
Funshade: Functional Secret Sharing for Two-Party Secure
Thresholded Distance Evaluation

Alberto Ibarrondo
Idemia & EURECOM

Sophia Antipolis, France
ibarrond@eurecom.fr

Hervé Chabanne
Idemia & Telecom Paris

Paris, France

Melek Önen
EURECOM

Sophia Antipolis, France

ABSTRACT
We propose a novel privacy-preserving, two-party computation of
various distance metrics (e.g., Hamming distance, Scalar Product)
followed by a comparison with a fixed threshold, which is known as
one of the most useful and popular building blocks for many differ-
ent applications including machine learning, biometric matching,
etc. Our solution builds upon recent advances in functional secret
sharing and makes use of an optimized version of arithmetic se-
cret sharing. Thanks to this combination, our new solution named
Funshade is the first to require only one round of communica-
tion and two ring elements of communication in the online phase,
outperforming all prior state-of-the-art schemes while relying on
lightweight cryptographic primitives. Lastly, we implement the so-
lution from scratch in Python using efficient C++ blocks, testifying
its high performance.

KEYWORDS
Functional Secret Sharing, Secure Two Party Computation, Scalar
Product, Hamming Distance

1 INTRODUCTION
The computation of privacy-preserving distance metrics 𝑓𝑑𝑖𝑠𝑡 (𝒙,𝒚)
between two vectors 𝒙,𝒚 followed by a comparison with a threshold
𝜃 is a very popular building block in many applications in need
of privacy protection, including machine learning (e.g., k-nearest
neighbors[63], linear regression [34]), biometrics (e.g., biometric
authentication [44, 53], biometric identification [31]) etc.

The literature counts many solutions based on various crypto-
graphic techniques that allow computation over sensitive data while
preserving its privacy: Secure Multiparty Computation (MPC) (gar-
bled circuits [60], secret sharing (SS) [38, 56]) to split the distance
computation acrossmultiple entities [19, 29, 32], Fully Homomorphic
Encryption (FHE) [23, 33, 35] supporting addition andmultiplication
between ciphertexts [4, 7, 22], and Functional Encryption [2, 9] as a
public-key encryption scheme that supports evaluation of scalar
products when decrypting the ciphertexts [3, 10].

However, not all operations are born equal. While linear opera-
tions are widely covered by all the privacy-preserving techniques,
the protection of non-linear operations including the comparison to
a threshold 𝜃 is much harder to attain. Computing this non-linear
operation with most MPC primitives is often communication inten-
sive (e.g., [29, 59]) both in terms of communication size and in num-
ber of rounds; FHE-based techniques must resort to computation-
intensive algorithms [24, 40]; and FE-based techniques are limited
to linear function evaluations. Luckily, recent solutions [11, 14, 54]
have demonstrated a considerable improvement to securely realize

the comparison to 𝜃 by resorting to Functional Secret Sharing (FSS)
primitives.

In [15], the authors specifically study the computation of dis-
tance metrics. They propose GSHADE, a decomposition of each
metric into a combination of local single-input functions and a
cross-product, employing Oblivious Transfer [50] to preserve the
privacy of their construction.

We draw inspiration from the family of distance metrics cov-
ered in GSHADE and integrate FSS-based threshold comparison
primitives from [11] with an optimized version of Secret Sharing
[49] in a two-party computation (2PC) protocol to perform privacy-
preserving distance metric computations with a subsequent com-
parison to 𝜃 . To summarize our contributions, our solution:
• requires just one round of communication in the online
phase, lowering the communication costs with respect to the
two-round state-of-the-art solutions from AriaNN [54] and
Boyle et. al. [11] by merging the round of communication
required for the scalar product with that of the comparison
to 𝜃 ,
• sends two ring elements only in the online phase, reducing
the communication size of previous solutions by a factor of
2𝑙 (for input vectors with 𝑙 elements),
• features 100% correctness in the comparison result, as op-
posed to [54],
• is implemented and open-sourced in a standalone Python
library with efficient C++ primitives.

The paper is outlined as follows. Section 2 describes the prelim-
inaries, the distance metrics we consider in this work and some
applications. Section 3 details the proposed solution, including its
security analysis. Section 4 addresses previous work and positions
our contribution, wrapping up with the conclusions and next steps
in Section 5.

2 PRELIMINARIES
Notation
We use bold letters to denote vectors (e.g., 𝒙 ,𝒚) and non-bold letters
for scalars. 𝒙 (𝑖) denotes the 𝑖th element of vector 𝒙 . For convenience
we omit the (𝑖) superscripts in lengthy element-wise additions of
the form Σ[𝒂 (𝑖) + 𝒃 (𝑖) + . . .]. We write 𝒂 · 𝒃 = 𝒄 to denote the
element-wise multiplication of two vectors where 𝒄 (𝑖) = 𝒂 (𝑖)𝒃 (𝑖) ,
and 𝒂𝑇 𝒃 to denote the inner (scalar) product between two vectors.

We reserve the notation 𝑃𝑑𝑒𝑠𝑐𝑟 to indicate a party/player in our
scenario with a certain description (e.g., 𝑃𝑠𝑒𝑡𝑢𝑝 for the party in
charge of the setup, 𝑃𝑖𝑛𝒙 for the party holding the input vector
𝒙), and label (𝑃0, 𝑃1) for the two computing parties in the 2PC
paradigm. We generalize behavior common to the two computing
parties by resorting to 𝑃 𝑗 , where 𝑗 ∈ {0, 1}. We use 𝑟 ← 4 to set the

1

https://orcid.org/0000-0003-4079-4127
https://orcid.org/0000-0002-5916-3387
https://orcid.org/0000-0003-0269-9495

Ibarrondo et al.

local variable 𝑟 to 4, and 𝑃𝑎 :Send 𝑟 ⇒ 𝑃𝑏 for party 𝑎 sending value
𝑟 to party𝑏. We noteU[𝑆] as the uniform random distribution in the
set 𝑆 , and write 𝑟 ∼ U[𝑆] to indicate sampling that distribution and
assigning the sample to 𝑟 . We employ 1𝑥 ∈𝐴 to denote the indicator
function (e.g., 1𝑥>5 = 1 ⇔ 𝑥 > 5):

1𝑥 ∈𝐴 ≡ 1𝐴 (𝑥) ≜
{
1 if 𝑥 ∈ 𝐴,
0 if 𝑥 ∉ 𝐴,

As a special case of indicator function, the unit step function is
defined as 𝐻 (𝑥) = 1𝑥 ∈R∗+ = 1𝑥⩾0. We implicitly consider a twos-
complement encoding to map between signed and unsigned 𝑛-
bit integers, a bijective mapping between [−2𝑛−1, 2𝑛−1 − 1] and
[0, 2𝑛 − 1] by applying mod 2𝑛 , where the interval of negative
values [−2𝑛−1,−1] is mapped to the upper half of the unsigned
interval [2𝑛−1, 2𝑛 − 1]. As such, the unit step function for 𝑛-bit
integers 𝐻𝑛 (𝑥) corresponds to 𝐻𝑛 (𝑥) = 1𝑥 ∈Z𝑛+ = 10⩽𝑥⩽2𝑛−1−1.

We write ⟨𝑥⟩ to indicate that value 𝑥 is arithmetically secret
shared into shares (𝑥0, 𝑥1) among computing parties (𝑃0, 𝑃1) such
that 𝑃0 holds the share 𝑥0 and 𝑃1 holds the share 𝑥1. Likewise, we
write ⟨⟨𝑥⟩⟩ to indicate that value 𝑥 is Π-secret shared (Section 2.1.2)
into three shares (Δ𝑥 , 𝛿𝑥0, 𝛿𝑥1), where both parties (𝑃0, 𝑃1) hold
Δ𝑥 and each party 𝑃 𝑗 holds 𝛿𝑥 𝑗 .

2.1 Multi-Party Computation
Secure multi-party computation (or MPC) [6, 21, 38, 60] allows
two or more parties to compute any mathematical function on
private inputs without revealing anything but the output of the
function. Typically, MPC is instantiated in the preprocessing model,
where specially crafted randomness is generated in an offline input-
independent phase from either a trusted dealer or via an offline
interaction, and then this randomness is used in the online phase to
compute the function, once the inputs are known. This two-phase
approach yields considerable performance benefits. Some examples
of this correlated randomness include Beaver multiplication triples
[5] and garbled circuit preprocessing [29, 60].

When used to evaluate circuits based on only binary or only
arithmetic interactions, MPC protocols present very fast online
execution. However, applications such as biometrics or machine
learning require a combination of linear operations (additions and
multiplications over a large ring) and non-linear operations such as
integer comparison or truncation. The cost of blindly implementing
these two types of operations with only one MPC circuit type can
be prohibitively high. To address this, many works have tackled
mixed-mode MPC to provide efficient conversions between arith-
metic and binary domains, supporting both linear and non-linear
operations [19, 29, 48, 49]. Yet, these conversions often entail a hefty
communication overhead in the online phase.

In line with the TinyTable protocol [27] to secret share truth
tables in a succinct manner, Boyle et al. propose a very promising
approach [11, 14] based on Functional Secret Sharing (FSS) [12, 13].
Offering the same online communication and round complexity
for non-linear function evaluations as for pure arithmetic compu-
tations in arithmetic-only circuits, FSS relies on fast symmetric
cryptography primitives to also yield fast online evaluation.

The present work will benefit from standard arithmetic secret
sharing techniques [5], more evolved secret sharing techniques em-
anating from research in mixed-mode operations [49] and modern

FSS approaches [11] to achieve a lightweight and highly commu-
nication efficient biometric matching protocol. As such, we now
delve into the details of these techniques.

2.1.1 Additive Secret Sharing. Secret sharing is a cryptographic
primitive that allows a secret 𝑥 to be shared among 𝑛 parties, such
that any 𝑡 of them can reconstruct the secret. The secret sharing
scheme is defined by 𝑘 , the number of parties, and threshold 𝑡 ,
minimum number of parties required to reconstruct the secret. In
the domain of two-party computation (2PC), the number of parties
is 𝑛 = 2 and the threshold is 𝑡 = 2. This work focuses on 2PC
arithmetic secret sharing in rings (shortened to SS for convenience),
where a secret value 𝑥 is split into two random shares 𝑥0 and 𝑥1 such
that 𝑥 = 𝑥0 +𝑥1 mod 𝑁 , with 𝑁 being the ring size. The shares are
distributed to the two computing parties such that party 𝑃 𝑗 receives
the share 𝑥 𝑗 . With this sharing scheme, the two parties can perform
local addition/subtraction of two secret shared values. Additionally,
parties can resort to Beaver’s multiplication triples [5] to perform
multiplication at the cost of one round of communication:

SS.add: Online(𝑃0, 𝑃1): ⟨𝑥 ± 𝑦⟩ = ⟨𝑥⟩ ± ⟨𝑦⟩
SS.mult:Offline(𝑃𝑠𝑒𝑡𝑢𝑝): ⟨𝑎⟩ , ⟨𝑏⟩ ∼ U[Z2×2

𝑁
]

⟨𝑐⟩ ← ⟨𝑎 · 𝑏⟩
Send(𝑎 𝑗 , 𝑏 𝑗 , 𝑐 𝑗) ⇒ 𝑃 𝑗

Online(𝑃0, 𝑃1): Send(𝑥 𝑗 − 𝑎 𝑗 , 𝑦 𝑗 − 𝑏 𝑗) ⇒ 𝑃1−𝑗
⟨𝑥 · 𝑦⟩ = ⟨𝑏⟩ (𝑥−𝑎) + ⟨𝑎⟩ (𝑦−𝑏) + ⟨𝑐⟩

+ (𝑥−𝑎) (𝑦−𝑏)
(1)

At the end of the computation, the resulting secret shared value
can be reconstructed by sending both shares to a chosen party
𝑃𝑟𝑒𝑠 , to add the two shares together and reconstruct the result. We
work with 𝑁 = 2𝑛 for values of 𝑛 ∈ {8, 16, 32, 64} to benefit from a
considerable speedup when dealing with 𝑛-bit modular arithmetic
thanks to native integer types present in modern computers.

