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DAMIEN ROBERT

ABSTRACT. We give some applications of the “embedding Lemma”. The first one is a
deterministic polynomial time (in log g) algorithm to compute the endomorphism ring
End(E) of an ordinary elliptic curve E/F;, provided we are given the factorisation of
A .. In particular, the full endomorphism ring computation can be done in quantum
polynomial time.

The second application is an algorithm to compute the canonical lift of E/F, g = p”,
(still assuming that E is ordinary) to precision 71 in time O (nm logo(l) p). We deduce

a point counting algorithm of complexity O (12 logo<1) p). In particular the complexity

is polynomial in log p, by contrast of what is usually expected of a p-adic cohomology
computation.

The third application is a quasi-linear CRT algorithm to compute Siegel modular
polynomials of elliptic curves, which does not rely on any heuristic or conditional result
(like GRH).

We also outline how to generalize these algorithms to (ordinary) abelian varieties.

1. INTRODUCTION

A spectacular application of dimension 2 isogenies to attack SIDH was given in [ ;
] (relying on a lemma by Kani), followed by the use of even higher dimensional
isogenies in [ ].In[ ] we asked the question of whether the tools used to break
SIDH could be used constructively. This was soon afterwards answered affirmatively in
[ ] for the evaluation of isogenies. Namely, the embedding lemma (see Section 2.1)
shows that once we have evaluated a given isogeny f on an N-torsion basis with N-smooth
(and the points of its Sylow components living in extensions of small degrees), we may then
embed f into a smooth higher dimensional N-isogeny F, and then use F to evaluate f on any
other points efficiently.

A key obstacle to the use of | ] is the requirement of evaluating f on a basis of E[N]
first. In this paper, we show how to exploit [ | further. First, if f is an endomorphism
given by an explicit polynomial in the Frobenius, evaluating f is easy at points of order prime
to the denominators. We will exploit this in Section 4 to compute the endomorphism ring of
an ordinary elliptic curve, and in Section 5 to compute the cardinal modulo p of an ordinary
elliptic curve. The second idea is that once we have embedded f into the smooth F, we can
lift f by lifting F, see Section 3. We will use this idea in Section 5 to compute the canonical lift
of an ordinary elliptic curve (and as an application recover its full cardinal rather than only
its cardinal modulo p), and in Section 6 for computing modular polynomials (and various
variants).

The outline is as follow. In Section 2 we recall the embedding lemma, and then explain
in Section 2.3 how to efficiently evaluate endomorphisms. In Section 3 we explain how to
lift isogenies using the embedding lemma. Our first application is the computation of the
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endomorphism ring of an elliptic curve in Section 4. Our second concern canonical lift and
is described in Section 5. Our third is about modular polynomials in Section 6. This paper is
just an overview of our results, and its aim is to give a brief leisurely description of the main
algorithms. It will be followed by more technical papers giving more details.

1.1. Thanks. Ithank Andrew Sutherland who asked me if higher dimensional isogenies
could help computing the endomorphism ring of an elliptic curve. This led to Section 4.

I thank Jean-Marc Couveignes and Pierrick Gaudry for various discussions about other
applications of canonical lifts than point counting, and Aurel Page for brainstorming sessions
about trying to apply the same techniques as Section 5 to compute the crystalline cohomology
of a general ordinary scheme.

I thank Antonin Leroux for various discussions about the computation of modular poly-
nomials of elliptic curves. In particular, the algorithms presented in Section 6 at different
points use supersingular elliptic curves for convenience; this idea is due to him. In [ 1,
Leroux gives other quasi-linear algorithms that exclusively rely on supersingular curves. We
explain the differences between his algorithms and ours in Section 6.

2. EVALUATING ISOGENIES AND ENDOMORPHISMS

2.1. The embedding lemma. If a1, &, are two endomorphisms of an elliptic curve E of
degree a1 and a,, then aq o &, is of degree a,a,. However it is harder to control the degree

of the sum; by Cauchy-Schwartz we can bound it as: (a%/2 — a;/Z)Z < deg(aq +ap) <

(a%/ 24 aé/ 2
trace 0.

If x; commutes with &,, we can instead use Kani’s lemma [ , § 2] to build an
endomorphism F in dimension 2 on E? which is an (a1 + a,)-isogeny (so is of degree
(a1 + a,)? since we are in dimension 2). So by going to higher dimension we can combine
degrees additively. The proof of this lemma is very simple (a simple two by two matrix
computation), but its powerful algorithmic potential went unnoticed until Castrick and
Decru applied it in | ] to attack on SIDH.

)2 (unless &y = —ay). And &y + a, is of degree a; + a, if and only if a4 &, is of

Lemma 2.1 (Kani). An isogeny diamond is a commutative diagram of isogenies (between
polarised abelian varieties)

with f1 a dy-isogeny, f, a dy-isogeny andf = f] ofy = f; of> ad = dyd,-isogeny (equivalently
f1 is ady-isogeny or f] is a dy-isogeny). Then F = ( fjl[ j;%) isad-isogeny AxB — A x A,
—f B2
whered = dq + d,. y 3
Furthermore, Ker F = {(fix + foy,f{x + fy),x € Ai[d],y € Ay[d]}, KerF =

{(fix, f{x),x € A[d]} ifKerf; N Kerf] = 0 (eg if dy is prime to d,), and if d; is prime to
d,, then Ker F = {(dqx,fx),x € A[d]}.

Proof. Kani’s lemma is stated for elliptic curves in [ , § 2], its extension to abelian
varieties and the statements about the kernels is immediate, see [ ; 1. O

Remark 2.2. Our situation above with endomorphisms @, a5 is a special case of Kani’s
lemma where we take f| = f; = a1, f, = f{ = 1. Givenf; : A — A; a d;-isogeny,
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fr : A - A, ad,-isogeny, then provided that d; is prime to d, the pushforward of f; by f,
gives an isogeny diamond.

Remark 2.3. A recursive application of Kani’s lemma shows that we can embed m isogenies
fitA—> Ay, .. fnt A—> A, oftype Bq,..., B, with the §; totally real positive numbers
primes with each other into a big 2”1 x 2"~1 matrix such that the corresponding isogeny
Fisa By + - + B, isogeny A x Aqp x Ayz X ... Aji-r X Aqpzg X =+ X Ajjpg -+ X oo >
Ay xAg X Ajee X Az X A o X Aqozgs X oo Ajjy - X .. where A denotes the
pushforward of f;, f;, fx. The relative primality condition on the f; is to ensure that these
pushforward stays j3; isogenies. If the f; are commuting endomorphism this is not necessary;
F will then be an endomorphism on A"

We can combine Kani’s lemma (extended to higher dimension) with Zarhin’s trick: for
any m € N, it is possible to build an m-endomorphism &4 on A* whereu = 1,2 or 4
depending on whether m is a sum of 1, 2 or 4 squares, see [ ]. The endomorphism « 4
will be given by a 1 x u matrix with integer coefficients. So if f : A — B is an N-isogeny, we
can consider the diagonal matrix f : A* — BY, it will commute with &4 and 84, so we can
apply Lemma 2.1.

Lemma 2.4 (Embedding lemma). For anym > 0, an N-isogeny f : A — B in dimension g of
principally polarised abelian varieties can always be efficiently embedded into an N +m-isogeny
F in dimension 2ug, according to whether m is a sum of u = 4, 2, or 1 squares (so F will be in
dimension 8g, 4¢ and 2g respectively).

More precisely, we embed f into the endomorphism F of A* x B* given by F = (ZXJ‘:‘ Ec_j>
B

The kernel of F is given by { (& ox +fy, —fx+agy),x € A¥[N+m],y € AY[N+m]}.Ifm
is prime to N, then given the image of f on a basis (Py, ..., Pg) of A[N1] and (Qy, ... Qg) of
A[N,] with N + m = N1N,, we can explicitly decompose F as F = F, o Fy, F1 a Nq-isogeny
with a basis of its kernel given by (a4 (P;), —f (P;)), and F5 a N,-isogeny, with a basis of the
kernel of F5 given by (@A (Q)), f(QN).

Proof. This comes from Lemma 2.1, except the description of the kernels when m1 is prime
to N. But in this case the kernel of F is cyclic of rank g, hence we can split it as stated, cf
[ ,$ 6.4]. O

Remark that F embeds both fand its dual f.

Remark 2.5. For efficiency, wed like to take 1 as small as possible in Lemma 2.4. If A has
efficient endomorphisms, we can try to use them to compute an appropriate m-isogeny & 4 on
A?, with v < u. If m is prime to N, we can then build the isogeny diamond in dimension vg
given by the pushforward of f : A — BY and & 4, and apply Lemma 2.1 directly.

An exemple of this situation is given by the curve E, : y? = x> + x which has the explicit
endomorphism i. We can use it to construct a 4 on Eg if 1 is a sum of two squares, or on E3
if m is a sum of four squares. This allows to gain a factor 2 on u compared to Lemma 2.4.

2.2. Evaluating isogenies.

Definition 2.6. Let us define the N-evaluation problem as follow: given an N-isogeny
f +A/k - B/kand a point Q € A(k), evaluate f (Q). Here we remain deliberately vague
about how f is specified, usually it will be by its kernel K, which is a maximal isotropic
subgroup in A[N].
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Definition 2.7. The converse problem may be defined as follow: given an N-isogeny f
as above, P € A[N'] and the tuple (P,f (P)) along with a point Q € A(k), the (N,N")-
interpolation problem ask to evaluate f (Q). Of course, N needs to be large enough compared
to N so that f is uniquely determined by the data P, f (P).

We will be interested in the following weaker variant: the (N, N')-weak interpolation
problem ask to evaluate f (Q) provided we are given the value of f on a basis of A[N"].

Note that if N = N’, given the value of f on a basis of A[N] we can (up to DLP computa-
tions') recover the kernel of f, hence the weak evaluation problem reduces to the evaluation
problem in this case.

