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ABSTRACT
We present gOTzilla, a protocol for interactive zero-knowledge

proofs for large disjunctive statements of the following for-

mat: given publicly known circuit 𝐶 , and set of values 𝑌 =

{𝑦1, . . . , 𝑦𝑛}, prove knowledge of a witness 𝑥 such that𝐶 (𝑥) =
𝑦1 ∨𝐶 (𝑥) = 𝑦2 ∨ · · · ∨𝐶 (𝑥) = 𝑦𝑛 . These type of statements

are extremely important for the proof of assets (PoA) prob-

lem in cryptocurrencies where a prover wants to prove the

knowledge of a secret key 𝑠𝑘 that associates with the hash of

a public key 𝐻 (𝑝𝑘) posted on the ledger.

gOTzilla is based on the MPC in the head (MPCitH) para-

digm and is based on the observation that if we restructure

the proof statement to an equivalent of proving knowledge of

(𝑥,𝑦) such that (𝐶 (𝑥) = 𝑦) ∧ (𝑦 = 𝑦1 ∨ · · · ∨𝑦 = 𝑦𝑛)), then we

can reduce the disjunction of equalities to 1-out-of-N oblivi-

ous transfer (OT). We additionally provide a concrete, efficient

extension of our protocol for the case where 𝐶 combines alge-

braic and non-algebraic statements (which is the case in the

PoA application). We achieve an asymptotic communication

cost of 𝑂 (log𝑛) plus the proof size of the underlying MPCitH

protocol. While related work has similar asymptotic complex-

ity, our approach results in concrete performance improve-

ments. We implement our protocol and provide benchmarks.

Concretely, for a set of size 1 million entries, the total run-time

of our protocol is 14.89 seconds using 48 threads, with 6.18 MB

total communication, which is about 4x faster compared to

the state of the art when considering a disjunctive statement

with algebraic and non-algebraic elements.

1 INTRODUCTION
A zero-knowledge (ZK) proof [27] allows a prover P to con-

vince a verifier V that a statement 𝑥 is true without reveal-

ing any further information. ZK proofs have numerous ap-

plications: they are used as a building block in various cryp-

tographic constructions such as secure multiparty computa-

tion [26], signatures [11] and anonymous credentials [16] just

to name a few, and more recently they have been used as a

core component in privacy-preserving cryptocurrencies [13].

ZK proofs can be constructed generically for any NP lan-

guage [26], however such generic constructions are usually

not efficient. In order to achieve practical constructions, cus-

tomized ZK proofs have been designed for specific languages

(e.g. particular algebraic statements), or with specific optimiza-

tion goals (e.g. proof size succinctness or non-interactiveness).

Many different approaches have been proposed, each with

different trade-offs on the types of supported languages, ef-

ficiency goals and underlying assumptions. In terms of ef-

ficiency, the tradeoffs appear in the prover complexity, the

verifier complexity, and the communication costs.

Our focus. In our work, we focus on zero-knowledge proofs

that can efficiently support very large disjunctive statements.

We are inspired by the Proof of Assets (PoA) problem in

UTXO based cryptocurrencies where a prover (usually some

exchange or other organization) wishes to convince a verifier

that it knows the respective private keys of at least a certain
number of coins on the blockchain, without revealing which

those coins are. In Bitcoin, and other cryptocurrencies with

similar structure, PoA can be expressed as a disjunctive ZK
proof where the statement is a set of hashed public keys (often

called addresses), and the witness is one or more secret keys

that correspond to some of the public keys. The challenge

when computing a ZK proof for PoA is bifold: (a) the size of

the statement grows with the total size of the Bitcoin UTXO

set, which has hundreds of millions of elements, and (b) the

statement is a combination of an algebraic circuit – the discrete

log relation between (𝑠𝑘, 𝑝𝑘) – and a Boolean hash function,

since the prover needs to prove that it knows the secret key

for one of the hashed public keys. Concrete protocols for the

PoA application have been designed in the literature [5, 21],

but as explained in related work (Section 1.1), they fall short

in addressing the two main design challenges simultaneously.

Our Construction. Focusing on the first challenge of dealing

with very large statements, we beginwith a simple observation.

We are interested in statements of the following form. Given

some publicly known circuit 𝐶 , and some publicly known

set of values 𝑌 = {𝑦1, . . . , 𝑦𝑛}, the prover wishes to prove

that it knows a witness 𝑥 such that 𝐶 (𝑥) = 𝑦1 ∨ 𝐶 (𝑥) =

𝑦2 ∨ · · · ∨𝐶 (𝑥) = 𝑦𝑛 . A simple restructuring of this statement

allows us to remove the 𝑛 copies of 𝐶 , greatly reducing the

statement size. The prover witness is modified to be a pair of

values, (𝑥,𝑦), such that (𝐶 (𝑥) = 𝑦) ∧ (𝑦 = 𝑦1 ∨ · · · ∨𝑦 = 𝑦𝑛)) .
As we discuss below, this provides significant improvement

even for existing proof systems that support disjunctions, as



the size of an equality circuit is much smaller than |𝐶 |.∗ Once
re-written in this form, we are able to reduce the disjunction

of equalities to 1-out-of-n OT.

We build a ZK proof using the MPC in the head paradigm

(MPCitH). Our main observation is that when proving that 𝑦

is equal to one of the elements in the public set 𝑌 , it suffices to

enforce constraints on the Prover’s set of inputs to the MPC

in the head. We do that by having the Verifier prepare an en-

coding of all 𝑛 possible inputs 𝑦𝑖 for the MPCitH and having

the Prover select a single input encoding obliviously, using

1-out-of-n OT. The Verifier creates these encodings such that

the portions of the encoded input that are revealed to the veri-

fier in the opened MPCitH views are identical for all 𝑦𝑖 . This

ensures that the view can be safely opened for verification,

without revealing the index 𝑖 . We implement 1-out-of-n OT

using Private Information Retrieval (PIR). Note that PIR is a

relaxation of 1-out-of-n OT, in that it potentially allows the

receiver to learn more than one value. We strengthen PIR to

OT by performing a zero-knowledge proof on the Prover’s

PIR query to show that it is well-formed (i.e. a valid ciphertext

encrypting a query for only a single database element). In our

1-out-of-n OT protocol (as well as in the rest of the protocol)

we enforce honest Verifier behavior by committing to, and

later revealing, the Verifier’s random tape, allowing the Prover

to check that the Verifier’s messages have all followed the

protocol. We can only do this because the Verifier’s inputs are

random challenges that do not require privacy beyond the end

of the protocol; for general purpose 1-out-of-n OT, this ap-

proach cannot be used for ensuring the honest behavior of the

sender. By building 1-out-of-n OT from PIR, we achieve com-

munication complexity of𝑂 (log𝑛), which allows us to achieve
an overall communication cost of𝑂 (log𝑛) +Π𝑃𝑟𝑜𝑜 𝑓 𝑠𝑖𝑧𝑒 where
Π𝑃𝑟𝑜𝑜 𝑓 𝑠𝑖𝑧𝑒 denotes the proof size of the MPCitH protocol. We

present our protocol in Section 4.

ZK Proofs on Mixed Statements. An efficient disjunctive proof

however, is not enough to efficiently prove the concrete PoA

statement. One could convert our algebraic statement (on the

relation between (𝑠𝑘, 𝑝𝑘)) to a Boolean circuit, but as we dis-

cuss later in Section 6 these would result in a circuit with

millions of gates. A number of works examined the problem

of efficiently combining algebraic to non-algebraic statements

in a ZK proof. Chase et al. [18] provided one of the first tech-

niques based on Garbled Circuits, MACs and Oblivious Trans-

fer which was further optimized in [5], and later Backes et al.

[8] presented a technique on an MPCitH Σ-protocol inspired
from ZKBoo [24]. In Section 5 we present an extension of our

disjunctive proof for mixed statements based on Oblivious

Transfer and MPC-in-the-head, rather than the less efficient

Garbled Circuit approach of Chase et al. [18]. Finally, in the

Appendix we show an extension of our mixed statements pro-

tocol that also proves the value that corresponds to the secret

key (i.e. witness) of the Prover (a property needed towards

designing a PoA protocol), which utilizes the same technique.

Evaluation Results.We evaluate gOTzilla on top of an exist-

ing PIR implementation, namely SealPIR [2], by implementing

∗
Generically, a proof system that efficiently supports disjunctions might

not support the conjunction of𝐶 with the disjunction of𝑛 equalities. In practice,

existing systems seem to handle this change without significant complication.

our techniques to derive a 1-out-of-𝑛 OT protocol, while treat-

ing the underlyingMPCitH protocol as a black box. Our results

are presented in detail in Section 6, where we show that we can

prove knowledge over a disjunctive statement of 𝑛 = 2
20

ele-

ments in 14.89 seconds, with 6.18 MB of communication and 10

seconds network latency at the worst case, for statistical secu-

rity parameter _ = 40. Our evaluation shows a significant im-

provement in total protocol run-time over Mac’n’Cheese [10]

the state of the art in disjunctive proofs, which has similar

asymptotic costs to us as discussed in the RelatedWork section

below. .

1.1 Related Work
We provide a short, non exhaustive, overview of common ZK

proof types for disjunctive proofs and mixed statements, as

well as an overview of solutions specific to the PoA problem.

Standard ZK Techniques. Σ-protocols form a well studied

class of efficient protocols specifically for algebraic statements,

such as discrete logarithms and roots [29, 36], while garbled-

circuit approaches were used to efficiently prove Boolean cir-

cuits [32]. We note that if one attempted to use a Σ-protocol to
prove a statement about a function represented as a Boolean (or

arithmetic) circuit𝐶 , both proving and verification costs would

grow linearly with the size of the circuit (a simple SHA256 eval-

uation would result in tens of thousands of exponentiations)

which makes them prohibitive for a PoA like statement.

ZK-SNARKs (Succinct Non-Interactive Arguments of Knowl-

edge) [12, 28, 35] is another well studied type of ZK proofs

that received a lot of attention the last few years due to their

use in private cryptocurrencies [13].

Their goal is to offer constant, succinct proof sizes and short

verification times. In particular, ZK-SNARKs can be verified

in time that is linear in the length of the input 𝑥 , rather than

the length of the circuit 𝐶 . However, they suffer from large

prover overhead, since they require the prover to perform a

large number of public-key operations that is proportional to

the size of the circuit representing the statement. ZK-SNARKs

are better suited for Boolean or arithmetic circuits and while

they could be used for algebraic statements, they would re-

quire circuits with thousands or millions of gates for a simple

computation like an exponentiation exploding the prover’s

cost. Finally, many ZK-SNARKS constructions, require an addi-

tional trust assumption. Namely, to guarantee soundness, they

need a common reference string (CRS) that is generated ahead

of time by a trusted party (or a distributed protocol). Some

recent works [6, 12, 33, 37, 38] use techniques such as inter-

active oracle proofs (IOP), vector oblivious linear evaluation

(VOLE) and the MPC in-the-head paradigm and do not rely on

a setup phase, yet, they still impose very high computational

costs on the prover side thus are not directly relevant to the

considered PoA application.

Disjunctive ZK Proofs. A number of related works have ex-

amined the general problem of building efficient disjunctive

ZK proofs. Following the seminal work by Cramer et al. on

constructing standard disjunctive proofs [20], Stacked Gar-

bling [30] proposed a garbled-circuit approach for creating a

disjunctive proof with sublinear communication complexity,
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based on Jawurek et al. [32]. Later, Stacking Sigmas [25] pro-

vided a generic compiler for reducing communication complex-

ity (i.e “stacking") of disjunctive Sigma-protocols satisfying

a specific “stackable” property, and is compatible with recent

MPCitH style ZK protocols such as KKW [33] and Ligero [6].

Recently, Mac’n’Cheese [10] proposed a new, VOLE based

approach to build generic zero-knowledge proofs for disjunc-

tive statements of the form (𝑥, 𝑖) : 𝐶𝑖 (𝑥) = 𝑦𝑖 for 𝑖 ∈ {1, . . . , 𝑛}
with communication cost of𝑚𝑎𝑥𝑖 {|𝐶𝑖 |} + log𝑛. In the general

case where each 𝐶𝑖 is a different circuit, both the prover and

verifier have to execute all branches to construct or verify the

proof, causing the total computation cost to be 𝑂 (∑𝑛𝑖=1
|𝐶𝑖 |).

In the special case where all the circuits𝐶𝑖 are identical, using

our observation above that restructures the disjunctive por-

tion, their construction can be slightly modified to improve

the computational cost to 𝑂 (𝑛 + |𝐶 |).
In Table 1 we provide a comparison of basic techniques for

disjunctive statements. We note that although asymptotically

we might have similar performance as Mac’n’Cheese [10] or

Stacking Sigmas [25] combined with a suitable MPCitH pro-

tocol Π, we have significant concrete improvements. In Sec-

tion 6.1 we present a concrete comparison of our disjunctive

protocol with Mac’n’Cheese [10] to showcase our improve-

ment by 4x in runtime for the case of “mixed" disjunctive

statements. We note that there is no available implementa-

tion of Stacking Sigmas [25] for a direct comparison, how-

ever Stacking sigmas is expected to be more expensive than

Mac’n’Cheese concretely due to its underlying techniques

(Stacking sigmas relies on commitments with elliptic curve

operations which are more expensive than VOLE used in

Mac’n’cheese). We note that a caveat of our approach is that

we generally have larger memory requirements as opposed

to Mac’n’Cheese the prover and verifier are not required to

store the entire proof statement in memory. However, as we

discuss in Section 6.1, gOTzilla can optimize RAM usage by

generating the required data on the fly as needed to improve

our storage costs.

Proof of Assets. Provisions [21] was the first attempt to cre-

ate an assets proof on behalf of a cryptocurrency exchange, as

a part of a general solvency proof. The proof was constructed

using standard Σ-protocols, which however was only compat-

ible with unhashed public keys (P2PK), thus severely limiting

both the anonymity set and its practical use. Agrawal et al. [5]

made proving assets with hashed public keys possible as part

of a zk-SNARK-based protocol combined with Σ-protocols (in
a CRS model based on Pinocchio [35]), tailored for mixing

arithmetic and boolean components. However, in addition to

the setup assumptions, this approach is not efficient for large

disjunctive statements (the size of the UTXO list in Bitcoin

is in the order of hundreds of millions) as as both the com-

putational and space requirements scale linearly with its size,

its has expensive concrete costs for the prover because of the

underlying SNARKs and range proofs.

