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Abstract   Various matrix relations widely appeared in data-intensive computa-

tions, as a result their zero-knowledge proofs/arguments (ZKP/ZKA) are natu-

rally required in large-scale private computing applications.  

In the first part of this paper, we concretely establish efficient zero-knowledge 

arguments for linear matrix relation AU = B and bilinear relation U
T
QV = Y 

over the residue ring Zm with logarithmic message complexity. We take a direct, 

matrix-oriented (rather than vector-oriented in usual) approach to such estab-

lishments on basis of the elegant commitment scheme over finite ring recently 

established by Attema et al[16]. The constructed protocols are public-coin and 

in c.r.s paradigm (c.r.s used only as the public-key of the commitment scheme), 

suitable for any size matrices and significantly outperform the protocols con-

structed in usual approach with smaller-sized c.r.s.(e.g., decreased by a factor of 

d for linear and n2d for bilinear relation where d is the extension degree of Gal-

ois ring and n is the order of square witness), fewer rounds (decreased by a frac-

tion logd/logn for linear and >1/2 for bilinear relation) and lower message com-

plexity (e.g., number of ring elements decreased by a fraction logd/logn for lin-

ear and >1/6 for bilinear relation) for large-size squares. The on-line computa-

tional complexity is almost the same in both approaches.  

In the second part, on basis of the simulation-sound tag-based trapdoor com-

mitment schemes we establish a general compiler to transform any public coin 

proof/argument protocol into the one which is concurrently non-malleable with 

unchanged number of rounds, properly increased message and computational 

complexity. Such enhanced protocols, e.g., the versions compiled from those 

constructed in the first part of this work, can run in parallel environment while 

keeping all their security properties, particularly resisting man-in-the-middle at-

tacks.  

Keywords: Zero-Knowledge, Linear Matrix Equation, Bilinear Matrix Equation, ∑-

Protocol, Concurrent Nom-malleability, Galois Ring. 

1 Introduction   

1.1 Basic Problems and Related Works      

Efficient zero-knowledge proofs for various relations are crucial techniques to support 

multiparty private computing tasks[1,2], secure distributed ledger systems[3,4,5] and  

many other cryptographic applications. In data-intensive private computation, lots of 
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data relations appear in the form of high dimensional vector or large-size matrix equa-

tions[3,4] and efficient zero-knowledge proof protocols (ZKP) with low message 

complexity are highly valuable to support these applications in complicated network 

environment.  

   Recently, some innovative techniques have been developed in [6,7] to construct 

highly efficient ZKPs for linear vector relation aT
u = b and inner product relation uT

v 

= w over finite field. The constructed ZKPs have message complexity of only O(logn) 

were n is the dimension of witness space, significantly improving previous works in 

performance. This approach was further developed in [8] to construct ZKP for quad-

ratic relation uT
Au + b

T
u = c over finite field with logarithmic message complexity 

and lots of other improvements in performance. This approach was also applied to 

constructing ZKPs with logarithmic message complexity for bilinear relations on 

groups with pairing structure [9,10] and partial-knowledge proof protocols[11]. 

     After succeeding in developing efficient ZKPs for linear vector relations over 

finite field, it is natural to establish efficient ZKPs for nonlinear relations over finite 

field and other arithmetic systems, e.g., finite rings ZM or integer ring Z.  

In the first direction, bilinear relation is the simplest non-linear relation which 

efficient ZKP construction was partially solved, e.g., [6-8] has established the proto-

cols with logarithmic message complexity in some special cases. More specifically, 

the protocols constructed in [6,7] are only for inner-product relation, and the protocols 

in [8] are only for quadratic relation with 1-rank coefficient matrix. So far with the 

author’s knowledge there is no direct work on bilinear relation uT
Qv = y with general 

Q or with witnesses not only u and v but also Q and y. These relations naturally ap-

pear in contemporary cryptographic applications. For non-linear relations, so far the 

most common and effective approach is linearization[12]. In this approach, any rela-

tion over the finite field can be equivalently transformed into a (maybe very high 

dimensional) linear relation through secrete sharing techniques. On the other hand, as 

indicated in [9], the compilation from nonlinear to linear relation comes at the price of 

losing conceptual simplicity and modularity in protocol design. Therefore, developing 

direct approach for specific non-linear relation is still useful in cryptography theory 

and applications. [9-11] are heuristic examples in this direction.  

      In the second direction, recently a ZKP with polynomial-logarithmic message 

complexity was constructed in [13] where one centric relation is a linear relation over 

the integer ring Z. [16] established a family of general and elegant commitment 

schemes for vectors over Galois ring, and the ZKP with logarithmic message com-

plexity is constructed, by generalizing techniques in [12], for linear relations over the 

ring. The ZKP for any relation over Galois ring can be also constructed via the linear-

ization approach and related techniques developed in multiparty private computation 

over the ring. However, a straightforward generalization of ZKP-construction from 

the finite field to ring does not sufficiently make use of all flexibilities provided by 

this scheme. Therefore, there are new and interesting problems for applying this new 

commitment scheme in ZKP-construction, even for linear relations.  

Contributions    Our contributions in this paper have two parts. In the first part (Sec. 

3 and 4) we concretely establish efficient zero-knowledge argument (ZKA) protocols 

for linear matrix relation AU = B and bilinear relation U
T
QV = Y over the residue 
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ring Zm with logarithmic message complexity. Zm is undoubtedly one of the most 

widely used arithmetic systems in practice. One of the main challenges in construct-

ing ZKA protocols for relations over a ring is how to ensure sufficient number of 

challenges to fulfill the necessary soundness requirements. This is elegantly achieved 

in [16] by committing over the extended ring S, which elements are polynomials of 

some finite degree d over Zm. As a result, a Zm-vector is regarded as a special S-vector 

and the ZKA protocol for a relation over Zm is simply constructed as a ZKA protocol 

for a relation over S, by generalizing techniques (e.g., amortization, compression, 

etc.) from Galois fields to Galois rings. However, in private computing applications, 

what is actually needed is to prove relations over, e.g., Zm, rather than over its exten-

sion S, so when establishing the ZKA protocol for a matrix relation this approach, by 

dealing with a matrix just as a collection of vectors, is not as efficient as desired. 

We take a more matrix-oriented approach on basis of an observation that a n-

dimensional vector over the Galois ring S can be effectively related with a Zm-matrix 

in various ways. For example, by re-arranging a large-size, n-by-td Zm-matrix U to be 

a nt-by-d matrix U*, it can be equivalently regarded as a nt-dimensional S-vector u* so 

its commitment can be always valued in Gd, i.e., its commitment size can be inde-

pendent of its total size and only determined by the targeted knowledge-error in ZKA. 

Furthermore, how to transform the original relation for matrices over Zm into an 

equivalent relation for the correspondent vectors
 over S while keeping the commit-

ment size fixed (e.g., d) or as slowly-increasing as possible is crucial to make use of 

these observations. This is simple in linear case but technically involved in non-linear 

case. Details are elaborated in sec. 3 and 4.  

        Our matrix-oriented approach to ZKA for matrix relations is able to deal with 

Zm-matrix in any size. The constructed protocols usually have the same on-line com-

putational complexity as those constructed in vector-oriented approach. It begins to 

outperform the vector-oriented approach when number of columns > log(number of 

rows) with smaller c.r.s, shorter commitments, fewer rounds and lower message com-

plexity. For example, for linear relation with the witness of n-by-n Zm-matrix, number 

of rounds can be reduced from logn to logn–logd and message complexity can be 

reduced from dlogn to dlogn–dlogd. In addition, the number of group elements in c.r.s 

can be reduced by a factor of d (see tab. 1 & 2 in sec.3). For bilinear matrix relation, 

the matrix-oriented approach also outperforms the general linearization approach in 

almost all aspects, e.g., the number of rounds can be reduced by > 1/2; size of c.r.s. 

reduced by > n2d times; total number of S-elements in messages reduced by > 1/6 and 

total umber of G-elements in messages asymptotically the same but decreased by 

4dlogd (n is the number of rows in the witness square, see tab. 3 & 4 in sec.4). This is 

a result of making use of specific structural features of the commitment scheme and 

matrix equations. The same approach can also deal with more complicated matrix 

relations such as eigenvalue relation Ua = λa, AUB
T = C, UT

QV + AUB
T + CVD

T = 

R(with witnesses U and V) with similar performance advantages.  

All constructed protocols in this paper are public-coin and in c.r.s paradigm, 

where the c.r.s is only used as the commitment scheme’s public key. 

        In the second part (Sec.5), on basis of the general and formal public-coin proto-

col structure, we establish a general compiler to transform any such proof/argument 
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protocol into the protocol which is concurrently non-malleable with unchanged num-

ber of rounds, properly increased message  and computational complexity (by nearly 

constant times). The innovative approach developed in [20-22] for 3-round protocols 

is generalized to multi-round public-coin protocols via some recent analysis and re-

sults in [13]. The basic tool is the simulation-sound trap-door commitment scheme 

introduced in [20-22]. Such enhanced protocols, e.g., all the enhanced versions of 

protocols in sec. 3 and 4, can run in parallel environment while keeping all its security 

properties, particularly resisting man-in-the-middle attacks.   

Some Notes on Terminologies  In second part of our work, we simply inherit the 

terminology non-malleability from [22] but it is strictly weaker than the “non-

malleability” in [20-21] which is actually equivalent to universal composability. In 

addition, “tag-based” and “simulation soundness” for the trapdoor commitment 

scheme are terminologies inherited from [20] which are similar (but not exactly the 

same) as the properties proposed in [22] in different names.  

2 Preliminaries   

Notations and Conventions  λ usually represents the security parameter, poly(λ) 

represents a polynomial in λ. A function ε(λ) is called asymptotically negligible or 

simply negligible if  lim𝜆→∞ 𝑝𝑜𝑙𝑦(𝜆)ε(λ) = 0.   

P.P.T. means Probabilistic Polynomial Time.  

u
 R
←J means a random variable u is sampled on a set J under uniform distribution. 

Two random variable ensembles {Xλ} and {Yλ} are called statistically indistin-

guishable if the differences of their distribution is negligible:   

 ∑ |𝑃[𝑋𝜆 = 𝑢] − 𝑃[𝑌𝜆 = 𝑢]|𝑢  ≤ ε(λ)  

{Xλ} and {Yλ} are called computationally indistinguishable if for any P.P.T. algo-

rithm A the following inequality holds where the function ε(λ) is negligible.  

|P[A(Xλ)=1] – P[A(Yλ)=1]| ≤ ε(λ)  

 

2.1 Zero-knowledge Proofs/Arguments      

A binary relation R is NP-class if there exists a polynomial-time algorithm A to de-

cide whether (x,w) is in R. LR ≡ { x: there exists (x,w) ∊ R}.   

In an interactive proof system (P,V) where P and V are P.P.T prover and verifier, 

σ represents the common reference string(c.r.s.), x represents the public information 

for P and V, w represents the private information only for P, i.e., the witness, 

<P(w);V>σ(x) represents the output of V valued in {0,1} after the interaction with P 

on input x and c.r.s. σ, Tr<P,V>σ(x) the trace during the interaction between P and V.  

These notations have the same meaning for any interactive algorithms A and B.  

Definition 1 (Zero-knowledge Proof)  For a relation R and some given function κ(λ), 

an interactive proof system (P,V) is defined as a zero-knowledge proof of  knowledge 

for R, ZKPoK hereafter, if it has all the following properties: 
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(1) Complete  For any (x,w)∊R there holds P[<P(w);V>σ(x) = 1] = 1.  

(2) Knowledge-sound with knowledge-error κ(λ)  There exists a polynomial q(.) 

and an algorithm Ext (called extractor) with expected polynomial time complexity, 

such that for any (maybe dishonest) prover P* which can be rewound by Ext there 

holds  

P[w*←ExtP*(σ, x, Tr<P*,V>σ(x)): (x,w*)∊R] ≥ (μ(x) - κ(|x|))/q(|x|) 

where μ(x) ≡ P[<P*;V>σ(x)=1] ≥ κ(|x|).   

(3) Zero-knowledge  There exists a P.P.T. algorithm S, called simulator, such that for 

any (maybe dishonest) verifier V*, the output of S(σ,x) and Tr<P,V*>σ(x) are statisti-

cally indistinguishable for any x∊LR.  

For knowledge soundness, there is an equivalent definition ([18] sec. 4.7) that on 

input of x and Tr<P*,V>σ(x) with <P*,V>σ(x)=1 and Ext can rewind P*, Ext outputs a 

witness w*: (x,w*)∊R with the expected time at most q(|x|)/(μ(x)-κ(|x|)).  

If knowledge soundness only holds for P.P.T. prover P*, the proof system is 

called knowledge argument, notated by ZKAoK hereafter.   

Definition 2 (∑-Protocol and generalized ∑-Protocol)  An interactive proof system 

(P,V) for relation R is called a ∑-protocol, if it has 3 rounds with the first message 

from P to V and the second message just being a random coin from V to P independ-

ent of the session context.  

An interactive proof system (P,V) for relation R is called a generalized ∑-

protocol, if it has 2k+1 rounds with the first message from P to V and any messages 

from V to P just being random coins independent of each other and session context.  

A generalized ∑-protocol for relation R is called special honest verifier zero-

knowledge (SHVZK) if there exists a P.P.T. algorithm S such that for any verifier V*, 

the real trace Tr<P,V*>σ(x) and the output of S on input (σ,x;e1,…,ek) have the same 

distribution for any x∊LR and  independent random coins e1,…,ek .  

Definition 3 ((μ1,…, μk)-special soundness and session-tree for a generalized ∑-

Protocol)  A (μ1,…, μk)-session-tree, denoted by Tσ(x), for the proof system of rela-

tion R with c.r.s. σ is a tree in which:  

(1) Each node is associated with a message instance form P to V in the interaction 

between P and V with public information x, in particular the root is with the first 

message in the interaction.  

(2) Each edge is a random coin from V to P.  

(3) At level-i (the root being at level-1) each node α has μi edges and the random 

coin instances eα/1,…, eα/μi associated with these edges are distinct. The down-

stream node of each edge is associated with the message instance of P in response 

to the random coin.  

Each integer μi is called the soundness factor of the i-th round. 

   Obviously, each path from the root to a leaf in the tree Tσ(x) is a complete session 

instance, i.e., a trace. The number of paths in a tree Tσ(x) is μ1… μk. If the verifier V 

outputs 1 on all these paths,  the tree Tσ(x) is called accepting.  
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A generalized ∑-protocol is called (μ1,…, μk)-special sound, if there exists a 

P.P.T. algorithm (extractor) which with overwhelming probability outputs a witness 

w*: (x,w*)∊R on input of σ, x and the accepting tree Tσ(x).   

Recently [13] proved a fundamental fact that (μ1,…, μk)-soundness implies 

knowledge soundness, a general fact without imposing any restrictions on the chal-

lenge set where the random coins are sampled.  

 

2.2 Commitment Scheme      

Definition 4 (Commitment Scheme) A Commitment scheme CS ≡ (CGen, Cmt, 

Cvf) is composed of three P.P.T. algorithms with the following properties: 

(1) Complete  For any message x there holds  

P[pk←CGen(λ); (c,d)←Cmt(pk,x): Cvf(pk,c,x,d)=1]=1 

(2) Binding   There exists a negligible function ε(λ) s.t. for any P.P.T. algorithm A:  

P[pk←CGen(λ);(c,x1,x2,d1,d2)←A(pk):Cvf(pk,c,x1,d1)=1˄Cvf(pk,c,x2,d2)=1˄x1≠x2]≤ε(λ) 

(3) Hiding  For any pk generated by CGen and any messages x1, x2 in the same size, 

the variables  c1 : (c1,d1)←Cmt(pk,x1) and c2 : (c2,d2)←Cmt(pk,x2) has the same distri-

bution. 

   

2.3 Basic Facts about Galois Ring       

Formally, a Galois ring is a finite ring with multiplicative unit 1 such that all of its 

zero divisors (including 0) forms a principal ideal (p1) for some prime number p. 

         One of the most important examples for Galois ring is the residue ring Zm where 

m = ps and p is a prime number. Another important example is Zm[X]/(f(X)) where Zm 

is as before and f(X) is a monic irreducible polynomial of degree d over Zm. This ring 

is the extended ring of Zm of degree d, notated as GR(m,d) hereafter.  

    The most important facts about Galois ring useful in this paper are stated here. 

All details and proofs can be seen, e.g., in Chapter 14 of [17], particularly its theorem 

14.1, 14.6, 14.8 and lemma 14.20 and 14.29.    

Fact  1   Let S be a Galois ring of characteristic ps (i.e., ps1 = 0 and N1 ≠ 0 for any 

integer N ≠ 0 mod ps) and cardinality psd where p is a prime, s and d are positive inte-

gers. Then S is isomorphic to the ring GR(m,d) ≡ Zm[X]/(f(X)) for m = ps  and any 

irreducible polynomial f(X) of degree d over Zm.  

Fact  2    In Galois ring GR(m,d) ≡ Zm[X]/(f(X)) with m = ps:  

(1)   There exists an element ξ of order pd-1 such that  f(ξ) = 0 and f(X) is the unique  

monic polynomial of degree ≤ d over Zm with ξ as its root .  

(2)   𝑋𝑝
𝑑−1

- 1 = 0 mod f(X) and XN -1 ≠ 0 mod f(X) for 0<N<pd-1.  