We may apply the embedding lemma to reduce the weak interpolation problem to the
evaluation problem in higher dimension:

Lemma 2.8. If N’ > N, or more generally if we can find two (not necessarily distincts) divisors
N1, Nj of N" with N{N, > N and N1Nj prime to N, then the weak (N, N')-interpolation
problem reduces to the N' evaluation problem in higher dimension.

Proof. The embedding lemma (Lemma 2.4) gives us an N’-isogeny F that embeds f, so
evaluating f (Q) can be done by evaluating F(Q). If N" > N we have the kernel of F directly,
and so we may use it to evaluate F. In particular, if N’ is prime to N, Ker F can be completely
determined by the value of f (A[N]): ker F = {(xax, —fx), x € A*[N]}. A fun fact is that
in this case we do not even need to compute DLPs to recover Ker F.

The more general case follow from the statement about the decomposition of F in
Lemma 2.4: we have the kernel of F; so we may evaluate it, and we have the kernel of
Fz, so we can evaluate it on (A" x B¥)[N,] to recover the kernel of F,. O

This reduction is interesting because if k = F, is a finite field and N” is powersmooth
(or if N” is smooth and A[N'] lives in a small extension), the N'-evaluation problem can be
done in polynomial time in log g and the smoothness bound B of N’ (here we assume the
dimension g fixed). This has the following application to the N-evaluation problem: if we can
evaluate f on the N'-torsion, the evaluation problem reduces trivially to the (N, N")-weak
interpolation problem, and we have just seen that this reduces to the N'-evaluation problem
in higher dimension. So assuming that we have an oracle giving us this evaluation of f on
A[N'], we can reduce the N-evaluation problem into the N'-evaluation problem (in higher
dimension), which can be computed in polynomial time if N’ is powersmooth. In other
words, we embed the N-isogeny f into a powersmooth N'-isogeny F. This application is
described in more details in [ ]. For our complexity analysis, we need to briefly review
the complexity results obtained there.

Proposition 2.9. Letf : A — B be an N-isogeny between polarised abelian varieties of
dimension g defined over a finite field k = F,. Let N' = [T_, ¢ and letu = 1,2,4
according to whether m = N’ — N is prime to N and a sum of 1,2 or 4 squares. Let F be the
embedding of f given by the embedding lemma.

Assume that we are given the image of f : A — B on a basis of each A[{;']. Let By be
a bound on the ¥;, Dy a bound on the degrees of the extensions where the points of A[{;']

are defined, and D, a bound on the degree where the points of the compositium A[ﬂf"ﬂ?] are
defined.

Yff : A — B, an alternative strategy that do not require DLP is to extract a basis of Kerf = f(A[N1])
from the image of f on A[N]. This only requires to compute Weil pairings and find a g x 2¢ submatrix with
determinant of order N. The order check can be done if we know the factorisation of N. Then we recover
generators of Ker f via Ker f = f (A[N1), from which we extract a basis too.
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Then we can decompose F as a product of e; {; isogenies in time O(s(Y el-)B%”gDz logq).
Evaluating F then requires O((Y. e,)D; B%”g log q) operations.

Proof. We can write F = F; o Fy where Fy isa {]' isogeny. From the image of f on a basis of
A[€°], we easily recover Ker F; = Ker F[{°] since a 4 is easy to evaluate. We decompose Fy
as a product of e {; isogenies, since an {;-isogeny in dimension G = 2ug costs O(€1G) to
evaluate, this can be done in O(e; R%ug ) operations over an extension of degree less than D.
We then need to push the image of f on a basis of A[€;'] through f;, we have 2¢s points to

push and we work over an extension of degree less than D5, so this costs O(seq @%ug D, logq).
Then we iterate.

Once this decomposition is done, evaluating F amount to evaluating the ¢; {; isogenies
we have decomposed it into, each costing O(£) operations over an extension of degree less
than D;. O

Corollary 2.10. With the notations of Proposition 2.9, let B be a powersmooth bound on N', ie
a bound on the (. Then we can decompose F with O(B*$ B28" log® N') arithmetic operations
over F ;, and then evaluate it on a point in O(B%B28%*log N") arithmetic operations (over the
field of definition of this point).

If A[N'] is rational, we can decompose F with @l(log2 N'B28%) arithmetic operations over
F,, then evaluate it in O(B%%1ogN") operations.

We can always find N' with a powersmooth bound of B = log N, so in the general case,

2+9(44+2u

we can decompose F in time O(log 'N) arithmetic operations over F, and then

14824210 Ny arithmetic operations. And in the rational

2+2gu

do subsequent evaluations in O(log

case, we can decompose F in time O (log
1+2gu

N) arithmetic operations over F , and then do

subsequent evaluations in O (log N) arithmetic operations.

Proof. For the first statement, apply Proposition 2.9 with D; = B*, D, = B*%,s =
OdogN"), > e; = O(N"). For the second one, we use D; = D, = 1. O

So the smaller u, the better complexity, but the harder to find a suitable N'. The easiest
case is 1 = 4, we just need to find a powersmooth N’ > N and prime to N. We simply take
the product of the first O(log N) primes to N, and then decompose N’ — N as a sum of
squares. This cost O(log2 N). The hardest case is u = 1, we need to find N’ such that N’ — N
is a square. In general this will not be possible. This could still have some applications, eg
as in Section 5 where N = p, if we take the base field to be of a special form. The middle
case is u = 2. It is difficult to test if an integer N’ — N is a sum of two squares (this requires
factorizing it), so a solution is to test if N’ — N is prime and a sum of squares. A probabilistic
algorithm (missing a few primes) cost O(log2 (N"—N)). There is a heuristically a probability
of A(1/logN) that N' — N is both a square and a sum of two primes, so we need to test
O(log N) N'. So we can find a suitable N’ in heuristic time O(log3 N). Of course once N’
and the decomposition of N’ — N as a sum of two squares is found, it is easy to check that
N’ work.

Remark 2.11. Assume that we have a S-isogeny f on an abelian variety A with RM by K,
and K/ Q is Galoisian. Let 1 = B, B3, ..., B¢ e the Galois conjugates of j, and choose
any 3, isogeny f;, with f; = f. Then we can use Remark 2.3 to embed the f; (hence f) into F;
a Tr B-isogeny (assuming f is a prime power), and then use Kani’s lemma again to embed
F; into F, a N'-isogeny, N’ > Tr 8. To determine the kernel of F, we need to compute the
action of the f; (and various pushforwards) on A[N'] (and pushforwards Aijk[N .
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2.3. Evaluating endomorphisms. Now the main obstacle of this idea is the need to eval-
uate f on the N’-torsion first. The idea of this paper is that if A/F, is an ordinary abelian
variety, then Z[ 7] is an order in End(A) (recall that for an ordinary abelian variety the
endomorphism ring is invariant by a field extension, so End(A) = End]Fq (A) = Endﬁq (A)).
So any element @ € End(A) can be written as P, (77) /D where P, is a polynomial of degree
d < 2g with integer coefficients, and D an integer dividing the index f,, = [Og : Z[7]]
where Oy is the maximal order in End’(A) = End(4) ® z Q.

Note that since A is principally polarised, it contains Z[ 7, 7T] where 77 = q/7t (the Ver-
schiebung) is the image of 7t by the Rosatti involution. This allows to write & as a polynomial
in 7t, 7T where this time the denominator D divides [Og : Z[7t, 7T]], so can be smaller. We
won't need this in the following.

Evaluating & on a point P € A can be done as follow: find any point P’ such that
P = DP’. 'Then a(P) = P,(7r)(P"). We remark that 77 is easy to evaluate: it requires
O(logq) arithmetic operations, and of course integer multiplications [1] can be evaluated
in O(log m) operations on the abelian variety. But if D has a large prime factor, finding P’
will be very expensive in general. Still, in the particular case when P € A[N'], with N’
prime to D, then finding P’ amount to inverting D modulo N’ and a scalar multiplication.
So we can evaluate & on A[N'], provided that N’ is prime to D, in time polynomial in log g
and the height of the coefficients of P, /D. This allow us to efficiently embed « into a higher
dimensional endomorphism F,.

Thus, if « is an N-isogeny, taking N’ > N powersmooth and prime to N and the index
f» we can evaluate the endomorphism « represented abstractly as above on any point
Q € A(F,) in time polynomial in log g and the height of a:

Proposition 2.12. If« is an N-endomorphism of height H, N' B powersmooth, B = O(logq),
as in Proposition 2.9, then we can evaluate a in time O ((H +log q) B% log g+B*8+218 log2 N'logq).

Proof. We can use Mahler’s bound to bound linearly the height of P, from the height of &
and of the characteristic polynomial x . of 7T (we assume the dimension g fixed here). By
Weil’s theorem, the height of x; is linear in log 4. So the coefficients of P, are of height O (H +
logq), and we need to evaluate the multiplication of these coefficients on points defined
over an extension of degree O(B%) of IF'q; this costs O((H + log q)BZg logq) operations.

The Frobenius evaluation costs O(log §B% log q). The remaining complexity follows from
Proposition 2.9. (]

3. LIFTING AN ISOGENY

Once we have embedded an isogeny f : A — B into a higher dimensional one F, we can
use F to lift f.

We will consider two kind of lifting: from F, to Z, ie a p-adic lift. This will be used to
compute canonical lifts in Section 5. Another lift we will use is from F, to F,[[e]], this
will be used in Section 6. In other words, given a deformation of A, we will compute the
corresponding deformation of f (lifting an N-isogeny is unique when N is prime to the base
characteristic). We could state this section for an arbitrary deformation data, namely given a
ring R and an ideal I with I2 = 0, an isogeny f over R/I and a lift of A to R, compute the lift
of fto R. But for simplicity we will stick to the two cases mentioned above.