2 PRELIMINARIES
2.1 Notation.
We denote an 𝑛-dimensional vector v = {𝑣1, . . . , 𝑣𝑛}. By 𝑎 | |𝑏
we denote concatenation of elements 𝑎 and 𝑏. A probabilistic

polynomial-time (PPT) algorithm 𝐵 with input 𝑎 and output

𝑏 is written as 𝑏 ← 𝐵(𝑎). By
⊕

we define a bit-wise XOR

operation. We define the statistical security parameter by _.

2.2 Basic Cryptographic Building Blocks
Commitment Schemes. A commitment protocol between a

committer and a receiver consists of two phases: a committing

phase where the committer on input a message𝑚 and public

parameters pp, samples randomness 𝑟 and computes a commit-

ment C𝑚 ← Com(pp,𝑚, 𝑟 ), and a de-committing or opening

phase where the committer de-commits C𝑚 to𝑚. A commit-

ment scheme should be hiding, i.e.C𝑚 should not reveal any in-

formation about𝑚 and biding, i.e. it should be hard for the com-

mitter to find𝑚′ such that Com(pp,𝑚, 𝑟 ) = Com(pp,𝑚′, 𝑟 ′)
with𝑚′ ≠𝑚. In the rest of the paper, we imply inputs pp and

𝑟 and omit them for simplicity.

MACs. A circuit-based one-time Message Authentication

Code (MAC) on 𝑥 is defined as 𝑡 = 𝑎𝑥 + 𝑏 where 𝑎 and 𝑏 are

randomly sampled by the verifier, and can be opened after the

prover has committed to 𝑡 [18].

Homomorphic Encryption. An (additive) homomorphic en-

cryption scheme is public-key encryption scheme equipped

with an operation ⊞ over the ciphertext space such that for

any two plaintexts 𝑎, 𝑏, 𝐷𝑒𝑐 (𝐸𝑛𝑐 (𝑎) ⊞ 𝐸𝑛𝑐 (𝑏)) = 𝑎 + 𝑏.

2.3 Zero-knowledge Proofs
A zero-knowledge (ZK) proof 𝜋 enables a prover 𝑃 who holds

some private witness 𝑤 for a public instance 𝑥 and an NP-

relation 𝑅, to convince a verifier 𝑉 that some property of 𝑤

is true i.e. 𝑅(𝑥,𝑤) = 1, without 𝑉 learning anything more. To

denote a ZK proof statement we use the Camenisch-Stadler

notation [17] as 𝜋 = {(𝑤) : 𝑅(𝑥,𝑤) = 1}(𝑥).

Definition 1. A zero-knowledge proof between 𝑃 and 𝑉 for
an NP relation 𝑅 must satisfy the following properties:
• Complenetess: If 𝑅(𝑥,𝑤) = 1 and both players are honest
𝑉 always accepts.
• Soundness: For every malicious and computationally un-
bounded 𝑃∗, there is a negligible function 𝜖 (·) s.t. if 𝑥 is a
false statement (i.e. 𝑅(𝑥,𝑤) = 0 for all𝑤 ), after 𝑃∗ interacts
with 𝑉 , Pr[𝑉 accepts] ≤ 𝜖 ( |𝑥 |).
• Zero Knowledge: For every malicious PPT𝑉 ∗, there exists a
PPT simulator S and negligible function 𝜖 (·) s.t. for every
distinguisher𝐷 and (𝑥,𝑤) ∈ 𝑅 we have | Pr[𝐷 (View𝑉 ∗ (𝑥,𝑤)) =
1] − Pr[𝐷 (S) = 1] | ≤ 𝜖 ( |𝑥 |).

Composed statements. ZK proofs can be composed as fol-

lows: (1) AND composition 𝜋1 ∧ 𝜋2 which can be easily con-

structed by sequential or parallel proving of underlying asser-

tions, and (2) OR composition 𝜋1∨𝜋2 which can be constructed

by proving knowledge for the one and simulating knowledge

for the other, without revealing which of the two is actually

proved and which is simulated.

3



Table 1: Asymptotic comparison of disjunctive ZK proof systems for 𝑛 statements for a single circuit 𝐶. NI = Non-
Interactive. Π denotes an MPCitH protocol, Π𝑅𝑢𝑛𝑡𝑖𝑚𝑒 and Π𝑃𝑟𝑜𝑜 𝑓 𝑠𝑖𝑧𝑒 denote Runtime and Proofsize of Π, respectively.

No setup NI Prover Runtime Proof size

Ligero [6] ✔ ✔ 𝑂 ((𝑛 + |𝐶 |) · log(𝑛 + |𝐶 |)) 𝑂 (
√
𝑛 + |𝐶 |)

Π + Stacking Sigmas [25] ✔ ✔/✕ 𝑂 (𝑛) + Π𝑅𝑢𝑛𝑡𝑖𝑚𝑒 𝑂 (log𝑛) + Π𝑃𝑟𝑜𝑜 𝑓 𝑠𝑖𝑧𝑒
Mac’n’cheese [10] ✔ ✕ 𝑂 (𝑛 + |𝐶 |) 𝑂 (log𝑛 + |𝐶 |)
gOTzilla ✔ ✕ 𝑂 (𝑛) + Π𝑅𝑢𝑛𝑡𝑖𝑚𝑒 𝑂 (log𝑛) + Π𝑃𝑟𝑜𝑜 𝑓 𝑠𝑖𝑧𝑒

Mixed statements. Let 𝑓 and 𝑔 be non-algebraic and alge-

braic relations with public instances 𝑦 and 𝑧 respectively. A

ZK proof on a mixed statement has the generic form {(𝑤) :

𝑓 (𝑦,𝑤) = 1 ∧ 𝑔(𝑧,𝑤) = 1}(𝑦, 𝑧).

2.4 Oblivious Transfer
1-out-of-2 oblivious transfer (OT) is a fundamental function-

ality in secure computation between a sender 𝑆 that holds

two values 𝑣0, 𝑣1 and a receiver 𝑅. At the end of the protocol,

the receiver learns exactly one of the sender values while the

sender learns nothing. 1-out-of-n OT is a generalized version

of 1-out-of-2 OT where the sender has 𝑛 values, and the re-

ceiver learns one of them. In Figure 1 we describe the ideal

functionality for 1-out-of-n OT.

Functionality F1:𝑛
OT

Functionality F1:𝑛
OT

communicates with sender 𝑆 and re-

ceiver 𝑅, and adversary A.

(1) Upon receiving input (𝑠𝑖𝑑, 𝑣1, · · · , 𝑣𝑛) from 𝑆

where 𝑣𝑖 ∈ {0, 1}^ , record (𝑠𝑖𝑑, 𝑣0, · · · , 𝑣𝑛) .
(2) Upon receiving (𝑠𝑖𝑑, 𝑖) from 𝑅 where 𝑖 ∈
{1, · · · , 𝑛}, send 𝑣𝑖 to 𝑅. Otherwise, abort.

Figure 1: The 1-out-of-n OT functionality.

2.5 MPC in the Head
We use the MPC-in-the-Head paradigm introduced by Ishai

et al. [31]. An MPC protocol ΠF is an interactive protocol be-

tween𝑚 parties 𝑃1, . . . , 𝑃𝑚 to securely compute some function

F on the joint input of all parties. In MPCitH a single party

simulates the execution of all𝑚 parties locally and records

transcripts of the interaction between the simulated parties.

These simulated views can later be selectively opened to prove

statements about the inputs of the simulated parties.

Formally, we require the following properties for ΠF to be

an admissible protocol for MPCitH:

Definition 2. LetΠF be anMPC protocol for a functionality
F (𝑥1, . . . , 𝑥𝑚).
• We say ΠF realizes F with correctness if for all possible
inputs the probability that the output of any party 𝑃 𝑗 run-
ning (semi-honest) ΠF is different from F (𝑥1, . . . , 𝑥𝑚)
is negligible in _.
• We say ΠF realizes F with t-privacy if for all sets of
(semi-honest) corrupt parties 𝐼 ⊂ {𝑃1, . . . , 𝑃𝑚} s.t. |𝐼 | ≤ 𝑡
there exists a PPT simulator S s.t. for all inputs the set of
views {𝑣𝑖𝑒𝑤 𝑗 } 𝑗 ∈𝐼 is statistically indistinguishable from
S(𝐼 , {𝑥 𝑗 } 𝑗 ∈𝐼 , F (𝑥1, . . . , 𝑥𝑚)).

Wemodel the local simulation of the MPCitH protocol with

the black-box functionality ΠMPCitH in Figure 2.

ΠMPCitH

Input: An 𝑚-party MPC protocol ΠF implementing the

functionality F which takes as input (𝑋 𝑗 , 𝑌𝑗 ) from each

party 𝑃 𝑗 and outputs to all parties F(⊕𝑚𝑗=1
𝑋 𝑗 , ⊕𝑚𝑗=1

𝑌𝑗 ) with
completeness and (𝑚 − 1)-privacy,
(𝑋 𝑗 , 𝑌𝑗 ) for 𝑗 = 1, . . . ,𝑚

Protocol: Run a simulation of ΠF as follows:

• Set each party 𝑃 𝑗 ’s input as (𝑋 𝑗 , 𝑌𝑗 )
• Sample 𝑃 𝑗 ’s initial randomness 𝑟𝑘
• Set 𝑣𝑖𝑒𝑤𝑗 ← {𝑋 𝑗 , 𝑌𝑗 , 𝑟 𝑗 }
• Execute the steps ΠF , adding each message received

by 𝑃 𝑗 to 𝑣𝑖𝑒𝑤𝑗

• Add the output to each 𝑣𝑖𝑒𝑤𝑗

Output: (𝑣𝑖𝑒𝑤1, . . . , 𝑣𝑖𝑒𝑤𝑚)

Figure 2: MPC-in-the-Head subroutine

3 OBLIVIOUS TRANSFER FROM PRIVATE
INFORMATION RETRIEVAL

A Private Information Retrieval (PIR) protocol [34] between a

receiver 𝑅 and a server 𝑆 which owns a database 𝐷 consisting

of items 𝑦1, · · ·𝑦𝑛 , enables 𝑅 to retrieve some item 𝑦𝑖 from 𝐷

without 𝑆 learning any information about 𝑖 . Intuitively, PIR

is similar to a 1-out-of-n OT protocol, with the main differ-

ence being that it only protects the privacy of 𝑅’s input and

assumes semi-honest behavior from both parties. In this sec-

tion we construct a protocol for 1-out-of-n OT built on top of

SealPIR [7]. Note that this construction cannot generically be

applied to arbitrary PIR protocols, as it relies on properties of

SealPIR’s construction.

Privacy against semi-honest receiver. SealPIR is constructed

from the additive homomorphic encryption scheme BFV [14,

23] based on Ring-LWE. As privacy is not a concern in a

PIR protocol, SealPIR packs many 𝑦𝑖 to fully utilize the large

plaintext supported by Ring-LWE, and computes 𝑓 (𝑏,𝑦) =∑𝑛/𝑘
𝑗=1

𝑏 𝑗 · 𝑌𝑗 where 𝑌𝑗 = (𝑦1+( 𝑗−1)𝑘 , . . . , 𝑦 𝑗𝑘 ), 𝑘 is the number

of𝑦𝑖 ’s that can be fitted into one plaintext,𝑏 𝑗 = 1 if the selected

item is in [1 + ( 𝑗 − 1)𝑘 ; 𝑗𝑘] and 𝑏 𝑗 = 0 everywhere else. In the

protocol, 𝑏 𝑗 ’s are encrypted and compressed by the receiver,

decompressed by the sender who sends back the encrypted

of 𝑓 (𝑏,𝑦). Finally the receiver decrypts the ciphertext and

obtains 𝑓 (𝑏,𝑦) = 𝑌𝑗 .
We observe that without packing the 𝑦𝑖 , the protocol actu-

ally computes 𝑓 (𝑏,𝑦) = ∑𝑛
𝑗=1

𝑏 𝑗 ·𝑦 𝑗 and realizes a semi-honest

4



1-out-of-𝑛 OT protocol (with less efficiency if the plaintext has

too much empty space).

Security against a malicious receiver. To achieve security

against malicious receivers, after sending its query the re-

ceiver performs a zero-knowledge proof that the query is

“well-formed” (i.e. is an encryption of a plaintext with exactly

1 nonzero index). We describe this protocol in figure 3.

First, Π𝑊𝑒𝑙𝑙𝐹𝑜𝑟𝑚𝑒𝑑
𝑍𝐾

guarantees that the encrypted query 𝑐𝑣
is a correctly-constructed ciphertext of a known plaintext with

bounded noise using techniques proposed by Chen et al. [19].

The rest of the protocol proves that the underlying plaintext

is a well-formed.

The server creates a challenge by sampling a random ele-

ment 𝑟𝑖 and random polynomial 𝑄𝑖 and an (𝑛 − 1)-out-of-𝑛
shamir-sharing of 𝑄𝑖 (denote the vector of shares as 𝑞𝑖 ). The

server then homomorphically computes 𝑐𝑖 := 𝑟𝑖 · 𝑐𝑏 + 𝐸𝑛𝑐 (𝑞𝑖 )
and sends 𝑐𝑖 to the receiver.

If the query is well-formed, then the decryption of 𝑐𝑖 will

have enough unmodified shares to reconstruct𝑄𝑖 . More specif-

ically, the decrypted plaintext will contain 𝑛− ||𝑏 | | shares of𝑄𝑖
where | |𝑏 | | is the number of nonzero elements in the plaintext

query. Hence if the query contains > 1 non-zero elements the

receiver is unable to reconstruct𝑄𝑖 . We repeat this process (in

parallel) to achieve the desired level of soundness.

Security against a malicious sender. To make Π𝑊𝑒𝑙𝑙𝐹𝑜𝑟𝑚𝑒𝑑
𝑍𝐾

malicious-secure, we observe that the server only needs to

keep 𝑄𝑖 and 𝑟𝑖 private until the receiver has sent its response.

