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Abstract—Asynchronous Byzantine fault-tolerant (BFT) pro-
tocols have received increasing attention, as they are particularly
robust against timing and performance attacks. This paper de-
signs and implements Dory, an asynchronous BFT protocol with
reduced communication and improved efficiency compared to
existing systems. In particular, Dory reduces communication both
asymptotically and concretely and gains improved performance.
To achieve this goal, we have devised a novel primitive called
asynchronous vector data dissemination, and moreover, we have
developed the technique of supplemental consensus originally
working with reliable broadcast only, such that the technique
can be compatible with the more efficient provable broadcast.
We also built Dory-NG by separating data transmission from
agreement, just as in Dumbo-NG.

We have implemented Dory, Dory-NG, Speeding Dumbo
(sDumbo), and Dumbo-NG in a new Golang library. Via a
deployment using up to 151 replicas on Amazon EC2, we have
shown that Dory and Dory-NG consistently outperform sDumbo
and Dumbo-NG, respectively—during both failure and failure-
free scenarios. For instance, Dory has up to 5x the throughput
of sDumbo, while lowering the communication cost for different
batch sizes.

I. INTRODUCTION

Purely asynchronous Byzantine fault-tolerant state machine
replication (BFT) protocols (aka atomic broadcast protocols)
assuming no timing assumptions are more robust than the
partially synchronous BFT protocols and thus have recently
received renewed attention. State-of-the-art asynchronous BFT
protocols (with implementations) can be roughly divided into
three categories: 1) parallel ABA (asynchronous binary Byzan-
tine agreement) based [1]–[6]; 2) MVBA (multi-valued Byzan-
tine agreement) based [7]–[9]; and 3) DAG (directed acyclic
graph) based [10], [11]. All of the instantiations derived from
the three paradigms enjoy unique features and are suitable for
certain applications.

This paper focuses on the MVBA based protocols, where the
state-of-the-art protocols are Speeding Dumbo (sDumbo) [9]
and Dumbo-NG [8]. We design and implement Dory with
two distinguishing features: 1) reduced communication (both
asymptotically and concretely), and 2) improved performance
(up to 5× the throughput of sDumbo and 1.7× that of Dumbo-
NG).
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Fig. 1. sDumbo phases and its communication bottleneck. PB stands for
provable broadcast.

Overview and communication cost barriers. For MVBA
based BFT protocols, the communication bound that one could
theoretically hope for (so far) is O(n2|m|+ λn2) [12], where
n is the number of replicas, |m| is the size of proposals and
λ is the security parameter. However, known instantiations (as
shown in Table I) fall short of the expectation, due to multiple
bottleneck components. Take sDumbo [9], a dedicated MVBA
based BFT, as an example (Fig. 1). sDumbo has several
phases: a PB (provable broadcast) phase sending transactions,
a MVBA phase ordering transactions, and a recovery phase
obtaining missing transactions. To achieve liveness, sDumbo
additionally uses threshold encryption to obfuscate transac-
tions. There are three communication bottleneck ingredients:
the MVBA (called sMVBA), the recovery phase, and the
threshold decryption phase, incurring O(λn3), O(n2|m| +
λn3 log n), and O(λn3) communication, respectively. Dumbo-
NG [8] separates data transmission from agreement to gain
performance improvement compared with sDumbo, but it still
suffers similar communication bottlenecks.
Wasted proposals and censorship resilience. Existing
MVBA based BFT constructions order proposed transactions
from n− f replicas, although in the normal case, all replicas
may have proposed and successfully transmitted transactions.
Namely, the computation and the bandwidth involving up to
f proposals could be “wasted.”

A related issue is that if directly allowing replicas to propose
transactions in parallel, an adversarial network scheduler can
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censor transactions in the MVBA phase, thereby attacking
censorship resilience (aka liveness). To tackle the issue, one
would use:
• threshold encryption [3], which leads to increased computa-

tion and λn3 communication;
• inter-node-linking [6] (also called supplemental consensus

in this paper), which is only possible using more expensive
reliable broadcast—resulting in O(n3) messages;

• pipelined certificates [8], which impacts the blockchain
quality—in case one chain led by a faulty replica being
extended (unbounded) fast, and sacrifices both O(1) time
and state transfer time, as discussed [13].

Our approach. In designing Dory, we have two goals in mind:
1) saving the communication; 2) improving the performance
(while maintaining censorship resilience).

First, to push the communication cost closer to the known
bound of O(n2|m| + λn2) [12], we have carefully designed
and implemented the building blocks for Dory, including the
first implementation of MVBA achieving O(n|v|+λn2 log n)
communication, where |v| is the input size of MVBA, and
a novel variant of asynchronous data dissemination (ADD)
protocol [15] that focuses on the dissemination of vector-
data, can be triggered only on request and reduces the
communication concretely (compared to the protocol running
ADD in parallel). Such a primitive is surprisingly challenging
to construct; we identified and resolved a subtle dead-lock
problem.