We recall that the moduli stack Ag(N ) of ppav with a level N structure is smooth over
Z[1/N] and finite etale over Ag /Z[1/N1, so in particular N-isogenies lift uniquely when
N is prime to p.
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Proposition 3.1. Letf : A — B be an N-isogeny between polarised abelian varieties of
dimension g defined over a finite field k = F ;. Assume that we are given the image off : A — B
on a basis ofA[Bf"]. Let F,N', By, D1, Dy, u be as in the notations of Proposition 2.9. Assume
that N and N' is prime to the characteristic p.

LetO = Zq or IFq [[€]], and m a target precision. LetAbea lift of A to O at precision m, ie to

Zq/pm or ]Fq[[e] 1/€™. Then we canlift fto O at precision m, in time 5(5(2 ei)B%”gDz log g+

o ei)Dleugm log)).

IfB is a powersmooth bound, then as in Corollary 2.10 we get a complexity of O (B>*84+21) Jog g4
B1*82+2W 1 10g 4Y), so if we specialize further to B = O(log N): O(log” ¢ **2") Nlogg +
mlog' T2 Nlogq). If the N’ torsion is rational, this reduces to O(B**?8“Nlogq +
mB1*28" N logq).

Proof. We first decompose F : A* x B — A" x B" into {;-isogenies as in Proposition 2.9,
this gives the first term of the complexity analysis. We will then lift F by a Newton iteration,
doubling the precision at each step. Let us explain how to go from precision 1 to precision m =
2. The isogeny f : A — B will lift to f : A - B, and the endomorphisms & 4, &5 too, hence
F will lift as a matrix on A* x B¥.

A difficulty is that we don’t yet know B yet. So we take an arbitrary candidate B;. We
lift F (or more precisely the kernel of its decompositions) to F; starting on A x Eﬁ‘ Since
B, is arbitrary, the codomain C; of F; has no reason to be A* x ET (ie our lift F; may not
be an endomorphism), or even a product. Still, the deformation space of B is of dimension
g(g+1)/2,and the codomain C depends linearly on the g(g +1) /2 deformation parameters.
So taking g(g + 1)/2 + 1 arbitrary lifts B; and computing the codomain C; each time, we
can by linear algebra express the deformation of C linearly in terms of the deformation
parameters of C;.

As an example, if ¢ = 1, and O = F,[[€]], a lift of B to precision m = 2 correspond
to an elliptic curve B with j-invariant j(?) = j(B) + Ae. Given a modular invariant | in
dimension g, the J-invariant of the codomain C will be linear in €. It suffices to compute the
C corresponding to (for instance) A = 0 and A = 1 to recover this linear equation expressing
C in function of B.

We then solve the linear equation | ©) ~ J(A" x B*) (in terms of the deformation
parameters for B). For this B, our F lifts as an endomorphism A" x B“. Since the polarisation
uniquely determine the product decomposition of an abelian variety (up to permutation),
our decomposition A" x BY reduces to our starting decomposition A* x B, Since F reduces
to f, the coefficients of the matrix corresponding to F reduces to the coefficients of the matrix
corresponding to F. In particular, we have lifted f.

Since the lift of f is unique, the above discussion shows that the linear algebra step is
inversible. Hence the whole algorithm requires 1 + g(g + 1)/2 isogeny computations of F
at precision 7. Working in this algebra cost O(1m1log ). So by Proposition 2.9, we get the
second term of the complexity analysis, for m = 2.

For a general m, we do a Newton iteration, doubling the precision at each step. The
last step will be at least as costly as all the preceding terms using the standard sub-linearity
assumptions on the complexity of the multiplication at precison 1, hence the final complexity
analysis. O

Remark 3.2. In the context of Remark 2.5, the lifting of F (hence f) will be a bit more
complex. Indeed if we use a full isogeny diamond F : A - B - C = A; x B asin
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Lemma 2.1 rather than an endomorphism, then given a lift A of A, we now need to find the
lift of B, A1, By simultaneously.

As in Proposition 3.1, taking 1+ g (g +1) /2 lifts of B we can compute the full deformation
data giving the codomain C of the lift F associated to B. Now we need to know the local/formal
locus T = 0 around C of abelian varieties of dimension 2v splitting into two abelian varieties
of dimension v. For instance in dimension 2, the locus of product of elliptic curves is given
by x10 = 0. -

In our Newton process, the locus T will be given by linear equations. If C = A’ x B’ is in
this locus, then the converse of Kani’s lemma shows that I is given by a matrix induced by
an isogeny diamond at precision . A" and B’ reduces to Aq and B, (using an appropriate
permutation if needed), so the isogeny diamond at precision m reduces to our isogeny
diamond giving F. Hence we have lifted our full isogeny diamond at once, and in particular E
lifts f. In particular, this also means that C has to be unique, so our linear system is inversible.

4. COMPUTING THE ENDOMORPHISM RING OF AN ORDINARY ELLIPTIC CURVE

If E/F is an ordinary elliptic curve, we can recover the characteristic polynomial x, =
X? — tX + q of 7T in polynomial time in logq by a point counting algorithm. We can
thus recover A, = t? — 4q. If we know the factorisation of this discriminant, we can
compute its associated fundamental discriminant, hence the maximal order Og = Z[w] of
K = Q(yA,;) = End’(E), and the factorisation of the conductor f,; = [Og : Z[7]]. We
can write 77 = a4 + f,w (where a will depends on the trace of 7z, so has height O(logg)). We
know that 7w — a € End(E). To determine End(E) is equivalent to determining the index
of End(E) in Ok or the index of Z[7r] in End(E), and so is equivalent to determining the
largest divisor f of f,; such that 7;:’ € End(E).

Since we know the factorisation of f,;, we are reduced to the following problem: let g be a
factor of f;. Is ”(;u in End(E)? This can be done by checking that 7t — a is trivial on E[g],
but computing the g torsion will be expensive if ¢ has a large prime power as a factor.

Remark 4.1. This approach to endomorphism ring computations is used in [ ; ]
in dimension 2. The standard approach to compute the endomorphism ring of an ordinary
elliptic curve is to follow paths in the isogeny volcano and is due to Kohel [ ] (see also
[ ]). These algorithms are exponential in the worst case. An heuristic subexponential
algorithm is presented in [ ], and further improved in | ] to only rely on the GRH.
This later algorithm has subexponential complexity (when provided with a factorisation of

the discriminant) of L(1/2, 1/\/5 +0o(1))(Ay).
Instead we use the embedding lemma.

Theorem 4.2. Given an ordinary elliptic curve E/F ; and the factorisation of the discriminant

of the Frobenius 71, End(E) can be determined in polynomial time O(log7+2”

operations.

q) arithmetic

Here we can take u = 4 to get a proven complexity, or # = 2 to get an heuristic one.

Proof. We know how o = % is supposed to act on E[N’] (taking N > N («) prime to g

and N (a)), if it exists as an endomorphism. If « exists, we get an endomorphism F of E2*
(where u =1, 2,4) that embeds « as one of its matrix coefficient. If N = deg(7r — a), then
deg(a) = N(a) = N/gz. If m = N’ — N(«) and y an m-endomorphism on E*, then we
can build Ker F as Ker F = {(yP, —aP) | P € E¥[N']}. Since g is prime to N’, the action
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of w on E[N'] is well defined even if it is not a real endomorphism, and it is easy to check
that Ker F is always isotropic in E2#[N’].

So we first compute E2#/ Ker F and check that F is indeed an endomorphism. This can
be done in polynomial time if N” is powersmooth. If not, we know that & cannot be an
endomorphism.

It is instructive to look at what happens if F is an endomorphism of E#. Let us assume
u = 1 here for simplicity. Then by the converse of Kani’s lemma, we know that F must be

of the form F = Gl ;&%1) for endomorphisms f1, f»,81,§» such that g,g1 = f,f; and
2 &2

deg gy = degf,,and degf; +degf, = N’, and of course its kernel has to be the one specified
above. So there is no guarantee a priori, even if F is an endomorphism, that it embeds & and
not other endomorphisms.

But, since we can evaluate F efficiently, we can check if one of the matrix coefficient  of
F acts like « on E[N"], where N" is powersmooth (we just need to check it on a basis of the
N"-torsion).? Since F is an N'-isogeny (because we have specified its kernel to be maximal
isotropic in the N'-torsion), the individual components are (< N')-isogenies.

Now by Cauchy-Schwarz, if & and § are two endomorphisms of degree < M, then a +
is of degree < 4M. So if the endomorphisms &, B agree on E[N"], they are equal as long as
N'"? > 4M.

So we check if we can find a matrix coefficient § that acts like « on E[N"]. Then g8
acts like 77 — a on E[N"], so by the above result we have that g8 = 7 — a as long as
N"? > 4 max(g2N’, deg(7r — a)) = 4g2N’ (since we take N’ > deg((7r — a)/g)). In this
case, (7T — a)/g is indeed an endomorphism, and the converse is immediate.

Of course we will follow this approach step by step, so we already know that say (7t —a){/g
(with £ | g) is an endomorphism and we just need to check that £8 acts like (7t — a){/g,
which allows to take a smaller N".

We do at most log|A ;| steps, and the index f,;, hence its divisors, are at most |A|. The
full computation is thus polynomial in log g and log|A|. Since log|A | = log(q> — 4t) =
O(logq), we obtain the final complexity result by Corollary 2.10. O

Remark 4.3. The dominating step of the endomorphism ring computation is thus the
factorisation of the discriminant. The (unconditional randomised) proven complexity of the
factorisation is L(1/2,1 + 0(1))(A,;) by [ ], and the heuristic complexity of the NFS
algorithm is of L(1/3, (64/91/3 +0(1)) (A by ]. Since factorisation can be done in
polynomial time on a quantum computer by Schor’s algorithm [ ], the endomorphism
ring computation is in quantum polynomial time. Surprisingly it seems that no such quantum
polynomial time algorithm was known before this article.