Of special interest for this work,computing a scalar product
𝒙𝑇𝒚 =

∑𝑙
𝑖=1 𝒙

(𝑖) · 𝒚 (𝑖) with SS requires sending 2 terms per multi-
plication, for a total of 2𝑙 values sent.

2.1.2 Π-Secret Sharing. Originally inspired by ASTRA [20] in
the 3PC scenario, ABY2.0 [49] introduced a novel way to perform
additive secret sharing in 2PC1, where a value 𝑥 is split into three
random shares (Δ𝑥 , 𝛿𝑥0, 𝛿𝑥1) such that Δ𝑥 = 𝑥 + 𝛿𝑥0 + 𝛿𝑥1 mod 𝑁 .
The 𝛿-shares 𝛿𝑥 𝑗 are distributed to each computing party 𝑃 𝑗 forming
an arithmetic secret sharing ⟨𝛿𝑥 ⟩ of 𝛿𝑥 = 𝛿𝑥0 + 𝛿𝑥1, while the Δ-
share Δ𝑥 is held by both parties at once. We name this sharing
scheme as Π-secret sharing, due to the "horizontally" mutual Δ-
share and the two "vertically" separated 𝛿-shares, and denote the
Π-sharing of value 𝑥 as ⟨⟨𝑥⟩⟩. The Π-sharing scheme allows local
addition/subtraction, and multiplication at the cost of one round
of communication. The essential difference with respect to the
SS scheme is that the 𝛿-shares can be precomputed (leaving only
the Δ-share to be determined in the online phase), and thus carry
extra correlation that was not possible with standard SS. The main
arithmetic operations in ΠSS are defined as follows:

1Note that ABY2.0 [49] refers to arithmetic secret sharing as [·]-sharing and Π-secret
sharing as ⟨·⟩-sharing.

2

Funshade: Functional Secret Sharing for Two-Party Secure Thresholded Distance Evaluation

ΠSS.add: Online(𝑃0, 𝑃1): ⟨⟨𝑥 ± 𝑦⟩⟩ = ⟨⟨𝑥⟩⟩ ± ⟨⟨𝑦⟩⟩
ΠSS.mult:Offline(𝑃𝑠𝑒𝑡𝑢𝑝): ⟨𝛿𝑥 ⟩ ,

〈
𝛿𝑦

〉
, ⟨𝛿𝑧⟩ ∼ U[Z3×2

𝑁
]〈

𝛿𝑥𝑦
〉
←

〈
𝛿𝑥 · 𝛿𝑦

〉
Send (𝛿𝑥 𝑗 , 𝛿𝑦 𝑗 , 𝛿𝑥𝑦 𝑗) ⇒ 𝑃 𝑗

Online(𝑃0, 𝑃1): ⟨𝑥 · 𝑦⟩ ≡ ⟨𝑧⟩ ← 𝑗 ·Δ𝑥Δ𝑦 − Δ𝑥
〈
𝛿𝑦

〉
− Δ𝑦 ⟨𝛿𝑥 ⟩ +

〈
𝛿𝑥𝑦

〉
⟨Δ𝑧⟩ ≡ ⟨𝑧⟩ + ⟨𝛿𝑧⟩
Send (Δ𝑧 𝑗) ⇒ 𝑃1−𝑗
⟨⟨𝑧⟩⟩ ≡ (Δ𝑧0 + Δ𝑧1, ⟨𝛿𝑧⟩)

(2)
Crucially, the online phase of the Π-sharing multiplication first

computes a local arithmetic sharing of the result, and then uses one
round of communication to convert the result back into Π-shares.
As promptly explained in [49], this moves the communication from
the multiplication inputs to the multiplication outputs, which yields
sizeable advantages in terms of communication size for operations
such as the scalar product: computing a scalar product 𝒙𝑇𝒚 =∑𝑙
𝑖=1 𝒙

(𝑖) · 𝒚 (𝑖) with ΠSS requires sending 2 values only for the
entire operation, thus reducing the communication size by a factor
of 𝑙 with respect to SS.

2.1.3 Functional Secret Sharing. A 2PC Functional Secret Shar-
ing (FSS) scheme [12, 13] for a function family F splits a function
𝑓 ∈ F into two additive shares (𝑓0, 𝑓1), such that each 𝑓𝑗 hides 𝑓
and 𝑓0 (𝑥) + 𝑓1 (𝑥) = 𝑓 (𝑥) for every input 𝑥 . Beyond trivial solutions
such as secret-sharing the truth-table of 𝑓 , FSS schemes seek suc-
cinct descriptions of 𝑓𝑗 (function keys 𝒌0, 𝒌1) with efficient online
execution. Since both function shares must evaluate on the same
value 𝑥 , this value must be made public to both computing parties
𝑃 𝑗 . To maintain input data privacy, a random mask 𝑟 is added to the
secret input 𝑥 , so that the opened value 𝑥 = 𝑥 + 𝑟 completely hides
𝑥 before using it as input to the FSS evaluation. In order to obtain
full correctness on the function evaluation with respect to 𝑓 (𝑥),
the class of functions F is restricted to 𝑓𝑟 (𝑥) = 𝑓 (𝑥 + 𝑟), where the
mask is known by the dealer and used for the key generation.

For addition and multiplication gates over a ring Z2𝑛 , the FSS
gates correspond to Beaver’s protocol [5]. A much more interest-
ing case arises in [11, 14], where non-linear operations including
zero-test, integer comparison or bit decomposition are efficiently
constructed using a small number of invocations of FSS primi-
tives. Luckily, these FSS gates make a black-box use of any secure
pseudorandom generator (PRG), yielding short keys and fast imple-
mentations based on AES.

Grounded on the MPC preprocessing model, a FSS gate is com-
posed of two algorithms:

• Gen(1𝜆 , 𝑓)→(𝒌0, 𝒌1) is a PPT key generation algorithm that,
given the security parameter 𝜆 and the description of a func-
tion 𝑓 : G𝑖𝑛 ↦→ G𝑜𝑢𝑡 , outputs a pair of functional keys (𝒌0,
𝒌1) containing the descriptions for 𝑓0, 𝑓1 and the input mask
shares 𝑟0, 𝑟1 respectively.
• Eval(𝑗 , 𝒌 𝑗 , 𝑥)→ 𝑓 (𝑥) is a polynomial-time deterministic
algorithm that, given the party index 𝑗 , the functional key

𝑘 and the masked input 𝑥 outputs an additive share 𝑓𝑗 (𝑥),
such that 𝑓0 (𝑥) + 𝑓1 (𝑥) = 𝑓 (𝑥).

As central building block ofmany FSS gates, we recall the concept
of Distributed Comparison Function (DCF) (Section 3 of [11]) to be a
comparison function 𝑓 <

𝛼,𝛽
outputting 𝛽 if 𝑥 > 𝛼 and zero otherwise.

Built on top of two evaluations of DCF, [11] later proposes a FSS
gate for Interval Containment (IC) computing 𝑓𝑝,𝑞 (𝑥) = 1𝑥 ∈[𝑝,𝑞]
(Section 4.1 of [11]). To compute the unit step function of a 𝑛-bit
signed integer, it suffices to employ their construction (detailed in
Figure 3 if [11]) setting 𝑝 = 0 and 𝑞 = 2𝑛−1 − 1, obtaining 1𝑝⩽𝑥⩽𝑞 =

𝐻𝑛 (𝑥). For convenience, we detail this FSS gate instantiation in
Protocols 1 (key generation) and 2 (evaluation), keeping the DCF
calls to the original protocol in [11].

Protocol 1 FSS.Gen𝐼𝐶 (𝜆, 𝑛, 𝑟)→ 𝒌𝐼𝐶0 , 𝒌𝐼𝐶1

Players: 𝑃𝑠𝑒𝑡𝑢𝑝 carries out the generation.
Input: 𝜆: computational security parameter.

𝑟 : Mask for the input to the function.
Output: 𝒌0, 𝒌1: preprocessing keys, to send to 𝑃0, 𝑃1 respectively.

⟨𝛿𝒙 ⟩ ,
〈
𝛿𝒚

〉
: 𝛿-shares of input vectors, to send to 𝑃𝑖𝑛𝒙 , 𝑃𝑖𝑛𝒚

(input owners) resp.
Note: All arithmetic operations (+,−,·) are defined in Z2𝑛 , thus their

results are susceptible to "overflow" due to modular reduction.

Define the interval [𝑝,𝑞] for sign extraction:
1: 𝑝 ← 0; 𝑞 ← 2𝑛−1 − 1

Generate a DCF for 𝛾 , am arbitrary value above the two interval limits:
2: 𝛾 ← (2𝑛 − 1)
3: (𝒌𝛾0, 𝒌𝛾1) ← Gen<𝑛 (1𝜆, 𝛾 + 𝑟, 1,U[Z2𝑛])

Generate the correction terms2to fix overflows:
4: 𝑐 ← 1𝑝+𝑟>𝑞+𝑟 + 1𝑞+𝑟+1>𝑞+1 − 1𝑝+𝑟>𝑝 + 1𝑝+𝑟=2𝑛−1
5: 𝑐0 ∼ U[Z2𝑛] ; 𝑐1 ← 𝑐 − 𝑐0

Compose keys:
6: 𝒌𝐼𝐶0 ← (𝒌𝛾0, 𝑐0); 𝒌𝐼𝐶1 ← (𝒌𝛾1, 𝑐1)
7: return 𝒌𝐼𝐶0 , 𝒌𝐼𝐶1

2.1.4 On security guarantees. This work focuses on 2PC with secu-
rity against a semi-honest adversary non-adaptively corrupting at
most one computing party. Also referred to as Honest -but-Curious,
the computing parties 𝑃 𝑗 are to follow the protocol faithfully, while
a party corrupted by the adversary will try to extract as much
information as possible from his computation.

Employing simulation based security proofs [17, 37], previous
works have proven SS and ΠSS to be perfectly information theoretic
secure against computationally unbounded semi-honest adversaries
[29, 49]. In contrast, FSS schemes FSS schemes rely on the security
of the underlying PRG to be proven computationally secure against
time bounded adversaries [11].