Also, we integrate the technique of supplemental consen-
sus stemming from DispersedLedger [6] in our protocol to
achieve high throughput as well as censorship resilience, while
maintaining low complexity. Note the supplemental consensus
technique works only for reliable broadcast [16], [17] in prior
works [6], [8], and the technique requires n reliable broadcast
instances incurring O(n3) messages. Our key innovation is to
enable supplemental consensus using quadratic communica-
tion instead of cubic communication.

A. Our Contributions
We summarize our contributions in the following.

• We propose Dory, a scalable and bandwidth-efficient asyn-
chronous BFT protocol achieving O(n2|m| + λn2 log n +
n3 log n) communication complexity, edging closer to the
known bound [12].

• We propose a new primitive called asynchronous vector data
dissemination (AVDD) that concretely reduces the commu-
nication compared to the one running ADD in parallel.

• We have developed a new technique that simultaneously
enables supplemental consensus and censorship resilience in
the MVBA framework.

• We implement Dory, Dory-NG (integrating techniques in
Dumbo-NG with Dory), sDumbo [9] and Dumbo-NG [8]
in Golang, and evaluate them on up to 151 Amazon EC2
instances distributed in 10 regions. Our experimental results
demonstrate that Dory has significantly lower communica-
tion cost compared with sDumbo, preserves low latency
(less than 8s) even for a large network (151 replicas), and

achieves high throughput (135k tx/s for 16 replicas and 57k
tx/s for 151 replicas)—which is up to 5× the throughput of
sDumbo and 1.7× that of Dumbo-NG. We even implemented
Dory-NG which consistently outperforms Dumbo-NG too
and offers interesting trade-offs to Dory.

• Our library on all the above protocols in Golang has been
open-sourced.

II. SYSTEM AND THREAT MODEL

Let [n] denote the set of integers {1, 2, ..., n}. We consider
distributed computing protocols, where f out of n replicas
({Pi}i∈[n]) may fail arbitrarily (Byzantine failures). The pro-
tocols we consider in this work (BFT, MVBA, and AVDD)
assume f ≤ ⌊n−1

3 ⌋, which is optimal. We consider com-
pletely asynchronous systems making no timing assumptions
on message processing or transmission delays. We assume
reliable channels between replicas. A (Byzantine) quorum is
a set of ⌈n+f+1

2 ⌉ replicas. For simplicity, we may assume
n = 3f + 1 and a quorum size of 2f + 1. In our protocols,
we may associate each protocol instance with a unique session
identifier ID, tagging each message in the protocol with ID;
we may omit these identifiers when no ambiguity arises. In
particular, our BFT protocols proceed in epochs, where in each
epoch, replicas agree on the order of a sequence of transactions
proposed by replicas.

This paper studies BFT protocols. Our implementations
tolerate static corruption, where the adversary needs to choose
the set of faulty replicas before the execution of the protocol.
We also assume trusted setup for the threshold cryptosystems.

Syntactically, in BFT, a replica outputs (atomically deliver)
transactions, each being input by some client. The client
computes a final response to its submitted transaction from
its responses from replicas. The correctness of a BFT (atomic
broadcast) protocol is specified as follows:
• Agreement. If any correct replica outputs a transaction m,

then every correct replica outputs m.
• Total order. If a correct replica outputs a transaction m before

outputting m′, then no correct replica outputs a transaction
m′ without first outputting m.
• Censorship resilience. If a correct replica inputs a transaction
m, then every correct replica eventually outputs m with
probability 1.1

III. BUILDING BLOCKS

Multi-valued validated Byzantine agreement (MVBA).
MVBA allows each replica that has an input to agree on a
value v, which satisfies a global and polynomial-time com-
putable Q known by all replicas [7]. MVBA is randomized
and relies on the coin-tossing protocol which is implemented
using unique threshold signature in this paper. More formally,
an MVBA protocol satisfies the following properties:
• Agreement. If any correct replica outputs v, then every

correct replica outputs v.

1Due to the celebrated FLP impossibility result [18], asynchronous consen-
sus systems can only be probabilistically live.
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TABLE I
COMPARISON FOR PERFORMANCE METRICS

Protocol Message Complexity Communication Complexity† Communication Cost
in the Optimistic Case‡ Time Complexity

HoneyBadger [3] O(n3) O(n2|m|+ λn3 logn) 3n2|m|+O(λn3 logn) O(logn)
DispersedLedger [6] O(n3) O(n2|m|+ λn3 logn) 3n2|m|+O(λn3 logn) O(logn)

Dumbo [14] O(n3) O(n2|m|+ λn3 logn) 3n2|m|+O(λn3 logn) O(1)
sDumbo [9] O(n2) O(n2|m|+ λn3 logn) n2|m|+O(λn3) O(1)

Dumbo-NG [8] O(n2) O(n2|m|+ λn3 logn) n2|m|+O(λn3) O(1)
Dory (this work) O(n2) O(n2|m|+ λn2 logn+ n3 logn) n2|m|+O(λn2 logn+ n3) O(1)

† Communication complexity is measured in bits. λ, the security parameter, denotes the length of signatures and hashes; in practice, λ is no
less than 128. (So O(n3 logn) is negligible compared to O(λn3 logn).)
‡“Optimistic Case” means there is no failure or network asynchrony.