Additionally, once the receiver knows 𝑄𝑖 , 𝑟𝑖 and the random-

ness used to encrypt 𝑞𝑖 it can deterministically recompute the

honestly-generated 𝑐𝑖 to verify honest behavior of the server.

Along with the challenges 𝑐𝑖 , the server now sends a com-

mitment to a PRG seed 𝑠 from which all other random values

are sampled. The receiver commits to its responses, then the

server opens the seed to the receiver. The receiver recomputes

the challenges and verifies that they match what the server

originally sent. If so, the receiver opens its responses to the

server.

For the overall 1-out-of-n OT protocol we apply a similar

methodology. First the server commits to its PRG seed and

database input, and later opens this commitment so that the

receiver may check for honest behavior. In order to preserve

the receiver’s input privacy, this check must occur before

any computations based on the received value are revealed

to the sender. To preserve soundness, it must occur after all

relevant prover computations have been run and their outputs

committed. Because of this, our implementation of Π1:𝑛
𝑂𝑇

only

attains security against semi-honest 𝑆 and malicious 𝑅. When

using Π1:𝑛
𝑂𝑇

in a larger protocol, we augment it with the PRG

trick to reach malicious 𝑆 security. As an optimization, we use

a single seed for all instances of 1-out-of-n OT, allowing the

server to reveal the databases for all instances simultaneously.

Theorem 1. ProtocolΠ𝑊𝑒𝑙𝑙𝐹𝑜𝑟𝑚𝑒𝑑
𝑍𝐾

is a Zero Knowledge proof
that an encrypted PIR query 𝐸𝑛𝑐 (b) satisfies the condition: ∄(𝑖 ≠
𝑗) s.t. 𝑏𝑖 ≠ 0 ∧ 𝑏 𝑗 ≠ 0.

Proof (Sketch). Soundness: If the prover cheats by setting

more than one entry of b to be non-zero, it will not have

enough information to reconstruct 𝑄𝑖 . As 𝑎𝑖 𝑗 are sampled

uniformly at random, 𝑄𝑖 (0) = 𝑎𝑖,0 is also uniformly random.

In order to pass the check, the prover can only guess 𝑎𝑖,0
and has the probability of 1/𝑡 to guess it correctly. In overall,

the chance that the verifier passes the check if it cheats is

𝑡−𝜎 < 2
−_

.

Zero-knowledge: It is clear that the encryption of b preserves
the privacy of the selection index. This is due to the property of

the encryption scheme. In the protocol, the prover only reveals

𝑄 ′
𝑖
(0) after seeing the seed used to generate the challenges

by the verifier. Thus, the verifier has no way to deviate from

the protocol without being caught. If the verifier abides to the

protocol, it learns nothing from the answers. If the verifier

cheats, it will not see the answers, thus, there is no risk of

leaking information to the verifier due to selective failure

attacks. □

Π𝑊𝑒𝑙𝑙𝐹𝑜𝑟𝑚𝑒𝑑
𝑍𝐾

Setup. Ring-LWE scheme with parameters (𝑁, 𝑡, 𝑞) where
𝑁 is the degree of the cyclotomic polynomial, 𝑡 the plaintext

modulus, and 𝑞 the ciphertext modulus. The prover has the

key pair (𝑠𝑘, 𝑝𝑘) , while the verifier has the public key 𝑝𝑘 .
𝜎 is the soundness amplifier such that 𝑡−𝜎 < 2

−_
.

Prover’s input. b ∈ 𝑅𝑡 [𝑋 ]/(𝑋𝑁 +1) and 𝑘 ∈ [0, 𝑁 ) such
that 𝑏𝑘 ≠ 0 and 𝑏𝑖 = 0 ∀𝑖 ≠ 𝑘 .
Commom input. 𝑐𝑏 = 𝐸𝑛𝑐 (𝑝𝑘 ; b) where b ∈
𝑅𝑡 [𝑋 ]/(𝑋𝑁 + 1) .
Protocol.

(1) The prover sends a proof on the validity of cipher-

text 𝑐𝑏 which includes that the Ring-LWE noise is

bounded.

(2) The verifier samples a random seed 𝑠 ∈ {0, 1}^ . For
𝑖 ∈ {1, · · · , 𝜎 } the verifier samples 𝑟𝑖 ,𝑄𝑖 (𝑋 ) ←

PRG(s) where 𝑟𝑖 ∈ Z𝑡 , 𝑄𝑖 (𝑋 ) =
𝑛−1∑
𝑗=0

𝑎𝑖 𝑗𝑋
𝑗
, 𝑎𝑖 𝑗 ←

Z𝑡 , and computes q𝑖 = (𝑄𝑖 (1), · · · ,𝑄𝑖 (𝑁 )) ∈ Z𝑁𝑡 .

It uses the additive homomorphic property of Ring-

LWE to compute 𝑐𝑖 ← 𝐸𝑛𝑐 (𝑝𝑘, 𝑟𝑖 · b + q𝑖 ) . After
that, the verifier sends Com(𝑠) and 𝑐𝑖 to the prover.

(3) The prover decrypts 𝑐𝑖 , obtains c𝑖 = 𝑟𝑖 · b + q𝑖 ,
interpolates𝑄′𝑖 from the points ( 𝑗, 𝑐𝑖 𝑗 ) , where 𝑗 ∈
{1, · · · , 𝑁 }, 𝑗 ≠ 𝑘 . It then sends Com(𝑄′𝑖 (0)) to
the verifier.

(4) The verifier decommits 𝑠 to the prover.

(5) The prover verifiers that 𝑐𝑖 is correctly generated.

If so, it decommits𝑄′𝑖 (0) to the verifier.

(6) The verifier checks that𝑄′𝑖 (0) = 𝑎𝑖,0.

Figure 3: Zero-knowledge proof to prove that the en-
crypted ciphertext 𝑐𝑣 is well formed and at most one of
𝑏𝑖 ≠ 0.

Theorem 2. Let Com be a binding and hiding commitment
scheme, and let SealPIR be the protocol described in [7], modified
to not use any packing. Then the protocol described in Figure 4
implements F 1:𝑛

𝑂𝑇
with security against a malicious receiver and

semi-honest sender in the Com-hybrid model.
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Π
1:n

OT

Receiver input. 𝑏 = {𝑏1, . . . , 𝑏𝑛 } where ∃𝑖 ∈ {1 . . . 𝑛} :

𝑏𝑖 ≠ 0 ∧ 𝑏 𝑗 = 0∀𝑗 ≠ 𝑖
Sender input. 𝑦 = {𝑦1, . . . , 𝑦𝑛 }.
Setup. 𝑅 generates a 𝐵𝐹𝑉 keypair (𝑠𝑘, 𝑝𝑘) and sends 𝑝𝑘

to 𝑆 .

Protocol.
(1) 𝑅 computes 𝑐𝑏 ← 𝐸𝑛𝑐 (𝑏) and sends 𝑐𝑏 to 𝑆 .

(2) 𝑅 and 𝑆 run Π𝑊𝑒𝑙𝑙𝐹𝑜𝑟𝑚𝑒𝑑
𝑍𝐾

on 𝑐𝑏 .

(3) 𝑆 homomorphically computes 𝑐′
𝑏
← 𝑓 (𝑐𝑏 , 𝑦) and

sends 𝑐′
𝑏
to 𝑅

(4) 𝑅 computes 𝑏′ ← 𝐷𝑒𝑐 (𝑐′
𝑏
) and outputs 𝑏′

Figure 4: 1-out-of-n OT protocol
Proof. (Sketch) The security against semi-honest senders

follows directly from the semantic security of the cryptosys-

tem and the zero-knowledge property of Π𝑊𝑒𝑙𝑙𝐹𝑜𝑟𝑚𝑒𝑑
𝑍𝐾

.

As for the security against malicious receivers, the sound-

ness of Π𝑊𝑒𝑙𝑙𝐹𝑜𝑟𝑚𝑒𝑑
𝑍𝐾

ensures that 𝑏 is a valid query. Given

that 𝑏 is a valid query (i.e. only one 𝑖 is nonzero) the sender’s

response 𝑐 ′
𝑏
= 𝑓 (𝑐𝑏 , 𝑦) = 𝐸𝑛𝑐

(∑𝑛
𝑗=1

𝑏 𝑗 · 𝑦 𝑗
)
= 𝐸𝑛𝑐 (𝑏𝑖 · 𝑦𝑖 ).

We construct a simulator S which interacts with 𝑅 and

the ideal functionality (shown in figure 5). The indistinguisha-

bility of 𝑅’s view when interacting with 𝑆 in the real world

versus 𝑅’s view when interacting with S in the ideal world fol-

lows directly from the soundness of the Π𝑊𝑒𝑙𝑙𝐹𝑜𝑟𝑚𝑒𝑑
𝑍𝐾

ZKPoPK

subprotocol [19].

S1:n

OT

(1) 𝑅 sends 𝑐𝑏 to S.
(2) Perform Π𝑊𝑒𝑙𝑙𝐹𝑜𝑟𝑚𝑒𝑑

𝑍𝐾
with 𝑅. Using the ZKPoPK

extractor from the subprotocol in step 1 [19] of

Π𝑊𝑒𝑙𝑙𝐹𝑜𝑟𝑚𝑒𝑑
𝑍𝐾

extract 𝑏 and learn 𝑅’s secret index

𝑖 .

(3) Send 𝑖 to F1:𝑛
𝑂𝑇

; receive 𝑦𝑖 in return.

(4) Compute 𝑐′
𝑏
← 𝐸𝑛𝑐 (𝑏𝑖 · 𝑦𝑖 ) and send 𝑐′

𝑏
to 𝑅

Figure 5: Malicious-receiver simulator for Π1:𝑛
𝑂𝑇

□

4 DISJUNCTIVE PROOFS FROM 1:N OT
4.1 MPC-ItH Disjunctive Proof
Towards our goal of constructing an efficient disjunctive proof,

we first define a helper function ShareAt(𝑚, 𝑥, 𝐽 , 𝑟 )which pseu-
dorandomly samples𝑚-out-of-𝑚 additive secret shares of 𝑥

from the seed 𝑟 , outputting a vector of values {X1, . . .X𝑚} such
that

⊕𝑚
𝑗=1

X𝑗 = 𝑥 (we omit𝑚 as explicit input to ShareAt for
the rest of the paper). In addition, ShareAt has the property
that for a fixed index 𝐽 ∈ {1, . . .𝑚} and 𝑟 , ShareAt(𝑚, 𝑥, 𝐽 , 𝑟 )
and ShareAt(𝑚, 𝑥 ′, 𝐽 , 𝑟 ) will have identical outputs at every
index except the 𝐽 -th index. This function is shown in Figure

6.

We define our main protocol Π
MPCitH−OR

𝑓
in Figure 7. The

common input is a function 𝑓 , and a set of values 𝑦1, . . . , 𝑦𝑛 .

ShareAt

Let𝐺 ( ·) be a PRG
Input: 𝑥 ∈ {0, 1}∗, 𝐽 ∈ {1, . . .𝑚} and a seed 𝑟 ∈ {0, 1}^ .

(1) Sample random vector {X1, . . . ,X𝑚 } by computing

𝐺 (𝑟 ) , where |X𝑗 | = |𝑥 | for all 𝑗 ∈ {1, . . .𝑚}.
(2) Set X𝐽 as X𝐽 ← 𝑥

⊕
𝑗∈{1,...𝑚}\𝐽 X𝑗

Output: {X1, . . . ,X𝑚 }

Figure 6: Secret sharing with specific offset index

The Prover wishes to prove, in zero knowledge, that it knows

input (𝑥,𝑦) such that 𝑓 (𝑥,𝑦) = 1 ∧ 𝑦 ∈ {𝑦1, . . . , 𝑦𝑛}. We

let ΠF denote an 𝑚-party protocol for securely computing

𝑓 (
⊕

𝑗 𝑥 𝑗 ,
⊕

𝑗 𝑦 𝑗 ). The verifier,V , begins by generating and

committing to a PRG seed 𝑠 from which all further random

values are sampled. This seed will allow the prover to confirm

the verifier’s honest behavior using the technique described

in section 3.

Next, the verifierV generates 𝜏 different sets of input encod-

ings – each containing𝑚 shares – for each of the 𝑦𝑖 common

input values. This results in a 3D table of shares (𝑛 ×𝑚 × 𝜏),
denoted 𝑌𝑘

𝑖 𝑗
, as shown in Figure 8. This 3D table is divided

into 𝑛 2D “slices” of dimension (𝑚 × 𝜏), each corresponding

to an input 𝑦𝑖 . These slices are encodings of 𝑦𝑖 such that all

slices are identical in every position except for 1 per row (𝜏

non-identical positions total). The non-identical position for

the 𝑘-th row is denoted Y𝑘 .

Then, prover P selects a “slice" of this 3D table through

the 1-out-of-n OT protocol; the choice of the slice is its secret

input, ℓ .

For each row of the slice (i.e. a chunk which was generated

from the same value of 𝑘 and adds up to 𝑦ℓ ) P generates

additive shares of 𝑥 and computes MPCitH views using the

shares of 𝑦ℓ from the slice and the newly-generated shares

of 𝑥 as input. Once all views are generated, P commits these

views toV .

Finally, V reveals the committed seed 𝑠 to P, who re-

generates the whole 3D table, and verifies the honest behavior

of the verifier. P aborts if there is a mismatch, otherwise P
decommits the MPCitH views (except Party Y𝑘 ) toV who ver-

ifies the honest execution of the MPCitH protocol, and accepts

the proof.

Note that since the slices are identical in each row except

for at Y𝑘 (i.e. the unrevealed MPCitH input) the privacy of the

MPCitH protocol protects the prover from revealing its choice

of index ℓ .

Theorem 3. Let𝑚 ≥ 3, let 𝑓 (Y,X) be the function defined in
Figure 7, let Com be a binding and hiding commitment scheme,
let ΠF implement 𝑓 with correctness and (𝑚 − 1)-privacy, and
let Π1:𝑛

OT
implement F 1:𝑛

OT
with security against a malicious re-

ceiver and a semi-honest sender. Then the protocol described in
Figure 7 is a zero-knowledge proof protocol for the language
{((𝑦1, . . . , 𝑦𝑛), 𝑥) : ∃ℓ ∈ {1, . . . , 𝑛} such that 𝑓 (𝑥,𝑦ℓ ) = 1} in
the (Com, F 1:𝑛

OT
)-hybrid model.

