property, C⊂CU
σ

implies C ≺ CU
σ , thereby contradicting the previous state-

ment C⪰CU
σ . Thus the attacker cannot win an execution in a

with-safe-no-stolen scenario and the mechanism succeeds.

Our next goal is to prove that the user wins in half of the
with-safe-with-stolen scenarios Σwswst. Our approach is as
follows. Recall that for every with-safe-with-stolen scenario σ,
it’s complement σ is also a with-safe-with-stolen scenario.
Since any mechanism fails in one of σ or σ (Lemma 2), we
use a winning attacker strategy in σ or σ to derive a winning
user strategy in the other scenario.

First, we show that if there exists an attacker winning
strategy for some execution, then the submit-early strategy

with all credentials is also an attacker winning strategy for
that execution.

Lemma 6. Given a well-formed mechanism M , let the
winning strategy of an attacker in a with-safe-with-stolen
scenario σ∈Σwswst be SA ̸=SA

all, then SA
all is also a winning

strategy. That is, if X=(M,σ) and ∀SU :WinX(SU ,SA)=A
then ∀SU :WinX(SU ,SA

all)=A.

Proof. Assume for contradiction the existence of a user
strategy SU such that the strategy SA

all never wins an execution.
By Lemma 4, it must be that the user submits a credential
set CU ⊆CU

σ that is better than or equal to CA
σ , i.e., CU ⪰CA

σ .
Furthermore, the inequality is strict, i.e., CU ≻CA

σ , because
if CU =CA

σ then since CU ⊆CU
σ , we get CA

σ ⊆CU
σ , which

is not true for a with-safe-with-stolen scenario σ∈Σwswst.
Start again from the assumption. Since SA is a successful

attacker strategy, it must win an execution against the
submit-early strategy with credential set CU . And because
of Lemma 4, the attacker must have submitted a credential
set CA such that CA⪰CU .

We have two cases: CA =CU or CA≻CU . If CA =CU ,
since CU ≻ CA

σ , we have CA≻CA
σ . But KR says that

if CA⊆CA
σ , then CA⪯CA

σ , which leads to a contradiction.
Next, if CA ≻ CU , since CU ≻ CA

σ , the TKR property
implies that CA ̸⊆ CA

σ (note that CA ̸= CU and CU ̸= CA
σ

hold, allowing the use of TKR.) But we have a contradiction
as CA ⊆ CA

σ by definition. So we conclude that the
strategy SA

all is also winning.

Now, we prove that SA
all is a winning strategy for the user

in the complement scenario σ.

Lemma 7. If SA
all is a winning strategy for the attacker in a

with-safe-with-stolen scenario σ∈Σwswst, then the messaging
component of SA

all is a winning strategy for the user in the
complement with-safe-with-stolen scenario σ.

Proof. Since SA
all is a winning strategy in scenario σ, it must

win against any user strategy, including SU
all. By Lemma 4,

since the user follows a submit-early strategy, the attacker
must have submitted a set of credentials C such that C⪰CU

σ .
Since the attacker also follows a submit-early strategy SA

all, the
attacker submits credentials exactly once. Therefore, it must be
that C=CA

σ and hence CA
σ ⪰CU

σ . The inequality is strict, i.e.,

CA
σ ≻CU

σ , (3)

since CA
σ ̸=CU

σ for a with-safe-with-stolen scenario σ∈Σwswst

and due to the mechanism’s IA property.
Assume for contradiction that S̄U

all=SA
all (we mean that S̄U

all

is the messaging component of SA
all) is not a winning strategy

for the user in the complement scenario σ. It means that there
exists an attacker strategy S̄A that wins against S̄U

all in some
executions of σ. Applying Lemma 4 again, the attacker must
have submitted a set of credentials C⊆CA

σ such that C⪰CU
σ .

Since σ is also a with-safe-with-stolen scenario and due to the
mechanism’s IA property, the inequality is strict, i.e., C≻CU

σ .
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We claim that
CA

σ ⪰CU
σ . (4)

This is because, if instead CU
σ ≻CA

σ , then because C ≻CU
σ

and TKR, we get C ̸⊆CA
σ , which is false because C⊆CA

σ .
By definition, for any pair of complement scenarios,

we have CU
σ = CA

σ and CU
σ = CA

σ . Recasting eq. (4), we
get CU

σ ⪰ CA
σ , which contradicts eq. (3). Thus SA

all is a
winning user strategy in σ.

Now we can prove the second major lemma.

Lemma 8. For all well-formed mechanisms M and with-
safe-with-stolen scenarios σ∈Σwswst, M succeeds in either σ
or in its complement σ, i.e., Suc(M,σ)∨Suc(M,σ).

Proof. For each scenario σ ∈ Σwswst, its complement σ
satisfies σ ̸=σ and σ∈Σwswst. Consider a pair of complement
scenarios σ, σ ∈ Σwswst. No well-formed mechanism M
succeeds in both σ and σ (Lemma 2). WLOG assume that M
fails in σ, i.e., there exists a winning strategy SA for the
attacker that allows it to win an execution in σ. By Lemma 6,
the existence of a winning strategy SA implies that the
submit-early strategy SA

all is also a winning strategy. And
by Lemma 7, the messaging component of SA

all is a winning
strategy for the user in the complement scenario σ.

We conclude by proving that the profile size of a
well-formed mechanism is P (n).

Lemma 9. The profile size of any well-formed n-credential
mechanism is P (n).

Proof. Lemma 5 shows that a well-formed mechanism suc-
ceeds in all with-safe-no-stolen scenarios (Σwsnt=Σws∩Σnt).
By basic set theory, |Σwsnt| = |Σnt| − |Σnt \ Σws| and
|Σnt\Σws|= |Σnt∩Σws|= |Σnt∩Σns|. Finally, since |Σnt|=3n

and |Σnt∩Σns|=2n, we have |Σwsnt|=3n−2n.
Lemma 8 shows that a well-formed mechanism succeeds

in exactly half of the with-safe-with-stolen scenarios
(Σwswst=Σws∩Σwt). From eq. (2), |Σwswst|=(4n−2·3n+2n).

In total, a well-formed mechanism succeeds in
|Σwsnt|+|Σwswst|/2=(4n−2n)/2=P (n) scenarios.

Corollary 1. Any well-formed mechanism is maximally secure.

This is straightforward because the existence of a
mechanism better than a well-formed mechanism (Lemma 9)
violates the profile size bound (Theorem 1).

C. Algorithms for maximal mechanisms

We now specify three algorithms that produce maximal n-
credential mechanisms for any n.

1) Priority mechanisms: Let a vector V define an ordering
over all the credentials, then the priority judging function
using V (Algorithm 2) decides on the player that submits a
unique high-priority credential.

Lemma 10. Given a permutation V over elements of the
set Call, the priority judging function JV

pr is well-formed.

Algorithm 2 The priority judging function JV
pr

Require: V is a permutation over the elements of the set Call.
function JV

pr (C0,C1) ▷ C0⊆Call,C1⊆Call
for c=V1,V2,...,Vn do

if c∈C0∧c ̸∈C1 then return 0 ▷ C0≻C1

if c∈C1∧c ̸∈C0 then return 1 ▷ C1≻C0

return 0 ▷ Default

Proof. We prove each of the three properties (Definition 11).
IA requires (JV

pr (C0,C1)=0)⇔ (JV
pr (C1,C0)=1). This holds

because the priority function selects the unique high-priority
credential irrespective of the order. KR requires C0⊂C1 =⇒
C0 ≺ C1. This holds because C1 has at least one credential
not in C0 but C0 has no credentials not in C1.