2The correction terms test three standard overflow cases and one corner case. The
standard case terms test if𝑞+𝑟 overflows (1𝑝+𝑟>𝑞+𝑟), if𝑞+𝑟+1 overflows (1𝑞+𝑟+1>𝑞+1),
and if 𝑝 + 𝑟 does not overflow (1𝑝+𝑟>𝑝 , which is always 1 in our instantiation since
𝑝 = 0 and 𝑟 < 2𝑛 − 1). The corner case term tests whether 𝑝 + 𝑟 = 2𝑛 − 1 (1𝑝+𝑟=2𝑛−1 ,
yielding zero except if 𝑟 = 2𝑛 − 1 in our case). Proofs of the need of these correctness
terms are given in [11].

3

Ibarrondo et al.

Table 1: Reformulation of the distance metrics into a composition of local evaluations of 𝑓𝑙𝑜𝑐𝑎𝑙 and the cross product 𝑓𝑐𝑝 · 𝒙𝑇𝒚

Distance Metric Formula 𝑓𝑙𝑜𝑐𝑎𝑙 (𝒙) + 𝑓𝑙𝑜𝑐𝑎𝑙 (𝒚) + 𝑓𝑐𝑝 · 𝒙𝑇𝒚 𝑓𝑙𝑜𝑐𝑎𝑙 (𝒗) 𝑓𝑐𝑝

Scalar/Inner Product
∑
𝒙 (𝑖) · 𝒚 (𝑖) 0 + 0 + 1∑(𝒙 (𝑖) · 𝒚 (𝑖)) 0 1

Hamming Distance
∑
𝒙 (𝑖) ⊕ 𝒚 (𝑖) ∑(𝒙 (𝑖))2 +∑(𝒚 (𝑖))2 − 2∑(𝒙 (𝑖) · 𝒚 (𝑖)) ∑(𝒗)2 -2

Squared Euclidean
∑(𝒙 (𝑖) −𝒚 (𝑖))2 ∑(𝒙 (𝑖))2 +∑(𝒚 (𝑖))2 − 2∑(𝒙 (𝑖) · 𝒚 (𝑖)) ∑(𝒗)2 -2

Squared Mahalanobis (𝒙−𝒚)𝑇𝑴 (𝒙−𝒚) 𝒙𝑇𝑴𝒙 + 𝒚𝑇𝑴𝒚 − 2 (𝒙𝑇𝑴) · 𝒚 (𝒗𝑇𝑀𝒗) -2

Protocol 2 FSS.Eval𝐼𝐶 (𝑗 , 𝒌 𝑗 , 𝑥)→ 𝑜0, 𝑜1

Players: 𝑃 𝑗 the selected computing party 𝑗 .
Input: 𝑗 : The party number, 𝑗 ∈ {0, 1}.

𝒌 𝑗 : The key for 𝑃 𝑗 , composed of a DCF key for 𝛾 and a
correction share 𝑐 𝑗 .

𝑥 : Masked public input, result of reconstructing 𝑥 + 𝑟 .
Output: 𝑜0, 𝑜1: Additive secret shares of 1𝑥 ∈[0,2𝑛−1−1] .

Define the interval [𝑝,𝑞] for sign extraction:
1: 𝑝 ← 0; 𝑞 ← 2𝑛−1 − 1

Deserialize key and obtain local overflow term 𝜂:
2: (𝒌𝛾 𝑗 , 𝑐 𝑗) ← 𝒌 𝑗
3: 𝜂 ← 1𝑥>𝑝 − 1𝑥>𝑞+1

Evaluate the DCF with two inputs and compute result:
4: 𝑜𝐿

𝑗
← Eval<𝑛 (𝑗, 𝒌𝛾 𝑗 , 1, 𝑥 − 1)

5: 𝑜𝑅
𝑗
← Eval<𝑛 (𝑗, 𝒌𝛾 𝑗 , 1, 𝑥 − 𝑞)

6: return 𝑜 𝑗 ← 𝑗 · 𝜂 − 𝑜𝐿
𝑗
+ 𝑜𝑅

𝑗
+ 𝑐 𝑗

2.2 Thresholded distance metrics and
applications

Inspired by GSHADE[15], we now introduce the thresholded dis-
tance metrics that we seek to protect in this work alongside moti-
vating real-world applications:

• Scalar Product: 𝑓𝑆𝑃 (𝒙,𝒚) = 𝒙𝑇𝒚 =
∑𝑛
𝑖=1 𝒙

(𝑖)𝒚 (𝑖) is a com-
mon distance metric in face recognition where 𝒙,𝒚 ∈ R𝑛 are
two vectors of the same dimension. It is used to measure the
similarity between two vectors.
• Hamming Distance: 𝑓𝐻𝐷 (𝒙,𝒚) =

∑𝑛
𝑖=1 (𝒙 (𝑖) ⊕ 𝒚 (𝑖)) is a

distance metric frequently used in information theory and
computer science to measure the distance between two bit-
strings. Besides its interest in iris and fingerprint recognition,
it is the base of the perceptual hashing technique [47] used
in image comparison, with applications ranging from im-
age watermarking [30] to detection of Child Sexual Abuse
Material (CSAM)[25].
• Squared Euclidean Distance: 𝑓𝑆𝐸𝐷 (𝒙,𝒚) =

∑𝑛
𝑖=1 (𝒙 (𝑖) −

𝒚 (𝑖))2 is a distance metric used in many machine learning
applications, such as clustering [46]. It is also used in the
context of face recognition [36].
• Squared Mahalanobis Distance: 𝑓𝑀𝐷 (𝒙,𝒚) = (𝒙 −𝒚)𝑇𝑴
(𝒙 −𝒚) is a distance metric used in many machine learning
applications, such as clustering [46] and recognition of hand
shape/keystrokes/signatures [15].

3 OUR SOLUTION
We now describe our solution for a lightweight and efficient 2PC
distance metric with comparison, requiring a single round of com-
munication and two ring elements in the online phase.

3.1 Distance Metrics
We start off by writing the generic function we wish to protect:

𝑓 (𝑓𝑑𝑖𝑠𝑡 , 𝜃, 𝒙,𝒚) = 1𝑓𝑑𝑖𝑠𝑡 (𝒙,𝒚)⩾𝜃 =

{
1 if 𝑓𝑑𝑖𝑠𝑡 (𝒙,𝒚) ⩾ 𝜃,

0 if 𝑓𝑑𝑖𝑠𝑡 (𝒙,𝒚) < 𝜃,
(3)

To adapt to 2PC, we reformulate the distance metrics 𝑓𝑑𝑖𝑠𝑡 from
Section 2.2 as

𝑧 = 𝑓𝑑𝑖𝑠𝑡 (𝒙,𝒚) = 𝑓𝑙𝑜𝑐𝑎𝑙 (𝒙) + 𝑓𝑙𝑜𝑐𝑎𝑙 (𝒚) + 𝑓𝑐𝑝 ·
∑
(𝒙 (𝑖) · 𝒚 (𝑖)) (4)

where 𝑓𝑙𝑜𝑐𝑎𝑙 is a function that can be computed locally by each
input data holder, and 𝑓𝑐𝑝 is the "cross product" constant factor that
applies to the scalar product evaluation present in all the metrics.
Using this blueprint, we rewrite all the distance metrics in Table 1.

We remark that the Hamming Distance can be reformulated as
the Squared Euclidean Distance as long as the input vectors are
composed of binary values 𝒙 (𝑖) ,𝒚 (𝑖) ∈ {0, 1}∀𝑖 , since the boolean
XOR operation between two binary values can be rewritten in the
arithmetic domain as 𝒙 (𝑖) ⊕ 𝒚 (𝑖) = (𝒙 (𝑖) −𝒚 (𝑖))2, the square of its
difference.

3.2 Roles in 2PC scenario
Our solution is set in a two-party computation scenario, requiring
two parties taking the role of "computing servers", yet there are
more duties to cover. In total, we distinguish up to six different
roles in our system and model them as player types:

• 𝑃𝑠𝑒𝑡𝑢𝑝 : The setup party is responsible for generating the pre-
processing material during the offline phase, and distribute
it to the parties involved in the online phase. The setup party
must be trusted.
• 𝑃0, 𝑃1: Computing parties in the 2PC semihonest paradigm.
• 𝑃𝑖𝑛𝑥 , 𝑃𝑖𝑛𝑦

: The owners/holders of the input vectors, to be
shared with the computing parties at the beginning of the
online phase.
• 𝑃𝑟𝑒𝑠 : The party that will receive the result of the full protocol
execution.

These roles are not forcefully separate entities. In a strict 2PC
scenario the computing parties will jointly perform the role of
𝑃𝑠𝑒𝑡𝑢𝑝 , and optionally even provide the inputs (e.g., 𝑃𝑖𝑛𝒙 ≡ 𝑃0 and
𝑃𝑖𝑛𝒚 ≡ 𝑃1).

4

Funshade: Functional Secret Sharing for Two-Party Secure Thresholded Distance Evaluation

𝛱 Secret Sharing ⟪𝑥⟫:
𝑥 = Δ𝑥 − (𝛿𝑥0 + 𝛿𝑥1)

𝑃0 Δ𝑥

𝛿𝑥0 𝛿𝑥1

Δ𝑥 𝑃1

Secret sharing of 𝑥

Scalar Product z ← 𝒙𝑻𝒚
& Comparison: z ≥ 𝜃

“Beaver” Mult. Triples

𝑃𝑠𝑒𝑡𝑢𝑝
𝛿𝑥𝑦 = 𝛿𝑥 ⋅ 𝛿𝑦

𝑃0
𝛿𝑥𝑦0, 𝛿𝑥0, 𝛿𝑦0

𝑃1
𝛿𝑥𝑦1, 𝛿𝑥1, 𝛿𝑦1

𝑃0 𝑃1𝜹𝒙𝒚0, 𝜹𝒙0, 𝜹𝒚0, 𝚫𝒙, 𝚫𝒚, 𝒌0, 𝑟0 𝜹𝒙𝒚1, 𝜹𝒙1, 𝜹𝒚1, 𝚫𝒙, 𝚫𝒚, 𝒌1, 𝑟1

𝑧0 ←∑ 𝜹𝒙𝒚0 −𝚫𝒙𝜹𝒚0 −𝚫𝒚𝜹𝑥0
Ƹ𝑧𝜃0 ←𝑧0 + 𝑟𝜃0

𝑧1 ←∑ 𝜹𝒙𝒚1 −𝚫𝒙𝜹𝒚1 −𝚫𝒚𝜹𝑥1 +𝚫𝒙𝚫𝒚

Ƹ𝑧𝜃1 ←𝑧1 + 𝑟𝜃1

Ƹ𝑧0 Ƹ𝑧1
send

𝑜 = z ≥ 𝜃 ∀𝒙, ∀𝒚, ∀𝜃

𝑜0 ← FSS. EvalIC ො𝑧𝜃, 𝒌0

Ƹ𝑧𝜃 ← Ƹ𝑧𝜃0 + Ƹ𝑧𝜃1 Ƹ𝑧𝜃 ← Ƹ𝑧𝜃0 + Ƹ𝑧𝜃1

𝑃𝑠𝑒𝑡𝑢𝑝𝜹𝒙𝒚0, 𝜹𝒙0, 𝜹𝒚0, 𝑟𝜃0, 𝒌0
𝜹𝒙𝒚1, 𝜹𝒙1, 𝜹𝒚1, 𝑟𝜃1, 𝒌1

𝑜1 ← FSS. EvalIC ො𝑧𝜃, 𝒌1

Figure 1: Overview of Funshade primitives

3.3 Sketching the solution
With the different roles in place, we are now ready to sketch our
solution. In a nutshell, we combine Π-sharing to locally compute
a scalar product with the FSS gate for interval containment from
[11] with full correctness.