Remark 4.4. In the supersingular setting, then given an explicit suborder O C End(E),
generated by endomorphisms that we can efficiently evaluate on torsion points, then we can
use the same ideas as above to check if a given order O’ such that O C O’ is of finite index is
still in End(E).

Remark 4.5. Using Remarks 2.3 and 2.11, the same framework allows to compute the
endomorphism ring of an ordinary abelian variety, provided that the real multiplication
is Galoisian over Q and we can compute the real Galois action efficiently on an abstract

2To be more precise, we need to test y3 for all automorphisms 7y of E. But E has no automorphisms apart
from [—1], unless j(E) = 0 or 1728. And we know the endomorphism ring of these curves.
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representation of Q(7r + 7T) C Q(7r). Indeed, we can use Remark 2.11 to embed a -
endomorphism into a Tr()-endomorphism, and then embed this one into a smooth endo-
morphism. Note that seeing 77 as a quadratic element over the real subfield, and ¢ an element
of the Galois group of the real subfield, we can “conjugate” 7t by conjugating the coefficient
of its minimal quadratic polynomial, and then conjugate an endomorphism & = a + br via
o(a) = o(a) + ob)o(m).

It would be very interesting to be able to move in the {-isogeny volcano in time polynomial
in log .

5. POINT COUNTING AND CANONICAL LIFTS

5.1. The action of the Verschiebung on the tangent space. Let E/F, g = p", be an ordi-
nary elliptic curve. The Frobenius 77, has two eigenvalues, one A which is invertible modulo p,
and the other is q/A. Since 77 is easy to evaluate, we can evaluate its action on the tangent
space TyE, but this gives us 0 since it is inseparable. The action of the Verschiebung 77, on
ToE allows us to recover A mod p, hence the trace of 77 modulo p. Since [g] = Tty 0Tt 3t
is easy to evaluate the Verschiebung on a point P which is in the image of 77,. Unfortunately
this does not help us to evaluate it on the tangent space, since the image of the Frobenius
there is trivial. An alternative is to compute the kernel of the Verschiebung and apply Vélu’s
formula, but since the degree of the Verschiebung is g, this is too expensive. (At this point
we would actually compute the small Verschiebung instead which is of degree p).

Instead, since the Verschiebung is easy to compute on the N'-torsion (N' > g pow-
ersmooth), we can embed it into a higher dimensional endomorphism F of E?¥; this also
embeds its dual 77,. We can then evaluate F on the tangent space at 0, this recover the action
of 77, and 77, on ToE. We thus get a polynomial time algorithm to recover A mod p. Like

above, it is more efficient to only embed 77, and 77, and recover A via a norm, see [ ,

§ 6]. Using Corollary 2.10, this algorithm to recover A mod p costs O(log6+2“

operations.

Notice the similarity with Schoof algorithm: in Schoof we compute the action of 7, on
small £;-torsions groups E[{;], recover )x,, mod {; via some DLP computations in E[{;],
then reconstruct x, mod []¢; by the CRT. In our approach, we also compute 71, (or 77,,)
on these E[{;], but we instead use the action to reconstruct F a [ | {; isogeny embedding 77,
and ﬁq (or T and ﬁp).

p) arithmetic

5.2. Canonical lift. The above approach seems like a lot of trouble for less information than
Schoof’s algorithm. But the nice thing about having the isogeny F is that lifting F gives a lift
of the Frobenius. We can thus use F to see how 77, acts on the deformation space of E, and
recover the canonical lift to precision m as in [ ].

Usually, the action of 77, on the deformation space was computed using the modular

polynomial ¢,. The modular polynomial ¢, is of size O(p®), and then evaluating to p-adic
precision m cost 0 (nmpz). In [ ], we explained how to compute the action via lifting
the kernel of the Verschiebung 77, instead; since it is of degree p this allows co compute
canonical lift in time O (nmp). (A slight annoyance is that by using the Verschiebung rather
than the Frobenius, we lose one bit in the p-adic precision at each step. In particular we need
another method to boostrap to precision m = 2: we use the fact that the étale p-torsion only
lifts to E if E = E modulo p?). Here we are going to use F instead, this way we can recover

3We can also write Ty = t — 7, this is closer in spirit to the description of Section 1, but of course at this

point we do not know the trace f yet.
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the action of 71, rather than 77, so there is no loss of precision, but more importantly F (and
its lift) can be evaluated in time polynomial in log p:

Theorem 5.1. Given E/F an ordinary elliptic curve, q = p", the canonical lift E of E can

be computed to precision m in time O (nm log4+2u 7Hau p), and the cardinal of E in

time O(n%log™* " p + nlog’ > p).

Here u = 1,2 or 4. We can only take # = 1 when p is a special form. We can always take
u = 4. We can also take u = 2, the cost of finding N’ described in Section 2.2 is heuristic,
but once it is found it is easy to check that N" works. Furthermore this can be seen as a
precomputation depending only on p.

p +nlog

Proof. This almost follow from Section 3, but there is a priori one technical difficulty towards
applying the results of Section 3 to our situation: the Frobenius and Verschiebung have
degree p not prime to the characteristic. In fact, the Verschiebung does not even lift uniquely.
The key point will be that we lift both of them together.

Let us describe this in more details. Assume for now for simplicity that our F is in
dimension 2. Let ¢ be the lift of the Frobenius to Q o and E denote the canonical lift of E,

o (E) is then the canonical lift of ¢ (E). F is an endomorphism of E x ¢ (E). The canonical
lift E is the unique lift E of E such that T lifts to ﬁ_'p : E > o (E). We thus look for E such
that the unique lift of F (as an isogeny) to E x ¢ (E) is still an endomorphism (the lift is
unique since F is étale). We remark that lifting F amount to lifting its kernel, which can be
done by lifting generators of this kernel to points of N’ torsion in E via a Newton iteration.
Let us look at how to lift from precision m = 1 to precision m = 2, then m = 4, and so
on. We proceed as in Section 3:let E; = E, E, = ¢ (E), we fix an arbitrary lift E’l of E and
another E’z of o (E). We lift F to compute its action on E’l X E’z We can then deform E’l to
another lift E"}, compute the action of F again, and then deform E/ to E", and compute
the action of F. This is enough, via linear algebra, to be able to compute the action of F on
arbitrary lifts of E; and E,, namely ifj(El) = j(Ea) + slp,j(fz) = j(E&) + &,p, we can
compute ] (E; x Ey/ Ker F) = J(E} x E5/ Ker F) + Ue; + Ve,, where ] is a set of modular
invariants in dimension 2. Note that we only care about the deformation of E; x E, to a
product abelian surface, that is why we only have two parameters €4, €, rather than three.
If E is a lift of E, the Frobenius 7, + E — o (E) lifts uniquely to E — E,. However, as
mentioned above, in general the Verschiebung o (E) — E does not lift to an arbitrary lift E,,
and if it does the lift is not unique. In other words, the stack of elliptic curves with a degree p
isogeny is étale at (E, 7Ty) when E is ordinary, but not at (E, ﬁp). In fact, by looking at the
Serre-Tate formal moduli, it is classical that if E = E to precision m, and T, E-Eyisa
lift of 77;,, then E, = o(E) to precision m + 1. Hence the Verschiebung 7T, can be lifted to

E, if E, = E to precision at least 2, and in this case, among the multiple possible lifts, there
is a canonical one which is the dual of the lift of the Frobenius E; — E,. It is characterised
by being the unique lift whose kernel lies in the maximal unramified extension of Q.
Anyway going back to our situation, when taking an arbitrary lift E; and E, of E and
o (E), thelift of 77, to E; has codomain another elliptic curve EZ,cun’ and so the codomain
of the lift F of F will not be a product abelian surface unless E, = E2,can' On the moduli
of abelian surfaces, the modular form x; has for locus the split surfaces, so plugging up
X1 in the expression of ] (E; x E,/ Ker F) above we get a linear equation between €; and
€, giving the locus where E, = E2,can' On this locus, the Verschiebung lifts from E, to E;
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by the above discussion, hence F lifts as a matrix. Alternatively, we could plug the equation
J(Ey x Ey/ Ker F) = J(Ey x Ey).

The canonical lift E at precision 2 can then be recovered by plugging the further equation
j(lecml) = (T(]'(El)). This way we obtain an Artin-Schreier equation Ao (e1) + Bey +
C = 0. Since the lifting solution is unique, A and B are not both 0, so they are uniquely
determined (up to normalising C) from j (E) and o(j (E)). In the general case where we are
in dimension 2u, we also use the equationsj(ﬁzlmn) =0 (j(Ey)) and J(E; x E,/ Ker F) =
J(E; x E,) where ] is a set of modular equations to recover this Artin-Schreier equation.

From the Serre-Tate formal moduli, we then know that A is of valuation 0 and B of
valuation 1. We can thus solve the equation to precision m’ = 1 and then lift it via Newton
iterations to the precision m’ = 2m that we need. This allows us to compute our canonical
lift from precision 1 to 2, and we iterate.

Of course, we can also use the lift F to compute the action of ﬁp on Ty cE to precision 7. By
Section 2.1, the dominating cost is the initial decomposition of F as a product of small isoge-
nies which cost O(log6+2” p) arithmetic operations, then the evaluations of F at precision
which cost O(nm 10g3+2u p) arithmetic operations. O
Remark 5.2. In Theorem 5.1, the O notation is actually hiding some € dependency on the
exponent rather than a usual quasi-linear dependency. We will call this pseudo-linear time.
The trouble is the evaluation of o on Z P unless we have a normal basis (lifted to Z q), the
best method I know is to evaluate it via modular composition. Using [ ], modular
composition over Z, to precision 11 can be done in On'*em logp), but is impractical.

Note that using Teichmuller representatives, the evaluation ¢ can be done in O (p) multipli-
cations over Z, which is too much when p is large but can be used if p is small compared to 1.
A baby step giant step approach shows that one can also evaluate ¢ in O (v/#) multiplications
in Z P this can be used when # is small compared to p.