Proof. Zero Knowledge: First we claim that the security of

the protocol in the presence of a dishonest verifier reduces to

6



Π
MPCitH−OR

𝑓

Setup. Let 𝑓 (𝑥,𝑦) be some function, and let F be an𝑚-party functionality that takes input (X𝑗 , Y𝑗 ) from each party 𝑃 𝑗 and outputs

𝑓 (⊕𝑚
𝑗=1

X𝑗 , ⊕𝑚𝑗=1
Y𝑗 )

?

= 1 to all parties. Let ΠF be an𝑚-party protocol that securely realizes F with correctness and (𝑚 − 1)-privacy.

Common inputs. 𝜏 total number of repetitions, 𝑛 values {𝑦1, . . . , 𝑦𝑛} ∈ {0, 1}^ , and𝑚, the number of parties involved in the

MPC protocol, run in the head of the Prover, and𝑚−𝜏 < 2
−_

, _ is a security parameter.

Prover’s input. 𝑥 ∈ {0, 1}∗ such that 𝑓 (𝑥,𝑦ℓ ) = 1 for some ℓ ∈ {1, . . . 𝑛}. a

(1) Verifier V generates random seed 𝑠 and sends C𝑠 ← 𝐶𝑜𝑚(𝑠) to the prover P. Throughout the rest of the protocol, all
randomness of the Verifier is generated by applying a PRG,𝐺 (𝑠). (We will, imprecisely, refer to these as “random” values.)

(2) V uses the random seed 𝑠 to sample the following values uniformly at random:

(a) Y𝑘
$← {1, . . .𝑚} for 𝑘 ∈ {1, . . . 𝜏}.

(b) 𝑟𝑘
$← {0, 1}^ for 𝑘 ∈ {1, . . . 𝜏}.

(3) For 𝑖 ∈ {1, . . . 𝑛}, 𝑘 ∈ {1, . . . 𝜏},V compute vector {Y(𝑘)
𝑖,1
, . . . , Y

(𝑘)
𝑖,𝑚
} ← ShareAt(𝑦𝑖 , Y𝑘 , 𝑟𝑘 ), which results in a 3D table, as in

Figure 8. (Note that the same 𝑟𝑘 is used for every 𝑦𝑖 .)

(4) For every 𝑖 ∈ {1, . . . 𝑛},V sends the 2D table {{Y(1)
𝑖,1
, . . . Y

(1)
𝑖,𝑚
}, . . . {Y(𝜏)

𝑖,1
, . . . Y

(𝜏)
𝑖,𝑚
}} = {Y(1)

𝑖
, . . .Y(𝜏)

𝑖
}

to Π1:𝑛
OT

.

(5) P sends ℓ to Π1:𝑛
OT

.

(6) Π1:𝑛
OT

outputs {Y(1)
ℓ
, . . .Y(𝜏)

ℓ
} to P.

(7) For every 𝑘 ∈ {1, . . . 𝜏}, P:
(a) Computes X(𝑘) = {X(𝑘)

1
, . . . ,X

(𝑘)
𝑚 } as a random additive share of 𝑥 , i.e. (𝑥 =

⊕𝑚
𝑗=1

X
(𝑘)
𝑗

)

(b) Computes {𝑣𝑖𝑒𝑤
1,𝑘 , . . . , 𝑣𝑖𝑒𝑤𝑚,𝑘 } ← ΠMPCitH (ΠF, (X(𝑘) ,Y

(𝑘)
ℓ
)).

(8) For all 𝑗 ∈ {1, . . .𝑚}, 𝑘 ∈ {1, . . . 𝜏}, P sends C𝑣𝑖𝑒𝑤𝑗,𝑘 ← Com(𝑣𝑖𝑒𝑤 𝑗,𝑘 ) toV
(9) V de-commits 𝑠 , which P uses to derive {Y1, . . . , Y𝜏 } and to reconstruct the 3D table as in above steps 2 - 3

b
.

(10) P verifies the following properties hold for all 𝑖, 𝑖 ′ ∈ {1, . . . , 𝑛}, 𝑘 ∈ {1, . . . , 𝜏}, 𝑗 ∈ {1, . . . ,𝑚}\𝜖𝑘 :
𝑚⊕
𝑗=1

𝑌
(𝑘)
𝑖, 𝑗

= 𝑦𝑖 . 𝑌
(𝑘)
𝑖, 𝑗

= 𝑌
(𝑘)
𝑖′, 𝑗

If these properties do not hold, P aborts.

P decommits each {𝑣𝑖𝑒𝑤 𝑗,𝑘 }𝑘∈{1,...𝜏 }, 𝑗 ∈{1,...𝑚}\Y𝑘
(11) V checks that the decommitted views are consistent with honest executions of ΠF , include an output of 1, and that 𝑣𝑖𝑒𝑤 𝑗,𝑘

has a 𝑌 input equal to 𝑌
(𝑘)

1, 𝑗
.

a
The input length |𝑥 | can be either fixed or arbitrary.

b
All messages sent by the receiver during Π1:𝑛

𝑂𝑇
are computed deterministically from the seed 𝑠 and the common input {𝑦1, . . . , 𝑦𝑛 }.

Figure 7: OR proof using MPC-in-the-Head

... ...

...
Y
(𝜏)
𝑛𝑚

... ...

...
Y
(𝑘)
𝑛𝑚

Y
(1)
11

...
Y
(1)
𝑛1

...
Y
(1)
𝑖 𝑗

...

Y
(1)
1𝑚

...
Y
(1)
𝑛𝑚

𝜏

𝑛

𝑚

Figure 8: Notation for protocol Π
MPCitH−OR

𝑓
.

the security of the protocol in the presence of a semi-honest

verifier.

Consider the view ofV after step 9. The messagesV has

received are encrypted queries of P’s private input ℓ (step 1 of
Π1:𝑛
𝑂𝑇

), a transcript of a zero-knowledge proof (step 2 of Π1:𝑛
𝑂𝑇

),

and commitments to MPCitH views (step 8 of ΠMPCitH−OR

𝑓
.

Suppose V does not follow the protocol honestly. In the

honest protocol,V’s messages are generated deterministically

based on 𝑠 , the common input, and P’s messages. Hence after

V opens 𝑠 in step 9, the prover can compare each message

thatV sent against the expected message in the honest ver-

ifier protocol. By our assumption one of these messages is

inconsistent, hence P’s next action is to abort the protocol.

We construct a simulatorS forV’s view after step 9 (shown

in figure 9) for the case where V deviates from the honest

protocol and argue that the view when interacting with the

simulator is indistinguishable fromV’s view when running

7



SMPCitH−OR
MaliciousVerifier

(1) Emulating step 1 of Π1:𝑛
𝑂𝑇

, S samples a random unit

vector 𝑏 and sends 𝐸𝑛𝑐 (𝑏) to V .

(2) Emulating step 2 of Π1:𝑛
𝑂𝑇

, S runs the zero-

knowledge simulator for Π𝑊𝑒𝑙𝑙𝐹𝑜𝑟𝑚𝑒𝑑
𝑍𝐾

with V .

(3) Emulating step 8 of ΠMPCitH−OR

𝑓
, S samples𝑚 × 𝜏

random strings of the same length as an MPCitH

view and sends a commitment to each string to V .

(4) Emulating step 9 of ΠMPCitH−OR

𝑓
, S aborts the pro-

tocol after receiving V’s decommitment.

Figure 9: Malicious-verifier simulator for ΠMPCitH−OR
𝑓

ΠMPCitH−OR

𝑓
. The encrypted query’s indistinguishability fol-

lows from the semantic security of the encryption scheme.

The zero-knowledge transcript’s indistinguishability follows

from the zero-knowledge property of Π𝑊𝑒𝑙𝑙𝐹𝑜𝑟𝑚𝑒𝑑
𝑍𝐾

. The in-

distinguishability of the committed views follows from the

hiding property of Com. Finally, as discussed above a verifier

that deviates from the honest protocol will always cause the

protocol to abort after step 9.

Next, we claim that, when given access to an ideal func-

tionality for F 1:𝑛
OT

, our protocol is zero-knowledge against a

verifier that does not deviate from the semi-honest protocol.

Since Π1:𝑛
OT

implements F 1:𝑛
OT

with semi-honest sender secu-

rity and we are assuming the verifier behaves semi-honestly,

we may freely replace Π1:𝑛
OT

in our protocol with F 1:𝑛
OT

. The

simulator for ΠMPCitH−OR

𝑓
then proceeds as follows.

(1) Accept the verifier’s inputs to the OT functionality, re-

covering all input encodings, {Y(1)
𝑖
, . . .Y(𝜏)

𝑖
} for all 𝑖 ,

as well as (𝜖1, . . . , 𝜖𝜏 ). If any of these values are badly

formed, the simulation sets an abort flag: abort = 1. Oth-

erwise, for each 𝑘 ∈ {1, . . . , 𝜏}, the simulator chooses

random input shares, {𝑋 (𝑘)
1

, . . . , 𝑋
(𝑘)
𝑚 }, then discards

𝑋
(𝑘)
𝜖𝑘

and Y
(𝑘)
𝑖,𝜖𝑘

, for arbitrary 𝑖 . (Note that, excluding

Y
(𝑘)
𝑖,𝜖𝑘

and Y
(𝑘)
𝑗,𝜖𝑘

, the remaining 𝑛 − 1 shares of 𝑦𝑖 and 𝑦 𝑗

are identical).

(2) Let S be the (𝑛 − 1)-privacy simulator defined in Defi-

nition 2. The zero-knowledge simulator runs S using

the remaining 𝑛 − 1 shares of 𝑥 , and 𝑦𝑖 . It commits to

the resulting 𝑛 − 1 views and sends them to the verifier.

(3) The simulator runs steps 9-11 honestly: it accepts the

decommitment to the verifier’s randomness, performs

the described correctness checks, and decommits to the

simulated views if everything passes, and abort ≠ 1.

By definition, the output of S is indistinguishable from the

decommitted views of the prover in the hybrid-world proof.

The reader can verify that the remainder of the simulation is

perfect.

Soundness: Suppose the Prover does not know a valid input

𝑥𝑖 for any𝑦𝑖 . By the hiding property of Com, the prover learns

nothing about the verifier’s state other than the queried row

from Π1:𝑛
OT

before it sends the commitments to its MPCitH

views. And by the binding property of Com the prover’s

MPCitH views must be fixed before the prover receives the

rest of the verifier’s state. Since the proof is accepted or re-

jected based on these views, we can reduce the soundness of

the protocol to the security properties of the MPCitH protocol.

We consider 3 cases, depending on how many simulated

MPCitH parties perform malicious behavior (as measured by

comparing inconsistencies in the parties’ views).

In the first case, all MPCitH parties act honestly. By the

completeness of ΠF , either all parties output 0 with all but

negligible probability (in which case the proof is rejected) or

the input (𝑥𝑖 , 𝑦𝑖 ) is a valid witness for 𝑓 . By our previous

assumption, if 𝑓 (𝑥𝑖 , 𝑦𝑖 ) = 1, then 𝑦𝑖 is not a member of the

common input set, hence the input encoding 𝑌𝑖, 𝑗 must be

different from the encodings created by the verifier in at least

one position. If any opened view’s input encoding of 𝑦𝑖 does

not match the verifier’s encodings the proof will be rejected,

thus in order to create valid proof, P must modify only the

share of 𝑦𝑖 that is not opened byV . By the hiding property

of Com, P has no information about 𝜖 𝑗 , hence the prover has

at best
1

𝑚 chance of guessing correctly for a single iteration.

Amplified over 𝜏 iterations the cheating prover’s probability

of success is ≤ 1

𝑚𝜏

The second case we consider is where exactly one simulated

party performs malicious behavior. In this case, the malicious

party’s view must be inconsistent with at least one other view.

Since (𝑛 − 1) views are opened, the verifier will see this in-
consistency unless the malicious view, or the receiver of the

malicious message, is the one left unopened. Therefore, the

cheating prover’s probability of correctly guessing 𝜖 𝑗 for every

iteration is ( 2

𝑚 )
𝜏
. As an aside, it should be straightforward

to see that some smaller success probability is achieved if

the prover mixes-and-matches the strategies of the first and

second cases between iterations.

The final case is that there are two or more malicious parties.

In this case it is guaranteed that there will be an inconsistent

pair of views in any (𝑛 − 1)-subset, giving the cheating prover
a success probability of 0 in this case.

□

5 DISJUNCTIVE PROOFS FOR MIXED
STATEMENTS

5.1 Disjunctive Proof for Mixed Statements
In the proof of assets problem, the Prover and Verifier hold

as common input a list of hashed public keys, 𝐿 = {𝑦1, . . . 𝑦𝑛},
where 𝑦𝑖 = 𝐻 (𝑥𝑖 ), for some hash function 𝐻 . The Prover

wishes to prove that it knows secret key 𝑧 such that (𝑥, 𝑧)
is a legitimate output of some cryptographic key generation

algorithm, and, for some 𝑦𝑖 ∈ 𝐿, 𝐻 (𝑥) = 𝑦𝑖 .
More generally, we consider mixed statements of the form

𝑓 (𝑥,𝑦𝑖 ) = 1 ∧ 𝑔(𝑥, 𝑧) = 1, where 𝑦𝑖 ∈ 𝐿, 𝑓 is a Boolean (or

“non-algebraic”) function – in our application, a hash function

– and 𝑔(𝑥, 𝑧) is an algebraic function – in our application, one

verifying that 𝑧 is the secret key corresponding to 𝑥 .