• External Validity. If a correct replica outputs a value v, then
v is valid, i.e., Q(v) = 1.

• Termination. If n − f correct replicas have an input, then
every correct replica gets an output with probability 1.

Threshold signature. Threshold signature allows any t repli-
cas to produce a valid signature, while any replicas less than t
cannot [19], [20]. It consists of the following five algorithms:
• Key generation: {pk, sk} ← KeyGen(λ, n, t). Given a

security parameter λ, the total number of replicas n and
a threshold t, the algorithm outputs a public key pk, and
a vector of secret keys sk = (sk1, sk2, . . . , skn). For
simplicity, pk is dropped for the following algorithms.

• Signing: ρi ← Signt(ski,m). Given a secret key ski, a
message m, the algorithm outputs a signature share ρi.

• Share verification: 0/1← VerifySharet(m, (i, ρi)). Given a
message m, an index i and a signature share ρi, the algorithm
outputs 1 if and only if ρi is a valid signature share computed
by replica Pi for m.

• Combining: σ/⊥ ← Combinet(m, {(i, ρi)}i∈S). Given a
set of pairs {(i, ρi)}i∈S , where S ⊂ [n] and |S| = t, the
algorithm outputs a signature σ if and only if all shares in
S are valid.

• Signature verification: 0/1 ← Verifyt(m,σ). Given a mes-
sage m and a signature σ, the algorithm outputs 1 if σ is a
valid signature for m; otherwise, it outputs 0.
A (n, t) threshold signature scheme should satisfy the

conventional robustness and unforgeability properties.
Hash. We use a collision-resistant hash function H.
Provable broadcast (PB). PB is a broadcast protocol among
n replicas, where a designed replica (also called sender) with
ID multicasts some m [7], [9], [21], [22]. Additionally, the
sender will also output a tuple (h, σ), where h is the hash of
m and σ is a threshold signature for h and ID. Formally, a PB
protocol with an identifier ID satisfies the following properties:
• Provability. If the sender outputs any two tuples
(h, σ) and (h′, σ′) s.t. Verifyn−f (⟨ID, h⟩, σ) = 1 and
Verifyn−f (⟨ID, h′⟩, σ′) = 1, then h = h′ and at least f + 1
correct replica output m s.t. H(m) = h.

• Termination. If the sender is correct and inputs a value
m, then all correct replicas will output m. In addition,
the sender will output (h, σ) satisfying H(m) = h and
Verifyn−f (⟨ID, h⟩, σ) = 1.

The PB protocol can be easily instantiated using a (n, n−
f) threshold signature, and achieving O(n) messages and
O(n|m|+ λn) communication.
Error correcting code. Error correcting code enables cor-
recting errors or recovering missing fragments of the encoded
data. It consists of the following algorithms:
• Encode: {d1, d2, . . . , dn} ← Encode(m,n, t). Given a data

block m, which is split into t coefficients of a polynomial
p(·) in a Galois Field F, the algorithm encodes m to n
fragments {d1, d2, . . . , dn}, where di ∈ F for i ∈ [n].

• Decode: m′ ← Decode(T, t, r). Given a set of fragments of
T , some of which may be incorrect, the algorithm outputs a
t− 1 degree polynomial, i.e., a data block m′, by correcting
up to r errors in T .
It is well-known that the decode algorithm can successfully

output the original data block provided |T | ≥ t+2r [23] (e.g.,
the Berlekamp-Welch algorithm [24], Gao’s algorithm [25]).

IV. ASYNCHRONOUS VECTOR DATA DISSEMINATION

As discussed in Fig. 1 in the introduction, one bottleneck
is the erasure coding recovery phase which has a n2|m| +
λn3 log n overhead. To lower the communication, one intuitive
idea is to run the asynchronous data dissemination (ADD)
protocol proposed recently by Das, Xiang, and Ren [15].
Running ADD-based protocol for n parallel proposals incurs
O(n2|m| + n3 log n) communication. However, the ADD
protocol is concretely bandwidth-expensive, with a hidden
constant of 6 (i.e., 6n2|m|).

More critically, the ADD protocol requires replicas to dis-
seminate fragments of the data block to all replicas, no matter
whether they need. In sDumbo and Dumbo-NG, the fragments
are sent only when replicas do not have the corresponding data
blocks. We find that adapting the same idea to parallel ADD
is technically challenging, so we define asynchronous vector
data determination as a first-class primitive in the following.

