Efficient Zero-Knowledge Arguments for Some Matrix Relations over Ring and Non-malleable Enhancement

Yuan Tian
${ }^{1}$ Software School, Dalian University of Technology, Dalian, Liao Ning, P.R.China,
tianyuan ca@dlut.edu.cn

Abstract

Various matrix relations widely appeared in data-intensive computations, as a result their zero-knowledge proofs/arguments (ZKP/ZKA) are naturally required in large-scale private computing applications.

In the first part of this paper, we concretely establish efficient zeroknowledge arguments for linear matrix relation $\mathbf{A U}=\mathbf{B}$ and bilinear relation $\mathbf{U}^{\mathbf{T}} \mathbf{Q V}=\mathbf{Y}$ over the residue ring Z_{m} with logarithmic message complexity. We take a direct, matrix-oriented (rather than vector-oriented in usual) approach to such establishments on basis of the elegant commitment scheme over the ring recently established by Attema et al[16]. The constructed protocols are publiccoin and in c.r.s paradigm (c.r.s used only as the public-key of the commitment scheme), suitable for any size matrices and outperform the protocols constructed in usual approach when number of columns $>\log$ (number of rows) with significantly smaller c.r.s., fewer rounds and lower message complexity, particularly for large-size squares. The on-line computational complexity is almost the same for both approaches.

In the second part, on basis of the simulation-sound tag-based trapdoor commitment schemes we establish a general compiler to transform any public coin proof/argument protocol into the one which is concurrently non-malleable with unchanged number of rounds, properly increased message and computational complexity. Such enhanced protocols, e.g., the versions compiled from those constructed in the first part of this work, can run in parallel environment while keeping all their security properties, particularly resisting man-in-themiddle attacks.

Keywords: Zero-Knowledge, Linear Matrix Equation, Bilinear Matrix Equation, Σ Protocol, Concurrent Nom-malleability, Galois Ring.

1 Introduction

1.1 Basic Problems and Related Works

Efficient zero-knowledge proofs for various relations are crucial techniques to support multiparty private computating tasks[1,2], secure distributed ledger systems [3,4,5] and many other cryptographic applications. In data-intensive private computation, lots of data relations appear in the form of high dimensional vector or large-size matrix equations[3,4] and efficient zero-knowledge proof protocols (ZKP) with low mes-
sage complexity are highly valuable to support these applications in complicated network environment.

Recently, some innovative techniques have been developed in [6,7] to construct highly efficient ZKPs for linear vector relation $\boldsymbol{a}^{\mathrm{T}} \boldsymbol{u}=b$ and inner product relation $\boldsymbol{u}^{\mathrm{T}} \boldsymbol{v}$ $=w$ over finite field. The constructed ZKPs have message complexity of only $\mathrm{O}(\log n)$ were n is the dimension of witness space, significantly improving previous works in performance. This approach was further developed in [8] to construct ZKP for quadratic relation $\boldsymbol{u}^{\mathrm{T}} \mathbf{A} \boldsymbol{u}+\boldsymbol{b}^{\mathrm{T}} \boldsymbol{u}=c$ over finite field with logarithmic message complexity and lots of other improvements in performance. This approach was also applied to constructing ZKPs with logarithmic message complexity for bilinear relations on groups with pairing structure [9,10] and partial-knowledge proof protocols[11].

After succeeding in developing efficient ZKPs for linear vector relations over finite field, it is natural to establish efficient ZKPs for nonlinear relations over finite field and other arithmetic systems, e.g., finite rings Z_{M} or integer ring Z .

In the first direction, bilinear relation is the simplest non-linear relation which efficient ZKP construction was partially solved, e.g., $[6-8]$ has established the protocols with logarithmic message complexity in some special cases. More specifically, the protocols constructed in $[6,7]$ are only for inner-product relation, and the protocols in [8] are only for quadratic relation with 1-rank coefficient matrix. So far with the author's knowledge there is no direct work on bilinear relation $\boldsymbol{u}^{\mathrm{T}} \mathbf{Q} \boldsymbol{v}=y$ with general \mathbf{Q} or with witnesses not only \boldsymbol{u} and \boldsymbol{v} but also \mathbf{Q} and y. These relations naturally appear in contemporary cryptographic applications. For non-linear relations, so far the most common and effective approach is linearization[12]. In this approach, any relation over the finite field can be equivalently transformed into a (maybe very high dimensional) linear relation through secrete sharing techniques. On the other hand, as indicated in [9], the compilation from nonlinear to linear relation comes at the price of losing conceptual simplicity and modularity in protocol design. Therefore, developing direct approach for specific non-linear relation is still useful in cryptography theory and applications. [9-11] are heuristic examples in this direction.

In the second direction, recently a ZKP with polynomial-logarithmic message complexity was constructed in [13] where one centric relation is a linear relation over the integer ring Z . [16] established a family of general and elegant commitment schemes for vectors over Galois ring, and the ZKP with logarithmic message complexity is constructed, by generalizing techniques in [12], for linear relations over the ring. The ZKP for any relation over Galois ring can be also constructed via the linearization approach and related techniques developed in multiparty private computation over the ring. However, a straightforward generalization of ZKP-construction from the finite field to ring does not sufficiently make use of all flexibilities provided by this scheme. Therefore, there are new and interesting problems for applying this new commitment scheme in ZKP-construction, even for linear relations.

Contributions Our contributions in this paper have two parts. In the first part (Sec. 3 and 4) we concretely establish efficient zero-knowledge argument (ZKA) protocols for linear matrix relation $\mathbf{A U}=\mathbf{B}$ and bilinear relation $\mathbf{U}^{\mathrm{T}} \mathbf{Q} \mathbf{V}=\mathbf{Y}$ over the residue ring Z_{m} with logarithmic message complexity. Z_{m} is undoubtedly one of the most widely used arithmetic systems in practice. One of the main challenges in construct-
ing ZKA protocols for relations over a ring is how to ensure sufficient number of challenges to fulfill the necessary soundness requirements. This is elegantly achieved in [16] by committing over the extended ring S, which elements are polynomials of some finite degree d over Z_{m}. As a result, a Z_{m}-vector is regarded as a special S-vector and the ZKA protocol for a relation over Z_{m} is simply constructed as a ZKA protocol for a relation over S, by generalizing techniques (e.g., amortization, compression, etc.) from Galois fields to Galois rings. However, in private computing applications, what is actually needed is to prove relations over, e.g., Z_{m}, rather than over its extension S, so when establishing the ZKA protocol for a matrix relation this approach, by dealing with a matrix just as a collection of vectors, is not as efficient as desired.

We take a more matrix-oriented approach on basis of an observation that a n dimensional vector over the Galois ring S can be effectively related with a Z_{m}-matrix in various ways. For example, by re-arranging a large-size, n-by- $t d \mathrm{Z}_{m}$-matrix \mathbf{U} to be a $n t$-by- d matrix \mathbf{U}^{*}, it can be equivalently regarded as a $n t$-dimensional S-vector u^{*} so its commitment can be always valued in G^{d}, i.e., its commitment size can be independent of its total size and only determined by the targeted knowledge-error in ZKA. Furthermore, how to transform the original relation for matrices over Z_{m} into an equivalent relation for the correspondent vectors over S while keeping the commitment size fixed (e.g., d) or as slowly-increasing as possible is crucial to make use of these observations. This is simple in linear case but technically involved in non-linear case. Details are elaborated in sec. 3 and 4.

Our matrix-oriented approach to ZKA for matrix relations is able to deal with Z_{m}-matrix in any size. The constructed protocols usually have the same on-line computational complexity as those constructed in vector-oriented approach. It begins to outperform the vector-oriented approach when number of columns $>\log$ (number of rows) with smaller c.r.s, shorter commitments, fewer rounds and lower message complexity. For example, for linear relation with the witness of n-by- $n \mathrm{Z}_{\mathrm{m}}$-matrix, number of rounds can be reduced from $\log n$ to $\log n-\log d$ and message complexity can be reduced from $d \log n$ to $d \log n-d \log d$. In addition, the number of group elements in c.r.s can be reduced by a factor of d (see tab. $1 \& 2 \mathrm{in} \mathrm{sec} .3$). For bilinear matrix relation, the matrix-oriented approach outperforms the general linearization approach in all aspects (e.g., the number of rounds and G-elements in message can be reduced by about $1 / 3$ and c.r.s. reduced by $n d$ times) except that the former has slightly more number of S-elements in message when $n>d^{5}$ (n is the number of rows in the witness square, see tab. $3 \& 4 \mathrm{in}$ sec.4). This is a result of making use of specific structural features of the commitment scheme and matrix equations. The same approach can also deal with more complicated matrix relations such as eigenvalue relation $\mathbf{U} \boldsymbol{a}=\lambda \boldsymbol{a}$, $\mathbf{A U B}^{\mathrm{T}}=\mathbf{C}, \mathbf{U}^{\mathrm{T}} \mathbf{Q V}+\mathbf{A U B}^{\mathrm{T}}+\mathbf{C U D}^{\mathrm{T}}=\mathbf{R}$ (with witnesses \mathbf{U} and \mathbf{V}) with similar performance advantages.

All constructed protocols in this paper are public-coin and in c.r.s paradigm, where the c.r.s is only used as the commitment scheme's public key.

In the second part (Sec.5), on basis of the general and formal public-coin protocol structure, we establish a general compiler to transform any such proof/argument protocol into the protocol which is concurrently non-malleable with unchanged number of rounds, properly increased message and computational complexity (by nearly
constant times). The innovative approach developed in [20-22] for 3-round protocols is generalized to multi-round public-coin protocols via some recent analysis and results in [13]. The basic tool is the simulation-sound trap-door commitment scheme introduced in [20-22]. Such enhanced protocols, e.g., all the enhanced versions of protocols in sec. 3 and 4, can run in parallel environment while keeping all its security properties, particularly resisting man-in-the-middle attacks.

Some Notes on Terminologies In second part of our work, we simply inherit the terminology non-malleability from [22] but it is strictly weaker than the "nonmalleability" in [20-21] which is actually equivalent to universal composability. In addition, "tag-based" and "simulation soundness" for the trapdoor commitment scheme are terminologies inherited from [20] which are similar (but not exactly the same) as the properties proposed in [22] in different names.

2 Preliminaries

Notations and Conventions λ usually represents the security parameter, poly (λ) represents a polynomial in λ. A function $\varepsilon(\lambda)$ is called asymptotically negligible or simply negligible if $\lim _{\lambda \rightarrow \infty} \operatorname{poly}(\lambda) \varepsilon(\lambda)=0$.
P.P.T. means Probabilistic Polynomial Time.
$\stackrel{R}{\leftarrow} \mathrm{~J}$ means a random variable u is sampled on a set J under uniform distribution.
Two random variable ensembles $\left\{X_{\lambda}\right\}$ and $\left\{Y_{\lambda}\right\}$ are called statistically indistinguishable if the differences of their distribution is negligible:

$$
\sum_{u}\left|P\left[X_{\lambda}=u\right]-P\left[Y_{\lambda}=u\right]\right| \leq \varepsilon(\lambda)
$$

$\left\{X_{\lambda}\right\}$ and $\left\{Y_{\lambda}\right\}$ are called computationally indistinguishable if for any P.P.T. algorithm A the following inequality holds where the function $\varepsilon(\lambda)$ is negligible.

$$
\left|\mathrm{P}\left[\mathrm{~A}\left(X_{\lambda}\right)=1\right]-\mathrm{P}\left[\mathrm{~A}\left(Y_{\lambda}\right)=1\right]\right| \leq \varepsilon(\lambda)
$$

2.1 Zero-knowledge Proofs/Arguments

A binary relation R is NP-class if there exists a polynomial-time algorithm A to decide whether (x, w) is in $\mathrm{R} . \mathrm{L}_{\mathrm{R}} \equiv\{x$: there exists $(x, w) \in \mathrm{R}\}$.

In an interactive proof system (P, V) where P and V are P.P.T prover and verifier, σ represents the common reference string(c.r.s.), x represents the public information for P and V, w represents the private information only for P , i.e., the witness, $\langle\mathrm{P}(w) ; \underline{\mathrm{V}}\rangle_{\sigma}(x)$ represents the output of V valued in $\{0,1\}$ after the interaction with P on input x and c.r.s. $\sigma, \operatorname{Tr}\left\langle\mathrm{P}, \mathrm{V}>_{\sigma}(x)\right.$ the trace during the interaction between P and V . These notations have the same meaning for any interactive algorithms A and B.

Definition 1 (Zero-knowledge Proof) For a relation R and some given function $\kappa(\lambda)$, an interactive proof system (P, V) is defined as a zero-knowledge proof of knowledge for R, ZKPoK hereafter, if it has all the following properties:
(1) Complete For any $(x, w) \in \mathrm{R}$ there holds $\mathrm{P}\left[\langle\mathrm{P}(w) ; \underline{\mathrm{V}}\rangle_{\sigma}(x)=1\right]=1$.
(2) Knowledge-sound with knowledge-error $\boldsymbol{\kappa}(\lambda)$ There exists a polynomial $q($. and an algorithm Ext (called extractor) with expected polynomial time complexity, such that for any (maybe dishonest) prover P^{*} which can be rewound by Ext there holds

$$
\mathrm{P}\left[w^{*} \leftarrow \mathrm{Ext}^{\mathrm{P}^{*}}\left(\sigma, x, \operatorname{Tr}<\mathrm{P}^{*}, \mathrm{~V}>_{\sigma}(x)\right):\left(x, w^{*}\right) \in \mathrm{R}\right] \geq(\mu(x)-\kappa(|x|)) / \mathrm{q}(|x|)
$$

where $\mu(x) \equiv \mathrm{P}\left[<\mathrm{P}^{*} ; \underline{\mathrm{V}}>_{\sigma}(x)=1\right] \geq \kappa(|x|)$.
(3) Zero-knowledge There exists a P.P.T. algorithm S, called simulator, such that for any (maybe dishonest) verifier V^{*}, the output of $\mathrm{S}(\sigma, x)$ and $\operatorname{Tr}\left\langle\mathrm{P}, \mathrm{V}^{*}\right\rangle_{\sigma}(x)$ are statistically indistinguishable for any $x \in \mathrm{~L}_{\mathrm{R}}$.

For knowledge soundness, there is an equivalent definition ([18] sec. 4.7) that on input of x and $\operatorname{Tr}\left\langle\mathrm{P}^{*}, \mathrm{~V}\right\rangle_{\sigma}(x)$ with $\left\langle\mathrm{P}^{*}, \underline{\mathrm{~V}}\right\rangle_{\sigma}(x)=1$ and Ext can rewind P^{*}, Ext outputs a witness $w^{*}:\left(x, w^{*}\right) \in \mathrm{R}$ with the expected time at most $\mathrm{q}(|x|) /(\mu(x)-\kappa(|x|))$.

If knowledge soundness only holds for P.P.T. prover P^{*}, the proof system is called knowledge argument, notated by ZKAoK hereafter.

Definition 2 (\sum-Protocol and generalized \sum-Protocol) An interactive proof system (P, V) for relation R is called a \sum-protocol, if it has 3 rounds with the first message from P to V and the second message just being a random coin from V to P independent of the session context.

An interactive proof system (P, V) for relation R is called a generalized \sum protocol, if it has $2 k+1$ rounds with the first message from P to V and any messages from V to P just being random coins independent of each other and session context.

A generalized \sum-protocol for relation R is called special honest verifier zeroknowledge (SHVZK) if there exists a P.P.T. algorithm S such that for any verifier V^{*}, the real trace $\operatorname{Tr}\left\langle\mathrm{P}, \mathrm{V}^{*}\right\rangle_{\sigma}(x)$ and the output of S on input $\left(\sigma, x ; e_{1}, \ldots, e_{k}\right)$ have the same distribution for any $x \in \mathrm{~L}_{\mathrm{R}}$ and independent random coins e_{1}, \ldots, e_{k}.

Definition $3\left(\left(\mu_{1}, \ldots, \mu_{k}\right)\right.$-special soundness and session-tree for a generalized Σ Protocol) A $\left(\mu_{1}, \ldots, \mu_{k}\right)$-session-tree, denoted by $\mathrm{T}_{\sigma}(x)$, for the proof system of relation R with c.r.s. σ is a tree in which:
(1) Each node is associated with a message instance form P to V in the interaction between P and V with public information x, in particular the root is with the first message in the interaction.
(2) Each edge is a random coin from V to P .
(3) At level- i (the root being at level-1) each node α has μ_{i} edges and the random coin instances $e_{\alpha / 1}, \ldots, e_{\alpha / \mu i}$ associated with these edges are distinct. The downstream node of each edge is associated with the message instance of P in response to the random coin.
Each integer μ_{i} is called the soundness factor of the i-th round.
Obviously, each path from the root to a leaf in the tree $\mathrm{T}_{\sigma}(x)$ is a complete session instance, i.e., a trace. The number of paths in a tree $\mathrm{T}_{\sigma}(x)$ is $\mu_{1} \ldots \mu_{k}$. If the verifier V outputs 1 on all these paths, the tree $\mathrm{T}_{\sigma}(x)$ is called accepting.

A generalized \sum-protocol is called $\left(\mu_{1}, \ldots, \mu_{k}\right)$-special sound, if there exists a P.P.T. algorithm (extractor) which with overwhelming probability outputs a witness $w^{*}:\left(x, w^{*}\right) \in \mathrm{R}$ on input of σ, x and the accepting tree $\mathrm{T}_{\sigma}(x)$.

Recently [13] proved a fundamental fact that (μ_{1}, \ldots, μ_{k})-soundness implies knowledge soundness, a general fact without imposing any restrictions on the challenge set where the random coins are sampled.

2.2 Commitment Scheme

Definition 4 (Commitment Scheme) A Commitment scheme CS \equiv (CGen, Cmt, Cvf) is composed of three P.P.T. algorithms with the following properties:
(1) Complete For any message x there holds

$$
\mathrm{P}[p k \leftarrow \operatorname{CGen}(\lambda) ;(c, d) \leftarrow \operatorname{Cmt}(p k, x): \operatorname{Cvf}(p k, c, x, d)=1]=1
$$

(2) Binding There exists a negligible function $\varepsilon(\lambda)$ s.t. for any P.P.T. algorithm A:

$$
\mathrm{P}\left[p k \leftarrow \operatorname{CGen}(\lambda) ;\left(c, x_{1}, x_{2}, d_{1}, d_{2}\right) \leftarrow \mathrm{A}(p k): \operatorname{Cvf}\left(p k, c, x_{1}, d_{1}\right)=1 \wedge \operatorname{Cvf}\left(p k, c, x_{2}, d_{2}\right)=1 \wedge x_{1} \neq x_{2}\right] \leq \varepsilon(\lambda)
$$

(3) Hiding For any $p k$ generated by CGen and any messages x_{1}, x_{2} in the same size, the variables $c_{1}:\left(c_{1}, d_{1}\right) \leftarrow \operatorname{Cmt}\left(p k, x_{1}\right)$ and $c_{2}:\left(c_{2}, d_{2}\right) \leftarrow \operatorname{Cmt}\left(p k, x_{2}\right)$ has the same distribution.

2.3 Basic Facts about Galois Ring

Formally, a Galois ring is a finite ring with multiplicative unit 1 such that all of its zero divisors (including 0) forms a principal ideal ($p 1$) for some prime number p.

One of the most important examples for Galois ring is the residue ring Z_{m} where $m=p^{s}$ and p is a prime number. Another important example is $\mathrm{Z}_{m}[X] /(f(X))$ where Z_{m} is as before and $f(X)$ is a monic irreducible polynomial of degree d over Z_{m}. This ring is the extended ring of Z_{m} of degree d, notated as $\operatorname{GR}(m, d)$ hereafter.

The most important facts about Galois ring useful in this paper are stated here. All details and proofs can be seen, e.g., in Chapter 14 of [17], particularly its theorem $14.1,14.6,14.8$ and lemma 14.20 and 14.29.

Fact 1 Let S be a Galois ring of characteristic p^{s} (i.e., $p^{s} 1=0$ and $N 1 \neq 0$ for any integer $N \neq 0 \bmod p^{s}$) and cardinality $p^{s d}$ where p is a prime, s and d are positive integers. Then S is isomorphic to the ring $\operatorname{GR}(m, d) \equiv \mathrm{Z}_{m}[X] /(f(X))$ for $m=p^{s}$ and any irreducible polynomial $f(X)$ of degree d over Z_{m}.

Fact 2 In Galois ring $\operatorname{GR}(m, d) \equiv \mathrm{Z}_{m}[X] /(f(X))$ with $m=p^{s}$:
(1) There exists an element ξ of order $p^{d}-1$ such that $f(\xi)=0$ and $f(X)$ is the unique monic polynomial of degree $\leq d$ over Z_{m} with ξ as its root .
(2) $X^{p^{d-1}}-1=0 \bmod f(X)$ and $X^{N}-1 \neq 0 \bmod f(X)$ for $0<N<p^{d}-1$.
(3) $\operatorname{GR}(m, d)=\mathrm{Z}_{m}[\xi] \equiv\left\{a_{0}+a_{1} \xi+a_{2} \xi^{2}+\ldots+a_{d-1} \xi^{d l-1}: a_{0}, a_{1}, a_{2}, \ldots, a_{d-1}\right.$ in $\left.\mathrm{Z}_{m}\right\}$
(4) Let $\mathrm{E}_{\operatorname{GR}(m, d)} \equiv\left\{\xi^{i}: i=0,1,2, \ldots, p^{d}-2\right\}$ then any u in $\operatorname{GR}(m, d)$ has a unique p-adic representation as

$$
u=A_{0}+A_{1} p+A_{2} p^{2}+\ldots+A_{s-1} p^{s-1}
$$

with each A_{i} in $\mathrm{E}_{\mathrm{GR}(m, d)} \cup\{0\}$. Furthermore, u is invertible in $\operatorname{GR}(m, d)$ iff $A_{0} \neq 0$.
(4) $\mathrm{E}_{\mathrm{GR}(m, d)}$ is called the exceptional set of Galois ring $\mathrm{G}(m, d)$. $\mathrm{E}_{\mathrm{GR}(m, d)}$ is a cyclic multiplicative group of order $p^{d}-1$ and is isomorphic to the multiplicative sub-
group of finite field $\mathrm{F}_{p^{d}} . \zeta^{\dot{j}}-\xi^{j}$ is in $\mathrm{E}_{\mathrm{GR}(m, d)}$ for any $i \neq j$, i.e., $\zeta^{\dot{j}}-\xi^{j}$ is always invertible in $\operatorname{GR}(m, d)$.
(5) $f(X)$ has roots $\xi, \xi^{p}, \xi^{p^{2}}, \ldots, \xi p^{d-1}$.

Fact 3 Let S be $\operatorname{GR}(m, d)$ and $l<p^{d}-1$, then any non-identically zero polynomial $\varphi(X) \in \mathrm{S}[X]$ of degree $\leq l$ cannot have more than l roots in the exceptional set E_{S}.

Fact 4 Let S be $\operatorname{GR}(m, d)$ with $m=p^{s}, \bar{S}$ be $\mathrm{S} /(p)$ and h be a monic polynomial in $\mathrm{S}[X]$. If there are pairwise coprime monic polynomials $\overline{g_{1}}, \ldots, \overline{g_{r}}$ in $\bar{S}[X]$ such that h $=\overline{g_{1}} \ldots \overline{g_{r}} \bmod (p)$, then there exist pairwise coprime monic polynomials g_{1}, \ldots, g_{r} in $\mathrm{S}[X]$ such that $f=g_{1} \ldots g_{r}$ and $g_{i}=\bar{g}_{\iota} \bmod (p)$ for each i.

Although the commitment schemes established in [16] is not limited to ring Z_{m} or its extensions with special m, in this paper we only consider Z_{m} and its extensions $\operatorname{GR}(m, d)$ with $m=p^{s}$ where $p=2$ or any odd prime, the most important Galois ring family in applications.