The key insight driving our design stems from the intermediate
SS state in the Π-sharing multiplication (Equation 2). By providing
Π-shared input vectors to the computing parties 𝑃 𝑗 , we can locally
obtain the SS shares of the element-wisemultiplication, and perform
local cumulative addition to obtain shares of the scalar product
result. Compared to the pure SS approach, we no longer need a
round of communication to reconstruct the intermediate values 𝑥−𝑎
and𝑦−𝑏 masked by Beaver triples (Mult. in Equation 1). As pointed
out in ABY2.0 [49], the communication in a ΠSS multiplication gate
happens at the output wires, as opposed to SS multiplication gates
where the round of communication is tied to the input wires.

The subsequent FSS gate for interval containment requires a
publicly reconstructed input held by both parties, which, to preserve
the input data privacy, must be masked prior to its reconstruction
(in line with previous FSS-based works [11, 14, 54]). Crucially, the
masking of the private input via local shares addition followed
by its reconstruction (at the cost of one round of communication)
happens at the input wire of the FSS gate.

All we have left is to put together the two pieces of the puzzle.
We can skip the Π-sharing reconstruction and instead add the input

mask directly to the scalar product output, and then reconstruct
this masked value to serve as public input for the FSS interval
containment gate. Figure 1 depicts our idea applied to the scalar
product metric.

To obtain the other metrics wewould have each input data holder
𝑃𝑖𝑛𝒙 , 𝑃𝑖𝑛𝒚 run 𝑓𝑙𝑜𝑐𝑎𝑙 on its inputs and secret share the result with
the computing parties to add it to the output of the scalar product.
In addition to that, both parties would multiply the shares of the
scalar product result with the corresponding 𝑓𝑐𝑝 , resulting in the
correct distance metric evaluation 𝑧 = 𝑓𝑑𝑖𝑠𝑡 (𝒙,𝒚).

To keep the threshold 𝜃 hidden from the computing parties (and
known only by 𝑃𝑠𝑒𝑡𝑢𝑝), we subtract the value of 𝜃 from the additive
random mask 𝑟 during the offline/setup phase, employing an IC
gate (Protocols 1 and 2) and then compute the of 𝑧𝜃 = 𝑧 − 𝜃 .

3.4 Protocol specification
Embracing this combination of ΠSS for the locally computed scalar
product and FSS for the comparison to 𝜃 , we can now outline each
of the protocols that compose the full solution.:

(1) Funshade.Setup (Protocol 3): 𝑃𝑠𝑒𝑡𝑢𝑝 generates the correlated
randomness required for the scalar product multiplications,
as well as the keys for the interval containment, and dis-
tributes the preprocessing material to the parties involved
in the online phase.

5

Ibarrondo et al.

Protocol 3 Funshade.Setup(𝑙 , 𝑛, 𝜆, 𝜃)→ 𝒌0, 𝒌1, ⟨𝛿𝒙 ⟩ ,
〈
𝛿𝒚

〉
Players: 𝑃𝑠𝑒𝑡𝑢𝑝 carries out all the setup.
Input: 𝑙 : length of the input vectors.

𝑛: number of bits for the secret sharing ring Z2𝑛 .
𝜆: security parameter.
𝜃 : threshold for the comparison ∈ Z2𝑛 .

Output: 𝒌0, 𝒌1: preprocessing keys, sent to 𝑃0, 𝑃1 respectively.
⟨𝛿𝒙 ⟩ ,

〈
𝛿𝒚

〉
: 𝛿-shares of input vectors, sent to 𝑃𝑖𝑛𝒙 , 𝑃𝑖𝑛𝒚

(input owners) resp.
Note: All arithmetic operations (+,−,·) are defined in Z2𝑛 .

Beaver Triples for Π-sharing scalar product:
1: ⟨𝜹𝑥 ⟩ ,

〈
𝜹𝑦

〉
≡ ((𝜹𝑥0 , 𝜹𝑥1), (𝜹𝑦0 , 𝜹𝑦1)) ∼ U[Z𝑙×42𝑛]

2: 𝜹𝑥𝑦0 ∼ U[Z𝑙2𝑛]
𝜹𝑥𝑦1 ← (𝜹𝑥0 + 𝜹𝑥1) · (𝜹𝑦0 + 𝜹𝑦1) − 𝜹𝑥𝑦0〈
𝜹𝑥𝑦

〉
≡ (𝜹𝑥𝑦0 , 𝜹𝑥𝑦1)

3: ⟨𝑟 ⟩ ≡ (𝑟0, 𝑟1) ∼ U[Z×22𝑛] 𝑟 ← 𝑟0 + 𝑟1
⟨𝑟𝜃 ⟩ ≡ (𝑟𝜃0, 𝑟𝜃1) ← (𝑟0, 𝑟1 − 𝜃)

FSS interval containment:
4: 𝒌𝐼𝐶0 , 𝒌𝐼𝐶1 ← FSS.Gen𝐼𝐶 (𝜆, 𝑛, 𝑟)
5: 𝒌 𝑗 ≡ (𝜹𝑥 𝑗

, 𝜹𝑦 𝑗
, 𝜹𝑥𝑦 𝑗

, 𝑟𝜃 𝑗 , 𝒌
𝐼𝐶
𝑗
), 𝑗 ∈ {0, 1}

Dealing the preprocessing material :
6: Send 𝒌0 ⇒ 𝑃0, (𝜹𝒙0 , 𝜹𝒙1) ⇒ 𝑃𝑖𝑛𝒙

𝒌1 ⇒ 𝑃1, (𝜹𝒚0 , 𝜹𝒚1) ⇒ 𝑃𝑖𝑛𝒚

(2) Funshade.Share (Protocol 4): 𝑃𝑖𝑛𝑥 , 𝑃𝑖𝑛𝑦
, the input holder

players, prepare the Π-shares of their corresponding inputs
using the correlated randomness and then send these shares
to the computing parties 𝑃0, 𝑃1.

Protocol 4 Funshade.Share(𝒗, 𝜹𝒗0, 𝜹𝒗1)→ 𝚫𝑣, ⟨𝑑𝒗⟩
Players: 𝑃𝑖𝑛𝒗 , holding the input vector 𝒗 (where 𝒗 ∈ {𝒙,𝒚}).
Input: 𝒗: input vector ∈ Z𝑙2𝑛 held by 𝑃𝑖𝑛𝒗 .

𝜹𝒗 𝑗 : Precomputed 𝛿-shares ∈ Z𝑙2𝑛 .
Output: 𝚫𝑣 : Δ-shares of vector 𝒗 distributed to both 𝑃0 & 𝑃1.

𝑑𝒗𝑗 : Arithmetic shares of the local computation 𝑓𝑙𝑜𝑐𝑎𝑙 (𝒗).

1: 𝚫𝑣 ← (𝒗 + 𝜹𝒗0 + 𝜹𝒗1)
2: 𝑑𝒗 ← 𝑓𝑙𝑜𝑐𝑎𝑙 (𝒗); ⟨𝑑𝒗⟩ ≡ (𝑑𝒗0, 𝑑𝒗1) ← (∼ U[Z2𝑛] , 𝑑𝒗 − 𝑑𝒗0)
3: Send (𝚫𝑣, 𝑑𝒗0) ⇒ 𝑃0, (𝚫𝑣, 𝑑𝒗1) ⇒ 𝑃1

(3) Funshade.Eval (Protocol 5): 𝑃0, 𝑃1 engage in an online pro-
tocol upon acquiring the Π-shares of both inputs, using local
multiplication and addition to compute the scalar product,
and then evaluate the interval containment FSS scheme to
determine whether the result is below the threshold 𝜃 .

(4) Funshade.Result (Protocol 6): 𝑃0, 𝑃1 send the arithmetic
shares of the result to the player designed to receive the
output 𝑃𝑟𝑒𝑠 for its reconstruction.

Protocol 5 Funshade.Eval(𝑗,Δ𝒙 ,Δ𝒚 , ⟨𝑑𝒙 ⟩ ,
〈
𝑑𝒚

〉
, 𝒌 𝑗)→ ⟨𝑜⟩

Players: 𝑃 𝑗 , 𝑗 ∈ {0, 1} computing parties.
Input: Δ𝒙 ,Δ𝒚 : Δ-shares of ⟨⟨𝒙⟩⟩, ⟨⟨𝒚⟩⟩ (Π-shared inputs 𝒙,𝒚) held

by both 𝑃0 and 𝑃1.
⟨𝑑𝒙 ⟩ ,

〈
𝑑𝒚

〉
: Arithmetic shares of locally computed single-

input terms 𝑓𝑙𝑜𝑐𝑎𝑙 (𝒙), 𝑓𝑙𝑜𝑐𝑎𝑙 (𝒚) of 𝑓𝑑𝑖𝑠𝑡 (𝒙,𝒚).
𝒌 𝑗 : preprocessing keys from Funshade.Setup containing:
𝜹𝒙 𝑗

, 𝜹𝒚𝑗
: 𝛿-shares of Π-shared input vectors 𝒙,𝒚,

𝜹𝒙𝒚𝑗
: arith. shares of Beaver triple s.t. ⟨𝜹𝑥 ⟩

〈
𝜹𝑦

〉
=
〈
𝜹𝑥𝑦

〉
,

𝑟𝜃 𝑗 : arith. shares of FSS input mask 𝑟 minus threshold 𝜃 ,
𝒌𝐼𝐶
𝑗
: FSS key for the IC gate of [11].

Output: ⟨𝑜⟩: arithmetic shares of the result 𝑜 = 𝑓 (𝒙,𝒚) ≥ 𝜃 .
Note: All steps apply to both computing parties 𝑃 𝑗 , 𝑗 ∈ {0, 1}. All

arithmetic operations (+,−,·) are defined in Z2𝑛 .

Π-sharing based scalar product:
1: 𝑧𝜃 𝑗 ← 𝑟𝜃 𝑗 +𝑑𝒙 𝑗

+𝑑𝒚𝑗
+ 𝑓𝑐𝑝 𝑓 ·

∑𝑙 [𝑗·Δ𝒙·Δ𝒚−Δ𝒙·𝛿𝒚𝑗
−Δ𝒚·𝛿𝒙 𝑗

+𝛿𝒙𝒚𝑗
]

Reconstruction of masked input to FSS gate:
2: 𝑃 𝑗 : Send 𝑧𝜃 𝑗 ⇒ 𝑃1−𝑗 ; 𝑧𝜃 ← 𝑧𝜃0 + 𝑧𝜃1

Interval Containment for sign extraction:
3: 𝑜 𝑗 ← FSS.Eval𝐼𝐶 (𝑗, 𝒌𝐼𝐶

𝑗
, 𝑧𝜃)

4: return 𝑜 𝑗

Protocol 6 Funshade.Result(⟨𝑜⟩)→ 𝑜

Players: 𝑃 𝑗 , 𝑗 ∈ {0, 1} computing parties, 𝑃𝑟𝑒𝑠 result holder.
Input: ⟨𝑜⟩: secret shares 𝑜0, 𝑜1 ∈ Z2𝑛 of the result 𝑜 held by 𝑃0, 𝑃1.
Output: 𝑜 : Output value.