To prove TKR, we need to show that given three
distinct credential sets C0, C1 and C2, if C0 ≻ C1

and C1≻C2 then C0 ̸⊆C2. By contradiction, assume C0⊂C2

(since C0 ̸=C2 by definition).
C0 ≻ C1 implies the existence of a credential c that

satisfies c∈C0\C1 such that {c}≻C1\C0.
Observe that C0⊂C2 implies C1\C2⊆C1\C0.
We can rewrite the previous equation as {c}≻C1\C2 due

to the transitive nature of the priority judging function.
But the existence of c∈C0⊂C2 such that {c}≻C1\C2 im-

plies that C2≻C1. This contradicts the TKR assumption C1≻
C2, so C0⊂C2 cannot be true and TKR is satisfied.

Denote the priority mechanism corresponding to the
judging function JV

pr by MV
pr . For example, the 2-credential

priority mechanism M
[c1,c2]
pr along with its profile is in

Fig. 1. Note that player 0 (resp., 1) can only take dashed
(resp., dotted) edges and tries to reach f0 (resp., f1), and R
denotes a clock reset. A proof for the profile computation is
in App. C. Note that for any n, Algorithm 2 yields exactly
one distinct mechanism because changes in the permutation V

yield equivalent mechanisms, e.g., M [c1,c2]
pr

∼=M
[c2,c1]
pr .

2) Priority with exception: Mechanisms in this category
are similar to priority mechanisms except when the last two
credentials in the priority rule are submitted by the two
players. For example, if the priority vector is V = [c2,c3,c1],
then the exception is {c1} ≻ {c3}. The resultant judging
function is denoted by JV

pre and is specified in Algorithm 3
(with the changes from Algorithm 2 highlighted). Well-
formedness proof is in App. C. Like with priority mechanisms,
this algorithm yields at most one maximal mechanism.

3) Majority mechanisms: Mechanisms in this category
favor the player submitting the most credentials, so C ≻ C ′

if |C| > |C ′|. To break ties, different strategies are possible
which we model through a tie-breaking function T (C0,C1) 7→
{0,1}. We only consider ID-Agnostic tie-breaking functions,
i.e., if 0 ← T (C0, C1) then 1 ← T (C1, C0). The resultant
judging function is denoted JT

maj and is specified in
Algorithm 4. The profile of a majority mechanisms M [c1,c2,c3]

maj ,
i.e., using priority vector [c1, c2, c3] to break ties, is in
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c1 safe

c2
c3 St Le Lo Sa

St 1 1 1 1
Le 1 1 1 1
Lo 1 1 1 1
Sa 1 1 1 1

c1 lost

c2
c3 St Le Lo Sa

St 0 0 0 0
Le 0 0 0 1
Lo 0 0 0 1
Sa 1 1 1 1

c1 leaked

c2
c3 St Le Lo Sa

St 0 0 0 0
Le 0 0 0 1
Lo 0 0 0 1
Sa 1 1 1 1

c1 stolen

c2
c3 St Le Lo Sa

St 0 0 0 0
Le 0 0 0 0
Lo 0 0 0 0
Sa 0 0 0 0

(a) M [c1,c2,c3]
pr

c1 safe

c2
c3 St Le Lo Sa

St 0 1 1 1
Le 1 1 1 1
Lo 1 1 1 1
Sa 1 1 1 1

c1 lost

c2
c3 St Le Lo Sa

St 0 0 0 0
Le 0 0 0 1
Lo 0 0 0 1
Sa 1 1 1 1

c1 leaked

c2
c3 St Le Lo Sa

St 0 0 0 0
Le 0 0 0 1
Lo 0 0 0 1
Sa 1 1 1 1

c1 stolen

c2
c3 St Le Lo Sa

St 0 0 0 0
Le 0 0 0 0
Lo 0 0 0 0
Sa 0 0 0 1

(b) M [c1,c2,c3]
maj

TABLE II: Profiles of a priority and a majority 3-credential mechanism

Iinit

start

f0f1

t1

t2

t3t4

t5

t6
c1,R

c
2 ,R

c
1 ∧c

2 ,R

c1 ,t<l

c1,R

c 2
,Rc1

∧c2
,R

c1,
t<

l

t=
l

t=
lt=

lt=
lt=

l

t=
l

c1

c2 Stolen Leaked Lost Safe

Stolen 0 0 0 0
Leaked 0 0 0 1
Lost 0 0 0 1
Safe 1 1 1 1

Fig. 1: M [c1,c2]
pr and its profile.

Tab. IIb. For comparison, we also show the profile of a
priority mechanism M

[c1,c2,c3]
pr in Tab. IIa (they differ in just

two scenarios). Well-formedness proof is in App. C.
Unlike the two priority-based mechanisms, this algorithm

yields many distinct maximal mechanisms for all n> 2. The
total number of majority mechanisms including credential
permutations is q(n) = 2((

2n−1
n−1 )−2n−1) (App. C). For n = 3,

we manually discard equivalent mechanisms to find a total
of 12 distinct majority mechanisms (out of q(3)=64).

VI. COMPLETE MAXIMAL SETS

A complete maximal mechanism set is a minimal set
of n-credential mechanisms such that any other n-credential
mechanism is either equivalent to or worse than some
mechanism in this set.

Algorithm 3 Priority with exception JV
pre

Require: V is a permutation over the elements of the set Call.
function JV

pre(C0,C1) ▷ C0⊆Call,C1⊆Call
if C0={Vn−1}∧C1={Vn} then return 1

if C0={Vn}∧C1={Vn−1} then return 0

for c=V1,V2,...,Vn do
if c∈C0∧c ̸∈C1 then return 0 ▷ C0≻C1

if c∈C1∧c ̸∈C0 then return 1 ▷ C1≻C0

return 0 ▷ Default

Algorithm 4 The majority judging function JT
maj

function JT
maj(C0,C1) ▷ C0⊆Call,C1⊆Call

if |C0|> |C1| then return 0

if |C1|> |C0| then return 1
return T (C0,C1) ▷ If |C0|= |C1|

Definition 13 (Complete set). A complete maximal mecha-
nism set of n-credential mechanisms O={M1,M2...}⊂Mn

satisfies three properties: (1) each M ∈ O is maximal;
(2) any two distinct members are incomparable,
i.e., ∀M,M ′ ∈ O, M ̸= M ′ : M ≁ M ′; and (3) any n-
credential mechanism is worse or equivalent to some
mechanism in O, i.e., ∀M ∈Mn :∃M ′∈O s.t. M⪯M ′.

Several different complete maximal sets exist, but all their
sizes are the same as each mechanism in a maximal set will
have an equivalent in the other. The proof is in App. C.

We now present complete maximal sets for all n≤3. These
sets are composed of bounded-delay mechanisms. For one-
credential mechanisms, the attacker wins in three of the four
possible scenarios (Lemma 3). Hence, the priority mechanism
M

[c1]
pr is the only one in the complete maximal set O1.

A. Two-credential mechanisms

The complete maximal set of 2-credential mechanisms is
of size one. We find a set containing a priority mechanism.
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Theorem 2. A complete maximal set of 2-credential
mechanisms is O2={M [c1,c2]

pr }.

Proof. We prove O2 satisfies the three requirements
(Definition 13). The first is that M

[c1,c2]
pr is maximal, which

follows from Lemma 10. The second is that every pair of
mechanisms in O2 must be incomparable to each other, which
is vacuously true.