In the statement of Theorem 5.1, we implicitly assume that the cost of the algorithms will
be dominated by the isogeny evaluations in higher dimension, and the arithmetic evaluation
of o on Z, is not dominant. We have seen this will be the case if we have a Gaussian normal
basis, if n is small with respect to p, or if p is small with respect to 7. If that is not the case,
one should add a pseudo-linear O(n'*+¢mlogp) to the complexity estimates.

We can thus list the complexity of the different point counting algorithm, according to
the underlying cohomology theory they use, as follow:

e Etale cohomology: Schoof’s algorithm [ ]isin O(log5 q) = O(n® log5 p),and
SEA’s algorithm [ ] in (Aj(log4 q) = On* log4 p).

o Rigid (Monsky-Washnitzer) cohomology: Kedlaya’s algorithm [ Jisin O(n®p)
and Harvey’s variant [ ]in 5(113'5;01/2 +nd logp).

e Crystalline cohomology: Satoh’s algorithm [ | (after improvements by Harley) is
inO (nzpz), and it has been improved to 0] (nzp) in [ ]. The (proven version of
the) current algorithm is in On? log15 p) and the heuristic version in On? log11 p).

Remark 5.3. Over an ordinary abelian variety, the same method allows to recover the
tangent matrix of ﬁp and ﬁp to precision m in time O(nm logo(l) p) (where the O(1) hides
a dependency at least linear in g).

On a supersingular elliptic curve E/F , if & is a non trivial endomorphism, there exist a

unique lift E of E such that & lift as an endomorphism & on E. If & can be efficiently evaluated
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on torsion points, we can embed it into a higher dimensional endomorphism, and compute
(E, &) with the same approach as for an ordinary curve.

Remark 5.4. Another way to compute a canonical lift with a complexity sublinear in p is
to compute the endomorphism ring and its class group, and then find a decomposition of
the Frobenius as a product of small ideals. In other word, to find a cycle of small isogenies
from E to E. (To forgo having to compute End(E), one can also work with the class group
of Z[7tg].) This gives an algorithm which is subexponential (under GRH) in p, see [ ,
Theorem 2]. (A similar approach is also implicit in [ , § 4.2], where Kohel tries to find
a path of small isogenies from E to ¢ (E).) Our present algorithm improves this complexity
from subexponential to polynomial.

Remark 5.5. Another standard application of canonical lifts is the computation of class
polynomials. If we start with an abelian variety A/F, we can compute its endomorphism
ring O, compute the action of the type norm to get the conjugate abelian varieties, lift them
to Z, with enough precision, and then reconstruct the class polynomial, see eg [ ,
Chapter 7]. If the class polynomial is of degree N and of height H (we assume here that
OlogN) = O(ogH) = O(logAp)), we need to lift to precision m = H/logp the
N conjugate varieties. Under GRH we can span the group generated by the type norms
with small generators, hence isogenies of small degree (O(log2 Ap)). So we can find the

N conjugate abelian varieties in time O(N logo(l)
o)

q), and using the fast lifting algorithm
lift them to precision 7 in time O(Nmn log”*" p), hence compute the class polynomial in
O(NHn logo(l) p). This yields a quasi-linear algorithm when logg = O(logo(l) (NH)).
Unfortunately, this does not suffices to compute the class polynomial of O in quasi-linear
time. To bootstrap the algorithm we need to start with an abelian variety A/, with CM by O.

Under GRH the smallest prime p that totally splits in the class field will be in O(N? log2 Aop),
and since there is O(p88+1/2) over F,, finding an abelian variety with CM by O will take
too long (even if we only try to find the correct isogeny class).

5.3. Canonical lifts, crystalline cohomology, and impact on isogeny based cryptography.
We study the impact of canonical lifts on isogeny based cryptography. We have two ordinary
elliptic curves Eq, E, with CM by Oy, and an ideal I inducing an isogeny f : E; — E,. The
goal is to recover I. The case of CSIDH would be similar.

The canonical lifts E, E, still have CM by Oy and flift to f : E; — E,. If we had the
complex embedding of E;, E,, to sufficiently high precision, we could recover I as follow. First,
recover the period lattices Ay = H' (El,C/ Z),Ay = H! (Ezlc, Z.). This can be done in time
quasi-linear in the precision thanks to the AGM. In fact, the AGM gives (an approximation
of) the elements 77, 75 in the fundamental domain associated to the lattices A, A,. This
allows to recover the lattices not only as Z-modules, but also as Og-modules. Here the action
of Ok comes from the canonical embedding of O in C and the action of C on 7y, T,. More
generally, whenever we have an explicit description of these lattices as Z-module, along with
the explicit action of O so that we also obtain the Og-module structure (eg via normalizing
this action), then (an approximation of) the ideal I = [A; : A,] can be recovered. Of course,
to recover the complex embedding of j(E) from its p-adic embedding, the only way I know
is via its minimal polynomial (which will be the class polynomial of O, cf Remark 5.5),
which will be too big in cryptographic situations.

Still, one way of computing canonical lifts in characteristic p is via the degree p version of
the AGM, so the similarity with recovering the period lattice in the complex case is striking.
In this section we explain why canonical lifts allows to recover the crystalline cohomology



14 DAMIEN ROBERT

group, which behaves like the p-adic version of the period lattice, and also why this does not
help a priorio to attack (commutative) isogeny based cryptosystems.

First, recall that Serre-Tate theory gives an equivalence of category between lifts of
(polarised) abelian varieties A/F, to Z, and the lift of their p-divisible group A[p™]
(along with a polarisation). Now if A/F, is ordinary, the connected étale sequence splits:
AlpT] = Agale[p™] ® Apur[p™ ], where Age is the étale component of rank g, and
A its Cartier dual (thanks to the Weil pairing), hence of multiplicative (more precisely
toric) type. The étale component lifts uniquely to A, [p™°1/Z,, hence the multiplicative
component lifts by duality. So lifting A amount to choosing an extension

(1) 0- Avmult[poo] - G- Avetale[poo] - 0.

The canonical lift corresponds to the unique split extension. Since an isogeny sends the toric
and étale part to their counterparts, it lifts uniquely along these components. As canonical
lifts correspond to the split extension (which is unique), this isogeny lifts canonically to
the canonical lifts by the universal property of spit extensions. As a particular case, all
endomorphisms lift. Conversely if the Frobenius lifts, then it is easy to see that it induces a
splitting of Equation (1), hence the lift is canonical.

More generally, an Ext group computation associated to the extension given by Equa-

—— 1)/2
tion (1) shows that the formal moduli (of ppav) is in bijection with Gmg(g+ / ; these

are the Serre-Tate formal coordinates. More canonically, the formal moduli is given by
Homzp (T,A®T, AV, G,,), principal polarisations corresponds to symmetric elements,

and an isogeny f : A — Blifttof : A — B where A, B are lifts (non necessarily canonical)
associated to given Serre-Tate coordinates if and only f satisfy some symmetric conditions
with respect to the Serre-Tate local coordinates associated to Aand B , Theorem 2.1].
Since the canonical lifts correspond to the trivial coordinates, this symmetry condition is
automatic, and we recover the fact that all isogenies lift to the canonical lifts. It is worth
pointing out that if we have two isogenies f, g : A — B, and take an arbitrary lift A of A, then
both isogenies f, g lift to A (provided that they are N7, N,-isogenies with Ny, N, prime to p)
but the codomain of the lifted isogenies need not be the same. However, if A is the canonical
lift, then in this case the codomain is the same, namely the canonical lift B of B! We refer
to [ ; ] for more details, along with the explicit form that the Kodaira-Spencer
isomorphism takes on the Serre-Tate formal moduli.

We will now make the link between the crystalline cohomology of A/F ; and its canonical
lift, following [ ]. We assume that p > 2, so that the canonical divided power basis
x"/n! on Zyis nilpotent at p on the Artin rings Zq/Pqu~ Messing associates in [ ]
to a p-divisible group G over k = F, a crystal D(G) (on these canonical divided powers).
Its value at Z, (with the usual abuse of notation of patching the Artin algebras Z,/p"'Z,
together) is the usual  Dieudonné module over Zq{F, V'} associated to the p-divisible group
G. We can classify lifts of G in terms of its associated crystal: the value of the crystal D(G)
at R = Z,/p" Z, is given by the Lie algebra of the universal vectorial extension of any lift
G of G to R. This Lie algebra comes with a natural Hodge filtration, which reduces to the
Hodge filtration on D(G) | ]Fq (this is called an admissible filtration), and while D(G) | R
does not depends on G, the corresponding Hodge filtration does. Grothendieck-Messing
theory states that this is an equivalence of category: lifts corresponds to admissible filtrations
on D(G), and morphisms lifts when they respect the filtrations.

“4The point of the Berthelot-Grothendieck-Messing-Mazur theory is that it extends to schemes, at least when
the divided power structure is locally nilpotent.
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When A/F is an abelian variety, its crystalline cohomology group H}rys(A /Zy) is the
crystal associate to its p-divisible group A[p®]. Moreover the Hodge to De Rham spectral
sequence always degenerates on an abelian variety (even in characteristic p), so we have the

exact sequence:
(2) 0 — Lie(A/R) - H}z(A/R) — Lie(AV/R)V - 0

since Lie(AY /R)V =~ H'(A,O,). This Hodge filtration on the De Rham cohomology corre-
sponds to the Hodge filtration on the crystalline group HclrYS (A/Zy) = D(A[p™]). Notably,
ifg/Zq is any lift ofA/IFq, then H?R(A/Zq) isisomorphicasa Zq-module to Hclrys(A/Zq),
and the Hodge filtration from Equation (2) induced by the De Rham cohomology is the
filtration on the crystal given associated by Grothendieck-Messing to a lift of the p-divisible
group (given by the lift of A). So in particular, given lifts A, B, an isogeny f : A — B lifts to
A - Bifand only if it respects the corresponding Hodge filtration. By linear algebra, we
recover Deuring’s theory on the existence of a lift of an endomorphism of an elliptic curve
(possibly supersingular).