2.4 Vector Commitments over Galois Ring

Attema T., et al in [16] established a family of general and elegant commitment schemes for vectors over any finite ring. Let S be $\mathrm{GR}(m, d) \equiv \mathrm{Z}_{m}[X] /(f(X))$ and \boldsymbol{u} be a n-dimensional S-vector, i.e.,

$$
\boldsymbol{u}=\left[\begin{array}{c}
u_{1}(X) \tag{2.1}\\
\cdot \\
\cdot \\
u_{n}(X)
\end{array}\right] \in S^{n}
$$

with $u_{k}(X)=u_{1}(k)+u_{2}(k) X+u_{3}(k) X^{2}+\ldots+u_{d}(k) X^{d-1} \in \mathrm{~S}$ for each $k=1, \ldots, n$. Let R be the set on which to select the random element for hiding, then the commitment to \boldsymbol{u} is an element in product group G^{d} where G is the commitment-friendly group[16], e.g., G $=\mathrm{Z}_{N}{ }^{*}$ (for m odd) or $\mathrm{J}^{+}(N)$ (for m even) with some strong RSA module N, which is computed by:

$$
\operatorname{Cmt}(\sigma \mid \boldsymbol{u} ; \boldsymbol{r})=\left[\begin{array}{c}
\mathrm{cmt}_{\sigma}\left(u_{1}(1), \ldots, u_{1}(n) ; r_{1}\right) \tag{2.2}\\
\cdot \\
\cdot \\
\mathrm{cmt}_{\sigma}\left(u_{d}(1), \ldots, u_{d}(n) ; r_{d}\right)
\end{array}\right] \in G^{d}: \mathrm{S}^{n} \times \mathrm{R}^{d} \rightarrow \mathrm{G}^{d}
$$

where $\mathrm{cmt}_{\sigma}(\boldsymbol{w} ; r): Z_{m}^{n} \times \mathrm{R} \rightarrow \mathrm{G}$ is a basic commitment scheme for any n-dimensional Z_{m}-vector \boldsymbol{w}. A general method is provided to construct the basic scheme $\mathrm{cmt}_{\sigma}(. ;$.) in [16] to ensure the properties of unconditional completeness, perfect hiding and computational binding. Specifically, given the commitment key $\sigma \equiv[G, \boldsymbol{g}, m]$ with $\boldsymbol{g} \equiv$ $\left(g_{1}, \ldots, g_{n}\right)$ being group elements ${ }^{1}$, for $\boldsymbol{w}=\left[w_{1}, \ldots, w_{n}\right] \in Z_{m}^{n}$ with m odd then:

$$
\begin{equation*}
\operatorname{cmt}_{\sigma}(\boldsymbol{w} ; r)=r^{m} \boldsymbol{g}[\boldsymbol{w}] \equiv r^{m} g_{1}^{w_{1}} \ldots g_{n}^{w_{n}} \text { where } r \in \mathrm{R} \tag{2.3}
\end{equation*}
$$

[^0]For m even:

$$
\begin{equation*}
\operatorname{cmt}_{\sigma}(\boldsymbol{w} ; r)=r^{m}(-1)^{b} \boldsymbol{g}[\boldsymbol{w}] \equiv r^{m}(-1)^{b} g_{1}^{w_{1}} \ldots g_{n}^{w_{n}} \text { where }(b, r) \in\{0,1\} \times \mathrm{R} \tag{2.4}
\end{equation*}
$$

Note that we denote $g_{1}^{w_{1}} \ldots g_{n}^{w_{n}}$ as $g[\boldsymbol{w}], g_{1}^{e} \ldots g_{n}^{e}$ as $\boldsymbol{g}[e]$ to simplify the expressions.
Besides security properties, homomorphism is also crucial for these commitment scheme's applications. It is straightforward to show that (2.3) and (2.4) have the usual homomorphism properties required for a commitment. Furthermore, scheme $\operatorname{Cmt}\left(\sigma \mid . ;\right.$.): $\mathrm{S}^{n} \times \mathrm{R}^{d} \rightarrow \mathrm{G}^{d}$ has a algebraic property useful in protocol construction.
Lemma 1 Let e be in Galois ring $\mathrm{S}=\mathrm{GR}(m, d) \equiv \mathrm{Z}_{m}[X] /(f(X))$ and $\mathrm{M}_{e} \in Z_{m}^{d \times d}$ be its associated matrix, i.e., for any

$$
u=u_{1}+u_{2} X+u_{3} X^{2}+\ldots+u_{d} X^{d-1} \in \mathrm{~S}
$$

there holds

$$
\begin{equation*}
e u=\sum_{i=1}^{d}\left(\sum_{j=1}^{d} M_{e}(i, j) u_{j}\right) X^{i-1} \bmod f(X) \tag{2.5}
\end{equation*}
$$

Also let

$$
\operatorname{Cmt}(\sigma \mid \boldsymbol{u} ; \boldsymbol{r})=\left[\begin{array}{c}
C_{1} \\
\cdot \\
\dot{C}_{d}
\end{array}\right] \in S^{d}
$$

and \boldsymbol{u} be the S-vector in (2.1), then

$$
\operatorname{Cmt}(\sigma \mid e \boldsymbol{u} ; \boldsymbol{s})=\left[\begin{array}{c}
\prod_{j=1}^{d} C_{j}^{M_{e}(1, j)} \tag{2.6}\\
\cdot \\
\prod_{j=1}^{d} \dot{C}_{j}^{M_{e}(d, j)}
\end{array}\right]
$$

where \boldsymbol{s} can be efficiently computed from $\boldsymbol{u}, \boldsymbol{r}, e^{2}$ and is uniformly distributed if \boldsymbol{r} or e are uniformly distributed. Equality (2.6) is denoted as $\operatorname{Cmt}(\sigma \mid \boldsymbol{e} ; \boldsymbol{;})=\operatorname{Cmt}(\sigma \mid \boldsymbol{u} ; \boldsymbol{s})^{e}$.
Proof For each $k=1, \ldots, n$ let

$$
u_{k}=\sum_{j=1}^{d} u_{j}(k) X^{j-1}
$$

so by (2.5) one has $e u_{k}=\sum_{i=1}^{d}\left(\sum_{j=1}^{d} M_{e}(i, j) u_{j}(k)\right) X^{i-1} \bmod f(X)$, hence

$$
\begin{aligned}
\boldsymbol{e} \boldsymbol{u} & =\left[\begin{array}{c}
\sum_{i=1}^{d}\left(\sum_{j=1}^{d} M_{e}(i, j) u_{j}(1)\right) X^{i-1} \\
\vdots \\
\sum_{i=1}^{d}\left(\sum_{j=1}^{d} M_{e}(i, j) u_{j}(n)\right) X^{i-1}
\end{array}\right] \\
& =\left[\begin{array}{c}
\sum_{j=1}^{d} M_{e}(1, j) u_{j}(1), \ldots \ldots, \sum_{j=1}^{d} M_{e}(d, j) u_{j}(1) \\
\vdots \\
\sum_{j=1}^{d} M_{e}(1, j) u_{j}(n), \ldots \ldots, \sum_{j=1}^{d} M_{e}(d, j) u_{j}(n)
\end{array}\right]\left[\begin{array}{c}
1 \\
X \\
\dot{d^{-1}}
\end{array}\right]
\end{aligned}
$$

[^1]\[

=\left[$$
\begin{array}{ccc}
u_{1}(1) & \cdots & u_{d}(1) \\
\vdots & \ddots & \vdots \\
u_{1}(n) & \cdots & u_{d}(n)
\end{array}
$$\right]\left[$$
\begin{array}{ccc}
M_{e}(1,1) & \cdots & M_{e}(d, 1) \\
\vdots & \ddots & \vdots \\
M_{e}(1, d) & \cdots & M_{e}(d, d)
\end{array}
$$\right]\left[$$
\begin{array}{c}
1 \\
X \\
\dot{X^{d-1}}
\end{array}
$$\right]=\boldsymbol{W}\left[$$
\begin{array}{c}
1 \\
X \\
\dot{X^{d-1}}
\end{array}
$$\right] \bmod f(X)
\]

where the Z_{m}-matrix $\boldsymbol{W}=\mathbf{U M}_{e}^{\mathbf{T}}=\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{d}\right] \mathbf{M}_{e}^{\mathbf{T}} \equiv\left[\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{d}\right]$ with column vectors \boldsymbol{w}_{k} :

$$
\boldsymbol{w}_{k}=\sum_{j=1}^{d} M_{e}(k, j) \boldsymbol{u}_{j} \quad k=1, \ldots, d
$$

By commitment scheme cmt ${ }_{\sigma}$'s homomorphism property, the k-th component of $\operatorname{Cmt}(\sigma \mid \boldsymbol{e} \boldsymbol{u})$ is (for simplicity we omit all random numbers' expressions):

$$
\begin{array}{r}
\operatorname{Cmt}(\sigma \mid e \boldsymbol{u})_{k}=\operatorname{cmt}_{\sigma}\left(\boldsymbol{w}_{\boldsymbol{k}}\right)=\operatorname{cmt}_{\sigma}\left(\sum_{j=1}^{d} M_{e}(k, j) \boldsymbol{u}_{j}\right)=\prod_{j=1}^{d} c m t_{\sigma}\left(\boldsymbol{u}_{\boldsymbol{j}}\right)^{M_{e}(k, j)} \\
\text { i.e., } \operatorname{Cmt}(\sigma \mid e \boldsymbol{u})_{k}=\prod_{j=1}^{d} \operatorname{Cmt}(\sigma \mid \boldsymbol{u})_{j}^{M_{e}(k, j)}
\end{array}
$$

which proves (2.6).
Remark 1 This result was basically established in [16] and lemma 2.1 presents it in a more explicit formulism (2.6). Furthermore, when the commitment (2.2) to a S-vector \boldsymbol{u} in (2.1) is equivalently regarded as a commitment to a Z_{m}-matrix

$$
\mathbf{U}=\left[\begin{array}{ccc}
u_{1}(1) & \cdots & u_{d}(1) \\
\vdots & \ddots & \vdots \\
u_{1}(n) & \cdots & u_{d}(n)
\end{array}\right] \in Z_{m}^{n \times d}
$$

and denoted by $\operatorname{Cmt}(\sigma \mid \mathbf{U})$, then (2.6) implies

$$
\begin{equation*}
\operatorname{Cmt}\left(\sigma \mid \mathbf{U} \mathbf{M}_{e}^{\mathbf{T}}\right)=\operatorname{Cmt}(\sigma \mid \mathbf{U})^{e} \tag{2.7}
\end{equation*}
$$

This view of equalizing S -vectors and Z_{m}-matrices is useful in the following work.

2.5 Probabilistic Equivalence Reduction

Two relations $\mathrm{R}(\alpha \mid x ; u)$ and $\mathrm{S}(\beta \mid y ; v)$ are called probabilistically equivalent with each other if there exists negligible functions $\varepsilon_{1}(\lambda)$ and $\varepsilon_{2}(\lambda)$ such that

$$
\mathrm{P}[\mathrm{R}(\alpha \mid x ; u) \mid \mathrm{S}(\beta \mid y ; v)] \geq 1-\varepsilon_{1}(\lambda) \text { and } \mathrm{P}[\mathrm{~S}(\beta \mid y ; v) \mid \mathrm{R}(\alpha \mid x ; u)] \geq 1-\varepsilon_{2}(\lambda)
$$

This equivalence is denoted by $\mathrm{R}(\alpha \mid x ; u) \stackrel{\mathrm{P}}{\leftrightarrow} \mathrm{S}(\beta \mid y ; v)$. Usually one of $\varepsilon_{1}(\lambda)$ or $\varepsilon_{2}(\lambda)$ is 0 , i.e., the reduction is deterministic in one direction but probabilistic in the other.

Let the reduction from R to S is deterministic, i.e., $\mathrm{P}[\mathrm{S}(\beta \mid y ; v) \mid \mathrm{R}(\alpha \mid x ; u)]=1$, while on the other direction it is probabilistic: $\mathrm{P}\left[\mathrm{R}(\alpha \mid x ; u) \mid \mathrm{S}\left(\beta \mid y_{\rho} ; v_{\rho}\right)\right] \geq 1-\varepsilon_{1}(\lambda)$ where ρ is a random variable. If there exists a P.P.T. algorithm A which can compute the witness u of R from at most m witnesses $v_{\rho 1}, \ldots, v_{\rho m}$ of S with overwhelming probability, we say this reduction has soundness factor m and denote this fact by $\mathrm{R} \stackrel{\mathrm{P} / m}{\longleftrightarrow} \mathrm{~S}$.

Some detailed analysis and useful examples of probabilistic reduction in zeroknowledge proofs for relations in Galois fields can be seen in [12]. Fact 3 in sec. 2.3 is the foundation to generalize these techniques from Galois fields to Galois rings.

3 Efficient ZKA Protocol for Matrix Relation AU = B

Consider the matrix equation $\mathbf{A U}=\mathbf{B}$ in residue ring Z_{m} where matrices $\mathbf{U} \in Z_{m}^{n \times h}$, $\mathbf{A} \in Z_{m}^{l \times n}$ and $\mathbf{B} \in Z_{m}^{l \times h}$. Both n and h are sufficiently large and $h=t d$ for some integer t. The extension degree of Galois ring S over Z_{m} is $d<\log n^{3}$ and is determined by p^{-d} $\log n<$ the targeted knowledge error. Matrix \mathbf{U} is private (witness) while \mathbf{A} and \mathbf{B} are public.

3.1 Basics

To present the main idea explicitly, let's consider the case $t=1$ at first, i.e., $\mathbf{A U}=\mathbf{B}$ in residue ring Z_{m} where matrices $\mathbf{U} \in Z_{m}^{n \times d}, \mathbf{A} \in Z_{m}^{l \times n}$ and $\mathbf{B} \in Z_{m}^{l \times d}$. There is no performance advantage in this case in comparison with the standard, vector-oriented approach. The objective of this section is to present the main ideas and techniques in our matrix-oriented approach.

In order to construct an efficient proof protocol with commitment to Z_{m}-matrix \mathbf{U}, the first step is to find some relation over S which is equivalent to the original linear matrix relation over Z_{m}.

For $\mathrm{S} \equiv \mathrm{Z}_{m}[X] /(f(X))=\mathrm{GR}(m, d)$ with degree- d irreducible monic polynomial $f(X)$ and matrix $\mathbf{A} \in Z_{m}^{l \times n}$, define a S-linear operator:

$$
\begin{equation*}
\mathbf{L}_{\mathrm{A}}: \mathrm{S}^{n} \rightarrow \mathrm{~S}^{l}: \mathrm{L}_{\mathrm{A}}(\boldsymbol{u})_{i} \equiv \sum_{k=1}^{n} a_{i k} u_{k}(X) \bmod f(X), i=1, \ldots, l \tag{3.1}
\end{equation*}
$$

where $u_{k}(X) \in \mathrm{S}$ is the k-th component of vector \boldsymbol{u} in S^{n}.
For the Z_{m}-matrices

$$
\mathbf{U}=\left[\begin{array}{ccc}
u_{1}(1) & \cdots & u_{d}(1) \tag{3.2}\\
\vdots & \ddots & \vdots \\
u_{1}(n) & \cdots & u_{d}(n)
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ccc}
b_{1}(1) & \cdots & b_{d}(1) \\
\vdots & \ddots & \vdots \\
b_{1}(l) & \cdots & b_{d}(l)
\end{array}\right]
$$

and each $i=1, \ldots, l, k=1, \ldots, n$, let:

$$
\begin{gathered}
b_{i}(X) \equiv \sum_{j=1}^{d} b_{j}(i) X^{j-1}=b_{1}(i)+b_{2}(i) X+\cdots+b_{d}(i) X^{d-1} \\
u_{k}(X) \equiv u_{1}(k)+u_{2}(k) X+\cdots+u_{d}(k) X^{d-1}
\end{gathered}
$$

Regard \mathbf{U} and \mathbf{B} as vectors with components $u_{k}(X)$'s and $b_{i}(X)$'s in S , the corresponding S-vectors are:

$$
\boldsymbol{u}=\left[\begin{array}{c}
u_{1}(X) \tag{3.3}\\
\cdot \\
\cdot \\
u_{n}(X)
\end{array}\right] \in S^{n}, \boldsymbol{b}=\left[\begin{array}{c}
b_{1}(X) \\
\cdot \\
\cdot \\
b_{l}(X)
\end{array}\right] \in S^{l}
$$

This correspondence is very useful and can be transformed by:

[^2]\[

\boldsymbol{u}=\mathbf{U}\left[$$
\begin{array}{c}
1 \tag{3.4}\\
X \\
X^{2} \\
\cdot \\
X^{d-1}
\end{array}
$$\right], \boldsymbol{b}=\mathbf{B}\left[$$
\begin{array}{c}
1 \\
X \\
X^{2} \\
\dot{X^{d-1}}
\end{array}
$$\right]
\]

Then for the S-vector \boldsymbol{u} corresponding to Z_{m}-matrix \mathbf{U} in (3.2) one has, for each i :

$$
\mathrm{L}_{\mathrm{A}}(\boldsymbol{u})_{i}=\sum_{k=1}^{n} a_{i k} u_{k}(X)=\sum_{j=1}^{d}\left(\sum_{k=1}^{n} a_{i k} u_{j}(k)\right) X^{j-1} \bmod f(X)
$$

As a result, it's easy to show te fact that:

$$
\begin{equation*}
\mathbf{L}_{\mathrm{A}}(\boldsymbol{u})=\boldsymbol{b} \text { over } \mathrm{S} \tag{3.5}
\end{equation*}
$$

if and only if $\sum_{k=1}^{n} a_{i k} u_{j}(k)=b_{j}(i)$ for all i, j, i.e., $\mathbf{A U}=\mathbf{B}$ over Z_{m}
Based on the fact (3.5), the problem of constructing a ZKA protocol for a linear matrix relation over Z_{m} can be transformed into a problem of constructing a ZKA protocol for a linear relation over Galois ring S. For this purpose, we define a formal linear relation over S .

Let Galois ring $\mathrm{S} \equiv \operatorname{GR}(m, d)$, let σ be the public key of the S -vector commitment scheme and be used as c.r.s. of the proof protocol. The commitment is valued in product group G^{d} where G is commitment-friendly. The linear relation SLR on space S^{n} is defined as(all variables in the frame stand for witnesses):

$$
\begin{gather*}
\operatorname{SLR}(\sigma \mid U, \boldsymbol{b}, \mathbf{A} ; \boldsymbol{r}, \boldsymbol{u}): \tag{3.6}\\
U=\operatorname{Cmt}(\sigma \mid \boldsymbol{u} ; \boldsymbol{r}) \wedge \mathbf{L}_{\mathrm{A}}(\boldsymbol{u})=\boldsymbol{b}
\end{gather*}
$$

where \mathbf{L}_{A} is defined in (3.1) with $\mathbf{A} \in Z_{m}^{l \times n}, \boldsymbol{b} \in S^{l}$; witnesses \boldsymbol{u} is a n-dimensional S vector, \boldsymbol{r} is a d-dimensional random vector with components in set R .

In the above formulation, the commitment to S-vector \boldsymbol{u}
$U=\operatorname{Cmt}(\sigma \mid \boldsymbol{u} ; \boldsymbol{r})=\operatorname{Cmt}\left(\sigma \left\lvert\,\left[\begin{array}{ccc}u_{1}(1) & \cdots & u_{d}(1) \\ \vdots & \ddots & \vdots \\ u_{1}(n) & \cdots & u_{d}(n)\end{array}\right]\right.,\left[\begin{array}{c}r_{1} \\ \cdot \\ \cdot \\ r_{d}\end{array}\right]\right)=\left[\begin{array}{c}\operatorname{cmt}_{\sigma}\left(u_{1}(1), \ldots, u_{1}(n) ; r_{1}\right) \\ \cdot \\ \cdot \\ \operatorname{cmt}_{\sigma}\left(u_{d}(1), \ldots, u_{d}(n) ; r_{d}\right)\end{array}\right]$
can be reasonably regarded as the commitment to Z_{m}-matrix \mathbf{U}, so also notated as $\operatorname{Cmt}(\sigma \mid \mathbf{U} ; \boldsymbol{r})$. All these basics are summarized in theorem 1 which is the starting point to construct ZKA protocol for linear matrix relation in Z_{m}.

Theorem 1 The linear matrix relation over Z_{m} :

$$
\begin{align*}
& \operatorname{MLR}(\sigma \mid U, \mathbf{B}, \mathbf{A} ; \boldsymbol{r}, \mathbf{U}): \\
& U=\operatorname{Cmt}(\sigma \mid \mathbf{U} ; \boldsymbol{r}) \wedge \mathbf{A U}=\mathbf{B} \tag{3.7}
\end{align*}
$$

with $\mathbf{U} \in Z_{m}^{n \times d}$ (witness), $\mathbf{A} \in Z_{m}^{l \times n}, \quad \mathbf{B} \in Z_{m}^{l \times d}$ is equivalent to the linear relation over Galois ring $\mathrm{S}=\mathrm{GR}(m, d)=\mathrm{Z}_{m}[X] /(f(X))$:

$$
\begin{align*}
& \operatorname{SLR}\left(\sigma \mid V, \boldsymbol{b}, \mathbf{L}_{\mathrm{A}} ; \underline{\boldsymbol{r}, \boldsymbol{u})}:\right. \\
& V=\operatorname{Cmt}(\sigma \mid \boldsymbol{u} ; \boldsymbol{r}) \wedge \mathbf{L}_{\mathrm{A}}(\boldsymbol{u})=\boldsymbol{b} \tag{3.8}
\end{align*}
$$

where $\boldsymbol{u} \in \mathrm{S}^{n}$ (witness), \mathbf{L}_{A} is the linear operator defined in (3.1), $b_{i}=\sum_{j=1}^{d} b_{j}(i) X^{j-1}$ and $V=U$. These two relations' witnesses have the simple correspondence

$$
\mathbf{U} \cong u
$$

where \cong means that n-dimensional S-vectors \boldsymbol{u} is equivalently regarded as a n-by- d matrix in Z_{m} (see (3.2)~(3.4).

3.2 Compressed Protocol with Logarithmic Message Complexity

S-linear relation SLR in (3.8) is the starting point to construct the efficient proof protocol for linear Z_{m}-matrix relation MLR in (3.7). However, $\mathbf{L}_{\mathrm{A}}(\boldsymbol{u})=\boldsymbol{b}$ in (3.8) is actually a system of l linear equations in S . For the sake of efficiency, this equation system can be further reduced to just one linear equation via standard probabilistic equivalence reduction techniques.

Define a polynomial $\varphi(T)$ as

$$
\begin{equation*}
\varphi(T) \equiv \sum_{\mathrm{i}=1}^{l}\left(\mathrm{~L}_{\mathrm{A}}(\boldsymbol{u})_{i}-b_{i}\right) T^{i-1} \in \mathrm{~S}[T] \tag{3.9}
\end{equation*}
$$

Let ρ be randomly sampled from the exceptional set E_{S} in ring S . If there exists a $\boldsymbol{u} \in \mathrm{S}^{n}$ such that $\mathbf{L}_{\mathrm{A}}(\boldsymbol{u})=\boldsymbol{b}$, i.e., $\mathrm{L}_{\mathrm{A}}(\boldsymbol{u})_{i}=b_{i}$ for each $i=1, \ldots, l$, then

$$
\sum_{\mathrm{i}=1}^{l}\left(\mathrm{~L}_{\mathrm{A}}(\boldsymbol{u})_{\mathrm{i}}-b_{\mathrm{i}}\right) \rho^{\mathrm{i}-1}=\varphi(\rho)=0
$$

On the other hand, if $\varphi(\rho)=0$ for φ defined in (3.9) and ρ in E_{S}, then ρ is a zero of $\varphi(T)$ in E_{S}. Since $\varphi(T)$ has at most $l-1$ zeroes in E_{S}, for $\mathrm{S} \equiv \mathrm{GR}(m, d), m=p^{s}$ and $l<p^{d}$ one has the conclusion that $\varphi(T) \equiv 0$ with probability $>1-l p^{-d}$. Since $\varphi(T) \equiv 0$ implies $\mathbf{L}_{\mathrm{A}}(\boldsymbol{u})=\boldsymbol{b}$, we have got the following result:

Theorem 2 Linear relation $\operatorname{SLR}\left(\sigma \mid V, \boldsymbol{b}, \mathbf{L}_{\mathrm{A}} ; \boldsymbol{r}, \boldsymbol{u}\right)$ in (3.8) is probabilistically equivalent to the linear relation (3.10) with soundness factor l :

$$
\begin{gather*}
\operatorname{sl}-\mathrm{R}\left(\sigma \mid V, \boldsymbol{b}, l_{A, p} ; \boldsymbol{r}, \boldsymbol{u}\right): \\
V=\operatorname{Cmt}(\sigma \mid \boldsymbol{u} ; \boldsymbol{r}) \wedge l_{\mathrm{A}, \rho}(\boldsymbol{u})=b_{\rho} \tag{3.10}
\end{gather*}
$$

where $b_{\rho} \equiv \sum_{i=1}^{l} b_{\mathrm{i}} \rho^{i-1} \in \mathrm{~S}$ and the S -linear functional $l_{\mathrm{A}, \rho}$ is defined as

$$
l_{\mathrm{A}, \rho}(\boldsymbol{w}) \equiv \sum_{i=1}^{l} \sum_{k=1}^{n} a_{i k} w_{k} \rho^{i-1}: \mathrm{S}^{n} \rightarrow \mathrm{~S}
$$

The efficient protocol for linear Z_{m}-matrix relation (3.7) can now be constructed equivalently for the simple S-linear relation (3.10), via compressed techniques [6,7,12]. In fact, [16] has presented such a protocol framework with $\mathrm{O}(\log n)$ message complexity and provided detailed analysis about its completeness, zero-knowledge and knowledge soundness properties so we don't repeat it here.

3.3 Vector-oriented Approach and Comparisons

According to the basic result in [16], for $n=2^{k}$ the compressed protocol for matrix relation $\mathbf{A U}=\mathbf{B}$ in Z_{m} is $2 k+1$ round, complete, $(2,3, \ldots, 3)$-special sound henceforth knowledge sound with knowledge error $\leq k p^{-d}$ and total message complexity $\mathrm{O}(d k)$.

A standard, vector-oriented approach to constructing the efficient protocol for $\mathbf{A U}=\mathbf{B}$ is the amortization method. Let $\mathbf{U}=\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{d}\right]$ and $\mathrm{B}=\left[\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{d}\right]$ where columns $\boldsymbol{u}_{i} \in Z_{m}^{n}, \boldsymbol{b}_{i} \in Z_{m}^{l}$, then $\mathbf{A U}=\mathbf{B}$ is a system of d linear equations $\mathbf{A} \boldsymbol{u}_{i}=\boldsymbol{b}_{i}$. For any randomness ρ in E_{S}, it is equivalently reduced to a single vector equation:

$$
\mathbf{A} \boldsymbol{u}_{\rho}=\boldsymbol{b}_{\rho} \text { where } \boldsymbol{u}_{\rho}=\sum_{i=1}^{d} \boldsymbol{u}_{\boldsymbol{i}} \rho^{i-1} \in S^{n}, \boldsymbol{b}_{\rho}=\sum_{i=1}^{d} \boldsymbol{b}_{\boldsymbol{i}} \rho^{i-1} \in S^{l}
$$

and furthermore, by left-multiplying the row-vector $\left(1, \delta, \delta^{2}, \ldots, \delta^{l-1}\right)$ for an independent randomness δ in E_{S} on both sides, the above equality is equivalent to a scalar equation in S :

$$
\begin{equation*}
\boldsymbol{a}(\delta)^{\mathrm{T}} \boldsymbol{u}_{\rho}=b_{\rho, \delta} \tag{3.11}
\end{equation*}
$$

where $\boldsymbol{a}(\delta)^{\mathrm{T}}=\left(1, \delta, \delta^{2}, \ldots, \delta^{l-1}\right) \mathbf{A}$ and $b_{\rho, \delta}=\left(1, \delta, \delta^{2}, \ldots, \delta^{l-1}\right) \boldsymbol{b}_{\rho}$. In this way the linear matrix relation $\mathbf{A U}=\mathbf{B}$ in Z_{m} is (probabilistically) equivalent to the relation (3.11) with witness \boldsymbol{u}_{ρ}. If all Z_{m}-vectors \boldsymbol{u}_{i} 's have been individually committed to, then the commitment to \boldsymbol{u}_{ρ} can be computed by (see (2.6)):

$$
\begin{equation*}
\operatorname{Cmt}\left(\sigma \mid \boldsymbol{u}_{\rho}\right)=\prod_{i=1}^{d} \operatorname{Cmt}\left(\sigma \mid \boldsymbol{u}_{i}\right)^{\rho^{i-1}} \tag{3.12}
\end{equation*}
$$

Here we can see one of the main differences between our (matrix-oriented) approach and the standard (vector-oriented) one: if a private computing task is vectororiented and each Z_{m}-vector has to be committed individually, then the standard approach works well and needs totally d G-elements for commitments ${ }^{4}$ and some additional computations like (3.12); however, if all Z_{m}-vectors can be committed in a batch or the computation is naturally matrix-oriented instead of just dealing with "a collection of vectors", then our approach works well. The total number of G-elements needed for commitments to \mathbf{U} is also d.

It's easy to see that in this case these two approaches also have the same message complexity and the same on-line computational complexity. In summary, there are no significant differences in performance for $t=1$.

However, in case of $t>1$ the standard approach either (by regarding matrix \mathbf{U} simply as a collection of $t d n$-dimensional Z_{m}-vectors and committing to these vectors individually) needs totally $t d$ G-elements for commitments and n G-elements in c.r.s., or (by regarding \mathbf{U} as a $n t d$-dimensional Z_{m}-vector) needs 1 G -elements for commitments and ntd G-elements in c.r.s. On the other hand, by carefully making use of the commitment scheme, the matrix-oriented approach can implement the protocol with proper number of G-elements in both commitments and c.r.s while improving the performance.