The third is that any 2-credential mechanism M must
satisfy M ⪯M

[c1,c2]
pr . Recall that M ⪯M

[c1,c2]
pr implies the

existence of a mechanism M ′∼=M
[c1,c2]
pr such that prof(M)⊆

prof(M ′). There are only two choices for M ′ that yield distinct
profiles, namely M ′∈{M [c1,c2]

pr ,M
[c2,c1]
pr }. And we are trying

to prove that for any mechanism M , one of prof(M) ⊆
prof(M [c1,c2]

pr ) or prof(M)⊆prof(M [c2,c1]
pr ) is true.

We prove by contradiction. Assume there exists a
mechanism M such that prof(M) ̸⊆ prof(M [c1,c2]

pr )

and prof(M) ̸⊆prof(M [c2,c1]
pr ).

Consider the set of seven with-safe scenarios Σws =
{σ̂1,...,σ̂7}. Without loss of generality, let σ̂1 = (safe,stolen)
(i.e., c1 safe, c2 stolen) and σ̂7=(stolen,safe) is the comple-
ment of σ̂1. Figure 1 shows that prof(M [c1,c2]

pr )= {σ̂1,...,σ̂6}
and prof(M [c2,c1]

pr )={σ̂2,...,σ̂7}.
By Lemma 3, the profile of M is a subset

of Σws, i.e., prof(M) ⊆ Σws. By basic set theory,
the only way to guarantee prof(M) ̸⊆ prof(M [c1,c2]

pr )

and prof(M) ̸⊆ prof(M [c2,c1]
pr ) is if {σ̂1, σ̂7} ∈ prof(M). But

Lemma 2 rules this out as they are complement scenarios.

Note 2. The above mechanism can also be viewed as a
majority mechanism with a priority rule to break ties or a
priority with exception mechanism.

B. Three-credential mechanisms

The complete maximal set of 3-credential mechanisms is of
size 14. We group the constituents into majority and priority
mechanisms, denoted by Omaj,3 and Opr,3 respectively,
i.e., O3=Omaj,3∪Opr,3.

The set Opr,3 contains two priority-based mechanisms:
the regular one (Algorithm 2) and with an exception
(Algorithm 3).

The set Omaj,3 contains 12 majority mechanisms that differ
in their tie-breaking rule. Two tie rules are possible: linear
priority, e.g., c1 ≻ c2,c2 ≻ c3,c1 ≻ c3, or cyclic priority, e.g.,
c1≻ c2,c2≻ c3,c3≻ c1 (last one switched). Note that a cyclic
rule makes the resultant judging function non-transitive. The
twelve majority mechanisms differ in the choice of tie rule
used to break ties between 1-credential and 2-credential sets,
e.g., one of them uses a linear rule for 1-credential sets and a
cyclic rule for 2-credential sets. More details are in App. D.

Theorem 3. A complete maximal set of 3-credential
mechanisms is O3=Opr,3∪Omaj,3.

Proving the first two requirements of Definition 13
is straightforward. We prove the last requirement that
no mechanism is better than a mechanism in O3 by

contradiction. Assume that a mechanism M exists such that it
is incomparable with any mechanism in O3. We encode this
as a constraint in a constraint solver and have it search for a
satisfying profile. We also add another constraint relying on
the observation that if M fails in a scenario σ, then it must
fail in all scenarios σ̂ that are worse than σ where σ̂ is worse
than σ if the attacker knows the same or more credentials
whereas the user knows the same or fewer credentials. We find
that the constraint solver is unable to find a solution, therefore
no such mechanism exists. The details are in App. D.

Note 3. It remains an open question how to analytically find
complete maximal sets for larger number of credentials.

VII. APPLICATIONS

We now apply our framework to analyze a popular
cryptocurrency wallet (§VII-A), a bank account (§VII-B) and
all known 2-credential mechanisms (§VII-C).

A. The Argent Cryptocurrency Wallet

Social recovery is a prominent approach [32] to design
non-custodial cryptocurrency wallets where a user’s social
circle, e.g., friends and family, is used to manage keys. We
analyze Argent [9], a popular social-recovery wallet [19].

We describe Argent’s operation as an automaton (§VII-A1),
find the resultant profile (§VII-A2), and discuss security
improvements (§VII-A3).

1) Operation: The Argent mechanism Mm
Arg uses m + 1

credentials, consisting of an owner credential co and a set of m
so-called guardian credentials G={g1,g2,...,gm}. The owner
credential is a cryptographic key on the user’s mobile phone.
Guardians can be anything from a friend’s cryptocurrency
wallet to a hardware wallet or a paid third-party service.
Thus, in our notation, Call={co,g1,g2,...,gm}.

The user maintains a list of approved addresses (called
trusted contacts) to which she can send funds immediately.
Transferring funds to a unapproved address requires additional
steps. The Argent wallet allows adding or removing approved
addresses, adding or removing guardians, replacing the owner
credential (if her phone is lost or stolen) and transferring
deposited funds.

We review all the attacker’s options to withdraw funds into
an unapproved address. (withdrawing to approved addresses
raises the question of how those are protected, which is not
well defined.) To simplify the presentation, we first review
different paths separately. Figure 2 depicts five automata, each
capturing a different functionality of the Argent mechanism.

Dashed (resp., dotted) edges indicates an edge that can be
taken only by player 0 (resp., 1). Solid edges can be taken by
either player. The state Iinit is the starting state of the automa-
ton. Two final states exist: F0 (resp., F1) stands for the state in
which player zero (resp., player one) wins. We only show half
of each automaton, the portion assuming the first move is made
by player 0; we omit the other half because it is symmetric.
Reaching a final state signifies a successful withdrawal. Note
that we use multiple clocks to simplify the presentation: in
particular, Ri denotes a reset of ith clock, i.e., ti←0. (Using
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Iinit T F0

co,R0

co,(t0<1.5d) co,(t0>1.5d)

(a) Transfer to an unapproved address

UF0 F1
co∧{G}⌈m/2⌉ co∧{G}⌈m/2⌉

(b) Immediately transfer to an unapproved address

Iinit/T Cg Iginit

co,R1

co∨(t1>2d)
(1.5d<t1≤2d)

(c) Change guardians

U L Co

{Call}1,R2

{Call}1∨(t2>5d)

{G}⌈m/2⌉,R3

(d) Locking wallet

U Co

Ioinit

{G}⌈m/2⌉,R3

{Call}⌈m+1/2⌉,(t3<2d)

(t3
>
2d
)

c
o ∧{G}⌈m

/2⌉

(e) Change owner

L CL
g

Iginit

Cg

co,R1
(1.5d<

t1≤2d)

{Call}1∨(t2>5d)

Co CO
g

Iginit

Cg

Ioinit

co,R1
(1.5d<t1≤2d)

{Call}⌈m+1/2⌉,(t3<2d)

(t3
>2d)

(f) Delete guardians when locked

Fig. 2: Argent mechanism Mm
Arg sub-automata

multiple clocks does not impact our formalization as they can
be removed to construct a standard automaton [31].)

If credentials are unchanged, there are only two ways for the
attacker to withdraw funds to an address it controls (Fig. 2a,
Fig. 2b). She can add this address to the approved list and
then withdraw, a process we call slow withdrawal. In order to
do so, the owner needs to initiate an action (Iinit to T ). The
addition becomes effective after 1.5 days, at which point the
owner can withdraw (T to F0). The approval process can be
cancelled with the owner credential during the 1.5 day period
(T to Iinit): this is useful if the owner credential co is leaked.

Another way to withdraw funds is to order a fast withdrawal
with the owner credential and at least half of the guardian

credentials (Fig. 2b).
The attacker can also try to withdraw funds by first

changing the set of credentials. One way is to change the set
of guardians (Fig. 2c). The owner initiates the process (Iinit
to Cg) and can be finalized only during a time window that
starts 1.5 days after initiation and lasts for 12 hours thereafter.
As in the slow withdrawal case, the guardian change process
can be cancelled by co.

