
NIST SP 800-22 and GM/T 0005-2012 Tests:
Clearly Obsolete, Possibly Harmful

Comments on SP 800-22 Rev. 1a Decision Proposal. February 14, 2022.

Markku-Juhani O. Saarinen

PQShield Ltd., Oxford, UK, mjos@pqshield.com

Abstract. NIST SP 800-22 describes 15 statistical tests and suggests that they
can be used for the evaluation of random and pseudorandom number generators in
cryptographic applications. The Chinese standard GM/T 0005-2012 describes similar
tests. The weakest of pseudorandom number generators will easily pass these tests,
which promotes false confidence in insecure systems. Evaluation of pseudorandom
generators and sequences should be based on cryptanalytic principles. Implementation
validation should be focused on algorithmic correctness, not the randomness of output.
For true random (entropy sources), the focus should be on the true entropy content
and reliability of the construction and health tests. If the SP 800-22 is to be revised,
we suggest the new SP focuses on evaluating stochastic models for entropy sources as
the SP 800-90 series currently does not address this issue in depth. We further suggest
that pseudorandom generators are analyzed for their suitability for post-quantum
cryptography and lack of (asymmetric) backdoors or covert channels. We illustrate
this by discussing the “reference generators” in SP 800-22 Appendix D, none of which
are suitable for use in modern cryptography.
Keywords: SP 800-22 Rev 1a, GM/T 0005-2012, Statistical Randomness Tests

1 Introduction
In 2021 NIST’s Cryptographic Publication Review Board initiated a review process for
NIST Special Publication (SP) 800-22 Rev. 1a, “A Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic Applications.” [RSN+10] In January
2022, it was announced – against the expectations of many cryptographers – that the
document is not withdrawn but will be revised instead1.

Obsoleted by SP 800-90 series. SP 800-22 is not actually used – and should not be used
– in NIST’s Deterministic Random Bit Generator (DRBG) and Entropy Source (ENT)
validation processes [NC21, Annex D.J]. FIPS 140-3 [NIS19] adopts the much more robust
methodology of the NIST SP 800-90 series instead [BK15, TBK+18, BKR+21].

SP 800-90B also forms the basis for NIAP Entropy Assessment Reports (EAR), used
in U.S. Government NSS and Common Criteria Protection Profiles [NIA13a, NIA13b].

The SP 800-22 document mainly finds use by amateur cryptographers and vendors of
insecure systems, as it trivializes random bit generator validation to black-box statistical
testing. Its use as evidence of security usually signals that competent specialists have not
been involved in the design and analysis of a random bit generator.

1January 12, 2022: Announcement of Proposal to Revise Special Publication 800-22 Revision 1a
https://csrc.nist.gov/News/2022/proposal-to-revise-sp-800-22-rev-1a

mailto:mjos@pqshield.com
https://csrc.nist.gov/News/2022/proposal-to-revise-sp-800-22-rev-1a

2 Comments on SP 800-22 Rev. 1a Decision Proposal

2 The Tests: Cryptanalysis-in-a-Box?
The SP 800-22 Rev. 1a document [RSN+10] contains descriptions of 15 statistical tests,
which have also been implemented in a software package available from the NIST website2.
We note that the current Chinese standard GM/T 0005-2012 [SCA12] contains a very
similar set of 15 tests. The Chinese standard is also coming into a review, with a revised
standard GM/T 0005-2021 coming into effect in May 2022 (the changes in the revised
Chinese standard are unknown to the author at the time of writing.)

The 15 tests take in a sequence of output bits, typically 1,000,000 bits, and produce P
values based on that information, which leads to a PASS/FAIL metric (with a very high
false-positive rate, as noted in other comments.)

1. Frequency (Monobit). 9. Maurer Universal Statistical.
2. Block Frequency. 10. The Linear Complexity Test.
3. Runs Test. 11. The Serial Test.
4. Longest Run of Ones. 12. Approximate Entropy.
5. Binary Matrix Rank Test. 13. Cumulative Sums (Cusums).
6. Discrete Fourier (Spectral). 14. Random Excursions.
7. Non-overlapping Template. 15. Random Excursions Variant.
8. Overlapping Template Matching.