Chase et al. [18] consider this question without the disjunc-

tion. That is, they assume |𝐿 | = 1, and focus solely on the

challenge of constructing an efficient proof for mixed state-

ments. They do this by leveraging the specific proof system
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for 𝑓 , built from Garbled Circuits, in the following way. The

prover begins by committing to input 𝑥 with Com(𝑥). The
Verifier then prepares a garbled circuit for the Boolean circuit

that outputs both 𝑓 (𝑥), as well as a one-time MAC on the

Prover’s input: 𝑡 = 𝑎𝑥 + 𝑏. The prover is allowed to decode

𝑡 , and commits to this as well. Finally, the prover provides a

proof, using an algebraic proof system, that it knows (𝑥, 𝑡)
such that 𝑓 (𝑥,𝑦) = 1, 𝑥 is consistent with Com(𝑥), 𝑡 is consis-
tent with Com(𝑡), and 𝑡 = 𝑎𝑥 + 𝑏. In this way, the MAC on 𝑥

that was derived while proving 𝑓 (𝑥,𝑦) = 1 ensures that the

same input 𝑥 is used when proving that 𝑔(𝑥, 𝑧) = 1.

Note that Chase et al. compute 𝑡 = 𝑎𝑥 + 𝑏 inside a Boolean

circuit, which requires several thousand Boolean gates. We im-

prove on their solution by using the oblivious transfer to avoid

performing integer multiplication and addition in a Boolean

circuit. As in the previous Section, we use MPC-in-the-head,

rather than garbled circuits. Specifically, let 𝑥𝑖 be the 𝑖th bit

of 𝑥 , and for each 𝑢 ∈ {1, . . . , |𝑥 |}, let 0u and 1u denote the

input encodings generated by the verifier for that input bit.

The verifier chooses 𝑎 at random, and samples 𝑏 by choosing

random 𝑏𝑢 for each 𝑢 ∈ {1, . . . , |𝑥 |} and setting 𝑏 =
∑
𝑢 𝑏𝑢 .

When obliviously sending the encoding of the 𝑖th input bit,

the verifier sends (0u, 𝑏𝑢 ) and (1u, 2𝑢−1𝑎 +𝑏𝑢 ) to the OT func-

tionality. By summing the 2nd value received in each of the

|𝑥 | received ordered pairs, the Prover recovers 𝑎𝑥 + 𝑏, and
no computation in the circuit is required. We note that this

leads to significant improvement over Chase et al. even when

|𝐿 | = 1. In Figure 10, we present the full protocol, highlighting

the changes in our disjunctive proof from Figure 7, in order to

support mixed statements.

Theorem 4. Let𝑚 ≥ 3, let 𝑓 (Y,X) be the function defined in
Figure 10, let Com be a binding and hiding commitment scheme,
𝑀𝐴𝐶 (𝑥) an unforgeable one-time MAC and let ΠF implement 𝑓
with correctness and (𝑚−1)-privacy. Then the protocol described
in Figure 10 is a zero-knowledge proof protocol for the language
{((𝑦1, . . . , 𝑦𝑛), 𝑧, 𝑥) : ∃ℓ ∈ {1, . . . , 𝑛} such that 𝑓 (𝑥,𝑦ℓ ) = 1 ∧
𝑔(𝑥, 𝑧) = 1} in the (𝐶𝑜𝑚, F 1:𝑛

𝐶𝑂𝑇
)-hybrid model.

Proof (Sketch). Zero Knowledge: The simulator runs in

the same fashion as in Theorem 3, and it inherits the same

procedure for the ZK proof 𝜋 .

Soundness: Our protocol inherits the soundness properties
as in Theorem 3. Here the prover can also cheat by using an

inconsistent witness 𝑥 for functions 𝑓 and 𝑔. However this is

prevented from the unforegability property of the one-time

MAC, the binding property of the commitment scheme and

the soundness property of the ZK proof 𝜋 . □

5.2 Proving the Value of Assets
When proving ownership of assets in a cryptocurrency such

as Bitcoin, the exchange (i.e. the prover) needs to prove knowl-

edge of a number of secret keys for the respective hashed

public keys among those in the UTXO set. Additionally, they

might wish to prove something about the values assigned to

such keys, e.g. that their total value exceeds some minimum.

For simplicity, we treat the UTXO set as a list of tuples, where

each tuple (𝐻𝑖 | |𝑣𝑖 ) represents a hashed† public key and value

pair, where 𝐻𝑖 = 𝐻 (pk𝑖 ). Therefore, given a common input of

a tuple list 𝐿 = {(𝐻1 | |𝑣1), (𝐻2 | |𝑣2), ...(𝐻𝑛 | |𝑣𝑛)}, P must prove

knowledge of secret keys {sk𝑘 }𝑡𝑘=1
corresponding to a set of

public keys 𝑆 = {pk𝑘 }𝑡𝑘=1
such that ∀𝑘 ∈ {1, . . . , 𝑡}, (sk𝑘 , pk𝑘 )

is a valid output of the appropriate key generation algorithm,

(𝐻 (pk𝑘 ), 𝑣𝑘 ) ∈ 𝐿, and, Σ𝑡𝑘=1
𝑣𝑖 ≥ 𝑣 .

The protocol as discussed above, is not sufficient for the

Proof of Assets application as it does connect the provers’ keys

to their corresponding “coin” value stored on the blockchain.

In Figure 11 of the Appendix, we present an extension of

our protocol that also supports values. The main change is to

provide an additionalMAC on the input values, in order to bind

them with their respective hashed keys. Also for simplicity,

we do not provide a 𝑘-out-of-𝑛 OR proof but rather a 1-out-

of-𝑛 OR proof (i.e. we only assume that the exchange only

controls one address in the UTXO set), however the protocol

can be naturally extended to accommodate multiple keys.

6 IMPLEMENTATION
gOTzilla implementation is based on SealPIR [2] and MP-

SPDZ [1]
‡
libraries. As discussed in Section 3, we use SealPIR

for our needed OT functionality, and we provide more imple-

mentation details below.

6.1 Evaluation
Our first set of benchmarks for protocol Π

MPCitH−OR

𝑓
is per-

formed locally, with the prover and verifier running on the

same host. We run our benchmarks on a z1d.metal AWS in-

stance using 48 threads (24 physical cores) and 384 MB of

RAM. We performed our evaluations for a range of disjunc-

tive elements between 2
16

and 2
24
. As we require𝑚𝜏 ≃ 2

−40

soundness, we pick𝑚 = 3 MPCitH (minimum required) parties

and 𝜏 = 25 repetitions as this choice of parameters minimizes

(𝑚−1) ·𝜏 . Concretely, if we consider Limbo [22] as an efficient

underlying MPCitH protocol, this implies about 50ms addi-

tional runtime cost on top of the rest of our protocol’s runtime,

which does not depend on 𝑛, and is dwarfed by the overall

runtime costs of our protocol (therefore we do not take it into

account). Assuming |𝑓 (𝑥) | = 256 bits, the size of each slice of

the 3D table is 256 ·𝑚 · (𝜏 − 1) (we only need to send 𝜏 − 1

shares as the remaining one can be inferred) which implies a

1600 byte size per element. As shown in Table 3, for 𝑛 = 2
20

the total communication between the prover and verifier is

6.18 MB, plus 3.45 MB for communicating the PIR Galois keys

beforehand. However, both the prover and verifier need to

generate a version of the 3D table in their local memory (or

storage) based on the seed 𝑠 (steps 9 and 3 of the protocol

Π
MPCitH−OR

𝑓
respectively). In our current implementation, we

†
We also treat the double hashing RIPEMD160(SHA256()) of public keys in

Bitcoin as a single hash function 𝐻 .

‡
MP-SPDZ provides the ZK proof of plaintext knowledge needed for

Π𝑊𝑒𝑙𝑙𝐹𝑜𝑟𝑚𝑒𝑑
𝑍𝐾

. The proof implemented in this library is for the BGV cryp-

tosystem [15], whereas to be compatible with SealPIR we need a proof in the

BFV cryptosystem [23]. However, a BFV-compatible version of this proof has

been designed [19], and claims theoretically cheaper cost than the BGV ver-

sion [9], but currently has no publicly available implementation. For this reason

we believe the existing BGV implementation provides a good estimate of the

cost.
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Π
MPCitH−OR−Mix

𝑓

Setup. Let 𝑓 (𝑥,𝑦) be a Boolean function and 𝑔(𝑥, 𝑧) an algebraic function. Let F be an𝑚-party functionality that takes input

(X𝑗 , Y𝑗 ) from each party 𝑃 𝑗 and outputs 𝑓 (⊕𝑚𝑗=1
X𝑗 , ⊕𝑚𝑗=1

Y𝑗 )
?

= 1 to all parties. Let ΠF be an𝑚-party protocol that securely realizes

F with correctness and (𝑚 − 1)-privacy.
Common inputs. 𝜏 total number of repetitions, 𝑛 values {𝑦1, . . . , 𝑦𝑛} ∈ {0, 1}^ , and𝑚, the number of parties in the MPC protocol

run in the head of the Prover.𝑚 and 𝜏 are set such that𝑚−𝜏 < 2
−_

, where _ is a security parameter.

Prover’s input. 𝑥 , 𝑧, ℓ such that: ℓ ∈ {1, . . . 𝑛}, 𝑓 (𝑥,𝑦ℓ ) = 1 and 𝑔(𝑥, 𝑧) = 1. We denote as (𝑥1, . . . 𝑥 |𝑥 |) the bit representation of 𝑥

(i.e. 𝑥 =
∑ |𝑥 |
𝑢=1

2
𝑢−1𝑥𝑢 ).

Verifier’s input. 𝐶𝑥 = Com(𝑥), 𝐶𝑧 = Com(𝑧).

(1) VerifierV generates its random tape 𝑠 and sends 𝐶𝑠 ← 𝐶𝑜𝑚(𝑠) to the prover P. Throughout the rest of the protocol, all
randomness of the Verifier is generated by applying a PRG, 𝐺 (𝑠). (We will, imprecisely, refer to these as “random” values.).

(2) V uses the random seed 𝑠 to sample the following values uniformly at random:

(a) Y𝑘
$← {1, . . .𝑚} for 𝑘 ∈ {1, . . . 𝜏}.

(b) 𝑟𝑘
$← {0, 1}^ for 𝑘 ∈ {1, . . . 𝜏}.

(c) 𝑤𝑢,𝑘
$← {0, 1}^ for 𝑢 ∈ {1, . . . , |𝑥 |}, 𝑘 ∈ {1, . . . 𝜏}

(d) 𝑎
$← {0, 1}_, 𝑏𝑢

$← {0, 1} |𝑥 |+_ for 𝑢 ∈ {1, . . . , |𝑥 |}. Define 𝑏 :=
∑ |𝑥 |
𝑢=1

𝑏𝑢

(3) For 𝑢 ∈ {1, . . . |𝑥 |}, 𝑘 ∈ {1, . . . 𝜏}, V computes {0(𝑘)
𝑢,1

. . . 0(𝑘)𝑢,𝑚} ← ShareAt(0, Y𝑘 ,𝑤𝑢,𝑘 ) and {1(𝑘)
𝑢,1

. . . 1(𝑘)𝑢,𝑚} ←
ShareAt(1, Y𝑘 ,𝑤𝑢,𝑘 )

(4) For 𝑖 ∈ {1, . . . 𝑛}, 𝑘 ∈ {1, . . . 𝜏},V computes vector 𝑌
(𝑘)
𝑖

:= {Y(𝑘)
𝑖,1
, . . . Y

(𝑘)
𝑖,𝑚
} ← ShareAt(𝑦𝑖 , Y𝑘 , 𝑟𝑘 )

(5) Exchange labels for inputs.
For 𝑖 ∈ {1, . . . 𝑛} denote 2D table Yi := {Y(1)

𝑖
, . . . Y

(𝜏)
𝑖
}, and for 𝑢 ∈ {1, . . . , |𝑥 |} denote 2D tables 0u :=

{{0(1)
𝑢,1
, . . . 0(1)𝑢,𝑚}, . . . {0

(𝜏)
𝑢,1
, . . . 0(𝜏)𝑢,𝑚}}, 1u := {{1(1)

𝑢,1
, . . . 1(1)𝑢,𝑚}, . . . {1

(𝜏)
𝑢,1
, . . . 1(𝜏)𝑢,𝑚}}

(a) V sends {Y1, . . .Yn} to Π1:𝑛
OT

.

(b) P sends ℓ to Π1:𝑛
OT

.

(c) Π1:𝑛
OT

outputs Yℓ to P.
(d) For every 𝑢 ∈ {1, . . . |𝑥 |}

(i) V sends {(0u, 𝑏𝑢 ), (1u, 2𝑢−1𝑎 + 𝑏𝑢 )} to Π1:2

OT
.

(ii) For every 𝑢 ∈ {1, . . . |𝑥 |}, P sends 𝑥𝑢 to Π1:2

OT
.

(iii) If 𝑥𝑢 = 0 then Π1:2

OT
outputs (0u, 𝑏𝑢 ) to P, otherwise it outputs (1u, 2𝑢−1𝑎 +𝑏𝑢 ). P denotes whichever output it receives

as {{𝑋 (1)
𝑢,1
, . . . 𝑋

(1)
𝑢,𝑚}, . . . {𝑋

(𝜏)
𝑢,1

, . . . 𝑋
(𝜏)
𝑢,𝑚}, 𝑀𝑢 }

(e) For 𝑘 ∈ {1, . . . 𝜏} denote the 2D table X
(𝑘)

:= {(𝑋 (𝑘)
1,1
| | . . . | |𝑋 (𝑘)|𝑥 |,1), . . . , (𝑋

(𝑘)
1,𝑚
| | . . . | |𝑋 (𝑘)|𝑥 |,𝑚)}

(6) For every 𝑘 ∈ {1, . . . 𝜏}, P computes (𝑣𝑖𝑒𝑤
1,𝑘 , . . . , 𝑣𝑖𝑒𝑤𝑚,𝑘 ) ← Π𝑀𝑃𝐶𝑖𝑡𝐻 (ΠF, (X(𝑘) ,Y

(𝑘)
ℓ
)).

(7) P computes MAC(𝑥) = ∑ |𝑥 |
𝑢=1
(𝑀𝑢 ) = 𝑎 · 𝑥 + 𝑏 and 𝐶𝑀𝐴𝐶 (𝑥) ← Com(𝑀𝐴𝐶 (𝑥)).