A. AVDD

Asynchronous vector data dissemination (AVDD). In an
AVDD protocol with n replicas, suppose that we have a global
ℓ-dimensional vector M = (m1, . . . ,mk, . . . ,mℓ) and for any
k ∈ [ℓ], at least f + 1 correct replicas hold the same mk and
confirm its correctness. The goal of AVDD is to allow every
correct replica to output the common M . Formally, the AVDD
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Fig. 2. An example of the AVDD protocol with 7 replicas among which P6, P7 are faulty. In the request phase, P1 requests its missing elements. After the
dispersal phase, P1 will receive f + 1 = 3 consistent fragments for m2,m3 respectively, and hence set d∗21 and d∗31. Similarly, P2 will set d∗12, d

∗
32, P3

will set d∗13, d
∗
23. In the confirm phase, P1 will receive d∗21, d

∗
23 for m2 and d∗31, d

∗
32 for m3. Thus, P1 is able to collect 2f + 1 = 5 correct fragments for

m2,m3 and successfully reconstruct them. Similarly, other replicas also reconstruct their missing elements.

protocol for an ℓ-dimensional vector M satisfies the following
correctness property:
• Correctness. For any k ∈ [ℓ], if at least f+1 correct replicas

input the same mk and other correct replicas input ⊥, then
every correct replica outputs the same vector M .

Overview. Our motivation is to reduce the communication
asymptotically and concretely by focusing on the dissemi-
nation of vector-data instead of ℓ independent data blocks,
and meanwhile allowing replicas to exchange the missing data
blocks only on request. Namely, each replica requests for the
missing data blocks and each replica only shares it data blocks
upon such requests. As replicas do not need to exchange
all data blocks, the concrete communication complexity is
reduced. However, it is not straightforward to achieve this goal
as there might be a dead-lock issue (see Sec IV-B for details).

Our solution provides an elegant way to build vector data
dissemination. Roughly speaking, our AVDD protocol is based
on the Reed-Solomon error correcting code, and consists
of three phases: request, dispersal and an optional confirm
phase. In the request phase, every replica will request other
replicas to obtain the missing fragments. In the dispersal
phase, every replica only sends the fragments it holds (if any)
upon receiving a request. For those fragments that the replica
does not hold, the replica waits until it receives from other
replicas and broadcasts them in the confirm phase. The delay
of sending fragments to the confirm phase is crucial for our
solution to address the dead-lock issue mentioned above.
The protocol. The pseudocode of the protocol for Pi is shown
in Algorithm 1. We now describe it below.

Every replica Pi begins with an input Mi, which consists of
a vector of ℓ elements, i.e., m1, . . . ,mℓ. Depending on the pro-
tocol that triggers the AVDD protocol, some elements might
be ⊥. Replica Pi initializes several global parameters: a set
Si tracking the set of elements that need to be reconstructed;
a set of values d∗ki for k ∈ [ℓ], where each d∗ki is used to store
the data fragments only for the case that mk = ⊥; two maps
Ti and Ai for storing the received data fragments.
Request. At the beginning of the protocol, Pi first checks Mi

Algorithm 1 AVDD protocol with identifier ID for Pi

1: Initialization: Si ← {}; ReadyF lag ← false; for k ∈ [ℓ] do, d∗ki ←
⊥; Ti ← {};Ai ← {}

2: upon receiving input Mi = (m1,m2, . . . ,mℓ) do
3: for 1 ≤ k ≤ ℓ do
4: if mk = ⊥ then
5: Si ← Si ∪ {k}
6: if Si is not empty then
7: broadcast (REQUEST, ID, Si) ▷ Request phase
8: ReadyF lag ← true

9: wait until ReadyF lag = true
10: upon receiving (REQUEST, ID, Sj) from Pj do
11: SD ← {}, SC ← {}
12: for any k ∈ Sj and mk ̸= ⊥ do ▷ Disperse phase
13: (dk1, dk2, . . . , dkn)← Encode(mk, n, f + 1)
14: SD ← SD ∪ (k, dki, dkj)
15: send (DISPERSE, ID, SD) to Pj

16: for any k ∈ Sj and mk = ⊥ do
17: wait until d∗ki ̸= ⊥ ▷ Updated in ln 26
18: SC ← SC ∪ (k, d∗ki)
19: if SC is not empty then
20: send (CONFIRM, ID, SC) to Pj ▷ Confirm phase
21: upon receiving (DISPERSE, ID, SD) from Pj do
22: for any (k, dkj , dki) ∈ SD do
23: Ti[k]← Ti[k] ∪ {(j, dkj)}
24: Ai[k]← Ai[k] ∪ {(j, dki)}
25: if there are f + 1 consistent (·, dki) in Ai[k] then
26: d∗ki ← dki
27: upon receiving (CONFIRM, ID, SC) from Pj do
28: for any (j, dkj) ∈ SC do
29: Ti[k]← Ti[k] ∪ {(j, dkj)}

30: for any k ∈ Si do
31: upon |Ti[k]| ≥ 2f + 1 do ▷ Trigger OEC for mk

32: for 0 ≤ r ≤ f do
33: wait until |Ti[k]| ≥ 2f + r + 1
34: pk(·)← Decode(Ti[k], f + 1, r)
35: if 2f + 1 (j, y) ∈ Ti[k] satisfy pk(j) = y then
36: mk ← coefficients of pk(·)