3.4 Matrix-oriented Construction

Consider $t=2$, i.e., the equation $\mathbf{A U}=\mathbf{B}$ with $\mathbf{A} \in Z_{m}^{l \times n}, Z_{m}^{n \times 2 d} \ni \mathbf{U} \equiv\left[\mathbf{U}_{1}, \mathbf{U}_{2}\right]$ with each $\mathbf{U}_{i} \in Z_{m}^{n \times d} ; Z_{m}^{l \times 2 d} \ni \mathbf{B} \equiv\left[\mathbf{B}_{1}, \mathbf{B}_{2}\right]$ with each $\mathbf{B}_{i} \in Z_{m}^{l \times d}$ and:

[^3]\[

\mathbf{U}_{1}=\left[$$
\begin{array}{ccc}
u_{1}(1) & \cdots & u_{d}(1) \\
\vdots & \ddots & \vdots \\
u_{1}(n) & \cdots & u_{d}(n)
\end{array}
$$\right], \quad \mathbf{U}_{2}=\left[$$
\begin{array}{ccc}
v_{1}(1) & \cdots & v_{d}(1) \\
\vdots & \ddots & \vdots \\
v_{1}(n) & \cdots & v_{d}(n)
\end{array}
$$\right]
\]

In this case we take \boldsymbol{g} of $2 n$ elements in G for committing to \mathbf{U}, i.e., let $\sigma \equiv[\mathrm{G}, \boldsymbol{g}$, $m]$ with $\boldsymbol{g} \equiv\left(g_{1}, \ldots, g_{2 n}\right)$ (see (2.3) or (2.4)). Since the equation $\mathbf{A}\left[\mathbf{U}_{1}, \mathbf{U}_{2}\right]=\left[\mathbf{B}_{1}, \mathbf{B}_{2}\right]$ is equivalent to $\mathbf{A U}_{i}=\mathbf{B}_{i}, i=1,2$, i.e.,

$$
\left[\begin{array}{cc}
\boldsymbol{A} & \boldsymbol{O} \tag{3.13}\\
\boldsymbol{O} & \boldsymbol{A}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{U}_{1} \\
\boldsymbol{U}_{2}
\end{array}\right]=\left[\begin{array}{l}
\boldsymbol{B}_{1} \\
\boldsymbol{B}_{2}
\end{array}\right] \quad \text { i.e., } \mathbf{A}^{*} \mathbf{U}^{*}=\mathbf{B}^{*}
$$

where $\mathbf{A}^{*} \epsilon Z_{m}^{2 l \times 2 n}$ and $\mathbf{U}^{*} \epsilon Z_{m}^{2 n \times d}$ are the matrices on the left side and \mathbf{B}^{*} is the matrix on the right side. If committing to \mathbf{U}^{*} (which is actually our definition of "the commitment to matrix $\mathbf{U}^{\prime \prime}$) then with public key σ we have 1 commitment in G^{d} with its j th component as (\boldsymbol{u}_{j} and \boldsymbol{v}_{j} are the j-th column in \mathbf{U}_{1} and \mathbf{U}_{2}):

$$
\begin{equation*}
\operatorname{Cmt}\left(\sigma \mid \mathbf{U}^{*}\right)_{j}=\operatorname{cmt}_{\sigma}\left(\left[\boldsymbol{u}_{j}^{\mathrm{T}}, \boldsymbol{v}_{j}^{\mathrm{T}}\right]\right) \in \mathrm{G}, j=1, \ldots, d \tag{3.14}
\end{equation*}
$$

Now the ZKA protocol construction in sec.3.1 and 3.2 can be applied to equation (3.13) which (by theorem 1 and 2) corresponding linear relation is on $S^{2 n}$ with commitments (3.14). More generally, for any $t>1: Z_{m}^{n \times t d} \ni \mathbf{U} \equiv\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{t}\right]$ and $\mathbf{A U}=\mathbf{B}$ we can apply the efficient ZKA protocol construction to the equivalent linear relation

$$
\left[\begin{array}{ccc}
\mathbf{A} & . . & \boldsymbol{O} \tag{3.15}\\
\ldots & . & . \\
\boldsymbol{O} & . . & \boldsymbol{A}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{U}_{1} \\
\ldots \\
\boldsymbol{U}_{t}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{B}_{1} \\
\ldots \\
\boldsymbol{B}_{t}
\end{array}\right], \quad \mathbf{U}^{*} \equiv\left[\begin{array}{c}
\boldsymbol{U}_{1} \\
\ldots \\
\boldsymbol{U}_{t}
\end{array}\right] \epsilon \mathrm{Z}_{m}^{\operatorname{tn} \times d}
$$

with $n t$ group elements in c.r.s. σ and the commitments

$$
\begin{equation*}
\operatorname{Cmt}\left(\sigma \mid \mathbf{U}^{*}\right)_{j}=\operatorname{cmt}_{\sigma}\left(\left[\boldsymbol{u}_{j}^{(1) \mathrm{T}}, \ldots, \boldsymbol{u}_{j}^{(t) \mathrm{T}}\right]\right) \in \mathrm{G}, j=1, \ldots, d \tag{3.16}
\end{equation*}
$$

where each $\boldsymbol{u}_{j}{ }^{(k)}$ is the j-th column Z_{m}-vector in \mathbf{U}_{k}. The corresponding S-linear relation of (3.15) is on space $S^{n t}$.

Table 1 summaries the performance comparisons for different approaches (on basis of sec.4.4 in [16]). Note that when $\mathbf{U} \epsilon \mathrm{Z}_{m}^{n \times t d}$ is regarded as a $n t d$-dimensional vector then $n t d$ G-elements are needed in c.r.s. while when regarded as a collection of $t d n$-dimensional vectors then n G-elements needed in c.r.s. Table 2 provides the special case for square $\mathbf{U}: t d=n$.

Note that in the second sub-case in vector-oriented approach (regarding matrix \mathbf{U} as a collection of $t d n$-dimensional Z_{m}-vectors so that each column is committed individually) there may be too many (totally $t d$) commitments needed, showing that this sub-approach becomes infeasible when $t d>\log n$. In particular, for square $\mathbf{U}(t d=n)$ the matrix-oriented approach is greatly superior to the vector-oriented one.

3.5 More about Linear Matrix Relations

Some ZKA constructions via the matrix-oriented approach for more complicated linear matrix relations over Z_{m} are presented in Appendix C. All these constructions outperform the vector-oriented approach similarly as demonstrated in table 1 and 2. These examples include eigenvalue relation $\mathbf{A} \boldsymbol{u}=\lambda \boldsymbol{u}$ with witness $\mathbf{A}, \mathbf{A U}+\mathbf{U B}^{\mathrm{T}}=\mathbf{C}$,
$\mathbf{A U B}^{\mathrm{T}}=\mathbf{C}$ and the more general linear matrix equation $\mathbf{A}_{1} \mathbf{U} \mathbf{A}_{2}{ }^{\mathrm{T}}+\mathbf{B}_{1} \mathbf{U} \mathbf{B}_{2}{ }^{\mathrm{T}}=\mathbf{C}$ with witness \mathbf{U}. All these relations can be equivalently reduced to the form of (3.7).

Table 1. Performance of different approaches to constructing ZKA for linear matrix relation

	Vector-oriented (e.g., [12][16]) Both with targeted knowledge err	Matrix-oriented (ours) $p^{-d} \log n$ and $\mathbf{U} \epsilon \mathrm{Z}_{m}^{n \times t d}$
number of G-elements in c.r.s.	(1) $n t d$ or (2)n	$n t$
number of G-elements for commitment.	$\begin{aligned} & \text { (1): } 1 \\ & \text { (2): } t d \\ & \hline \end{aligned}$	d
number of rounds	(1): $2 \log n+2 \log t+2 \log d-1$ (2): $2 \log t+2 \log d-1$	$2 \log n+2 \log t-1$
message complexity	(1): $(2 \log (n t d)-3) d$ G-element $1+2 \log (n t d)$ S-elements $\log (n t d)-1 \mathrm{E}_{S_{S}}$-element (2): $(2 \log n-3) d$ G-element $1+2 \log n$ S-elements $\log n-1 \mathrm{E}_{\mathrm{S}}$-element	$(2 \log (n t)-3) d$ G-element. $1+2 \log (n t)$ S-elements $\log (n t)-1 \mathrm{E}_{\mathrm{S}}$-element

Table 2. Performance of different approaches to constructing ZKA for linear matrix relation

	Vector-oriented (e.g., [12][16]) Matrix-oriented (ours) Both with targeted knowledge error $\leq p^{-d} \log n$ and $\mathbf{U} \in \mathrm{Z}_{m}^{n \times n}$	
number of G-elements in c.r.s.	(1) n^{2} or (2) n	n^{2} / d
number of G-elements for commitment.	$\begin{aligned} & \text { (1): } 1 \\ & \text { (2): } n \\ & \hline \end{aligned}$	d
number of rounds	(1): $4 \log n-1$ (2): $2 \log n-1$	$4 \log n-2 \log d-1$
message complexity	(1): $(4 \log n-3) d$ G-element $1+4 \log n$ S-elements $2 \log n-1 \mathrm{E}_{\mathrm{S}}$-element (2): $(2 \log n-3) d$ G-element $1+2 \log n$ S-elements $\log n-1 \mathrm{E}_{\mathrm{S}}$-element	(4logn-2log $d-3$) d G-element; $1+4 \log n-2 \log d$ S-elements; $2 \log n-\log d-1$ E_{S}-element

4 Efficient ZKA Protocol for Matrix Relation $\mathbf{U}^{\mathrm{T}} \mathbf{Q V}=\mathbf{Y}$

Consider the matrix bilinear equation

$$
\begin{equation*}
\mathbf{U}^{\mathrm{T}} \mathbf{Q} \mathbf{V}=\mathbf{Y} \tag{4.1}
\end{equation*}
$$

in residue ring Z_{m} where matrices $\mathbf{U}, \mathbf{V} \in Z_{m}^{n \times t d}, \mathbf{Q}=\operatorname{diag}\left(q_{1}, \ldots, q_{n}\right) \in Z_{m}^{n \times n}$ and diagonal, $\mathbf{Y} \in Z_{m}^{t d \times t d}$. The extension degree of Galois ring S over Z_{m} is $d<\log n$ and is determined by $p^{-d} \log n<$ the targeted knowledge error. Furthermore matrices \mathbf{U} and \mathbf{V} are private (witnesses) while \mathbf{Q} and \mathbf{Y} are public.

Note that for $\mathbf{Q}=\mathbf{I}_{n}$ (4.1) is a matrix multiplicative relation and for $\mathbf{Q}=\mathbf{Y}=\mathbf{I}_{n}$ it is a matrix-inverse relation.

4.1 Basics

Consider $t=1$ at first. If in this case the bilinear equation (4.1) is regarded as a collection of vector bilinear equations $\wedge_{i, j=1}^{d} \boldsymbol{u}_{\boldsymbol{i}}^{\mathrm{T}} \mathbf{Q} \boldsymbol{v}_{j}=\mathrm{Y}_{i, j}$ where $\boldsymbol{u}_{\boldsymbol{i}}$ and \boldsymbol{v}_{j} are column vectors of \mathbf{U} and \mathbf{V} and apply the standard amortization techniques, then this relation can be probabilistically equivalently reduced to a bilinear relation over the ring S :

$$
\begin{equation*}
\boldsymbol{u}_{\rho}^{\mathrm{T}} \mathbf{Q} \boldsymbol{v}_{\delta}=\sum_{i, j=1}^{d} Y_{i j} \rho^{i-1} \delta^{j-1} \tag{4.2}
\end{equation*}
$$

where the independent randomness $\rho, \delta \stackrel{R}{\leftarrow} \mathrm{E}_{S}$ are sampled by the verifier:

$$
\begin{equation*}
\boldsymbol{u}_{\rho}=\sum_{i=1}^{d} \boldsymbol{u}_{i} \rho^{i-1}, \boldsymbol{v}_{\delta}=\sum_{i=1}^{d} \boldsymbol{v}_{i} \delta^{i-1} \tag{4.3}
\end{equation*}
$$

The commitments are (see (2.6) and (2.7)):

$$
\begin{equation*}
U_{\rho}=\prod_{i=1}^{n} \operatorname{Cmt}\left(\sigma \mid \boldsymbol{u}_{i}\right)^{\rho^{i-1}}, V_{\delta}=\prod_{i=1}^{n} \operatorname{Cmt}\left(\sigma \mid \boldsymbol{v}_{\boldsymbol{i}}\right)^{\delta^{i-1}}, i=1, \ldots, d \tag{4.4}
\end{equation*}
$$

Totally $2 d$ elements in G are needed for commitment(see the footnote 4).
Now consider the case $t=2$ where $Z_{m}^{n \times 2 d} \ni \mathbf{U} \equiv\left[\mathbf{U}_{1}, \mathbf{U}_{2}\right], \mathbf{V} \equiv\left[\mathbf{V}_{1}, \mathbf{V}_{2}\right]$, each \mathbf{U}_{i} and $\mathbf{V}_{i} \in Z_{m}^{n \times d}$.

Note that (4.1) in this case is formulated as :

$$
\left[\begin{array}{l}
\boldsymbol{U}_{\mathbf{1}}^{\mathrm{T}} \\
\boldsymbol{U}_{\mathbf{1}}^{\mathrm{T}}
\end{array}\right] \mathbf{Q}\left[\mathbf{V}_{1}, \mathbf{V}_{2}\right]=\left[\begin{array}{ll}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{array}\right]
$$

where $Y_{i j}$'s are d-by- d blocks in \mathbf{Y}. This equation is just $\wedge_{i, j=1}^{2} \boldsymbol{U}_{i}^{\mathrm{T}} \mathbf{Q} \boldsymbol{V}_{j}=\mathbf{Y}_{i, j}$ and for any randomness $\rho \stackrel{R}{\leftarrow} \mathrm{E}_{S}$ sampled by the verifier, it is equivalent to the following matrix bilinear relation with probability $>1-3 p^{-d}$:

$$
\left(\mathbf{U}_{1}+\rho \mathbf{U}_{2}\right)^{\mathrm{T}} \mathbf{Q}\left(\mathbf{V}_{1}+\rho^{2} \mathbf{V}_{2}\right)=\mathbf{Y}_{11}+\rho \mathbf{Y}_{21}+\rho^{2} \mathbf{Y}_{12}+\rho^{3} \mathbf{Y}_{22} \equiv \mathbf{Y}_{\rho}
$$

Also this can be reformulated in a $2 n$-by- $2 n$ matrix form with witness matrices in Z_{m} :

$$
\left[\mathbf{U}_{1}^{\mathrm{T}}, \mathbf{U}_{2}^{\mathrm{T}}\right]\left[\begin{array}{cc}
\mathbf{Q} & \rho^{2} \mathbf{Q} \tag{4.5}\\
\rho \mathbf{Q} & \rho^{3} \mathbf{Q}
\end{array}\right]\left[\begin{array}{l}
\mathbf{V}_{\mathbf{1}} \\
\mathbf{V}_{\mathbf{2}}
\end{array}\right]=\mathbf{Y}_{\rho} \in S^{d \times d}
$$

Let $\mathbf{U}^{*}, \mathbf{V}^{*} \in \mathrm{Z}_{m}^{2 n \times d}$ and $\mathbf{Q}_{\rho}{ }^{*} \in S^{2 n \times 2 n}$ be the matrices on left side of (4.5), i.e.,

$$
\mathbf{U}^{*} \equiv\left[\begin{array}{c}
\boldsymbol{U}_{1} \\
\boldsymbol{U}_{2}
\end{array}\right]=\left[\begin{array}{ccc}
u_{1,1}(1), & \ldots & u_{1, d}(1) \\
\vdots & \ldots & \vdots \\
u_{1,1}(n) & \ddots & u_{1, d}(n) \\
u_{2,1}(1) & & u_{2, d}(1) \\
\vdots & \ldots & \vdots \\
u_{2,1}(n) & & u_{2, d}(n)
\end{array}\right], \mathbf{Q}_{\rho}{ }^{*} \equiv\left[\begin{array}{cc}
\mathbf{Q} & \rho^{2} \mathbf{Q} \\
\rho \mathbf{Q} & \rho^{3} \mathbf{Q}
\end{array}\right]
$$

By applying the methods presented in the first paragraph of this section, i.e., (4.3)~(4.4), relation (4.5) can be reduced to a bilinear relation (4.2) over the ring S. In order to achieve this goal, we take $2 n$ elements \boldsymbol{g} and \boldsymbol{h} in G for committing \mathbf{U}^{*} and \mathbf{V}^{*}, i.e., set $\sigma \equiv[\mathbf{G}, \boldsymbol{g}, m]$ with $\boldsymbol{g} \equiv\left(g_{1}, \ldots, g_{2 n}\right)$ and compute the commitments to $\mathbf{U}^{*}, \mathbf{V}^{*}$ (which are actually our definition of "the commitments to matrix \mathbf{U} and \mathbf{V} ") just as done in (3.14). These commitments have totally $2 d$ G-elements and the dimension of the corresponding S-vectors under commitment is $2 n$. For example:

$$
\operatorname{Cmt}\left(\sigma \mid \mathbf{U}^{*}\right)=\left[\begin{array}{ccc}
c m t_{\sigma}\left(u_{1,1}(1),\right. & \cdots, u_{1,1}(n), u_{2,1}(1), \ldots & \left.u_{2,1}(n)\right) \\
\vdots & \vdots & \vdots \\
c m t_{\sigma}\left(u_{1, d}(1),\right. & \cdots, u_{1, d}(n), u_{2, d}(1), \ldots & \left.u_{2, d}(n)\right)
\end{array}\right] \text { in } \mathrm{G}^{d}
$$

In general, for any $t>1$ where $Z_{m}^{n \times t d} \ni \mathbf{U} \equiv\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{t}\right], \mathbf{V} \equiv\left[\mathbf{V}_{1}, \ldots, \mathbf{V}_{t}\right]$ with each $\mathbf{U}_{i}, \mathbf{V}_{i} \in Z_{m}^{n \times d}$, by the above method relation (4.1) can be probabilistic-equivalently reduced to the form like:

$$
\begin{equation*}
\mathbf{U}^{* T} \mathbf{Q}_{\rho}{ }^{*} \mathbf{V}^{*}=\mathbf{Y}_{\rho} \tag{4.6}
\end{equation*}
$$

where $\mathbf{U}^{*}, \mathbf{V}^{*} \in \mathrm{Z}_{m}^{t n \times d}$ and $\mathbf{Q}_{\rho}{ }^{*} \in S^{t n \times t n}$ as:
$\mathbf{U}^{*} \equiv\left[\begin{array}{c}\boldsymbol{U}_{1} \\ \vdots \\ \boldsymbol{U}_{t}\end{array}\right]=\left[\begin{array}{ccc}u_{1,1}(1), & & u_{1, d}(1) \\ \vdots & \ldots & \vdots \\ u_{1,1}(n) & & u_{1, d}(n) \\ \vdots & \ddots & \vdots \\ u_{t, 1}(1) & & u_{t, d}(1) \\ \vdots & \ldots & \vdots \\ u_{t, 1}(n) & & u_{t, d}(n)\end{array}\right], \quad \mathbf{Q}_{\rho}{ }^{*} \equiv\left[\begin{array}{cccc}\mathbf{Q} & \rho^{t} \mathbf{Q} & \ldots & \rho^{(t-1) t} \mathbf{Q} \\ \rho \mathbf{Q} & \rho^{t+1} \mathbf{Q} & \ldots & \rho^{(t-1) t+1} \mathbf{Q} \\ \vdots & \vdots & & \vdots \\ \rho^{t-1} \mathbf{Q} & \rho^{2 \boldsymbol{t}-\mathbf{1}} \mathbf{Q} & \ldots & \rho^{t^{2}-\mathbf{1}} \mathbf{Q}\end{array}\right]$
By applying the methods presented in (4.3)~(4.4), relation (4.6) can be reduced to a bilinear relation (4.2) over the ring S. In order for this, we take $t n$ elements \boldsymbol{g} in G for committing \mathbf{U}^{*} and \mathbf{V}^{*}, i.e., set $\sigma \equiv[\mathrm{G}, \boldsymbol{g}, m]$ with $\boldsymbol{g} \equiv\left(g_{1}, \ldots, g_{n t}\right)$ and compute the commitments to $\mathbf{U}^{*}, \mathbf{V}^{*}$ as done in the above. The dimension of the corresponding Svectors under commitment is $t n$, which commitments have totally $2 d$ G-elements.

In order to construct the efficient protocol for bilinear relation (4.2), Q's diagonality is important (see sec. 4.3). However, $\mathbf{Q}_{\rho}{ }^{*}$ in (4.6) (which will be inherited in the bilinear relation over S) is no longer diagonal even \mathbf{Q} is diagonal. This can be handled in the following way on basis of a helpful observation that $\mathbf{Q}_{\rho}{ }^{*} \in S^{n t \times n t}$ is actually a tensor product as:

$$
\begin{equation*}
\mathbf{Q}_{\rho}^{*}=\Delta(\rho) \hat{\otimes} \mathbf{Q} \tag{4.7}
\end{equation*}
$$

where:

$$
\boldsymbol{\Delta}(\rho) \equiv\left[\boldsymbol{\rho}(t), \rho^{t} \boldsymbol{\rho}(t), \rho^{2 t} \boldsymbol{\rho}(t), \ldots, \rho^{t(t-1)} \boldsymbol{\rho}(t)\right] \in E_{S}^{t \times t}
$$

and the column vector $\rho(t)^{\mathrm{T}} \equiv\left[1, \rho, \rho^{2}, \ldots, \rho^{t-1}\right] \in \mathrm{E}_{S}^{t}$.
Recall that E_{S} is the exceptional set in Galois ring $\mathrm{S}=\operatorname{GR}(m, d)$ with $m=p^{s}$ which is actually (with 0 added in it) isomorphic to Galois field F_{p}^{d}. According to the theory on quadratic forms over arbitrary fields [24], there exists efficiently computable non-singular matrices $\boldsymbol{\Phi}_{\rho}, \boldsymbol{\Psi}_{\rho} \in E_{S}^{t \times t}$ and a diagonal matrix \mathbf{D}_{ρ} such that :

$$
\begin{equation*}
\boldsymbol{\Delta}(\rho)=\boldsymbol{\Phi}_{\rho}^{\mathrm{T}} \mathbf{D}_{\rho} \boldsymbol{\Psi}_{\rho} \tag{4.8}
\end{equation*}
$$

(the Smith canonical form decomposition). Combining (4.7), (4.8) and the wellknown identity $(\mathbf{A B}) \hat{\otimes}(\mathbf{C D})=(\mathbf{A} \hat{\otimes} \mathbf{C})(\mathbf{B} \hat{\otimes} \mathbf{D})$, one obtains the diagonalization for $\mathbf{Q}_{\rho}{ }^{*}:$

$$
\begin{equation*}
\mathbf{Q}_{\rho}{ }^{*}=\left(\mathbf{\Phi}_{\rho} \hat{\otimes} \mathbf{I}_{n}\right)^{\mathrm{T}}\left(\mathbf{D}_{\rho} \hat{\otimes} \mathbf{Q}\right)\left(\mathbf{\Psi}_{\rho} \hat{\otimes} \mathbf{I}_{n}\right) \tag{4.9}
\end{equation*}
$$

In summary, the large matrix $\mathbf{Q}_{\rho}{ }^{*}$ can be efficiently diagonalized and the computational complexity of its diagonalization only depends on diagonalizing a special and relatively small-size matrix $\boldsymbol{\Delta}(\rho)$, which can be pre-calculated by the verifier. In addition, it's easy to see that $\boldsymbol{\Delta}(\rho)$ is only of rank 1 so only 1 non-zero element is in its Smith form \mathbf{D}_{ρ}.

For notational simplicity, reformulate (4.9) as follows with diagonal $\mathbf{D}_{\mathbf{Q}} \in E_{S}^{n t \times n t}$:

$$
\mathbf{Q}_{\rho}{ }^{*}=\boldsymbol{\Phi}^{\mathrm{T}} \mathbf{D}_{\mathbf{Q}} \mathbf{\Psi}
$$

Set new witness matrices $\overline{\mathbf{U}}$ and $\overline{\mathbf{V}}$ over S such that $\overline{\mathbf{U}}=\boldsymbol{\Phi} \mathbf{U}^{*}$ and $\overline{\mathbf{V}}=\boldsymbol{\Psi} \mathbf{V}^{*}$ then by simple calculations one has:

$$
\mathbf{U}^{* T} \mathbf{Q}_{\rho}{ }^{*} \mathbf{V}^{*}=\overline{\mathbf{U}}^{\mathbf{T}} \mathbf{D}_{\mathbf{Q}} \overline{\mathbf{V}}
$$

Hence the bilinear relation (4.6) $\mathbf{U}^{*} \mathbf{Q}_{\rho}{ }^{*} \mathbf{V}^{*}=\mathbf{Y}_{\rho}$ with witness Z_{m}-matrices \mathbf{U}^{*} and \mathbf{V}^{*} is probabilistically equivalent to the diagonal bilinear relation $\overline{\mathbf{U}}^{\mathbf{T}} \mathbf{D}_{\mathbf{Q}} \overline{\mathbf{V}}=\mathbf{Y}_{\rho}$ with witness S-matrices $\overline{\mathbf{U}}$ and $\overline{\mathbf{V}}$: $\overline{\mathbf{U}}^{\mathbf{T}} \mathbf{D}_{\mathbf{Q}} \overline{\mathbf{V}}=\mathbf{Y}_{\rho}$. Left-multiply this equation by vector $\left[1, \omega, \omega^{2}, \ldots\right.$, $\left.\omega^{d-1}\right]$ and right-multiply it by column vector $\left[1, \theta, \theta^{2}, \ldots, \theta^{d-1}\right]^{\mathrm{T}}$ for any independent randomness ω and θ sampled by the verifier in the exceptional set E_{S}, one reduces it furthermore to a bilinear relation with $n t$-dimensional S-vector witness $\boldsymbol{u}(\omega)$ and $\boldsymbol{v}(\theta)$:

$$
\begin{equation*}
\boldsymbol{u}(\omega)^{\mathrm{T}} \mathbf{D}_{\mathbf{Q}} \boldsymbol{v}(\theta)=\sum_{i, j=1}^{d} Y_{\rho}(i, j) \omega^{i-1} \theta^{j-1} \tag{4.10}
\end{equation*}
$$

where $\boldsymbol{u}(\omega)^{\mathrm{T}}=\left[1, \omega, \omega^{2}, \ldots, \omega^{d-1}\right] \overline{\mathbf{U}}^{\mathrm{T}}$ and $\boldsymbol{v}(\theta)^{\mathrm{T}}=\left[1, \theta, \theta^{2}, \ldots, \theta^{d-1}\right] \overline{\mathbf{V}}^{\mathrm{T}}$. The overall reduction from relation (4.1) to relation (4.10) is of equivalence with overwhelming probability (> 1- $\mathrm{O}\left(n p^{-d}\right)$).

The remaining problem is how to efficiently calculate the commitments to Svectors $\boldsymbol{u}(\omega)$ and $\boldsymbol{v}(\theta)$ from those to Z_{m}-matrices \mathbf{U}^{*} and \mathbf{V}^{*}. Let $\overline{\mathbf{U}}=\left[\overline{\boldsymbol{u}_{1}}, \ldots, \overline{\boldsymbol{u}_{d}}\right], \overline{\mathbf{V}}=$ $\left[\overline{\boldsymbol{v}_{1}}, \ldots, \overline{\boldsymbol{v}_{d}}\right]$ with columns $\overline{\boldsymbol{u}}_{i}, \overline{\boldsymbol{v}}_{l} \in E_{S}^{n t}$, note that

$$
\begin{equation*}
\boldsymbol{u}(\omega)=\sum_{i=1}^{d} \omega^{i-1} \bar{u}_{l}, \boldsymbol{v}(\theta)=\sum_{i=1}^{d} \theta^{i-1} \overline{\boldsymbol{v}}_{\imath} \tag{4.11}
\end{equation*}
$$

so for any public-key τ the commitments to S-vectors $\boldsymbol{u}(\omega)$ and $\boldsymbol{v}(\theta)$ are:

$$
\begin{equation*}
\operatorname{Cmt}(\tau \mid \boldsymbol{u}(\omega))=\prod_{i=1}^{d} \operatorname{Cmt}\left(\tau \mid \overline{\boldsymbol{u}}_{i}\right)^{\omega^{i-1}}, \operatorname{Cmt}(\tau \mid \boldsymbol{v}(\theta))=\prod_{i=1}^{d} \operatorname{Cmt}\left(\tau \mid \overline{\boldsymbol{v}}_{i}\right)^{\theta^{i-1}} \tag{4.12}
\end{equation*}
$$

In order to present how to calculate, e.g., $\operatorname{Cmt}\left(\tau \mid \overline{\boldsymbol{u}}_{\imath}\right)$ from the commitment to \mathbf{U}^{*}, we prove the following fact.