1: 𝑃 𝑗 : Send 𝑜 𝑗 ⇒ 𝑃𝑟𝑒𝑠 .
2: 𝑃𝑟𝑒𝑠 : 𝑜 ← (𝑜0 + 𝑜1)

3.5 Applications and Practical considerations
We display a diagram of our solution applied to biometrics/CSAM
detection in Figure 2. The Funshade protocol can be easily com-
puted in parallel for different inputs 𝒚 in cases where the reference
database contains more than one record, such as CSAM detection
against a large database of hashes or biometric identification against
multiple subjects. Additionally, these use-cases normally gather
their reference databases ahead of time. To speed up the online
phase, the reference database held by party 𝑃𝑖𝑛𝒚 could be Π-shared
as part of the offline phase, leaving only the live input to be shared
in the online phase. In addition, biometric identifications / CSAM
detections might output one single bit to determine whether there
is a match in the entire database. In this case the individual secret
shared outputs 𝒐 (𝑖)

𝑗
could be locally summed up to yield a single

number as output.
As an alternative to the trusted setup carried by 𝑃𝑠𝑒𝑡𝑢𝑝 , the two

computing parties 𝑃0, 𝑃1 could follow an interactive protocol in
the offline phase to jointly realize the role of 𝑃𝑠𝑒𝑡𝑢𝑝 (execution
of Funshade.Setup and distribution of key material), resorting
to distributed generation via generic 2PC techniques for the FSS
gate key generation (Appendix A.2 of [11]), and either Oblivious

6

Funshade: Functional Secret Sharing for Two-Party Secure Thresholded Distance Evaluation

𝑃𝑖𝑛𝑥

Live
biometric
template

FUNSHADE. 𝑆𝑒𝑡𝑢𝑝 𝑙, 𝑛, 𝜆, 𝜃 →

𝜹𝒙 , 𝜹𝒚 , 𝒌0, 𝒌1

1 𝑃𝑠𝑒𝑡𝑢𝑝

𝑃𝑖𝑛𝑦

Reference
biometric

template DB
CSAM image

signatures

18

Image
signature

2

3
𝑃1

FUNSHADE. 𝐸𝑣𝑎𝑙 𝚫𝒙, 𝚫𝑦, 𝜹𝒙1, 𝜹𝒚1, 𝒌1 → 𝑜1

𝑃0

FUNSHADE. 𝐸𝑣𝑎𝑙 𝚫𝒙, 𝚫𝑦, 𝜹𝒙0, 𝜹𝒚0, 𝒌0 → 𝑜0

FUNSHADE. 𝑆ℎ𝑎𝑟𝑒 𝒚, 𝜹𝒚0, 𝜹𝒚1 → 𝚫𝐲, 𝑑𝐲0, 𝑑𝐲1
4

4

𝑃𝑟𝑒𝑠
FUNSHADE. 𝑅𝑒𝑠𝑢𝑙𝑡

𝑜0, 𝑜1 → 𝑜

FUNSHADE. 𝑆ℎ𝑎𝑟𝑒 𝒙, 𝜹𝒙0, 𝜹𝒙1 → 𝚫𝐱, 𝑑𝐱0, 𝑑𝐱1

5

Match (1)

No match (0)

Figure 2: Diagram of our Funshade protocol applied to biometrics/CSAM detection

Transfer or Homomorphic Encryption for the ΠSS scalar product
preprocessing material (Section 3.1.3 of [49]). 3

3.6 Security Analysis
We consider security against a Honest-but-Curious adversary A
that corrupts up to one of the two computing parties 𝑃 𝑗 . We consider
a static corruption model where the adversary must choose which
participant to corrupt before the execution of the computations.
This is a standard security model in previous MPC frameworks
[11, 19, 29, 48, 49, 54]. Under this threat model, we define and later
prove the security and correctness of our constructions.

We employ the standard real world - ideal world paradigm, pro-
viding the simulation for the case of a corrupt 𝑃 𝑗 . The ideal world
simulation contains an additional trusted party that receives all
the inputs from 𝑃0, 𝑃1, computes the ideal functionality correctly
and sends the corresponding results back to 𝑃0, 𝑃1. Conversely, the
real world simulation executes the protocol as described in the
Funshade algorithms in the presence of A.

Our security proof works in the FFunshade.𝑠𝑒𝑡𝑢𝑝 -hybrid model
whereFFunshade.𝑠𝑒𝑡𝑢𝑝 represents the ideal functionality correspond-
ing to protocol Funshade.setup.

Definition 1 (Security of Funshade). For each 𝑗 ∈ {0, 1}, there
is a PPT algorithm S (simulator) such that ∀𝜃 ∈ Z∗𝑛+, ∀𝒙,𝒚 ∈ Z𝑙𝑛 and
every function 𝑓𝑑𝑖𝑠𝑡 (𝒙,𝒚) : Z𝑙𝑛 → Z𝑛 from Table 1, S realizes the
ideal functionality F𝑡ℎ−𝑑𝑖𝑠𝑡 , such that its behavior is computationally
indistinguishable from a real world execution of protocols 4-5-6 in the
presence of a semi-honest adversary A.

3That being said, the trusted setup might be justified in a context of biometrics/CSAM
detection. Not trusting the reference database would immediately defeat the purpose
of the system. Hence, the system must trust the entity in possession of the reference
database (e.g., 𝑃𝑖𝑛𝒀), and thus this entity could naturally play the role of 𝑃𝑠𝑒𝑡𝑢𝑝 .

Ideal Functionality F𝑡ℎ−𝑑𝑖𝑠𝑡
F𝑡ℎ−𝑑𝑖𝑠𝑡 interacts with the parties 𝑃0, 𝑃1 and the adver-
sary S and is parametrized by a publicly know function
𝑓𝑑𝑖𝑠𝑡 (𝒙,𝒚) and a threshold 𝜃 .
• Inputs: F𝑡ℎ−𝑑𝑖𝑠𝑡 receives the inputs Δ𝒙 ,Δ𝒚 , 𝛿𝒙 𝑗

, 𝛿𝒚𝑗

from the computing parties 𝑃0, 𝑃1.
• Computation: F𝑡ℎ−𝑑𝑖𝑠𝑡 reconstructs 𝒙 = Δ𝒙 − (𝛿𝒙0 +
𝛿𝒙1) and𝒚 = Δ𝒚−(𝛿𝒚0+𝛿𝒚1), computes 𝑧 = 𝑓𝑑𝑖𝑠𝑡 (𝒙,𝒚)
and 𝑜 = 1𝑧⩾𝜃 .
• Output: Sends 𝑜 𝑗 to 𝑃𝑟𝑒𝑠 .

Theorem 1. In the FFunshade.𝑠𝑒𝑡𝑢𝑝 -hybrid model, protocols 4-5-6
(online phase) securely realize the functionality F𝑡ℎ−𝑑𝑖𝑠𝑡 .

Proof. The semi-honest adversary corrupts 𝑃 𝑗 during the se-
quential execution of protocols 4-5-6. For this case, S executes the
setup phase honestly on the behalf of 𝑃1−𝑗 (in case of interactive
setup), and will simulate the entire circuit evaluation, assuming the
circuit-inputs of 𝑃1−𝑗 to be 0. In the Funshade.Result protocol, S
adjusts the shares of ⟨𝑜⟩ on behalf of 𝑃1−𝑗 so that A sees the same
transcript as in the real-world protocol.
• Funshade.Setup: For the offline phase, we consider it as an
ideal functionality FFunshade.𝑠𝑒𝑡𝑢𝑝 , which generates the re-
quired FSS preprocessing keys and 𝛿-shares. Since we make
only black-box access to Funshade.setup, its simulation fol-
lows from the security of the underlying primitive used to
instantiate it (OT or HE for the ΠSS preprocessing mate-
rial stemming from setupMULT of [49], generic 2PC for the
FSS keys following Appendix A.2 of [11]), or alternatively a
trusted party can be used.
• Funshade.Share: For the instances where 𝑃 𝑗 is the owner of
the values (e.g., 𝑃 𝑗 ≡ 𝑃𝑖𝑛𝒙), S has to do nothing since A is

7

Ibarrondo et al.

not receiving any messages. S receives Δ𝒗 fromA on behalf
of 𝑃1−𝑗 . For the instances where 𝑃1−𝑗 is the owner, S sets
𝑣 = 0 and performs the protocol steps honestly.
• Funshade.Eval: During the online phase, S follows the pro-
tocol steps honestly using the data obtained from the setup
phase. The scalar product requires 𝑙 local additions (non-
interactive and thus they don’t need to be simulated) and
a subsequent reconstruction of ⟨𝑧𝜃 ⟩ as 𝑧𝜃 = 𝑧𝜃0 + 𝑧𝜃1 that
behaves just like Funshade.Result and serves as input to the
FSS IC gate. For the FSS IC gate, we resort to the Simulation-
based security of [11] (Definition 2) to argue computational
indistinguishability of the ideal and real world executions,
hiding the information of 𝑟 contained in 𝒌0 and 𝒌1 from A.
• Funshade.Result: To reconstruct a value ⟨𝑜⟩, S is given the
output 𝑜 , which is the output of A. Using 𝑜 and the share
𝑜1−𝑗 corresponding to 𝑃1−𝑗 , S computes 𝑜 𝑗 = 𝑜 − 𝑜1−𝑗 and
sends this to A on behalf of 𝑃1−𝑗 . S receives 𝑜 𝑗 from A on
behalf of 𝑃1−𝑗 . □

Definition 2 (Correctness of Funshade). For every threshold
𝜃 ∈ Z∗𝑛+, every pair of input vectors 𝒙,𝒚 ∈ Z𝑙𝑛 and every function
𝑓𝑑𝑖𝑠𝑡 (𝒙,𝒚) : Z𝑙𝑛 → Z𝑛 from Table 1,

if (𝒌0, 𝒌1, ⟨𝛿𝒙 ⟩ ,
〈
𝛿𝒚

〉
) ← Funshade.Gen(𝑙, 𝑛, 𝜆, 𝜃)

and (𝚫𝒙 , ⟨𝑑𝒙 ⟩ ← Funshade.Share(𝒙, ⟨𝛿𝒙 ⟩),
𝚫𝒚 ,

〈
𝑑𝒚

〉
←← Funshade.Share(𝒚,

〈
𝛿𝒚

〉
))

then Pr[Funshade.Eval(0,Δ𝒙 ,Δ𝒚 , 𝑑𝒙0 , 𝑑𝒚0 , 𝒌0)
+ Funshade.Eval(1,Δ𝒙 ,Δ𝒚 , 𝑑𝒙1 , 𝑑𝒚1 , 𝒌1)

= 1𝑓𝑑𝑖𝑠𝑡 (𝒙,𝒚)⩾𝜃] = 1.