37: wait until no element of Mi is ⊥
38: output Mi

and adds k to a set Si if mk = ⊥ for some k such that 1 ≤
k ≤ ℓ. If Si is not empty, Pi broadcasts a (REQUEST, ID, Si)
message to all replicas (ln 2-8) and then waits for all the
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elements in Mi to become non-empty (ln 37).
Dispersal. If Pi receives an incoming REQUEST message from
replica Pj , it checks Mi and initializes two sets, SD and SC .
SD is used to store a set of fragments for any k ∈ Sj and mk

is not ⊥. SC is used to store a set of fragments for k ∈ Sj

and mk is ⊥. Note that Pi can directly update SD and send
a set of fragments to Pj , but it does not hold any fragments
for mk = ⊥. In our AVDD protocol, the update of SC might
be deferred but will eventually be completed.

Specifically, we distinguish two cases for each replica Pi:
• Case 1: for any k ∈ Sj that mk ̸= ⊥, Pi encodes mk

and obtains the ith and jth data fragments and adds a tuple
(k, dki, dkj) to SD. After SD is updated for all such k ∈
Sj , Pi sends a (DISPERSE, ID, SD) message to Pj (ln 12-
15). Meanwhile, for the elements Pi requests, upon receiving
a (DISPERSE, ID, SD) message from Pj , Pi adds the data
fragments to the Ti and Ai sets. If there are f +1 matching
fragments dki, Pi sets d∗ki as dki. As we show in our proof,
for every element Pi requests in Si, it will receive at least
f + 1 matching dki from other replicas (ln 21-26).

• Case 2 (optional confirm phase): for any k ∈ Sj such that
mk = ⊥, Pi waits until d∗ki is updated in the dispersal phase
(case 1) for the messages it requests based on its own Si.
After all such data fragments are updated, Pi adds them to
SC and sends a CONFIRM message to Pj (ln 16-20).
If case 2 is triggered, the replica that requests the corre-

sponding element may receive a CONFIRM message from other
replicas. If this is the case, Pi adds the received data fragments
to Ti (ln 27-29).

Upon collecting 2f+1 fragments for any k ∈ Si, Pi triggers
the online error correcting (OEC) algorithm [1] to reconstruct
mk. Concretely, each execution of the OEC algorithm per-
forms up to f trials of reconstruction. The number of required
fragments increases with the number of trials. As the f th trial
satisfies |Ti[k]| ≥ 3f + 1, Pi eventually reconstruct mk, as
mentioned in Section III (ln 30-36).

Finally, Pi waits until it reconstructs all the elements such
that there is no ⊥ in Mi. Then Pi outputs Mi.

B. Discussion, Complexity, and Comparison

Building AVDD in an on-request manner with O(n2) mes-
sages is not easy. Consider the example shown in Fig. 2
where n = 7, f = 2, and replicas P6 and P7 are faulty.
P1 misses m2 and m3 and thus requests them via a REQUEST
message. Each replica then processes the request from other
replicas. A naive approach is that each replica processes each
requested element in the REQUEST message one by one, which
obviously incurs O(ℓn2) message complexity, as each replica
needs to broadcast up to ℓ messages.

Alternatively, each replica can wait until it has the cor-
responding data fragments for all the requested elements in
a REQUEST message. In this way, the message complexity
is O(n2). Such an approach, however, may have a deadlock
issue. For instance, upon receiving a request from P1, although
P2 holds m2, it waits until receiving the correct fragments
of m3 from P3, P4, and P5. Further, P3 will not send the

TABLE II
COMPARISON BETWEEN AVDD AND ℓ-ADD

Protocol Communication Cost
Optimistic Case† Worst Case‡

AVDD 0 4ℓn|m|+O(ℓn2 logn)
ℓ-ADD [15] 6ℓn|m|+O(ℓn2 logn)
†The “Optimistic Case” means that all replicas are correct
and have the complete vector at the beginning.
‡The “Worst Case” means that there are f faulty replicas
and each element in the vector is held by only f + 1 correct
replicas at the beginning.

fragment of m3 to P2 until receiving the correct fragments
of m1 from P1, P4, and P5. Similarly, P1 will not send the
fragment of m1 to P3 until receiving the correct fragments of
m2 from P2, P4, and P5. Accordingly, P1 waits for P2, P2

waits for P3, and P3 waits for P1, creating a deadlock.
Our AVDD protocol solves it using a dispersal phase and

an optional confirm phase, and achieves O(n2) messages.
Moreover, its concrete communication is 0 in the optimistic
case (where none of the elements in the M vector is ⊥ for
all replicas), and at most 4ℓn|m| + O(ℓn2 log n) even in the
“worst” case (as we will prove shortly), assuming |m| be the
size of each element in the ℓ-dimensional vector M .

In contrast, the data dissemination problem of a ℓ-
dimensional vector can be alternatively solved by ℓ paral-
lel ADD [15] instances—hereinafter abbreviated as ℓ-ADD.
As shown in Table II, running ℓ-ADD incurs 6ℓn|m| +
O(ℓn2 log n) communication, significantly higher than AVDD.