(8) For all 𝑗 ∈ {1, . . .𝑚}, 𝑘 ∈ {1, . . . 𝜏}, P sends 𝐶𝑀𝐴𝐶 (𝑥) and 𝐶𝑣𝑖𝑒𝑤𝑗,𝑘 ← 𝐶𝑜𝑚(𝑣𝑖𝑒𝑤 𝑗,𝑘 ) toV .

(9) V decommits 𝑠 , which P uses to reconstruct {Y1, . . . , Y𝜏 }, {0u, 1u}, {Y1, . . .Yn}
(10) P verifies the following properties hold for all 𝑖, 𝑖 ′ ∈ {1, . . . , 𝑛}, 𝑢 ∈ {1, . . . , |𝑥 |},𝑘 ∈ {1, . . . , 𝜏}, 𝑗 ∈ {1, . . . ,𝑚}\𝜖𝑘 :

𝑚⊕
𝑗=1

𝑌
(𝑘)
𝑖, 𝑗

= 𝑦𝑖 . 𝑌
(𝑘)
𝑖, 𝑗

= 𝑌
(𝑘)
𝑖′, 𝑗

𝑚⊕
𝑗=1

0(𝑘)
𝑢,𝑗

= 0

𝑚⊕
𝑗=1

1(𝑘)
𝑢,𝑗

= 1 0(𝑘)
𝑢,𝑗

= 1(𝑘)
𝑢,𝑗

(11) P decommits each {𝑣𝑖𝑒𝑤 𝑗,𝑘 }𝑘∈{1,...𝜏 }, 𝑗 ∈{1,...𝑚}\Y𝑘
(12) V checks that the decommitted views are consistent with honest executions of ΠF , and, if so, outputs 1.

(13) P andV execute the following ZK proof protocol: 𝜋 = {(𝑥,𝑀𝐴𝐶 (𝑥), 𝑧) : 𝐶𝑥 = Com(𝑥) ∧𝐶𝑀𝐴𝐶 (𝑥) = Com(𝑀𝐴𝐶 (𝑥)) ∧
𝑀𝐴𝐶 (𝑥) = 𝑎𝑥 + 𝑏 ∧𝐶𝑧 = Com(𝑧) ∧ 𝑔(𝑥, 𝑧) = 1}(Com(𝑥),Com(𝑧),Com(𝑀𝐴𝐶 (𝑥)), 𝑎, 𝑏)

(14) If 𝜋 verifies,V accepts, elseV rejects.

Figure 10: Disjunctive protocol via MPCitH for mixed statements. We denote by colored text the additional elements
introduced compared to Fig.7
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Table 2: Evaluation for protocol in Fig 10. PIR preprocessing: NTT transform. Note: a) MPCitH encoding is needed
by both the P andV, therefore this column is counted twice in the total runtime b) PIR preprocessing is executed by
both P andV in parallel.

Number

of ele-

ments

MPCitH

encoding

(both P
andV)

PIR Prepro-

cessing (P
andV)

PIR

Query

(P)

PIR

Reply

(V)

PIR

De-

code

(P)

Π𝑊𝑒𝑙𝑙𝐹𝑜𝑟𝑚𝑒𝑑
𝑍𝐾

(polynomial

interpola-

tion) (P)

Π𝑊𝑒𝑙𝑙𝐹𝑜𝑟𝑚𝑒𝑑
𝑍𝐾

(bounded

noise) (P)

Total
Run-
time

Run-
time of

[10]

2
16

31ms 392ms <1ms 880ms 2ms 1ms 151ms 1.64s 31.87s

2
18

86ms 1.3s 2ms 2.2s 3ms 1ms 152ms 3.83s 37.5s

2
20

358ms 6.47s 2ms 7.07s 5ms 1ms 163ms 14.89s 60s

2
22

1.61s 9.7s 3ms 9.6s 10ms 2ms 165ms 22.7s 150s

2
24

7.4s 38.59s 4ms 32.6s 10ms 3ms 167ms 86.09s 510s

store the entire table in RAM (requiring about 18GB memory

for 2
20

such elements), however this table can be offloaded to

disk and retrieved as needed at the cost of additional I/O oper-

ations, or alternatively, each slice of the cube can be generated

on demand as needed.

Table 2 shows our local benchmarks in detail, where we

provide a break down of the protocol’s total runtime as follows:

(1) Verifier’s secret share phase (step 3 for ShareAt() of Fig.
7).

(2) The 1-out-of-n OT phase (steps 4 - 6 of Fig. 7) which

include:

• Preprocessing, Query, Reply and Decode costs of

SealPIR.

• Polynomial interpolation (step. 3 of Fig. 3).

• Proof of bounded noise (step. 1 of Fig. 3).

Note for brevity, we don’t include the costs of PRG generation,

commitment and de-commitment costs, one-timeMAC and ZK

proof protocol as these are negligible compared to the overall

runtime costs (which as shown in Table 2, are dominated by

MPCitH encoding and PIR preprocessing and reply).

We also performed a second set of benchmarks over a net-

work for 𝑛 = 2
20
, as shown on Table 4, where we take the

additional network latency into account as well. In particular,

the PIR Query - Reply would replace the 5th and 6th column

together on Table 2, and similarly the rest of our network mea-

surements. This shows that although our protocol has many

rounds of interaction (most of them during Π𝑊𝑒𝑙𝑙𝐹𝑜𝑟𝑚𝑒𝑑
𝑍𝐾

), the

overall impact to its total run-time is very small.

Comparison.We now make a concrete comparison of our

protocol’s runtime and communication costs withMac’n’cheese

[10], which also aims for disjunctive Zero-knowledge proofs

and has similar asymptotic costs as shown in Fig. 1. We ob-

serve thatMac’n’cheese is not explicitly tailored for disjunctive

proofs comprised of circuits with the same structure, however

as discussed in Section 1, in such a case its disjunctive state-

ment𝐶 (𝑥) = 𝑦1∨𝐶 (𝑥) = 𝑦2∨· · ·∨𝐶 (𝑥) = 𝑦𝑛 can be modified

as (𝐶 (𝑥) = 𝑦) ∧ (𝑦 = 𝑦1 ∨ · · · ∨ 𝑦 = 𝑦𝑛) to avoid many circuit

evaluations, resulting in a conjunctive statement which one

part consists of a disjunctive statement of equality checks.

In addition, as discussed in Section 5, our protocol can be

naturally extended to accommodate mixed statements, with

only an overhead of |𝑥 | 1-out-of-2 OTs, which only cost roughly

Table 3: Communication costs for Fig. 7 protocol (in-
cluding Fig. 3 subroutine) for 𝑛 = 2

20

PIR Query (Step 5) 64.14 KB

PIR Response (Step 4) 320.71 KB

Π𝑊𝑒𝑙𝑙𝐹𝑜𝑟𝑚𝑒𝑑
𝑍𝐾

poly interp. 192.04 KB

Π𝑊𝑒𝑙𝑙𝐹𝑜𝑟𝑚𝑒𝑑
𝑍𝐾

bounded noise 5.62 MB

Committed views (Step 8) 2.45 KB

Total 6.18 MB

25ms in total for |𝑥 | = 256 [4], a negligible cost compared to

the main protocol’s benchmarks presented above.

Given those observations, we compare with Mac’n’cheese’s

needed runtime for 𝑛 equality checks plus proving (𝐶 (𝑥) = 𝑦)
where 𝐶 is a 250 million gate Boolean circuit, which is equiv-

alent to converting from an arithmetic circuit representing

the algebraic statement. Specifically when 𝑛 = 2
20
, the esti-

mated reported cost of 𝐶 for Mac’n’Cheese is 30 seconds, and

the cost for 2
20

equality checks (256 million gates), is another

30 seconds, running on a system with equivalent specifica-

tions
§
, adding to a total runtime of 60 seconds, with a total

communication cost of 63 MB. Given our measurements, we

observe significant improvements even when comparing with

the disjucntive equality checks part of Mac’n’cheese. In ad-

dition, Mac’n’cheese can handle only Boolean or arithmetic

circuits, therefore as an example, a mixed statement in the

form of SHA256(𝑔𝑥 ) = 𝑦 would need around 250 million gates

(as shown in Appendix C), while gOTzilla is compatible with

techniques combining algebraic and non-algebraic statements

similar to the work by Chase et al. [18] as discussed in Section

5, and therefore we don’t need to covert between circuit types.

7 CONCLUSION
We presented gOTzilla, a novel protocol for disjunctive Zero-

Knowledge proofs, tailored for large disjunctions. While our

protocol has equivalent asymptotic communication costs with

§
These estimates were provided by Mac’n’cheese authors assuming cost

per gate is 120ns.
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Table 4: Latency costs for Fig. 7 protocol (including Fig.
3 subroutine) for 𝑛 = 2

20

PIR

Query +

Reply

Π𝑊𝑒𝑙𝑙𝐹𝑜𝑟𝑚𝑒𝑑
𝑍𝐾

polynomial

interpol.

Π𝑊𝑒𝑙𝑙𝐹𝑜𝑟𝑚𝑒𝑑
𝑍𝐾

bounded

noise

MPCitH

views

Total

US East

- East

7.405s 7ms 298ms 370ms 8.08s

US East

- West

7.563s 126ms 892ms 381ms 8.962s

US East

- Japan

7.738s 292ms 1.59s 421ms 10.04s

recent works, we show that gOTzilla offers a concrete improve-

ment over the state-of-the-art, especially when the disjunc-

tions include mixed (i.e. algebraic and non-algebraic) state-

ments, since our protocol is more “mixed statement-friendly".

Finally, as the Bitcoin’s UTXO count is roughly 80 million at

the time of writing [3], gOTzilla can serve as a basis for a Proof

of Assets over Bitcoin’s blockchain, where an exchange can

interactively prove its assets to an auditor in a few minutes.
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A DISJUNCTIVE PROOFS USING
GARBLED CIRCUITS

A Garbled Circuit (GC) scheme is defined by the following

algorithms [18]:

• 𝑒, 𝑑,𝐺𝐶 ← Gb(pp, _, 𝑓 , 𝑟 ) which on input of a boolean

circuit 𝑓 outputs a garbled circuit𝐺𝐶 and encoding and

decoding information 𝑒 and 𝑑 .

• 𝑋 ← Enc(𝑒, 𝑥) which on input of encoding information

𝑒 and an input 𝑥 corresponding to 𝑓 , outputs a garbled

input 𝑋 .

• 𝑌 ← Eval(𝐺𝐶,𝑋 ) which on input of garbled circuit𝐺𝐶

and garbled input 𝑋 outputs an encoded output 𝑌 .

• 𝑦 ← Dec(𝑌,𝑑) which on input of an encoded output 𝑌

and decoding information 𝑑 outputs 𝑦.

• {𝑑, ∅} ← Ver(𝐺𝐶, 𝑒, 𝑓 ) which on input of garbled cir-

cuit 𝐺𝐶 , encoding information 𝑒 and boolean function

𝑓 outputs either decoding information 𝑑 or ∅.

Definition 3. A GC scheme (Gb, Enc, Eval,Dec,Ver) must
satisfy the following properties:
• Correctness: ∀𝑓 , 𝑥,𝐺𝐶, 𝑒, 𝑑 : (a) For 𝑌 ← Eval(𝐺𝐶,𝑋 ),
𝑓 (𝑥) ← Dec(𝑌,𝑑) and (b) for 𝑑 ← Ver(𝐺𝐶, 𝑒, 𝑓 ) with
𝑑 ≠ ∅ and 𝑌 ← Eval(𝐺𝐶,𝑋 ), Dec(𝑌,𝑑) = 𝑓 (𝑥).
• Authenticity: ∀𝑓 , 𝑥 and PPT algorithmA, there is a neg-
ligible function 𝜖 (·) s.t. Pr[∃𝑦 ≠ 𝑓 (𝑥), 𝑦 = Dec(𝑑, 𝑑 ′) :

(𝑒, 𝑑,𝐺𝐶) ← Gb(pp, _, 𝑓 , 𝑟 ), 𝑑 ′ ← A(𝐺𝐶, Enc(𝑒, 𝑥))] | ≤
𝜖 (_).
• Privacy: There exists a PPT simulator S s.t. the distri-
butions (Gb, Enc, Eval,Dec,Ver), 𝑋 ← Enc(𝑒, 𝑥) and
S(𝑓 , 𝑓 (𝑥)) are indistinguishable.

As discussed in Section 5, Chase et al. [18] aims to pro-

vide ZK proof protocols for mixed statements in the form of

𝑓 (𝑥,𝑦) = 1 ∧ 𝑔(𝑥, 𝑧) = 1. Towards this goal, it constructs

protocols in two different ways. The first (and more efficient)

assumes the existence of a bit-wise commitment as part of

a larger protocol, while the second requires a separate sub-

circuit to compute a one-time MAC 𝑡 = 𝑎 · 𝑥 + 𝑏 which has

O(|𝑥 | |𝑎 |) AND gates, where |𝑥 | and |𝑎 | is the bit length of

𝑥 and 𝑎 respectively. For instance, if |𝑥 | = |𝑎 | = 512, then

|𝑥 | |𝑎 | = 262144, which is about 10 times the size of a SHA256

circuit.

We observe that this one-time MAC value can be computed

during a COT step using a similar process to how we encode

the input (shown in Π
MAC,f GC), where FCOT is equivalent to

FOT plus an opening phase to the receiver (refer to [18] for the

ideal functionality). In this protocol, the prover and verifier

compute𝑀𝐴𝐶 (𝑥) = 𝑎 · 𝑥 + 𝑏 as follows. The prover computes

the bit decomposition of 𝑥 : 𝑥1, . . . , 𝑥 |𝑥 | . The verifier creates
additive shares of 𝑏: 𝑏1, . . . , 𝑏 |𝑥 | . For each bit 𝑥𝑢 in 𝑥 the two

parties perform a 1-out-of-2 OT. If 𝑥𝑢 = 0 the prover receives

𝑀𝑢 ← 𝑏𝑢 , otherwise the prover receives𝑀𝑢 ← (2𝑢−1𝑎 + 𝑏𝑢 ).
From𝑀1, . . . , 𝑀 |𝑥 | the prover is able to compute𝑀𝐴𝐶 (𝑥) as∑ |𝑥 |
𝑢=1

𝑀𝑢 =
∑ |𝑥 |
𝑢=1

2
𝑢−1𝑎 · 𝑥𝑢 + 𝑏𝑢 = 𝑎 · 𝑥 + 𝑏 = 𝑀𝐴𝐶 (𝑥).