(5)

Theorem 2. Jointly, protocol 3 (offline phase), and protocols 5-4-6
(online phase), realize the function 𝑓 (𝑓𝑑𝑖𝑠𝑡 , 𝜃, 𝒙,𝒚) = 1𝑓𝑑𝑖𝑠𝑡 (𝒙,𝒚)⩾𝜃
correctly.

Proof. We first decompose the Π-sharing based scalar product
(step 1 of Protocol 5) for the joint result of the two computing
parties 𝑧𝜃 in Equation 6,

𝑧𝜃 = 𝑧𝜃0 + 𝑧𝜃1 = (𝑟𝜃0 + 𝑟𝜃1) + (𝑑𝒙0 + 𝑑𝒙1) + (𝑑𝒚1 + 𝑑𝒚1) + 𝑓𝑐𝑝 ·
∑𝑙

[Δ𝒙Δ𝒚−(Δ𝒙𝛿𝒚0+Δ𝒙𝛿𝒚1)−(Δ𝒚𝛿𝒙0+Δ𝒚𝛿𝒙1)+(𝛿𝒙𝒚0+𝛿𝒙𝒚1)]

= 𝑟𝜃 + 𝑑𝒙 + 𝑑𝒚 + 𝑓𝑐𝑝 ·
∑𝑙 [Δ𝒙Δ𝒚− Δ𝒙𝛿𝒚−Δ𝒚𝛿𝒙 +𝛿𝒙𝒚]

= 𝑟 − 𝜃 + 𝑑𝒙 + 𝑑𝒚 + 𝑓𝑐𝑝 ·
∑𝑙 [Δ𝒙Δ𝒚− Δ𝒙𝛿𝒚−Δ𝒚𝛿𝒙 +𝛿𝒙𝛿𝒚]

= 𝑟 − 𝜃 + 𝑑𝒙 + 𝑑𝒚 + 𝑓𝑐𝑝 ·
∑𝑙 (Δ𝒙−𝛿𝒙) · (Δ𝒚−𝛿𝒚)

= 𝑟 − 𝜃 + 𝑓𝑙𝑜𝑐𝑎𝑙 (𝒙) + 𝑓𝑙𝑜𝑐𝑎𝑙 (𝒚) + 𝑓𝑐𝑝 ·
∑𝑙 (𝒙 (𝑖) · 𝒚 (𝑖))

= 𝑟 − 𝜃 + 𝑓𝑑𝑖𝑠𝑡 (𝒙,𝒚) = 𝑧𝜃 + 𝑟
(6)

where we group all the SS shares and reconstruct their original
values, replace 𝑟𝜃 and 𝛿𝒙𝒚 by the corresponding values (from defi-
nitions in protocol 1), group the Π-shares of 𝒙 and 𝒚 to later recon-
struct their values, and finally make use of Equation 4.

With the public input 𝑧 sorted out, we analyze the Interval Con-
tainment evaluation with output reconstruction in Equation 7,

𝑜 = 𝑜1 + 𝑜2 = FSS.Eval𝐼𝐶 (0, 𝒌𝐼𝐶0 , 𝑧𝜃) + FSS.Eval𝐼𝐶 (1, 𝒌𝐼𝐶1 , 𝑧𝜃)

= FSS.Eval𝐼𝐶 (0, FSS.Gen𝐼𝐶 (𝜆, 𝑛, 𝑟) (0) , 𝑧𝜃 + 𝑟)

+ FSS.Eval𝐼𝐶 (1, FSS.Gen𝐼𝐶 (𝜆, 𝑛, 𝑟) (1) , 𝑧𝜃 + 𝑟)
= 1𝑧𝜃 ∈Z∗𝑛+

= 10⩽𝑧−𝜃 = 1𝑓𝑑𝑖𝑠𝑡 (𝒙,𝒚)⩾𝜃

(7)

where we resort to Theorem 3 of [11] to argue that the two pro-
tocols (FSS.Gen𝐼𝐶 (𝜆, 𝑛, 𝑟), FSS.Eval𝐼𝐶 (𝑗, 𝒌𝐼𝐶

𝑗
, 𝑧𝜃)) constitute an FSS

gate4correctly realizing 𝑓 (𝑧𝜃) = 1𝑝≤𝑧𝜃 ≤𝑞 . Then, following Defini-
tion 2 (Correctness) of [11], we can argue that Pr[FSS.Eval𝐼𝐶 (0, 𝒌𝐼𝐶0 , 𝑧𝜃)
+ FSS.Eval𝐼𝐶 (1, 𝒌𝐼𝐶1 , 𝑧𝜃) = 10≤𝑧𝜃 ≤2𝑛−1−1] = 1, thus equating the
output of the FSS gate to 1𝑧𝜃 ∈Z∗𝑛+

, the unit step function. □

3.7 Implementation
We implement our solution in a standalone Python library with
efficient C++ blocks by virtue of Cython. Our code is available at
https://github.com/ibarrond/funshade. We use a Miyaguchi-Preneel
one-way compression function with an AES block cipher for our
PRG construction, an extended variant of Matyas-Meyer-Oseas
function used in previous works [54]. We concatenate several fixed
key block ciphers to achieve the desired output length.

We timed the execution of Funshade.Eval in a single computing
party to 900𝜇𝑠 with one single core (Processor AMD Ryzen 5 PRO
3500U, 2100 Mhz, 4 Cores available), and around 550𝜇𝑠 when using
two cores to speed up the Interval Containment evaluation (oneDCF
per core). This indicates that the communication latency (e.g., 10ms
for LAN, 70ms for WAN) would be the main bottleneck in a real-
world deployment for 1:1 distance calculations, and there would be
a wide margin to compensate communication with computation in
1:N orM:N scenarios (e.g., biometric identification).We also vary the
vector sizes ranging from 𝑙 = 64 to 𝑙 = 65536, with negligible impact
to the Funshade.Eval time, indicating that the main bottleneck in
terms of computation is located in the evaluation of DCFs.

Additionally, we test our solution with randomized input vectors
for all distance metrics, verifying the 100% correctness as long as
natural overflows (𝑧 > 2𝑛−1 − 1 or 𝑧 < −2𝑛−1) are avoided.

4 PREVIOUS WORK
Distance metric evaluations, specially for Hamming Distance and
Scalar Products, range among the most typical applications of
privacy-preserving computation techniques. Consequently, a wide
variety of previous work in MPC, FHE and FE have dealt with some
form of it.

The Multi Party Computation field includes a plethora of works
covering distance metric evaluations. All the frameworks for pri-
vacy preserving neural networks cover scalar-product-based matrix
multiplications often followed by ReLU activations [8, 26, 43, 52, 59],
covering a mixture of Garbled Circuits, Secret Sharing and their
conversions. Secure hamming distance evaluation has motivated

4There are several notation elements to adapt in order to align with [11]. Our mask 𝑟 is
written as 𝑟 𝑖𝑛 in Figure 3 of [11] depicting the FSS IC gate. We set the parameters 𝑝 = 0
and 𝑞 = 2𝑛−1 − 1 to define the interval containing all positive integers. 1𝑝≤𝑧𝜃 ≤𝑞 =

𝑔𝐼𝐶,𝑛,𝑝,𝑞 (𝑧𝜃) is a function that belongs (per definition of IC gate in Section 4 of [11])
to the family of functions G𝐼𝐶

𝑛,𝑝,𝑞 referenced in Theorem 3 of [11].

8

https://github.com/ibarrond/funshade

Funshade: Functional Secret Sharing for Two-Party Secure Thresholded Distance Evaluation

Table 2: Benchmark of theoretical costs on evaluating a scalar product and comparison to threshold between two vectors of 𝑙
𝑛 − 𝑏𝑖𝑡 integers

Work Type #Rounds of
communication

#ring elements
in communication Correctness Online Computation Blocks

AriaNN [54] 2PC
SS: Arith., FSS 2 (1+1) 4𝑙 + 4 N SS scalar product,

FSS Comparison (1 DCF)

Boyle et. al.[11] 2PC
SS: Arith., FSS 2 (1+1) 4𝑙 + 4 Y SS scalar product,

FSS IC gate (2 DCF)

ABY[29] 2PC
SS: Boolean&Arith, GC 3 (1+2+0) ≫ 6𝑙 Y

SS scalar product,
Arith. to Yao conversion,
GC evaluation

ABY2.0[49] 2PC
ΠSS: Boolean&Arith. 5 (1+1+3) ≫ 2 Y

ΠSS scalar product,
Arith. to Boolean conversion,
BitExtraction

GSHADE[15]
(only scalar prod.)

2PC
OT 2 > 2𝑙 Y correlated OTs.

CryptFlow2[51] 2PC
SS: Arith., OT 5 > (128 + 14)𝑙 Y Linear layer (1-dim weights),

dReLU

Falcon[59] 3PC
Replicated SS: Arith. 8 (1+7) > 6 Y MatMult with 1-dim matrices,

Private Compare

Funshade (ours) 2PC
ΠSS: Arith., FSS 1 2 Y ΠSS scalar product,

FSS IC gate (2 DCF)

work such as [16] based on Oblivious Transfer, with its generaliza-
tion to multiple metrics in [15]. Mixed-mode protocols have also
tackled distance evaluations [29, 48, 49]. However, the majority of
these solutions incur in a considerable communication cost to per-
form comparison. More recently, solutions based on FSS [11, 14, 54]
have shown promising results, leading to this work.

In the field of Homomorphic Encryption, the biometrics use-case
has led to a variety of approaches, including [4, 45] for hamming
distance or [61] for scalar product. However, these approaches do
not include comparison to a threshold, and often rely on costly
cryptographic primitives that make them slow.

Since the advent of Functional Encryption [9], scalar product and
hamming distance have been the most suitable candidates to study.
Inner Product Encryption (IPE) started off with selective security
in [1], already envisioning biometric use-cases, and reaching full
security with [28] and [57]. [42] applied FE to biometric authen-
tication with hamming distance and to nearest-neighbor search
on encrypted data; [44] employs IPE for hamming-weight based
matchings of real-world iris templates. [41] and [39] are the latest
iterations of privacy-preserving scalar product techniques based on
FE, demonstrating performances in the order of hundreds of𝑚𝑠 for
vectors of 128 values. While FE does not require an extra operation
after the "evaluation" to retrieve the result, these schemes scale
polynomially with the input vector length (thus are unsuitable for
very large vectors), and their computation does not include com-
parison to a threshold. To include it, one must resort to techniques
such as Threshold Predicate Encryption [62].

There also exist techniques in the literature not resorting to these
three main fields, such as [63] with a custom scheme, or [55] with
Identity Based Encryption.

We compare the online phase performance of our solution with
that of selected previous works in Table 1. Funshade is the first

work in the 2PC setting requiring one single round of communica-
tion to evaluate 1𝒙𝑇 𝒚>𝜃 while also presenting the lowest commu-
nication size of 2 ring elements. An additional side-by-side compar-
ison with AriaNN [54] is provided in Appendix A.