C. Analysis

We now give an analysis of Algorithm 1. Recall that its
goal is to make every correct replica output a common ℓ-
dimensional vector M = (m1, . . . ,mk, . . . ,mℓ). We first
prove the correctness, i.e, provided that for any k ∈ [ℓ], at least
f + 1 correct replicas input the same mk and other correct
replicas input ⊥, every correct replica will output the same
vector M .

Lemma 1 After broadcasting a REQUEST message, each
replica Pi will hold the correct ith fragments of all its missing
elements.

Proof: We assume that Pi broadcasts a REQUEST message
carrying an index set Si ⊆ [ℓ]. For every k ∈ Si, Pi sets
d∗ki only if it receives f + 1 consistent fragments through
DISPERSE messages from different replicas, at least one of
which is correct. In this case, d∗ki is certainly correct, as no
correct replica will send an incorrect fragment. Moreover,
since every element in M is held by at least f + 1 correct
replicas, Pi can always receive f +1 consistent fragments for
every k ∈ Si. Thus, each replica Pi will hold the correct ith

fragments of all its missing elements. ■

Lemma 2 At the end of the protocol, every correct replica
outputs the same M . Thus, correctness is satisfied.
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Proof: We assume that Pi broadcasts a REQUEST message
carrying an index set Si ⊆ [ℓ]. From Lemma 1, each replica Pj

will hold either a full data or a jth fragment for every element
in M . Thus, upon receiving a REQUEST message carrying Si

from Pi, Pj will eventually return the jth fragments of all
elements in Si through DISPERSE and CONFIRM messages.
Then, for every element requested in Si, Pi will receive 2f+1
fragments to trigger the OEC algorithm. Indeed, there may be
up to f error fragments from faulty replicas. However, Pi will
eventually receive 2f + 1 correct fragments from all correct
replicas, so the OEC algorithm will eventually succeed and
output the same element as the one that correct replicas input
at the beginning. Therefore, every correct replica will output
the same M . ■

Our AVDD protocol has O(n2) messages as it only involves
all-to-all communication. We next analyse its communication
cost.

Lemma 3 The concrete communication cost of the AVDD
protocol is bounded by 4ℓn|m|+O(ℓn2 log n).

Proof: We assume that the number of elements requested by
replica Pi is no more than ℓi(ℓi ≤ ℓ) for any i ∈ [n]. Then
each REQUEST message carries a set of indices of missing
elements, which is no more than ℓi. Thus, the communication
cost of the request phase is at most n

∑
i∈[n] ℓi.

During the dispersal and confirm phases, each replica Pi

receives DISPERSE and CONFIRM messages carrying frag-
ments about its ℓi requested elements from n replicas. The
size of Reed-Solomon code fragments is max( |m|

f , log n) <
|m|
f + log n bits. For each replica Pi and Pj , we consider

two situations: (1) Pj holds all Pi’s requested elements and
sends the fragments through a DISPERSE message, incurring
2ℓi(

|m|
f + log n) + O(ℓi) bits; (2) Pj holds no Pi’s re-

quested elements and sends the fragments through a CONFIRM

message, incurring ℓi(
|m|
f + log n) + O(ℓi) bits. Thus, the

communication for Pi in the dispersal and confirm phases is
bounded by n(2ℓi(

|m|
f + log n) +O(ℓi)). Therefore, the total

communication cost of the AVDD protocol is at most

n
∑
i∈[n]

ℓi +
∑
i∈[n]

n(2ℓi(
|m|
f

+ log n) +O(ℓi))

= 2n
|m|
f

∑
i∈[n]

ℓi +O(n log n
∑
i∈[n]

ℓi).

(1)

Moreover, each element in M has been held by at least f +1
correct replicas at the beginning, and thus may be requested
by at most 2f replicas. In other words, the total number of
requests of all replicas is no more than ℓ(2f) = 2ℓf , i.e.,∑

i∈[n]

ℓi ≤ 2ℓf. (2)

Therefore, from Equation (1) and Inequality (2), the commu-

nication cost of our AVDD protocol is bounded by:

2n
|m|
f

∑
i∈[n]

ℓi +O(n log n
∑
i∈[n]

ℓi)

≤ 4ℓn|m|+O(ℓn2 log n).

(3)
■

Theorem 1 In an asynchronous network of n = 3f + 1,
Algorithm 1 solves the data dissemination problem of a
ℓ-dimensional vector with at most 4ℓn|m| + O(ℓn2 log n)
communication.

Proof: From Lemma 2 and Lemma 3, it is immediate that our
AVDD protocol satisfies correctness and the communication
cost is at most 4ℓn|m|+O(ℓn2 log n). ■

D. From AVDD to BFT

We can directly use AVDD to build an asynchronous BFT
with lower communication compared to existing ones. For
instance, as shown in Fig. 3, we can replace the recovery phase
of sDumbo with AVDD (setting ℓ = n − f ) to obtain a BFT
with lower communication, i.e., O(n2|m| + λn3 + n3 log n),
where the λn3 term is due to the use of sMVBA and threshold
encryption. We will show how to further reduce it in Section V.
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Fig. 3. BFT using AVDD (in sDumbo).

