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Abstract

This paper presents a new method for quantum
identity authentication (QIA) protocols. The logic
of classical zero-knowledge proofs (ZKPs) due to
Schnorr [8] is applied in quantum circuits and al-
gorithms. This novel approach gives an exact way
with which a prover P can prove they know some
secret by encapsulating it in a quantum state be-
fore sending to a verifier V by means of a quantum
channel - allowing for a ZKP wherein an eaves-
dropper or manipulation can be detected with a
fail-safe design. This paper presents a method
with which this can be achieved. With the antici-
pated advent of a ‘quantum internet’, such proto-
cols and ideas may soon have utility and execution
in the real world.

1 Introduction

With the advent of Quantum Computing comes
with it the idea of the Quantum Internet - the
ability to transfer a quantum state |Ψ⟩ from one
quantum computer/device to another. There are
many challenges with this kind of networking [2],
as well as many benefits. As Cacciapuoti [2] points
out, with a quantum internet we get Quantum Key
Distribution ‘for free’, a major benefit to quantum
communications infrastructure. There are many
existing Quantum Identity Authentication (QIA)
protocols [4] and this paper adds a new approach
to the collection.

Existing approaches make use of various fea-
tures of QKD, quantum teleportation techniques,
Physically Unclonable Functions (PUFs), dis-
tributed Bell states, quantum private queries,
quantum secure direct communications, etc.
Many of these details may be found in [4].

Schnorr introduced in [8] the idea of efficient
identification signatures, initially designed for use
with smart cards. This method of ‘proving’ your
identity without disclosing a secret became known
as ‘zero-knowledge proofs’ and have recently found

much use in many cryptographic protocols [5].
The benefits of ZKPs over other past approaches

are that there needs be no prior exchange or other
pre-sharing, nor any explicit statement of what the
hidden information is. The proof system itself car-
ries the correctness and soundness that guarantees
the validity of a proof presented by the prover to
the verifier, and that the claim by the prover to
know such a secret is ‘true’.

ZKPs have been used to create quantum proof
systems that have also been shown to be possi-
ble in a quantum setting [9]. These make use of
graph isomorphism problems, which this approach
does not. The method herein takes advantage of a
quantum communications network to reduce the
number of quantum and classical transmissions
down to 3 each.

The work presented here aims to demonstrate
how a quantum ZKP protocol might look by cod-
ing Schnorr’s original method into quantum states.
Some benefits and restrictions of this approach are
included.

2 Schnorr ZKP Protocol

In its simplest form, a zero-knowledge proof is a
method for a prover P to provide a way of showing
that they know some secret x to a verifier V , but
without exposing the secret at any point, hence
‘zero-knowledge’.

The following algorithm is the usual presenta-
tion of Schnorr’s work. P wants to prove that
they know x such that Y = gx mod p, for prime
p and generator g, with g, p, and Y public. The
following method is presented:

1. P → V : P chooses some r and sends
t = gr mod p to V .

2. V → P : V sends a random c to P .

3. P → V : P sends s = r + cx to V

4. V checks that gs ≡ t× Y c mod p.
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This works as

t× Y c ≡ gr × (gx)c mod p

≡ gr+cx mod p

≡ gs mod p

(1)

This very neat scheme was a very important
development in authentication schemes, and will
form the basis for the quantum protocol presented
next.

3 Quantum Preliminaries

This protocol utilises a single qubit, and only
two quantum gates. Qubits are assumed to be
initialised in |0⟩ = ( 10 ) with our target state
|1⟩ = ( 01 ). With α, β ∈ C, |ψ⟩ = ( αβ ), such that
|α|2 + |β|2 = 1. Quantum gates are formed from
collections and tensor products of 2×2 unitary ma-
trices, relying on the fact that composing unitary
matrices with each other preserves this property
[6].
Define the Rx gate as [6]:

Rx(θ) = eiθX/2

= cos (θ/2)I + i sin (θ/2)X

=

(
cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

) (2)

where I = ( 1 0
0 1 ) and X = ( 0 1

1 0 ). With the repre-
sentation of the Bloch sphere, this gate is usually
interpreted as a rotation along the x axis.
The following gate Gp(a) shall be utilised, de-

fined as follows:

Gp(a) = Rx

(
(a mod p)× π

p

)
(3)

Intuitively, we split the π rotation about the x
axis on the Bloch sphere into p many steps, and
then apply a rotation on our qubit, moving that
number of steps around.