Lemma 2 Let $S^{n t} \ni \overline{\boldsymbol{w}}$ with each component $\bar{w}_{i}=\sum_{k=1}^{d} \bar{w}_{k}(i) X^{k-1}$ and $\bar{w}_{k}(i)$ in $\mathrm{Z}_{m}[X]$ (recall that the ring $\mathrm{S}=\operatorname{GR}(m, d)=\mathrm{Z}_{m}[X] /(f(X)), \mathbf{E} \in E_{S}^{n t \times n t}$ be any matrix over Es, $\mathbf{M}_{i j} \in Z_{m}^{d \times d}$ is the multiplicative matrix associated with the matrix element $\mathrm{E}_{i j}$ (see lemma 2.1 in sec.2.4), then
(i)The l-th component (an element in group G) of the commitment to $\boldsymbol{w}=\mathbf{E} \overline{\boldsymbol{w}}$ is:

$$
\operatorname{Cmt}(\sigma \mid \boldsymbol{w})_{l}==\prod_{j=1}^{n t} \prod_{k=1}^{d} c m t_{\sigma}\left(\left[M_{1 j}(l, k), \ldots, M_{n t, j}(l, k)\right]\right)^{\bar{w}_{k}(j)}, l=1, \ldots, . d(4.13)
$$

(ii) For $\boldsymbol{w} \in Z_{m}^{n t}$ one furthermore has:

$$
\begin{equation*}
\operatorname{Cmt}(\sigma \mid \boldsymbol{w})=\operatorname{Cmt}(\bar{\sigma} \mid \overline{\boldsymbol{w}}) \tag{4.14}
\end{equation*}
$$

where the public-key $\bar{\sigma} \equiv\left[\mathrm{G}, \overline{g_{1}}, \ldots, \overline{g_{n t}}, m\right]$ has:

$$
\begin{equation*}
\overline{g_{j}} \equiv \operatorname{cmt}_{\sigma}\left(\left[\mathrm{M}_{1 j}(1,1), \ldots, \mathrm{M}_{n t, j}(1,1)\right]\right) \tag{4.15}
\end{equation*}
$$

$\operatorname{Proof}(i) \mathrm{S}^{n t} \ni \boldsymbol{w}=\mathbf{E} \overline{\boldsymbol{w}}$ has its i-th component as:

$$
w_{i}=\sum_{j=1}^{n t} E_{i j} \bar{w}_{J}=\sum_{l=1}^{d}\left(\sum_{j=1}^{n t} \sum_{k=1}^{d} M_{i j}(l, k) \bar{w}_{k}(j)\right) X^{l-1}, i=1, \ldots, n t
$$

hence the l-th component of the commitment to $\overline{\boldsymbol{w}}$ is:
$\operatorname{Cmt}(\sigma \mid \boldsymbol{w})_{l}=\mathrm{cmt}_{\sigma}\left(\right.$ the $n t$-dimensional coefficient-vector of monomial X^{l-1} in $\left.\boldsymbol{w}\right)$

$$
\begin{aligned}
& =\operatorname{cmt}_{\sigma}\left(\left[\sum_{j=1}^{n t} \sum_{k=1}^{d} M_{1 j}(l, k) \bar{w}_{k}(j), \ldots, \sum_{j=1}^{n t} \sum_{k=1}^{d} M_{n t, j}(l, k) \bar{w}_{k}(j)\right]\right) \\
& =\prod_{j=1}^{n t} \prod_{k=1}^{d} c m t_{\sigma}\left(\left[M_{1 j}(l, k), \ldots, M_{n t, j}(l, k)\right]\right)^{\bar{w}_{k}(j)}, l=1, \ldots, . d
\end{aligned}
$$

(ii) For $\boldsymbol{w} \in Z_{m}^{n t}$, the 1 -st $(l=1)$ component in its commitment carries complete information of the committed vector (other d-1 components are randomness or simply 1 in $\mathrm{G})$ and the value of $\mathrm{cmt}_{\sigma}($.$) is always in \mathrm{G}^{m}$ (except for a random factor -1 in case of even m) [16], so by separating the factor related with $\overline{\boldsymbol{w}}_{l}$ in (4.13), appropriately re-arrange some factors to keep the equality and reduce all other factors to the random factor (always in a form of r^{m} in the commitment scheme), (4.13) becomes:

$$
\operatorname{Cmt}(\sigma \mid \boldsymbol{w})_{l}=r_{l}^{m} \prod_{j=1}^{n t} c m t_{\sigma}\left(\left[M_{1 j}(1,1), \ldots, M_{n t, j}(1,1)\right]\right)^{\bar{w}_{l}(j)}
$$

As a result, we have $\operatorname{Cmt}(\sigma \mid \boldsymbol{w})=\operatorname{Cmt}(\bar{\sigma} \mid \overline{\boldsymbol{w}})$ where the public-key $\bar{\sigma} \equiv\left[\mathrm{G}, \overline{g_{1}}, \ldots, \overline{g_{n t}}\right.$, $m]$ with $\overline{g_{j}} \equiv \operatorname{cmt}_{\sigma}\left(\left[\mathrm{M}_{1 j}(1,1), \ldots, \mathrm{M}_{n t, j}(1,1)\right]\right)$. This proves the lemma.

Applying this lemma to column vectors of $\overline{\mathbf{U}}, \overline{\mathbf{V}}$ and $\mathbf{U}^{*}, \mathbf{V}^{*}$, the commitments to the original Z_{m}-matrices \mathbf{U} and \mathbf{V} with public-key σ is just the commitments to S matrices $\overline{\mathbf{U}}$ and $\overline{\mathbf{V}}$ with public-key $\bar{\sigma}_{1}, \bar{\sigma}_{2}$ respectively(each key dependent on the randomness sampled by the verifier), which can be efficiently computed by both prover and verifier (by (4.15), matrices $\boldsymbol{\Phi}$ and $\boldsymbol{\Psi}$ respectively).

In summary, the matrix bilinear relation (4.1) over Z_{m} with witness matrices in any size can be probabilistic-equivalently reduced to a bilinear vector relation (4.10) over $\mathrm{S}=\mathrm{GR}(m, d)$ and both coefficient matrices are diagonal. This reduction is sum-
marized more accurately in next theorem, which is the starting point to constructing ZKA protocol for bilinear matrix relation in Z_{m}.

Theorem 3 For Galois ring $\mathrm{S} \equiv \operatorname{GR}(m, d)$ with $m=p^{s}$ and p being prime, let the bilinear matrix relation in Z_{m} (variables in the frame are witnesses) be:

$$
\begin{gather*}
\operatorname{MBLR}\left(\sigma \mid U_{1}, V_{1}, \mathbf{Y}, \mathbf{Q} ; \boldsymbol{r}, \boldsymbol{t}, \mathbf{U}, \mathbf{V}\right): \\
U_{1}=\operatorname{Cmt}\left(\sigma \mid \mathbf{U}^{*} ; \boldsymbol{r}\right) \wedge V_{1}=\operatorname{Cmt}\left(\sigma \mid \mathbf{V}^{*} ; \boldsymbol{t}\right) \wedge \mathbf{U}^{\mathrm{T}} \mathbf{Q} \mathbf{V}=\mathbf{Y} \tag{4.17}
\end{gather*}
$$

with c.r.s. σ being a public key of the S -vector commitment scheme, witness matrices $Z_{m}^{n \times t d} \ni \mathbf{U} \equiv\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{t}\right], \mathbf{V} \equiv\left[\mathbf{V}_{1}, \ldots, \mathbf{V}_{t}\right]$ with each $\mathbf{U}_{\boldsymbol{i}}, \mathbf{V}_{i} \in Z_{m}^{n \times d}, \mathbf{Q}=\operatorname{diag}\left(q_{1}, \ldots, q_{n}\right)$ $\in Z_{m}^{n \times n}$ and diagonal, $\mathbf{Y} \in Z_{m}^{t d \times t d}$ and:

$$
\mathbf{U}^{*} \equiv\left[\begin{array}{c}
\boldsymbol{U}_{1} \\
\vdots \\
\boldsymbol{U}_{t}
\end{array}\right]=\left[\begin{array}{ccc}
u_{1,1}(1), & & u_{1, d}(1) \\
\vdots & \ldots & \vdots \\
u_{1,1}(n) & & u_{1, d}(n) \\
\vdots & \ddots & \vdots \\
u_{t, 1}(1) & & u_{t, d}(1) \\
\vdots & \ldots & \vdots \\
u_{t, 1}(n) & & u_{t, d}(n)
\end{array}\right], \quad \mathbf{V}^{*} \equiv\left[\begin{array}{c}
\boldsymbol{V}_{1} \\
\vdots \\
\boldsymbol{V}_{t}
\end{array}\right]=\left[\begin{array}{ccc}
v_{1,1}(1), & & v_{1, d}(1) \\
\vdots & \ldots & \vdots \\
v_{1,1}(n) & & v_{1, d}(n) \\
\vdots & \ddots & \vdots \\
v_{t, 1}(1) & & v_{t, d}(1) \\
\vdots & \ldots & \vdots \\
v_{t, 1}(n) & & v_{t, d}(n)
\end{array}\right]
$$

then MBLR is probabilistic-equivalent with soundness factor $2 d+t^{2}$ to the bilinear relation in Galois ring S :

$$
\begin{gather*}
\operatorname{SBLR}\left(\bar{\sigma}_{1}, \bar{\sigma}_{2} \mid U_{2}, V_{2}, y_{\rho}(\omega, \theta), \mathbf{D}_{\mathbf{Q}} ; \boldsymbol{r}, \boldsymbol{s}, \boldsymbol{u}(\omega), \boldsymbol{v}(\theta)\right): \\
U_{2}=\operatorname{Cmt}\left(\bar{\sigma}_{1} \mid \boldsymbol{u}(\omega) ; \boldsymbol{r}\right) \wedge V_{2}=\operatorname{Cmt}\left(\bar{\sigma}_{2} \mid \boldsymbol{v}(\theta) ; \boldsymbol{s}\right) \wedge \boldsymbol{u}(\omega)^{\mathrm{T}} \mathbf{D}_{\mathbf{Q}} \boldsymbol{v}(\theta)=y_{\rho}(\omega, \theta) \tag{4.18}
\end{gather*}
$$

where ρ, ω, θ are sampled randomly and independently in E_{S} by the verifier, $\boldsymbol{u}(\omega)$, $\boldsymbol{v}(\theta) \in \mathrm{S}^{\text {tn }}$ (witnesses) and $y_{\rho}(\omega, \theta)$ are specified in relation (4.10), $\mathbf{D}_{\mathbf{Q}}=\mathbf{D}_{\rho} \hat{\otimes} \mathbf{Q}$ specified in (4.9), $\bar{\sigma}_{1}$ and $\bar{\sigma}_{2}$ specified in (4.15), $U_{2}, V_{2} \in \mathrm{G}^{d}$ are computed from $U_{1}, V_{1} \in \mathrm{G}^{d}$ by the component wise formula: $l=1, \ldots, d$

$$
\begin{aligned}
& \mathrm{G} \ni U_{2, l}=\prod_{i, j=1}^{d} U_{1, l}^{M\left(\omega^{i-1} l, j\right)} \\
& \mathrm{G} \ni V_{2, l}=\prod_{i, j=1}^{d} V_{1, l}^{M\left(\theta^{i-1} \mid l, j\right)}
\end{aligned}
$$

where $M(e \mid i, j)$ stands for the (i, j)-element in the multiplicative matrix \mathbf{M}_{e} associated with e in S .
Proof The probabilistic-equivalent reduction from relation MLBR to SLBR has been elaborated in the above. The computational relation between the witnesses $\boldsymbol{u}(\omega), \boldsymbol{v}(\theta)$ of relation SLBR and witnesses \mathbf{U}, \mathbf{V} of MLBR is completely implied by specifications for (4.6), (4.9) and (4.10) from which it's easy to derive the soundness factor of this reduction is $2 d+t^{2}$. Finally the above formulas to compute U_{2}, V_{2} from U_{1}, V_{1} is the result of combining the formulas of (2.6), (4.12), (4.14) and (4.15) .

4.2 \quad-Protocol

On basis of the efficient equivalence between the bilinear matrix relation (4.17) in Z_{m} and the bilinear relation (4.18) in S, now we construct the efficient ZKA protocol for the latter. Note that its two commitments U_{2} and V_{2} based on distinct group basis $\bar{\sigma}_{1}$ and $\bar{\sigma}_{2}$ (due to non-symmetry of $\mathbf{Q}_{\rho}{ }^{*}$) can be merged to a single commitment $W=$ $U_{2} V_{2}=\operatorname{Cmt}\left(\bar{\sigma}_{1}, \bar{\sigma}_{2} \mid \boldsymbol{u}(\omega), \boldsymbol{v}(\theta) ; \boldsymbol{r}, \boldsymbol{s}\right)$. The relation is re-presented here with simplified notations:

$$
\begin{gather*}
\operatorname{SBLR}(\sigma, \tau \mid W, y, \mathbf{Q} ; \boldsymbol{r}, \boldsymbol{s}, \boldsymbol{u}, \boldsymbol{v}): \\
W=\operatorname{Cmt}(\sigma, \tau \mid \boldsymbol{u}, \boldsymbol{v} ; \boldsymbol{r}, \boldsymbol{s}) \wedge \boldsymbol{u}^{\mathrm{T}} \mathbf{Q} \boldsymbol{v}=y \tag{4.19}
\end{gather*}
$$

where \mathbf{Q} is a n-by- n diagonal matrix, y is an element in S; witnesses \boldsymbol{u} and \boldsymbol{v} are n dimensional S-vectors, \boldsymbol{r} and \boldsymbol{s} are d-dimensional random vectors with components in set R. Note that in the following protocol, actually \mathbf{Q} can be any diagonal matrix over S , unnecessarily limited to Z_{m}.

Protocol \sum-ZKA/SBLR

$\mathrm{P} \rightarrow \mathrm{V}$: P samples $\boldsymbol{\rho}_{1}, \boldsymbol{\rho}_{2} \stackrel{R}{\leftarrow} \mathrm{R}^{d}, \boldsymbol{x}_{1}, \boldsymbol{x}_{2} \stackrel{R}{\leftarrow} \mathrm{~S}^{n}$ at random;
P computes:
$\eta_{1}=\boldsymbol{u}^{\mathrm{T}} \mathbf{Q} \boldsymbol{x}_{2}+\boldsymbol{x}_{1}^{\mathrm{T}} \mathbf{Q} \boldsymbol{v}, \eta_{2}=\boldsymbol{x}_{1}{ }^{\mathrm{T}} \mathbf{Q} \boldsymbol{x}_{2}, K=\operatorname{Cmt}\left(\sigma, \tau \mid \boldsymbol{x}_{1}, \boldsymbol{x}_{2} ; \boldsymbol{\rho}_{1}, \boldsymbol{\rho}_{2}\right)$.
P sends message $\left[K, \eta_{1}, \eta_{2}\right]$ to V .
$\mathrm{P} \leftarrow \mathrm{V}: \mathrm{V}$ samples $e \stackrel{R}{\leftarrow} \mathrm{E}_{S}$ from the exceptional set at random and sends e to P .
$\mathrm{P} \rightarrow \mathrm{V}$: P computes $\boldsymbol{z}_{1}=e \boldsymbol{u}+\boldsymbol{x}_{1}, \boldsymbol{z}_{2}=e \boldsymbol{v}+\boldsymbol{x}_{2}$.
P computes randomness $\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}$ from $\left(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{r}, \boldsymbol{s}, e, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)^{5}$.
P sends message $\left[\boldsymbol{z}_{1}, \boldsymbol{z}_{2}, \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}\right]$ to V .
V: V verifies

$$
\begin{equation*}
K W^{e}=\operatorname{Cmt}\left(\sigma, \tau \mid \boldsymbol{z}_{1}, \boldsymbol{z}_{2} ; \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}\right) \wedge \boldsymbol{z}_{1}^{\mathrm{T}} \mathbf{Q} z_{2}=\eta_{2}+e \eta_{1}+e^{2} y \tag{4.20}
\end{equation*}
$$

Theorem 4. The protocol $\sum-\mathrm{ZKA} / \mathrm{SBLR}$ is unconditionally complete, special honest verifier zero-knowledge (SHVZK) and computationally 3 -special sound.

Proof In Appendix A.

4.3 Compressed Protocol with Logarithmic Message Complexity

In protocol $\sum-\mathrm{ZKA} / \mathrm{SBLR}$, the prover P convinces the verifier the following relation

$$
\begin{equation*}
\mathbf{S B L R}\left(\sigma, \tau \mid K W^{e}, \eta_{2}+e \eta_{1}+e^{2} y, \mathbf{Q} ; \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \boldsymbol{z}_{1}, \boldsymbol{z}_{2}\right) \tag{4.21}
\end{equation*}
$$

by the last message $\left[\boldsymbol{z}_{1}, \boldsymbol{z}_{2}, \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}\right]$. Similar as the approach in [6-7], a dimensionreduction transformation in the witness space is introduced to establish a recursive proof of (4.21). Since $\left[\boldsymbol{z}_{1}, \boldsymbol{z}_{2}, \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}\right]$ perfectly hides the original witnesses, this proof is unnecessarily zero-knowledge.

[^4]In order to simplify the formulism, the following protocol NoZKP/SBLR is specified for relation (4.19) instead of (4.21), but notational correspondence is straightforward. In case of $n=2^{k}$ where n is dimension of the witness vector space, when the third message in protocol \sum-ZKA/SBLR is substituted with the following protocol NoZKP/SBLR and recursively expanded with $n \leftarrow n / 2$ up to $n=1$, a ZKA protocol with $2 k+1$ rounds and $O(k)$ message complexity for relation SBLR is obtained.

For reading convenience, relation SBLR is re-presented here with random numbers $\boldsymbol{r}, \boldsymbol{s}$ removed to simplify the formulism (they are not really needed for hiding since here the proof is unnecessarily zero-knowledge).

$$
\begin{gather*}
\operatorname{SBLR}(\sigma, \tau \mid W, y, \mathbf{Q} ; \boldsymbol{u}, \boldsymbol{v}): \\
W=\operatorname{Cmt}(\sigma, \tau \mid \boldsymbol{u}, \boldsymbol{v}) \wedge \boldsymbol{u}^{\mathrm{T}} \mathbf{Q} \boldsymbol{v}=y \tag{4.22}
\end{gather*}
$$

Notations for the compressed protocol:
Dimension of the witness vectors \boldsymbol{u} and $\boldsymbol{v}: n=2^{k}$.
c.r.s $\sigma \equiv[\mathrm{G}, \boldsymbol{g}, m], \tau \equiv[\mathrm{G}, \boldsymbol{h}, m]$ where the group elements $\boldsymbol{g} \equiv\left(g_{1}, \ldots, g_{n}\right)$ and $\boldsymbol{h} \equiv$ $\left(h_{1}, \ldots, h_{n}\right)$ are divided into two parts $\boldsymbol{g}_{\mathrm{L}} \equiv\left(g_{1}, \ldots, g_{n / 2}\right), \boldsymbol{g}_{\mathrm{R}} \equiv\left(g_{n / 2+1}, \ldots, g_{n}\right), \boldsymbol{h}_{\mathrm{L}} \equiv\left(h_{1}, \ldots\right.$, $\left.h_{n / 2}\right), \boldsymbol{h}_{\mathrm{R}} \equiv\left(h_{n / 2+1}, \ldots, h_{n}\right)$ for given n.
n-dimensional vectors are decomposed into a direct-sum of $n / 2$-dimensional parts:

$$
\begin{equation*}
\boldsymbol{u}=\boldsymbol{u}_{\mathrm{L}} \dot{+} \boldsymbol{u}_{\mathrm{R}}, \boldsymbol{v}=\boldsymbol{v}_{\mathrm{L}} \dot{+} \boldsymbol{v}_{\mathrm{R}} \tag{4.23}
\end{equation*}
$$

The n-by- n diagonal matrix \mathbf{Q} is decomposed into submatrices as:

$$
\mathbf{Q}=\left[\begin{array}{cc}
Q_{L} & O \tag{4.24}\\
\boldsymbol{O} & \boldsymbol{Q}_{R}
\end{array}\right]
$$

where \mathbf{Q}_{L} and \mathbf{Q}_{R} are $n / 2$-by-n/2 diagonal.

Protocol NoZKA/SBLR

$\mathrm{P} \rightarrow \mathrm{V}: ~ \mathrm{P}$ performs the computations in group G^{d} :

$$
\begin{equation*}
A=\operatorname{Cmt}\left(\sigma, \tau \mid\left[\boldsymbol{u}_{\mathrm{R}} \dot{+} \mathbf{0}, \boldsymbol{v}_{\mathrm{R}} \dot{+} \mathbf{0}\right]\right), B=\operatorname{Cmt}\left(\sigma, \tau \mid\left[\mathbf{0} \dot{+} \boldsymbol{u}_{\mathrm{L}}, \mathbf{0} \dot{\mathbf{+}} \boldsymbol{v}_{\mathrm{L}}\right]\right) \tag{4.25}
\end{equation*}
$$

P performs the computations in Galois ring S :
$C_{1}=\boldsymbol{u}_{\mathrm{R}}{ }^{\mathrm{T}} \mathbf{Q}_{\mathrm{L}} \boldsymbol{v}_{\mathrm{L}}+\boldsymbol{u}_{\mathrm{L}}{ }^{\mathrm{T}} \mathbf{Q}_{\mathrm{L}} \boldsymbol{v}_{\mathrm{R}}, C_{2}=\boldsymbol{u}_{\mathrm{R}}{ }^{\mathrm{T}} \mathbf{Q}_{\mathrm{R}} \boldsymbol{v}_{\mathrm{L}}+\boldsymbol{u}_{\mathrm{L}}{ }^{\mathrm{T}} \mathbf{Q}_{\mathrm{R}} \boldsymbol{v}_{\mathrm{R},} D_{1}=\boldsymbol{u}_{\mathrm{R}}{ }^{\mathrm{T}} \mathbf{Q}_{\mathrm{L}} \boldsymbol{v}_{\mathrm{R}}, D_{2}=\boldsymbol{u}_{\mathrm{L}}{ }^{\mathrm{T}} \mathbf{Q}_{\mathrm{R}} \boldsymbol{v}_{\mathrm{L}}$
P sends message $\left[A, B, C_{1}, C_{2}, D_{1}, D_{2}\right]$ to V .
$\mathrm{P} \leftarrow \mathrm{V}$: V samples $e \stackrel{R}{\leftarrow} \mathrm{E}_{S}$ at random and sends to P .
V computes $\sigma_{e}=\left[\mathrm{G}, \boldsymbol{g}_{\mathrm{L}}, m\right], \boldsymbol{\tau}_{e}=\left[\mathrm{G}, \boldsymbol{h}_{\mathrm{L}}, m\right]$ and:
$W_{e}=A^{e^{-1}} W^{e} B^{e^{3}}$
$\mathbf{Q}_{e}=e^{-2} \mathbf{Q}_{\mathrm{L}}+e^{2} \mathbf{Q}_{\mathrm{R}}$ and $r_{e}=C_{1} e^{-2}+C_{2} e^{2}+D_{1} e^{-4}+D_{2} e^{4}$
If $n=1$ (in this case the message received from P is $\left[u_{e}, v_{e}\right]$) then V verifies

$$
\begin{equation*}
W_{e}=\operatorname{Cmt}\left(\sigma_{e}, \tau_{e} \mid u_{e}, v_{e}\right) \wedge u_{e} \mathrm{Q}_{e} v_{e}=y+r_{e} \tag{4.29}
\end{equation*}
$$

otherwise n is substituted with $n / 2, U$ substituted with U_{e} and V with V_{e}.

P : On receiving the challenge e (in E_{S}) from V, P performs:
computing $\sigma_{e}=\left[\mathrm{G}, \boldsymbol{g}_{\mathrm{L}}, m\right], \tau_{e}=\left[\mathrm{G}, \boldsymbol{h}_{\mathrm{L}}, m\right]$ and:
$\boldsymbol{u}_{e}=e \boldsymbol{u}_{\mathrm{L}}+e^{-1} \boldsymbol{u}_{\mathrm{R}}, \boldsymbol{v}_{e}=e \boldsymbol{v}_{\mathrm{L}}+e^{-1} \boldsymbol{v}_{\mathrm{R}}, \mathbf{Q}_{e}=e^{-2} \mathbf{Q}_{\mathrm{L}}+e^{2} \mathbf{Q}_{\mathrm{R}}$
if $n=1$ then P sends $\left[u_{e}, v_{e}\right]$ to V , otherwise P decomposes $\boldsymbol{u}_{e}, \boldsymbol{v}_{e}$ and \boldsymbol{Q}_{e} according to (4.23) and (4.24), performs computation according to (4.25) and (4.26), sends message to V and then substitutes n with $n / 2$.

Theorem 5 The protocol NoZKA/SBLR is $2 k-1$ round, unconditionally complete and computationally ($5,5, \ldots, 5$)-special sound.

Proof In Appendix A.
Remark On basis of a general theorem proved in [13] that (μ_{1}, \ldots, μ_{k})-spacial soundness implies knowledge soundness, the above constructed protocol is ZKAoK.

4.4 Performance and Comparisons to Linearization Approach

There are $2 n$ witnesses in S in the relation $\operatorname{SBLR}(4.19)$. For $n=2^{k}$, the whole protocol is $2 k+1$ round, unconditionally complete and ($3,5,5, \ldots, 5$)-special sound (on basis of the commitment scheme's binding property) where:

The first message ($\mathrm{P} \rightarrow \mathrm{V}$ and also the first one in protocol \sum-ZKA/SBLR) is composed of $2 d$ elements in group G and 2 elements in Galois ring S .

For the $2^{\text {nd }}, 4^{\text {th }}, 6^{\text {th }}, \ldots, 2 k$ th messages $(\mathrm{P} \leftarrow \mathrm{V})$, each one is composed of just 1 element in Galois ring's exceptional set E_{S}.

For the $3^{\text {rd }}, 5^{\text {th }}, 7^{\text {th }}, \ldots, 2 k-1$ th messages $(\mathrm{P} \rightarrow \mathrm{V}$ and all are messages of protocol NoZKP/SBLR), each one is composed of $2 d$ elements in G and 4 elements in S .

The $2 k+1$ th ($\mathrm{P} \rightarrow \mathrm{V}$ and also the last message) is composed of 2 elements in S .
Totally, the whole protocol needs $2 d k$ G-elements, $5 k$ S-elements in its communication where $k=\log _{2} n$.

Currently there are no other works for matrix bilinear relation over Galois ring comparable, so we make a comparison between the above results and the general linearization approach, which compiles any non-linear arithmetic relation (circuit) into a linear one via secret-sharing techniques (which works originally over Galois fields and can be directly generalized to Galois ring, see. Sec. 6 in [12]). In the following tables, the performance results are derived from the results of linearization approach [12] and those of linear relation over Galois ring (sec. 4 in [13]), while the performance results about our approach is from the above analysis with (including the costs in reduction) 3 S-elements and 1 message added, and n (dimension of S-vectors in (4.19)) substituted with $n t$ (dimension of S-vectors in (4.18)).

In summary, by specifically making use of structural features of the commitment scheme and matrix equations, the matrix-oriented approach outperforms the general one for bilinear (non-linear) matrix relation in all aspects, e.g., the number of rounds and G-elements in total message are reduced by $>1 / 3$ and the c.r.s is reduced by $n d$ times, except that the former will have slightly more number of S-elements in message when $n>d^{5}$ for large witness square.