3 A Systemic Problem: Security is Not Considered
The SP 800-22 tests are based on a purely statistical interpretation of uniform and
independent randomness [RSN+10, Sect. 1.1.1]. The definitions and stated goals of the
tests do not relate to computational indistinguishability [KL14, Sect. 7] or other relevant
cryptographic security notions. Randomness is not viewed from a cryptanalytic security
perspective: How hard is it to “break” the random and pseudorandom generators?

The word “cryptanalysis” can be found in the abstract of SP 800-22 three times, but
not once in the body of the publication. Some of the included tests have a cryptanalytic
flavor, however. As an illustrative example, the “linear complexity test” is motived by
stating that “An LFSR that is too short implies non-randomness.” That may be true in
relation to some non-cryptographic notion of randomness, but every cryptanalyst knows
that a plain LFSR is never a secure pseudorandom generator.

Since LFSRs are linear, it is a simple exercise in cryptanalysis to solve the internal
state of a fixed LFSR from the output. The linear algebra required runs in polynomial
time; hence plain LFSRs are cryptanalytically broken regardless of their length.

Suggestion: Cryptanalysis, Security Proofs, and Design Reviews. The process of
assessing the security of a pseudorandom number generator is similar to that of other
cryptographic modes and constructions. In practice, one wishes to demonstrate (via
mathematical proofs) that breaking a DRBG (“pseudorandom generator” in the language
of SP 800-22) implies a break of an underlying vetted cryptographic algorithm such as
AES or SHA-2/3.

The security of physical entropy sources is mainly assessed via review and testing of
entropy production processes (stochastic models) and the robustness of their implemen-
tation. These are much more important aspects than the statistical uniformity of final
output, which can be guaranteed with cryptographic conditioning in any case. In fact,
entropy sources should avoid hiding statistical properties in their unconditioned “raw
noise”; access to the raw noise is necessary for validating the actual entropy content and
also the correctness of their stochastic models (See Section 5).

2Visited February 10, 2022: “NIST SP 800-22: Download Documentation and Software.” https:
//csrc.nist.gov/projects/random-bit-generation/documentation-and-software

https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software

Markku-Juhani O. Saarinen 3

4 Validating Implementations, not Uniform Distributions
“Testing Strategy and Result Interpretation” [RSN+10, Sect. 4] suggests that the 15
statistical tests are applied to random bit generators based on cryptographic hash functions
and block ciphers. It should be obvious that no new or useful statistical features can be
found in the output of standard cryptographic algorithms with these tests. This is true
even if the algorithms are run without any secret seeding material.

The only sensible motivation for using the tests to test a pseudorandom bit generator
would be to discover flaws in their implementation. However, a buggy RNG should not
be used, even if the bugs are so minor that the output still passes these trivial tests. It
is much more useful to validate that a cryptographic hash function or block cipher is
implemented according to the standard than it is to verify their statistical qualities.

As noted, even good physical entropy sources are generally not expected to yield strictly
uniform output. In security evaluation NIST can forbid the direct use of physical entropy
sources without cryptographic post-processing (conditioning) [BKR+21].

Suggestion: Validate the Implementations. Clearly, a statistical test is a poor way
of verifying that a deterministic algorithm has been correctly implemented. Typically
one would at least run DRBGs with known or chosen inputs and utilize Known Answer
Tests (KATs) with reference tests vectors. This is one of the things that is done in NIST’s
CAVP3. For additional assurance, one can use formal methods to validate the correctness
of the implementation, which is standard practice with hardware modules.

5 Suggestion for a replacement SP: Stochastic Models
There is a statistical aspect of random bit generation that a replacement to SP 800-22
could address: Entropy Source Stochastic Models. While stochastic models are mentioned
and suggested (they’re a “may” not a “should”) in SP 800-90B [TBK+18, Sect 3.2.2], the
creation of stochastic models is not really addressed in the current SP 800-90 series.