V. THE DORY PROTOCOL

This section presents the design of Dory. We begin with the
challenges of reducing the communication and then present
our protocol in detail.

A. Building Practical BFT with Lower Communication

The censorship resilience challenge. To cope with the censor-
ship resilience challenge [3], most prior works use a threshold
encryption scheme to prevent transactions from being censored
by the adversary [4], [9], [14]. The use of threshold encryption
scheme incurs a minimum of O(λn3) communication. In
particular, since there are O(n) proposals in each epoch, every
replica needs to broadcast O(n) decryption shares of λ size, so
the communication is O(λn3). This term is in general not the
bottleneck for prior approaches as the communication of the
BFT protocols is higher (e.g., HoneyBadger, BEAT, Dumbo,
sDumbo all have O(n2|m|+λn3 log n) communication so the
O(λn3) term is not the bottleneck any more). In this work, we
aim to do better and overcome this communication bottleneck.
Using supplemental consensus to enhance the performance.
The supplemental consensus mechanism, originally used in
DispersedLedger [6], provides an efficient approach to utilize
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the uncommitted but received proposals from prior epochs to
enhance the system performance. The core idea is that for the
proposals that are not committed in the prior epoch, instead
of discarding them directly, replicas can still propose them in
the current epoch. Accordingly, replicas reach a supplementary
consensus of them while reaching an agreement on the propos-
als of the current epoch. In addition to enhancing the system
performance, this approach naturally solves the censorship
resilience issue, as the uncommitted proposals can still be
included in the proposals in newer epochs. This approach,
however, relies on reliable broadcast protocols (or variants)
which incur O(n3) messages. We show below how security
will be violated if we apply it directly to O(n2) messages
framework (i.e. integrated with PB and AVDD).
Integrating supplemental consensus with PB and AVDD.
We attempt to integrate supplemental consensus with our
proposed approach in Fig. 3 to build a protocol with O(n2)
messages and lower communication—without threshold en-
cryption. The workflow is briefly summarized below.
• First, each replica Pi keeps track of all PB instances and

maintains a view vector Vi to keep track of the received
proposals. The view vector only stores the instance identifiers
instead of the proposals. In particularly, if Pi stores all Pj’s
proposals up to epoch e, and receives the corresponding lock
proofs, Pi will update Vi and set Vi[j] as e.

• At the beginning of an epoch e′(e′ > e), each replica Pi

includes Vi in its proposal for epoch e′. After the election
phase, every replica will decide a common subset consisting
of n−f proposals. Every replica first uses an AVDD instance
to reconstruct these proposals, where each proposal includes
a view vector Vi. Then, based on the n − f view vectors,
each replica computes a common view vector V according
to Equation (4) shown below. The agreement on the view
vectors is called a supplemental consensus.

• Finally, an additional AVDD instance is used to obtain the
proposals indexed in V . The union of the transactions from
the proposals created in epoch e′ and those indexed in V
will be delivered.

V = {maxf+1(V1[1], V2[1], . . . , Vn−f [1]),

maxf+1(V1[2], V2[2], . . . , Vn−f [2]),

. . .

maxf+1(V1[n], V2[n], . . . , Vn−f [n])}

(4)

Analysis. Unfortunately, the solution above fails to achieve
the agreement property for the proposals indexed in the view
vectors. In particular, this is because the common view vector
V only includes the instance identifiers and if some proposal
m is indexed in V , we can only guarantee that at least one
correct replica receives the corresponding lock proof for m.
In this case, only one correct replica is able to input m
in the additional AVDD instance. However, for AVDD to
successfully reconstruct each proposal, we need to guarantee
that at least f + 1 correct replicas input m at the beginning
of the AVDD protocol. In fact, the fundamental reason that
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Fig. 4. The workflow of Dory.

this solution fails is that the PB primitive cannot achieve the
totality property, in contrast to the AVID-M [6] primitive used
in DispersedLedger.

In Dory, we use two steps, lock and finish, in addition
to each PB instance, to bypass this barrier. It stems from a
critical observation that the totality property is unnecessary.
To reconstruct some proposal, we only need n − f replicas
to hold lock proofs of it, which is ensured by the finish step.
The finish step can be executed concurrently with MVBA, as
it is useful only for the supplementary consensus.

Moreover, we implement a more efficient MVBA protocol
called dMVBA achieving O(n|v|+λn2 log n) communication.
Based on these changes, we can obtain a secure BFT protocol
with O(n2|m|+ λn2 log n+ n3 log n) communication.