Now if A/F,, is ordinary, Hclrys (A/Z,) = U & T splits canonically into subspaces stable
by 7t 4, where U corresponds to the toric and T to the étale decomposition of A[p™]: 74
is an isomorphism on U and p times an isomorphism on T. Indeed, the Hodge filtration
over F g is given by the kernel of the Frobenius 774 on A acting on Hll)R(A /F q); and A/F q

is ordinary iff the image of 77,4 gives the quotient of the Hodge filtration, ie iff H} (A/F 7
is split by the kernel and image of 774. In particular, the components of the Hodge filtration
are then stable by the Frobenius. The decomposition above is then the unique lifting of the
Hodge filtration to Z, that is stable by the Frobenius, with T'a lift of the kernel and U a lift of

the image. So the lift A/ Z associated to this decomposition by Grothendieck-Messing is the
unique lift which admits a lift of the Frobenius, this is the canonical lift! For this canonical lift,
ToA = T, so on the tangent space we recover the action of the F, Von T C HclWS (Al Zy),
and by duality also of U, ie we recover the full Z q{V, F}-module structure. In other words,

while any lift gives the Z,-module structure, only from the canonical lift Az 4 can we read

of the action of F, V from the action of a lift of the Verschiebung or Frobenius acting on TyA.
This explains the link between crystalline cohomology and canonical lifts.
Now if A and B are abelian varieties over F, Tate’s {-adic and p-adic isogeny theorems
state that
Hom(A,B) ® Zy ~ Homn(H1

etale

(B/ ZQ)/Hl

etale (4, Zg )
(for € # p, and where we take the étale cohomology over Fq and the isomorphism comes
from pullback) and

Hom(A, B) ® Z,, = Homy, (v, (Hys(B/Zy), Hyo(A/ Zy)).

crys crys

We recall that H} | (A, Zy) = T¢(A)V. So étale and crystalline cohomology behave like

local (£-adic and p-adic respectively) versions of the lattices we had (via singular coho-
mology) when working over C. This is even more striking if we consider the canoni-
cal lifts of A, B embedded into C: H! (A, Zy) = H! (E,Z@) ~ Ay ® Zg by the

etale etale
étale-singular comparison theorem, so we really recover the Z;-local part of the lattice

from the étale cohomology of A/F,! We also have H, 1 (4, Z,) = Nz ® Z, and by the

etale
étale-crystalline comparison theorem (since A has good reduction modulo p) we have

Derys(Hio (A, Q) = Hyy(A/Z,) © 7, Q) where D,y is Fontaine’s functor associated

etale
to its period ring. We even have an integral comparison theorem in this case by Fontaine and
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Messing because e = 1,1 = 1 so ei < p — 1. Since Dy, has a quasi-inverse, we also recover
the Z-local part of the lattice from the crystalline cohomology of A/F,.

From all this discussion, it is now clear that canonical lift provides the Zp—local structure
of the isogeny module Hom(Ey, E;) ® Z),. Fortunately for isogeny based cryptography, all
ideals I of O are isomorphics over Z,. In fact in this setting, since Eq and E; are linked by
isogenies of degree prime to p, their crystalline cohomology are isomorphic. So we cannot
read off the ideal connecting them uniquely from the crystalline cohomology, hence from
their canonical lifts. The key difference with the situation over C is that singular cohomology
gave the full integral structure, ie the lattice over Z rather than over Z,,. The key difficulty
here would be to know when a morphism given on the crystalline cohomology is integral, ie
is induced by a real isogeny f : A — B, rather than by an element f ® a, & € Z,,. A solution
to check for integrality would be to check the action of f on the tangent space of the lifts
(from the description above, a morphism on cohomology induces a morphism on tangent
space which commutes with the Frobenius) and solve a differential equation, but this is not
practical when f has cryptographic degree. In fact, if f : A — B is an isogeny of degree < p,
then we could already reconstruct it (in 9] (p), ie exponential time!) from its action on the
tangent space ToA, ToB over FF;. Canonical lifts would help only to reconstruct isogenies of
degrees > p. (We will see this situation again in Section 6.)

The same difficulty appears when considering the étale cohomology: namely given a
morphism on the cohomology group, ie an action on the {* torsion (commuting with the
Frobenius), it is not obvious how to check if this action is induced by a real isogeny, without
eg doing an interpolation. And without a way of gluing all these cohomology groups together
in a coherent way, it seems difficult to extract an integral structure from these local structures.

We remark that even an efficient way to test an individual candidate would be not enough.
For instance, say we had a large group of rational 2" torsion in E;/F, and we tried to
reconstruct an isogeny f : E; — E, of degree d < 2™. Then we could use the ideas of
Section 2 to test efficiently if a candidate for f given by an application E;[2™] — E,[2™] is
really induced by an isogeny. But even in this case, where integrality testing is somewhat easy,
the difficulty remains that there are too many possibilities. We would really need a way to
extract the integral family Hom(E;, E,) from the family Hom(E, E,) ® Z; seen via étale
(or crystalline if £ = p) cohomology.

6. MODULAR POLYNOMIALS

We explain how lifting isogenies can be used to compute modular polynomials. We first
restrict to elliptic curves for simplicity, but the algorithms we describe can be generalised to
abelian varieties, see [ ,$5.3].

There are several related problems:

(1) Compute ¢y(X,Y), it takes O3 space, and we will compute it in quasi-linear
time.

(2) Given a prime number p # {, compute ¢¢(X,Y) modulo p; it takes o2 logp)
space, and we will compute it in quasi-linear time.

(3) Given an elliptic curve E/]Fp, compute ¢ (j(E),Y). It takes O logp) space, and
I don’t know how to compute it in quasi-linear time. Instead we will compute it
in O(£?logp) by lifting E to Z and invoking Problem 4. We could also invoke
Problem 2 to get a similar complexity.
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(4) Given an elliptic curve E/K of height H over a number field, compute ¢4 (j(E), Y). It
take space O(H{?) since it is given by a polynomial of degree O(£) with coefficients
of height O(H{)5. We will compute it in quasi-linear time.

We survey some known results on these problems. In [ ], Enge gives a O (3 log4 0)
(the notation O involving log means that we ignore log log factors) analytic algorithm for
Problem 1, under the heuristic assumption that the loss of precision when evaluating the
modular polynomials is not too large. In [ ], the authors give a O (3 log3 () algorithm
under GRH. The same bound is achieved by [ ], also under some heuristics. In 22, we
will get a similar bound without any heuristic.

For Problem 2, Leroux gives in [ ] two algorithms, one in O(£? (log I log p + log2 p)+
plog p) and another in O (£2 (log4 p+log2 Clogp)), again with some heuristics. In Section 6.2,
we give a quasi-linear algorithm (without heuristics) of O (¢ log3+2u (logp). Depending
on the relative size of { and log p, our asymptotic may or may not be better than [ ]. Of
course, if log p is too large, it is faster to compute ¢, directly then reduce it modulo p.

For Problem 3, in [ ] Sutherland gives (under the GRH) algorithms in O (€2 (£log € +
logq) log2(€+log q) = O3 +1¢2 logp),and 5(23(10gq+10g2) log?) iflogg = OOM)y,
and with excellent space complexity (the second one has quasi-linear space complexity).
For Problem 4, in [ ], Kieffer gives a quasi-linear algorithm to evaluate modular
polynomials over a number field in dimension 2. The same analytic method works (and is
easier) in dimension 1, one day the details will be written in [ ]. Meanwhile the reader
can consult [ , Remarks 5.3.8 and 5.3.9]. We will give an algebraic (based on lifting)
algorithm in Theorem 6.3, which also has quasi-linear complexity O(H{?). This allows to
solve Problem 3 in O({? log p). However the space complexity is also in o2 logp), so in
particular not quasi-linear, because via a p-adic lifting method we cannot do the same space
saving trick as in the explicit CRT.

6.1. Evaluating ¢, (j(E),Y). Let us start with Problem 3. As explained above, one way to
compute ¢y (j(E), Y) is to take an arbitrary lift E of E to Z (or Zp), evaluate ¢y (j(E), Y) via
an analytic, py-adic or CRT method, and reduce modulo p. We refer to [ ,$§5.3.8] for
more details, and how to adapt these to the case where E is defined over a finite field F .

The evaluation on E, ¢y (j(?), Y), takes space o2 logp), so the best we can hope is an
algorithm quasi-linear in this. The analytic method for evaluation in dimension 1 and 2 can
be made quasilinear [ ; ], but the py-adic or CRT methods described in [ ,
§ 5.3.8] were not quasi-linear.

We now describe how to use the same ideas as in Section 5 to get a quasi-linear method,
answering [ , Conjecture 5.3.14]. We will have an initialization step, then a lifting step.

Initialisation: Find some suitable p of good reduction, and compute all £ + 1 isogenies ¢; on
EQF,;
Lifting: Lift these isogenies to ZPo to sufficiently high precision to recover ®;(j (E),Y).

We need to do the lifting step for each isogeny and go to precision m = O({), so to get a
quasi-linear algorithm we need the lifting step to be quasi-linear in the precision and more
importantly in polylogarithmic time with respect to {. We will use Section 3 for this.

A tricky part is the initialisation. The naive method is to work over the field of definition of
the points of {-torsion of E ® [, compute all kernels and then the corresponding isogenies

5This bound is not uniform with respect to K, in particular the constants will involve the degree of K. See
[ , Remark 5.3.8] for a more refined discussion stating the explicit dependency on K.
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via Vélw’s formula. In the worst case, the ¢ torsion on E ® [, will live in an extension of
degree (2, so each isogeny will take O(£) operations in a field of extension ¢ and we have
O(X) isogenies to compute, so the complexity will be O(£*log ), which is too much.