(3)   GR(m,d) = Zm[ξ] ≡ {a0+a1ξ+ a2ξ
2+…+ ad-1ξ

d-1: a0, a1, a2,…,ad-1 in Zm } 

(4)   Let EGR(m,d)  ≡ {𝜉𝑖: i = 0,1,2,…, pd-2} then any u in GR(m,d) has a unique p-adic  

representation as 

u = A0 + A1p + A2p
2 + … + As-1p

s-1 
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with each Ai in EGR(m,d)∪{0}. Furthermore, u is invertible in GR(m,d) iff A0≠0. 

(4) EGR(m,d) is called the exceptional set of Galois ring G(m,d). EGR(m,d) is a cyclic 

multiplicative group of order pd-1 and is isomorphic to the multiplicative sub-

group of finite field F𝑝𝑑. ξi - ξ j is in EGR(m,d) for any i≠j, i.e., ξi - ξ j is always in-

vertible in GR(m,d).  

(5) f(X) has roots ξ, 𝜉𝑝, 𝜉𝑝
2
 ,…, 𝜉𝑝

𝑑−1
.  

Fact  3   Let S be GR(m,d) and l < pd-1, then any non-identically zero polynomial 

φ(X)∊S[X] of degree ≤ l cannot have more than l roots in the exceptional set ES.  

 Fact  4   Let S be GR(m,d) with m = ps, �̅� be S/(p) and h be a monic polynomial in 

S[X]. If there are pairwise coprime monic polynomials  𝑔1̅̅ ̅,…, 𝑔𝑟̅̅ ̅ in �̅� [X] such that h 

= 𝑔1̅̅ ̅… 𝑔𝑟̅̅ ̅ mod (p), then there exist pairwise coprime monic polynomials g1, …, gr in 

S[X] such that f = g1…gr and gi = 𝑔�̅� mod (p) for each i.  

Although the commitment schemes established in [16] is not limited to ring Zm 

or its extensions with special m, in this paper we only consider Zm and its extensions 

GR(m,d) with m = ps where p = 2 or any odd prime, the most important Galois ring 

family in applications. 

  

2.4 Vector Commitments over Galois Ring         

Attema T., et al in [16] established a family of general and elegant commitment 

schemes for vectors over any finite ring. Let S be GR(m,d) ≡ Zm[X]/(f(X)) and u be a 

n-dimensional S-vector, i.e.,  

u = [

𝑢1(𝑋)
.
.

𝑢𝑛(𝑋)

] ∈ 𝑆𝑛                                      (2.1) 

with uk(X) = u1(k)+u2(k)X+u3(k)X2 +…+ ud(k)Xd-1∈S for each k=1,…, n. Let R be the 

set on which to select the random element for hiding, then the commitment to u is an 

element in product group Gd where G  is the commitment-friendly group[16], e.g., G 

= ZN
* (for m odd) or J+(N) (for m even) with some strong RSA module N, which is 

computed by:  

Cmt(σ|u; r) = [

cmt𝜎(𝑢1(1),… , 𝑢1(𝑛); 𝑟1)
.
.

cmt𝜎(𝑢𝑑(1),… , 𝑢𝑑(𝑛); 𝑟𝑑)

] ∈ 𝐺𝑑: S
n×R

d 
→G

d      
(2.2) 

where cmtσ(w; r): 𝑍𝑚
𝑛 ×R→G is a basic commitment scheme for any n-dimensional 

Zm-vector w. A general method is provided to construct the basic scheme cmtσ(.; .) in 

[16] to ensure the properties of unconditional completeness, perfect hiding and com-
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putational binding. Specifically, given the commitment key σ ≡ [G, g, m] with g ≡ 

(g1,…, gn) being group elements1,  for w = [w1,…,wn] ∈ 𝑍𝑚
𝑛  with m odd then:  

cmtσ(w; r) = rm
g[w] ≡ 𝑟𝑚𝑔1

𝑤1 …𝑔𝑛
𝑤𝑛  where r∈R                  (2.3) 

For m even: 

cmtσ(w; r) = rm(-1)b
g[w] ≡ 𝑟𝑚(−1)𝑏𝑔1

𝑤1…𝑔𝑛
𝑤𝑛  where (b, r) ∈{0,1}×R     (2.4) 

Note that we denote  𝑔1
𝑤1…𝑔𝑛

𝑤𝑛 as g[w], 𝑔1
𝑒…𝑔𝑛

𝑒 as g[e] to simplify the expressions.  

         Besides security properties, homomorphism is also crucial for these commit-

ment scheme’s applications. It is straightforward to show that (2.3) and (2.4) have the 

usual homomorphism properties required for a commitment. Furthermore, scheme 

Cmt(σ|.;.): Sn×Rd → Gd  has a algebraic property useful in protocol construction. 

Lemma 1   Let e be in Galois ring S=GR(m,d)≡Zm[X]/(f(X)) and Me∈ 𝑍𝑚
𝑑×𝑑   be its 

associated matrix, i.e., for any  

u = u1+u2X+u3X
2 +…+ udX

d-1∈S 

there holds  

eu = ∑ (∑ 𝑀𝑒
𝑑
𝑗=1 (𝑖, 𝑗)𝑢𝑗)𝑋

𝑖−1𝑑
𝑖=1  mod f(X)                        (2.5) 

Also let  

Cmt(σ|u; r) = [

𝐶1
.
.
𝐶𝑑

] ∈ 𝑆𝑑 

and u be the S-vector in (2.1), then    

Cmt(σ|eu; s) = 

[
 
 
 
 ∏ 𝐶𝑗

𝑀𝑒(1,𝑗)𝑑
𝑗=1  

.

.

∏ 𝐶𝑗
𝑀𝑒(𝑑,𝑗)𝑑

𝑗=1 ]
 
 
 
 

                               (2.6) 

where s can be efficiently computed from u, r, e2 and is uniformly distributed if r or e 

are uniformly distributed. Equality (2.6) is denoted as Cmt(σ|eu;s) = Cmt(σ|u; s)e.  

Proof   For each k =1,…, n let  

uk = ∑ 𝑢𝑗
𝑑
𝑗=1 (𝑘)𝑋𝑗−1 

so by (2.5) one has  euk =  ∑ (∑ 𝑀𝑒
𝑑
𝑗=1 (𝑖, 𝑗)𝑢𝑗(𝑘))𝑋

𝑖−1𝑑
𝑖=1  mod f(X), hence  

                                                        
1    Each gi is the m-th power of some element in G, as a result the commitment to any message 

is always in Gm(except for a random factor -1 in case of even m) [16].  
2   For simplicity, here and in the following arguments we always omit the long expressions for 

random objects  which can be easily derived from basic formulas in sec.3.1 in [16].  
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eu = 

[
 
 
 
∑ (∑ 𝑀𝑒

𝑑
𝑗=1 (𝑖, 𝑗)𝑢𝑗(1))𝑋

𝑖−1𝑑
𝑖=1

.

.
∑ (∑ 𝑀𝑒

𝑑
𝑗=1 (𝑖, 𝑗)𝑢𝑗(𝑛))𝑋

𝑖−1𝑑
𝑖=1 ]

 
 
 

  

= 

[
 
 
 
∑ 𝑀𝑒(1, 𝑗)𝑢𝑗(1), …… , ∑ 𝑀𝑒(𝑑, 𝑗)𝑢𝑗(1)

𝑑
𝑗=1

𝑑
𝑗=1

.

.
∑ 𝑀𝑒(1, 𝑗)𝑢𝑗(𝑛), …… ,
𝑑
𝑗=1 ∑ 𝑀𝑒(𝑑, 𝑗)𝑢𝑗(𝑛)

𝑑
𝑗=1 ]

 
 
 
[

1
𝑋
.

𝑋𝑑−1

]    

    = [
𝑢1(1) ⋯ 𝑢𝑑(1)
⋮ ⋱ ⋮

𝑢1(𝑛) ⋯ 𝑢𝑑(𝑛)
] [
𝑀𝑒(1,1) ⋯ 𝑀𝑒(𝑑, 1)
⋮ ⋱ ⋮

𝑀𝑒(1,𝑑) ⋯ 𝑀𝑒(𝑑, 𝑑)
] [

1
𝑋
.

𝑋𝑑−1

] = W[

1
𝑋
.

𝑋𝑑−1

] mod f(X) 

where the Zm-matrix W = U𝐌𝑒
𝐓 = [u1,…,ud]𝐌𝑒

𝐓 ≡ [w1,…,wd] with column vectors wk: 

wk = ∑ 𝑀𝑒
𝑑
𝑗=1 (𝑘, 𝑗)uj    k=1,…, d 

By commitment scheme cmtσ’s homomorphism property, the k-th component of 

Cmt(σ|eu) is (for simplicity we omit all random numbers’ expressions):  

        Cmt(σ|eu)k = cmtσ(wk) = cmtσ(∑ 𝑀𝑒
𝑑
𝑗=1 (𝑘, 𝑗)uj) = ∏ 𝑐𝑚𝑡𝜎

𝑑
𝑗=1 (𝒖𝒋)

𝑀𝑒(𝑘,𝑗)  

i.e.,  Cmt(σ|eu)k = ∏ 𝐶𝑚𝑡𝑑
𝑗=1 (𝜎|𝒖)𝑗

𝑀𝑒(𝑘,𝑗) 

which proves (2.6).  

Remark 1  This result was basically established in [16] and lemma 2.1 presents it in a 

more explicit formulism (2.6). Furthermore, when the commitment (2.2) to a S-vector 

u in (2.1) is equivalently regarded as a commitment to a Zm-matrix 

U = [
𝑢1(1) ⋯ 𝑢𝑑(1)
⋮ ⋱ ⋮

𝑢1(𝑛) ⋯ 𝑢𝑑(𝑛)
] ∈ 𝑍𝑚

𝑛×𝑑 

and denoted by Cmt(σ|U), then (2.6) implies 

                                                Cmt(σ|U𝐌𝑒
𝐓) = Cmt(σ|U)e                                      (2.7)  

This view of equalizing S-vectors and Zm-matrices is useful in the following work.  

 

2.5 Probabilistic Equivalence Reduction       

Two relations R(α|x;u) and S(β|y;v) are called probabilistically equivalent with each 

other if there exists negligible functions ε1(λ) and ε2(λ) such that   

P[ R(α|x;u) | S(β|y;v)] ≥ 1- ε1(λ)  and  P[ S(β|y;v) | R(α|x;u)] ≥ 1- ε2(λ) 

This equivalence is denoted by R(α|x;u)
 P 
↔S(β|y;v). Usually one of ε1(λ) or ε2(λ) is 0, 

i.e., the reduction is deterministic in one direction but probabilistic in the other.  

       Let the reduction from R to S is deterministic, i.e., P[S(β|y;v)| R(α|x;u)]=1, while 

on the other direction it is probabilistic: P[R(α|x;u) | S(β|yρ;vρ)] ≥ 1- ε1(λ) where ρ is a 
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random variable. If there exists a P.P.T. algorithm A which can compute the witness u 

of R from at most m witnesses vρ1,…, vρm of S with overwhelming probability, we say 

this reduction has soundness factor m and denote this fact by R 
 P/𝑚 
↔  S. 

Some detailed analysis and useful examples of probabilistic reduction in zero-

knowledge proofs for relations in Galois fields can be seen in [12]. Fact 3 in sec. 2.3 

is the foundation to generalize these techniques from Galois fields to Galois rings.  

3 Efficient ZKA Protocol for Matrix Relation AU = B  

Consider the matrix equation AU = B in residue ring Zm where matrices U∊𝑍𝑚
𝑛×ℎ, 

A∊𝑍𝑚
𝑙×𝑛 and B ∊𝑍𝑚

𝑙×ℎ. Both n and h are sufficiently large and h = td for some integer t. 

The extension degree of Galois ring S over Zm is d < logn 3 and is determined by p-d 

logn < the targeted knowledge error. Matrix U is private (witness) while A and B are 

public.   

 

3.1 Basics    

To present the main idea explicitly, let’s consider the case t =1 at first, i.e., AU = B in 

residue ring Zm where matrices U ∊𝑍𝑚
𝑛×𝑑, A∊𝑍𝑚

𝑙×𝑛 and B ∊𝑍𝑚
𝑙×𝑑. There is no perfor-

mance advantage in this case in comparison with the standard, vector-oriented ap-

proach. The objective of this section is to present the main ideas and techniques in our 

matrix-oriented approach. 

   In order to construct an efficient proof protocol with commitment to Zm-matrix 

U, the first step is to find some relation over S which is equivalent to the original 

linear matrix relation over Zm.  

For S ≡ Zm[X]/(f(X)) = GR(m,d) with degree-d irreducible monic polynomial f(X) 

and matrix A ∊𝑍𝑚
𝑙×𝑛, define a S-linear operator:  

LA: Sn → Sl: LA(u)i ≡ ∑ 𝑎𝑖𝑘
𝑛
𝑘=1 𝑢𝑘(𝑋) mod f(X), i = 1,…, l         (3.1) 

where uk(X)∊S is the k-th component of vector u in Sn. 

For the Zm-matrices  

U = [
𝑢1(1) ⋯ 𝑢𝑑(1)
⋮ ⋱ ⋮

𝑢1(𝑛) ⋯ 𝑢𝑑(𝑛)
] ,   B = [

𝑏1(1) ⋯ 𝑏𝑑(1)
⋮ ⋱ ⋮

𝑏1(𝑙) ⋯ 𝑏𝑑(𝑙)
]          (3.2) 

and each i = 1,…, l, k = 1,…, n, let:  

bi(X) ≡  ∑ 𝑏𝑗(𝑖)
𝑑
𝑗=1 𝑋𝑗−1 = 𝑏1(𝑖) + 𝑏2(𝑖)𝑋 +⋯+ 𝑏𝑑(𝑖)𝑋

𝑑−1 

uk(X) ≡ 𝑢1(𝑘) + 𝑢2(𝑘)𝑋 +⋯+ 𝑢𝑑(𝑘)𝑋
𝑑−1    

Regard U and B as vectors with components uk(X)’s and bi(X)’s in S, the corre-

sponding S-vectors are: 

                                                        
3    Formally our construction works for any d, however, for d~logn the protocol constructed by 

both ours and [16]’s approach will have message complexity O(log2n) rather than O(logn). 



11 

                                   u = [

𝑢1(𝑋)
.
.

𝑢𝑛(𝑋)

] ∈ 𝑆𝑛,  b = [

𝑏1(𝑋)
.
.

𝑏𝑙(𝑋)

] ∈ 𝑆𝑙                        (3.3) 

This correspondence is very useful and can be transformed by:  

u = U 

[
 
 
 
 
1
𝑋
𝑋2

.
𝑋𝑑−1]

 
 
 
 

,  b = B 

[
 
 
 
 
1
𝑋
𝑋2

.
𝑋𝑑−1]

 
 
 
 

                                     (3.4) 

Then for the S-vector u corresponding to Zm-matrix U in (3.2) one has, for each i:  

LA(u)i = ∑ 𝑎𝑖𝑘
𝑛
𝑘=1 𝑢𝑘(𝑋) = ∑ (∑ 𝑎𝑖𝑘

𝑛
𝑘=1 𝑢𝑗

𝑑
𝑗=1 (𝑘))𝑋𝑗−1 mod f(X)  

As a result, it’s easy to show the fact that:   

LA(u) = b over S  

              if and only if ∑ 𝑎𝑖𝑘𝑢𝑗
𝑛
𝑘=1 (𝑘) = bj(i) for all i, j, i.e., AU = B over Zm      (3.5) 

        Based on the fact (3.5), the problem of constructing a ZKA protocol for a linear 

matrix relation over Zm can be transformed into a problem of constructing a ZKA 

protocol for a linear relation over Galois ring S. For this purpose, we define a formal 

linear relation over S. 

Let Galois ring S ≡ GR(m,d), let σ be the public key of the S-vector commitment 

scheme and be used as c.r.s. of the proof protocol. The commitment is valued in prod-

uct group Gd where G is commitment-friendly. The linear relation SLR on space Sn is 

defined as(all variables in the frame stand for witnesses):    

SLR(σ| U, b, A; r, u)):                                       (3.6) 

U = Cmt(σ|u; r) ˄ LA(u) = b  

where LA is defined in (3.1) with A∊𝑍𝑚
𝑙×𝑛, b∊𝑆𝑙 ; witnesses u is a n-dimensional S-

vector, r is a d-dimensional random vector with components in set R.    

   In the above formulation, the commitment to S-vector u  

U=Cmt(σ|u;r)=Cmt(σ|[
𝑢1(1) ⋯ 𝑢𝑑(1)
⋮ ⋱ ⋮

𝑢1(𝑛) ⋯ 𝑢𝑑(𝑛)
], [

𝑟1
.
.
𝑟𝑑

])=[

cmt𝜎(𝑢1(1),… , 𝑢1(𝑛); 𝑟1)
.
.

cmt𝜎(𝑢𝑑(1),… , 𝑢𝑑(𝑛); 𝑟𝑑)

] 

can be reasonably regarded as the commitment to Zm-matrix U, so also notated as  

Cmt(σ|U; r). All these basics are summarized in theorem 1 which is the starting point 

to construct ZKA protocol for linear matrix relation in Zm . 