Stochastic models are a common requirement in the AIS-20/31 [KS11] evaluation
methodology from German BSI. It would benefit vendors and testing labs if the NIST and
BSI requirements were further harmonized. The definition of a stochastic model for an
entropy source (or a "TRNG" in AIS-20/31) is already very similar in the two documents.

A stochastic model is a mathematical description (of the relevant properties)
of an entropy source using random variables. A stochastic model used for an
entropy source analysis is used to support the estimation of the entropy of the
digitized data and finally of the raw data. In particular, the model is intended
to provide a family of distributions, which contains the true (but unknown)
distribution of the noise source outputs. Moreover, the stochastic model should
allow an understanding of the factors that may affect the entropy. The distribu-
tion of the entropy source needs to remain in the family of distributions, even
if the quality of the digitized data goes down. [TBK+18, Appendix B, Page 65]

In practice, one studies the noise source and identifies the stochastic processes that
generate entropy. Understanding the entropy process allows a stochastic model, output
distributions, and min-entropy estimates to be developed. It also helps in deriving failure
threshold parameters for the health tests required by SP 800-90B. A stochastic model can
also have environmental components (e.g., temperature, voltage, interference metrics).

The statistical hypothesis testing (in entropy source validation) would mainly involve
testing whether a physical entropy source behaves as predicted by its stochastic model.

3NIST Cryptographic Algorithm Validation Program https://csrc.nist.gov/projects/
cryptographic-algorithm-validation-program

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program

4 Comments on SP 800-22 Rev. 1a Decision Proposal

A Appendix: All the bad “Reference Generators”
Appendix D of SP 800-22 contains descriptions of “Reference Pseudorandom Number
Generators.” It is unclear what the purpose of these generators is, apart from testing the
proposed statistical suite itself.

We use this to illustrate certain specific features of secure pseudorandom number
generators (DRBGs) that can be assessed in a design review. This is in addition to the
standard high-level considerations of statistical unconspiciousness, and (enhanced) forward
and backward security [KS11, Sect 2.2.2].

• Protection of private state. The determination of the internal state from DRBG
output should be demonstratively hard. Analysis: All of the generators in Appendix
D fail in this task, either by design, due to the use of weak cryptography, or due to
potential backdoor access.

• Private state size. Pseudorandom number generator (DRBG) should have a
sufficiently large private internal state to resist cryptanalysis. Due to time-memory
tradeoff attacks, no less than 384 bits suffices for a 256-bit security level for a DRBG
with substantial data output. Analysis: All generators in Appendix D fail to varying
degree.

• Seeding. The internal state must be seeded with sufficient entropy before it can be
used to produce output. Analysis: Not addressed by SP 800-22 or its generators.

• Implementation correctness and integrity. Analysis: Not addressed by SP
800-22 or its generators.

• Quantum Safety. The use of primitives that rely on the hardness of problems
for which fast quantum attacks exist (e.g. factoring and the elliptic curve discrete
logarithm problem [Sho94]) are not suitable for use with quantum-safe cryptography.
Analysis: The BBSG and MSG generators explicitly fail in this aspect, possibly
MODEXP too.

• Absence of trapdoors / backdoors. The existence of any “public key trapdoor”
function in a place where secure symmetric cryptography could be used is often
an indication that the generator can be used to instantiate a covert channel or a
backdoor. While a failure to protect the private state effectively broadcasts secrets,
“unique-access” backdoors generally require public-key trapdoor functions. With such
a backdoor, a third party can choose the public instantiation parameters so that a
“private key” allows the secret state to be covertly determined from DRBG output.
Analysis: The BBSG and MSG generators allow this, possibly MODEXP too.

A.1 Linear Congruential Generator (LCG)
The first “reference generator” in Appendix D is a multiplicative congruential generator,
attributed to Fishman and Moore in the text, but really proposed by D. H. Lehmer in
1949 [Leh51] – Lehmer even proposed the specific Mersenne prime modulus p = 231 − 1
used. Multiplicative generators can be seen as a subset of linear congruential generators
with the addition constant set to zero, although their analysis is slightly different.