Table 3. Performance of ZKA for matrix bilinear relation in different approaches

	Linearization (e.g., [12][16]) Both with targeted knowledge error $\leq p^{-d} \log n$ and $\mathbf{U}, \mathbf{V} \in \mathrm{Z}_{m}^{n \times t d}$	
number of G-elements in c.r.s.	$4 n t^{2} d^{2}+3$	$n t$
number of G-elements for commitment.	d	$2 d$
number of rounds	$2 \log \left(n+(1+2 n) t^{2} d^{2}+4\right)+7$	$2+2 \log (n t)$
message complexity	$2 d \log \left(n+(1+2 n) t^{2} d^{2}+4\right)$ G-element $3 \log \left(n+(1+2 n) t^{2} d^{2}+4\right)-1$ S-elements	$2 d \log (n t)$ G-element. $3+5 \log (n t)$ S-elements

Table 4. Performance of ZKA for matrix bilinear relation in different approaches
Linearization (e.g., [12][16]) Matrix-oriented (ours)

	Both with targeted knowledge error $\leq p^{-d} \log n$ and $\mathbf{U}, \mathbf{V} \in \mathrm{Z}_{m}^{n \times n}$	
number of G-elements in c.r.s.	$4 n^{3}+3$	$n t$
number of G-elements for commitment.	d	$2 d$
number of rounds	$2 \log \left(n+(1+2 n) n^{2}+4\right)+7$ $\geq 6 \log n$	$2+4 \log n-2 \log d$
message complexity	$2 d \log \left(n+(1+2 n) n^{2}+4\right) \geq 6 d \log n$ $G-e l e m e n t$ $3 \log \left(n+(1+2 n) n^{2}+4\right)-1 \geq 9 \log n$ S-elements	$4 d \log n-2 d \log d$ G-element

4.5 Some Extensions

Non-diagonal Matrix \mathbf{Q} In most applications, a non-diagonal coefficient matrix in bilinear form is usually symmetric, i.e., $\mathbf{Q}^{\mathrm{T}}=\mathbf{Q}$. If \mathbf{Q} 's elements are regarded as numbers in rational field Q, there exists (according to the general theory of quadratic forms over the field[24]) a matrix $\mathbf{W} \in Q^{n \times n}$ non-singular in Q which can be efficiently computed such that

$$
\mathbf{W}^{\mathrm{T}} \mathbf{Q} \mathbf{W}=\text { diagonal matrix } \mathbf{D}_{\mathrm{Q}}
$$

If the above equality holds in Z_{m}, i.e., if there exists integral matrices \mathbf{W} and \mathbf{D}_{Q} such that g.c.d. $(m, \operatorname{det} \mathbf{W})=1$ and:

$$
\mathbf{W}^{\mathrm{T}} \mathbf{Q W}=\mathbf{D}_{\mathrm{Q}} \bmod m
$$

set new witness matrices \mathbf{U}^{*} and \mathbf{V}^{*} in S^{n} such that $\mathbf{U}=\mathbf{W} \mathbf{U}^{*}$ and $\mathbf{V}=\mathbf{W} \mathbf{V}^{*}$ then by simple calculations via the explicit commitment expressions in sec. 2.4 one obtains:

$$
\mathbf{U}^{\mathrm{T}} \mathbf{Q} \mathbf{V}=\mathbf{U}^{*} \mathbf{T} \mathbf{D}_{\mathbf{Q}} \mathbf{V}^{*}
$$

$$
\boldsymbol{g}[\boldsymbol{u}]=\boldsymbol{g}^{*}\left[\boldsymbol{u}^{*}\right], \boldsymbol{g}[\boldsymbol{v}]=\boldsymbol{g}^{*}\left[\boldsymbol{v}^{*}\right] \text { where } \boldsymbol{g}_{j}^{*}=\prod_{i=1}^{n} g_{i}^{W(i, j)}, j=1, \ldots, n .
$$

hence the commitments are invariant w.r.t. Q's diagonalization:

$$
\operatorname{Cmt}(\sigma \mid \mathbf{U}, \mathbf{r})=\operatorname{Cmt}\left(\sigma^{*} \mid \mathbf{U}^{*}, \mathbf{r}\right), \operatorname{Cmt}(\sigma \mid \mathbf{V}, \mathbf{s})=\operatorname{Cmt}\left(\sigma^{*} \mid \mathbf{V}^{*}, \mathbf{s}\right)
$$

where the original c.r.s. $\sigma=[\mathrm{G}, \boldsymbol{g}, m]$ and new c.r.s. $\sigma^{*}=\left[\mathrm{G}, \boldsymbol{g}^{*}, m\right]$.
As a result, in this case the bilinear matrix relation $\operatorname{MBLR}(\sigma \mid U, V, \mathbf{Y}, \mathbf{Q} ; r, \boldsymbol{r}, \mathbf{U}, \mathbf{V})$ with c.r.s. σ and symmetric $\mathbf{Q} \in Z_{m}^{n \times n}$ is equivalent to a bilinear relation $\operatorname{MBLR}\left(\sigma^{*} \mid U\right.$, $\left.V, \mathbf{Y}, \mathbf{D}_{\mathrm{Q}} ; r, \boldsymbol{s}, \mathbf{U}^{*}, \mathbf{V}^{*}\right)$ with c.r.s. σ^{*} and diagonal matrix \mathbf{D}_{Q}. Both prover and verifier can compute \mathbf{W} and \boldsymbol{g}^{*} from public information and these calculations may be done at initialization phase or off-line, not degrading the protocol's online performance. Moreover, this equivalent transformation keeps the witness space dimension so the message complexity of the proof protocol is unchanged.

Bilinear/Linear Hybrid Relation Combining the techniques in sec. 3 and sec.4, we can construct an efficient ZKA protocol for the more complicated hybrid relation

$$
\begin{gathered}
\mathbf{M B L R}^{*}\left(\sigma \mid U, V, \boldsymbol{Y}, \mathbf{Q}, \boldsymbol{A}, \boldsymbol{A}_{0}, \boldsymbol{B}, \boldsymbol{B}_{0} ; \boldsymbol{r}, \boldsymbol{s}, \mathbf{U}, \mathbf{V}\right): \\
U=\operatorname{Cmt}(\sigma \mid \mathbf{U}, \boldsymbol{r}) \wedge V=\operatorname{Cmt}(\sigma \mid \mathbf{V}, \boldsymbol{t}) \wedge \mathbf{U}^{\mathrm{T}} \mathbf{Q} \mathbf{V}=\mathbf{Y} \wedge \mathbf{A U}=\mathbf{A}_{0} \wedge \mathbf{B V}=\mathbf{B}_{0}
\end{gathered}
$$

with $\mathrm{O}(d \log n)$ message complexity. Another useful hybrid relation is

$$
\mathbf{U}^{\mathrm{T}} \mathbf{Q V}+\mathbf{A} \mathbf{U B} B^{\mathrm{T}}+\mathbf{C V} \mathbf{D}^{\mathrm{T}}=\mathbf{Y}
$$

Details are omitted here.

5 Concurrently Non-malleable Enhancement

In various private computing applications, zero-knowledge proof protocols need to be composed in complicated running environment. However, the protocols established in sec. 3 and 4 can only ensure security in sequential composition. The concurrent nonmalleable ZKA protocol[22] has such a property that even a dishonest prover playing man-in-the-middle role by concurrently interacting with multiple honest provers, it still cannot efficiently generate a new statement and convince the verifier without knowing its witness. Such property enhances zero-knowledge proof protocol's security in concurrent environment. [20-22] developed a general approach to compile any \sum-protocol into a non-malleable one. In this section, we extend this method to compile any $2 k+1$-round argument protocol into a non-malleable one with the same number of rounds and properly increased message and computational complexity.

5.1 Basic Tools

One of the crucial tools needed is the tag-based simulation-sound trapdoor commitment scheme. This is a trapdoor commitment scheme with input (x, t) where x is plaintext and t is a tag variable(usually some identity). Intuitively, its security ensures that an adversary cannot efficiently destroy the binding property even after collecting arbitrary number of commitments and related plaintexts, so its security is stronger than ordinary commitment schemes.

Definition 5(Tag-based Commitment Scheme[20]) CS \equiv (CGen,Cmt,Cvf) is called a Tag-based Commitment Scheme if CGen, Cmt, Cvf are all P.P.T algorithms and have the following properties:
(1) Complete For any (x, t) there holds

$$
\mathrm{P}[p k \leftarrow \operatorname{CGen}(\lambda) ;(y, d) \leftarrow \operatorname{Cmt}(p k, x, t): \operatorname{Cvf}(p k, y, x, t, d)=1]=1
$$

(2) Binding There exists a negligible function $\varepsilon(\lambda)$ s.t. for any P.P.T algorithm A:

$$
\begin{aligned}
& \mathrm{P}\left[p k \leftarrow \operatorname{CGen}(\lambda) ;\left(y, t, x_{1}, x_{2}, d_{1}, d_{2}\right) \leftarrow \mathrm{A}(p k):\right. \\
& \left.\quad \operatorname{Cvf}\left(p k, y, x_{1}, t, d_{1}\right)=1 \wedge \operatorname{Cvf}\left(p k, y, x_{2}, t, d_{2}\right)=1 \wedge x_{1} \neq x_{2}\right] \leq \varepsilon(\lambda)
\end{aligned}
$$

(3) Hiding For any $p k$ generated by CGen, any x_{1}, x_{2} in the same bit-size and any $\operatorname{tag} t$, the output $c_{1}:\left(c_{1}, d_{1}\right) \leftarrow \operatorname{Cmt}\left(p k, x_{1}, t\right)$ and $c_{2}:\left(c_{2}, d_{2}\right) \leftarrow \operatorname{Cmt}\left(p k, x_{2}, t\right)$ are computationally indistinguishable.

In the following definition, the algorithm TCGen outputs public and private keypair, i.e., $(p k, s k) \leftarrow \operatorname{CGen}(\lambda)$. The symbol $\operatorname{TCGen}_{p k}$ notates such a algorithm the same as TCGen but only outputs $p k$.
Definition 6 (Tag-based Trapdoor Commitment Scheme[20]) TC \equiv (TCGen, TCmt, TCvf, TCFakeCmt, TCFakeDmt) is a tag-based trapdoor commitment scheme, if all the five algorithms are P.P.T with $\left(\mathrm{TCGen}_{p k}, \mathrm{TCmt}, \mathrm{TCvf}\right)$ satisfying properties (1) $\sim(3)$ in definition 5. In addition, for any (x, t) the two outputs

$$
\left(p k, x, t, y^{*}, d^{*}\right):
$$

$$
(p k, s k) \leftarrow \operatorname{TCGen}(\lambda) ;\left(y^{*}, \delta\right) \leftarrow \operatorname{TCFakeCmt}(p k, s k, t) ; d^{*} \leftarrow \operatorname{TCFakeDmt}\left(\delta, y^{*}, x, t\right) ;
$$

and $(p k, x, t, y, d)$:

$$
(p k, s k) \leftarrow \operatorname{TCGen}(\lambda) ;(y, d) \leftarrow \operatorname{TCmt}(p k, x, t) ;
$$

are computationally indistinguishable.
Definition 7 (Simulation Soundness of Tag-based Trapdoor Commitment Scheme[20]) The scheme in definition 6 is called simulation sound if there exists a negligible function $\varepsilon(\lambda)$ such that for any P.P.T. algorithm A:

$$
\begin{aligned}
\operatorname{Adv}_{T C}^{S S}(\lambda) \equiv & \mathrm{P}\left[(p k, s k) \leftarrow \operatorname{TCGen}(\lambda) ;\left(y, t, x_{1}, x_{2}, d_{1}, d_{2}\right) \leftarrow \mathrm{A}^{\mathrm{O} \cdot \mid s k)}(p k):\right. \\
\operatorname{TCvf}\left(p k, y, x_{1}, t, d_{1}\right)=1 & \left.\wedge \operatorname{TCvf}\left(p k, y, x_{2}, t, d_{2}\right)=1 \wedge x_{1} \neq x_{2} \wedge t \notin \mathrm{Q}\right] \leq \varepsilon(\lambda)
\end{aligned}
$$

where the oracle $\mathrm{O}(. \mid s k)$ with the private key $s k$ works in the following way:
(1) Initialize Q to be empty.
(2)For each query ["commit", t]:
$\mathrm{O}(. \mid s k)$ computes $\left(y^{*}, \delta\right)=\operatorname{TCFakeCmt}(p k, s k, t) ; \operatorname{Store}\left(y^{*}, t, \delta\right) ; \mathrm{Q}=\mathrm{QU}\{t\} ;$
Output y^{*}.
(3) For each query ["decommit", $\left.y^{*}, x\right]$:

IF some $\left(y^{*}, t, \delta\right)$ exists in current storage
THEN
$d^{*}=$ TCFakeDmt $\left(\delta, y^{*}, x, t\right)$; output d^{*};
END

For efficient constructions of simulation sound trapdoor commitment(SSTC hereafter) scheme, see[20-22].

Another tool required for constructing the compiler is the strongly unforgeable one-time signature scheme, which constructions can be seen in , e.g., [19][23].

5.2 Concurrently Non-malleable ZKA protocol

For a given interactive algorithm M, let M be a set of multiple instances of M running in any concurrent way. M receives two classes of input instructions:

Instruction [START, id, x, w]: start a new instance of M , assign identifier id and input (σ, x, w) to it, where σ is the c.r.s.

Instruction [MSG, id, m]: send message m to the instance $\mathrm{M}(i d)$ and return the output of this instance.

Given three interactive algorithms $\mathrm{S}, \mathrm{A} \equiv\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$ and B , let $\left.\left.\left\langle\mathrm{S}, \mathrm{A}_{1}\right| \mathrm{A}_{2}, \mathrm{~B}\right)\right\rangle$ denote the interactions of A_{1} with S and A_{2} with B where $\left(A_{1}, A_{2}\right)$ are coordinated, any information obtained by A_{1} can be used by A_{2} to generate the message sent to B and vice versa.

In any interaction, a trace is defined as a sequence of messages $\operatorname{Tr}=\left[+m_{1}-\right.$ $\left.m_{2}+m_{3}-m_{4} \ldots\right]$ where + and - represent the opposite message transmission directions. Two traces $T r_{1}$ and $T r_{2}$ are called matched if they have the same message terms but in opposite directions, e.g., $\operatorname{Tr}_{1}=\left[+m_{1}-m_{2}+m_{3}-m_{4} \ldots\right]$ and $\operatorname{Tr}_{2}=\left[-m_{1}+m_{2}-m_{3}+m_{4} \ldots\right]$.

Definition 8 (Concurrent Non-Malleability of Zero Knowledge Proof /Argument[22]) ($\mathrm{D}, \mathrm{P}, \mathrm{V},\left(\mathrm{S}_{1}, \mathrm{~S}_{2}\right)$) is called a concurrently non-malleable zero knowledge argument protocol for a relation R if all algorithms D, P, V, S_{1}, S_{2} are P.P.T. and have the following properties:
(1) Completeness For $\sigma \leftarrow \mathrm{D}(\lambda)$ and $(x, w) \in \mathrm{R}$ there holds $\mathrm{P}\left[<\mathrm{P}(w) ; \underline{\mathrm{V}}>_{\sigma}(x)=1\right]=1$.
(2) Witness Extraction For P.P.T algorithm $\mathrm{P}^{*} \equiv\left(\mathrm{P}_{1}{ }^{*}, \mathrm{P}_{2}{ }^{*}\right)$ consider the game $\operatorname{Exp}^{\mathrm{P}^{*}}(\lambda)$: $(\sigma, \tau) \leftarrow \mathrm{S}_{1}(\lambda) ;$
$\left(x^{*}, \operatorname{Tr}^{*}, b^{*}\right) \leftarrow<\mathrm{S}^{*}(\tau), \mathrm{P}_{1}{ }^{*} \mid \mathrm{P}_{2}{ }^{*}, \mathrm{~V}>_{\sigma}$;
$\mathrm{Q} \leftarrow \mathrm{S}^{*}(\tau)$'s traces during the interactions;
IF $b^{*}=1 \wedge_{T r \in Q} T r^{*}$ is unmatched with any $T r$
THEN output 1 ;
ELSE output 0;
(Tr is the trace between interactions of $\mathrm{P}_{1}{ }^{*}$ and $\mathrm{S}^{*} ; b^{*}$ is the output of V on trace Tr^{*}; unmatched means Tr^{*} cannot be a copy of any trace appeared in the interactions between $\mathrm{P}_{1}{ }^{*}$ and S^{*}.)
On each input $(x, w), \mathrm{S}^{*}(\tau)$ decides whether $\mathrm{R}(x, w)=1$: if true then it starts an instance $\mathrm{S}_{2}(\tau, \sigma, x)$ otherwise does nothing. Let

$$
\pi\left(\mathrm{P}^{*} \mid \lambda\right) \equiv \mathrm{P}\left[\operatorname{Exp}^{\mathrm{P}^{*}}(\lambda)=1\right]
$$

There exists an expected polynomial time algorithm Ext, a positive valued function κ and a negligible function ε such that, if $\pi\left(\mathrm{P}^{*} \mid \lambda\right)>\kappa(\lambda)$ then Ext with rewind access to P^{*} can compute a w^{*} such that $\left(x^{*}, w^{*}\right) \in \mathrm{R}$ with probability $\geq \pi\left(\mathrm{P}^{*} \mid \lambda\right)-\kappa(\lambda)-\varepsilon(\lambda)$ where x^{*} is the output of P^{*} in $\operatorname{Exp}^{\mathrm{P}^{*}}$.
(3) Zero-knowledge For any P.P.T. algorithm V^{*} there has the computational indistinguishability

$$
\operatorname{Tr}<\mathrm{P}, \mathrm{~V}^{*}>_{\sigma}(x) \stackrel{C}{\leftrightarrow} \operatorname{Tr}<\mathrm{S}^{* *}(\tau), \mathrm{V}^{*}>_{\sigma}(x)
$$

where σ on the left side is generated by $\mathrm{D}: \sigma \leftarrow \mathrm{D}(\lambda)$ and σ on the right side is generated by $\mathrm{S}_{1}:(\sigma, \tau) \leftarrow \mathrm{S}_{1}(\lambda)$. On each input $(x, w), \mathrm{S}^{* *}$ decides whether $\mathrm{R}(x, w)=1$: if true then it starts an instance $S_{2}(\tau, \sigma, x)$ otherwise does nothing. Note that S_{2} always has the input $x \in \mathrm{~L}_{\mathrm{R}}$ but not w.

5.3 Concurrently Non-Malleable ZKA Protocol's Construction

Let $\mathrm{R}(\sigma \mid x, w)$ be the relation with c.r.s. σ, public input x and witness $w ;$ ZKAoK/R be the public-coin argument protocol for R with logarithmic message complexity and $2 k+1$ rounds; A, A_{i}, B_{i} and ψ be polynomial-time algorithms in the protocol.

Protocol ZKAoK/R

$\mathrm{P} \rightarrow \mathrm{V}: \mathrm{P}$ computes $\left(x_{1}, \xi_{1}\right)=A(\sigma, x, w)$ and sends x_{1} to V ;
//The $1^{\text {st }}$ session
$\mathrm{P} \leftarrow \mathrm{V}: \mathrm{V}$ samples e_{1} at random and sends it to P ;
V computes $\left(b_{2}, \eta_{2}\right)=B_{1}\left(\sigma, x_{1}, e_{1}\right)$;
$\mathrm{P} \rightarrow \mathrm{V}: \mathrm{P}$ computes $\left(x_{2}, \xi_{2}\right)=A_{1}\left(\xi_{1}, e_{1}\right)$ and sends x_{2} to V ;
$/ / 2^{\text {nd }}$ session
$\mathrm{P} \leftarrow \mathrm{V}: V$ samples e_{2} at random and sends it to P ;
V computes $\left(b_{3}, \eta_{3}\right)=B_{2}\left(\eta_{2}, x_{2}, e_{2}\right)$;
$\mathrm{P} \rightarrow \mathrm{V}: \mathrm{P}$ computes $\left(x_{3}, \xi_{3}\right)=A_{2}\left(\xi_{2}, e_{2}\right)$ and sends x_{3} to V ;
// i-th session
$\mathrm{P} \leftarrow \mathrm{V}: \mathrm{V}$ samples e_{i} at random and sends it to P ;
V computes $\left(b_{i+1}, \eta_{i+1}\right)=B_{i}\left(\eta_{i}, x_{i}, e_{i}\right)$;
$\mathrm{P} \rightarrow \mathrm{V}: \mathrm{P}$ computes $\left(x_{i+1}, \xi_{i+1}\right)=A_{i}\left(\xi_{i}, e_{i}\right)$ and sends x_{i+1} to V ;
.......
//The last session
$\mathrm{P} \leftarrow \mathrm{V}: V$ samples e_{k} at random and sends it to P ;
V computes $\left(b_{k+1}, \eta_{k+1}\right)=B_{k}\left(\eta_{k}, x_{k}, e_{k}\right)$;
$\mathrm{P} \rightarrow \mathrm{V}: \mathrm{P}$ computes $x_{k+1}=A_{k}\left(\xi_{k}, e_{k}\right)$ and sends x_{k+1} to V ;
$\mathrm{V}: \quad \mathrm{V}$ verifies $\psi\left(\sigma, b_{k+1}, x_{k+1}, x\right)=1$.
Let $\mathrm{SSTC} \equiv$ (TCGen, TCmt,TCvf, TCFakeCmt, TCFakeDmt) be the simulationsound tag-based trapdoor commitment scheme defined in sec. $5.1 ; \mathrm{SG} \equiv(\mathrm{KG}, \mathrm{Sgn}, \mathrm{Vf})$ be the strongly unforgeable one-time signature scheme with key generator KG, signing algorithm Sgn and verification algorithm Vf; H be a collision-resistant hash function. With these basic cryptographic schemes, a new argument protocol for relation R is compiled from protocol $\mathrm{ZKAoK} / \mathrm{R}$ with new c.r.s. $\sigma^{*} \equiv[\sigma, p k]$ where σ is the original protocol's c.r.s. and $p k$ is the public key of scheme SSTC.

Protocol CNM-ZKAoK/R

$\mathrm{P} \rightarrow \mathrm{V}: \mathrm{P}$ computes: $\left(s_{-} v k, s_{-} s k\right)=\mathrm{KG}(\lambda)$;

$$
\begin{aligned}
& \left(x_{1}, \xi_{1}\right)=A(\sigma, x, w) ; \\
& \left(y_{1}, d_{1}\right) \leftarrow \operatorname{TCmt}\left(p k, x_{1}, \mathrm{H}\left(s_{-} v k| | 1\right)\right) ;
\end{aligned}
$$

//Here x_{1} in the original protocol is committed to with $\mathrm{H}\left(s_{-} v k| | 1\right)$ used as a tag. P sends message $\left[s_{-} v k, y_{1}\right]$ to V ;
$/ / 1^{\text {st }}$ session
$\mathrm{P} \leftarrow \mathrm{V}: V$ samples e_{1} at random and sends it to P ;
$\mathrm{P} \rightarrow \mathrm{V}: \mathrm{P}$ computes $\left(x_{2}, \xi_{2}\right)=A_{1}\left(\xi_{1}, e_{1}\right) ;\left(y_{2}, d_{2}\right) \leftarrow \mathrm{TCmt}\left(p k, x_{2}, \mathrm{H}\left(s_{-} v k| | 2\right)\right) ;$
P sends y_{2} to V;
$/ / 2^{\text {nd }}$ session
$\mathrm{P} \leftarrow \mathrm{V}: \mathrm{V}$ samples e_{2} at random and sends it to P ;
$\mathrm{P} \rightarrow \mathrm{V}: \mathrm{P}$ computes $\left(x_{3}, \xi_{3}\right)=A_{2}\left(\xi_{2}, e_{2}\right) ;\left(y_{3}, d_{3}\right) \leftarrow \operatorname{TCmt}\left(p k, x_{3}, \mathrm{H}\left(s_{-} v k| | 3\right)\right) ;$
P sends y_{3} to V;
$/ / i$-th session
$\mathrm{P} \leftarrow \mathrm{V}: V$ samples e_{i} at random and sends it to P ;
$\mathrm{P} \rightarrow \mathrm{V}: \mathrm{P}$ computes $\left(x_{i+1}, \xi_{i+1}\right)=A_{i}\left(\xi_{i}, e_{i}\right) ;\left(y_{i+1}, d_{i+1}\right) \leftarrow \mathrm{TCmt}\left(p k, x_{i+1}, \mathrm{H}\left(s_{-} v k| | i+1\right)\right)$;
P sends y_{i+1} to V;
//the last session
$\mathrm{P} \leftarrow \mathrm{V}: V$ samples e_{k} at random and sends it to P ;
$\mathrm{P} \rightarrow \mathrm{V}: ~ P$ computes $x_{k+1}=A_{k}\left(\xi_{k}, e_{k}\right) ; \boldsymbol{z}=\left(x_{1}, d_{1}, \ldots, x_{k}, d_{k}, x_{k+1}\right)$;

$$
\boldsymbol{u}=\left(y_{1}, e_{1}, \ldots, y_{k}, e_{k}\right) ; s=\operatorname{Sgn}\left(s_{-} s k, s_{-} v k\|\boldsymbol{u}\| \boldsymbol{z}\right) ;
$$

//operator "||" means joining the string

$$
\mathrm{P} \text { sends }[z, s] \text { to } \mathrm{V}
$$

V : On receiving the last message \boldsymbol{z} from P, V computes:

$$
\left(b_{2}, \eta_{2}\right)=B_{1}\left(\sigma, x_{1}, e_{1}\right) ;\left(b_{i+1}, \eta_{i+1}\right)=B_{i}\left(\eta_{i}, x_{i}, e_{i}\right), i=2, \ldots, k ;
$$

then verifies $\psi\left(\sigma, b_{k+1}, x_{k+1}, x\right)=1 \wedge \operatorname{Vf}\left(s_{-} v k, s_{-} v k\left\|\left(y_{1}, e_{1}, \ldots, y_{k}, e_{k}\right)\right\| z, s\right)=1$

$$
\Lambda_{i=1}^{k} T \operatorname{Cvf}\left(p k, y_{i}, x_{i}, \mathrm{H}\left(s_{-} v k \| i\right), d_{i}\right)=1
$$

Remark 3 As long as each y_{i} and d_{i} is in constant-size, total message size $\sum_{i=1}^{k}\left(\left|y_{i}\right|+\right.$ $\left.\left|x_{i}\right|+\left|d_{i}\right|\right)+\mathrm{O}(1)$ of the new protocol will be only constant times that of the original protocol. Relative to the original protocol, the prover adds the workload to compute commitments in each round, while the verifier delays all intermediate computations to the last round with some additional verification computation. With efficient implementation of SSTC scheme, the total computational workload in new protocol is approximately constant times the original.

About the new protocol's properties, we have the following conclusions.
Lemma 3 If ZKAoK/R has SHVZK property, then CNM-ZKAoK/R is zeroknowledge in the sense of definition 8(3).
Proof In Appendix B.
Lemma 4 Suppose the protocol ZKAoK/R is $\left(\mu_{1}, \ldots, \mu_{k}\right)$-special sound, then there exists an extractor Ext for protocol CNM-ZKAoK/R as specified in def.8. Let the
event EXT be "Ext outputs a w^{*} s.t. $\left(x^{*}, w^{*}\right) \in \mathrm{R}$ for an accepting statement $x^{*} ",|\mathrm{E}|$ be the cardinality of the space for the verifier to sample challenges, then:

$$
\mathrm{P}[\mathrm{EXT}]>\pi\left(\mathrm{P}^{*} \mid \lambda\right)-\sum_{i=1}^{k} \mu_{i} /|\mathrm{E}|-\operatorname{Adv}_{T C}^{S S}(\lambda) \prod_{i=1}^{k} \mu_{i}+\operatorname{poly}(\lambda) \operatorname{Adv}_{S G}^{U F(1)}(\lambda)
$$

$\left(\operatorname{Adv}_{T C}^{S S}\right.$ specified in def. $7, \pi\left(\mathrm{P}^{*} \mid \lambda\right)$ in def. 8$)$ and Ext's running time is poly (λ).

Proof In Appendix B.

Remark 4 For Galois ring $\operatorname{GR}(m, d)$ with $m=p^{s}$, we have $|\mathrm{E}|=p^{-d}$. For non-malleable enhanced protocols over $\operatorname{GR}(m, d)$ with $\mu=\mathrm{O}(1)$ and $k=\mathrm{O}(\log n)$, if $k \mu /|\mathrm{E}| \sim 2^{-\lambda}$ then d should take the value $>(\lambda+\log k \mu) / \log p$.

In summary, one obtains the general result:
Theorem 6 If $Z K A o K / R$ is an argument protocol for relation R with special soundness and SHVZK property (in terms of def. 2 and 3), then CNM-ZKAoK/R is a concurrently non-malleable zero knowledge argument protocol for R in terms of def. 10.

6 Summaries and Future Works

Since various important relations can be represented in or reduced to matrix formalisms, a direct approach to constructing efficient ZKA protocols for such relations are valuable in private computing applications. In this paper efficient ZKA protocols for some typical linear and bilinear matrix relations over the ring Z_{m} are established, with greatly improved efficiency in communication and computational complexity, size of c.r.s while keeping the size of commitments fixed (only determined by the targeted knowledge-error) compared with other approaches. Our matrix-oriented approach is suitable to Z_{m}-matrix in any size. How to deal with non-linear matrix relations more complicated than the bilinear relation, matrix polynomial relation, some tensorproduct relation, etc., in this approach is worthwhile to investigate in the future.