The situation is better is E ® [, has all its {-torsion rational: we can find a basis in

5(10g2 Po + Llogpy), and then compute the ¢ + 1 isogenies in O(¢2 log py). Heuristically,
if we take a random p, this will happen with probability 1/¢2, which is large enough (since
rationality can be tested quickly) to obtain a quasi-linear algorithm. We will describe our
algorithm with this heuristic (which we will state for a general number field rather than just
Q), then we will explain how to get rid of it.

Heuristic 6.1. Let K be a number field. Given an elliptic curve E/K, and a prime p of good
reduction, if By = E® [, the probability that Eq[ €] has rational points is Q(1/€2) (where
the constants may depend on K).

Remark 6.2. For elliptic curves over Q, Heuristic 6.1 follows from the Sato-Tate theorem,
at least if our lift E does not have CM. We state it as an Heuristic because the Sato-Tate
conjecture is not proved for all number fields or for abelian varieties. We will see below an
alternative method that does not rely on this Heuristic.

Theorem 6.3. IfE is a curve defined over a number field K of height H, ¢ (j(E),Y) can be
evaluated in quasi-linear time O (H(?)®,
In particular, sz/]Fp is an elliptic curve, ¢¢(j(E),Y) can be evaluated in time o2 logp).

Remark 6.4. We can also evaluate the modular polynomial of E/ Z, at precision m, hence
compute the derivate d¢py/ X (j(E), Y) using the derivative trick of [ , Remark 5.3.10].

Proof. We prove Theorem for K = Q for simplicity. For the general case, the only difficulty
is to make the constants depending on K explicit, and we refer to [ , § 5.3.8] for this.

Under Heuristic 6.1, one can find a py with logpy = O(log {) with good reduction such
that Eg[{] is rational in time polynomial in log ¢ (eg via point counting). Finding a basis of
E([f] can also be done in time polynomial in log ¢, cf for instance [ ,§ 5.6.2]. Hence,
via Vélu’s formula we can evaluate our £ + 1 isogenies ¢y, ..., ¢¢, 1 in time in 012y,

Now we can lift these isogenies to E; since the evaluated modular polynomial has height
O logp), we need to lift them to ZPo at precision m = Ot logp). This can be done for
instance by lifting a generator of the kernel then doing Vélu’s formula at precision m, this
cost O(€mlog p) by isogeny, hence we do not get a quasi-linear algorithm, even if we use the
sqrtVelu’s algorithm [ ] instead of Vélu.

Instead, we invoke Section 3, which allows us to lift our isogenies in time polynomial in
log € (and the arithmetic operations on Z, at precision m). Lifting our £ + 1 isogenies then
cost O (¢mlogp), and we recover ¢y (j (E),Y) in quasi-linear time by a product tree.

The quasi-linear complexity under Heuristic 6.1 follows from the above discussion. We
now explain how to get rid of it.

Fix any p, of good reduction. In Section 6.2, we explain how to evaluate ¢y modulo p in
quasi-linear time, this allows to compute ¢, (j(Eg), Y) in o2 logpg).

First, lets assume that this evaluation splits (we could do a variant of Heuristic 6.1 for
this, we expect it to happen with probability roughly 1/(¢ + 1)). We can find the roots
in Ot log2 Po)» then recover the isogenies by solving a differential equation [ 1,
assuming that the derivatives d¢py/9X doest not vanish. Each isogeny can be recovered in

6 Again, the constants depends on K
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quasi-linear time by using a Newton iteration to solve the differential equations. So in this
case the initialisation step can be done in quasi-linear time.

But in fact, we don’t need ¢ (j(Ey), Y) to split. We simply work over the degree £ + 1
algebra A[T] = ]Fpo [T1/¢4(j(Ep),Y); T encode the (j-invariant of the codomain of the)
universal isogeny on Eg. We solve the differential equation over this algebra’ to recover the
universal isogeny from E; over A. Then we lift to A= Ly, [T1/¢¢((Eg),Y) at precision m,
we obtain the j-invariant of the universal codomain E’ over A. The modular polynomial is
then the characteristic polynomial of j (E") over A/ Zpo' This characteristic polynomial can

be computed using power projection in pseudo-linear time O (€' *+¢mlog p) by [ ] (see
Remark 5.2 for the terminology).

Here we can do better: the characteristic polynomial ®(j (E),Y) is a lift/deformation of
Dy (j(Ep),Y) to precision m corresponding to the lift/deformation E/ Ly, ofEy/ F,, - During
our Newton iteration for lifting the universal isogeny, we can compute the corresponding
deformation of the characteristic polynomial at each step, indeed everything become linear
(since we double the precision, the deformation data has square 0, so the correction is given
by linear data). So if we compute ®;(j(E),Y) at precision m in parallel with lifting the
isogeny, tweaking the algebra A each time®, we achieve a quasi-linear algorithm. O

Remark 6.5. In the proof of Theorem 6.3, when using ¢, (j(Eg), Y) to reconstruct the isoge-
nies, we need that the evaluation atj (E) of the derivative modular polynomial d¢py/ 90X (j(Eg),Y)
is prime to the evaluated modular polynomial ¢y (j(Ep), Y). This failure can happen because
while the moduli stack of elliptic curves with an £-isogeny is smooth over Z[1/¢], the modu-
lar polynomial ¢y only describe a scheme birational to the coarse moduli space. In particular,
we can have two different {-isogenies from E to the same elliptic curve E; these two iso-
genies then induces a cyclic £2-endomorphism on E. So this situation happens with low
probability. A solution when this happens is, if Aut Ey = +1, to compute the normalisation
of the modular polynomial. Another solution is to rigidify the data by imposing a small
level n > 3 structure, this will allow us to distinguish between the two possible isogenies
Ey — Eq aslong as they differ on the n-torsion, and we can always find a small n such that it
is so. We will gloss over these details in the following.

Another thing that can go wrong is solving the differential equation: it involves division
by numbers less than ¢, which can cause loss of precision when working py-adically with
po < L Thanksfully, this loss of precision can be well controlled [ ; ]. And for
Problem 4, we might as well choose our starting p large enough.

Note also that Theorem 6.3 adapts immediately to the evaluation of ¢y on E/ (Z,/ p" Zy)
(or E/(Z q/ p"Z g)»We lift E to Q (resp. a number field), and apply the Theorem. The lift has

height H = mlogp, so the evaluation takes time O(£2mlog p).
6.2. Computing ¢, modulo p. We can now describe Problem 2. We will also use an initial-
isation followed by a lifting step.
Initialisation: Find some suitable Ey/[F,, and compute all £ + 1 isogenies ¢; on Ej.
Lifting: Lift these isogenies to I, [[€]] to sufficiently high precision to recover Py(j (E),Y).

Like in Section 6.1, for simplicity, we will first rely on the following heuristic to get a
quasi-linear algorithm for the initialisation step, which we will show later how to remove.

7 Again assuming that the derivative of ¢y at j(Eg) is prime to ¢y.
8This is key to make the algorithm work in quasi-linear time, otherwise we would need to compute some
modular compositions. I owe this idea to Xavier Caruso.
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Heuristic 6.6. Given a prime number p, the probability that a random elliptic curve E/F,, has
its U-torsion rational is Q(1/€2).

Heuristic 6.6 is the “horizontal” pendant of the “vertical” Heuristic 6.1.

Theorem 6.7. The modular polynomial ¢y can be evaluated modulo p in quasi-linear time

o2 logp).

Proof. Using Heuristic 6.6, we can find Ey modulo p with rational {-torsion in time poly-
nomial in log p, and as above compute the { + 1 isogenies ¢, : Eq — E; in time O (¢ logp)
using Vélu’s formula. The trick now, is that rather than lifting them to Zp, in this case we will
lift them to IF,[[€]] to some precision m (ie working modulo €™). We let EO be the elliptic
curve with j-invariant j(Eq) + €.

Again, we need to invoke Section 3 in order to lift these isogenies in time polynomial
in log £ and the arithmetic operations in F,[[€]] at precision 1. Using a product tree, we
can then compute ¢;(j(Eg) + €,Y) € Fy,[[€]] at precision m, which is enough to recover
¢(X,Y) aslongasm > € + 1.

Now wed like to get rid of Heuristic 6.6. We use Theorem 6.3: given Eq/ F,,, we can evaluate
¢¢(j(Eg),Y) in time O(£2 logp). Then we work over the algebras of degree { + 1 A[T] =
IFq[T]/¢¢(j(EO), T) Ale, T] == F,le, T1/¢y(j(Ep), T), as in the proof of Theorem 6.3.
Another solution is to pick up a curve E such that ¢ (j(E(), Y) splits, an easy way to choose
such a curve is to take E supersingular. Then we compute the € + 1 roots in O(X log2 P>
work over each £ + 1 isogeny separably (lifting them to precision 72), and compute a product
tree at the end. According to the relative size of £ and logp, this second approach can be
faster than the first.

The astute reader will remark that we now have a recursive dependency between Theo-
rems 6.3 and 6.7. In Theorem 6.3, to evaluate ¢ (j(E), Y) modulo p we require ¢, modulo
some small py, but in Theorem 6.7 to compute ¢, modulo p we start with some evaluation
¢¢(j(Ep),Y) modulo py. At some point, we need to bootstrap this process. This is actually
easy: we start with the curve Ey : y? = x3 — x of j-invariant 1728. If p = 3 mod 4 it is
supersingular and in this case E(Isz) =Z/(p+1)Z®Z/(p +1)Z. Hence ifbothp = 3
mod 4 and { | p + 1, Ej has its {-torsion rational over Isz. And the distribution of these
p is easy to control thanks to the Dirichlet arithmetic density theorem (see Section 6.3; in
particular we can find a small p satisfying these conditions, with log(py) = O(log{).