Note on the description and implementation of LCG. Section D.1 offers a definition for
a multiplicative generator as zi+1 = a ∗ zi mod (231 − 1), without stating what the a value
is. Instead, the text states that “a is a function of the state,” which is clearly incorrect.
Examination of the code and outputs reveals it to be a = 950706376, which leads to a
maximum (231 − 2) period.

Markku-Juhani O. Saarinen 5

The code (function lcg_rand() in src/generators.c) is a literal, line-by-line trans-
lation to C of the 1980s era Fortran code written by L. R. Moore of RAND corporation.
The original can be found in [Fis96, Fig. 7.3, p. 604]. The reference code implements
the Lehmer iteration (seed = (seed * 950706376) % 0x7fffffff;) with five double-
precision multiplications, four full divisions, three calls to the floor() function, and some
additional arithmetic. Perhaps this made sense with a specific 1980s computer without an
integer multiplier, but we doubt it. We noticed the code does not work correctly under
more aggressive floating-point optimization levels; it is dependent on specific IEEE 754
floating-point properties in a very “fragile” manner.

We note that the (mod p) reduction can be easily implemented with a shift and an
add since 231 ≡ 1 (mod p). No division is required, just a single 31× 31-bit multiply.

Weaknesses. Even if we ignore the cryptanalytically trivial 31-bit state size, a generator
of this type can be rapidly attacked and distinguished from random [FHK+88].

A.2 Quadratic Congruential Generator I (QCG-I)
The quadratic generator QCG-I is characterized by iteration xi+1 = x2

i (mod p), a 512-bit
p, and starting point x0. The values xi are used directly as 512-bit blocks.

Weaknesses. The generator outputs its entire state. From xi it is trivial to compute
xi+1 and also the two square roots ±xi−1. Hence the generator has neither forward nor
backward security.

Statistically, the most significant bit of each 512-bit block will be biased by 2−512p ≈
0.5956 since xi < p. The test suite does not seem to detect it, however. The bias leads to
a trivial, low-complexity statistical distinguisher against the generator.

A.3 Quadratic Congruential Generator II (QCG-II)
The QCG-II generator is based on iteration xi+1 = 2x2

i + 3xi + 1 (mod 2512).

Weaknesses. Entire 512-bit blocks are output, including the least significant bits. The
generator allows both prediction and backtracking.

QCG-II does not have good statistical properties since there is no information flow
from high-order bits towards the lower-order bits. The least significant bits xi mod 2m

will form a cycle with period of at most xm. For example, the least significant bit of each
512-bit block alternates in each block. The property leads to a trivial, low-complexity
distinguisher against the generator.

A.4 Cubic Congruential Generator (QCG)
The iteration used in GCQ is xi+1 = x3

i (mod 2512). We observe that this is equivalent to
xi = x3i

0 (mod 2512). The entire variable {xi} is output.

Weaknesses. The output blocks xi can be reduced to smaller modulus size 2m for
analysis. As a simple observation, we note that the least significant byte satisfies xi ≡
xi+16 (mod 28); the cycle is only 16. As a result, there will be an equivalent byte repeating
with distance 16 ∗ (512/8) = 1024 bytes, which should be detectable purely statistically
– but is not. These properties lead to trivial, low-complexity distinguishers against the
generator.

6 Comments on SP 800-22 Rev. 1a Decision Proposal

A.5 Exclusive OR Generator (XORG)
The generated sequence starts with an initial value for x1, x1, . . . , x127 and applies the
recurrence xi = xi−1 ⊕ xi−127 for i ≥ 128 to generate bits.

It is not explained that XORG implements an LFSR with an irreducible generator
polynomial x127 + x126 + 1. Indeed its cycle 2127 − 1 is prime too.