In other aspect, a general compiler is constructed in the second part of this work to enhance any multi-round ZKA protocol to a concurrently non-malleable ZKA protocol with the same message complexity but able to resist man-in-the-middle attacks in parallel running environments. However, how to further enhance such protocols to higher security level, e.g., universal composability, is an open problem.

References

1 I Damagard, R. Cramer, J.B.Nielsen. Secure multiparty computation and secret sharing. Cambridge: Cambridge University Press, 2015.
2 J. Furukawa, Y. Lindell. Two-thirds honest-majority MPC for malicious adversaries at Almost the Cost of Semi-Honest. In: 26th ACM CCS, 1557-1571, 2019.
3 A Kosba, C. Papamanthou, E.Shi. xJsnark: A framework for efficient verifiable computation. IEEE Symposium on Privacy \& Security, 2018, 128-149.
4 E. Cecchetti, F. Zhang, Y Ji, A. Kosba, A. Juels, E.Shi. Solidus: Confidential distributed ledger transactions via PVORM. ACM Computer \& Communication Security, Dalas U.S.A., 2017, 701-718.

5 B.Bunz, B.Fish, A. Szeieniec. Transparent SNARKS froms DARK compilers, Eurocrypt, Heidelberg: Springer, Lecture Notes in Computer Science, Vol. 12115, 677706. 2020.
J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting. EUROCRYPT 2016, Heidelberg: Springer, Lecture Notes in Computer Science, Vol. 9666, 327-357. 2016.
B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs: Short proofs for confidential transactions and more. IEEE Symposium on Security and Privacy, 315-334. IEEE Computer Society Press, 2018.
Hoffmann M, Klooß. M, Rupp A: Efficient zero- knowledge arguments in discrete log setting, revisited. ACM Conference on Computer and Communication Security, 2019.
Attema T, Cramer R, Rambaud M. Compressed Σ-Protocols for bilinear group arithmetic circuits and application to logarithmic transparent threshold signatures. Advances in Cryptology - ASIACRYPT 2021, 526-556.
10 Russell W, Lai F, G Malavolta, V Ronge. Succinct arguments for bilinear group arithmetic: Practical structure -preserving cryptography. ACM Conference on Computer and Communications Security, 2057-2074. 2019.
11 Attema T, Cramer R, Fehr S. Compressing proofs of k-out-of-n partial knowledge. Heidelberg: Springer, Advances in Cryptology, 2021, 65-89.
12 Attema T, Cramer M. Compressed Σ-protocol theory and practical application to plug and play secure algorithms. CRYPTO, Heidelberg: Springer, Lecture Notes in Computer Science, 513-543, 2020. Full-version available at IACR ePrint 2020/152.
13 Attema T, Cramer R, Kohl L. A compressed Σ-Protocol theory for lattices, CRYPTO, Lecture Notes in Computer Science Vol. 12826, 549-579, 2021.
14 Geoffroy Couteau, Thomas Peters, and David Pointcheval. Removing the strong RSA assumption from arguments over the integers, EUROCRYPT, Heidelberg: Springer, Lecture Notes in Computer Science, Vol. 10211, 321-350, 2017.
15 Ivan Damgard and Eiichiro Fujisaki. A statistically-hiding integer commitment scheme based on groups with hidden order. ASIACRYPT 2002, Heidelberg: Springer, Lecture Notes in Computer Science, Vol. 2501, 125-142, 2002.
16 Attema T, Cascudo I, Cramer R, Damgard I, Escudero D. Vector commitments over rings and compressed Sigma-protocols. IACR. ePrint, 2022:181, 2022.
17 Wan, Z.: Lectures on Finite Fields and Galois Rings. Academy of Sciences Press, Beijing. (2006).
18 Goldreich O. Foundations of Cryptography. Vol 1.Basic Techniques. Cambridge: Cambridge University Press, 2005.
19 Katz J, Lindell Y. Introduction to Modern Cryptography. Chapman Hall/CRC Press, 2020.

20 Mackenzie P, Yang Ke. On simulation sound trapdoor commitments. Advances in Cryptology, Lecture Notes in Computer Science Vol. 3027, 382-400, 2003.
21 Garay J.A., Mackenzie P, Yang Ke. Strengthening zero-knowledge protocols using Signature. Journal of Cryptology, 2016, 19(1):169-209.
Gennaro R. Multi-trapdoor commitments and their applications to non-malleable protocols. CRYPTO 2004, Lecture Notes in Computer Science Vol. 3152: 220-236, 2004.
23 D. Bleichenbacher, U. Maurer. On the efficiency of one-time digital signatures.

ASIACRYPT'96, Lecture Notes in Compter Science, Vol.1163, 145-158, Springer 1996.

Elman R, Karpenko N and Merkurjev A. Algebraic and geometric theory of quadratic forms[M]. New York: American Mathematical Society, 2017.

APPENDIX A. Proofs of Theorem 4 and 5

Theorem 4. The protocol \sum-ZKA/SBLR ${ }^{*}$ is unconditionally complete, special honest verifier zero-knowledge (SHVZK) and computationally 3 -special sound.

Proof If P has all the witnesses $\boldsymbol{r}, \boldsymbol{s}, \boldsymbol{u}, \boldsymbol{v}$ then:

$$
\boldsymbol{z}_{1}^{\mathrm{T}} \mathbf{Q} \boldsymbol{z}_{2}=\left(e \boldsymbol{u}+\boldsymbol{x}_{1}\right)^{\mathrm{T}} \mathbf{Q}\left(e \boldsymbol{v}+\boldsymbol{x}_{2}\right)=\boldsymbol{x}_{1}^{\mathrm{T}} \mathbf{Q} \boldsymbol{x}_{2}+e\left(\boldsymbol{x}_{1}^{\mathrm{T}} \mathbf{Q} \boldsymbol{v}+\boldsymbol{u}^{\mathrm{T}} \mathbf{Q} \boldsymbol{x}_{2}\right)+e^{2} \boldsymbol{u}^{\mathrm{T}} \mathbf{Q} \boldsymbol{v}=\eta_{2}+e \eta_{1}+e^{2} y
$$

The other equality in (4.20) can be easily confirmed by the homomorphic property of the commitment scheme, so the completeness is proved.

The protocol's SHVZK property can be proved by constructing the following simulator which on input of (σ, τ, e) performs the computation:
samples $\eta_{1} \stackrel{R}{\leftarrow} \mathrm{~S} ; \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2} \stackrel{R}{\leftarrow} \mathrm{~S}^{d}$ and $\boldsymbol{z}_{1}, \boldsymbol{z}_{2} \stackrel{R}{\leftarrow} \mathrm{~S}^{n}$ at random;
$K=W^{e} \operatorname{Cmt}\left(\sigma, \tau \mid \boldsymbol{z}_{1}, \boldsymbol{z}_{2} ; \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}\right) ;$
$\eta_{2}=\boldsymbol{z}_{1}{ }^{\mathrm{T}} \mathbf{Q} \boldsymbol{z}_{2}-e \eta_{1}-e^{2} y_{;} ;$
$\operatorname{output}\left(K, \eta_{1}, \eta_{2}, e, \boldsymbol{z}_{1}, \boldsymbol{z}_{2}, \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}\right)$.
It's straightforward to verify that the trace output by the simulator has the same distribution as the real trace in the interactions between the honest prover and the verifier, so the SHVZK property holds.

To prove the 3 -special soundness, consider three accepting traces $\operatorname{Tr}_{i}=\left[K_{1}, K_{2}, \eta_{1}\right.$, $\left.\eta_{2}, e_{i}, \boldsymbol{z}_{i 1}, z_{i 2}, \boldsymbol{\beta}_{i 1}, \boldsymbol{\beta}_{i 2}\right]$ with distinct challenges e_{1}, e_{2}, e_{3} sampled from E_{S}.

For Tr_{1} 和 Tr_{2}, there exist μ_{1} and μ_{2} in S which can be efficiently computed as solutions to the equations:

$$
\begin{equation*}
\mu_{1}+\mu_{2}=0, e_{1} \mu_{1}+e_{2} \mu_{2}=1 \tag{A.1}
\end{equation*}
$$

From the equations $K W^{e}=\operatorname{Cmt}\left(\sigma, \tau \mid \boldsymbol{z}_{1}, \boldsymbol{z}_{2} ; \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}\right) i=1,2$ in (4.20), one can get

$$
\begin{align*}
W & =\prod_{i=1}^{2}\left(K W^{e_{i}}\right)^{\mu_{i}}=\prod_{i=1}^{2} \operatorname{Cmt}\left(\sigma, \tau \mid \boldsymbol{z}_{i 1}, \boldsymbol{z}_{i 2} ; \boldsymbol{\beta}_{i 1}, \boldsymbol{\beta}_{i 2}\right)^{\mu_{i}} \\
& =\operatorname{Cmt}\left(\sigma, \tau \mid \boldsymbol{u}^{*}, \boldsymbol{v}^{*} ; \boldsymbol{r}^{*}, \boldsymbol{s}^{*}\right) \tag{A.2}
\end{align*}
$$

where

$$
\begin{equation*}
\boldsymbol{u}^{*}=\sum_{i=1}^{2} \mu_{i} \boldsymbol{z}_{i 1} \quad \boldsymbol{v}^{*}=\sum_{i=1}^{2} \mu_{i} \boldsymbol{z}_{i 2} \tag{A.3}
\end{equation*}
$$

Now we claim that there exist $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$ which are independent of i satisfying:

$$
\begin{equation*}
z_{i 1}=e_{i} \boldsymbol{u}^{*}+\boldsymbol{x}_{1}, z_{i 2}=e_{i} \boldsymbol{v}^{*}+\boldsymbol{x}_{2}, i=1,2 \tag{A.4}
\end{equation*}
$$

Indeed, let $z_{i 1}=e_{i} \boldsymbol{u}^{*}+\xi_{i}, i=1,2$ then by

$$
\boldsymbol{u}^{*}=\sum_{i=1}^{2} \mu_{i} \boldsymbol{z}_{i 1}=\sum_{i=1}^{2} \mu_{i}\left(e_{i} \boldsymbol{u}^{*}+\xi_{i}\right)=\boldsymbol{u}^{*} \sum_{i=1}^{2} \mu_{i} e_{i}+\mu_{1} \xi_{1}+\mu_{2} \xi_{2}=\boldsymbol{u}^{*}+\mu_{1}\left(\boldsymbol{\xi}_{1}-\boldsymbol{\xi}_{2}\right)
$$

and $\mu_{1} \neq 0$ one gets $\xi_{1}=\xi_{2}$ and denote this by \boldsymbol{x}_{1}. In a similar way one can confirm the
existence of \boldsymbol{x}_{2} satisfying (A.4).
Substituting $z_{i 1}$ and $z_{i 2}$ in (4.20)'s equations $z_{i 1}{ }^{\mathrm{T}} \mathbf{Q} z_{i 2}=\eta_{2}+e_{i} \eta_{1}+e_{i}^{2} y \quad i=1,2$ with the expressions in (A.4), after simple algebraic calculations one gets:

$$
\begin{equation*}
\eta_{2}-\boldsymbol{x}_{1}{ }^{\mathrm{T}} \mathbf{Q} \boldsymbol{x}_{2}+\left(\eta_{1}-\boldsymbol{x}_{1}{ }^{\mathrm{T}} \mathbf{Q} \boldsymbol{v}^{*}-\boldsymbol{u}^{* \mathrm{~T}} \mathbf{Q} \boldsymbol{x}_{2}\right) e_{i}+\left(y-\boldsymbol{u}^{* \mathrm{~T}} \mathbf{Q} \boldsymbol{v}^{*}\right) e_{\boldsymbol{i}}^{2}=0 \quad i=1,2 \tag{A.5}
\end{equation*}
$$

which shows that e_{1} and e_{2} are roots of the degree-2 polynomial $\eta_{2}-\boldsymbol{x}_{1}{ }^{\mathrm{T}} \mathbf{Q} \boldsymbol{x}_{2}+\left(\eta_{1}-\right.$ $\left.\boldsymbol{x}_{1}{ }^{\mathrm{T}} \mathbf{Q} \boldsymbol{v}^{*}-\boldsymbol{u}^{* \mathrm{~T}} \mathbf{Q} \boldsymbol{x}_{2}\right) T+\left(y^{*}-\boldsymbol{u}^{* \mathrm{~T}} \mathbf{Q} \boldsymbol{v} \boldsymbol{v}^{*}\right) T^{2}$. This result is obtained from traces Tr_{1} and Tr_{2} with the resulted "witnesses"

$$
\begin{equation*}
r^{*}, s^{*}, u^{*}, v^{*}, x_{1}, x_{2} \tag{A.6}
\end{equation*}
$$

When the same analysis is applied to traces Tr_{2} and Tr_{3}, another group of "witnesses"

$$
\begin{equation*}
r^{\prime}, s^{\prime}, u^{\prime}, v^{\prime}, x_{1}^{\prime}, x_{2} \tag{A.7}
\end{equation*}
$$

can be obtained which also satisfy equations (A.2)~(A.3), i.e.,

$$
\operatorname{Cmt}\left(\sigma, \tau \mid \boldsymbol{u}^{*}, \boldsymbol{v}^{*} ; \boldsymbol{r}^{*}, \boldsymbol{s}^{*}\right)=W=\operatorname{Cmt}\left(\sigma, \tau \mid \boldsymbol{u}^{\prime}, \boldsymbol{v}^{\prime} ; \boldsymbol{r}^{\prime}, \boldsymbol{s}^{\prime}\right)
$$

Under the binding property of the commitment scheme, these equalities imply

$$
\boldsymbol{u}^{*}=\boldsymbol{u}^{\prime}, \boldsymbol{v}^{*}=\boldsymbol{v}^{\prime}
$$

Note that equalities in (A.4) hold at $i=2$ for both "witnesses" in (A.6) and (A.7), which implies

$$
x_{1}=x_{1}, x_{2}=x_{2}
$$

Equation (A.5) with coefficients $y^{\prime}, \boldsymbol{u}^{\prime}, \boldsymbol{v}^{\prime}, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}{ }^{\prime}$ also hold for e_{2} and e_{3}. As a result, the coefficients in (A.5) are independent of $i=1,2,3$, which means the degree-2 polynomial $\eta_{2} \boldsymbol{x}_{1}{ }^{\mathrm{T}} \mathbf{Q} \boldsymbol{x}_{2}+\left(\eta_{1}-\boldsymbol{x}_{1}{ }^{\mathrm{T}} \mathbf{Q} \boldsymbol{v}^{*}-\boldsymbol{u}^{* \mathrm{~T}} \mathbf{Q} \boldsymbol{x}_{2}\right) T+\left(y-\boldsymbol{u}^{* T} \mathbf{Q} \boldsymbol{v}^{*}\right) T^{2}$ has at least three distinct roots e_{1}, e_{2}, e_{3} in the exceptional set E_{S}, so it must be identically zero. In particular, $y=$ $\boldsymbol{u}^{* T} \mathbf{Q} \boldsymbol{v}^{*}$. This proves that $\boldsymbol{u}^{*}, \boldsymbol{v}^{*}$ are correctly extracted witnesses.

Theorem 5 The protocol NoZKA/SBLR is $2 k-1$ round, unconditionally complete and computationally ($5,5, \ldots, 5$)-special sound.

Proof Completeness can be confirmed by straightforward algebraic calculations.
In order to prove $(5,5, \ldots, 5)$-soundness, we construct an extractor which outputs the witness $\boldsymbol{u}, \boldsymbol{v}$ and all variables $\left[A_{1}, A_{2}, B_{1}, B_{2}, C_{1}, C_{2}, D_{1}, D_{2}\right]$ from 5 accepting traces with $e_{i}^{2} \neq e_{j}^{2}$ in $\mathrm{E}_{\mathrm{S}}, i=1,2,3,4,5$:

$$
\operatorname{Tr}_{i} \equiv\left[\left[A_{1}, A_{2}, B_{1}, B_{2}, C_{1}, C_{2}, D_{1}, D_{2}\right], e_{i},\left[\boldsymbol{u}_{e i}, \boldsymbol{v}_{e i}\right]\right]
$$

where each trace satisfies

$$
\begin{equation*}
W_{e i}=\operatorname{Cmt}\left(\sigma_{e i}, \tau_{e i} \mid \boldsymbol{u}_{e i}, \boldsymbol{v}_{e i}\right) \wedge \boldsymbol{u}_{e i}^{\mathrm{T}} \mathbf{Q}_{e i} \boldsymbol{v}_{e i}=y+r_{e i} \tag{A.8}
\end{equation*}
$$

If this claim can be proved for each recursive step, the whole protocol is $(5, \ldots, 5)$ special sound.

Consider three traces $\operatorname{Tr}_{i}: i=1,2,3$ at first. For these traces $\mu_{1}, \mu_{2}, \mu_{3}$ can be efficiently calculated as solution to the equations:

$$
\begin{equation*}
\sum_{i=1}^{3} e_{i}^{-1} \mu_{i}=0, \quad \sum_{i=1}^{3} e_{i} \quad \mu_{i}=1, \quad \sum_{i=1}^{3} e_{i}^{3} \mu_{i}=0 \tag{A.9}
\end{equation*}
$$

For notational simplicity, all variables with subscript e_{i} will be subscripted only by i, e.g., $W_{e_{i}}$ is simply notated as W_{i}. Combining the equality $W_{i}=\operatorname{Cmt}\left(\sigma_{i}, \tau_{e i} \mid \boldsymbol{u}_{i}, \boldsymbol{v}_{i}\right)$ $i=1,2,3$ in (4.22) with (4.25) and (A.9) one can get:

$$
W=\prod_{i=1}^{3}\left(A^{e_{i}^{-1}} W^{e_{i}} B^{e_{i}^{3}}\right)^{\mu_{i}}=\prod_{i=1}^{3} W_{i}^{\mu_{i}}=\prod_{i=1}^{3}\left(\operatorname{Cmt}\left(\sigma_{i}, \tau_{i} \mid \boldsymbol{u}_{i}, \boldsymbol{v}_{i}\right)^{\mu_{i}}\right.
$$

Using the commitment scheme's explicit expressions in sec. 2.4, one obtains:
where

$$
\begin{equation*}
W=\operatorname{Cmt}\left(\sigma, \tau \mid\left[\boldsymbol{u}_{\mathrm{L}}{ }^{*} \dot{+} \boldsymbol{u}_{\mathrm{R}}{ }^{*}, \boldsymbol{v}_{\mathrm{L}}{ }^{*} \dot{+} \boldsymbol{v}_{\mathrm{R}}^{*}\right]\right) \tag{A.10}
\end{equation*}
$$

$$
\begin{gather*}
\boldsymbol{u}_{\mathrm{L}}^{*}=\sum_{i=1}^{3} \mu_{i} \boldsymbol{u}_{i}, \boldsymbol{u}_{R}{ }^{*}=\sum_{i=1}^{3} e_{i}^{2} \mu_{i} \boldsymbol{u}_{i} \\
\boldsymbol{v}_{\mathrm{L}}^{*}=\sum_{i=1}^{3} \mu_{i} \boldsymbol{v}_{i}, \boldsymbol{v}_{R}{ }^{*}=\sum_{i=1}^{3} e_{i}^{2} \mu_{i} \boldsymbol{v}_{i} \tag{A.11}
\end{gather*}
$$

Also $\nu_{1}, \nu_{2}, \nu_{3}$ and $\gamma_{1}, \gamma_{2}, \gamma_{3}$ can be efficiently calculated as solutions to the following equations:

$$
\begin{align*}
& \sum_{i=1}^{3} e_{i}^{-1} v_{i}=1, \sum_{i=1}^{3} e_{i} v_{i}=0, \sum_{i=1}^{3} e_{i}^{3} v_{i}=0 \tag{A.12}\\
& \sum_{i=1}^{3} e_{i}^{-1} \gamma_{i}=0, \sum_{i=1}^{3} e_{i} \gamma_{i}=0, \sum_{i=1}^{3} e_{i}^{3} \gamma_{i}=1 \tag{A.13}
\end{align*}
$$

Combining $W_{i}=\operatorname{Cmt}\left(\sigma_{i}, \tau_{i} \mid \boldsymbol{u}_{i}, \boldsymbol{v}_{i}\right), i=1,2,3$ in (A.8) with (4.27), (A.12) and (4.23), one derives:

$$
A=\prod_{i=1}^{3}\left(A^{e_{i}^{-1}} W^{e_{i}} B^{e_{i}^{2}}\right)^{v_{i}}=\prod_{i=1}^{3} W_{i}^{v_{i}}=\prod_{i=1}^{3}\left(\operatorname{Cmt}\left(\sigma_{i}, \tau_{i} \mid \boldsymbol{u}_{i}, \boldsymbol{v}_{i}\right)\right)^{v_{i}}
$$

i.e.,

$$
\begin{align*}
& A_{1}=\operatorname{Cmt}\left(\sigma, \tau \mid\left[\boldsymbol{w}_{\mathrm{L}}{ }^{*} \dot{+} \boldsymbol{w}_{\mathrm{R}}{ }^{*}, \boldsymbol{q}_{\mathrm{L}}{ }^{*} \dot{+} \boldsymbol{q}_{\mathrm{R}}{ }^{*}\right]\right) \tag{A.14}\\
& \boldsymbol{w}_{\mathrm{L}}{ }^{*}=\sum_{i=1}^{3} v_{i} \boldsymbol{u}_{i}, \boldsymbol{w}_{R}{ }^{*}=\sum_{i=1}^{3} e_{i}^{2} v_{i} \boldsymbol{u}_{i} \tag{A.15}\\
& \boldsymbol{q}_{\mathrm{L}}{ }^{*}=\sum_{i=1}^{3} v_{i} \boldsymbol{v}_{i}, \boldsymbol{q}_{R}{ }^{*}=\sum_{i=1}^{3} e_{i}^{2} v_{i} \boldsymbol{v}_{i}
\end{align*}
$$

In a similar way, one can also get
where

$$
B_{1}=\operatorname{Cmt}\left(\sigma, \tau \mid\left[\boldsymbol{w}_{\mathrm{L}} \dot{+}^{*} \boldsymbol{w}_{\mathrm{R}},{ }^{*} \boldsymbol{q}_{\mathrm{L}} \dot{+}^{*} \boldsymbol{q}_{\mathrm{R}}\right]\right)
$$

$$
\begin{aligned}
& { }^{*} \boldsymbol{w}_{\mathrm{L}}=\sum_{i=1}^{3} \gamma_{i} \boldsymbol{u}_{i},{ }^{*} \boldsymbol{w}_{R}=\sum_{i=1}^{3} e_{i}^{2} \gamma_{i} \boldsymbol{u}_{i} \\
& { }^{*} \boldsymbol{q}_{\mathrm{L}}=\sum_{i=1}^{3} \gamma_{i} \boldsymbol{v}_{i},{ }^{*} \boldsymbol{q}_{R}=\sum_{i=1}^{3} e_{i}^{2} \gamma_{i} \boldsymbol{v}_{i}
\end{aligned}
$$

By the equality $W_{i}=A^{e_{i}^{-1}} W^{e_{i}} B^{e_{i}^{3}}$ in (4.27) and the equality $W_{i}=$ $\operatorname{Cmt}\left(\sigma_{e i}, \tau_{e i} \mid \boldsymbol{u}_{e i}, \boldsymbol{v}_{e i}\right)=\operatorname{Cmt}\left(\sigma, \tau \mid\left[\boldsymbol{u}_{i} \dot{+} e_{i}^{2} \boldsymbol{u}_{i}, \boldsymbol{v}_{i}+e_{i}^{2} \boldsymbol{v}_{i}\right]\right)$ in (A.8) for $i=1,2,3$, we get:

$$
A^{e_{i}^{-1}} W^{e_{i}} B^{e_{i}^{3}}=\operatorname{Cmt}\left(\sigma, \tau \mid\left[\boldsymbol{u}_{i} \dot{+} e_{i}^{2} \boldsymbol{u}_{i}, \boldsymbol{v}_{i} \dot{+} e_{i}^{2} \boldsymbol{v}_{i}\right]\right)
$$

Put A, W, B 's expressions (A.14), (A.10), (A.15) into the above expression, the obtained equality implies

$$
\begin{equation*}
\boldsymbol{u}_{i}=e_{i} \boldsymbol{u}_{\mathrm{L}}^{*}+e_{i}^{-1} \boldsymbol{w}_{\mathrm{L}}^{*}+e_{i}^{3{ }^{*}} \boldsymbol{w}_{\mathrm{L}}, \quad e_{i}^{2} \boldsymbol{u}_{i}=e_{i} \boldsymbol{u}_{\mathrm{R}}^{*}+e_{i}^{-1} \boldsymbol{w}_{\mathrm{R}}^{*}+e_{i}^{3 *} \boldsymbol{w}_{\mathrm{R}} \quad i=1,2,3 \tag{A.18}
\end{equation*}
$$

due to the commitment's binding property. After eliminating \boldsymbol{u}_{i} one has

$$
\begin{equation*}
\boldsymbol{w}_{\mathrm{R}}^{*}+\left(\boldsymbol{u}_{\mathrm{R}}^{*}-\boldsymbol{w}_{\mathrm{L}}^{*}\right) e_{i}^{2}+\left({ }^{*} \boldsymbol{w}_{\mathrm{R}}-\boldsymbol{u}_{\mathrm{L}}^{*}\right) e_{i}^{4}-{ }^{*} \boldsymbol{w}_{\mathrm{L}} e_{i}^{6}=0 \tag{A.19}
\end{equation*}
$$

Equation (A.19) is satisfied by $\boldsymbol{u}_{\mathrm{L}}{ }^{*}, \boldsymbol{u}_{\mathrm{R}}{ }^{*}, \boldsymbol{w}_{\mathrm{L}}{ }^{*},{ }^{*} \boldsymbol{w}_{\mathrm{R}}$ which can be efficiently calcu-
lated from $\operatorname{Tr}_{1}, \mathrm{Tr}_{2}, \mathrm{Tr}_{3}$ with challenges e_{i} in $\mathrm{E}_{\mathrm{S}}: i=1,2,3$. When the derivation is applied to $\operatorname{Tr}_{3}, \operatorname{Tr}_{4}, \operatorname{Tr}_{5}$, one can also calculate $\boldsymbol{u}_{\mathrm{L}^{*}}, \boldsymbol{u}_{\mathrm{R}^{*}, *}, \boldsymbol{w}_{\mathrm{L}}, * \boldsymbol{w}_{\mathrm{R}}$ which satisfy the same equations with e_{i} in $\mathrm{E}_{\mathrm{S}}: i=3,4,5$. These two groups of calculated results all satisfy (only variables committed on base of σ are explicitly presented, those on base of τ are omitted but can be calculated in exactly the same way):

$$
\begin{aligned}
\operatorname{Cmt}\left(\sigma, \tau \mid\left[\boldsymbol{u}_{\mathrm{L}}{ }^{*} \dot{+} \boldsymbol{u}_{\mathrm{R}}{ }^{*}, \ldots\right]\right) & =W=\operatorname{Cmt}\left(\sigma, \tau \mid\left[\boldsymbol{u}_{\mathrm{L}^{*}} \dot{+} \boldsymbol{u}_{\mathrm{R}^{*}}, \ldots\right]\right) \\
\operatorname{Cmt}\left(\sigma, \tau \mid\left[\boldsymbol{w}_{\mathrm{L}}{ }^{*} \dot{+} \boldsymbol{w}_{\mathrm{R}}{ }^{*}, \ldots\right]\right) & =A=\operatorname{Cmt}\left(\sigma, \tau \mid\left[\boldsymbol{w}_{\mathrm{L}} \dot{+}^{+} \boldsymbol{w}_{\mathrm{R}^{*}}, \ldots\right]\right) \\
\operatorname{Cmt}\left(\sigma, \tau \mid\left[\boldsymbol{w}_{\mathrm{L}} \dot{+}^{*} \boldsymbol{w}_{\mathrm{R}}, \ldots\right]\right) & =B=\operatorname{Cmt}\left(\sigma, \tau \mid\left[* \boldsymbol{w}_{\mathrm{L}} \dot{+} * \boldsymbol{w}_{\mathrm{R}}, \ldots\right]\right)
\end{aligned}
$$