On the importance of the threshold comparison in privacy-preserving
distance metrics. The security provided by our construction, and
that of all privacy-preserving techniques in general (MPC, FHE, FE),
does not prevent the reconstructed outputs 𝑜 = 𝑓 (𝒙,𝒚) from reveal-
ing information about the inputs 𝒙,𝒚. Indeed, 𝑃𝑟𝑒𝑠 can leverage on
his knowledge about the function being computed and attempt to
extract information about the inputs from the outputs by inverting
the function being computed 𝐿𝑒𝑎𝑘 (𝒙,𝒚) ← 𝐿𝑒𝑎𝑘 (𝑓 −1 (𝑜)). Labeled
as "input leakage" in previous works [39], this leakage affects the
practical privacy of real-world deployments of privacy-preserving
solutions. Applications using distance metric calculations as one of
many building blocks (e.g., Machine Learning) might be more natu-
rally protected thanks to the complexity of the function (beware!
black-box model extraction attacks are real [58]), yet applications
requiring only one distance metric evaluation (e.g., biometric match-
ing, CSAM detection) are much more sensitive to this leakage, since
these distance metrics are linear functions and thus easily invertible.

While solutions exist to add controlled noise to the input (e.g.,
Differential Privacy in [18]), the most straightforward method to
reduce this leakage is to output the least information possible. For
applications like biometric matching and CSAM detection, one-bit
outputs suffice to determine whether there is a match or not, and
hence performing the comparison in a privacy-preserving manner
reduces considerably the input leakage of the construction. As such,
FHE and FE-based solutions without privacy-preserving threshold
comparison are more risky to apply in real-world scenarios than

9

Ibarrondo et al.

threshold-enabled solutions that MPC (ours included) offers out of
the shelf.

5 CONCLUSIONS
In this work we presented Funshade, a novel 2PC privacy preserv-
ing solution of various distance metrics (e.g., Hamming distance,
Scalar Product) followed by threshold comparison. We build our
protocols upon ΠSS, a version of arithmetic secret sharing opti-
mized for the secure evaluation of scalar products, and functional
secret sharing with 100% correctness for comparison. Thanks to
this, Funshade proposes the first solution in the 2PC literature
requiring one single round of communication in the online phase
while outperforming all previous works in online communication
size (two ring elements), all while relying on lightweight crypto-
graphic primitives. We implement our solution from scratch in a
standalone Python/C++ library, and test it to record a runtime of
less than 1ms per computing party excluding communication costs.

REFERENCES
[1] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. 2015.

Simple functional encryption schemes for inner products. In IACR International
Workshop on Public Key Cryptography. Springer, USA, 733–751.

[2] Shashank Agrawal and David J Wu. 2017. Functional encryption: determinis-
tic to randomized functions from simple assumptions. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques. Springer,
France, 30–61.

[3] Manuel Barbosa, Dario Catalano, Azam Soleimanian, and Bogdan Warinschi.
2019. Efficient function-hiding functional encryption: From inner-products to
orthogonality. In Cryptographers’ Track at the RSA Conference. Springer, USA,
127–148.

[4] Mauro Barni, Tiziano Bianchi, Dario Catalano, Mario Di Raimondo, Rug-
gero Donida Labati, Pierluigi Failla, Dario Fiore, Riccardo Lazzeretti, Vincenzo
Piuri, Alessandro Piva, et al. 2010. A privacy-compliant fingerprint recogni-
tion system based on homomorphic encryption and fingercode templates. In
2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and
Systems (BTAS). IEEE, USA, 1–7.

[5] Donald Beaver. 1991. Efficient multiparty protocols using circuit randomization.
In Annual International Cryptology Conference. Springer, Germany, 420–432.

[6] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 2019. Completeness theo-
rems for non-cryptographic fault-tolerant distributed computation. In Providing
Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio
Micali. ACM, New York, NY, USA, 351–371.

[7] Marcelo Blatt, Alexander Gusev, Yuriy Polyakov, and Shafi Goldwasser. 2020. Se-
cure large-scale genome-wide association studies using homomorphic encryption.
Proceedings of the National Academy of Sciences of the United States of America
117, 21 (26 May 2020), 11608–11613. https://doi.org/10.1073/pnas.1918257117

[8] Fabian Boemer, Rosario Cammarota, Daniel Demmler, Thomas Schneider, and
Hossein Yalame. 2020. MP2ML: A mixed-protocol machine learning framework
for private inference. In Proceedings of the 15th International Conference on Avail-
ability, Reliability and Security. Association for Computing Machinery, Ireland,
1–10.

[9] Dan Boneh, Amit Sahai, and Brent Waters. 2011. Functional encryption: Def-
initions and challenges. In Theory of Cryptography Conference. Springer, USA,
253–273.

[10] Florian Bourse. 2017. Functional encryption for inner-product evaluations. Ph. D.
Dissertation. PSL Research University.

[11] Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya Gupta, Yuval Ishai, Nishant
Kumar, and Mayank Rathee. 2021. Function Secret Sharing for Mixed-Mode
and Fixed-Point Secure Computation. In Advances in Cryptology–EUROCRYPT
2021: 40th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, October 17–21, 2021, Proceedings, Part II. Springer,
Croatia, 871–900.

[12] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2015. Function secret sharing. In
EUROCRYPT. Springer, Bulgaria, 337–367.

[13] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2016. Function secret sharing: Improve-
ments and extensions. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM, Austria, 1292–1303.

[14] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2019. Secure Computation with Prepro-
cessing via Function Secret Sharing. In 17th International Conference on Theory
of Cryptography, TCC 2019. Springer, Germany, 341–371.

[15] Julien Bringer, Herve Chabanne, Melanie Favre, Alain Patey, Thomas Schneider,
and Michael Zohner. 2014. GSHADE: Faster privacy-preserving distance compu-
tation and biometric identification. In Proceedings of the 2nd ACM workshop on
Information hiding and multimedia security. ACM, Austria, 187–198.

[16] Julien Bringer, Hervé Chabanne, and Alain Patey. 2013. Shade: Secure hamming
distance computation from oblivious transfer. In International Conference on
Financial Cryptography and Data Security. Springer, Japan, 164–176.

[17] Ran Canetti. 2000. Security and composition of multiparty cryptographic proto-
cols. Journal of CRYPTOLOGY 13, 1 (2000), 143–202.

[18] Mahawaga Arachchige Pathum Chamikara, Peter Bertok, Ibrahim Khalil, Dongxi
Liu, and Seyit Camtepe. 2020. Privacy preserving face recognition utilizing
differential privacy. Computers & Security 97 (2020), 101951.

[19] Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul Sharma, and Shardul
Tripathi. 2019. EzPC: programmable and efficient secure two-party computation
for machine learning. In 2019 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, Sweden, 496–511.

[20] Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and Ajith Suresh. 2019. AS-
TRA: high throughput 3pc over rings with application to secure prediction. In
Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing Security
Workshop. ACM, UK, 81–92.

[21] David Chaum, Claude Crépeau, and Ivan Damgard. 1988. Multiparty uncondi-
tionally secure protocols. In Proceedings of the twentieth annual ACM symposium
on Theory of computing. ACM, USA, 11–19.

[22] Hao Chen, Kim Laine, and Peter Rindal. 2017. Fast Private Set Intersection
from Homomorphic Encryption. In Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security (Dallas, Texas, USA) (CCS
’17). Association for Computing Machinery, New York, NY, USA, 1243–1255.
https://doi.org/10.1145/3133956.3134061

[23] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homo-
morphic Encryption for Arithmetic of Approximate Numbers. In Advances in
Cryptology – ASIACRYPT 2017. Springer International Publishing, China, 409–437.
https://doi.org/10.1007/978-3-319-70694-8_15

[24] Jung Hee Cheon, Dongwoo Kim, Duhyeong Kim, Hun Hee Lee, and Keewoo
Lee. 2019. Numerical method for comparison on homomorphically encrypted
numbers. In International Conference on the Theory and Application of Cryptology
and Information Security. Springer, Japan, 415–445.

[25] European Commission. 2022. Proposal for a regulation laying down rules to
prevent and Combat Child Sexual abuse. https://eur-lex.europa.eu/legal-content/
EN/ALL/?uri=COM:2022:209:FIN

[26] Anders Dalskov, Daniel Escudero, and Marcel Keller. 2020. Fantastic four: Honest-
majority four-party secure computation with malicious security. Technical Report.
Cryptology ePrint Archive, Report 2020/1330, 2020. https://eprint. iacr. org

[27] Ivan Damgård, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranellucci.
2017. The TinyTable protocol for 2-party secure computation, or: gate-scrambling
revisited. In Annual International Cryptology Conference. Springer, USA, 167–187.

[28] Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. 2016. Functional encryp-
tion for inner product with full function privacy. In Public-Key Cryptography–PKC
2016. Springer, Taiwan, 164–195.

[29] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY-A frame-
work for efficient mixed-protocol secure two-party computation.. In 22nd Annual
Network and Distributed System Security Symposium, NDSS. Usenix, San Diego,
CA, USA, 15.

[30] Ling Du, Anthony TS Ho, and Runmin Cong. 2020. Perceptual hashing for image
authentication: A survey. Signal Processing: Image Communication 81 (2020),
115713.

[31] David Evans, Yan Huang, Jonathan Katz, and Lior Malka. 2011. Efficient privacy-
preserving biometric identification. In Proceedings of the 17th conference Network
and Distributed System Security Symposium, NDSS, Vol. 68. Usenix, USA, 90–98.

[32] Diana-Elena Fălămaş, KingaMarton, and Alin Suciu. 2021. Assessment of Two Pri-
vacy Preserving Authentication Methods Using Secure Multiparty Computation
Based on Secret Sharing. Symmetry 13, 5 (2021), 894.

[33] J Fan and F Vercauteren. 2012. Somewhat Practical Fully Homomorphic Encryp-
tion. IACR Cryptology ePrint Archive 2012, 144 (2012), 29. https://eprint.iacr.org/
2012/144

[34] Adrià Gascón, Phillipp Schoppmann, Borja Balle, Mariana Raykova, Jack Doerner,
Samee Zahur, and David Evans. 2017. Privacy-Preserving Distributed Linear
Regression on High-Dimensional Data. Proc. Priv. Enhancing Technol. 2017, 4
(2017), 345–364.

[35] Craig Gentry. 2009. A fully homomorphic encryption scheme. Vol. 20. Stanford,
USA.

[36] Babak Poorebrahim Gilkalaye, Ajita Rattani, and Reza Derakhshani. 2019.
Euclidean-distance based fuzzy commitment scheme for biometric template
security. In 2019 7th International Workshop on Biometrics and Forensics (IWBF).
IEEE, USA, 1–6.

[37] Oded Goldreich. 2009. Foundations of cryptography: volume 2, basic applications.
Cambridge university press, UK.