Theorem 1   The linear matrix relation over Zm :  

MLR(σ| U, B, A; r, U ): 
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U = Cmt(σ|U;r) ˄ AU = B                                       (3.7) 

with U∊𝑍𝑚
𝑛×𝑑 (witness), A∊𝑍𝑚

𝑙×𝑛 ,  B∊𝑍𝑚
𝑙×𝑑  is equivalent to the linear relation over 

Galois ring S = GR(m,d) = Zm[X]/(f(X)):  

SLR(σ| V, b, LA; r, u  ):   

V = Cmt(σ|u;r) ˄ LA(u) = b                                        (3.8) 

where u∊Sn(witness), LA is the linear operator defined in (3.1), bi=∑ 𝑏𝑗
𝑑
𝑗=1 (𝑖)𝑋𝑗−1 

and V = U.  These two relations’ witnesses have the simple correspondence   

U ≅ u  

where ≅ means that n-dimensional S-vectors u is equivalently regarded as a n-by-d 

matrix in Zm (see (3.2)~(3.4).  

 

3.2 Compressed Protocol with Logarithmic Message Complexity     

S-linear relation SLR in (3.8) is the starting point to construct the efficient proof pro-

tocol for linear Zm-matrix relation MLR in (3.7). However, LA(u) = b in (3.8) is actu-

ally a system of l linear equations in S. For the sake of efficiency, this equation sys-

tem can be further reduced to just one linear equation via standard probabilistic 

equivalence reduction techniques.  

Define a polynomial φ(T) as 

φ(T) ≡ ∑ (LA(𝒖)𝑖 − 𝑏𝑖)
𝑙
i=1 𝑇𝑖−1 ∈ S[T]                            (3.9) 

       Let  ρ be randomly sampled from the exceptional set ES in ring S. If there exists a 

u∊Sn  such that LA(u) = b,  i.e., LA(u)i = bi for each i = 1,…, l, then 

∑ (LA(𝒖)i − 𝑏i)
𝑙
i=1 𝜌i−1  = φ(ρ) = 0  

On the other hand, if φ(ρ) = 0 for φ defined in (3.9) and ρ in ES, then ρ is a zero of 

φ(T) in ES. Since φ(T) has at most l-1 zeroes in ES, for S ≡ GR(m,d), m = ps and l < pd 

one has the conclusion that φ(T) ≡ 0 with probability > 1 – lp-d. Since φ(T) ≡ 0 implies 

LA(u) = b, we have got the following result: 

Theorem 2  Linear relation SLR(σ|V, b, LA; r, u) in (3.8) is probabilistically equiva-

lent to the linear relation (3.10) with soundness factor l:  

sl-R(σ| V, b, lA,ρ; r, u ):   

V = Cmt(σ|u;r) ˄ lA,ρ(u) = bρ                                    (3.10) 

where  bρ≡ ∑ 𝑏i𝜌
𝑖−1 ∈𝑙

𝑖=1  S and  the S-linear functional lA,ρ is defined as  

lA,ρ(w) ≡ ∑ ∑ 𝑎𝑖𝑘
𝑛
𝑘=1 𝑤𝑘

𝑙
𝑖=1 𝜌𝑖−1: Sn → S  

        The efficient protocol for linear Zm-matrix relation (3.7) can now be constructed 

equivalently for the simple S-linear relation (3.10), via compressed techniques 

[6,7,12]. In fact, [16] has presented such a protocol framework with O(logn) message 
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complexity and provided detailed analysis about its completeness, zero-knowledge 

and knowledge soundness properties so we don’t repeat it here.  

 

3.3 Vector-oriented Approach  and Comparisons     

According to the basic result in [16], for n = 2k the compressed protocol for matrix 

relation AU = B in Zm is 2k+1 round, complete, (2,3,…,3)-special sound henceforth 

knowledge sound with knowledge error ≤ kp-d and total message complexity O(dk). 

         A standard, vector-oriented approach to constructing the efficient protocol for 

AU = B is the amortization method.  Let U = [u1,…,ud] and B= [b1,…,bd] where col-

umns ui ∈ 𝑍𝑚
𝑛 , bi ∈ 𝑍𝑚

𝑙 , then AU = B is a system of d linear equations Aui = bi. For 

any randomness ρ in ES, it is equivalently reduced to a single vector equation:  

Auρ = bρ where uρ = ∑ 𝒖𝒊
𝒅
𝒊=𝟏 𝜌𝑖−1 ∈ 𝑆𝑛,  bρ =  ∑ 𝒃𝒊

𝒅
𝒊=𝟏 𝜌𝑖−1 ∈ 𝑆𝑙  

and furthermore, by left-multiplying the row-vector (1, δ, δ2,…, δl-1) for an independ-

ent randomness δ in ES on both sides, the above equality is equivalent to a scalar 

equation in S:  

a(δ)T
uρ = bρ,δ                                              (3.11) 

where a(δ)T = (1, δ, δ2,…, δl-1)A and bρ,δ = (1, δ, δ2,…, δl-1)bρ. In this way the linear 

matrix relation AU = B in Zm is (probabilistically) equivalent to the relation (3.11) 

with witness uρ. If all Zm-vectors ui’s have been individually committed to, then the 

commitment to uρ can be computed by (see (2.6)): 

Cmt(σ|uρ) =  ∏ 𝐶𝑚𝑡(𝜎|𝒖𝑖)
𝜌𝑖−1𝑑

𝑖=1                            (3.12) 

         Here we can see one of the main differences between our (matrix-oriented) ap-

proach and the standard (vector-oriented) one:  if a private computing task is vector-

oriented and each Zm-vector has to be committed individually, then the standard ap-

proach works well and needs totally d G-elements for commitments4 and some addi-

tional computations like (3.12); however, if all Zm-vectors can be committed in a 

batch or the computation is naturally matrix-oriented instead of just dealing with “a 

collection of vectors”, then our approach works well. The total number of G-elements 

needed for commitments to U is also d.   

It’s easy to see that in this case these two approaches also have the same message 

complexity and the same on-line computational complexity. In summary, there are no 

significant differences in performance for t =1. 

However, in case of t > 1 the standard approach either (by regarding matrix U 

simply as a collection of td n-dimensional Zm-vectors and committing to these vectors 

individually) needs totally td G-elements for commitments and n G-elements in c.r.s., 

or (by regarding U as a ntd-dimensional Zm-vector) needs 1 G-elements for commit-

ments and ntd G-elements in c.r.s. On the other hand, by carefully making use of the 

                                                        
4   By (2.2), the commitment to a u in Sn is formally comprised of d elements in G, however, for 

u in Zm
n all components are 1 in G except for the first component, so actually only 1 nontriv-

ial G-element is needed for a commitment to u. See also sec.3 in [16].  
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commitment scheme, the matrix-oriented approach can implement the protocol with 

proper number of G-elements in both commitments and c.r.s while improving the 

performance.   

 

3.4 Matrix-oriented Construction        

Consider t = 2, i.e., the equation AU = B with A∊𝑍𝑚
𝑙×𝑛 ,  𝑍𝑚

𝑛×2𝑑 ∋U ≡ [U1,U2] with 

each Ui ∊𝑍𝑚
𝑛×𝑑; 𝑍𝑚

𝑙×2𝑑 ∋B ≡ [B1,B2] with each Bi ∊𝑍𝑚
𝑙×𝑑 and:  

U1 = [
𝑢1(1) ⋯ 𝑢𝑑(1)
⋮ ⋱ ⋮

𝑢1(𝑛) ⋯ 𝑢𝑑(𝑛)
],   U2 = [

𝑣1(1) ⋯ 𝑣𝑑(1)
⋮ ⋱ ⋮

𝑣1(𝑛) ⋯ 𝑣𝑑(𝑛)
]  

In this case we take g of 2n elements in G for committing to U, i.e., let σ ≡ [G, g, 

m] with g ≡ (g1,…, g2n) (see (2.3) or (2.4)). Since the equation A[U1,U2] = [B1,B2] is 

equivalent to AUi = Bi, i=1,2, i.e.,  

[𝑨 𝑶
𝑶 𝑨

] [
𝑼1
𝑼2
] =  [

𝑩1
𝑩2
]    i.e., A*

U
* = B*                         (3.13) 

where A*𝜖𝑍𝑚
2𝑙×2𝑛 and U* 𝜖𝑍𝑚

2𝑛×𝑑 are the matrices on the left side and B* is the matrix 

on the right side. If committing to U* (which is actually our definition of “the com-

mitment to matrix U”) then with public key σ we have 1 commitment in Gd with its j-

th component as (uj
 and vj are the j-th column in U1 and U2):   

                                      Cmt(σ|U*)j = cmtσ([uj
T, vj

T])∈G,  j = 1,…, d                   (3.14) 

 Now the ZKA protocol construction in sec.3.1 and 3.2 can be applied to equa-

tion (3.13) which (by theorem 1 and 2) corresponding linear relation is on S2n with 

commitments (3.14). More generally, for any t > 1: 𝑍𝑚
𝑛×𝑡𝑑 ∋U≡[U1,…,Ut] and AU = B 

we can apply the efficient ZKA protocol construction to the equivalent linear relation   

 [
𝐀 . . 𝑶
. . . . . .
𝑶 . . 𝑨

] [
𝑼1
…
𝑼𝑡

] =  [
𝑩1
…
𝑩𝑡

],  U* ≡ [
𝑼1
…
𝑼𝑡

] ϵZ𝑚
𝑡𝑛×𝑑             (3.15) 

with nt group elements in c.r.s. σ and the commitments   

Cmt(σ|U*)j = cmtσ([uj
(1)T,…, uj

(t)T])∈G,  j = 1,…, d             (3.16) 

where each uj
(k) is the j-th column Zm-vector in Uk. The corresponding S-linear rela-

tion of  (3.15) is on space S
nt

.  

          Table 1 summaries the performance comparisons for different approaches (on 

basis of sec.4.4 in [16]). Note that when UϵZ𝑚
𝑛×𝑡𝑑 is regarded as a ntd-dimensional 

vector then ntd G-elements are needed in c.r.s. while when regarded as a collection of 

td n-dimensional vectors then n G-elements needed in c.r.s. Table 2 provides the spe-

cial case for square U: td = n. 

        Note that in the second sub-case in vector-oriented approach (regarding matrix U 

as a collection of td n-dimensional Zm-vectors so that each column is committed indi-

vidually) there may be too many (totally td) commitments needed, showing that this 
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sub-approach becomes infeasible when td > logn. In particular, for square U (td = n) 

the matrix-oriented approach is greatly superior to the vector-oriented one.    

 

3.5 More about Linear Matrix Relations        

Some ZKA constructions via the matrix-oriented approach for more complicated 

linear matrix relations over Zm are presented in Appendix C. All these constructions 

outperform the vector-oriented approach similarly as demonstrated in table 1 and 2. 

These examples include eigenvalue relation Au = λu with witness A, AU+UB
T = C, 

AUB
T = C and the more general linear matrix equation A1UA2

T+B1UB2
T = C with 

witness U. All these relations can be equivalently reduced to the form of (3.7).  

Table 1. Performance of different approaches to constructing ZKA for linear matrix relation 

 Vector-oriented (e.g., [12][16]) Matrix-oriented (ours) 

 Both with targeted knowledge error ≤ p-dlogn and  UϵZ𝑚
𝑛×𝑡𝑑 

number of G-elements  

in c.r.s. 
①ntd or ②n  nt  

number of G-elements  

for commitment. 

①:   1 

②:   td  
d  

number of rounds 
①:   2logn + 2logt + 2logd – 1 

②:   2logt + 2logd – 1  
2logn + 2logt – 1  

message complexity 

①:   (2log(ntd)-3)d G-element  

1+2log(ntd) S-elements  

log(ntd) – 1 ES-element  

②:   (2logn–3)d G-element  

1+2logn S-elements  

logn – 1 ES-element  

(2log(nt)–3)d G-element. 

1+2log(nt) S-elements 

log(nt) – 1 ES-element 

 

Table 2. Performance of different approaches to constructing ZKA for linear matrix relation 

 Vector-oriented (e.g., [12][16]) Matrix-oriented (ours) 

 Both with targeted knowledge error ≤ p-dlogn and  UϵZ𝑚
𝑛×𝑛 

number of G-elements in c.r.s. ① n2 or ②n  n2/d  

number of G-elements  

for commitment. 

①:   1 

②:   n  
d  

number of rounds 
①:   4logn  – 1 

②:   2logn – 1  
4logn – 2logd – 1  

message complexity 

①:   (4logn – 3)d G-element 

1+4logn S-elements 

2logn – 1 ES-element 

②:   (2logn-3)d G-element  

1+2logn S-elements 

logn – 1 ES-element 

(4logn–2logd–3)d  

G-element; 

1+4logn–2logd 

S-elements; 

2logn – logd – 1  

ES-element 
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4 Efficient ZKA Protocol for Matrix Relation U
T
QV = Y  

Consider the matrix bilinear equation  

U
T
QV = Y                                                   (4.1) 

in residue ring Zm where matrices U, V∈ 𝑍𝑚
𝑛×𝑡𝑑, Q ∈ 𝑍𝑚

𝑛×𝑛 and diagonal, Y∈ 𝑍𝑚
𝑡𝑑×𝑡𝑑. 

The extension degree of Galois ring S over Zm is d < logn and is determined by p-d 

logn < the targeted knowledge error. Furthermore matrices U and V are private (wit-

nesses) while Q and Y are public.  

    For simplicity, Q is assumed to be diagonal in this subsection. However, this as-

sumption is not essential and the non-diagonal case will be treated in sec. 4.2.   

 

4.1 Basics      

Consider t = 1 at first. If in this case the bilinear equation (4.1) is regarded as a collec-

tion of vector bilinear equations ˄𝑖,𝑗=1
𝑑  ui

T
Qvj

 = Yi,j where ui and vj
  are column vectors 

of U and V and apply the standard amortization techniques, then this relation can be 

probabilistically equivalently reduced to a bilinear relation over the ring S:  

                                           uρ
T
Qvδ = ∑ 𝑌𝑖𝑗

𝑑
𝑖,𝑗=1 𝜌𝑖−1𝛿𝑗−1                                         (4.2) 

where the independent randomness ρ, δ 
𝑅
← ES are sampled by the verifier:   

                                 uρ = ∑ 𝒖𝑖
𝑑
𝑖=1 𝜌𝑖−1,  vδ = ∑ 𝒗𝑖

𝑑
𝑖=1 𝛿 𝑖−1                                     (4.3) 

The commitments are (see (2.6) and (2.7)):  

Uρ = ∏ 𝐶𝑚𝑡(𝜎|𝒖𝑖)
𝜌𝑖−1𝑛

𝑖=1 , Vδ = ∏ 𝐶𝑚𝑡(𝜎|𝒗𝒊)
𝛿𝑖−1𝑛

𝑖=1 , i=1,…,d          (4.4) 

Totally 2d elements in G are needed for commitment(see the footnote 4 ).  

Now consider the case t =2 where 𝑍𝑚
𝑛×2𝑑 ∋U ≡ [U1,U2], V ≡ [V1,V2], each Ui and 

Vi ∊𝑍𝑚
𝑛×𝑑.  

         Note that (4.1) in this case is formulated as : 

[
𝑼𝟏
T

𝑼𝟏
T
]𝐐[V1,V2] = [

𝑌11 𝑌12
𝑌21 𝑌22

] 

where Yij’s are d-by-d blocks in Y. This equation is just ˄𝑖,𝑗=1
2  Ui

T
QVj

 = Yi,j and for 

any randomness ρ 
𝑅
← ES sampled by the verifier, it is equivalent to the following ma-

trix bilinear relation with probability > 1- 3p-d:  

                          (U1+ρU2)
T
Q(V1+ρ2

V2) = Y11+ρY21+ρ2
Y12+ρ3

Y22 ≡ Yρ                 

Also this can be reformulated in a 2n-by-2n matrix form with witness matrices in Zm: 

[U1
T, U2

T] [
𝐐 𝜌2𝐐

𝜌𝐐 𝜌3𝐐
] [
𝐕𝟏
𝐕𝟐
] = Yρ ∈ 𝑆

𝑑×𝑑                              (4.5) 

        Let U*, V*∈ Z𝑚
2𝑛×𝑑and Qρ

*∈ 𝑆2𝑛×2𝑛 be the matrices on left side of (4.5), i.e.,  
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U
* ≡ [

𝑼1
𝑼2
] =  

[
 
 
 
 
 
𝑢1,1(1),
⋮

⋯
𝑢1,𝑑(1)

⋮
𝑢1,1(𝑛) ⋱ 𝑢1,𝑑(𝑛)

𝑢2,1(1)

⋮
𝑢2,1(𝑛)

⋯

𝑢2,𝑑(1)

⋮
𝑢2,𝑑(𝑛)]

 
 
 
 
 

 , Qρ
* ≡ [

𝐐 𝜌2𝐐

𝜌𝐐 𝜌3𝐐
]  

         By applying the methods presented in the first paragraph of this section, i.e., 

(4.3)~(4.4), relation (4.5) can be reduced to a bilinear relation (4.2) over the ring S. In 

order to achieve this goal, we take 2n elements g in G for committing U* and V*, i.e., 

set σ ≡ [G, g, m] with g ≡ (g1,…, g2n) and compute the commitments to U*, V* (which 

are actually our definition of “the commitments to matrix U and V”) just as done in 

(3.14). These commitments have totally 2d G-elements and the dimension of the cor-

responding S-vectors under commitment is 2n. For example:  

Cmt(σ|U
*
) = [

𝑐𝑚𝑡𝜎(𝑢1,1(1), ⋯ , 𝑢1,1(𝑛), 𝑢2,1(1), … 𝑢2,1(𝑛))

⋮ . ⋮
𝑐𝑚𝑡𝜎(𝑢1,𝑑(1), ⋯ , 𝑢1,𝑑(𝑛), 𝑢2,𝑑(1),… 𝑢2,𝑑(𝑛))

] in G
d
 

  In general, for any t>1 where 𝑍𝑚
𝑛×𝑡𝑑 ∋U ≡ [U1,…,Ut], V ≡ [V1,…,Vt] with each 

Ui , Vi ∊𝑍𝑚
𝑛×𝑑, by the above method relation (4.1) can be probabilistic-equivalently 

reduced to the form like:  

U
*T

Qρ
*
V

* = Yρ                                                             (4.6) 

where U*, V*∈ Z𝑚
𝑡𝑛×𝑑and Qρ

*∈ 𝑆𝑡𝑛×𝑡𝑛 as:  

U
* ≡ [

𝑼1
⋮
𝑼𝑡

] =  

[
 
 
 
 
 
 
𝑢1,1(1),
⋮

𝑢1,1(𝑛)
⋯

𝑢1,𝑑(1)

⋮
𝑢1,𝑑(𝑛)

⋮ ⋱ ⋮
𝑢𝑡,1(1)

⋮
𝑢𝑡,1(𝑛)

⋯

𝑢𝑡,𝑑(1)

⋮
𝑢𝑡,𝑑(𝑛)]

 
 
 
 
 
 

 ,  Qρ
* ≡ 

[
 
 
 
 𝐐     𝜌𝒕𝐐 … 𝜌(𝒕−𝟏)𝒕𝐐

𝜌𝐐 𝜌𝒕+𝟏𝐐 … 𝜌(𝒕−𝟏)𝒕+𝟏𝐐

⋮ ⋮
𝜌𝒕−𝟏𝐐 𝜌𝟐𝒕−𝟏𝐐 …

⋮

𝜌𝒕
𝟐−𝟏𝐐 ]

 
 
 
 

 

By applying the methods presented in (4.3)~(4.4), relation (4.6) can be reduced 

to a bilinear relation (4.2) over the ring S. In order for this, we take tn elements g  in G 

for committing U* and V*, i.e., set σ ≡ [G, g, m] with g ≡ (g1,…, gnt) and compute the 

commitments to U
*
, V

*
 as done in the above. The dimension of the corresponding S-

vectors under commitment is tn, which commitments have totally 2d G-elements.   