Note that a guardian change implies a change in the
underlying scenario. The execution moves to another copy of
the same automaton, indicated by the new start state Iginit, with
a new scenario σ′ that reflects the change to new guardians.
For example, if player 0 is able to add a guardian, then the
new scenario σ′ has a new guardian credential gm+1 that is
known to 0 alone, and C′all=Call∪{gm+1}.

Argent implements locking, a feature intended for situations
when the owner suspects a credential fault [9]. As shown in
Fig. 2d, the mechanism can be moved from any state into a
locked state with any one credential. A limited set of actions
are possible in the locked state, namely, change owner and
unlock. Unlocking the automaton, i.e., moving back into its
previous state can be done with any credential. The state U
represents all unlocked states, i.e., Iinit or T or Cg .

Argent allows changing the owner, a process they call
recovery. There are two ways to do so (Fig. 2e). If the
current owner credential is lost, the automaton can be moved
from any unlocked state to the recovery state Co with ⌈m/2⌉
guardian credentials. The new owner address is specified in
this step. Finalizing this new owner takes 2 days. In this
period, owner change can be cancelled with ⌈(m + 1)/2⌉
credentials, which can include the original owner: this is
useful if the owner credential was not actually lost.

The second way is for when the owner credential is safe,
e.g., if the user wants to transfer the Argent app between
phones. In this case, there is no need to wait. The owner
can be changed immediately with the owner credential co
and ⌈m/2⌉ guardians, a process we call fast owner-change.

Similar to when a guardian change happens, a change of
owner moves the execution back to a start state Ioinit with a
modification to the scenario. For example, if player 0 is able
to change the owner, then the new scenario will reflect that:
the new credential co is known to player 0 alone.

Finally, Argent allows guardian revocation (but not addition)
from a locked (or recovery) state (Fig. 2f). Confirming
revocation can be done after 1.5 days like before, but
canceling it requires unlocking (or canceling recovery) first.

2) Profile analysis: We now analyze the security of
Argent Mm

Arg with one and with two guardians (m=1,2).
The one guardian case has just two credentials: an owner co

and a guardian g1. The user can reach a final state in two ways:
(a) submit both the credentials (Fig. 2b) or (b) submit just co
and wait for 1.5 days (Fig. 2a). So if one of the credentials
is lost but the other is safe, then the user’s winning strategy
is to revoke the lost credential. This is winning because all
the credentials will be safe in the new automaton.
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If co is safe and g1 is leaked or stolen, the mechanism
succeeds and the user’s winning strategy is to initiate guardian
revocation from any state. In particular, even if the attacker
initiates an owner change before (Iinit to Co), the user can ini-
tiate guardian revocation (reach CO

g ). The user does not even
need to cancel the owner change as it requires waiting 2 days
whereas the unsafe guardian can be revoked after 1.5 days.

If g1 is safe and co is leaked or stolen, the mechanism fails
and the attacker’s winning strategy is to lock the automaton
if the current state is unlocked, and cancel a recovery if the
current state is Co (i.e., owner change was initiated).

In summary, the profile of 1-guardian Argent M1
Arg has 5

scenarios, and M1
Arg is worse than our maximal mechanism

with 6 scenarios, i.e., M1
Arg≺M

[co,g1]
pr (Fig. 1). We similarly

analyze 2-guardian Argent M2
Arg in App. E to find that its pro-

file has 22 scenarios, and that it is worse than a priority mech-
anism with 28 scenarios, i.e., M2

Arg≺M
[co,g1,g2]
pr (Tab. IIa).

3) Improving Argent: We propose a simple strategy to im-
prove Argent’s profile: executing multiple transactions atomi-
cally, commonly known as a multicall [33]. For example, con-
sider the scenario (co leaked, g1 safe) where Argent previously
failed. It succeeds now because the user can atomically execute
two transitions: unlock and fast withdrawal from a locked state
(L or Co). With a multicall, Argent becomes maximal with 1
guardian, but not with 2 guardians or more. For example,
with two guardians, the profile of Argent with multicalls has
24 scenarios, weaker than 28 in a maximal mechanism.

While it is technically feasible to run a multicall with
Argent’s contracts today (e.g., using Uniswap’s multicall con-
tract [33]), we could not find a mention of this technique in Ar-
gent’s documentation and Argent does not natively support it.

As noted before, the use of multicalls only helps
improve Argent’s profile to an extent. One can attain better
security with our maximal mechanisms to achieve the same
functionality as Argent, except we omit locking as it does not
improve security in our model. Rather than using different
mechanisms for the various functions, e.g., change owner /
guardian, we propose the use of a maximal mechanism for all
functionalities, thus vastly simplifying the design. We propose
the use of a majority mechanism with some tie-breaking
function due to its simplicity.

One missing feature from our proposed design is fast with-
drawals (Fig. 2b) or fast owner change (Fig. 2e). However, it is
easy to add it: simply move to the final state if all the creden-
tials are submitted. The modified mechanism is still maximal,
i.e., doesn’t break PA, KR and TKR, since the fast path can
only be enabled if all the credentials are provided. However,
it does incur a usability hit: for all m>1, the user needs to do
more work in gathering guardian approvals than with Argent.
(If m=1, the user needs to submit all the credentials anyway.)

We demonstrate the practicality of our mechanisms with
a proof-of-concept priority mechanism in Solidity (App. A).
Our implementation takes about 100 lines of code and
requires 210k gas for the most costly function, compared
to 150k for Argent ($7.6 and $5.4 resp., assuming a gas price

of 30gwei and Ethereum price of $1200).

B. HDFC Online Bank Account
We model the authentication mechanisms used by the

HDFC bank website [10]. The bank provides a web portal for
the users to login with their password credential cp. We assume
that 2FA is enabled, in particular, one time PINs are received
on the registered mobile number; this credential is denoted cm.
The bank allows users to add additional factors if needed,
e.g., email, but we do not model it for simplicity. Finally,
users can change the registered mobile number by submitting
a request at the bank along with an ID proof [34]. We model
any acceptable identity proof using the credential cid(modeled
in the first automaton in Fig. 4.) There are other ways to
change the mobile number [35], e.g., use a debit card and
visit an ATM, but again, we do not model it for simplicity.

Like before, we focus on how to withdraw money to a
new (attacker-controlled) account number. It involves using
the password cp to login and authenticating via mobile cm
to initiate the third-party addition process. This process takes
30 minutes, during which it can be cancelled by logging in
to the bank portal. After the time elapses, money can be
transferred to the new account. This requires another 2FA.

The bank allows changing the password after authenticating
via mobile. In order to change the registered mobile number,
the user must submit a form along with relevant identity
proof cid, and the change happens after 3 days [35].

We now compute the profile assuming cid is safe. If cm
is safe, then the mechanism succeeds irrespective of the state
of cp. The user’s winning strategy is to change the password
(notice that the attacker cannot initiate any action with cp
alone). The mechanism also succeeds if cm is lost because cid
is safe, and it can be used to change the mobile number after
three days. In other scenarios, the mechanism fails because the
three day delay is sufficient to withdraw money by the attacker.

We find that the mechanism’s success does not change
irrespective of the state of the password credential cp, hence
it can be safely removed. While the redundancy of passwords
was observed by prior work [36], ours is the first to prove it
in a rigorous manner to our knowledge. In summary, HDFC’s
profile has 20 scenarios, weaker than our maximal mechanism.
The automaton, profile and a complete analysis is in App. E.