[38] Oded Goldreich, Silvio Micali, and Avi Wigderson. 2019. How to play any mental
game, or a completeness theorem for protocols with honest majority. In Providing

10

https://doi.org/10.1073/pnas.1918257117
https://doi.org/10.1145/3133956.3134061
https://doi.org/10.1007/978-3-319-70694-8_15
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=COM:2022:209:FIN
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=COM:2022:209:FIN
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144

Funshade: Functional Secret Sharing for Two-Party Secure Thresholded Distance Evaluation

Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio
Micali. ACM, USA, 307–328.

[39] Alberto Ibarrondo, Hervé Chabanne, and Melek Önen. 2021. Practical Privacy-
Preserving Face Identification based on Function-Hiding Functional Encryption.
In International Conference on Cryptology and Network Security. Springer, Austria,
63–71.

[40] Ilia Iliashenko and Vincent Zucca. 2021. Faster homomorphic comparison opera-
tions for BGV and BFV. Proceedings on Privacy Enhancing Technologies 2021, 3
(2021), 246–264.

[41] Seong-Yun Jeon and Mun-Kyu Lee. 2021. Acceleration of Inner-Pairing Product
Operation for Secure Biometric Verification. Sensors 21, 8 (2021), 2859.

[42] SamKim, Kevin Lewi, AvradipMandal, Hart Montgomery, Arnab Roy, and David J
Wu. 2018. Function-hiding inner product encryption is practical. In International
Conference on Security and Cryptography for Networks. Springer, Italy, 544–562.

[43] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta, Aseem Ras-
togi, and Rahul Sharma. 2020. Cryptflow: Secure tensorflow inference. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE, USA, 336–353.

[44] Joohee Lee, Dongwoo Kim, Duhyeong Kim, Yongsoo Song, Junbum Shin, and
Jung Hee Cheon. 2018. Instant privacy-preserving biometric authentication for
hamming distance. Cryptology ePrint Archive 2018, 1214 (2018), 28.

[45] Ying Luo, S Cheung Sen-ching, and Shuiming Ye. 2009. Anonymous biometric
access control based on homomorphic encryption. In 2009 IEEE International
Conference on Multimedia and Expo. IEEE, USA, 1046–1049.

[46] T Soni Madhulatha. 2012. An overview on clustering methods. arXiv preprint
2012, 1205.1117 (2012), 7.

[47] David Marr and Ellen Hildreth. 1980. Theory of edge detection. Proceedings of
the Royal Society of London. Series B. Biological Sciences 207, 1167 (1980), 187–217.

[48] Payman Mohassel and Peter Rindal. 2018. ABY3: A mixed protocol framework
for machine learning. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM, Canada, 35–52.

[49] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. 2021. {ABY2.
0}: Improved {Mixed-Protocol} Secure {Two-Party} Computation. In 30th
USENIX Security Symposium (USENIX Security 21). USENIX Association, USA,
2165–2182.

[50] Michael O Rabin. 2005. How to exchange secrets with oblivious transfer. Cryp-
tology ePrint Archive 2005, 187 (2005), 27.

[51] Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya
Gupta, Aseem Rastogi, and Rahul Sharma. 2020. CrypTFlow2: Practical 2-party
secure inference. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security. ACM, USA, 325–342.

[52] M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M Songhori,
Thomas Schneider, and Farinaz Koushanfar. 2018. Chameleon: A hybrid secure

computation framework for machine learning applications. In Proceedings of the
2018 on Asia Conference on Computer and Communications Security. ACM, Korea,
707–721.

[53] Zhang Rui and Zheng Yan. 2018. A survey on biometric authentication: Toward
secure and privacy-preserving identification. IEEE access 7 (2018), 5994–6009.

[54] Théo Ryffel, Pierre Tholoniat, David Pointcheval, and Francis Bach. 2022. AriaNN:
Low-Interaction Privacy-Preserving Deep Learning via Function Secret Sharing.
Proceedings on Privacy Enhancing Technologies 1 (2022), 291–316.

[55] Amit Sahai and Brent Waters. 2005. Fuzzy identity-based encryption. In EURO-
CRYPT. Springer, Germany, 457–473.

[56] Adi Shamir. 1979. How to share a secret. Comm. of the ACM 22, 11 (1979),
612–613.

[57] Junichi Tomida, Masayuki Abe, and Tatsuaki Okamoto. 2016. Efficient functional
encryption for inner-product values with full-hiding security. In International
Conference on Information Security. Springer, USA, 408–425.

[58] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
2016. Stealing machine learning models via prediction apis. In 25th {USENIX}
Security Symposium ({USENIX} Security 16). USENIX Association, Canada, 601–
618.

[59] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek
Mittal, and Tal Rabin. 2020. FALCON: Honest-Majority Maliciously Secure
Framework for Private Deep Learning. arXiv preprint arXiv:2004.02229 2020,
2004.02229 (2020), 1–21.

[60] Andrew Chi-Chih Yao. 1986. How to generate and exchange secrets. In 27th
Annual Symposium on Foundations of Computer Science (sfcs 1986). IEEE, Canada,
162–167.

[61] Masaya Yasuda, Takeshi Shimoyama, Jun Kogure, Kazuhiro Yokoyama, and
Takeshi Koshiba. 2013. Packed homomorphic encryption based on ideal lat-
tices and its application to biometrics. In International Conference on Availability,
Reliability, and Security. Springer, Germany, 55–74.

[62] Kai Zhou and Jian Ren. 2018. PassBio: Privacy-preserving user-centric biometric
authentication. IEEE Transactions on Info. Forensics and Security 13, 12 (2018),
3050–3063.

[63] Youwen Zhu and Tsuyoshi Takagi. 2015. Efficient scalar product protocol and its
privacy–preserving application. International Journal of Electronic Security and
Digital Forensics 7, 1 (2015), 1–19.

A DIAGRAM OF FUNSHADE PRIMITIVES VS
ARIANN PRIMITIVES

11

Ibarrondo et al.

ARIANN FUNSHADE (ours)

Arithmetic Secret Sharing 𝑥 :
𝑥 = 𝑥0 + 𝑥1

𝛱 Secret Sharing ⟪𝑥⟫:
𝑥 = Δ𝑥 − (𝛿𝑥0 + 𝛿𝑥1)

𝑃0 Δ𝑥

𝛿𝑥0 𝛿𝑥1

Δ𝑥 𝑃1

Secret sharing of 𝑥

Scalar Product z = 𝒙𝑻𝒚
& Comparison: z ≥ 𝜃

“Beaver” Mult. Triples𝑃𝑠𝑒𝑡𝑢𝑝
𝑐 = 𝑎 ⋅ 𝑏

𝑃𝑠𝑒𝑡𝑢𝑝
𝛿𝑥𝑦 = 𝛿𝑥 ⋅ 𝛿𝑦

𝑃0
𝑐0, 𝑎0, 𝑏0

𝑃1
𝑐1, 𝑎1, 𝑏1

𝑃0 𝑃1
𝛿𝑥𝑦0, 𝛿𝑥0, 𝛿𝑦0 𝛿𝑥𝑦1, 𝛿𝑥1, 𝛿𝑦1

𝑃0 𝒄0, 𝒂0, 𝒃0, 𝒌0,
𝒙0, 𝒚0, 𝑟𝜃0

𝑃1𝒄1, 𝒂1, 𝒃1, 𝒌1,
𝒙1, 𝒚1, 𝑟𝜃1

𝑃0 𝑃1𝜹𝒙𝒚0, 𝜹𝒙0, 𝜹𝒚0,

𝚫𝒙, 𝚫𝒚, 𝒌0
′ (𝜃), 𝑟𝜃0

𝜹𝒙𝒚1, 𝜹𝒙1, 𝜹𝒚1,

𝚫𝒙, 𝚫𝒚, 𝒌1
′ , 𝑟𝜃1

𝒅0 ← (𝒙0 − 𝒂0)
𝒆0 ← (𝒚0 − 𝒃0)

𝒅1 ← (𝒙1 − 𝒂1)
𝒆1 ← (𝒚1 − 𝒃1)

𝒅0, 𝒆0 𝒅1, 𝒆1
send

𝒅←𝒅0+𝒅1; 𝒆←𝒆0+𝒆1
Ƹ𝑧𝜃0 ←∑(𝒅·𝒃0 + 𝒆·𝒂0

+𝒄0) + 𝑟𝜃0
Ƹ𝑧𝜃1←∑(𝒅·𝒃1 + 𝒆·𝒂1
+ 𝒅·𝒆 + 𝒄1) + 𝑟𝜃1

Ƹ𝑧𝜃0 Ƹ𝑧𝜃1
send

𝑃0
𝑥0 𝑥1

𝑃1

𝑜0
∗ ←FSS.cmp Ƹ𝑧, 𝒌0
Ƹ𝑧𝜃 ← Ƹ𝑧𝜃0 + Ƹ𝑧𝜃1

𝑜∗ = z ≥ 𝜃 with high prob.

Ƹ𝑧0←∑(𝜹𝒙𝒚0 − 𝚫𝒙·𝜹𝒚0
−𝚫𝒚·𝜹𝑥0)

+ 𝑟𝜃0

Ƹ𝑧1←∑(𝜹𝒙𝒚1 − 𝚫𝒙·𝜹𝒚1
−𝚫𝒚·𝜹𝑥1 + 𝚫𝒙·𝚫𝒚)

+ 𝑟𝜃1

Ƹ𝑧0 Ƹ𝑧1
send

𝑜 = z ≥ 𝜃 ∀𝒙, ∀𝒚, ∀𝜃

𝑜1
∗ ←FSS.cmp Ƹ𝑧, 𝒌1
Ƹ𝑧𝜃 ← Ƹ𝑧𝜃0 + Ƹ𝑧𝜃1

𝑜0 ←FSS. Eval
IC Ƹ𝑧, 𝒌0

′
Ƹ𝑧𝜃 ← Ƹ𝑧𝜃0 + Ƹ𝑧𝜃1

𝑜1 ←FSS. Eval
IC Ƹ𝑧, 𝒌1

′
Ƹ𝑧𝜃 ← Ƹ𝑧𝜃0 + Ƹ𝑧𝜃1

𝑃𝑠𝑒𝑡𝑢𝑝 𝒄0, 𝒂0, 𝒃0, 𝑟𝜃0, 𝒌0
𝒄1, 𝒂1, 𝒃1, 𝑟𝜃1, 𝒌1

𝑃𝑠𝑒𝑡𝑢𝑝𝜹𝒙𝒚0, 𝜹𝒙0, 𝜹𝒚0, 𝑟𝜃0, 𝒌0
𝜹𝒙𝒚1, 𝜹𝒙1, 𝜹𝒚1, 𝑟𝜃1, 𝒌1

𝒅←𝒅0+𝒅1; 𝒆←𝒆0+𝒆1

Figure 3: Side-by-side comparison between AriaNN and Funshade (ours)

12

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Multi-Party Computation
	2.2 Thresholded distance metrics and applications

	3 Our Solution
	3.1 Distance Metrics
	3.2 Roles in 2PC scenario
	3.3 Sketching the solution
	3.4 Protocol specification
	3.5 Applications and Practical considerations
	3.6 Security Analysis
	3.7 Implementation

	4 Previous Work
	5 Conclusions
	References
	A Diagram of Funshade primitives vs AriaNN primitives