         In order to construct the efficient protocol for bilinear relation (4.2), Q’s diago-

nality is important (see sec. 4.3). However, Qρ
*
 in (4.6) (which will be inherited in the 

bilinear relation over S) is no longer diagonal even Q is diagonal. This can be handled 

in the following way on basis of a helpful observation that Qρ
*∊𝑆𝑛𝑡×𝑛𝑡 is actually a 

tensor product as:  

Qρ
* = Δ(ρ)⨶Q                                                                          (4.7) 

where:  
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Δ(ρ) ≡ [ρ(t), ρt
ρ(t), ρ2t

ρ(t),…, ρt(t-1)
ρ(t)] ∈ 𝐸𝑆

𝑡×𝑡 

and the column vector  ρ(t)T ≡ [1, ρ, ρ2,…, ρt-1] ∈ E𝑆
𝑡 .  

Recall that ES is the exceptional set in Galois ring S = GR(m,d) with m = ps 

which is actually (with 0 added in it) isomorphic to Galois field 𝐹𝑝
𝑑. According to the 

theory on quadratic forms over arbitrary fields [24], there exists efficiently computa-

ble non-singular matrices Φρ, Ψρ∊𝐸𝑆
𝑡×𝑡  and a diagonal matrix Dρ such that :  

Δ(ρ) = Φρ
T
DρΨρ                                              (4.8) 

(the Smith canonical form decomposition). Combining (4.7), (4.8) and the well-

known identity (AB)⨶(CD) = (A⨶C)(B⨶D), one obtains the diagonalization for 

Qρ
*:  

Qρ
* =  (Φρ⨶In)T(Dρ⨶Q)(Ψρ⨶In)                                 (4.9) 

In summary, the large matrix Qρ
* can be efficiently diagonalized and the compu-

tational complexity of its diagonalization only depends on diagonalizing a special and 

relatively small-size matrix Δ(ρ), which can be pre-calculated by the verifier. In addi-

tion, it’s easy to see that Δ(ρ) is only of rank 1 so only 1 non-zero element is in its 

Smith form Dρ.  

        For notational simplicity, reformulate (4.9) as follows with diagonal DQ ∊𝐸𝑆
𝑛𝑡×𝑛𝑡:  

Qρ
* = ΦT

DQΨ  

Set new witness matrices �̅� and  �̅� over S such that �̅� = ΦU
* and �̅� = ΨV

* then by 

simple calculations one has: 

 U*T
Qρ

*
V

* =  �̅�T
DQ�̅�

   

Hence the bilinear relation (4.6) U*T
Qρ

*
V

* = Yρ  with witness Zm-matrices U* and V
* is 

probabilistically equivalent to the diagonal bilinear relation �̅�T
DQ�̅�

 = Yρ with witness 

S-matrices �̅� and �̅�:  �̅�T
DQ�̅�

  = Yρ. Left-multiply this equation by vector [1, ω, ω2,…, 

ωd-1] and right-multiply it by column vector [1, θ, θ2,…, θd-1]T for any independent 

randomness ω and θ sampled by the verifier in the exceptional set ES, one reduces it 

furthermore to a bilinear relation with nt-dimensional S-vector witness u(ω) and v(θ): 

u(ω)TDQv(θ) = ∑ 𝑌𝜌
𝑑
𝑖,𝑗=1 (𝑖, 𝑗)𝜔𝑖−1𝜃𝑗−1                                     (4.10) 

where u(ω)T = [1, ω, ω2,…, ωd-1]�̅�T and v(θ)T = [1, θ, θ2,…, θd-1]�̅�T
. The overall re-

duction from relation (4.1) to relation (4.10) is of equivalence with overwhelming 

probability (> 1– O(np-d)).  

The remaining problem is how to efficiently calculate the commitments to S-

vectors u(ω) and v(θ) from those to Zm-matrices U*
 and V*. Let �̅� = [𝒖1̅̅ ̅,…, 𝒖𝑑̅̅̅̅ ],  �̅� = 

[𝒗1̅̅ ̅,…, 𝒗𝑑̅̅̅̅ ] with columns 𝒖�̅�, 𝒗�̅�∊𝐸𝑆
𝑛𝑡, note that  

u(ω) = ∑ 𝜔𝑖−1𝑑
𝑖=1 𝒖�̅�, v(θ) = ∑ 𝜃𝑖−1𝑑

𝑖=1 𝒗�̅�                              (4.11) 

so for any public-key τ the commitments to S-vectors u(ω) and v(θ) are: 

Cmt(τ|u(ω)) = ∏ 𝐶𝑚𝑡(τ|�̅�𝑖)
𝜔𝑖−1𝑑

𝑖=1 ,  Cmt(τ|v(θ)) =  ∏ 𝐶𝑚𝑡(τ|�̅�𝑖)
𝜃𝑖−1𝑑

𝑖=1   (4.12) 
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        In order to present how to calculate, e.g., Cmt(τ|𝒖�̅�) from the commitment to U*, 

we prove the following fact.  

Lemma 2  Let 𝑆𝑛𝑡 ∋ �̅� with each component �̅� i = ∑ �̅�𝑘
𝑑
𝑘=1 (𝑖)𝑋𝑘−1 and �̅� k(i) in 

Zm[X] (recall that the ring S = GR(m,d) = Zm[X]/(f(X)), E∊𝐸𝑆
𝑛𝑡×𝑛𝑡  be any matrix over 

Es, Mij ∊𝑍𝑚
𝑑×𝑑  is the multiplicative matrix associated with the matrix element Eij (see 

lemma 2.1 in sec.2.4), then 

(i)The l-th component (an element in group G) of the commitment to w = E�̅� is:  

Cmt(σ|w)l == ∏ ∏ 𝑐𝑚𝑡𝜎
𝑑
𝑘=1

𝑛𝑡
𝑗=1 ([𝑀1𝑗(𝑙, 𝑘),… ,𝑀𝑛𝑡,𝑗(𝑙, 𝑘)])

�̅�𝑘(𝑗),  l=1,…,.d (4.13) 

(ii) For w ∊𝑍𝑚
𝑛𝑡  one furthermore has: 

Cmt(σ|w) = Cmt(σ̅|�̅�)                                         (4.14) 

where the public-key σ̅ ≡ [G, 𝑔1̅̅ ̅,…, 𝑔𝑛𝑡̅̅ ̅̅ , m] has:  

𝑔𝑗̅̅̅ ≡  cmtσ([M1j(1,1),…, Mnt, j(1,1)])                             (4.15) 

 Proof (i)  Snt∋w = E�̅�  has its i-th component as:  

wi = ∑ 𝐸𝑖𝑗
𝒏𝒕
𝒋=𝟏 𝑤𝑗̅̅̅ =  ∑ (∑ ∑ 𝑀𝑖𝑗

𝑑
𝑘=1

𝑛𝑡
𝑗=1 (𝑙, 𝑘)�̅�𝑘

𝑑
𝑙=1 (𝑗))𝑋𝑙−1, i=1,…, nt  

hence the l-th component of the commitment to �̅� is:  

Cmt(σ|w)l = cmtσ(the nt-dimensional coefficient-vector of monomial Xl-1 in w) 

            = cmtσ([∑ ∑ 𝑀1𝑗(𝑙, 𝑘)
𝑑
𝑘=1

𝑛𝑡
𝑗=1 �̅�𝑘(𝑗),…, ∑ ∑ 𝑀𝑛𝑡,𝑗(𝑙, 𝑘)

𝑑
𝑘=1

𝑛𝑡
𝑗=1 �̅�𝑘(𝑗)])  

            = ∏ ∏ 𝑐𝑚𝑡𝜎
𝑑
𝑘=1

𝑛𝑡
𝑗=1 ([𝑀1𝑗(𝑙, 𝑘), … ,𝑀𝑛𝑡,𝑗(𝑙, 𝑘)])

�̅�𝑘(𝑗),  l=1,…,.d                 

(ii) For w ∊𝑍𝑚
𝑛𝑡, the 1-st (l = 1) component in its commitment carries complete infor-

mation of the committed vector (other d-1components are randomness or simply 1 in 

G) and the value of cmtσ(.) is always in Gm
(up to a random factor -1 in case of even m) 

[16], so by separating the factor related with �̅�l in (4.13), appropriately re-arrange 

some factors to keep the equality and reduce all other factors to the random factor 

(always in a form of rm in the commitment scheme), (4.13) becomes:  

Cmt(σ|w)l = 𝑟𝑙
𝑚∏ 𝑐𝑚𝑡𝜎

𝑛𝑡
𝑗=1 ([𝑀1𝑗(1,1),… ,𝑀𝑛𝑡,𝑗(1,1)])

�̅�𝑙(𝑗)           (4.16) 

As a result, we have Cmt(σ|w) = Cmt(σ̅|�̅�) where the public-key σ̅ ≡ [G, 𝑔1̅̅ ̅,…, 𝑔𝑛𝑡̅̅ ̅̅ , 

m] with 𝑔𝑗̅̅̅ ≡  cmtσ([M1j(1,1),…, Mnt, j(1,1)]). This proves the lemma. 

Applying this lemma to column vectors of  �̅� , �̅� and U*, V*, the commitments to 

the original Zm-matrices U and V with public-key σ is just the commitments to S-

matrices �̅� and �̅� with public-key σ1̅̅ ̅, σ2̅̅ ̅ respectively(each key dependent on the ran-

domness sampled by the verifier), which can be efficiently computed by both prover 

and verifier (by (4.15), matrices Φ and Ψ respectively).  

         In summary, the matrix bilinear relation (4.1) over Zm with witness matrices in 

any size can be probabilistic-equivalently reduced to a bilinear vector relation (4.10) 

over S = GR(m,d) and both coefficient matrices are diagonal. This reduction is sum-
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marized more accurately in next theorem, which is the starting point to constructing 

ZKA protocol for bilinear matrix relation in Zm.  

Theorem 3   For Galois ring S ≡ GR(m,d) with m = ps and p being prime, let the bilinear 

matrix relation in Zm (variables in the frame are witnesses) be:  

MBLR(σ| U1,V1, Y, Q; r,t,U,V): 

U1 = Cmt(σ|U
*;r) ˄ V1 

 = Cmt(σ|V
*;t) ˄ UT

QV = Y                    (4.17) 

with c.r.s. σ being a public key of the S-vector commitment scheme, witness matrices 

𝑍𝑚
𝑛×𝑡𝑑 ∋U ≡ [U1,…,Ut], V ≡ [V1,…,Vt] with each Ui , Vi ∊𝑍𝑚

𝑛×𝑑, Q = diag(q1,…,qn) 

∊𝑍𝑚
𝑛×𝑛 and diagonal, Y∊𝑍𝑚

𝑡𝑑×𝑡𝑑 and:  

U
* ≡ [

𝑼1
⋮
𝑼𝑡

] =  

[
 
 
 
 
 
 
𝑢1,1(1),
⋮

𝑢1,1(𝑛)
⋯

𝑢1,𝑑(1)

⋮
𝑢1,𝑑(𝑛)

⋮ ⋱ ⋮
𝑢𝑡,1(1)

⋮
𝑢𝑡,1(𝑛)

⋯

𝑢𝑡,𝑑(1)

⋮
𝑢𝑡,𝑑(𝑛)]

 
 
 
 
 
 

 ,   V* ≡ [
𝑽1
⋮
𝑽𝑡

] =  

[
 
 
 
 
 
 
𝑣1,1(1),
⋮

𝑣1,1(𝑛)
⋯

𝑣1,𝑑(1)

⋮
𝑣1,𝑑(𝑛)

⋮ ⋱ ⋮
𝑣𝑡,1(1)

⋮
𝑣𝑡,1(𝑛)

⋯

𝑣𝑡,𝑑(1)

⋮
𝑣𝑡,𝑑(𝑛)]

 
 
 
 
 
 

 

then MBLR is probabilistic-equivalent with soundness factor 2d+t2 to the bilinear 

relation in Galois ring S:  

SBLR(σ̅1 , σ̅2|U2,V2, yρ(ω,θ), DQ; r,s,u(ω),v(θ) ): 

U2 = Cmt(σ̅1|u(ω); r) ˄ V2 = Cmt(σ̅2|v(θ); s) ˄ u(ω)TDQv(θ) = yρ(ω,θ)     (4.18) 

where ρ, ω, θ are sampled randomly and independently in ES by the verifier, u(ω), 

v(θ)∊Stn(witnesses) and yρ(ω,θ) are specified in relation (4.10), DQ = Dρ⨶Q is diago-

nal and specified in (4.9), σ̅1and σ̅2 specified in (4.15), U2, V2∈Gd are computed from 

U1, V1∈Gd
 by the component wise formula:  l =1, …, d 

G ∋ U2, l = ∏ 𝑈1,𝑙
𝑀(𝜔𝑖−1|𝑙,𝑗)𝑑

𝑖,𝑗=1  

G ∋ V2, l = ∏ 𝑉1,𝑙
𝑀(𝜃𝑖−1|𝑙,𝑗)𝑑

𝑖,𝑗=1  

where M(e|i,j) stands for the (i,j)-element in the multiplicative matrix Me associated 

with e in S.  

Proof   The probabilistic-equivalent reduction from relation MLBR to SLBR has been  

elaborated in the above. The computational relation between the witnesses u(ω), v(θ) 

of relation SLBR and witnesses U, V of MLBR is completely implied by specifica-

tions for (4.6), (4.9) and (4.10) from which it’s easy to derive the soundness factor of 

this reduction is 2d+t2. Finally the above formulas to compute U2, V2 from U1, V1 is 

the result of combining the formulas of (2.6), (4.12), (4.14) and (4.15) .  
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4.2 Non-diagonal Matrix Q        

In most applications, a non-diagonal coefficient matrix in bilinear form is usually 

symmetric, i.e., QT = Q. If Q’s elements are regarded as numbers in rational field Q, 

there exists (according to the general theory of quadratic forms over the field[24]) a 

matrix W∈ 𝑄𝑛×𝑛 non-singular in Q which can be efficiently computed such that  

 W
T
QW = diagonal matrix DQ   

If the above equality holds in Zm, i.e., if there exists integral matrices W and DQ 

such that g.c.d.(m, detW) = 1 and:  

W
T
QW = DQ mod m  

set new witness matrices U* and V* in Sn such that U = WU
* and V = WV

* then by 

simple calculations via the explicit commitment expressions in sec. 2.4 one obtains: 

 UT
QV = U*T

DQV
*  

              g[u] = g*[u*], g[v] = g*[v*] where g*
j = ∏ 𝑔𝑖

𝑊(𝑖,𝑗)𝑛
𝑖=1 , j=1,…,n . 

hence the commitments are invariant w.r.t. Q’s diagonalization:  

                      Cmt(σ|U,r) = Cmt(σ*|U*,r),  Cmt(σ|V,s) = Cmt(σ*|V*,s)  

where  the original c.r.s. σ = [G, g, m] and new c.r.s. σ* = [G, g*, m].         