4 Quantum Internet ZKPs

This section brings these two domains together
to propose an authentication scheme that makes
use of a quantum internet with additional classical
channel.

4.1 Q-ZKP Protocol

The Quantum Internet, loosely defined, is a quan-
tum communications protocol that permits the
transfer of some quantum state |Ψ⟩ from one quan-
tum computer/device to another. Utilising this

property, the following zero-knowledge proof can
be constructed.

With the advent of Shor’s algorithm (see [6, Ap-
pendix 4]) it is clear that if Y = gx mod p is pub-
lic alongside g and p, then x may be recovered by
means of this algorithm. As such, a way of sharing
quantum states that encode x and the subsequent
proof is needed.

To do this, we substitute exponents over some g
for rotations about the x axis on a qubit, relying
on the hardness of decoding quantum states rather
than the discrete logarithm problem.

As before, P wishes to prove they know x to V ,
only this time they have a quantum internet. Both
the rotation Gp and value of p are known publicly.

1. P → V : P sends a commitment state |Gp(x)⟩
to V .

2. P → V : P chooses some r and sends |Gp(r)⟩
to V .

3. V constructs the state

|A⟩ = |Gp(x)⟩ |Gp(r)⟩ (4)

and chooses a random c and n.

4. V → P : V sends c and |Gp(n)⟩ to P .

5. P computes s = r + cx and

b =

{
0 if (r + xc mod 2p) ≤ p
1 if (r + xc mod 2p) > p

(5)

6. P → V : P sends s and b and then sends

|S⟩ = |Gp(x(c− 1))⟩ |Gp(n)⟩

to P .

7. V constructs

|B⟩ = |A⟩ |S⟩ |Gp(−n)⟩ (6)

= |A⟩ |Gp(x(c− 1))⟩ (7)

8. V sets |C⟩ = X gate if b is 1, else |C⟩ = I.

9. V checks that

|B⟩ |C⟩ |Gp(p− s)⟩ = 1

under the normal z axis measurement.
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4.2 Correctness

We first note that due to the commutativity of
single axis rotations

|Gp(a)⟩ |Gp(b)⟩ = |Gp(b)⟩ |Gp(a)⟩ (8)

From this it follows that

|A⟩ |Gp(x(c− 1))⟩ = |Gp(r)⟩ |G2p(xc)⟩ (9)

Next we need to take |G2p(r + xc)⟩ which is
formed from full rotations about the x axis, and re-
strict it down to half-axis rotations. This is where
|C⟩ comes in to play.
Note that if some (a mod 2p) > p then (a + p

mod 2p) < p. Given our X gate effectively fulfils
this function, it is conditional on P ’s assessment
in witness b whether it is applied or not. As such
if (r + xc mod 2p) > p then

|Gp(r)⟩ |G2p(xc)⟩X = |Gp(r)⟩ |Gp(xc)⟩ (10)

This gives us, given a correct choice of |C⟩

|B⟩ |C⟩ = |Gp(r)⟩ |Gp(xc)⟩ (11)

We then need the following theorem to complete
our proof’s validity:

Theorem 4.1. Let |C⟩ be chosen appropriately as
above. When V checks

|Gp(r)⟩ |Gp(xc)⟩ |C⟩ |Gp(p− s)⟩

the output will always be a 1 if and only if V agrees
that P has a valid proof that they know x.