Weaknesses. There is no secret state with xi, and hence the XORG / LFSR has no
cryptanalytic security – despite attractive statistical properties and a long period. One
can trivially both predict and backtrack outputs. A low-complexity attack models the
LRSR as a system of linear equations over GF(2) and is able to distinguish it from random
even if a continuous “block” of output bits are not available.

A.6 Modular Exponentiation Generator (MODEXP)
The MODEXP generator is loosely based on the old Digital Signature Standard (DSS).
One sets x1 = gseed mod p and xi+1 = gyi mod p for i ≥ 1 where yi = xi mod 2160. The
output sequence consists of concatenated xi values.

Weaknesses. Since full output blocks xi are available, the sequence has no security. It
can also be also trivially distinguished from random since the values satisfy xi < p.

Some parameters are given, but not those that would be needed to assess the statistical
quality of the generator. The (p, g) values are the same as the (p, x0) values for QCG-1:

p = 987b6a6bf2c56a97291c445409920032499f9ee7ad128301b5d0254aa1a9633f

dbd378d40149f1e23a13849f3d45992f5c4c6b7104099bc301f6005f9d8115e1

g = 3844506a9456c564b8b8538e0cc15aff46c95e69600f084f0657c2401b3c2447

34b62ea9bb95be4923b9b7e84eeaf1a224894ef0328d44bc3eb3e983644da3f5

We note that the order of the generator g is not given; if it is very small, then only a
small number of different xi values would be generated.

Checking for backdoors. To see how the backdoor could have been created into a
generator of this type, we examine the factorization of the multiplicative order p− 1. Since
the order of g was not given, it was left to the author to discover the factorization4:

p− 1 = 25 ∗ 11 ∗ 47 ∗ 151 ∗ 175916087 ∗ 22940963671 ∗ p160 ∗ p269,

where the two largest prime components are

p160 = 1213137149285565671196618904624637288561542502557, and
p269 = 6529682639905403810339488131303178790370220143281

09742486312983876569235660511721.

We find that p160 is the order of the value g presented: gp160 ≡ 1 (mod p).
It is also trivial to find weaker generators. For example,

h = 31fbe4d542ad14935055b18465de2a19d261d3fd0625c565d1e17dceaebc479e

860bcb11a6d6697a0b1fd7172567600a8808df985e2c88379bcb3a565db805e4

4The smaller factors were discovered on a personal laptop in a few minutes using GMP-ECM Elliptic
Curve Method (ECM) factorization software. The remaining 429-bit composite was factored into p160 ∗p269
in about 95 minutes of computation with a 2x16-core (64-thread) AMD EPYC 7302 server using CADO-NFS
Number Field Sieve (NFS) software.

Markku-Juhani O. Saarinen 7

satisfies h11 ≡ 1 mod p and hence g = h could generate at most 11 different 512-bit xi

values. A shorter cycle is more likely, with the expected size being O(
√
n) where n is the

order of the multiplicative subgroup generated by g.

A.7 Secure Hash Generator (G-SHA1)

SP 800-22 does not actually describe this generator but suggests looking at [MvOV96, Chap
5, P. 175]. Investigation of the code confirms that actual SHA-1 is not used, but a variant
G with no message padding. The comment in STS 2.1.2, line 370 of src/generators.c
states: “This is the generic form of the generator found on the last page of the Change
Notice for FIPS 186-2”.5. This 186-2 generation method is obsolete as it produced biased
random numbers (rejection sampling was not used, just reduction mod q).

The “generic form” actually implemented does not use the “Xseed” variable provided
in the document. It sets y0 = Xkey and iterates for x ≥ 1:

xi ← G(t, yi−1)
yi ← yi + xi + 1 mod 2160

Where G(IV,M) is a SHA-1 variant with start state t = IV and message M with (non-
standard) zero padding. The xi values are output. This generator prevents the direct
observation of the counter state yi. Since it is not an actual counter mode, it will exhibit
a cycle length of roughly O(

√
N) ≈ 280. The security is also limited by the security of the

SHA-1 compression function.