C. Prior Two-Credential Mechanisms
We compare (Fig. 3) all distinct n-credential mechanisms

where n ≤ 2 (that we know of) in a single graph, covering
common approaches used in practice, mechanisms from recent
prior work, and our new ones. Each rectangle represents a
mechanism. Arrows between rectangles show the ≻ relation,
i.e., an arrow from mechanism M1 to M2 signifies M2≻M1.
Adjoining a node is the profile of the mechanism restricted
to with-safe scenarios. The first row corresponds to c1 being
safe and c2 being stolen, leaked or lost in that order, and the
reverse for the second row.

The bottom row in the figure shows standard approaches
to storing a private key: either you store it as is, or split the
key (c1∧c2), or keep two separate copies (c1∨c2).
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c1∧c2

0 1 0
0 1 0

c1∨c2

0 0 1
0 0 1

c1

1 1 1
0 0 0

c2

0 0 0
1 1 1

M
(c1,c2)
pp

0 1 1
0 1 1

M
[c1,c2]
pr

1 1 1
0 1 1 M

[c2,c1]
pr

0 1 1
1 1 1

Fig. 3: One and two credential mechanisms.

The middle row represents a Paralysis Proofs [14], which
is the most secure 2-credential mechanism from prior work
to the best of our knowledge. We model their mechanism,
denoted by M

(c1,c2)
pp , in App. E. With two credentials, they use

an AND-mechanism c1 ∧ c2 with an additional feature. Any
credential can be challenged, and if no response is received
within a fixed duration, then the challenged credential is
removed. For example, if c1 is successfully challenged, the
new mechanism becomes just c2. In this manner, they handle
credential loss, and achieve better security than both AND
and OR mechanisms. But they do not encode the priority
between credentials, so it fails in both the scenarios where
one credential is safe and another is stolen.

Finally, the top row contains our two maximal mechanisms,
namely, M

[c1,c2]
pr and its isomorphism. As Fig. 3 illustrates,

our 2-credential mechanisms achieve better security.

VIII. CONCLUSION AND PRACTICAL IMPLICATIONS

We formalize the authentication problem in a synchronous
environment and define the security profile for evaluating
authentication mechanisms. After bounding the profile size
for any number of credentials n, we discover three types of
mechanisms that achieve this bound and show they cover
all maximal mechanisms for n ≤ 3. Our analysis allows
improving existing interactive authentication protocols and
we provide an Ethereum implementation.

An immediate insight arising from this work is the
criticality of the assumed synchronous channel. In practice,
such a channel must be implemented. For example, consider
email serving as the notification channel from a bank to its
clients. If the attacker gained even temporary access to a
user’s mobile device, she could delete any notifications, thus
voiding the channel’s effectiveness. We propose to overcome
this vulnerability by making such notification emails sticky –
they cannot be deleted for, say, 24 hours. In other settings
such as blockchain smart contracts, the notifications are
public, but the user should use multiple devices to monitor
the chain [37] (as used for other goals, e.g., [38], [39], [40]).

Our results open the door to a host of questions on au-
thentication mechanisms in alternative models, e.g., with asyn-
chronous communication, partial knowledge [27], and taking
into account economic incentives [26]. Exploring these ques-
tions and harnessing our results to strengthen existing systems
will bolster the security of digital assets and online services.
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APPENDIX A
PRIORITY MECHANISM SMART CONTRACT

A proof-of-concept implementation of the priority
mechanism is below. Note that this is strictly an academic
prototype meant to elucidate its inner workings, not to be
used in production environments.

1// SPDX-License-Identifier: GPL-3.0
2pragma solidity >=0.7.0 <0.9.0;
3
4contract PriorityWallet {
5 uint public numCredentials;
6 mapping(address => uint) public priority;
7 bool public withdrawalInProgress = false;
8 uint public maxClaimID = 0;
9 struct Details {

10 bool[] supporters;
11 uint amount;
12 address payable addr;
13 }
14 Details[] public claimDetails;
15 uint64 constant public delay = 30;
16 uint64 public expiryTime;
17
18 // Set the

guardians and the priority vector. Ideally
, you’d also want to deposit some money.

19 constructor
(address[] memory credentialList_) payable {

20 numCredentials = credentialList_.length;
21 for (uint i

= 0; i < credentialList_.length; i++) {
22 priority[credentialList_[i]] = i + 1;
23 }
24 }
25 function

getBalance() public view returns (uint) {
26 return address(this).balance;
27 }
28 // start a new

withdrawal. Internally creates a new claim
29 function initiateWithdrawal() public {
30 assert (priority[msg.sender] > 0);
31 assert (!withdrawalInProgress);
32 withdrawalInProgress = true;

33 expiryTime
= uint64(block.timestamp + delay);

34 // purge previous claim data (if any)
35 delete claimDetails;
36 maxClaimID = 0;
37 }
38 function getClaimSupporters(uint claimID

) public view returns (bool[] memory) {
39 return claimDetails[claimID].supporters;
40 }
41 // adds approval to an existing claim
42 function addApproval(uint claimID) public {
43 assert (withdrawalInProgress);
44 assert (claimID < maxClaimID);
45 assert

(uint64(block.timestamp) <= expiryTime);
46 assert (priority[msg.sender] > 0);
47 claimDetails[claimID].

supporters[priority[msg.sender]] = true;
48 }
49 function createNewClaimForWithdrawal

(uint amount, address payable
ToAddress) public returns (uint claimID) {

50 assert (priority[msg.sender] > 0);
51 assert (withdrawalInProgress

); // otherwise call initiateWithdrawal
52 assert

(uint64(block.timestamp) <= expiryTime);
53
54 bool[] memory supporters

= new bool[](numCredentials + 1);
55 supporters[priority[msg.sender]] = true;
56 claimDetails.push(

Details(supporters, amount, ToAddress));
57
58 claimID = maxClaimID; // create new claimID
59 maxClaimID = maxClaimID + 1;
60 }
61 function withdraw() public {
62 assert

(uint64(block.timestamp) > expiryTime);
63 assert(withdrawalInProgress);
64 bool[] memory potentialWinners

= new bool[](maxClaimID);
65 for (uint c = 0; c < maxClaimID; c++) {
66 potentialWinners[c] = true;
67 }
68 for (uint p = 1; p <= numCredentials; p++) {
69 bool foundAny = false;
70 for (uint c = 0; c < maxClaimID; c++) {
71 if (potentialWinners[c] &&

claimDetails[c].supporters[p]) {
72 foundAny = true;
73 }
74 }
75 if (foundAny) {
76 for (uint

c = 0; c < maxClaimID; c++) {
77 if (potentialWinners

[c] && !claimDetails
[c].supporters[p]) {

78 potentialWinners[c] = false;
79 }
80 }
81 }
82 }
83 for (uint c = 0; c < maxClaimID; c++) {
84 if (potentialWinners[c]) {
85 uint winningClaimID = c;
86 bool sent

= claimDetails[winningClaimID
].addr.send(claimDetails
[winningClaimID].amount);
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87 require
(sent, "Failed to send Ether");

88 withdrawalInProgress = false;
89 break;
90 }
91 }
92 }
93}

APPENDIX B
BOUNDED-DELAY AUTOMATON CONSTRUCTION

Given a judging function J , we now explain how to
construct a bounded-delay mechanism automaton M(J).

The high-level idea is as follows. The automaton has
states in two levels below the start state. The intermediate
level contains a state for each combination of player and
set of credentials submitted, forming the children of the
start state Iinit. Then, for each intermediate state, we find all
possible credential sets the second player can submit in order
to win and add outgoing edges correspondingly. There are
only two final states, one each for the respective players.