As a result, in this case the bilinear matrix relation MBLR(σ |U,V,Y,Q; r,s,U,V)  

with c.r.s. σ and symmetric Q∈ 𝑍𝑚
𝑛×𝑛 is equivalent to a bilinear relation MBLR(σ*| U, 

V, Y, DQ; r, s, U*,V*) with c.r.s. σ* and diagonal matrix DQ. Both prover and verifier 

can compute W and g* from public information and these calculations may be done at 

initialization phase or off-line, not degrading the protocol’s online performance. 

Moreover, this equivalent transformation keeps the witness space dimension so the 

message complexity of the proof protocol is unchanged. 

 

4.3 ∑-Protocol      

On basis of the efficient equivalence between the bilinear matrix relation (4.17) in Zm  

and the bilinear relation (4.18) in S, now we construct the efficient ZKAoK protocol 

for the latter. The relation is reformulated here with simplified notations:   

SBLR(σ,τ|U,V,y,Q; r,s,u,v):   

U = Cmt(σ|u;r) ˄ V = Cmt(τ|v;s) ˄ u
T
Qv = y                     (4.19) 

where Q is a n-by-n diagonal matrix, y is an element in S; witnesses u and v are n-

dimensional S-vectors, r and s are d-dimensional random vectors with components in 

set R.  Note that in the following protocol, actually Q can be any diagonal matrix over 

S, unnecessarily limited to Zm.  
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Protocol ∑-ZKA/SBLR
   

P→V:  P samples   ρ1, ρ2 

𝑅
← R

d, x1, x2 

𝑅
←Sn at random;  

P computes:  

η1 = u
T
Qx2 + x1

T
Qv, η2 = x1

T
Qx2, K1 = Cmt(σ| x1, ρ1), K2 = Cmt(τ|x2, ρ2).  

            P sends message [K1, K2, η1, η2] to V.  

P←V: V samples e 

𝑅
←ES from the exceptional set at random and sends e to P.  

P→V: P computes z1 = eu+x1, z2 = ev+x2. 

           P computes randomness β1, β2 from u, v, r, s, e, x1, x2
5.  

           P sends message [z1, z2, β1, β2] to V. 

V:       V verifies 

K1U
e = Cmt(σ|z1; β1) ˄ K2V

e = Cmt(τ|z2; β2) ˄ z1
T
Qz2=η2+eη1+e2y     (4.20) 

Theorem 4.  The protocol ∑-ZKA/SBLR is unconditionally complete, special honest 

verifier zero-knowledge (SHVZK) and computationally 3-special-sound. 

Proof   In Appendix A. 

 

4.4 Compressed Protocol with Logarithmic Message Complexity       

In protocol ∑-ZKA/SBLR, the prover P convinces the verifier the following relation 

SBLR(σ,τ|K1U
e, K2V

e, η2+eη1+e2y, Q; β1, β2, z1, z2)             (4.21) 

by the last message [z1,z2,β1,β2]. Similar as the approach in [6][7], a dimension-
reduction transformation in the witness space is introduced to establish a recursive 

proof of (4.21). Since [z1,z2,β1,β2] perfectly hides the original witnesses, this proof is 

unnecessarily zero-knowledge.  

       In order to simplify the formulism, the following protocol NoZKP/SBLR is speci-

fied for relation (4.19) instead of (4.21), but notational correspondence is trivial. In 

case of n = 2k  where n is dimension of the witness vector space, when the third mes-

sage in protocol ∑-ZKA/SBLR is substituted with the following  protocol 

NoZKP/SBLR and recursively expanded with n←n/2 up to n = 1, a ZKAoK protocol 

with 2k+1 rounds and O(k) message complexity for relation SBLR is obtained.  

       For reading convenience, relation SBLR is reformulated here with random num-

bers r, s removed to simplify the formulism (they are not really needed for hiding 

since here the proof is unnecessarily zero-knowledge).  

SBLR(σ,τ|U,V,y,Q; u, v ):  

U = Cmt(σ|u) ˄ V = Cmt(τ|v)˄ u
T
Qv = y                                          (4.22) 

Notations for the compressed protocol:  

      Dimension of the witness vectors u and v: n = 2k.  

                                                        
5   For notational simplification we always omit the long expressions to compute the randomness β1 and β2, 

which can be easily derived from the formulas in sec. 2 and 3 in [16].   
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c.r.s σ ≡ [G, g, h, m] where the group elements g ≡ (g1,…, gn), h ≡ (h1,…, hn)are 

divided into two parts : 

gL ≡ (g1,…, gn/2),  gR ≡ (gn/2+1,…, gn), hL ≡ (h1,…, hn/2), hR ≡ (hn/2+1,…, hn).   
n-dimensional vectors are decomposed into a direct-sum of n/2-dimensional parts:  

u = uL+̇uR, v = vL+̇vR                                   (4.23) 

The n-by-n diagonal matrix Q is decomposed into submatrices as: 

Q = [
𝑸𝑳 𝑶
𝑶 𝑸𝑹

]                                          (4.24) 

where QL and QR are n/2-by-n/2 diagonal.  

Protocol NoZKA/SBLR
   

P→V:  P performs the computations in group G
d
: 

A1=Cmt(σ|uR+̇0), A2=Cmt(τ|vR+̇0), B1=Cmt(σ|0+̇uL), B2=Cmt(τ|0+̇vL) (4.25) 

P performs the computations in Galois ring S: 

C1=uR
T
QLvL+uL

T
QLvR, C2=uR

T
QRvL+uL

T
QRvR, D1=uR

T
QLvR, D2=uL

T
QRvL(4.26) 

P sends message [A1,A2,B1,B2,C1,C2,D1,D2] to V.  

P←V: V samples e 

𝑅
←ES at random and sends to P. 

V computes:  

Ue = 𝐴1
𝑒−1𝑈𝑒𝐵1

𝑒3,  Ve = 𝐴2
𝑒−1𝑉𝑒𝐵2

𝑒3                                                           (4.27) 

Qe = e-2
QL+e2

QR  and  re = C1e
-2 + C2e

2 + D1e
-4 + D2e

4                                           (4.28) 

If n = 1(in this case the message received from P is [ue, ve]) then V verifies 

Ue  = Cmt(σ| 𝒖𝑒+̇𝑒
2𝒖𝑒) ˄ Ve  = Cmt(τ|𝒗𝑒+̇𝑒

2𝒗𝑒)
6 ˄ ueQeve = y+re              (4.29) 

otherwise n is substituted with n/2, U substituted with Ue , V  with Ve,  

σ with σe = [G, gL, m], τ with τe = [G, hL, m] respectively.  

P:        On receiving the challenge e (in ES) from V, P performs:  

             Computing σe = [G, gL, m], τe = [G, hL, m] and:  

ue = euL+e-1
uR, ve = evL+e-1

vR,  Qe = e-2
QL+e2

QR 

if n = 1 then P sends [ue, ve] to V, otherwise P decomposes ue, ve and Qe ac-

cording to (4.23) and (4.24), performs computations according to (4.27) and 

(4.28), sends message to V and then substitutes n with n/2.  

Theorem 5  The protocol NoZKA/SBLR is 2k-1 round, unconditionally complete and 

computationally (5, 5,…, 5)-special-sound. 

                                                        
6   Actually Ue  = Cmt(σe|ue) and Ve  = Cmt(τe|ve) which can be verified by the explicit expres-

sions of the commitment in sec.2.4 and straightforward calculations.  
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Proof   In Appendix A.   

Remark   On basis of a general theorem proved in [13] that (μ1,…, μk)-spacial sound-

ness implies knowledge soundness, the above constructed protocol is ZKAoK.  

4.5 Performance  and Comparisons  to Linearization Approach 

There are 2n witnesses in S in the relation SBLR (4.19). For n=2k, the whole protocol 

is 2k+1 round, unconditionally complete and (3,5,5,…,5)-special sound (on basis of 

the commitment scheme’s binding property) where:  

The first message (P→V and also the first one in protocol ∑-ZKA/SBLR) is 

composed of 2d elements in group G and 2 elements in Galois ring S. 

For the 2nd,4th, 6th, …, 2kth messages (P←V), each one is composed of just 1 el-

ement in Galois ring’s exceptional set ES.  

For the 3
rd

, 5
th
, 7

th
,…, 2k-1th messages (P→V and all are messages of protocol 

NoZKP/SBLR), each one is composed of 4d elements in G and 4 elements in S.  

The 2k+1th (P→V and also the last message) is composed of 2 elements in S.  

Totally, the whole protocol needs 4dk G-elements, 5k S-elements in its commu-

nication where k = log2n.  

Currently there are no other works for matrix bilinear relation over Galois ring 

comparable, so we make a comparison between the above results and the general 

linearization approach, which compiles any non-linear arithmetic relation (circuit) 

into a linear one via secret-sharing techniques (which works originally over Galois 

fields and can be directly generalized to Galois ring, see. Sec. 6 in [12]). In the fol-

lowing tables, the performance results are derived from the results of linearization 

approach [12] and those of linear relation over Galois ring (sec.4 in [13]), while the 

performance results about our approach is from the above analysis with (including the 

costs in reduction) 3 S-elements and 1 message added, and n (dimension of S-vectors 

in (4.19)) substituted with nt (dimension of S-vectors in (4.18)).  

 In summary, by specifically making use of structural features of the commit-

ment scheme and matrix equations, the matrix-oriented approach outperforms the 

general one for bilinear  matrix relation in all aspects, e.g., in case of large-size square 

witnesses U and V, the total number of rounds and G-elements in messages are re-

duced by > 1/2; the total number of S-elements in messages is reduced by > 1/6  and 

the c.r.s is reduced by n2d times (see tab.4). On the other hand, the total number of G 

elements is asymptotically the same by decreased by 4dlogd.  

Remark   Combining the techniques in sec. 3 and sec.4, we can construct an efficient 

ZKA protocol for the more complicated hybrid relation 

MBLR
*(σ| U,V,Y,Q,A,A0,B,B0; r,s,U,V):  

U = Cmt(σ|U,r) ˄ V 
 = Cmt(σ|V,t) ˄ UT

QV = Y ˄ AU = A0 ˄ BV = B0 

with O(dlogn) message complexity.  Another useful hybrid relation is  

U
T
QV + AUB

T + CVD
T = Y 

Construction details are omitted here.  



25 

 

Table 3.  Performance of ZKA for matrix bilinear relation in different approaches 

 Linearization (e.g., [12][16]) Matrix-oriented (ours) 

 Both with targeted knowledge error ≤ p-dlogn and  U, 𝐕ϵZ𝑚
𝑛×𝑡𝑑 

number of G-elements  

in c.r.s. 
4n2t2d2 + 3 nt  

number of G-elements  

for commitment. 
d 2d  

number of rounds 2log(n2+(1+2n2)t2d2+4)+7 2+2log(nt)  

message complexity 
 2dlog(n2+(1+2n2)t2d2+4) G-element 

3log(n2+(1+2n2)t2d2+4)-1 S-elements 

4dlog(nt) G-element. 

3+5log(nt) S-elements 

 

 

 

Table 4.  Performance of ZKA for matrix bilinear relation in different approaches 

 Linearization (e.g., [12][16]) Matrix-oriented (ours) 

 Both with targeted knowledge error ≤ p-dlogn and  U, 𝐕ϵZ𝑚
𝑛×𝑛 

number of G-elements  

in c.r.s. 
4n4 + 3 n2/d  

number of G-elements  

for commitment. 
d 2d  

number of rounds 
2log(n2+(1+2n2)n2+4)+7  

≥ 8logn  
2+4logn - 2logd   

message complexity 

 2dlog(n2+(1+2n2)n2+4) ≥ 8dlogn  

G-element 

3log(n2+(1+2n2)n2+4)-1 ≥ 12logn  

S-elements 

8dlogn–4dlogd  

 G-element  

3+10logn- 5logd   

S-elements  

  

5 Concurrently Non-malleable Enhancement  

In various private computing applications, zero-knowledge proof protocols need to be 

composed in complicated running environment. However, the protocols established in 

sec.3 and 4 can only ensure security in sequential composition. The concurrent non-

malleable ZKA protocol[22] has such a property that even a dishonest prover playing 

man-in-the-middle role by concurrently interacting with multiple honest provers, it 

still cannot efficiently generate a new statement and convince the verifier without 

knowing its witness. Such property enhances zero-knowledge proof protocol’s securi-

ty in concurrent environment. [20-22] developed a general approach to compile any 

∑-protocol into a non-malleable one. In this section, we extend this method to com-

pile any 2k+1-round argument protocol into a non-malleable one with the same num-

ber of rounds and properly increased message and computational complexity.  
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5.1 Basic Tools      

One of the crucial tools needed is the tag-based simulation-sound trapdoor commit-

ment scheme. This is a trapdoor commitment scheme with input (x,t) where x is 

plaintext and t is a tag variable(usually some identity). Intuitively, its security ensures 

that an adversary cannot efficiently destroy the binding property even after collecting 

arbitrary number of commitments and related plaintexts, so its security is stronger 

than ordinary commitment schemes.   

Definition 5(Tag-based Commitment Scheme[20]) CS ≡ (CGen,Cmt,Cvf) is called 

a Tag-based Commitment Scheme if CGen, Cmt, Cvf are all P.P.T algorithms and 

have the following properties: 

(1)  Complete  For any (x,t) there holds  

P[pk←CGen(λ); (y,d)←Cmt(pk,x,t): Cvf(pk,y,x,t,d)=1] = 1 

(2)  Binding  There exists a negligible function ε(λ) s.t. for any P.P.T algorithm A:  

P[pk←CGen(λ); (y,t,x1,x2,d1,d2)←A(pk):  

Cvf(pk,y,x1,t,d1)=1 ˄ Cvf(pk,y,x2,t,d2)=1 ˄ x1≠x2] ≤ ε(λ)  

(3)  Hiding  For any pk generated by CGen, any x1, x2 in the same bit-size  and any 

tag t,  the output c1 : (c1,d1)←Cmt(pk,x1,t) and c2 : (c2,d2)←Cmt(pk,x2,t) are computa-

tionally indistinguishable.  

        In the following definition, the algorithm TCGen outputs public and private  key-

pair, i.e., (pk,sk)←CGen(λ). The symbol TCGenpk notates such a algorithm the same 

as TCGen but only outputs pk.  

Definition 6 (Tag-based Trapdoor Commitment Scheme[20]) TC ≡ (TCGen, 

TCmt, TCvf, TCFakeCmt, TCFakeDmt) is a tag-based trapdoor commitment scheme, 

if all the five algorithms are P.P.T with (TCGenpk, TCmt, TCvf) satisfying properties 

(1)~(3) in definition 5. In addition, for any (x,t) the two outputs  

(pk,x,t,y*,d*):  

(pk,sk)←TCGen(λ); (y*,δ)←TCFakeCmt(pk,sk,t); d*←TCFakeDmt(δ,y*,x,t); 

and  (pk,x,t,y,d):   

(pk,sk)←TCGen(λ); (y,d)←TCmt(pk,x,t);  

are computationally indistinguishable. 

Definition 7 (Simulation Soundness of Tag-based Trapdoor Commitment 

Scheme[20]) The scheme in definition 6 is called simulation sound if there exists a 

negligible function ε(λ) such that for any P.P.T. algorithm A:  

Adv𝑇𝐶
𝑆𝑆(𝜆) ≡ P[(pk,sk)←TCGen(λ); (y,t,x1,x2,d1,d2)←AO( . | sk)(pk):  

TCvf(pk,y,x1,t,d1)=1 ˄ TCvf(pk,y,x2,t,d2)=1 ˄ x1≠x2 ˄ t ∉ Q] ≤ ε(λ)  

where the oracle O(.|sk) with the private key sk works in the following way: 
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(1) Initialize Q to be empty.  

(2)For each query [“commit”, t]: 

O( . | sk) computes (y*,δ) = TCFakeCmt(pk,sk,t); Store (y*,t,δ); Q = Q∪{t};  

Output y*. 

(3) For each query [“decommit”, y*, x]: 

IF  some (y*,t, δ) exists in current storage 

THEN  

d*=TCFakeDmt(δ,y*,x,t); output d*; 

END 

For efficient constructions of simulation sound trapdoor commitment(SSTC 

hereafter) scheme, see[20-22].  

Another tool required for constructing the compiler is the strongly unforgeable 

one-time signature scheme, which constructions can be seen in , e.g., [19][23]. 

 

5.2 Concurrently Non-malleable ZKA protocol        

For a given interactive algorithm M, let M be a set of multiple instances of M running 

in any concurrent way.   M receives two classes of input instructions:  

        Instruction [START, id, x,w]: start a new instance of M, assign identifier id and 

input (σ, x, w) to it, where σ is the c.r.s.  

Instruction [MSG, id, m]: send message m to the instance M(id) and return the 

output of this instance.  

    Given three interactive algorithms S, A≡(A1,A2) and B, let <S, A1|A2, B)> de-

note the interactions of A1 with S and A2 with B where (A1,A2) are coordinated, any 

information obtained by A1 can be used by A2 to generate the message sent to B and 

vice versa.  

     In any interaction, a trace is defined as a sequence of messages Tr = [+m1-

m2+m3-m4…] where + and – represent the opposite message transmission directions. 

Two traces  Tr1 and Tr2 are called matched if they have the same message terms but in 

opposite directions, e.g., Tr1 = [+m1-m2+m3-m4…] and Tr2 = [-m1+m2-m3 +m4…].  