Due to binding property of the commitment scheme, these equalities imply:

$$
\begin{equation*}
\boldsymbol{u}_{\mathrm{L}}^{*}=\boldsymbol{u}_{\mathrm{L}^{*}}, \boldsymbol{u}_{\mathrm{R}}^{*}=\boldsymbol{u}_{\mathrm{R}^{*}},{ }^{*} \boldsymbol{w}_{\mathrm{L}}=* \boldsymbol{w}_{\mathrm{L}},{ }^{*} \boldsymbol{w}_{\mathrm{R}}={ }_{*} \boldsymbol{w}_{\mathrm{R}} \tag{A.20}
\end{equation*}
$$

As a result, (A.19) holds for more than 4 challenges e_{i}, i.e., degree- 3 polynomial $\boldsymbol{w}_{\mathrm{R}}{ }^{*}+$ $\left(\boldsymbol{u}_{\mathrm{R}}{ }^{*}-\boldsymbol{w}_{\mathrm{L}}{ }^{*}\right) T+\left({ }^{*} \boldsymbol{w}_{\mathrm{R}}-\boldsymbol{u}_{\mathrm{L}}{ }^{*}\right) T^{2}-{ }^{*} \boldsymbol{w}_{\mathrm{L}} T^{3}$ in T has more than 4 distinct zeros $e_{i}^{2}\left(e_{i}^{2} \neq e_{j}^{2}\right.$, $i=1,2,3,4,5)$ in E_{S}, which implies all its coefficients are zero:

$$
\begin{equation*}
\boldsymbol{w}_{\mathrm{R}}^{*}=0, \boldsymbol{u}_{\mathrm{R}}^{*}=\boldsymbol{w}_{\mathrm{L}}^{*},{ }^{*} \boldsymbol{w}_{\mathrm{R}}=\boldsymbol{u}_{\mathrm{L}}{ }^{*},{ }^{*} \boldsymbol{w}_{\mathrm{L}}=0 \tag{A.21}
\end{equation*}
$$

Combining (A.21) with (A.14) and (A.15) one obtains

$$
\begin{align*}
& A=\operatorname{Cmt}\left(\sigma, \tau \mid\left[\boldsymbol{u}_{\mathrm{R}} \dot{+} \mathbf{0}, \boldsymbol{v}_{\mathrm{R}} \dot{+} \mathbf{0}\right]\right) \tag{A.22}\\
& B=\operatorname{Cmt}\left(\sigma, \tau \mid\left[\mathbf{0} \dot{+} \boldsymbol{u}_{\mathrm{L}}, \mathbf{0} \dot{\mathbf{+}} \boldsymbol{v}_{\mathrm{L}}\right]\right) \tag{A.23}
\end{align*}
$$

Combining (A.21) with (A.18) and (A.20) one obtains, for $i=1, \ldots, 5$:

$$
\begin{align*}
& \boldsymbol{u}_{i}=e_{i} \boldsymbol{u}_{\mathrm{L}}^{*}+e_{i}^{-1} \boldsymbol{u}_{\mathrm{R}}^{*} \tag{A.24}\\
& \boldsymbol{v}_{i}=e_{i} \boldsymbol{v}_{\mathrm{L}}^{*}+e_{i}^{-1} \boldsymbol{v}_{\mathrm{R}}^{*} \tag{A.25}
\end{align*}
$$

Combining the equation $\boldsymbol{u}_{e}{ }^{\mathrm{T}} \mathbf{Q}_{e} \boldsymbol{v}_{e}=y+r_{e}$ in (A.8) with equalities (A.23), (A.25) and $\mathbf{Q}_{e}=e^{-2} \mathbf{Q}_{\mathrm{L}}+e^{2} \mathbf{Q}_{\mathrm{R}}$, one has (for each $i=1, \ldots, 5$):

$$
\begin{align*}
y+r_{i} & =\boldsymbol{u}_{i}{ }^{\mathrm{T}} \mathbf{Q}_{i} \boldsymbol{v}_{i}=\left(e_{i} \boldsymbol{u}_{\mathrm{L}}{ }^{*}+e_{i}{ }^{-1} \boldsymbol{u}_{\mathrm{R}}{ }^{* \mathrm{~T}}\left(e^{-2} \mathbf{Q}_{\mathrm{L}}+e^{2} \mathbf{Q}_{\mathrm{R}}\right)\left(e_{i} \boldsymbol{v}_{\mathrm{L}}{ }^{*}+e_{i}^{-1} \boldsymbol{v}_{\mathrm{R}}{ }^{*}\right)\right. \\
& =\boldsymbol{u}_{\mathrm{L}}{ }^{* \mathrm{~T}} \mathbf{Q}_{\mathrm{L}} \boldsymbol{v}_{\mathrm{L}}{ }^{*}+\boldsymbol{u}_{\mathrm{R}}{ }^{* \mathrm{~T}} \mathbf{Q}_{\mathrm{R}} \boldsymbol{v}_{\mathrm{R}}{ }^{*}+\left(\boldsymbol{u}_{\mathrm{R}}{ }^{\mathrm{T} \mathrm{~T}} \mathbf{Q}_{\mathrm{L}} \boldsymbol{v}_{\mathrm{L}}{ }^{*}+\boldsymbol{u}_{\mathrm{L}}{ }^{* \mathrm{~T}} \mathbf{Q}_{\mathrm{L}} \boldsymbol{v}_{\mathrm{R}}{ }^{*}\right) e_{i}{ }^{*-2} \\
& +\left(\boldsymbol{u}_{\mathrm{R}}{ }^{* \mathrm{~T}} \mathbf{Q}_{\mathrm{R}} \boldsymbol{v}_{\mathrm{L}}{ }^{*}+\boldsymbol{u}_{\mathrm{L}}{ }^{*} \mathbf{Q}_{\mathrm{R}} \boldsymbol{v}_{\mathrm{R}}{ }^{*}\right) e_{i}^{2}+\boldsymbol{u}_{\mathrm{R}}{ }^{* \mathrm{~T}} \mathbf{Q}_{\mathrm{L}} \boldsymbol{v}^{*} e_{i}^{-4}+\boldsymbol{u}_{\mathrm{L}}{ }^{* \mathrm{~T}} \mathbf{Q}_{\mathrm{R}} \boldsymbol{v}_{\mathrm{L}}{ }^{*} e_{i}^{4} \tag{A.26}
\end{align*}
$$

Put r_{i} 's expression (4.28) into (A.26) and after simple calculations, one gets:

$$
\begin{align*}
& \boldsymbol{u}_{\mathrm{L}}{ }^{* \mathrm{~T}} \mathbf{Q}_{\mathrm{L}} \boldsymbol{v}_{\mathrm{L}}{ }^{*}+\boldsymbol{u}_{\mathrm{R}}{ }^{* \mathrm{~T}} \mathbf{Q}_{\mathrm{R}} \boldsymbol{v}_{\mathrm{R}}{ }^{*}-y+\left(\boldsymbol{u}_{\mathrm{R}}{ }^{* \mathrm{~T}} \mathbf{Q}_{\mathrm{L}} \boldsymbol{v}_{\mathrm{L}}{ }^{*}+\boldsymbol{u}_{\mathrm{L}}{ }^{* \mathrm{~T}} \mathbf{Q}_{\mathrm{L}} \boldsymbol{v}_{\mathrm{R}}{ }^{*}-C_{1}\right) e_{i} \\
+ & \left(\boldsymbol{u}_{\mathrm{R}}{ }^{* T} \mathbf{Q}_{\mathrm{R}} \boldsymbol{v}_{\mathrm{L}}{ }^{*}+\boldsymbol{u}_{\mathrm{L}}{ }^{* \mathrm{~T}} \mathbf{Q}_{\mathrm{R}} \boldsymbol{v}_{\mathrm{R}}{ }^{*}-C_{2}\right) e_{i}{ }^{2}+\left(\boldsymbol{u}_{\mathrm{R}}{ }^{* T} \mathbf{Q}_{\mathrm{L}} \boldsymbol{v}_{\mathrm{R}}{ }^{*}-D_{1}\right) e_{i}^{-4}+\left(\boldsymbol{u}_{\mathrm{L}}{ }^{* \mathrm{~T}} \mathbf{Q}_{\mathrm{R}} \boldsymbol{v}_{\mathrm{L}}{ }^{*}-D_{2}\right) e_{i}^{4}=0 \tag{A.27}
\end{align*}
$$

i.e., the degree-4 polynomial in T

$$
\begin{aligned}
& \boldsymbol{u}_{\mathrm{R}}{ }^{* \mathrm{~T}} \mathbf{Q}_{\mathrm{L}} \boldsymbol{v}_{\mathrm{R}}{ }^{*}-D_{1}+\left(\boldsymbol{u}_{\mathrm{L}}{ }^{* \mathrm{~T}} \mathbf{Q}_{\mathrm{L}} \boldsymbol{v}_{\mathrm{L}}{ }^{*}+\boldsymbol{u}_{\mathrm{R}}{ }^{* \mathrm{~T}} \mathbf{Q}_{\mathrm{R}} \boldsymbol{v}_{\mathrm{R}}{ }^{*}-y\right) T+\left(\boldsymbol{u}_{\mathrm{R}}{ }^{* \mathrm{~T}} \mathbf{Q}_{\mathrm{L}} \boldsymbol{v}_{\mathrm{L}}{ }^{*}+\boldsymbol{u}_{\mathrm{L}}{ }^{* \mathrm{~T}} \mathbf{Q}_{\mathrm{L}} \boldsymbol{v}^{*}-C_{1}\right) T^{2} \\
+ & \left(\boldsymbol{u}_{\mathrm{R}}{ }^{* \mathrm{~T}} \mathbf{Q}_{\mathrm{R}} \boldsymbol{v}_{\mathrm{L}}{ }^{*}+\boldsymbol{u}_{\mathrm{L}}{ }^{* \mathrm{~T}} \mathbf{Q}_{\mathrm{R}} \boldsymbol{v}_{\mathrm{R}}{ }^{*}-C_{2}\right) T^{3}+\left(\boldsymbol{u}_{\mathrm{L}}{ }^{* \mathrm{~T}} \mathbf{Q}_{\mathrm{R}} \boldsymbol{v}_{\mathrm{L}}{ }^{*}-D_{2}\right) T^{4}
\end{aligned}
$$

has 5 distinct zeros e_{i}^{2} in $\mathrm{E}_{\mathrm{S}}: i=1, \ldots, 5$, which implies all its coefficients are zero:

$$
C_{1}=\boldsymbol{u}_{\mathrm{R}}{ }^{* \mathrm{~T}} \mathbf{Q}_{\mathrm{L}} \boldsymbol{v}_{\mathrm{L}}{ }^{*}+\boldsymbol{u}_{\mathrm{L}}{ }^{* \mathrm{~T}} \mathbf{Q}_{\mathrm{L}} \boldsymbol{v}_{\mathrm{R}}{ }^{*}, \quad C_{2}=\boldsymbol{u}_{\mathrm{R}}{ }^{* \mathrm{~T}} \mathbf{Q}_{\mathrm{R}} \boldsymbol{v}_{\mathrm{L}}{ }^{*}+\boldsymbol{u}_{\mathrm{L}}{ }^{* \mathrm{~T}} \mathbf{Q}_{\mathrm{R}} \boldsymbol{v}_{\mathrm{R}}{ }^{*}
$$

$$
\begin{align*}
& D_{1}=\boldsymbol{u}_{\mathrm{R}}{ }^{* \mathrm{~T}} \mathbf{Q}_{\mathrm{L}} \boldsymbol{v}_{\mathrm{R}}{ }^{*}, D_{2}=\boldsymbol{u}_{\mathrm{L}}{ }^{* \mathrm{~T}} \mathbf{Q}_{\mathrm{R}} \boldsymbol{v}_{\mathrm{L}}{ }^{*}, y=\boldsymbol{u}_{\mathrm{L}}{ }^{* \mathrm{~T}} \mathbf{Q}_{\mathrm{L}} \boldsymbol{v}_{\mathrm{L}}{ }^{*}+\boldsymbol{u}_{\mathrm{R}}{ }^{*} \mathbf{Q}_{\mathrm{R}} \boldsymbol{v}_{\mathrm{R}}{ }^{*}=\boldsymbol{u}^{* \mathrm{~T} \mathrm{~T}} \mathbf{Q} \boldsymbol{v}^{*} \tag{A.28}\\
& \text { wher } \boldsymbol{u}_{\mathrm{L}}{ }^{*} \dot{+} \boldsymbol{u}_{\mathrm{R}}{ }^{*}, \boldsymbol{v}^{*}=\boldsymbol{v}_{\mathrm{L}}^{*} \dot{+} \boldsymbol{v}_{\mathrm{R}}{ }^{*}
\end{align*}
$$

These results show that $\boldsymbol{u}^{*}, \boldsymbol{v}^{*}$ satisfy the bilinear equation $y=\boldsymbol{u}^{* T} \mathbf{Q} \boldsymbol{v}^{*}$ and the two commitments. The above arguments also provides an efficient knowledge extractor which computes the witness $\left(\boldsymbol{u}^{*}, \boldsymbol{v}^{*}\right)$ and all related variables in consistency with the protocol's specification from 5 accepting traces $\left\{\operatorname{Tr}_{i}: e_{i}^{2} \neq e_{j}^{2}, i=1,2,3,4,5\right\}$. Since this fact is true for each recursive step, the whole protocol is $(5, \ldots, 5)$-special sound.

APPENDIX B. Proofs of lemma 3 and 4

Lemma 3 If ZKAoK/R has SHVZK property, then CNM-ZKAoK/R is zeroknowledge in the sense of definition 8(3).
Proof Let S^{0} be zero-knowledge simulator of $\mathrm{ZKAoK} / \mathrm{R}$, the simulator $\mathrm{S} \equiv\left(\mathrm{S}_{1}, \mathrm{~S}_{2}\right)$ for CNM-ZKAoK/R is constructed in the following:
$S_{1}(\lambda)$:
Generate the c.r.s. σ for $\mathrm{ZKAoK} / \mathrm{R}$;
Compute $(p k, s k)=\operatorname{TCGen}(\lambda) ; \sigma^{*}=[\sigma, p k] ;$
Output ($\left.\sigma^{*}, s k\right)$
//SSTC's private key $s k$ will be used as the trapdoor τ
$\mathrm{S}_{2}\left(\tau, \sigma^{*}, x\right)$:
Compute $\left(s_{-} v k, s_{-} s k\right)=\operatorname{KG}(\lambda)$;
For each $1 \leq i \leq k$:

$$
\begin{equation*}
\text { Compute } t_{i}=\mathrm{H}\left(s_{-} v k \mid i\right) ;\left(Y_{i}, \delta_{i}\right)=\operatorname{TCFakeCmt}\left(p k, s k, t_{i}\right) ; \tag{B.1}
\end{equation*}
$$

Send message $\left[s_{-} v k, Y_{1}\right]$ to V^{*};
For the i-th challenge e_{i} from $\mathrm{V}^{*}, 1 \leq i \leq k-1$, response V^{*} with Y_{i+1};
For the k-th challenge e_{k} from V^{*}, compute:

$$
\begin{aligned}
& \begin{array}{l}
\left(X_{1}, \ldots, X_{k}, X_{k+1}\right)=\mathrm{S}^{0}\left(\sigma, x ; e_{1}, \ldots, e_{k}\right) ; \\
D_{i}=\mathrm{TCFakeDmt}\left(\delta_{i}, Y_{i}, X_{i}, t_{i}\right) ; 1 \leq i \leq k-1 \\
\boldsymbol{Z}^{*}
\end{array}=\left(X_{1}, D_{1}, \ldots, X_{k}, D_{k}, X_{k+1}\right) ; \\
& \boldsymbol{U}^{*}=\left(Y_{1}, e_{1}, \ldots, Y_{k}, e_{k}\right) ; \\
& s^{*}=\operatorname{Sgn}\left(s, s k, s_{-} v k\left\|\boldsymbol{U}^{*}\right\| \boldsymbol{Z}^{*}\right) ; \\
& \text { Then Send }\left[\boldsymbol{Z}^{*}, s^{*}\right] \text { to } \mathrm{V}^{*} .
\end{aligned}
$$

According to the above construction, the $\mathrm{P} \rightarrow \mathrm{V}^{*}$ trace simulated by S is $\mathrm{TR}=$ $\left[s _v k, Y_{1}, \ldots, Y_{k},\left(X_{1}, D_{1}, \ldots, X_{k}, D_{k}, X_{k+1}\right), s^{*}\right]$. Now we claim that TR is computationally indistinguishable with the real $\mathrm{P} \rightarrow \mathrm{V}^{*}$ trace $\operatorname{tr}=\left[s s_{-} v k, y_{1}, \ldots, y_{k},\left(x_{1}, d_{1}, \ldots, x_{k}, d_{k}, x_{k+1}\right), s\right]$.

Obviously in TR and tr both $s_{-} v k$'s are in the same distribution, furthermore the $\operatorname{tags} t_{i}=\mathrm{H}\left(s_{-} v k \| i\right)$ in TR and tr are in the same distribution.

Due to (B.1), (B.2) and SSTC's trapdoor property(definition 8), for each $1 \leq i \leq k$ there is the following computational indistinguishability:

$$
\left(X_{i}, t_{i}, Y_{i}, D_{i}\right) \stackrel{c}{\leftrightarrow}\left(X_{i}, t_{i}, \bar{y}_{l}, \bar{d}_{\imath}\right)
$$

where

$$
\begin{gather*}
\left(\bar{y}_{l}, \bar{d}_{l}\right)=\operatorname{TCmt}\left(p k, X_{i}, t_{i}\right) \tag{B.3}\\
\operatorname{TR} \stackrel{\operatorname{tr}}{ } \tag{B.4}
\end{gather*}
$$

hence
where $\overline{\operatorname{tr}} \equiv\left[s_{-} v k, \overline{y_{1}}, \ldots, \overline{y_{k}},\left(X_{1}, \overline{d_{1}}, \ldots, X_{k}, \overline{d_{k}}, X_{k+1}\right), \bar{s}\right], \bar{s} \equiv \operatorname{Sgn}\left(s_{-} s k, s_{-} v k\|\overline{\boldsymbol{U}}\| \overline{\mathbf{Z}}\right), \overline{\boldsymbol{U}}$ and $\overline{\boldsymbol{Z}}$ are the expressions resulted from replacing Y_{i} with \bar{y}_{l}, D_{i} with $\bar{d}_{l} \overline{\text { in }} \boldsymbol{U}^{*}$'s and \boldsymbol{Z}^{*} 's expressions(see (B.2)).

For simulator S^{0} there holds:

$$
\begin{equation*}
\left(X_{1}, \ldots \ldots, X_{k}, X_{k+1}\right) \stackrel{C}{\leftrightarrow}\left(x_{1}, \ldots \ldots, x_{k}, x_{k+1}\right) \tag{B.5}
\end{equation*}
$$

where $\left(x_{1}, \ldots, x_{k}, x_{k+1}\right)$ is the real message sequence output from P. In CNM-ZKAoK/R each x_{i} has the commitment:

$$
\begin{equation*}
\left(y_{i}, d_{i}\right)=\operatorname{TCmt}\left(p k, x_{i}, \mathrm{H}\left(s_{-} v k| | i\right)\right) \tag{B.6}
\end{equation*}
$$

So (B.3)~(B.6) implies:

$$
\begin{equation*}
\mathrm{TR} \stackrel{C}{\leftrightarrow} \operatorname{tr} \tag{B.7}
\end{equation*}
$$

where $\operatorname{tr} \equiv\left[s s_{-} v k, y_{1}, \ldots, y_{k},\left(x_{1}, d_{1}, \ldots, x_{k}, d_{k}, x_{k+1}\right), s\right], s \equiv \operatorname{Sgn}\left(s_{-} s k, s_{-} v k\|\boldsymbol{U}\| \boldsymbol{Z}\right), \boldsymbol{U}$ and \boldsymbol{Z} are the expressions resulted from replacing $\overline{y_{l}}$ with y_{i}, X_{i} with $x_{i}, \overline{d_{\imath}}$ with d_{i} in the expressions of $\overline{\boldsymbol{U}}$ and $\overline{\boldsymbol{Z}}$. Obviously, tr and the real trace are in the same distribution.

Lemma 4 Suppose the protocol ZKAoK/R is $\left(\mu_{1}, \ldots, \mu_{k}\right)$-special sound, then there exists an extractor Ext for protocol CNM-ZKAoK/R as specified in def.8. Let the event EXT be "Ext outputs a w^{*} s.t. $\left(x^{*}, w^{*}\right) \in \mathrm{R}$ for an accepting statement $x^{*} ",|\mathrm{E}|$ be the cardinality of the space for the verifier to sample challenges, then:

$$
\mathrm{P}[\mathrm{EXT}]>\pi\left(\mathrm{P}^{*} \mid \lambda\right)-\sum_{i=1}^{k} \mu_{i} /|\mathrm{E}|-\operatorname{Adv}_{T C}^{S S}(\lambda) \prod_{i=1}^{k} \mu_{i}+\operatorname{poly}(\lambda) \operatorname{Adv}_{S G}^{U F(1)}(\lambda)
$$

$\left(\operatorname{Adv}_{T C}^{S S}\right.$ specified in def. $7, \pi\left(\mathrm{P}^{*} \mid \lambda\right)$ in def. 8$)$ and Ext's running time is poly (λ).
Proof Let $\mathrm{P}^{*} \equiv\left(\mathrm{P}_{1}{ }^{*}, \mathrm{P}_{2}{ }^{*}\right)$ be a P.P.T. algorithm which convinces the verifier with a statement x^{*} in the game $\operatorname{Exp}^{\mathrm{P}^{*}}$ in definition 8, i.e:

$$
\left(x^{*}, \operatorname{Tr}^{*}, b^{*}\right)=-\mathrm{S}^{*}(\tau), \mathrm{P}_{1}{ }^{*} \mid \mathrm{P}_{2}^{*}, \mathrm{~V}>_{\sigma}
$$

with $b^{*}=1 \Lambda_{\mathrm{Tr} \in \mathrm{Q}} \mathrm{Tr}^{*}$ is unmatched with any Tr .
where $\operatorname{Tr}^{*} \equiv\left[s _v k^{*}, y_{1}{ }^{*}, \ldots, y_{k}{ }^{*},\left(x_{1}{ }^{*}, d_{1}{ }^{*}, \ldots, x_{k}{ }^{*}, d_{k}{ }^{*}, x_{k+1}{ }^{*}\right), s^{*}\right], \mathrm{S} \equiv\left(\mathrm{S}_{1}, \mathrm{~S}_{2}\right)$ be the simulator constructed in lemma 3's proof. For presentational simplicity, let $\mu_{1}=\ldots=\mu_{k} \equiv$ μ, otherwise for $\mu \equiv \max \mu_{i}$ the following argument is still valid.

We construct a P.P.T. extractor Ext which calls P ${ }^{*}$ and interacts with it both in the role of prover (via its component algorithm Ext: $: \mathrm{P}$) and the role of verifier (via the component algorithm Ext:V). Since Ext can rewind P^{*} (mainly $\mathrm{P}_{2}{ }^{*}$ in the following) to any state, for presentational simplicity we take an equivalent view in concurrent environment that Ext can fork P^{*} instance at any state. The forked instance inherits its parent state and proceeds as specified in the protocol from that state on.

Ext executes the interactions with P^{*} in the follow way:
In the role of prover, Ext:: P calls the simulator S to interact with $\mathrm{P}_{1}{ }^{*}$. Note that S_{1} calls SSTC's key-generator TCGen to generate and output the public/secret key pair ($p k, s k$) so Ext can obtain this key pair from S.

In the role of verifier, each time right before Ext:: V sends the first challenge e_{1} to $\mathrm{P}_{2}{ }^{*}$, Ext forks it into $\mu \mathrm{P}_{2}{ }^{*}$-instances and sends randomly independent and pairwise distinct challenges $e_{i}^{(1)}, i=1, \ldots, \mu$ to each $\mathrm{P}_{2}{ }^{*}$-instance.

Every time right before Ext:: V sends the second challenge e_{2} to some $\mathrm{P}_{2}{ }^{*}$ instance, Ext forks it into $\mu \mathrm{P}_{2}{ }^{*}$-instances, sends independent and pairwise distinct challenges $e_{1}^{(2)}, \ldots, e_{\mu}^{(2)}$ to each instance.

Every instance inherits its parent's state and proceeds after receiving its challenge. Such operations proceed until all rounds are finished in protocol CNMZKAoK/R.

Let $\mathrm{T}\left(x^{*}\right)$ be a tree constructed as stated in definition 3 for the above interactions, with $\left[s _v k^{*}, y_{1}{ }^{*}\right]$ as its root. According to the above operation, $\mathrm{T}\left(x^{*}\right)$ is a session tree and each path γ in the tree is a trace $\operatorname{Tr}<\mathrm{P}_{2}{ }^{*}, \mathrm{~V}>\left(x^{*}\right)$.

Since the verifier generates k challenges in CNM-ZKAoK/R, i.e., each path in $\mathrm{T}\left(x^{*}\right)$ has k edges along it, so in the tree:

Total number of edges $\mathbf{N}=\mu+\mu^{2}+\ldots+\mu^{k}<\mu^{k+1}$
Total number of nodes $\mathrm{M}=1+\mu+\mu^{2}+\ldots+\mu^{k-1}<\mu^{k}$
Total number of paths $\mathrm{K}=$ total number of leaves $=\mu^{k}$
Define a event Succ as:
Tree $\mathrm{T}\left(x^{*}\right)$ is accepting, i.e., $b^{*}(\gamma)=1$ for every path γ in the tree.
Consider two subevents $\mathrm{P}\left[\operatorname{Succ} \wedge \mathrm{T}^{0}\left(x^{*}\right)\right]$ and $\mathrm{P}\left[\operatorname{Succ} \wedge \sim \mathrm{T}^{0}\left(x^{*}\right)\right]$.
In the event of Succ $\wedge \mathrm{T}^{0}\left(x^{*}\right)$, Succ occurs and all session variables x_{i} associated with nodes $y_{i}(\gamma)\left(y_{i}(\gamma)\right.$ stands for a node on path γ and at level $\left.i\right)$ in the accepting tree $\mathrm{T}\left(x^{*}\right)$ are in consistency with each other, i.e., $x_{i}(\gamma)=x_{i}(\beta)$ for any path γ and β bifurcating at node $y_{i}(\gamma)$ (so $y_{i}(\gamma)=y_{i}(\beta) \equiv y_{i}, i \geq 1$), so after replacing each node y_{i} with x_{i} one can obtain an accepting session tree of protocol ZKAoK/R., denoted as $\mathrm{T}^{0}\left(x^{*}\right)$.

Since $\mathrm{ZKAoK} / \mathrm{R}$ is $\left(\mu_{1}, \ldots, \mu_{k}\right)$-special sound, its P.P.T. extractor Ext^{0} can be called by Ext to output a w^{*} s.t. $\left(x^{*}, w^{*}\right) \in \mathrm{R}$. In particular:

$$
\begin{equation*}
\mathrm{P}\left[\operatorname{Succ} \wedge \mathrm{~T}^{0}\left(x^{*}\right)\right] \leq \mathrm{P}\left[\text { Ext outputs a } w^{*} \text { s.t. }\left(x^{*}, w^{*}\right) \in \mathrm{R}\right] \tag{B.9}
\end{equation*}
$$

and note that the event on the right side is just EXT.
For arguments on the complimentary event $\operatorname{Succ} \wedge \sim \mathrm{T}^{0}\left(x^{*}\right)$, i.e., no session tree for protocol ZKAoK/R can be successfully derived from $\mathrm{T}\left(x^{*}\right)$ in the abovementioned way, we consider two further subcases.
Case $\mathrm{I}: s_{-} v k^{*}$ does not appear in any message output from S_{2}
We construct a P.P.T. algorithm \mathbf{A} on basis of P^{*} to destroy SSTC's simulation soundness in this case. A has SSTC's public key $p k$ as one of its input, has access to oracle- $\mathrm{O}(. \mid s k)$ and controls interactions of S (in role of prover) and V with P^{*} similarly as Ext does. During the interactions, whenever S_{2} needs to generate the message Y_{i} or D_{i} in the protocol(see (B.1) and (B.2)), A queries its oracle-O(. $\mid s k$) with ["commit", t_{i}] or ["decommit", Y_{i}, X_{i}] and returns the oracle's response to S_{2}.