Consider the example automaton in Fig. 1. It corresponds
to the following mechanism: Given two credentials c1, c2,
consider the judging function J that prioritizes c1 over c2. As
shown, the start state has six children corresponding to the 3
possible credential sets (c1,c2,c1∧ c2) from the 2 parties (0,
1). These six states form the intermediate states. Only two
final states f0 and f1 exist. Player 0 (resp., 1) wins if the
execution reaches f0 (resp., f1). Player guards are depicted
through dashed and dotted edges: 0 can only take dashed
edges while 1 can only take dotted edges.

Note that we assume that each party can only submit one
message. This is done to simplify the automaton construction.

We briefly explain the construction of a bounded-delay
mechanism from a judging function. Given a judging
function J defined over a set of credentials Call, we describe
an authentication mechanism M=(Call,T ,clock,D,T fin

0 ,T fin
1 ).

Note that we assume that each player submits all their
credentials at once to simplify the construction.

Let the set of all AND-credential-guards that use ∧
connector only be G. |G| = 2n − 1 as each credential can
either be present or absent and we omit the ε-transition.

The set of all states T consists of 2 ·(2n−1) intermediate
states and 2 final states. An intermediate state t is created for
each player ID guard gplr ∈ P and credential guard gcd

γ ∈G,
with a transition between the start state and this new state,
(Iinit,g

plr,gcd
γ ,⊥,True,t), i.e., no clock guard, with clock reset.

The two final states are f0,f1. The set T fin
0 contains f0 and

the set T fin
1 contains f1.

The set of all transitions D consists of edges between the
start and intermediate states (explained before) and those
between the intermediate and final states (explained next).

There are two different types of transitions between
the intermediate and final states. The first type allows the
first-mover to win but only after some time elapses. For each
intermediate state t, if the player identifier that submitted

credentials before is idγ ∈ P , then there is a transition
(t,p,⊥,t= l,False,fγ), i.e., no credential guard.

The second type allows the other party to win, but only
if they submit better credentials. Let Cγ denote the set of
credentials submitted by the player idγ (in gcd

γ ) to reach an
intermediate state t. Let p′= id1−γ .

Find the set of credential guards G′ that result in the second-
mover winning, i.e., if γ = 0, find all gcd

1 ∈ Gc such that C1

contains the credentials in gcd
1 and J(C0,C1)=1. And if p=1,

find gcd
1 s.t. J(C1,C0) = 0. Add all such guards to G′. For

each gcd∈G′, there is a transition (t,p′,gcd,t<l,False,f1−γ).

APPENDIX C
OTHER RESULTS

Proofs of well-formedness are in §C-A, some miscellaneous
results in §C-B, and a count of majority functions is in §C-C.

A. Well-formedness proofs

Lemma 11. Given a permutation V over set Call, the priority
with exception judging function JV

pre is well-formed.

Proof. It is straightforward to see that the judging function
satisfies IA and KR. To satisfy TKR, we want to show that
given three different credential sets C0, C1 and C2, if C0≻C1

and C1≻C2 then C0 ̸⊆C2.
Since C0≻C1, we have two cases: (A) C0≻C1 is not the

exception or (B) C0≻C1 is the exception. Similarly C1≻C2

means: (I) C1 ≻ C2 is not the exception or (II) C1 ≻ C2 is
the exception. One of the four cases: A-I, B-I, A-II and B-II
must be true. We consider each one separately.

The proof for the case A-I (no exceptions) is exactly the
same as the one in Lemma 10.

Case B-II (both exceptions) is impossible because there is
only one exception and the three credential sets are different.

The case B-I where C0 ≻C1 is the exception can also be
ruled out due to the way we define an exception, namely,
that the credential declared worse by the exception is the
worst non-empty set of credentials. For example, if the
priority vector is V = [c2,c3,c1], then case B-I corresponds
to C0={c1} and C1={c3}. But no non-empty set C2 exists
s.t. C1≻C2. So C2=ϕ and therefore C0 ̸⊆C2.

The remaining case is A-II where C1≻C2 is the exception.
We prove this by contradiction, i.e., assume C0 ⊆ C2 or to
be precise C0 ⊂C2 because C0 ̸=C2. But no non-empty C0

exists because the only possible C0 satisfying C0 ⊂ C2 is
C0 = ϕ and it does not satisfy C0≻C1. This concludes the
proof since we ruled out all the four cases.

Lemma 12. Given any ID-agnostic tie-breaking function T ,
the majority judging function JT

maj is well-formed.

Proof. We prove the three properties. The IA and KR proofs
are immediate. We now prove TKR. Given three different
credential sets C0, C1 and C2 s.t. C0≻C1, and C1≻C2, we
want to show that C0 ̸⊆C2 to satisfy TKR.

For any majority-based judging function, if C ≻ C ′

then |C|≥|C ′|. So we have |C0|≥|C1|≥|C2|.
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So either |C0|> |C2| or |C0|= |C2| is true. If |C0|> |C2|
then C0 ̸⊆C2 and we are done.

It remains to prove for |C0|= |C2|. But in this case C0 ̸⊆C2

follows as C0 ̸=C2 (by definition) and |C0|= |C2|.

B. Miscellaneous results

Lemma 13. The profile matrix of M [c1,c2]
pr is as per Fig. 1.

Proof. The 3x3 grid with no safe scenarios are unsuccessful,
i.e., won by the attacker due to Lemma 3.

Since the priority judging function is well-formed, M [c1,c2]
pr

is maximal (Lemma 10). Corollary 1 says that all
maximal mechanisms are secure in with-safe-no-stolen
scenarios Σwsnt = Σws ∩Σnt and half of the with-safe-with-
stolen scenarios (Σwswst=Σws∩Σwt).

This fixes the values in all scenarios of the matrix except
two: the scenario σ = {safe,stolen} and its complement σ =
{stolen,safe}. Corollary 1 says that at most one of σ, σ is se-
cure; we need to find out which. The judging function J

[c1,c2]
pr

favors the user in the scenario σ and the attacker in σ.

Lemma 14. For all n, the size of all n-credential complete
maximal sets is the same.

Proof. Consider two different complete maximal sets O1

and O2. Each mechanism M2 ∈ O2 must be equivalent to
or worse from a mechanism M1 ∈ O1 (Definition 13). But
all mechanisms in a complete maximal set are maximal,
therefore it must be that M2

∼=M1. So, for each mechanism
in O2, there exists an equivalent mechanism in the other
set O1, and vice versa. And because no two mechanisms
within O1 (or O2) can be equivalent, there exists a one-to-one
mapping between O1 and O2. So |O1|= |O2|.

C. Count of majority judging functions

We now count the number of different majority functions,
i.e., tie-breaking functions. A tie occurs when C0 ̸= C1

but |C0|= |C1|. Let |C0|= |C1|=s where 1≤s<n (note that s
can’t be equal to n since C0 ̸=C1). For a given s, there are

f(n,s)=

(
n
s

)((
n
s

)
−1

)
2

,

possible tie situations. This is because, there are
(
n
s

)
ways

of picking an s-sized set C0, and
(
n
s

)
− 1 ways of picking

another set C1 ̸=C0. We divide by two as each tie situation
repeats twice. Summing over all s, the total number of
distinct tie situations is

q(n)=

n−1∑
s=1

f(n,s). (5)

A tie-breaking function can decide each situation in two
ways: pick C0 or C1. So there are 2q(n) different tie-breaking
functions, or in other words, 2q(n) different majority functions.

q(n)=

n−1∑
s=1

(
n
s

)
(
(
n
s

)
−1)

2

=
1

2

n−1∑
s=1

(
n

s

)2

− 1

2

n−1∑
s=1

(
n

s

)

=
1

2

[(
2n

n

)
−
(
n

0

)2

−
(
n

n

)2
]
− 1

2
[2n−2]

=
1

2

[(
2n

n

)
−2

]
− 1

2
[2n−2]

=
1

2

[(
2n

n

)
−2n

]
=

(
2n−1
n−1

)
−2n−1

APPENDIX D
COMPLETE MAXIMAL 3-CREDENTIAL SET

A. Omaj,3 mechanisms

The twelve majority mechanisms in O3 are:
Both linear (6 mechanisms): Fix [c1, c2, c3] as the linear

priority rule to break ties between 1-credential sets, and use
all the six permutations of [c1, c2, c3] to break ties between
2-credential sets.