Definition 8 (Concurrent Non-Malleability of Zero Knowledge Proof 

/Argument[22]) (D,P,V,(S1,S2)) is called a concurrently non-malleable zero 

knowledge argument protocol for a relation R if all algorithms D, P, V, S1, S2 are 

P.P.T. and have the following properties: 

(1)  Completeness For σ←D(λ) and (x, w) ∊ R there holds P[<P(w); V>σ(x) = 1] = 1.  

(2)  Witness Extraction  For P.P.T algorithm P*≡(P1
*,P2

*) consider the game ExpP*(λ):  

    (σ,τ) ← S1(λ);  

(x*,Tr*,b*) ← <S*(τ), P1
*| P2

*,V>σ ;  

Q←S*(τ)’s traces during the interactions;  

IF b*= 1 ⋀ 𝑇𝑟∗𝑇𝑟∈𝑄  is unmatched with any Tr  

THEN output 1;  

ELSE output 0;  

(Tr is the trace between interactions of P1
* and S*; b* is the output of V on 

trace Tr*; unmatched means Tr* cannot be a copy of any trace appeared in 
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the interactions between P1
* and S*.) 

On each input (x,w), S*(τ) decides whether R(x,w)=1: if true then it starts an in-

stance S2(τ,σ,x) otherwise does nothing. Let  

π(P*|λ) ≡ P[ExpP*(λ) = 1]  

There exists an expected polynomial time algorithm Ext, a positive valued func-

tion κ and a negligible function ε such that, if π(P*|λ) > κ(λ) then Ext with rewind 

access to P* can compute a w* such that (x*,w*)∊R with probability ≥ π(P*|λ)-κ(λ)-ε(λ) 

where x* is the output of P* in ExpP*.   

 (3)  Zero-knowledge  For any P.P.T. algorithm V* there has the computational indis-

tinguishability  

Tr< P , V*>σ(x) 
𝐶
↔ Tr<S**(τ), V*>σ(x) 

where σ on the left side is generated by D: σ←D(λ) and σ on the right side is generat-

ed by S1: (σ,τ)←S1(λ). On each input (x,w), S** decides whether R(x,w)=1: if true then 

it starts an instance S2(τ,σ,x) otherwise does nothing. Note that S2 always has the input 

x∊LR but not w.  
 

5.3 Concurrently Non-Malleable ZKA Protocol’s Construction        

Let R(σ|x,w) be the relation with c.r.s. σ, public input x and witness w; ZKAoK/R be 

the public-coin argument protocol for R with logarithmic message complexity and 

2k+1 rounds; A, Ai, Bi and ψ be polynomial-time algorithms in the protocol.  

Protocol ZKAoK/R  

P→V:  P computes (x1,ξ1) = A(σ,x,w) and sends x1 to V;  

//The   1st session  

P←V:  V samples e1 at random and sends it to P;  

            V computes (b2,η2) = B1(σ,x1,e1);  

P→V:  P computes (x2,ξ2) = A1(ξ1,e1) and sends x2 to V;  

//2nd session  

P←V:  V samples e2 at random and sends it to P; 

            V computes (b3,η3) = B2(η2,x2,e2);  

P→V:  P computes (x3,ξ3) = A2(ξ2,e2) and sends x3 to V;  

 ………… 

// i-th session  

P←V:  V samples ei at random and sends it to P;  

            V computes (bi+1,ηi+1) = Bi(ηi,xi,ei);  

P→V:  P computes (xi+1,ξi+1) = Ai(ξi,ei) and sends xi+1 to V; 

…………. 

//The last session  

P←V:  V samples ek at random and sends it to P;  

V computes (bk+1,ηk+1) = Bk(ηk,xk,ek);  

P→V:  P computes xk+1 = Ak(ξk,ek) and sends xk+1 to V;  

 V:       V verifies ψ(σ,bk+1,xk+1,x) = 1.  
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Let SSTC ≡ (TCGen, TCmt,TCvf, TCFakeCmt, TCFakeDmt) be the simulation-

sound tag-based trapdoor commitment scheme defined in sec. 5.1;  SG ≡ (KG,Sgn,Vf) 

be the strongly unforgeable one-time signature scheme with key generator KG, sign-

ing algorithm Sgn and verification algorithm Vf; H be a collision-resistant hash func-

tion. With these basic cryptographic schemes, a new argument protocol for relation R 

is compiled from protocol ZKAoK/R with new c.r.s. σ* ≡ [σ, pk] where σ is the origi-

nal protocol’s c.r.s. and pk is the public key of scheme SSTC.  

 

Protocol CNM-ZKAoK/R 

P→V:  P computes:  (s_vk, s_sk) = KG(λ);  

(x1, ξ1) = A(σ, x, w);  

                                  (y1, d1)←TCmt(pk, x1, H(s_vk||1));  

           //Here x1 in the original protocol is committed to with H(s_vk||1) used as a tag. 

P sends message [s_vk, y1] to V;  

//1st session  

P←V:  V samples e1 at random and sends it to P; 

P→V:  P computes  (x2, ξ2) = A1(ξ1, e1); (y2, d2)←TCmt(pk, x2, H(s_vk||2));  

            P sends y2 to V; 

//2nd session  

P←V:  V samples e2 at random and sends it to P; 

P→V:  P computes (x3, ξ3) = A2(ξ2, e2);  (y3,d3)←TCmt(pk, x3, H(s_vk||3));  

            P sends y3 to V; 

//i-th session  

P←V:  V samples ei at random and sends it to P; 

P→V:  P computes (xi+1, ξi+1) = Ai(ξi, ei);  (yi+1, di+1)←TCmt(pk, xi+1, H(s_vk||i+1)); 

            P sends yi+1 to V; 

//the last session  

P←V:  V samples ek at random and sends it to P;  

P→V:  P computes xk+1 = Ak(ξk, ek);  z = (x1, d1,…, xk, dk, xk+1); 

                                u = (y1, e1,…, yk, ek);  s = Sgn(s_sk, s_vk||u||z);  

//operator “||” means joining the string  

            P sends [z,s] to V;   

V:   On receiving the last message z from P, V computes: 

(b2,η2) = B1(σ,x1,e1); (bi+1,ηi+1) = Bi(ηi,xi,ei), i=2,…,k; 

then verifies ψ(σ,bk+1,xk+1,x) = 1 ˄ Vf(s_vk, s_vk||(y1,e1,…, yk,ek)||z, s) = 1 

⋀ 𝑇𝑘
𝑖=1 Cvf(pk, yi, xi, H(s_vk||i),di) = 1  

Remark 3  As long as each yi and di is in constant-size, total message size ∑ (|𝑦𝑖| +
𝑘
𝑖=1

|𝑥𝑖| + |𝑑𝑖|)+O(1) of the new protocol will be only constant times that of the original 

protocol. Relative to the original protocol, the prover adds the workload to compute 

commitments in each round, while the verifier delays all intermediate computations to 

the last round with some additional verification computation. With efficient implemen-

tation of SSTC scheme, the total computational workload in new protocol is approxi-
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mately constant times the original. 

        About the new protocol’s properties, we have the following conclusions. 

Lemma 3  If ZKAoK/R has SHVZK property, then CNM-ZKAoK/R is zero-

knowledge in the sense of definition 8(3).  

Proof   In Appendix B. 

Lemma 4  Suppose the protocol ZKAoK/R is (μ1,…, μk)-special sound, then there 

exists an extractor Ext for protocol CNM-ZKAoK/R as specified in def.8. Let the 

event EXT be “Ext outputs a w* s.t. (x*,w*)∊R for an accepting statement x*”, |E| be 

the cardinality of the space for the verifier to sample challenges, then:  

 P[EXT] > π(P*|λ) - ∑ 𝜇𝑖
𝑘
𝑖=1 /|E| - Adv𝑇𝐶

𝑆𝑆(𝜆)∏ 𝜇𝑖
𝑘
𝑖=1  + poly(λ)Adv𝑆𝐺

𝑈𝐹(1)
(𝜆)         

(Adv𝑇𝐶
𝑆𝑆  specified in def. 7,  π(P*|λ) in def. 8) and Ext’s running time is poly(λ).  

Proof  In Appendix B.  

Remark 4  For Galois ring GR(m,d) with m = ps, we have |E| = p-d. For non-malleable 

enhanced protocols over GR(m,d) with μ = O(1) and k = O(logn),  if kμ/|E| ~ 2-λ then d 

should take the value > (λ+logkμ)/logp.  

In summary, one obtains the general result: 

Theorem  6  If ZKAoK/R is an argument protocol for relation R with special sound-

ness and SHVZK property (in terms of def. 2 and 3), then CNM-ZKAoK/R is a concur-

rently non-malleable zero knowledge argument protocol for R in terms of def. 10.  

6 Summaries and Future Works  

Since various important relations can be represented in or reduced to matrix formal-

isms, a direct approach to constructing efficient ZKA protocols for such relations are 

valuable in private computing applications. In this paper efficient ZKA protocols for 

some typical linear and bilinear matrix relations over the ring Zm are established, with 

greatly improved efficiency in communication and computational complexity, size of 

c.r.s  while keeping the size of commitments fixed (only determined by the targeted 

knowledge-error) compared with other approaches. Our matrix-oriented approach is 

suitable to Zm-matrix in any size. How to deal with non-linear matrix relations more 

complicated than the bilinear relation, matrix polynomial relation, some tensor-

product relation, etc., in this approach is worthwhile to investigate in the future.  

          In other aspect, a general compiler is constructed in the second part of this work 

to enhance any multi-round ZKA protocol to a concurrently non-malleable ZKA pro-

tocol with the same message complexity but able to resist man-in-the-middle attacks 

in parallel running environments. However, how to further enhance such protocols to 

higher security level, e.g., universal composability, is an open problem.   
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APPENDIX  A.  Proofs of Theorem 4 and 5  

Theorem 4.  The protocol ∑-ZKA/SBLR* is unconditionally complete, special honest 

verifier zero-knowledge (SHVZK) and computationally 3-special-sound.     

Proof   If P has all the witnesses r, s, u, v then:  

z1
T
Qz2 = (eu+x1)

T
Q(ev+x2) = x1

T
Qx2+e(x1

T
Qv+u

T
Qx2)+e2

u
T
Qv = η2+eη1+e2y    

Other two equalities in (4.20) can be easily confirmed by the homomorphic property 

of the commitment scheme, so the completeness is proved.  
        The protocol’s SHVZK property can be proved by constructing the following 

simulator which on input of  (σ,e) performs the computation:  

samples  η1

𝑅
←S;  β1, β2 

𝑅
←Sd and z1, z2 

𝑅
←Sn at random;  

K1 = U -eCmt(σ|z1, β1),  K2 = V -eCmt(τ|z2, β2),  η2 = z1
T
Qz2–eη1–e2y;   

output(K1, K2, η1, η2, e, z1, z2, β1, β2).  

It’s straightforward to verify that the trace output by the simulator has the same 
distribution as the real trace in the interactions between the honest prover and the 

verifier, so the SHVZK property holds.  

To prove the 3-special soundness, consider three accepting traces Tri =[K1, K2, η1, 

η2, ei, zi1, zi2, βi1, βi2] with distinct challenges e1, e2, e3 sampled from ES.   

For Tr1和 Tr2, there exist μ1 and μ2 in S which can be efficiently computed as so-

lutions to the equations: 

μ1 + μ2 = 0, e1μ1 + e2μ2 = 1                                      (A.1) 

From the equations K1U
e = Cmt(σ|z1, β1) i=1,2 in (4.20), one can get  

U = ∏ (𝐾1𝑈
𝑒𝑖)𝜇𝑖2

𝑖=1  = ∏ Cmt(σ|𝒛𝑖1, 𝜷𝑖1)
𝜇𝑖2

𝑖=1  =  Cmt(σ|u
*, r*)          (A.2) 
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where                                               u* = ∑ 𝜇𝑖
2
𝑖=1 𝒛𝑖1        

In the same way we also have  

                                V = Cmt(τ|v*, s*)  where v* = ∑ 𝜇𝑖
2
𝑖=1 𝒛𝑖2                             (A.3) 

Now we claim that there exist x1, x2 which are independent of i satisfying:   

zi1 = eiu
*
+x1,  zi2 = eiv

*
+x2, i=1,2                                    (A.4) 

Indeed, let zi1 = eiu
*
+ ξi, i=1,2 then by 

u
* = ∑ 𝜇𝑖

2
𝑖=1 𝒛𝑖1=∑ 𝜇𝑖

2
𝑖=1 (𝑒𝑖𝒖

∗ + 𝜉𝑖)  = u*∑ 𝜇𝑖
2
𝑖=1 𝑒𝑖+μ1ξ1+μ2ξ2 = u*+μ1(ξ1–ξ2)  

and μ1≠0 one gets ξ1 = ξ2 and denote this by x1. In a similar way one can confirm the 

existence of x2 satisfying (A.4).  

Substituting zi1 and zi2 in (4.20)’s equations zi1
T
Qzi2 =η2+eiη1+ei

2y  i =1,2 with the 

expressions in (A.4), after simple algebraic calculations one gets   

η2–x1
T
Qx2 + (η1–x1

T
Qv

*–u
*T

Qx2)ei + (y–u
*T

Qv
*)ei

2 = 0  i =1,2              (A.5) 

which shows that e1 and e2 are roots of the degree-2 polynomial η2–x1
T
Qx2+(η1– 

x1
T
Qv

* –u
*T

Qx2)T+ (y
*–u

*T
Qv

*)T2. This result is obtained from traces Tr1 and Tr2 with 

the resulted “witnesses”  

r
*, s*, u*, v*, x1, x2                                                                 (A.6) 

 When the same analysis is applied to traces Tr2 and Tr3, another group of “witnesses”   

r
’, s’, u’, v’, x1

’, x2
’                                                                 (A.7) 

can be obtained which also satisfy equations (A. 2)~(A.3), i.e.,  

      Cmt(σ|u
*, r*) = U = Cmt(σ|u

’, r’), Cmt(τ|v*, s*) = V = Cmt(τ|v’, s’)   

Under the binding property of the commitment scheme, these equalities imply  

u
* = u’, v* = v’ 

Note that equalities in (A.4) hold at i = 2 for both “witnesses” in (A.6) and (A.7), 

which implies  

  x1 = x1
’,  x2 = x2

’ 

Equation (A.5) with coefficients y’, u’, v’, x1
’, x2

’ also hold for e2 and e3. As a result, 

the coefficients in (A.5) are independent of i = 1,2,3, which means the degree-2 poly-

nomial η2–x1
T
Qx2+(η1–x1

T
Qv

*–u
*T

Qx2)T+(y–u
*T

Qv
*)T2 has at least three distinct roots 

e1, e2, e3 in the exceptional set ES, so it must be identically zero. In particular, y = 

u
*T

Qv
*. This proves that u*, v* are correctly extracted witnesses.  

Theorem 5  The protocol NoZKA/SBLR is 2k-1 round, unconditionally complete and 

computationally (5, 5,…, 5)-special-sound. 

Proof   Completeness can be confirmed by straightforward algebraic calculations. In 

order to prove (5, 5,…, 5)-special-soundness, we construct an extractor which outputs 
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the witness u, v and all variables [A1,A2,B1,B2,C1,C2,D1,D2] from 5 accepting traces 

with ei
2 ≠ ej

2 in ES, i=1,2,3,4,5:  

        Tri ≡ [[A1,A2,B1,B2,C1,C2,D1,D2], ei, [uei, vei]]  

where each trace satisfies 

Uei  = Cmt(σ|  𝒖𝑒𝑖+̇𝑒𝑖
2𝒖𝑒𝑖) ˄ Vei  = Cmt(τ| 𝒗𝑒𝑖+̇𝑒𝑖

2𝒗𝑒𝑖) ˄ uei
T
Qeivei = y+rei         (A.8) 

If this claim can be proved for each recursive step, the whole protocol is (5,…,5)-

special sound. 