However, even with the above optimization, the costs for a

disjunctive proof remain linear in the size of the circuit.

In Figure 12 we show an optimized OR Proof using Garbled

Circuits with MAC, while in Figure 13 we extend the previous

protocol with value.

B OPTIMIZATION FOR PREPROCESSING
Let 𝑚 be the number of parties used for MPCitH, and 𝜏 be

the number of repetitions. For each input value 𝑦𝑖 , the verifier

generates the randomized shares of 𝑦𝑖 as

(𝑆ℎ𝑎𝑟𝑒𝐴𝑡 (𝑦𝑖 , 𝑟1), . . . , 𝑆ℎ𝑎𝑟𝑒𝐴𝑡 (𝑦𝑖 , 𝑟𝜏 ))

Let Y 𝑗 be the position that will not be opened in the 𝑗𝑡ℎ

run, then we have 𝑆ℎ𝑎𝑟𝑒𝐴𝑡 (𝑦𝑖 , 𝑟 𝑗 ) = (𝑟 𝑗,1, . . . , 𝑟 𝑗,Y 𝑗−1, 𝑟 𝑗,Y 𝑗 +
𝑦𝑖 , 𝑟 𝑗,Y 𝑗+1, . . . , 𝑟 𝑗,𝑚) where 𝑟 𝑗,1 + · · · + 𝑟 𝑗,𝑚 = 0. This can be

rewritten as

𝑆ℎ𝑎𝑟𝑒𝐴𝑡 (𝑦𝑖 , 𝑟 𝑗 ) = (𝑟 𝑗,1, . . . , 𝑟 𝑗,𝑚) + 𝑦𝑖 · 𝑠 𝑗
where 𝑠 𝑗 is a vector of length𝑚 such that 𝑠 𝑗,𝑘 = 0 for𝑘 ≠ Y 𝑗 and

𝑠 𝑗,Y 𝑗 = 1. Abuse the notation a bit, we canwrite 𝑆ℎ𝑎𝑟𝑒𝐴𝑡 (𝑦𝑖 , 𝑟 𝑗 ) =
𝑟 𝑗 + 𝑦𝑖 · 𝑠 𝑗 .

Now, (𝑆ℎ𝑎𝑟𝑒𝐴𝑡 (𝑦𝑖 , 𝑟1), . . . , 𝑆ℎ𝑎𝑟𝑒𝐴𝑡 (𝑦𝑖 , 𝑟𝜏 )) = (𝑟1, . . . , 𝑟𝜏 ) +
𝑦𝑖 · (𝑠1, . . . , 𝑠𝜏 ) = 𝑟 + 𝑦𝑖 · 𝑠 where (𝑟 + 𝑦𝑖 · 𝑠) is the 𝑖𝑡ℎ row of

the database.

To compute the OT, the parties need to compute∑𝑁
𝑖=1

𝐶𝑖 · (𝑟 +𝑦𝑖+𝑗𝑁 ·𝑠) = 𝑟 · (
∑𝑁
𝑖=1

𝐶𝑖 ) +
∑𝑁
𝑖=1

𝐶𝑖 · (𝑦𝑖+𝑗𝑁 ·𝑠) =
𝑟 · (∑𝑁𝑖=1

𝐶𝑖 ) + 𝑠 · (
∑𝑁
𝑖=1

𝐶𝑖 · 𝑦𝑖+𝑗𝑁 ) for 𝑗 ∈ [1;𝑛/𝑁 ], which is

the dominant computation cost of the protocol and accounts

for more than 95% the total run-time.

To compute this, we will first compute

∑𝑁
𝑖=1

𝐶𝑖 and
∑𝑁
𝑖=1

𝐶𝑖 ·
𝑦𝑖+𝑗𝑁 , followed by 𝑟 · (∑𝑁𝑖=1

𝐶𝑖 ) and 𝑠 · (
∑𝑁
𝑖=1

𝐶𝑖 · 𝑦𝑖+𝑗𝑁 ).

Optimize the preprocessing. The preprocessing involves the

computation of the number theoretic transform (NTT) of 𝐶𝑖
and 𝑦𝑖 . Note that due to the selected parameters, the plaintext

modulus used in our Ring-LWE instance is only 12 bits. As

𝑦𝑖 has 256 bits and does not fit into one coefficient, 𝑦𝑖 is rep-

resented as a low degree polynomial (in R𝑡 ). Specifically, we
represent 𝑦𝑖 as coefficients of a polynomial of degree 21, of

which coefficients have 12 bits. Without any optimizations,

we need to execute 𝑛 NTT operations to compute 𝑁𝑇𝑇 (𝑦𝑖 ).
However, we can precompute the NTT for 𝑢 𝑗 ∈ 𝑅𝑡 such that
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Π
MPCitH−OR−BTC

𝑓

Setup. 𝑓 (𝑥,𝑦) is a Boolean function and 𝑔(𝑥, 𝑧) is an algebraic function. ΠF is a semi-honest𝑚-party protocol implementing the

functionality F which takes as input (X𝑗 , Y𝑗 ) from each party 𝑃 𝑗 and outputs to all parties 𝑓 (⊕𝑚𝑗=1
X𝑗 , ⊕𝑚𝑗=1

Y𝑗 )
?

= 1 with correctness

and (𝑚 − 1)-privacy..
Common inputs. 𝜏 total number of repetitions, 𝑛 public key and value pairs (𝑦1, 𝑣1), . . . , (𝑦𝑛, 𝑣𝑛) and a minimum asset value 𝑣0.

𝑦𝑖 ∈ {0, 1}^ and𝑚−𝜏 < 2
−_

, _ is a security parameter.

Prover’s input. 𝑥 , 𝑧, ℓ such that: 𝑓 (𝑥,𝑦ℓ ) = 1, 𝑣ℓ ≥ 𝑣0, and 𝑔(𝑥, 𝑧) = 1. We denote as (𝑥1, . . . 𝑥 |𝑥 |) the bit representation of 𝑥 (i.e.

𝑥 =
∑ |𝑥 |
𝑢=1

2
𝑢−1𝑥𝑢 ).

Verifier’s input. 𝐶𝑥 = Com(𝑥), 𝐶𝑧 = Com(𝑧), 𝐶𝑣 = Com(𝑣ℓ ).

(1) VerifierV generates its random tape 𝑠 and sends 𝐶𝑠 ← 𝐶𝑜𝑚(𝑠) to the prover P. Throughout the rest of theprotocol, all
randomness of the Verifier is generated by applying a PRG,G(s). (We will, imprecisely, refer tothese as “random” values.).

(2) V uses the random seed 𝑠 to sample the following values uniformly at random:

(a) Y𝑘
$← {1, . . .𝑚} for 𝑘 ∈ {1, . . . 𝜏}.

(b) 𝑟𝑘
$← {0, 1}^ for 𝑘 ∈ {1, . . . 𝜏}.

(c) 𝑤𝑢,𝑘
$← {0, 1}^ for 𝑢 ∈ {1, . . . |𝑥 |}, 𝑘 ∈ {1, . . . 𝜏}

(d) 𝑎
$← {0, 1}_, 𝑏𝑢

$← {0, 1} |𝑥 |+_ for 𝑢 ∈ {1, . . . , |𝑥 |}. Define 𝑏 :=
∑ |𝑥 |
𝑢=1

𝑏𝑢

(e) 𝑐
$← {0, 1}_, 𝑑 $← {0, 1} |𝑣 |+_

(3) For 𝑢 ∈ {1, . . . |𝑥 |}, 𝑘 ∈ {1, . . . 𝜏}, V computes {0(𝑘)
𝑢,1

. . . 0(𝑘)𝑢,𝑚} ← ShareAt(0, Y𝑘 ,𝑤𝑢,𝑘 ) and {1(𝑘)
𝑢,1

. . . 1(𝑘)𝑢,𝑚} ←
ShareAt(1, Y𝑘 ,𝑤𝑢,𝑘 )

(4) For 𝑖 ∈ {1, . . . 𝑛}, 𝑘 ∈ {1, . . . 𝜏},V computes vector {Y(𝑘)
𝑖,1
, . . . Y

(𝑘)
𝑖,𝑚
} ← ShareAt(𝑦𝑖 , Y𝑘 , 𝑟𝑘 )

(5) Exchange labels for inputs.
For 𝑖 ∈ {1, . . . 𝑛} denote 2D table Yi := {Y(1)

𝑖
, . . . Y

(𝜏)
𝑖
, 𝑐𝑣𝑖 + 𝑑}, and for 𝑢 ∈ {1, . . . , |𝑥 |} denote 2D tables 0u :=

{{0(1)
𝑢,1
, . . . 0(1)𝑢,𝑚}, . . . {0

(𝜏)
𝑢,1
, . . . 0(𝜏)𝑢,𝑚}}, 1u := {{1(1)

𝑢,1
, . . . 1(1)𝑢,𝑚}, . . . {1

(𝜏)
𝑢,1
, . . . 1(𝜏)𝑢,𝑚}}

(a) V sends {(Y1, 𝑐 · 𝑣1 + 𝑑), . . . , (Yn, 𝑐 · 𝑣𝑛 + 𝑑)} to Π1:𝑛
OT

.

(b) P sends ℓ to Π1:𝑛
OT

.

(c) Π1:𝑛
OT

outputs (Yℓ , 𝑐 · 𝑣ℓ + 𝑑) to P.
(d) For every 𝑢 ∈ {1, . . . , |𝑥 |}

(i) V sends {(0u, 𝑏𝑢 ), (1u, 2𝑢−1𝑎 + 𝑏𝑢 )} to Π1:2

OT
.

(ii) P sends 𝑥𝑢 to Π1:2

OT
.

(iii) If 𝑥𝑢 = 0 then Π1:2

OT
outputs (0u, 𝑏𝑢 ) to P, otherwise it outputs (1u, 2𝑢−1𝑎 +𝑏𝑢 ). P denotes whichever output it receives

as {{𝑋 (1)
𝑢,1
, . . . 𝑋

(1)
𝑢,𝑚}, . . . {𝑋

(𝜏)
𝑢,1

, . . . 𝑋
(𝜏)
𝑢,𝑚}, 𝑀𝑢 }

(e) For 𝑘 ∈ {1, . . . 𝜏} denote the 2D table X
(𝑘)

:= {(𝑋 (𝑘)
1,1
| | . . . | |𝑋 (𝑘)|𝑥 |,1), . . . , (𝑋

(𝑘)
1,𝑚
| | . . . | |𝑋 (𝑘)|𝑥 |,𝑚)}

(6) For every 𝑘 ∈ {1, . . . 𝜏}, P computes (𝑣𝑖𝑒𝑤𝑘,1, . . . , 𝑣𝑖𝑒𝑤𝑘,𝑚) ← Π𝑀𝑃𝐶𝑖𝑡𝐻 (ΠF, (X(𝑘) ,Y
(𝑘)
ℓ
)).

(7) P computes MAC(𝑥) = ∑ |𝑥 |
𝑢=1

𝑀𝑢 and𝐶𝑀𝐴𝐶 (𝑥) ← Com(𝑀𝐴𝐶 (𝑥)). Similarly compute MAC(𝑣ℓ ) = 𝑐𝑣ℓ +𝑑 and𝐶𝑀𝐴𝐶 (𝑣ℓ ) ←
Com(𝑀𝐴𝐶 (𝑣ℓ )).

(8) For all 𝑗 ∈ {1, . . .𝑚}, 𝑘 ∈ {1, . . . 𝜏}, P sends 𝐶𝑀𝐴𝐶 (𝑥) , 𝐶𝑀𝐴𝐶 (𝑣ℓ ) , and 𝐶𝑣𝑖𝑒𝑤𝑗,𝑘 ← 𝐶𝑜𝑚(𝑣𝑖𝑒𝑤 𝑗,𝑘 ) toV .

(9) V decommits 𝑠 , which P uses to reconstruct {Y1, . . . , Y𝜏 }, {0u, 1u}, and {Y1, . . .Yn}
(10) P verifies the following properties hold for all 𝑖, 𝑖 ′ ∈ {1, . . . , 𝑛}, 𝑢 ∈ {1, . . . , |𝑥 |},𝑘 ∈ {1, . . . , 𝜏}, 𝑗 ∈ {1, . . . ,𝑚}\𝜖𝑘 :𝑚⊕

𝑗=1

𝑌
(𝑘)
𝑖, 𝑗

= 𝑦𝑖 . 𝑌
(𝑘)
𝑖, 𝑗

= 𝑌
(𝑘)
𝑖′, 𝑗

𝑚⊕
𝑗=1

0(𝑘)
𝑢,𝑗

= 0

𝑚⊕
𝑗=1

1(𝑘)
𝑢,𝑗

= 1 0(𝑘)
𝑢,𝑗

= 1(𝑘)
𝑢,𝑗

(11) P decommits each {𝑣𝑖𝑒𝑤 𝑗,𝑘 }𝑘∈{1,...𝜏 }, 𝑗 ∈{1,...𝑚}\Y𝑘
(12) V checks that the decommitted views are consistent with honest executions of ΠF output 1.

(13) P andV execute the following ZK proof protocols:

(a) 𝜋1 = {(𝑥,𝑀𝐴𝐶 (𝑥), 𝑧) : 𝐶𝑥 = Com(𝑥) ∧ 𝐶𝑀𝐴𝐶 (𝑥) = Com(𝑀𝐴𝐶 (𝑥)) ∧ 𝑀𝐴𝐶 (𝑥) = 𝑎𝑥 + 𝑏 ∧ 𝐶𝑥 = 𝐶𝑜𝑚(𝑥) ∧ 𝐶𝑧 =

Com(𝑧) ∧ 𝑔(𝑥, 𝑧) = 1}(Com(𝑥),Com(𝑧),Com(𝑀𝐴𝐶 (𝑥)), 𝑎, 𝑏)
(b) 𝜋2 = {(𝑣ℓ , 𝑀𝐴𝐶 (𝑣ℓ )) : 𝐶𝑣 = Com(𝑣ℓ )∧𝐶𝑀𝐴𝐶 (𝑣ℓ ) = Com(𝑀𝐴𝐶 (𝑣ℓ ))∧𝑀𝐴𝐶 (𝑣ℓ ) = 𝑐𝑣ℓ+𝑑∧𝑣ℓ ≥ 𝑣0}(𝐶𝑣,𝐶𝑀𝐴𝐶 (𝑣ℓ ) , 𝑐, 𝑑, 𝑣0)

(14) If any of 𝜋1,𝜋2 do not verify,V rejects, else accepts.