Both cyclic (2 mechanisms): Two possible cyclic rules
exist: clockwise (c1≻c2,c2≻c3,c3≻c1) or counter-clockwise.
The two mechanisms are: use same or different rules for both
1-credential and 2-credential tie-breakers.

Linear and cyclic (4 mechanisms): Fix [c1, c2, c3] as the
linear priority rule to break ties between 1-credential sets and
use clockwise or counter-clockwise rule for 2-credential sets
to produce 2 mechanisms. Use cyclic rule for 1-credential
sets and linear rule for 2-credential sets to obtain two more.

B. Proof of Theorem 3

Before proving that these mechanisms form the complete
maximal set for 3 credentials we present a few lemmas. The
first one says that if both players use fixed strategies, then a
change in the scenario does not change the execution winner.

Lemma 15. Given two scenarios σ, σ′ using the same
mechanism M and a user strategy SU , attacker strategy SA

such that they can be employed in both the scenarios. Then
Winσ(S

U ,SA)=Winσ′(SU ,SA).

Proof. The proof follows straightforwardly because we
are using a deterministic automaton and the strategies are
deterministic, so irrespective of the scenario, the executions
will be the same, and hence the winner.

The next lemma says that, if the mechanism fails in a
scenario σ, then it also fails in all scenarios σ̂ that are worse
than σ. σ̂ is worse than σ as the attacker knows (equal or)
more credentials whereas the user knows (equal or) fewer
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credentials. Formally, given a scenario σ, we define a worse
scenario σ̂ through the following transform:

safe 7→safe/leaked/lost/stolen

stolen 7→stolen

leaked 7→ leaked/stolen

lost 7→ lost/stolen.

Lemma 16. If a mechanism fails in a scenario σ, then it also
fails in a worse scenario σ̂, ∀M , ¬Suc(M,σ) =⇒¬Suc(M,σ̂).

Note that proving the above also implies that success in a
worse scenario σ̂ implies success in σ.

Proof. Observe that (a) CA
σ ⊆CA

σ̂ and (b) CU
σ̂ ⊆CU

σ .
We prove by contradiction. That is, assume that the

attacker succeeds in a scenario σ but the user succeeds in the
transformed scenario σ̂. Let the successful strategy for the
user in σ̂ be SU . Since CU

σ̂ ⊆ CU
σ , the user can employ the

strategy SU in the scenario σ. By our initial assumption, the
attacker succeeds in σ. Let the successful attacker strategy be
SA. SA must win some executions against any user strategy
including SU . So we have Winσ(S

U ,SA)=A.
Since CA

σ ⊆CA
σ̂ , the attacker can employ the strategy SA

in the scenario σ̂. Any execution in the scenario σ̂ where the
user employs SU and the attacker employs SA results in a
win for the user. So we have Winσ̂(S

U ,SA)=U.
But σ and σ̂ use the same underlying mechanism M .

And if the strategies of the two parties are same, then both
Winσ(S

U ,SA)=A and Winσ̂(S
U ,SA)=U cannot be true due

to Lemma 15 and we arrive at a contradiction.

We now prove Theorem 3, i.e., that O3 is made up of the
two priority and twelve majority mechanisms only.

Proof. Proving a complete maximal set requires satisfying
three requirements per Definition 13:

1) All mechanisms in O3 must be maximal.
2) All mechanisms in O3 must be incomparable.
3) No other mechanism exists s.t. it is incomparable to

each mechanism in O3.
The first requirement is met due to Lemma 10, Lemma 11

and Lemma 12. The second one is also met, as can be verified
by inspecting the 76 mechanism profiles. (We cross-check
this through code.)

We prove the third requirement using a similar approach
taken in Theorem 2, but done at a larger scale. We use a
constraint solver to show that no 3-credential mechanism M
exists satisfying two types of constraints, explained below.

The first type of constraint encodes that M must be incom-
parable with any mechanism in O3. Satisfying it requires that
for each mechanism M ′∈O3, there exists at least one scenario
σ∈prof(M) that satisfies σ ̸∈prof(M ′). This scenario σ must
be a with-safe scenario due to Lemma 3. Rephrasing the
above, we get ∃σ∈prof(M) such that σ∈Σws\prof(M ′).

Observe that for any M ′ ∈ O3, prof(M ′) contains
all the with-safe scenarios except some with-safe-with-
stolen scenarios. Therefore Σws \ prof(M ′) ⊂ Σwswst. And

consequently, prof(M) must include at least one with-safe-
with-stolen scenario.

So to prove that no mechanism M exists, it suffices to
prove that prof(M) does not contain a with-safe-with-stolen
scenario. Let prof wswt(M) denote the subset of prof(M)
containing just the with-safe-with-stolen scenarios. We want
to show that |prof wswt(M)|=0.

We prove this by consider the set of all subsets of the 18
with-safe-with-stolen scenarios satisfying Lemma 2, i.e., no
two scenarios in a subset are complements of each other.
Denote this set by ∆ (|∆| = 39 because the 18 with-safe-
with-stolen scenarios can be arranged into 9 rows with each
row containing 2 complement scenarios. And we have three
ways of making a selection in each row: {none, first scenario,
second scenario}). Observe that this is the set of all possible
values for prof wswt, i.e., for any mechanism M , it must be
that prof wswt(M)∈∆.

And we want to find a set in ∆ satisfying the two
constraints. The first constraint, explained before, is
∀M ′∈O3,prof wswt(M)∩(Σws\prof(M ′)) ̸=ϕ.

The second constraint relies on the following observation.
If the mechanism wins in a with-safe-with-stolen scenario
σ, Lemma 2 implies that it fails in the complement scenario
σ. But then, due to Lemma 16, the mechanism fails in
any scenario worse than σ. For example, prof(M) cannot
contain the two scenarios σ = {stolen, stolen, safe} and
σ′ = {lost,safe,stolen}. This is because the mechanism fails
in the complement of σ, σ = {safe,safe,stolen}, and σ′ is a
worse scenario than σ.

The second constraint is ∀σ ∈ prof wswt(M),
∄σ′∈prof wswt(M) s.t. the complement σ is worse than σ′.

The constraint solver1 outputs the empty set, i.e., no such
prof wswt(M) exists and hence |prof wswt(M)| = 0. This
completes the proof that O3 is complete.

APPENDIX E
APPLICATIONS

We present details of Argent in §E-A and a bank in §E-B.
The Paralysis Proofs [14] mechanism is in Fig. 5.

A. Argent

1) 2 guardians: We analyze the profile of Argent with
2 guardians, i.e., 3 credentials in total (Tab. III). Since any
mechanism fails in all no-safe scenarios (Lemma 3), we only
discuss with-safe scenarios.

co safe / stolen: If the owner is safe, the user can revoke all
the leaked and stolen guardians (if any), and win. Similarly,
if the owner is stolen, the attacker can execute the above
strategy and win.

co lost: If each of the guardians is either lost or safe, the user
wins as the winning user strategy is to use the safe credential
to change the lost credentials. Note that a single guardian is
enough to change the owner.