Consider three traces Tri: i=1,2,3 at first. For these traces μ1, μ2, μ3 can be effi-

ciently calculated as solution to the equations:  

∑ 𝑒𝑖
−13

𝑖=1 𝜇𝑖= 0,   ∑ 𝑒𝑖 𝜇𝑖
3
𝑖=1 = 1,   ∑ 𝑒𝑖

33
𝑖=1 𝜇𝑖= 0                     (A.9) 

For notational simplicity, all variables with subscript ei will be subscripted only 

by i, e.g., 𝑈𝑒𝑖 is simply notated as Ui. Combining the verification equation Ui = Cmt(σ| 

 𝒖𝑒𝑖+̇𝑒𝑖
2𝒖𝑒𝑖), i=1,2,3 in (A.8) with (4.27) and (A.9) one can get:  

U = ∏ (𝐴1
𝑒𝑖
−1

𝑈
𝑒𝑖 𝐵1

𝑒𝑖
3

)𝜇𝑖3
𝑖=1  = ∏ 𝑈𝑖

𝜇𝑖3
𝑖=1  = ∏ Cmt(σ| 𝒖𝑒𝑖+̇𝑒𝑖

2𝒖𝑒𝑖)
𝜇𝑖3

𝑖=1     

Using the commitment scheme’s explicit expressions in sec. 2.4, one obtains:  

    U = Cmt(σ|[uL
*+̇uR

*]) where uL
*=∑ 𝜇𝑖

3
𝑖=1 𝒖𝑖, uR

*=∑ 𝑒𝑖
23

𝑖=1 𝜇𝑖𝒖𝑖                  (A.10) 

        Similarly, one can also obtains:  

V = Cmt(τ|[vL
*+̇vR

*]) where vL
* = ∑ 𝜇𝑖

3
𝑖=1 𝒗𝑖,  vR

* =∑ 𝑒𝑖
23

𝑖=1 𝜇𝑖𝒗𝑖                 (A.11) 

Also ν1,ν2,ν3 and γ1,γ2,γ3 can be efficiently calculated as solutions to the follow-

ing equations: 

∑ 𝑒𝑖
−13

𝑖=1 𝜈𝑖= 1,  ∑ 𝑒𝑖𝜈𝑖
3
𝑖=1 = 0,  ∑ 𝑒𝑖

33
𝑖=1 𝜈𝑖= 0                      (A.12) 

  ∑ 𝑒𝑖
−13

𝑖=1 𝛾𝑖= 0,  ∑ 𝑒𝑖𝛾𝑖
3
𝑖=1 = 0, ∑ 𝑒𝑖

33
𝑖=1 𝛾𝑖= 1                       (A.13) 

Combining Ui = Cmt(σ|  𝒖𝑒𝑖+̇𝑒𝑖
2𝒖𝑒𝑖), i=1,2,3 in (A.8) with (4.27), (A.12), there 

derives:    

A1 = ∏ (𝐴1
𝑒𝑖
−1

𝑈
𝑒𝑖 𝐵1

𝑒𝑖
3

)𝜈𝑖3
𝑖=1  = ∏ 𝑈𝑖

𝜈𝑖3
𝑖=1  = ∏ Cmt(σ|  𝒖𝑒𝑖+̇𝑒𝑖

2𝒖𝑒𝑖)
𝜈𝑖3

𝑖=1   

i.e.,   A1 = Cmt(σ|[wL
*+̇wR

*]) where wL
* = ∑ 𝜈𝑖

3
𝑖=1 𝒖𝑖, wR

* =∑ 𝑒𝑖
23

𝑖=1 𝜈𝑖𝒖𝑖           (A.14) 

 In a similar way, one can also get:  

B1 = Cmt(σ|[*
wL+̇

*
wR]) where *

wL= ∑ 𝛾𝑖
3
𝑖=1 𝒖𝑖, 

*
wR=∑ 𝑒𝑖

23
𝑖=1 𝛾𝑖𝒖𝑖             (A.15) 

A2 = Cmt(σ|[qL
*+̇qR

*]) where  qL
* = ∑ 𝜈𝑖

3
𝑖=1 𝒗𝑖,  qR

*=∑ 𝑒𝑖
23

𝑖=1 𝜈𝑖𝒗𝑖   

B2 = Cmt(σ|[*
qL+̇

*
qR]) where *

qL
 = ∑ 𝛾𝑖

3
𝑖=1 𝒗𝑖,  

*
qR=∑ 𝑒𝑖

23
𝑖=1 𝛾𝑖𝒗𝑖   

By the equality Ui =𝐴1
𝑒𝑖
−2

𝑈
𝑒𝑖 𝐵1

𝑒𝑖
3

in (4.27) and Ui = Cmt(σ|[ui+̇𝑒𝑖
2𝒖𝑖]) in (A.8) for  

i=1,2,3, we get:  
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𝐴1
𝑒𝑖
−1

𝑈
𝑒𝑖 𝐵1

𝑒𝑖
3

= Cmt(σ|[ui+̇𝑒𝑖
2𝒖𝑖])  

Put A1, U, B1’s expressions (A.14), (A.10), (A.15) into the above expression, the 

obtained equality implies  

ui = eiuL
* + ei

-1
wL

* + ei
3 *

wL ,    ei
 2
ui = ei

 
uR

* + ei
-1

wR
* + ei

3 *
wR     i=1,2,3    (A.16) 

due to the commitment’s binding property. After eliminating ui one has  

wR
*+ (uR

*–wL
*)ei

2 + (*
wR–uL

*)ei
4 –*

wLei
6 = 0                     (A.17) 

Equation (A.17) is satisfied by uL
*, uR

*, wL
*, *

wR which can be efficiently calcu-

lated from Tr1, Tr2, Tr3 with challenges ei in ES: i=1,2,3. When the derivation is ap-

plied to Tr3, Tr4, Tr5, one can also calculate uL*, uR*, *wL, *wR which satisfy the same 

equations with ei in ES: i=3,4,5. These two groups of calculated results all satisfy 

Cmt(σ|uL
*+̇uR

*) = U = Cmt(σ|uL*+̇uR*) 

Cmt(σ|wL
*+̇wR

*) = A1 = Cmt(σ|wL*+̇wR*) 

Cmt(σ|
*
wL+̇

*
wR) = B1 = Cmt(σ|*wL+̇*wR)  

Due to binding property of the commitment scheme, these equalities imply: 

uL
*= uL*, uR

* = uR*, 
*
wL= *wL, *

wR = *wR                      (A.18) 

As a result, (A.17) holds for more than 4 challenges ei, i.e., degree-3 polynomial wR
*+ 

(uR
*–wL

*)T + (*
wR–uL

*)T2 –*
wLT3 in T has more than 4 distinct zeros ei

2 (ei
2 ≠ ej

2, 

i=1,2,3,4,5) in ES, which implies all its coefficients are zero:  

wR
* = 0, uR

*= wL
*, *wR = uL

*, *wL = 0                            (A.19) 

Combining (A.19) with (A.14) and (A.15) one obtains 

                              A1 = Cmt(σ|uR
*+̇0),  B1 = Cmt(σ|0+̇uL

*)                         (A.20) 

Combining (A.19) with (A.16) and (A.18) one obtains 

ui = eiuL
* + ei

-1
uR

*  i=1,…,5                                                          (A.21) 

In a similar way one can also obtain 

A2 = Cmt(τ|vR
*+̇0),  B2 = Cmt(τ|0+̇vL

*)                             (A.22) 

vi = eivL
* + ei

-1
vR

*  i=1,…,5                                                          (A.23) 

Combining the equation ue
T
Qeve = y + re in (A.8) with equalities (A.21), (A.23) 

and Qe = e-2
QL+e2

QR in (4.28), one has (for each i = 1,…,5):  

  y + ri  = ui
T
Qivi  = (eiuL

*+ei
-1

uR
*)T(e-2

QL+e2
QR)(eivL

*+ei
-1

vR
*) 

= uL
*T

QLvL
*+uR

*T
QRvR

* + (uR
*T

QLvL
*+uL

*T
QLvR

*)ei
-2  

+ (uR
*T

QRvL
*+uL

*T
QRvR

*)ei
2 + uR

*T
QLvR

*ei
-4 + uL

*T
QRvL

*ei
4                 (A.24) 

Put ri’s expression (4.28) into (A.24) and after simple calculations, one gets:  
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uL
*T

QLvL
*+uR

*T
QRvR

*–y +(uR
*T

QLvL
*+uL

*T
QLvR

*–C1)ei
-2  

+ (uR
*T

QRvL
*+uL

*T
QRvR

*–C2)ei
2+(uR

*T
QLvR

*–D1)ei
-4+(uL

*T
QRvL

*–D2)ei
4=0     (A.25) 

i.e., the degree-4 polynomial in T 

uR
*T

QLvR
*–D1 +(uL

*T
QLvL

*+uR
*T

QRvR
*–y)T +(uR

*T
QLvL

*+uL
*T

QLvR
*–C1)T

2  

+ (uR
*T

QRvL
*+uL

*T
QRvR

*–C2)T
3 + (uL

*T
QRvL

*–D2)T
4   

has 5 distinct zeros ei
2 in ES: i = 1,…,5, which implies all its coefficients are zero:  

C1 = uR
*T

QLvL
*
 + uL

*T
QLvR

*
,    C2 = uR

*T
QRvL

*
 + uL

*T
QRvR

*
                 

D1 = uR
*T

QLvR
*,  D2 = uL

*T
QRvL

*
,    y  = uL

*T
QLvL

*+uR
*T

QRvR
* = u*T

Qv
* 

        (A.26) 

where                                   u* = uL
*+̇uR

*, v* = vL
*+̇vR

*                                        (A.27) 

       These results show that u*, v* satisfy the bilinear equation y = u*T
Qv

* and the two 

commitments. The above arguments also provides an efficient knowledge extractor 

which computes the witness (u*,v*) and all related variables in consistency with the 

protocol’s specification from 5 accepting traces{Tri: ei
2 ≠ ej

2, i=1,2,3,4,5}. Since this 

fact is true for each recursive step, the whole protocol is (5,…,5)-special-sound.  

APPENDIX  B.  Proofs of lemma 3 and 4 

Lemma 3  If ZKAoK/R has SHVZK property, then CNM-ZKAoK/R is zero-

knowledge in the sense of definition 8(3).  

Proof   Let S0 be zero-knowledge simulator of ZKAoK/R, the simulator S ≡ (S1,S2) 

for CNM-ZKAoK/R is constructed  in the following: 

S1(λ): 

Generate the c.r.s. σ for ZKAoK/R;  

Compute (pk, sk) = TCGen(λ);  σ* = [σ, pk];   

Output(σ*, sk)  

//SSTC’s private key sk will be used as the trapdoor τ  

S2(τ, σ
*, x): 

Compute (s_vk, s_sk) = KG(λ);  

For each 1≤i≤k:  

Compute ti = H(s_vk||i); (Yi, δi)=TCFakeCmt(pk, sk, ti);                    (B.1) 

Send message [s_vk, Y1] to V*; 

                For the i-th challenge ei from V*, 1≤i≤k-1, response V* with Yi+1;  

For the k-th challenge ek from V*, compute: 

   (X1,…..,Xk, Xk+1) = S0(σ, x; e1,…, ek); 

Di
 = TCFakeDmt(δi, Yi, Xi, ti); 1≤i≤k-1                               (B.2) 

Z
* = (X1, D1,…, Xk, Dk, Xk+1);  

U
* = (Y1, e1,…, Yk, ek);   

                             s* = Sgn(s_sk, s_vk||U*||Z*); 

Then Send [Z*, s*] to V*. 

According to the above construction, the P→V* trace simulated by S is TR = 
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[s_vk, Y1,…, Yk, (X1, D1,…,Xk, Dk, Xk+1), s
*]. Now we claim that TR is computationally 

indistinguishable with the real P→V* trace tr = [s_vk,y1,…,yk,(x1,d1,…,xk, dk,xk+1), s]. 

Obviously in TR and tr both s_vk’s are in the same distribution, furthermore the 

tags ti = H(s_vk||i) in TR and tr are in the same distribution. 

Due to (B.1), (B.2) and SSTC’s trapdoor property(definition 8), for each 1≤i≤k 

there is the following computational indistinguishability: 

(Xi, ti, Yi, Di) 
𝐶
↔ (Xi, ti, 𝑦�̅�, 𝑑�̅�) 

where                                       (𝑦�̅�, 𝑑�̅�) = TCmt(pk, Xi, ti)                                        (B.3) 

hence                                                    TR 
𝐶
↔ tr̅                                                     (B.4) 

where  tr̅ ≡ [s_vk, 𝑦1̅̅̅,…,𝑦𝑘̅̅ ̅,(X1,𝑑1̅̅ ̅,…, Xk,𝑑𝑘̅̅ ̅, Xk+1),�̅�], �̅� ≡ Sgn(s_sk, s_vk||�̅�||�̅�), �̅� and 

�̅� are the expressions resulted from replacing Yi with 𝑦�̅�, Di with 𝑑�̅� in U
*’s and Z

*’s 

expressions(see (B.2)). 

For simulator S0 there holds: 

(X1,…..,Xk, Xk+1) 
𝐶
↔ (x1,…..,xk, xk+1)                                 (B.5) 

where (x1,…..,xk, xk+1) is the real message sequence output from P. In CNM-ZKAoK/R 

each  xi has the commitment: 

(yi, di) = TCmt(pk, xi, H(s_vk||i))                                    (B.6) 

So (B.3)~(B.6) implies: 

                                                            TR 
𝐶
↔ tr                                                        (B.7) 

where tr  ≡ [s_vk, y1, …, yk,(x1, d1,…, xk, dk, xk+1),s], s ≡ Sgn(s_sk, s_vk||U||Z), U and Z 

are the expressions resulted from replacing 𝑦�̅� with yi, Xi with xi, 𝑑�̅� with di in the ex-

pressions of �̅� and �̅�. Obviously, tr and the real trace are in the same distribution.  

Lemma 4  Suppose the protocol ZKAoK/R is (μ1,…, μk)-special sound, then there 

exists an extractor Ext for protocol CNM-ZKAoK/R as specified in def.8. Let the 

event EXT be “Ext outputs a w* s.t. (x*,w*)∊R for an accepting statement x*”, |E| be 

the cardinality of the space for the verifier to sample challenges, then:  

 P[EXT] > π(P*|λ) - ∑ 𝜇𝑖
𝑘
𝑖=1 /|E| - Adv𝑇𝐶

𝑆𝑆(𝜆)∏ 𝜇𝑖
𝑘
𝑖=1  + poly(λ)Adv𝑆𝐺

𝑈𝐹(1)
(𝜆)         

(Adv𝑇𝐶
𝑆𝑆  specified in def. 7,  π(P*|λ) in def. 8) and Ext’s running time is poly(λ).  

Proof  Let P*≡(P1
*,P2

*) be a P.P.T. algorithm which convinces the verifier with a 

statement x* in the game ExpP* in definition 8, i.e:  

(x*,Tr*,b*) = <S*(τ), P1
*| P2

*,V>σ  

with b* = 1 ⋀ Tr∗Tr∈Q  is unmatched with any Tr. 

where Tr* ≡ [s_vk*, y1
*,…, yk

*, (x1
*, d1

*,…, xk
*, dk

*, xk+1
*), s*], S ≡ (S1,S2) be the simu-

lator constructed in lemma 3’s proof. For presentational simplicity, let μ1 = … = μk ≡ 

μ, otherwise for μ ≡ max μi the following argument is still valid. 

We construct a P.P.T. extractor Ext which calls P* and interacts with it both in 

the role of prover (via its component algorithm Ext::P) and the role of verifier (via the 
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component algorithm Ext:V). Since Ext can rewind P*(mainly P2
* in the following) to 

any state, for presentational simplicity we take an equivalent view in concurrent envi-

ronment that Ext can fork P* instance at any state. The forked instance inherits its 

parent state and proceeds as specified in the protocol from that state on.  

Ext executes the interactions with P* in the follow way:  

In the role of prover, Ext::P calls the simulator S to interact with P1
*. Note that 

S1 calls SSTC’s key-generator TCGen to generate and output the public/secret key 

pair (pk, sk) so Ext can obtain this key pair from S.    

In the role of verifier, each time right before Ext::V sends the first challenge e1 

to P2
*, Ext forks it into μ P2

*-instances and sends randomly independent and pairwise 

distinct challenges ei
(1), i = 1,…, μ to each P2

*-instance.  

Every time right before Ext::V sends the second challenge e2 to some P2
*-

instance, Ext forks it into μ P2
*-instances, sends independent and pairwise distinct 

challenges e1
(2)

,…, eμ
(2)

 to each instance.  

Every instance inherits its parent’s state and proceeds after receiving its chal-

lenge. Such operations proceed until all rounds are finished in protocol CNM-

ZKAoK/R.  

Let T(x*) be a tree constructed as stated in definition 3 for the above interactions, 

with [s_vk*, y1
*] as its root. According to the above operation, T(x*) is a session tree 

and each path γ in the tree is a trace Tr<P2
*,V>(x*).   

Since the verifier generates k challenges in CNM-ZKAoK/R, i.e., each path in 

T(x*) has k edges along it, so in the tree:   

Total number of edges N = μ+μ2+…+μk < μk+1           

Total number of nodes M = 1+μ+μ2+…+μk-1 < μk                                                               (B.8) 

Total number of paths  K = total number of leaves = μk  

Define a event Succ as:  

Tree T(x*) is accepting, i.e., b*(γ) = 1 for every path γ in the tree. 

         Consider two subevents P[Succ˄T0(x*)] and P[Succ˄~T0(x*)].  

In the event of Succ˄T0(x*), Succ occurs and all session variables xi associated 

with nodes yi(γ) (yi(γ) stands for a node on path γ and at level i) in the accepting tree 

T(x*) are in consistency with each other, i.e., xi(γ) = xi(β) for any path γ and β bifurcat-

ing at node yi(γ) (so yi(γ) = yi(β) ≡ yi, i≥1), so after replacing each node yi with xi one 

can obtain an accepting session tree of protocol  ZKAoK/R., denoted as T0(x*). 

Since ZKAoK/R is (μ1, …, μk)-special sound, its P.P.T. extractor Ext0 can be 

called by Ext to output a w* s.t. (x*,w* )∊R. In particular:  

P[Succ ˄T0(x*)] ≤ P[Ext outputs a w* s.t. (x*,w* )∊R]                   (B.9) 

and note that the event on the right side is just EXT.  

For arguments on the complimentary event Succ˄~T0(x*), i.e., no session tree 

for protocol ZKAoK/R can be successfully derived from T(x*) in the abovementioned 

way, we consider two further subcases.   

Case I: s_vk* does not appear in any message output from S2  

We construct a P.P.T. algorithm A on basis of P* to destroy SSTC’s simulation 

soundness in this case. A has SSTC’s public key pk as one of its input, has access to 
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oracle-O(.|sk) and controls interactions of S (in role of prover) and V with P* similarly 

as Ext does. During the interactions, whenever S2 needs to generate the message Yi  or 

Di  in the protocol(see (B.1) and (B.2)), A queries its oracle-O(.|sk) with [“commit”, ti] 

or [“decommit”, Yi, Xi] and returns the oracle’s response to S2. 