Weaknesses. The SHA-1 algorithm was cryptanalytically broken in 2005 [WYY05] and
depreciated by NIST in 2011 [BR11]. Many types of full, practical attacks have been
demonstrated [SBK+17].

A.8 Blum-Blum-Shub (BBSG)

The name refers to [BBS86]. Here p, q ≡ 3 (mod 4) are primes and n = pq is their product.
We set an initial seed s0 and iterate si ← s2

i−1 (mod n) for i ≥ 1. The least significant bit
xi ← si mod 2 forms the random sequence.

The input parameters are fixed in the code; each p, q is 512 bits, and s is 509 bits.

Weaknesses. Since prime generation is slow and knowledge of the factorization, the
composite n is often a fixed system parameter. Such a generator allows access by those
who know the secret factors p and q of n.

A backdoor of this type was included in the SP 800-90A random bit generator specifi-
cation for a while6. The Dual_EC_DRBG method was based on the public key cryptography
of elliptic curves.

The quadratic residuosity and factoring problems underlying BBS are, of course,
vulnerable to Shor’s quantum algorithm [Sho94]. Hence BBSG is not quantum-safe.

5An apparent reference to “FIPS Publication 186-2 (with Change Notice 1)”, dated October 5,
2001. https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2001-10-05/documents/
fips186-2-change1.pdf

6Press release April 21, 2014, “NIST Removes Cryptography Algorithm from Random
Number Generator Recommendations.” https://www.nist.gov/news-events/news/2014/04/
nist-removes-cryptography-algorithm-random-number-generator-recommendations

https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2001-10-05/documents/fips186-2-change1.pdf
https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2001-10-05/documents/fips186-2-change1.pdf
https://www.nist.gov/news-events/news/2014/04/nist-removes-cryptography-algorithm-random-number-generator-recommendations
https://www.nist.gov/news-events/news/2014/04/nist-removes-cryptography-algorithm-random-number-generator-recommendations

8 Comments on SP 800-22 Rev. 1a Decision Proposal

A.9 Micali-Schnorr Generator (MSG)
The name refers to [MS88, MS91]. The MSG generator is not described in detail in
[RSN+10, Appendix D.9]. The STS 2.1.2 code has fixed 512-bit prime factors p and q,
and sets the exponent as e = 11. A fixed 186-bit seed x0 is set as well. The output
sequence consists 837-bit lower-order chunks zi, while the high 187 bits are used for the
next exponentiation.

yi ← xe
i−1 mod n

xi ← byi/2837c
zi ← yi mod 2837

Weaknesses. The security of the Micali-Schnorr scheme relies on the difficulty of factoring
n and some additional statistical assumptions. It is vulnerable to Shor’s quantum computing
attack. The generator requires modular exponentiation and is therefore relatively slow.

A Micali-Schnorr generator MS_DRBG was proposed for standardization alongside the
backdoored Dual_EC_DRBG. It is included in ISO 18031 [ISO11]. The standard text includes
only the “default” composite moduli n, not their factors p, q. These unknown factors are
likely to form a backdoor for inverting the random number generator.

A.10 Bonus: Algebraic Irrational Numbers
Appendix F.3 of SP 800-22 [RSN+10] and the STS 2.1.2 test suite discuss binary expansions
of four irrational numbers; constants e and π,

√
2,
√

3. It is not explained why these
particular numbers are included. From the perspective of “randomness testing”, some of
them have distinguishing properties.

Weaknesses. While all of these numbers are irrational (not expressible as a fraction), only
e and π are transcendental numbers. The square roots

√
2 and

√
3 are algebraic numbers

(roots of integer polynomials), and hence their automatic identification and distinguishing
from random is relatively easy7.

Algorithms based on the LLL (Lenstra-Lenstra-Lovász [LLL82]) method can rapidly
find “minimal” polynomial coefficients from the binary expansion (of a part) of an algebraic
number. Standard computer algebra systems readily provide access to these methods; they
are well known to cryptanalysts. Hence algebraic number binary expansions should not be
considered indistinguishable from random, and the process of computing them is not a
“one-way function” either.