1Code at https://pastebin.com/RqjesNZe for anonymous submission.
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co safe

g1
g2 St Le Lo Sa

St 1 1 1 1
Le 1 1 1 1
Lo 1 1 1 1
Sa 1 1 1 1

co lost

g1
g2 St Le Lo Sa

St 0 0 0 0
Le 0 0 0 0
Lo 0 0 0 1
Sa 0 0 1 1

co leaked

g1
g2 St Le Lo Sa

St 0 0 0 0
Le 0 0 0 0
Lo 0 0 0 1
Sa 0 0 1 1

co stolen

g1
g2 St Le Lo Sa

St 0 0 0 0
Le 0 0 0 0
Lo 0 0 0 0
Sa 0 0 0 0

TABLE III: Profile of Argent with 2 guardians

co safe

g1
g2 St Le Lo Sa

St 1 1 1 1
Le 1 1 1 1
Lo 1 1 1 1
Sa 1 1 1 1

co lost

g1
g2 St Le Lo Sa

St 0 0 0 0
Le 0 0 0 1
Lo 0 0 0 1
Sa 0 1 1 1

co leaked

g1
g2 St Le Lo Sa

St 0 0 0 0
Le 0 0 0 0
Lo 0 0 0 1
Sa 0 0 1 1

co stolen

g1
g2 St Le Lo Sa

St 0 0 0 0
Le 0 0 0 0
Lo 0 0 0 0
Sa 0 0 0 0

TABLE IV: Profile of Argent with 2 guardians and multicall

In case one of the guardians gets either leaked or stolen,
the attacker wins. The attacker’s winning strategy is to make
the wallet unusable by bringing the automaton to the owner
change state Co (requires one guardian). Even if the user can
cancel the owner change (possible in certain scenarios), the
attacker can immediately initiate another owner change.

co leaked: If both guardians are safe or if one is safe and
another is lost, the user wins because she is able to initiate
an owner change and the attacker does not know enough
credentials to cancel it. Note that starting a guardian change
does not help the attacker as the user can cancel it just before
the 1.5 day period ends.

If one of the guardians is leaked / stolen, the attacker wins
by executing a fast withdrawal.

In summary, the Argent mechanism with 2 guardians
has 22 scenarios, weaker than a maximal mechanism’s 28
scenarios (see Tab. IIa). Our proposed improvement with
multicalls is in §VII-A3.

2) 2-guardian with multicalls: If all the guardians are safe
(right bottom corner cells of Tab. IV), then the mechanism is
successful. The user’s strategy is to change the owner (which
can be done from any state). It is winning because canceling
an owner change requires two credentials. This strategy wins
even if co is stolen because even if the attacker initiates a

c1 safe

c2
c3 St Le Lo Sa

St 0 1 0 1
Le 1 1 1 1
Lo 0 1 1 1
Sa 1 1 1 1

c1 lost

c2
c3 St Le Lo Sa

St 0 0 0 1
Le 0 0 0 1
Lo 0 0 0 1
Sa 0 1 1 1

c1 leaked

c2
c3 St Le Lo Sa

St 0 0 0 1
Le 0 0 0 1
Lo 0 0 0 1
Sa 0 1 1 1

c1 stolen

c2
c3 St Le Lo Sa

St 0 0 0 0
Le 0 0 0 0
Lo 0 0 0 1
Sa 0 0 1 1

TABLE V: 3-credential majority with [c3, c2, c1] priority for
1-credential tie breaks and [c1,c3,c2] for 2-credential tie breaks.

guardian change, it will not be able to confirm it after the
user starts an owner change.

co safe: If one of the guardians is leaked or safe, then the user
knows two credentials, and can therefore execute the below
winning strategy. If the automaton state is unlocked, execute
a fast withdrawal. If it is locked, execute two function calls
atomically, namely unlock and initiate withdrawal.

If one of the guardians is lost and the other is stolen, then the
mechanism fails as the attacker can perform an owner change.

co unsafe: The mechanism succeeds in all scenarios where
one of the guardians is lost and the other is safe. If co is lost,
the winning strategy is to use the safe credential to change the
lost credentials. If co is leaked or stolen, the winning strategy
is to execute an owner change using the safe guardian. An
attacker cannot cancel it or stop the initiation, therefore we
move to a scenario where co is safe, and hence the user wins.

It also succeeds if the owner is lost, one of the guardians
is leaked and the other guardian is safe. The winning strategy
based on the automaton’s state: (a) if it is Co and the owner
change is not started by the user, cancel the current owner
change, and immediately start a new owner change, and (b)
if the state is anything else, execute an owner change. After
the owner becomes safe, we move to an already analyzed
scenario where the mechanism succeeds.

If both the owner and one of the guardians is leaked /
stolen and the other guardian is safe, then the attacker’s
winning strategy is to execute a fast withdrawal.

If the owner is lost, one of the guardians is stolen and the
other guardian is safe, then the attacker wins by changing the
owner.

3) Future extensions: We now discuss some modeling
extensions that can enrich the analysis.

Sending money to a trusted address could be treated as
win for the user. This can be reasonable when the address
belongs to friends / family and their accounts are safe. Note
that this is an asymmetric capability that the user alone
possesses, i.e., the attacker cannot leverage it. Modeling it
is an interesting direction for future work. Exploring larger
guardian numbers and attacks that initiate concurrent calls,
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cp∧cm,R0
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cp∧cm,t0>30m

Iinit/M I ′init
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Iinit/A M I ′′init
cid,R1 t1>3d

Fig. 4: HDFC bank sub-automata: send money to a new account,
change password, and change mobile number respectively.

withdrawing small amounts or changing guardians with
overlapping delay periods, would require additional tooling
outside the scope of this work.

B. Bank

We illustrate the bank automaton in Fig. 4 and explain its
resultant profile (Tab. VI):

If cm is safe, then irrespective of the state of password,
the mechanism succeeds because the user can reset password
(if it is unsafe) and then send money to a new account. The
above is true even if cid is unsafe because it takes 3 days to
change the mobile number, and the user can send all the money
to a new account meanwhile. (Note that this is true because
we assume that the user knows the credential cid; considering
partial knowledge might be more appropriate for this analysis.)

Similarly, if cm is leaked or stolen (corresponding to phone
hijacking attacks like SIM swapping), then the mechanism
fails because the attacker can now reset the password and
move money.

And if cm is lost and cid is safe, then the mechanism suc-
ceeds because the user can (a) change their mobile number by
waiting for 3 days and (b) then reset password (if it is unsafe).

Finally, if cm is lost and cid is unsafe, the mechanism fails
because either the attacker changes the mobile (cid leaked /
stolen) or no one does and the account is locked (cid lost).

cid safe

cm
cp St Le Lo Sa

St 0 0 0 0
Le 0 0 0 0
Lo 1 1 1 1
Sa 1 1 1 1

cid lost

cm
cp St Le Lo Sa

St 0 0 0 0
Le 0 0 0 0
Lo 0 0 0 0
Sa 1 1 1 1

cid leaked

cm
cp St Le Lo Sa

St 0 0 0 0
Le 0 0 0 0
Lo 0 0 0 0
Sa 1 1 1 1

cid stolen

cm
cp St Le Lo Sa

St 0 0 0 0
Le 0 0 0 0
Lo 0 0 0 0
Sa 1 1 1 1

TABLE VI: Profile of the bank mechanism.

Iinit F0F1

B0

B1

c0∧c1
c0∧c1

Rc0

c1,
t>

δc
1 ,t>δ

R c1

c
0 ,t>δc0,

t>
δ

Fig. 5: Paralysis Proofs Mechanism [14] with 2-credentials
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