In the event of $\operatorname{Succ} \wedge \sim \mathrm{T}^{0}\left(x^{*}\right)$, there exist at least two paths γ^{*} and β^{*} in $\mathrm{T}\left(x^{*}\right)$ which bifurcate at some node $y_{i}\left(\gamma^{*}\right)=y_{i}\left(\beta^{*}\right) \equiv y_{i}^{*}(i \geq 1)$ with the associated session variables unequal: $x_{i}\left(\gamma^{*}\right) \neq x_{i}\left(\beta^{*}\right)$. On the other hand, $b\left(\gamma^{*}\right)=b\left(\beta^{*}\right)=1$ so

$$
\operatorname{TCvf}\left(p k, y_{i}^{*}, x_{i}\left(\gamma^{*}\right), t_{i}, d_{i}\left(\gamma^{*}\right)\right)=1 \wedge \operatorname{TCvf}\left(p k, y_{i}^{*}, x_{i}\left(\beta^{*}\right), t_{i}, d_{i}\left(\beta^{*}\right)\right)=1
$$

where $t_{i}=\mathrm{H}\left(s_{-} v k^{*} \| i\right)$ is independent with any path.
In case I $s_{-} v k^{*}$ does not appear in any message output from S_{2} and H is colli-
sion-resistant, no t_{i} can be in the set of tags once received by oracle-O(.|sk). As a result, the algorithm A generates a output destroying scheme SSTC's simulation soundness with the probability

$$
\begin{equation*}
p_{\mathrm{I}} \equiv \mathrm{P}\left[\text { Succ } \wedge \sim \mathrm{T}^{0}\left(x^{*}\right) \wedge \text { Case } \mathrm{I}\right] \leq \operatorname{M~Adv}_{T C}^{S S}(\lambda)<\mu^{k} \operatorname{Adv}_{T C}^{S S}(\lambda) \tag{B.10}
\end{equation*}
$$

Case II: $s_{-} v k^{*}$ does appear in some message output from S_{2}
On basis of P^{*}, we construct a P.P.T. algorithm \mathbf{B} to destroy strong unforgeabililty of the one-time signature scheme SG in this case. \mathbf{B} has the signature verification key $s_{-} v k^{*}$ as one of its input and has access to the signing oracle-OSgn(. $\left.\mid s_{-} s k^{*}\right)$ at most one-time.

Let T be total number of message sequences output from S_{2} during interactions with P^{*}. B selects a $m \in\{1,2, \ldots, \mathrm{~T}\}$ uniformly, inserts $s_{-} v k^{*}$ into the m-th message sequence during the interactions between S_{2} and $\mathrm{P}_{1}{ }^{*}$, and generates the signature of this trace required by CNM-ZKAoK/R via accessing oracle-OSgn(.|s_sk*).

If the m-th sequence Tr_{m} is the one where $s_{-} v k^{*}$ appeared, then B makes P^{*} succeed in generating an accepting trace $\operatorname{Tr}^{*} \neq \operatorname{Tr}_{m}$. The fact that Tr^{*} contains a signature s^{*} satisfying $\operatorname{Vf}\left(s_{-} v k^{*}, \operatorname{Tr}^{*}, s^{*}\right)=1$ implies B's success in destroying SG’s one-time unforgeability. Obviously:

$$
\begin{equation*}
p_{\mathrm{II}} \equiv \mathrm{P}\left[\operatorname{Succ} \wedge \sim \mathrm{~T}^{0}\left(x^{*}\right) \wedge \text { Case II }\right] \leq \operatorname{TAdv}_{S G}^{U F(1)}(\lambda) \tag{B.11}
\end{equation*}
$$

Since Case I and II are complementary, from (B.10) and (B.11) one obtains

$$
\begin{equation*}
\mathrm{P}\left[\operatorname{Succ} \wedge \sim \mathrm{~T}^{0}\left(x^{*}\right)\right]=p_{\mathrm{I}}+p_{\mathrm{II}} \leq \mu^{k} \operatorname{Adv}_{T C}^{S S}(\lambda)+\operatorname{TAdv}_{S G}^{U F(1)}(\lambda) \tag{B.12}
\end{equation*}
$$

Combining (B.9) and (B.12) one has:

$$
\begin{align*}
& \mathrm{P}[\text { Succ }]=\mathrm{P}\left[\operatorname{Succ} \wedge \mathrm{~T}^{0}\left(x^{*}\right)\right]+\mathrm{P}\left[\operatorname{Succ} \wedge \sim \mathrm{~T}^{0}\left(x^{*}\right)\right] \\
\leq & \mathrm{P}[\mathrm{EXT}]+\mu^{k} \operatorname{Adv}_{T C}^{S S}(\lambda)+\operatorname{TAdv}_{S G}^{U F(1)}(\lambda) \tag{B.13}
\end{align*}
$$

On the other hand, one can apply an analysis similar as that in sec. 3 in [13](see lemma 5 there) to obtain a lower-bound of $\mathrm{P}[\mathrm{Succ}]$ as:

So

$$
\begin{gather*}
\mathrm{P}[\mathrm{Succ}]>\pi\left(\mathrm{P}^{*} \mid \lambda\right)-k \mu /|\mathrm{E}| \\
\mathrm{P}[\mathrm{EXT}]>\pi\left(\mathrm{P}^{*} \mid \lambda\right)-k \mu /|\mathrm{E}|-\mu^{k} \operatorname{Adv}_{T C}^{S S}(\lambda)+\operatorname{TAdv}_{S G}^{U F(1)}(\lambda) \tag{B.14}
\end{gather*}
$$

Note that $n, \mathrm{~T}=\operatorname{poly}(\lambda), \mu=\mathrm{O}(1)$ and $k=\mathrm{O}(\log n)$ so the third and fourth terms in (B.14) are both negligible in λ. According to Ext's construction, its running time is $\mu^{k} \operatorname{poly}(n)=\mathrm{O}(\operatorname{poly}(n))=\mathrm{O}(\operatorname{poly}(\lambda))$. This completes the proof.

APPENDIX C. More about ZKA for Matrix Linear Relations

C. 1 ZKA for Eigenvalue Relation: $\mathbf{A} u=\lambda u$

Consider the eigenvalue relation over residue ring Z_{m} for matrix $\mathbf{A} \in Z_{m}^{n \times n}$, vector $\boldsymbol{u} \in Z_{m}^{n}$ and eigenvalue λ in $Z_{m}: \mathrm{A} \boldsymbol{u}=\lambda \boldsymbol{u}$ where \mathbf{A} is the witness (otherwise the problem is trivial), \boldsymbol{u} and λ are public. $n=t d$ is a power of 2 and d is the extension degree
of Galois ring $\mathrm{S} \equiv \operatorname{GR}(m, d)=\mathrm{Z}_{m}[\mathrm{X}] /(f(X))$ which value is determined by the target knowledge-error.

Let $\mathbf{A}=\left[\begin{array}{c}\boldsymbol{A}_{1} \\ \vdots \\ \boldsymbol{A}_{t}\end{array}\right]$ with each $\mathbf{A}_{i} \in Z_{m}^{d \times n}$, the equation $\mathrm{A} \boldsymbol{u}=\lambda \boldsymbol{u}$ is equivalent to

$$
\mathbf{A}_{i} \boldsymbol{u}=\lambda \boldsymbol{u}^{(i)} \equiv \lambda\left[\begin{array}{c}
u_{1+(i-1) d} \tag{C.1}\\
\vdots \\
u_{i d}
\end{array}\right], i=1, \ldots, t
$$

For randomness ρ in E_{S} the relation (C.1) is equivalent with probability $>1-t / p^{d}$ to the relation:
i.e.,

$$
\begin{gather*}
\sum_{i=1}^{t} \mathbf{A}_{i} \rho^{i-1} \boldsymbol{u}=\lambda \sum_{i=1}^{t} \rho^{i-1} \boldsymbol{u}^{(i)} \equiv \lambda \boldsymbol{u}_{\rho} \\
{\left[\mathbf{A}_{1}, \ldots, \mathbf{A}_{t}\right]\left[\begin{array}{c}
\boldsymbol{u} \\
\rho \boldsymbol{u} \\
\vdots \\
\rho^{t-1} \boldsymbol{u}
\end{array}\right]=\lambda \boldsymbol{u}_{\rho}} \tag{C.2}
\end{gather*}
$$

This is a collection of d linear relations over S . Let \mathbf{A}^{*} and $\boldsymbol{u}_{\rho}{ }^{*}$ be the matrix and vector on left side of (C.2), left-multiplying this equality by $\left[1, \delta, \delta^{2}, \ldots, \delta^{d-1}\right]$ furthermore equivalently reduces it to the following relation with probability $>1-t / p^{d}$:
i.e.,

$$
\left[1, \delta, \delta^{2}, \ldots, \delta^{d-1}\right] \mathbf{A}^{*} \boldsymbol{u}_{\rho}{ }^{*}=\lambda\left[1, \delta, \delta^{2}, \ldots, \delta^{d-1}\right] \boldsymbol{u}_{\rho} \equiv \lambda \bar{u}_{\rho, \delta}
$$

$$
\begin{equation*}
\boldsymbol{a}_{\delta}{ }^{* T} \boldsymbol{u}_{\rho}{ }^{*}=\lambda \bar{u}_{\rho, \delta} \tag{C.3}
\end{equation*}
$$

where $\boldsymbol{a}_{\delta}{ }^{* T} \equiv\left[1, \delta, \delta^{2}, \ldots, \delta^{d-1}\right] \mathbf{A}^{*} \in S^{t n}, \boldsymbol{u}_{\rho}{ }^{*} \in S^{t n}$ and $\lambda \bar{u}_{\rho, \delta}$ in S. Let $\sigma \equiv[\mathrm{G}, \boldsymbol{g}, m]$ be the public-key for the commitment scheme with $n t$ G-elements in \boldsymbol{g} and used as the c.r.s, A is the commitment to matrix \mathbf{A} :

$$
\begin{gather*}
\mathrm{G}^{d} \ni A=\operatorname{Cmt}\left(\sigma \mid\left[\mathbf{A}_{1}, \ldots, \mathbf{A}_{t}\right]\right) \\
=\left[\begin{array}{c}
c m t_{\sigma}\left(A_{1}(1,1), \ldots, A_{1}(1, n), \ldots, A_{t}(1,1), \ldots, A_{t}(1, n)\right) \\
\vdots \\
c m t_{\sigma}\left(A_{1}(d, 1), \ldots, A_{1}(d, n), \ldots, A_{t}(d, 1), \ldots, A_{t}(d, n)\right)
\end{array}\right] \tag{C.4}
\end{gather*}
$$

then (C.3) is a linear relation over S with witness $\boldsymbol{a}_{\delta}{ }^{*} \in S^{t n}$ which commitment can be computed from the commitment to matrix \mathbf{A} by(see (2.7)~(2.7)):

$$
\begin{equation*}
\operatorname{Cmt}\left(\sigma \mid \boldsymbol{a}_{\delta}{ }^{*}\right)=A^{\Gamma_{\delta}} \tag{C.5}
\end{equation*}
$$

where $\Gamma_{\delta} \in Z_{m}^{d \times d}$ is the coefficient matrix of polynomials $1, \delta, \delta^{2}, \ldots, \delta^{d-1}$ in S :

$$
\left[\begin{array}{c}
1 \tag{C.6}\\
\delta \\
\vdots \\
\delta^{t-1}
\end{array}\right]=\Gamma_{\delta}\left[\begin{array}{c}
1 \\
X \\
\vdots \\
X^{t-1}
\end{array}\right] \bmod f(X)
$$

In summary, if the eigenvalue relation over Z_{m} is defined as:

$$
\begin{equation*}
\operatorname{SEVR}(\sigma \mid A, \boldsymbol{u}, \lambda ; \widehat{\mathbf{A}, \boldsymbol{\gamma})}: \tag{C.7}
\end{equation*}
$$

$$
A=\operatorname{Cmt}(\sigma \mid \mathbf{A} ; \boldsymbol{\gamma}) \wedge \mathbf{A} \boldsymbol{u}=\lambda \boldsymbol{u}
$$

where $\mathbf{A} \in Z_{m}^{n \times n}, \boldsymbol{u} \in Z_{m}^{n}, \lambda \in Z_{m}$ and $\operatorname{Cmt}(\sigma \mid \mathbf{A})$ is specified by (C.4), then for independent randomness ρ, δ in E_{S} it is probabilistic-equivalent to the linear relation (C.3) over Galois ring S with witness $\boldsymbol{a}_{\delta}{ }^{*} \in \mathrm{~S}^{n t}$ which commitment is computed by (C.5) from A and the reduction soundness factor is $t+d(=n / d+d)$. The compressed ZKA protocol constructed for (C.3) has $4 \log n-2 \log d-1$ rounds, $(4 \log n-2 \log d-3) d$ G-elements and totally $6 \log n-3 \log d S$-elements in its messages, reducing the costs of vector-oriented approach by the amounts similar as indicated in table 2.

C. 2 ZKA for Linear Matrix Relation: $\mathbf{A U B}^{T}=\mathbf{C}$

Consider the linear relation over residue ring Z_{m} for matrix $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{U} \in Z_{m}^{n \times n}$ where \mathbf{U} is the witness, $n=t d$ is a power of 2 and d is the extension degree of Galois ring $\mathrm{S} \equiv$ $\operatorname{GR}(m, d)$ which value is determined by the target knowledge-error. Let

$$
\begin{gathered}
\mathbf{U}=\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{\mathrm{t}}\right], \mathbf{C}=\left[\mathbf{C}_{1}, \ldots, \mathbf{C}_{\mathrm{t}}\right] \text { with each } \mathbf{U}_{i}, \mathbf{C}_{i} \in Z_{m}^{n \times d} \\
\\
\mathbf{U}^{*} \equiv\left[\begin{array}{c}
\mathbf{U}_{1} \\
\vdots \\
\mathbf{U}_{\mathrm{t}}
\end{array}\right], \mathbf{C}^{*} \equiv\left[\begin{array}{c}
\mathbf{C}_{1} \\
\vdots \\
\mathbf{C}_{\mathrm{t}}
\end{array}\right] \in Z_{m}^{n t \times d}
\end{gathered}
$$

Both \mathbf{U}^{*} and \mathbf{C}^{*} can be regarded as the matrices with row-index $(k l)$ and columnindex h for $k=1, \ldots, n, l=1, \ldots, t, h=1, \ldots, d$:

$$
\mathrm{U}_{k l, h}^{*}=\mathrm{U}_{k,(l-1) d+h}, \mathrm{C}_{k l, h}^{*}=\mathrm{C}_{k,(l-1) d+h}
$$

By reformulating the indices, the component-wise form of the equation $\mathbf{A U B}^{\mathbf{T}}=$ \mathbf{C} can be represented as:

$$
\begin{align*}
\mathrm{C}_{i,(j-1) d+q}= & \sum_{k=1}^{n} \sum_{l=1}^{t} \sum_{h=1}^{d} \mathrm{~A}_{i k} \mathrm{~B}_{(j-1) d+q,(l-1) d+h} \mathrm{U}_{k,(l-1) d+h} \\
& i=1, \ldots, n, j=1, \ldots, t, q=1, \ldots, d \\
\text { i.e., } \tilde{\mathbf{C}}= & {\left[\begin{array}{ccc}
\boldsymbol{\Omega}_{11} & \ldots & \boldsymbol{\Omega}_{1 d} \\
\vdots & & \vdots \\
\boldsymbol{\Omega}_{d 1} & \ldots & \boldsymbol{\Omega}_{d d}
\end{array}\right] \mathbf{U}^{*} \equiv \boldsymbol{\Omega}(\mathbf{A}, \mathbf{B}) \mathbf{U}^{*} } \tag{C.8}
\end{align*}
$$

where $\tilde{\mathbf{C}} \in Z_{m}^{n t d}=Z_{m}^{n^{2}}$ is a vector with component $\tilde{C}_{i j, q} \equiv \mathrm{C}_{i, j-1) d+q}$ and each $\boldsymbol{\Omega}_{q, h}$ $\in Z_{m}^{n t \times n t}$ is a matrix with elements:

$$
\begin{equation*}
\left(\mathbf{\Omega}_{q, h}\right)_{i j, k l} \equiv \mathrm{~A}_{i k} \mathbf{B}_{(j-1) d+q,(l-1) d+h} \quad i, k=1, \ldots, n ; j, l=1, \ldots, t \tag{C.9}
\end{equation*}
$$

In summary, the relation $\mathbf{A U B}{ }^{\mathbf{T}}=\mathbf{C}$ with witness $\mathbf{U} \in Z_{m}^{n \times n}$ is equivalent to the relation (C.8) with witness $\mathbf{U}^{*} \in Z_{m}^{n t \times d}$. The ZKA protocol for the former can be equivalently constructed for the latter with the method presented in sec.3.1~3.2, with performance indicated in the second column in tab.2.

C. 3 ZKA for Linear Matrix Relation: $\mathbf{A U}+\mathbf{U B}^{\mathrm{T}}=\mathbf{C}$

Consider the linear relation over residue ring Z_{m} for matrix $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{U} \in Z_{m}^{n \times n}$ where \mathbf{U} is the witness, $n=t d$ is a power of 2 and d is the extension degree of Galois ring $\mathrm{S} \equiv$ $\operatorname{GR}(m, d)$ which value is determined by the target knowledge-error.

Let \mathbf{U}^{*} and \mathbf{C}^{*} be specified as in C.2, obviously in the same way as that in C. 2 $\mathbf{A U}+\mathbf{U B}^{\mathbf{T}}=\mathbf{C}$ is equivalent to the equation

$$
\begin{equation*}
\tilde{\mathbf{C}}=\left(\boldsymbol{\Omega}\left(\mathbf{A}, \mathbf{I}_{n}\right)+\boldsymbol{\Omega}\left(\mathbf{I}_{n}, \mathbf{B}\right)\right) \mathbf{U}^{*} \tag{C.10}
\end{equation*}
$$

where $\boldsymbol{\Omega}(\mathbf{A}, \mathbf{B})$ is specified in (C.9) for any given matrix \mathbf{A} and \mathbf{B}. The ZKA protocol for $\mathbf{A U}+\mathbf{U B}^{\mathbf{T}}=\mathbf{C}$ can be equivalently constructed for(C.10) with the method presented in sec.3.1~3.2. The performance is indicated in the second column in tab.2.

C. 4 Some Special Cases

Matrix-oriented approach can have some additional advantages in some special cases. Consider two linear matrix relations $\mathbf{A U}=\mathbf{B}$ and $\mathbf{C V}=\mathbf{D}$ where $\mathbf{A}, \mathbf{C} \in Z_{m}^{l \times n}$ and \mathbf{B}, $\mathbf{D} \in Z_{m}^{d \times d}$. Of course they can be proved independently by running the proof protocols over $\operatorname{GR}(m, d)$ established in sec.3.1-3.2., each with knowledge-error $\approx p^{-d} \log n$. However, under some conditions there is more efficient way to prove $\mathbf{A U}=\mathbf{B} \wedge \mathbf{C V}=\mathbf{D}$ by running a single protocol instance with significantly lower knowledge-error $\approx p^{-2 d} \log n$ over the ring $\operatorname{GR}(m, 2 d)$.

Let $\mathbf{M} \in Z_{m}^{l \times l}$ be a non-singular matrix such that $\mathbf{C}=\mathbf{M A}$. In this case the above two linear matrix equations are equal to just one equation:

$$
\begin{equation*}
\mathbf{A W}=\mathbf{Y} \text { where } \mathbf{W}=[\mathbf{U}, \mathbf{V}] \in Z_{m}^{n \times 2 d}, \mathbf{Y}=\left[\mathbf{B}, \mathbf{M}^{-1} \mathbf{D}\right] \in Z_{m}^{l \times 2 d} \tag{C.11}
\end{equation*}
$$

If the ring $\mathrm{S}=\mathrm{GR}(m, 2 d)$ instead of $\operatorname{GR}(m, d)$ is used to generate the commitment to \mathbf{W} :

$$
\operatorname{Cmt}(\sigma \mid W)=\left[\begin{array}{ccc}
u_{1}(1) & \cdots, u_{d}(1), v_{1}(1), \ldots & v_{d}(1) \\
\vdots & \vdots & \vdots \\
u_{1}(n) & \cdots, u_{d}(n), v_{1}(n), \ldots & v_{d}(n)
\end{array}\right]
$$

The relation (C.11) can be proved via the compressed ZKA protocol with knowledge error $\approx p^{-2 d} \log n$ (approximately squaring the knowledge-error over the ring $\operatorname{GR}(m, d)$) and message complexity $\approx 2 d \log n$ (same as the total message complexity of independent running two proofs over $\operatorname{GR}(m, d)$).

In particular, if $l=d$ and there exists a matrix $\mathbf{M} \in Z_{m}^{d \times d}$ associated with some element e in the exceptional set E of $\mathrm{GR}(m, d)=\mathrm{Z}_{m}[X] /(g(X))$ such that $\mathbf{C}=\mathbf{M A}$, then the above method is feasible since in this case \mathbf{M} is always non-singular (in fact \mathbf{M}^{-1} is the matrix associated with e^{-1}).

Now we present a more explicit formulism about the condition $\mathbf{C}=\mathbf{M A}$ where \mathbf{M} is associated with some element $e(X)$ in E . Note that $\mathbf{C}=\mathbf{M A}$ in Z_{m} if and only if in $\operatorname{GR}(m, d)$:

$$
\begin{equation*}
\sum_{i=1}^{d} C_{i j} X^{i-1}=\sum_{i=1}^{d}\left(\sum_{k=1}^{d} M_{i k} a_{k j}\right) X^{i-1}=e(X) \sum_{j=1}^{d} a_{i j} X^{i-1} \bmod g(X) . j=1, \ldots, d \tag{C.12}
\end{equation*}
$$

i.e., $\quad\left(1, X, X^{2}, \ldots, X^{d-1}\right) \mathbf{C}^{\mathrm{T}}=e(X)\left(1, X, X^{2}, \ldots, X^{d-1}\right) \mathbf{A}^{\mathrm{T}} \bmod g(X)$

Let $\left(1, X, X^{2}, \ldots, X^{d-1}\right) \mathbf{C}^{\mathrm{T}}=\left(c_{1}(X), \ldots, c_{d}(X)\right)$ and $\left(1, X, X^{2}, \ldots, X^{d-1}\right) \mathbf{A}^{\mathrm{T}}=\left(a_{1}(X), \ldots, a_{d}(X)\right.$), the above condition is just the existence of some $e(X)$ in E such that

$$
\begin{equation*}
c_{j}(X)=e(X) a_{j}(X) \bmod g(X) \text { for } j=1, \ldots, d \tag{C.13}
\end{equation*}
$$

For $m=p^{s}$, let $\bar{c}_{j}(X)=c_{j}(X) \bmod p, \bar{a}_{j}(X)=a_{j}(X) \bmod p$. Since $\operatorname{GR}(m, d) /(p)$ is isomorphic to $\mathrm{EU}\{0\}$ and also isomorphic to Galois field $F_{p^{d}}$ (Fact 2 in sec.2.3), $\overline{\mathrm{c}}_{j}(X)$ and $\bar{a}_{j}(X)$ are polynomials over the field F_{p}. If (C.13) holds in $\operatorname{GR}(m, d)$ then obviously it also holds in Galois field $F_{p^{d}}$, i.e., as polynomials over F_{p} :

$$
\begin{equation*}
\overline{\mathrm{c}}_{j}(X)=\bar{e}(X) \bar{a}_{j}(X) \text { for all } j=1, \ldots, d \tag{C.14}
\end{equation*}
$$

On the other hand, it can be proved by Hensel's lemma (fact 4 in sec.2.3) that (C.14) implies (C.13) and $e(X)$ can be efficiently computed for properly large d.

In summary, in order to check the condition that there exists a matrix $\mathbf{M} \in Z_{m}^{d \times d}$ associated with some e in the exceptional set E of ring $\operatorname{GR}(m, d)$ such that $\mathbf{C}=\mathbf{M A}$, it is sufficient to check (C.12) modulo p.

More generally, in case that there exist $\mathbf{A} \in Z_{m}^{l \times n}$ and non-singular matrices $\mathbf{M}_{k} \in Z_{m}^{l \times l}, k=1, \ldots, q$ such that $\mathbf{A}_{k}=\mathbf{M}_{k} \mathbf{A}$ for each k, then k linear matrix equations

$$
\Lambda_{k=1}^{q} \mathbf{A}_{\boldsymbol{k}} \mathbf{U}_{k}=\mathbf{B}_{k}
$$

can be equivalently proved for just one linear equation

$$
\mathbf{A W}=\mathbf{Y} \text { where } \mathbf{W}=\left[\mathbf{U}_{1}, \ldots, \mathbf{U}_{q}\right] \in Z_{m}^{n \times q d}, \mathbf{Y}=\left[\mathbf{M}_{1}{ }^{-1} \mathbf{B}_{1}, \ldots, \mathbf{M}_{q}{ }^{-1} \mathbf{B}_{q}\right] \in Z_{m}^{l \times q d}
$$

over the ring $\operatorname{GR}(m, q d)$ with the commitment to \mathbf{W} :

$$
\operatorname{Cmt}(\sigma \mid \boldsymbol{W})=\left[\begin{array}{ccc}
c m t_{\sigma}\left(u_{1,1}(1),\right. & \cdots, u_{1, d}(1), \ldots, u_{q, 1}(1), \ldots & \left.u_{q, d}(1)\right) \\
\vdots & \cdot & \vdots \\
c m t_{\sigma}\left(u_{1,1}(n),\right. & \cdots, u_{1, d}(n), \ldots, u_{q, 1}(n), \ldots & \left.u_{q, d}(n)\right)
\end{array}\right]
$$

The proof has knowledge error $\approx p^{-q d} \log n$ (approximately q-th power of the knowledge-error over the ring $\operatorname{GR}(m, d)$) and message complexity $\approx q d \log n$ (same as the total message complexity of running q independent proofs over $\operatorname{GR}(m, d)$). The number of G-elements for commitment is $d q$.

[^0]: ${ }^{1}$ Each g_{i} is the m-th power of some element in G , as a result the commitment to any message is always in G^{m} (except for a random factor -1 in case of even m) [16].

[^1]: ${ }^{2}$ For simplicity, here and in the following arguments we always omit the long expressions for random objects which can be easily derived from basic formulas in sec.3.1 in [16].

[^2]: ${ }^{3}$ Formally our construction works for any d, however, for $d \sim \log n$ the protocol constructed by both ours and [16]'s approach will have message complexity $\mathrm{O}\left(\log ^{2} n\right)$ rather than $\mathrm{O}(\log n)$.

[^3]: ${ }^{4}$ By (2.2), the commitment to a \boldsymbol{u} in S^{n} is formally comprised of d elements in G, however, for u in $\mathrm{Z}_{m}{ }^{n}$ all components are 1 in G except for the first component, so actually only 1 nontrivial G-element is needed for a commitment to \boldsymbol{u}. See also sec. 3 in [16].

[^4]: 5 For notation simplification we omit the long expressions to compute the randomness β_{1} and β_{2}, which can be easily derived from the formulas in sec. 2 and 3 in [16].