Bibliography
[BBS86] Lenore Blum, Manuel Blum, and Mike Shub. A simple unpredictable pseudo-

random number generator. SIAM J. Comput., 15(2):364–383, 1986. doi:
10.1137/0215025.

[BK15] Elaine Barker and John Kelsey. Recommendation for random number generation
using deterministic random bit generators. NIST Special Publication SP 800-
90A Revision 1, June 2015. doi:10.6028/NIST.SP.800-90Ar1.

[BKR+21] Elaine Barker, John Kelsey, Allen Roginsky, Meltem Sönmez Turan, Darryl
Buller, and Aaron Kaufer. Recommendation for random bit generator (RBG)
constructions. Draft NIST Special Publication SP 800-90C, March 2021.

7Many thanks to Sophie Schmieg for a helpful discussion about efficient solutions to this problem.

https://doi.org/10.1137/0215025
https://doi.org/10.1137/0215025
https://doi.org/10.6028/NIST.SP.800-90Ar1

Markku-Juhani O. Saarinen 9

[BR11] Elaine Barker and Allen Roginsky. Transitions: Recommendation for transi-
tioning the use of cryptographic algorithms and key lengths. NIST Special
Publication 800-131A, January 2011. doi:10.6028/NIST.SP.800-131A.

[FHK+88] Alan M. Frieze, Johan Hastad, Ravi Kannan, Jeffrey C. Lagarias, and Adi
Shamir. Reconstructing truncated integer variables satisfying linear congruences.
SIAM J. Comput., 17(2):262–280, apr 1988. doi:10.1137/0217016.

[Fis96] George Fishman. Monte Carlo. Springer, 1996. doi:10.1007/
978-1-4757-2553-7.

[ISO11] ISO. Information technology– security techniques – random bit generation.
Standard ISO/IEC 18031:2011, International Organization for Standardization,
2011. URL: https://www.iso.org/standard/54945.html.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography,
Second Edition. CRC Press, 2014. doi:10.1201/b17668.

[KS11] Wolfgang Killmann and Werner Schindler. A proposal for: Functionality
classes for random number generators. AIS 20 / AIS 31, Version 2.0,
English Translation, BSI, September 2011. URL: https://www.bsi.bund.de/
SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_
31_Functionality_classes_for_random_number_generators_e.html.

[Leh51] Derrick H Lehmer. Mathematical methods in large-scale computing units.
Annu. Comput. Lab. Harvard Univ., 26:141–146, 1951.

[LLL82] H.W. jr. Lenstra, A.K. Lenstra, and L. Lovász. Factoring polynomials with
rational coefficients. Mathematische Annalen, 261:515–534, 1982. doi:10.
1007/BF01457454.

[MS88] Silvio Micali and Claus-Peter Schnorr. Efficient, perfect random number
generators. In Shafi Goldwasser, editor, Advances in Cryptology - CRYPTO
’88, 8th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 21-25, 1988, Proceedings, volume 403 of Lecture Notes in Computer
Science, pages 173–198. Springer, 1988. doi:10.1007/0-387-34799-2_14.

[MS91] Silvio Micali and Claus-Peter Schnorr. Efficient, perfect polynomial random
number generators. Journal of Cryptographic Engineering, 3(3):157–172, 1991.
doi:10.1007/BF00196909.

[MvOV96] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1996. URL: http://cacr.uwaterloo.ca/
hac/, doi:10.1201/9781439821916.

[NC21] NIST and CCCS. Implementation guidance for FIPS 140-3 and the crypto-
graphic module validation program. CMVP, November 2021. URL: https://
csrc.nist.gov/Projects/cryptographic-module-validation-program/
fips-140-3-ig-announcements.

[NIA13a] NIAP. Clarification to the entropy documentation and assessment annex. Na-
tional Information Assurance Partnership (NIAP), Common Criteria Evaluation
and Validation Scheme, 2013.