Figure 11: Disjunctive Composite protocol via MPCitH for Proving Assets in Bitcoin. We denote by colored text the
additional elements introduced compared to Fig.10
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Π
GC−OR−Mix

𝑓

Setup. Group G where DDH assumption holds. 𝐶𝑜𝑚(·) is a commitment scheme. Let G = (Gb, En,De, Eval,Ve) be a garbling
scheme.

Commom input. 𝑦1, · · · , 𝑦𝑛 where 𝑦𝑖 ∈ {0, 1}^ .
Prover’s input. 𝑥 ∈ G, where 𝑥 is the witness to statement 𝑦ℓ .

Verifier’s input. C𝑥 = Com(𝑥).
Protocol.

(1) The verifier constructs a garbled circuit for 𝐹 .

(𝐺𝐶, 𝑒, 𝑑) ← Gb(1^ , 𝐹 (𝑥,𝑦) = 𝑦 ⊕ 𝑓 (𝑥)
(2) The prover sends (𝑖, 𝑥𝑖 ) for all 𝑖 ∈ [𝑛] to FCOT.

(3) The verifier sends (𝑖, (𝐾0

𝑖
, 𝑏𝑖 ), (𝐾1

𝑖
, 2𝑖𝑎+𝑏𝑖 )) for all 𝑖 ∈ [𝑛] to FCOT where 𝑎 and 𝑏𝑖 has length of _ and |𝑥 | +_ bits respectively.

(4) FCOT outputs (𝐾𝑥𝑖
𝑖
, 2𝑖𝑎𝑥𝑖 + 𝑏𝑖 ) for all 𝑖 ∈ [𝑛] to the prover.

(5) The prover sends ℓ to F 1:𝑛
COT

.

(6) The verifier sends (𝑦1, · · · , 𝑦𝑛) to F 1:𝑛
COT

.

(7) F 1:𝑛
COT

outputs 𝑦ℓ to the prover.

(8) The verifier sends the garbled circuit 𝐺𝐶 to the prover.

(9) The prover evaluates the garbled circuit

𝑍 ← Eval(𝐺𝐶, {𝐾𝑥𝑖
𝑖
}𝑖∈[𝑛] , 𝑦ℓ )

(10) The prover computes 𝑡 =
𝑛−1∑
𝑖=0

(2𝑖𝑎𝑥𝑖 + 𝑏𝑖 ) = 𝑎𝑥 + 𝑏.

(11) The prover commits to the garbled output 𝑍 and 𝑡 by sending Com(𝑍 ),Com(𝑡) to the verifier and proves knowledge of

opening.

(12) The verifier sends open to FCOT and F 1:𝑛
COT

.

(13) FCOT sends (𝐾0

𝑖
, 𝐾1

𝑖
) and F 1:𝑛

COT
sends (𝑦1, · · · , 𝑦𝑛) to the prover for all 𝑖 ∈ [𝑛].

(14) The prover verifies that the circuit was garbled correctly by running Ve(𝐺𝐶, {𝐾0

𝑖
, 𝐾1

𝑖
}𝑖∈[𝑛] , 𝐹 ) and the garbled inputs for

𝑥,𝑦1, · · · , 𝑦𝑛 are correct. If the check fail, the prover terminates. Else, it opens 𝑍 to the verifier.

(15) The verifier checks that De(𝑑, 𝑍 ) = 0. Otherwise, it rejects and terminates.

(16) The prover and the verifier execute a ZK proof to prove the following. 𝜋 = {(𝑥, 𝑡) : C𝑥 = Com(𝑥) ∧ C𝑡 = Com(𝑡) ∧ 𝑡 =
𝑎𝑥 + 𝑏}(C𝑥 ,C𝑡 )

(17) If 𝜋 does not verify, the verifier terminates.

Figure 12: OR Proof using Garbled Circuits with MAC. We denote by colored text the additional elements introduced
compared to the protocol of Chase et al.

𝑢 𝑗 [ 𝑗] = 1 and 𝑢 𝑗 [𝑘] = 0 for 𝑗 ≠ 𝑘 and 0 ≤ 𝑗 < 22. Let

𝑦𝑖 = (𝑦𝑖,0, . . . , 𝑦𝑖,22), then 𝑁𝑇𝑇 (𝑦𝑖 ) =
∑

21

𝑗=0
𝑦𝑖, 𝑗𝑁𝑇𝑇 (𝑢 𝑗 ). We

can further speed up the precomputation by using a lookup

table that store 𝑁𝑇𝑇 (𝑘 · 𝑢 𝑗 ) for 𝑘 ∈ [0; 2
12). The table will

have at most 22 × 4096 = 90112 entries. After the precomputa-

tion step, each 𝑁𝑇𝑇 (𝑦𝑖 ) can be computed by 21 · 𝑁 additions

instead of 𝑂 (𝑁 log𝑁 ) multiplications. If 𝑛 = 2
20
, the prepro-

cessing will cost 90112 · 𝑁 multiplications and 21 · 220 · 𝑁
additions with the lookup table. The naive approach will cost

𝑂 (220 · 𝑁 log𝑁 ) multiplications (𝑙𝑜𝑔𝑁 ≥ 11). If we use only 8

bits for each chunk of 𝑦𝑖 , the lookup table can be precomputed

with only 32 × 256 × 𝑁 = 8192 · 𝑁 multiplications. However,

we need to perform 31 · 𝑁 additions for each 𝑁𝑇𝑇 operation

instead of 21 · 𝑁 .

Reducing the cost of 1-out-of-𝑛 committed OT. With a naive

approach, the prover cannot verify the 1-out-of-𝑛 commit-

ted OT until the verifier decommits the random seed used in

the computation. However, with our optimization, both the

prover and verifier can execute the heavy part of the 1-out-of-

𝑛 committed OT at the same time. The dominant cost of the

1-out-of-𝑛 committed OT is the cost to compute 𝑁𝑇𝑇 (𝑦𝑖 ) and∑𝑁
𝑖=1

𝐶𝑖 · 𝑦𝑖+𝑗𝑁 for 𝑗 ∈ [1;𝑛/𝑁 ]. It is clear that these terms

do not depend on the random seed that is used to generate 𝑟

and 𝑠 . These computations takes more than 95% of the total

runtime of 1-out-of-𝑛 committed OT. Thus we save almost 2×
in terms of computation cost for the 1-out-of-𝑛 committed OT

step.

C ELLIPTIC CURVE POINT
MULTIPLICATION CIRCUIT

We estimate the size of the Boolean circuit that compute 𝑥 ·𝐺
where 𝑥 is a scalar and 𝐺 is a publicly known elliptic curve

point. Let 𝑞 be the bit length of the elliptic curve and 𝑥 =∑𝑞−1

𝑖=0
𝑥𝑖 · 2𝑖 , then 𝑥 · 𝐺 =

∑𝑘
𝑖=0

𝑥𝑖 · (2𝑖 · 𝐺). Assume that the

computation of𝐺𝑖 is cheap, the size of the circuit is dominated

by the cost to add all these 𝑞−1 points together, each costs 14𝑞
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Π
GC−OR−Mix−v

𝑓

Setup. Group G where DDH assumption holds. Com(·) is a commitment scheme. Let G = (Gb, En,De, Eval,Ve) be a garbling
scheme.

Commom input. (𝑦1, 𝑣1), · · · , (𝑦𝑛, 𝑣𝑛) where 𝑦𝑖 ∈ {0, 1}^ , 𝑣𝑖 ∈ [0, 𝐿].
Prover’s input. 𝑥 ∈ G, where 𝑥 is the witness to statement 𝑦ℓ such that 𝑣ℓ ≥ 𝑣0.

Verifier’s input. C𝑥 = Com(𝑥) and C𝑣ℓ = Com(𝑣ℓ ).
Protocol.

(1) The verifier constructs a garbled circuit for 𝐹 .

(𝐺𝐶, 𝑒, 𝑑) ← Gb(1^ , 𝐹 (𝑥,𝑦) = 𝑦 ⊕ 𝑓 (𝑥)
(2) The prover sends (𝑖, 𝑥𝑖 ) for all 𝑖 ∈ [𝑛] to FCOT.

(3) The verifier sends (𝑖, (𝐾0

𝑖
, 𝑏𝑖 ), (𝐾1

𝑖
, 2𝑖𝑎+𝑏𝑖 )) for all 𝑖 ∈ [𝑛] to FCOT where 𝑎 and 𝑏𝑖 has length of _ and |𝑥 | +_ bits respectively.

(4) FCOT outputs (𝐾𝑥𝑖
𝑖
, 2𝑖𝑎𝑥𝑖 + 𝑏𝑖 ) for all 𝑖 ∈ [𝑛] to the prover.

(5) The prover sends ℓ to F 1:𝑛
OT

.

(6) The verifier sends ((𝑦1, 𝑎
′𝑣1 + 𝑏 ′), · · · , (𝑦𝑛, 𝑎′𝑣𝑛 + 𝑏 ′)) to F 1:𝑛

OT
where 𝑎′ and 𝑏 ′ has length of _ and |𝑥 | + _ bits respectively.

(7) F 1:𝑛
COT

outputs (𝑦ℓ , 𝑎′𝑣ℓ + 𝑏 ′) to the prover.

(8) The verifier sends the garbled circuit 𝐺𝐶 to the prover.

(9) The prover evaluates the garbled circuit

𝑍 ← Eval(𝐺𝐶, {𝐾𝑥𝑖
𝑖
}𝑖∈[𝑛] , 𝑦ℓ )

(10) The prover computes 𝑡 =
𝑛−1∑
𝑖=0

(2𝑖𝑎𝑥𝑖 + 𝑏𝑖 ) = 𝑎𝑥 + 𝑏 and 𝑣 = 𝑎′𝑣ℓ + 𝑏 ′.

(11) The prover commits to the garbled output𝑍 and 𝑡 by sendingCom(𝑍 ),Com(𝑡),Com(𝑣) to the verifier and proves knowledge
of opening.

(12) The verifier sends open to FCOT and F 1:𝑛
COT

.

(13) FCOT sends (𝐾0

𝑖
, 𝐾1

𝑖
) and F 1:𝑛

COT
sends ((𝑦1, 𝑎

′𝑣1 + 𝑏 ′), · · · , (𝑦𝑛, 𝑎′𝑣𝑛 + 𝑏 ′)) to the prover for all 𝑖 ∈ [𝑛].
(14) The prover verifies that the circuit was garbled correctly by running Ve(𝐺𝐶, {𝐾0

𝑖
, 𝐾1

𝑖
}𝑖∈[𝑛] , 𝐹 ) and the garbled inputs for

𝑥,𝑦1, · · · , 𝑦𝑛 are correct. If the check fail, the prover terminates. Else, it opens 𝑍 to the verifier.

(15) The verifier checks that De(𝑑, 𝑍 ) = 0. Otherwise, it rejects and terminates.

(16) The prover and the verifier execute the following ZK proofs: 𝜋1 = {(𝑥, 𝑡) : C𝑥 = Com(𝑥) ∧ C𝑡 = Com(𝑡) ∧ 𝑡 = 𝑎𝑥 + 𝑏}
𝜋2 = {(𝑣ℓ , 𝑣) : C𝑣ℓ = Com(𝑣ℓ ) ∧ C𝑣 = Com(𝑣) ∧ 𝑣 = 𝑎′𝑣ℓ + 𝑏 ′ ∧ 𝑣ℓ ≥ 𝑣0}

(17) If any of 𝜋1, 𝜋2 do not verify, the verifier terminates.

Figure 13: OR Proof with MAC and value Protocol using Garbled Circuits. We denote by colored text the additional
elements introduced compared to Fig. 12.

multiplications, or 14𝑞2 (𝑞 − 1) AND gates. Finally, we need to

convert the projective coordinates to the regular coordinates

by computing one field inverse and 2 multiplications which

cost around 𝑞3
AND gates. In total, the size of the circuit is

15𝑞3 − 14𝑞2
AND gates. For 𝑞 = 256, the circuit will have

around 250 million AND gates.
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Table 5: Comparison of ZK proof systems for Proof of Assets for a single proof. |𝑥 | is length of input, |𝐹 | circuit size,
_ security parameter. (for BTC UTXO |𝑥 | = 512 (BTC public key 256bits + 256 bits of padding for MD), probably _ < 𝑥 ,
we can consider 128 or 256 sec bits. Circuit 𝐹 ′ might be 10 times larger than F)

No setup NI Prover Verifier Proof size Notes

Chase et al. [18]

(w/o MAC)

✔ ✕ 𝑂 ( |𝑥 | pub +

|𝐹 | sym)

𝑂 ( |𝑥 | pub +

( |𝐹 | sym)

𝑂 (( |𝐹 | + |𝑥 |)_) Σ-protocol + GC

Chase et al. [18] (w/

MAC)

✔ ✕ 𝑂 (_ pub + ( |𝐹 ′ | +
|𝑥 |_) sym)

𝑂 (_ pub + ( |𝐹 ′ | +
|𝑥 |_) sym)

𝑂 (( |𝐹 ′ | + |𝑥 |_)_) Σ-protocol + GC

Backes et al. [8] ✔ ✔ 𝑂 ( |𝑥 | + _ pub +

|𝐹 |_ sym)

𝑂 ( |𝑥 | + _ pub +

|𝐹 |_ sym)

𝑂 (( |𝐹 |_ + |𝑥 |)_) Ped. Comm. + ZK-

Boo

Figure 13 ✔ ✕ 𝑂 (_ pub + ( |𝐹 | sym) 𝑂 (_ pub +

( |𝐹 |) sym)

𝑂 (( |𝐹 | + |𝑥 |)_) Σ-protocol + GC
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