In the event of Succ˄~T0(x*), there exist at least two paths γ* and β* in T(x*) 

which bifurcate at some node yi(γ
*) = yi(β

*) ≡ yi
*(i≥1) with the associated session vari-

ables unequal: xi(γ
*) ≠ xi(β

*). On the other hand, b(γ*) = b(β*) = 1 so  

TCvf(pk, yi
*, xi(γ

*), ti, di(γ
*)) = 1 ˄ TCvf(pk, yi

*, xi(β
*), ti, di(β

*)) = 1  

where ti = H(s_vk*||i) is independent with any path. 

In case I  s_vk* does not appear in any message output from S2 and H is colli-

sion-resistant, no ti can be in the set of tags once received by oracle-O(.|sk). As a re-

sult, the algorithm A generates a output destroying scheme SSTC’s simulation sound-

ness with the probability 

pI ≡ P[Succ ˄~T0(x*) ˄Case I] ≤ M Adv𝑇𝐶
𝑆𝑆(𝜆) < μkAdv𝑇𝐶

𝑆𝑆(𝜆)         (B.10) 

Case II:  s_vk* does appear in some message output from S2  

On basis of P*, we construct a P.P.T. algorithm B to destroy strong unforgeabil-

ilty of the one-time signature scheme SG in this case. B has the signature verification 

key s_vk* as one of its input and has access to the signing oracle-OSgn(. |s_sk*) at 

most one-time. 

Let T be total number of message sequences output from S2 during interactions 

with P*. B selects a m∊{1,2,…,T} uniformly, inserts s_vk* into the m-th message se-

quence during the interactions between S2 and P1
*, and generates the signature of this 

trace required by CNM-ZKAoK/R via accessing oracle-OSgn(.|s_sk*).  

If the m-th sequence Trm is the one where s_vk* appeared, then B makes P* suc-

ceed in generating an accepting trace Tr*≠Trm. The fact that Tr* contains a signature s* 

satisfying Vf(s_vk*,Tr*,s*)=1 implies B’s success in destroying SG’s one-time un-

forgeability. Obviously: 

pII ≡ P[Succ ˄~T0(x*) ˄Case II] ≤ TAdv𝑆𝐺
𝑈𝐹(1)

(𝜆)                  (B.11) 

Since Case I and II are complementary, from (B.10) and (B.11) one obtains  

P[Succ ˄~T0(x*)] = pI + pII ≤  μkAdv𝑇𝐶
𝑆𝑆(𝜆)+ TAdv𝑆𝐺

𝑈𝐹(1)
(𝜆)           (B.12) 

Combining (B.9) and (B.12) one has: 

P[Succ] = P[Succ˄T0(x*)] + P[Succ˄~T0(x*)]  

≤  P[EXT] + μkAdv𝑇𝐶
𝑆𝑆(𝜆)+ TAdv𝑆𝐺

𝑈𝐹(1)
(𝜆)                                         (B.13) 

        On the other hand, one can apply an analysis similar as that in sec.3 in [13](see 

lemma 5 there) to obtain a lower-bound of P[Succ] as7:  

                                                        
7   Event Succ implies that Ext successfully outputs a witness of x* which probability’s lower 

bound established in lemma 5 in [13] is ε–κ, where ε is the success probability of a dis-

honest prover P* to cheat the verifier. By definitions and notations in this paper, ε is 
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P[Succ] > π(P*|λ) – kμ/|E|                                      (B.14) 

So                P[EXT] > π(P*|λ) – kμ/|E| – μkAdv𝑇𝐶
𝑆𝑆(𝜆)+ TAdv𝑆𝐺

𝑈𝐹(1)
(𝜆)                 (B.15) 

Note that n,T = poly(λ), μ = O(1) and k = O(logn) so the third and fourth terms in 

(B.15) are both negligible in λ. According to Ext’s construction, its running time is 

μkpoly(n) = O(poly(n)) = O(poly(λ)). This completes the proof.   

APPENDIX  C.  More about ZKA for Matrix Linear Relations 

C.1     ZKA for Eigenvalue Relation: Au = λu        

Consider the eigenvalue relation over residue ring Zm for matrix A∈ 𝑍𝑚
𝑛×𝑛, vector 

u∈ 𝑍𝑚
𝑛  and eigenvalue λ in Zm: Au = λu where A is the witness (otherwise the prob-

lem is trivial),  u and λ are public. n = td is a power of 2 and d is the extension degree 

of Galois ring S ≡ GR(m,d) = Zm[X]/(f(X)) which value is determined by the target 

knowledge-error.  

Let A = [
𝑨1
⋮
𝑨𝑡

] with each Ai ∊𝑍𝑚
𝑑×𝑛, the equation Au = λu is equivalent to  

Ai u = λu
(i) ≡ λ[

𝑢1+(𝑖−1)𝑑
⋮
𝑢𝑖𝑑

] , i = 1,…, t                            (C.1) 

For randomness ρ in ES the relation (C.1) is equivalent with probability > 1- t/pd 

to the relation:  

∑ 𝐀𝑖
𝑡
𝑖=1 𝜌𝑖−1𝒖 = λ∑ 𝜌𝑖−1𝑡

𝑖=1 𝒖(𝒊) ≡ λuρ  

i.e.,                                         [A1, …, At] [

𝒖
𝜌𝒖
⋮

𝜌𝑡−1𝒖

] = λuρ                                         (C.2) 

This is a collection of d linear relations over S. Let A* and uρ
* be the matrix and vec-

tor on left side of (C.2), left-multiplying this equality by [1,δ, δ2,…, δd-1] furthermore 

equivalently reduces it to the following relation with probability > 1– t/pd:  

[1,δ, δ2,…, δd-1]A*
uρ

* = λ[1,δ, δ2,…, δd-1]uρ ≡ λ�̅�ρ,δ   

i.e.,                                                      aδ
*T

uρ
* = λ�̅�ρ,δ                                              (C.3) 

where aδ
*T ≡ [1,δ, δ2,…, δd-1]A*∈ 𝑆𝑡𝑛 , uρ

*∈ 𝑆𝑡𝑛  and λ�̅�ρ,δ  in S. Let σ ≡ [G, g, m] be the 

public-key for the commitment scheme with nt G-elements in g and used as the c.r.s, 

A is the commitment to matrix A:  

Gd ∋ A = Cmt(σ|[A1, …, At]) 

                                                                                                                                    
just π(P*|λ) (see def.8 in sec.5). Furthermore the expression of M in our notations 

here is κ = 1 – ∏ (1 − 𝜇)/|𝐸|𝑘
𝑖=1 . Since κ < μk/|E| so P[Succ] > π(P*|λ) – kμ/|E|.  
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                    = [
𝑐𝑚𝑡𝜎(𝐴1(1,1),… , 𝐴1(1, 𝑛),… , 𝐴𝑡(1,1),… , 𝐴𝑡(1, 𝑛))

:
𝑐𝑚𝑡𝜎(𝐴1(𝑑, 1), … , 𝐴1(𝑑, 𝑛),… , 𝐴𝑡(𝑑, 1),… , 𝐴𝑡(𝑑, 𝑛))

]             (C.4) 

 

then (C.3) is a linear relation over S with witness aδ
*T∈ 𝑆𝑡𝑛  which commitment can be 

computed from the commitment to matrix A by(see (2.7)~(2.7)):  

Cmt(σ| aδ
*) = 𝐴𝛤𝛿                                             (C.5) 

where Γδ ∈ 𝑍𝑚
𝑑×𝑑 is the coefficient matrix of polynomials 1, δ, δ2,…, δd-1in S: 

                                                     [

1
𝛿
⋮
𝛿𝑡−1

] = Γδ [

1
𝑋
⋮

𝑋𝑡−1

] mod f(X)                            (C.6) 

 In summary, if the eigenvalue relation over Zm is defined as:  

SEVR(σ|A, u, λ; A, γ ):                                    (C.7) 

A = Cmt(σ|A; γ) ˄ Au = λu  

where A∈ 𝑍𝑚
𝑛×𝑛, u∈ 𝑍𝑚

𝑛 , λ∈Zm and Cmt(σ|A) is specified by (C.4), then for independ-

ent randomness ρ, δ in ES it is probabilistic-equivalent to the linear relation (C.3) over 

Galois ring S with witness aδ
* ∈Snt  which commitment is computed by (C.5) from A 

and the reduction soundness factor is t+d (= n/d+d). The compressed ZKA protocol 

constructed for (C.3) has 4logn–2logd–1 rounds, (4logn–2logd–3)d G-elements and 

totally 6logn–3logd S-elements in its messages, reducing the costs of vector-oriented 

approach by the amounts similar as indicated in table 2.  

 

C.2     ZKA for Linear Matrix Relation: AUB
T
 = C        

Consider the linear relation over residue ring Zm for matrix A,B,C,U ∈ 𝑍𝑚
𝑛×𝑛  where U 

is the witness, n = td is a power of 2 and d is the extension degree of Galois ring S ≡ 

GR(m,d) which value is determined by the target knowledge-error. Let 

U = [U1,…,Ut], C = [C1,…,Ct] with each Ui, Ci ∊𝑍𝑚
𝑛×𝑑    

U
* ≡ [

𝐔1
⋮
𝐔t

], C* ≡ [
𝐂1
⋮
𝐂t

] ∊𝑍𝑚
𝑛𝑡×𝑑                             

Both U* and C* can be regarded as the matrices with row-index (kl) and column-

index h for k=1,…,n, l=1,…,t, h=1,…,d: 

U*
kl,h = Uk,(l-1)d+h,  C

*
kl,h = Ck,(l-1)d+h    

        By reformulating the indices, the component-wise form of the equation AUB
T = 

C can be represented as: 

Ci, (j-1)d+q  = ∑ ∑ ∑ A𝑖𝑘
𝑑
ℎ=1

𝑡
𝑙=1

𝑛
𝑘=1 B(𝑗−1)𝑑+𝑞,(𝑙−1)𝑑+ℎU𝑘,(𝑙−1)𝑑+ℎ 

i =1,…,n, j = 1,…,t, q = 1,…,d 
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i.e.,  �̃�  = Ω(A,B)U*                                              (C.8) 

where �̃� ∊ 𝑍𝑚
𝑛2×𝑑 has entries �̃�𝑖𝑗,𝑞 ≡ Ci,(j-1)d+q and Ω(A,B) ∊𝑍𝑚

𝑛2×𝑛𝑡 has entries:  

                       Ω(A,B)ijq, klh ≡ AikB(j-1)d+q, (l-1)d+h    i, k=1,…,n;  j,l =1,…,t                 (C.9) 

In summary, the relation AUB
T = C with witness U ∈ 𝑍𝑚

𝑛×𝑛 is equivalent to the 

relation (C.8) with witness U
*∈ 𝑍𝑚

𝑛𝑡×𝑑 . The ZKA protocol for the former can be 

equivalently constructed for the latter with the method presented in sec.3.1~3.2, with 

performance indicated in the second column in tab.2.  

 

C.3     ZKA for Linear Matrix Relation: AU + UB
T
 = C        

Consider the linear relation over residue ring Zm for matrix A,B,C,U ∈ 𝑍𝑚
𝑛×𝑛  where U 

is the witness, n = td is a power of 2 and d is the extension degree of Galois ring S ≡ 

GR(m,d) which value is determined by the target knowledge-error.  

Let U* and C* be specified as in C.2, obviously in the same way as that in C.2 

AU + UB
T = C is equivalent to the equation  

 �̃� = (Ω(A,In) + Ω(In,B))U*                                   (C.10) 

where Ω(A,B) is specified in (C.9) for any given matrix A and B. The ZKA pro-

tocol for AU + UB
T = C can be equivalently constructed for(C.10) with the method  

presented in sec.3.1~3.2. The performance is indicated in the second column in tab.2.  

 

C.4     Some Special Cases        

Matrix-oriented approach can have some additional advantages in some special cases. 

Consider two linear matrix relations AU = B and CV = D where A, C∊𝑍𝑚
𝑙×𝑛 and B, 

D∊𝑍𝑚
𝑑×𝑑. Of course they can be proved independently by running the proof protocols 

over GR(m,d) established in sec.3.1-3.2., each with knowledge-error ≈ p-dlogn. How-

ever, under some conditions there is more efficient way to prove AU=B ˄ CV=D by 

running a single protocol instance with significantly lower knowledge-error ≈ p-2dlogn 

over the ring GR(m,2d).  

         Let M∊𝑍𝑚
𝑙×𝑙 be a non-singular matrix such that C = MA. In this case the above 

two linear matrix equations are equal to just one equation: 

AW = Y where W = [U, V] ∊𝑍𝑚
𝑛×2𝑑, Y= [B, M-1

D] ∊𝑍𝑚
𝑙×2𝑑             (C.11) 

If the ring S=GR(m,2d) instead of GR(m,d) is used to generate the commitment to W: 

Cmt(σ|W) = [
𝑢1(1) ⋯ , 𝑢𝑑(1), 𝑣1(1),… 𝑣𝑑(1)
⋮ . ⋮

𝑢1(𝑛) ⋯ , 𝑢𝑑(𝑛), 𝑣1(𝑛),… 𝑣𝑑(𝑛)
] 

The relation (C.11) can be proved via the compressed ZKA protocol with knowledge 

error ≈ p-2dlogn (approximately squaring the knowledge-error over the ring GR(m,d)) 

and message complexity ≈ 2dlogn (same as the total message complexity of inde-

pendent running two proofs over GR(m,d)).  
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         In particular, if l = d and there exists a matrix M∊𝑍𝑚
𝑑×𝑑 associated with some 

element e in the exceptional set E of GR(m,d) = Zm[X]/(g(X)) such that C = MA, then 

the above method is feasible since in this case M  is always non-singular (in fact M-1 

is the matrix associated with e-1).   

         Now we present a more explicit formulism about the condition C = MA where 

M is associated with some element e(X) in E. Note that C = MA in Zm if and only if 

in GR(m,d):   

∑ 𝐶𝑖𝑗𝑋
𝑖−1𝑑

𝑖=1  =  ∑ (∑ 𝑀𝑖𝑘𝑎𝑘𝑗
𝑑
𝑘=1 )𝑋𝑖−1𝑑

𝑖=1  = e(X) ∑ 𝑎𝑖𝑗𝑋
𝑖−1𝑑

𝑗=1  mod g(X).  j=1,…,d 

i.e.,                    (1,X,X2,…,Xd-1)CT = e(X)(1,X,X2,…,Xd-1)AT mod g(X)               (C.12) 

Let (1,X,X2,…,Xd-1)CT=(c1(X),…,cd(X)) and (1,X,X2,…,Xd-1)AT=(a1(X),…,ad(X)), the 

above condition is just the existence of some e(X) in E such that 

cj(X) = e(X)aj(X) mod g(X) for  j=1,…,d                       (C.13) 

        For m = ps, let c̅j(X) = cj(X) mod p, �̅�j(X) = aj(X) mod p. Since GR(m,d)/(p) is 

isomorphic to E∪{0} and also isomorphic to Galois field 𝐹𝑝𝑑 (Fact 2 in sec.2.3), c̅j(X) 

and �̅�j(X) are polynomials over the field Fp. If (C.13) holds in GR(m,d) then obviously 

it also holds in Galois field 𝐹𝑝𝑑, i.e., as polynomials over Fp:  

c̅j(X) = �̅�(X)�̅�j(X) for all  j=1,…,d                              (C.14) 

On the other hand, it can be proved by Hensel’s lemma (fact 4 in sec.2.3) that (C.14) 

implies (C.13) and e(X) can be efficiently computed for properly large d.  

In summary, in order to check the condition that there exists a matrix M∊𝑍𝑚
𝑑×𝑑 

associated with some e in the exceptional set E of ring GR(m,d) such that C = MA, it 

is sufficient to check (C.12) modulo p.  

         More generally, in case that there exist A∊𝑍𝑚
𝑙×𝑛  and non-singular matrices 

Mk∊𝑍𝑚
𝑙×𝑙 , k=1,…,q such that Ak = MkA for each k,  then k linear matrix equations  

⋀ 𝐀𝒌
𝑞
𝑘=1 Uk = Bk 

can be equivalently proved for just one linear equation  

AW = Y where W = [U1,…,Uq] ∊𝑍𝑚
𝑛×𝑞𝑑

, Y= [M1
-1

B1,…, Mq
-1

Bq] ∊𝑍𝑚
𝑙×𝑞𝑑

 

over the ring GR(m,qd) with the commitment to W:  

Cmt(σ|W) = [

𝑐𝑚𝑡𝜎(𝑢1,1(1), ⋯ , 𝑢1,𝑑(1),… , 𝑢𝑞,1(1), … 𝑢𝑞,𝑑(1))

⋮ . ⋮
𝑐𝑚𝑡𝜎(𝑢1,1(𝑛), ⋯ , 𝑢1,𝑑(𝑛),… , 𝑢𝑞,1(𝑛),… 𝑢𝑞,𝑑(𝑛))

]  

The proof has knowledge error ≈ p-qdlogn (approximately q-th power of the 

knowledge-error over the ring GR(m,d)) and message complexity ≈ qdlogn (same as 

the total message complexity of running q independent proofs over GR(m,d)). The 

number of G-elements for commitment is dq.  

 

 