Proof. (←) Start by re-asserting the interpreta-
tion of equation (1) in this scheme, namely that
for a valid proof it follows that

s ≡ r + xc mod p

With this, it then follows that
|Gp(r)⟩ |Gp(xc)⟩ |C⟩ should be the same Rx

rotation as |Gp(s)⟩.
Under multiplication the rotation is completed

by Gp(p− s), as

s+ (p− s) ≡ p ≡ 0 mod p (12)

Given the protocol only divides a half, not a full,
qubit rotation by p this completion should always
send the qubit to be in state |1⟩, and therefore
have a 1 measurement.
(→) If the measurement output is always 1 then

the |Gp(r)⟩ state received from P by V matches
the |Gp(s)⟩ state that V can construct, when com-
posed with the |Gp(xc)⟩ states that V wants to
verify, sent piece-wise from P .

By equation (12) a |1⟩ state, and subsequent 1
measurement means that everything required to
line up has done so, and P ’s proof is correct.

Note that the proof of soundness is given by the
original protocol from [8].

4.3 Remarks

4.3.1 Repetitions

Of course, just one exchange between P and V
will likely not be convincing enough. Numerous
exchanges and measurements will build the statis-
tical significance that P is indeed correct accord-
ing to V . This significance will additionally grow
as p and the resolution of the qubit increase.

As the protocol is quite efficient compared to
others (there are only three quantum and three
classical transmissions), the overhead for multiple
transmissions should be linear. The values for r, n,
and c may also change each time without affecting
the overall validity of the proofs.

Future developments may involve multi-party
distributed entangled states (such as GHZ states)
where multiple verifiers can receive the same
|Gp(r)⟩, issue different challenges, and all verify
proofs from P .

4.3.2 Error Rate

It should be noted that the error rate introduced
by someone listening in on the quantum channel
will also be evident very quickly, as the error rate
will rise significantly when an eavesdropper tries to
guess the random r chosen by P . This is congru-
ous with how QKD protocols add security using
quantum states. The quantum channel, as with
other quantum communications protocols [2], of-
fers some significant added protection there.

It should also be noted that, because the se-
curity relies on the statistical likelihood of zero
measurements, the protocol effectively fails safe
for sufficiently high introductions of error.

4.3.3 Hardware

There are several constraints on current hardware
that would preclude this from being immediately
practical. Namely, the need for a very high pre-
cision on the qubit in use, and a likewise minimal
amount of noise required to not skew the results.

Error corrected qubits and quantum communi-
cation channels are required to deal with the sec-
ond part of these issues [7]. The resolution of the
qubits and their longevity is taken into account by
some benchmarks, such as ‘Quantum Volume’ [3].
Therefore, as quantum computers grow in reliabil-
ity and complexity, and quantum networks begin
to be tested and deployed and improve, we might
consider such high enough resolutions, error cor-
rection, and reliability to one day be attainable.
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4.3.4 Security of Secret Values

The variable n is included to ensure the integrity of
P ’s response in step 6, whilst r assumes the same
function as per the original Schnorr ZKP method.
The fact that secrets are encapsulated in quantum
states is the manner in which this protocol main-
tains its security.
Much as Schnorr’s original ZKP relies on the se-

curity of the discrete logarithm problem to main-
tain security of that system, this system relies on
the security of quantum states to preserve the en-
capsulated secrets x, r, and n. Were an eaves-
dropper or attacker attempt to read these states,
they would not be able to easily discern accurate
values for these secrets. Likewise, such an attack
would also raise the noise floor above what is ac-
ceptable, and would be detected, as discussed in
section 4.3.2.
As such, an attacker would have to measure

|Gp(x)⟩ and |Gp(r)⟩ continually in order to pro-
duce any kind of valid amplitude estimation, e.g.
in [1]. Given each value is only transmitted at
most once in its original state such an attack is
not viable.

5 Conclusion

This paper hopes to have shown that there is
another possibility for performing zero-knowledge
proofs using quantum algorithms over quantum
communications networks. This system has been
shown to have some additional benefits over purely
classical approaches, despite its classical basis.
This work thereby adds to the collection of

proposals for QIA and quantum zero-knowledge
proofs that might help shape future quantum com-
munications.
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