[NIA13b] NIAP. Entropy submission and review process. National Information Assurance
Partnership (NIAP), Common Criteria Evaluation and Validation Scheme, 2013.

https://doi.org/10.6028/NIST.SP.800-131A
https://doi.org/10.1137/0217016
https://doi.org/10.1007/978-1-4757-2553-7
https://doi.org/10.1007/978-1-4757-2553-7
https://www.iso.org/standard/54945.html
https://doi.org/10.1201/b17668
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.html
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/0-387-34799-2_14
https://doi.org/10.1007/BF00196909
http://cacr.uwaterloo.ca/hac/
http://cacr.uwaterloo.ca/hac/
https://doi.org/10.1201/9781439821916
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/fips-140-3-ig-announcements
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/fips-140-3-ig-announcements
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/fips-140-3-ig-announcements

10 Comments on SP 800-22 Rev. 1a Decision Proposal

[NIS19] NIST. Security requirements for cryptographic modules. Federal Information
Processing Standards Publication FIPS 140-3, March 2019. doi:10.6028/
NIST.FIPS.140-3.

[RSN+10] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, Elaine Barker, Stefan
Leigh, Mark Levenson, Mark Vangel, David Banks, Alan Heckert, JamesDray,
and San Vo. A statistical test suite for random and pseudorandom number
generators for cryptographic applications. NIST Special Publication SP 800-22
Revision 1a, April 2010. doi:10.6028/NIST.SP.800-22r1a.

[SBK+17] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik
Markov. The first collision for full SHA-1. In Jonathan Katz and Hovav
Shacham, editors, Advances in Cryptology - CRYPTO 2017 - 37th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 20-24,
2017, Proceedings, Part I, volume 10401 of Lecture Notes in Computer Science,
pages 570–596. Springer, 2017. doi:10.1007/978-3-319-63688-7_19.

[SCA12] SCA. Randomness test specification. Cryptography Industry Standard of the
P.R. China GM/T 0005-2012, March 2012.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In 35th Annual Symposium on Foundations of Computer
Science, Santa Fe, New Mexico, USA, 20-22 November 1994, pages 124–
134. IEEE, 1994. URL: https://arxiv.org/abs/quant-ph/9508027, doi:
10.1109/SFCS.1994.365700.

[TBK+18] Meltem Sönmez Turan, Elaine Barker, John Kelsey, Kerry A. McKay, Mary L.
Baish, and Mike Boyle. Recommendation for the entropy sources used for
random bit generation. NIST Special Publication SP 800-90B, January 2018.
doi:10.6028/NIST.SP.800-90B.

[WYY05] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full
SHA-1. In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005: 25th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 14-18, 2005, Proceedings, volume 3621 of Lecture Notes in Computer
Science, pages 17–36. Springer, 2005. doi:10.1007/11535218_2.

https://doi.org/10.6028/NIST.FIPS.140-3
https://doi.org/10.6028/NIST.FIPS.140-3
https://doi.org/10.6028/NIST.SP.800-22r1a
https://doi.org/10.1007/978-3-319-63688-7_19
https://arxiv.org/abs/quant-ph/9508027
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.6028/NIST.SP.800-90B
https://doi.org/10.1007/11535218_2

	Introduction
	The Tests: Cryptanalysis-in-a-Box?
	A Systemic Problem: Security is Not Considered
	Validating Implementations, not Uniform Distributions
	Suggestion for a replacement SP: Stochastic Models
	Appendix: All the bad ``Reference Generators''
	Linear Congruential Generator (LCG)
	Quadratic Congruential Generator I (QCG-I)
	Quadratic Congruential Generator II (QCG-II)
	Cubic Congruential Generator (QCG)
	Exclusive OR Generator (XORG)
	Modular Exponentiation Generator (MODEXP)
	Secure Hash Generator (G-SHA1)
	Blum-Blum-Shub (BBSG)
	Micali-Schnorr Generator (MSG)
	Bonus: Algebraic Irrational Numbers