Starting with this Ej and pg, we can evaluate ¢, (j(E), Y) modulo pg in time O2).
We can then use this evaluation to vertical lift to ZPo hence evaluate ¢ (j(Ep),Y) over
7 in O({£?), then evaluate ¢ (j(Ep)) modulo any p in O logp), then evaluate ¢ (X, Y)
modulo p in O(€? log p) by horizontal lifting, for a total cost of O (€2 log p). As a special case,
if we specialize to X = j(E), we obtain ¢¢(j(E), Y) in O(£? log p), giving an alternative to
Theorem 6.3. O

Remark 6.8. To evaluate the modular polynomial on (E, p), we have seen that we can
start from (E, py), lift vertically to (Ey, p) (going through Z), then horizontally to (E, p).
But we could also evaluate ¢¢(X, Y) modulo pj by horizontal lift in O(€2), then evaluate
¢¢(G(E),Y) modulo py in O(f) (assuming py, is of good reduction for E), then evaluate
¢¢(j(E),Y) modulo p by vertical lift in o2 logp).

In other words, from ¢, (j(Eg), Y) modulo pg, one can get ¢y (j(E), Y) either by horizontal
lifting from (j(Eg), pg) to (j(E), pg) and then by vertical lifting from (j(E), pg) to (j(E), p),
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or by vertical lifting from (j(Eg), pg) to (j(Ey),p) and then by horizontal lifting from
(j(Ep), p) to (j(E), p)!

Keeping track of the log { factors via Proposition 3.1, the complexity of computing ¢,
mod p or ¢y(j(E ),Y) can be done in o2 log3+2uﬂlogp)), with the notations of Sec-
tion 2.2. This neglects the complexity of 5(logo(1) Elog2 p) needed to compute a basis of
E[¢;] for the small primes {; = O(log{) of Section 2.2 (computation that can be done by
factorisation of the division polynomials). This is also assuming that the derivatives of the
modular polynomial are non zero. Otherwise, as explained in Remark 6.5, we need to work
with level n modular invariants, for # a small prime up to O(log {).

Remark 6.9. When p < ¢, as mentioned in Remark 6.5, there will be division problems
when solving the differential equation. In this case the solution is to do a p-adic lifting to
precision 11, with p"*2 large enough, using the control of the loss of precision given by [ ;

]. So in that case in the complexity of Remark 6.8, the log p factor should be replaced
by a log (. We remark that the algorithm is still quasi-linear.

6.3. A CRT algorithm to evaluate ¢,. From Theorem 6.7, it is easy to see that we have
a CRT algorithm to compute ¢, in quasi-linear time. We recall that ¢, has coefficients of
heights O (log ().

Such an algorithm is not new, under GRH [ ] give an algorithm in O (€3 log3 (loglog ()
time to compute ¢y.

Here we show how in a CRT algorithm, we can sieve our primes p; that we use to
compute ¢, mod p; in time O(£log éM(Llogp) + M2 logp) log £) where M (1) denotes
the complexity of multiplication in a finite algebra with O(1) separated variables and of
degree n (in practice our algebra will be IFq[e]/em for Theorem 6.10). Taking M(n) =
O(nlognloglogn), and since we will have O(f) primes p; of size logp; = O(log?), the
CRT reconstruction will cost O(¢3 log3 {loglog ) too, except that we do not rely on GRH.

The idea is to use the method of Section 6.2 with our curve Ey : y?> = x> — x. Fix
v = log, ¢ rounded up so that 2” > {. We sieve for a CRT prime p such thatp = 3 mod 4,
p=-1 mod{,p=—-1 mod 2"

For such a p, over [F > the curve E will be supersingular and have its full £-torsion and
2%-torsion rational. The algorithm to evaluate ¢, modulo such a p is as follow:

(1) Find a basis of Ey[{] and Ey[27]; this costs O(logpM (logp)).

(2) Compute all (£ 4 1) isogenies ¢; and their image on the basis of the 29 torsion via
Vélu’s formula, this costs O(¢EM (logp)).

(3) Leta = 2% — . According to whether 4 is a sum of at most 2 squares or of at most 4
squares, we can lift the isogenies ¢); into 29-isogenies F; in dimension 2 or 4. Here
we gain a factor 2 with respect to the dimension because on E; we can make use of
the endomorphism 7, see also Remarks 3.2 and 2.5. In practice we will try to change
v, so that 2% — { is a sum of two squares. Given the density of sum of two squares,
this should be possible while keeping v small (ie v = O(log {)), and allows to work
in dimension 2.

Anyway we decompose each F; as a product of v 2-isogenies in higher dimension;
this costs O(v”?M (log p)) by isogeny via the naive decomposition algorithm.

(4) Now welift E to E of j-invariant 1728 + ¢ to precision m. We lift of decomposition
of 2-isogenies to ]Fp[[e] 1/(€™) via a Newton iteration. This costs O(vM (mlogp))
by isogeny. We go to precision m = £ + 2, so the total cost is O({log (M (Llogp)).
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(5) We take the product tree [ [(Y —j (E;)) where E; is the lifted codomain of the isogeny
¢; : Eg — E;. The product tree costs O(M ({vlogp) log {) = O(M (€2 logp) log?).
This gives us ¢4 (1728 + €, Y) modulo p.
By the Dirichlet density theorem, we can find O(£) such primes p with size logp = O(log ).
Notice that unlike effective bounds for the Cebotarev density theorem, which are exponen-
tially worse without GRH (polynomials in the discriminant A, vs in log2 A with GRH), these
effective bounds on Dirichlet’s theorem on arithmetic progression are only polynomially
worse without GRH. Since the complexity involve log p, this only affect the constants, so
this is enough for our application.
Hence the final complexity result:

Theorem 6.10. There exists a CRT algorithm to compute ¢y in time O (3 log3 (loglog ().

An alternative strategy to compute ¢, would be to fix only one suitable p, proceed as in
the first steps of the algorithm above to find the £ 4+ 1 isogenies from Ej modulo p, and then
lift them to Zp [[e]]1/(p™, €"2). In other words, combine the algorithm of Theorem 6.10
with a p-adic evaluation algorithm like Theorem 6.3.

Remark 6.11. In the CRT algorithms [ ; ] to compute ¢y, the authors also choose
suitable “CRT primes” p;, and reconstruct each ¢, mod p; in quasi-linear time. They do
that by finding a clever way ([ ] use the volcano structure and the class group action,
[ ] use the supersingular graph structure) to select £ + 1 different j-invariants jy, ..., f;
and from each of them construct the £ + 1 isogenies starting from them. This gives the
polynomials ¢ (j;, Y), and then ¢ mod p is reconstructed by an interpolation in each
coefficient. Our method only uses one j-invariant jo and lift the ¢ + 1 isogeny to F,[[€]] to
precision £ + 1. We could combine both approaches: namely fix some j-invariants along with
some precision (fy, Mg), (j1, M), ..., (j,,m,) with > m; > € + 1, lifts the £ + 1 isogenies
from j; to precision m1;, obtain the coefficients of ¢ (j; + €, Y) to precision m1;, and then do a
Hermite-Padé interpolation to reconstruct ¢;.

6.4. Modular polynomials for abelian varieties. It is easy to generalize this to computing
Siegel modular polynomials for abelian varieties: we select the same CRT primes and work
with E% . Since we know how to compute isogenies [ ] in the theta model, we obtain:

Theorem 6.12. Fix a modular invariant | in dimension g which can be computed efficiently
from the theta constants (say of level 4). Then we can compute the (rational or integral version®
of the) Siegel modular polynomials ®, with respect to | in quasi-linear time.

We can adapt Theorem 6.12 to the case of Hilbert modular polynomials as follow. We
are given a Galoisian totally real field K, of dimension g, and B € K a totally positive
element, we want to compute the Hilbert modular polynomials ® 4. We suppose that we
have an algorithm to compute a B-isogeny efficiently (say quasi-linear in the norm of §);
this is still somewhat a work in progress, see [ ; ]. We suppose also that if p is a
CRT prime as above, we have an (efficient) embedding of K into End(A), Ay a product
of ¢ supersingular curves. For instance, when ¢ = 2, any D-isogeny E; — E;, Ej our

supersingular curve y?> = x> + x, gives an embedding QWD) - End(Ej x E). Then
using Remarks 2.3 and 2.11 combined with the algorithm of Theorem 6.12, we also get a
quasi-linear algorithm to compute ®g.

9See [ ,$5.3.6]
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Remark 6.13. We can also extend Problems 2 and 4 to abelian varieties as follow. f N =
g(g + 1) /2, the Siegel modular polynomials have height O(¢N) by [ ], degree in Y
O(EN), and each coefficients have degree O(N) in each of the N variables X1, ..., XN- So
their total size is O(¢NN+2)) Their size modulo pis O((NIN+D) logp) and the size of the
evaluation at | (A), where A/K is an abelian variety over a number field K with J-invariant
of height H is O(ININ+DL )y

For the initialisation step, the worst case to get the full {-torsion is to work over an extension
of degree €28 of our base finite field, then each of the O(£N) isogeny take O(£8) operations
over this extension, for a total cost of 5(€N+3g). Forg=2,N =3, NIN+DY = 012 while
EN+38 = (9, 50 even there the initialisation step is not dominant even if we dont optimize it.

The situation is different for Hilbert modular polynomial though. Here we need to be
careful with our initialisation step, so to get similar algorithms as in Sections 6.1 and 6.2,
using a recursive computation of ¢ along different varieties and primes, we need to be able
to (efficiently!) recover the isogenies from the evaluated modular polynomials. For ¢ = 2
this is done in [ ], and a very brief outline of an algorithm with modular polynomials
given by theta constants is described in [ ,85.7].

We conclude by one last remark: for Problem 2, we could still speed up the initialization
process by starting with Eg, E( any supersingular curve. Indeed the full £-torsion is defined

over an extension of degree at most O({), rather than O(¢%3).
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