B. Dory

We are now ready to present the Dory protocol. As illus-
trated in Fig. 4, the protocol consists of three phases: broad-
cast, election, and recovery. Briefly speaking, the workflow of
an epoch proceeds as follows. At the beginning, each replica
Pi includes its view vector in the proposal. The broadcast
phase executes n parallel PB instances where each replica Pi

starts an instance to send its proposal to all replicas. After each
PB instance completes, the sender Pi broadcasts a lock proof
via a LOCK message. After each replica receives at least n−f
lock proofs, it provides the lock proofs as input to MVBA and
starts the election phase. Meanwhile, to achieve agreement
for the supplementary consensus, we need the finish step
that can be executed concurrently with MVBA. In particular,
upon receiving a lock proof for some proposal, each replica
replies with a LOCKED message carrying its signature share
to the sender. After receiving n − f valid signature shares,
Pi combines the signature shares and sends the signature as a
finish proof via a FINISH message. After MVBA outputs,
replicas enter the recovery phase that involves two AVDD
instances to reconstruct the proposals.

We now present in detail the workflow. According to the
progress of the replicas, the status of each proposal me

j

(created by Pj in epoch e) maintained by replica Pi can be
one of the following: locked, finished, and committed, as
shown below.
• locked. If Pi has received a proposal me

j from Pj and
receives a lock proof (h, σ) where h is a hash for me

j and
σ is a valid signature for ⟨e, j, h⟩ (i.e., H(me

j) = h and
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Algorithm 2 Utility functions of Dory. Code shown for Pi.
1: procedure UpdateView(e):
2: initialize a |n|-dimensional vector Vi

3: for any j ∈ [n] do
4: Vi[j]← the latest epoch e′ s.t. e′ < e and finishe′′ [j] = 1 for

all 1 ≤ e′′ ≤ e′

5: return Vi

6: procedure ObtainProposals(ID, T ):
7: initialize a |T |-dimensional vector Mi, set k ← 0
8: for any (e, j) ∈ T do
9: if locke[j] = 1 then

10: Mi[k] = me
j

11: else
12: Mi[k] = ⊥
13: k ← k + 1
14: invoke AVDD[ID] with input Mi

15: wait until AVDD[ID] outputs M
16: for (e, j) ∈ T do
17: locke[j]← 1, finishe[j]← 1, commite[j]← 1
18: return M

19: procedure CheckViews(views, T ):
20: initialize a n-dimensional vector V
21: for any j ∈ [n] do
22: V [j]← the (f +1)th largest value among {Vk[j]|Vk ∈ views}
23: for any j ∈ [n] and 1 ≤ e ≤ V [j] do
24: if commite[j] = 0 then
25: T ← T ∪ {(e, j)}

Verifyn−f (⟨e, j, h⟩, σ) = 1), then the status is locked and
Pi sets locke[j] as 1.

• finished. If Pi receives a proof σ′ in a FINISH message
for the proposal me

j (i.e., Verifyn−f (⟨e, j, locked⟩, σ′) = 1),
then the status is finished and Pi sets finishe[j] as 1.

• committed. If the proposal me
j is delivered, then the status

is committed and Pi sets commite[j] as 1.
The status is useful for each replica to track the un-

delivered proposals and for our protocol to achieve its security
properties. If the status is locked, at least f+1 correct replica
has already received the proposal. If the status is finished,
at least f + 1 correct replicas have received the proposal
and known its correctness, which is useful for supplementary
consensus: A proposal un-delivered in prior epochs can be
delivered iff its status is finished.

The pseudocode of Dory is shown in Algorithm 3 and the
utility functions are shown in Algorithm 2.
Broadcast. The broadcast phase involves n parallel PB in-
stances. At the beginning of each epoch e, each replica Pi

first updates Vi by querying the UpdateView(e) function.
The function returns a n-dimensional vector Vi, where each
component stores the latest epoch number, up to which the
proposals of Pj are set as finished by Pi. Then, Pi includes a
batch of transactions txi and Vi as the proposal for the current
epoch and starts the ith PB instance, denoted as PB[⟨e, i⟩].
After PB[⟨e, i⟩] completes, (hi, σi) is returned, where hi is the
hash of me

i and σi is a signature for ⟨e, i, hi⟩. Then Pi broad-
casts a LOCK message (ln 3-8). Meanwhile, if Pi receives the
proposal me

j from Pj in PB[⟨e, j⟩], it stores me
j . If Pi receives

a valid LOCK message for PB[⟨e, j⟩], it creates a signature
share for ⟨e, j, locked⟩ and sends a LOCKED message to Pj .

Algorithm 3 The Dory protocol. Code shown for Pi.
let the Q of MVBA[ID] be the following predicate:
QID({(j1, hj1 , σj1 ), . . . , (jn−f , hjn−f

, σjn−f
)}) ≡ (for any k ∈

[n− f ],Verifyn−f (⟨ID, jk, hjk ⟩, σjk ) = 1)

1: upon invocation of epoch e do
2: Initialization: locke ← (01, . . . , 0n); finishe ← (01, . . . , 0n);

commite ← (01, . . . , 0n); Si ← {}; Li ← {}; T1 ← {}; T2 ← {}.
3: upon receiving transactions txi to be proposed in epoch e do
4: Vi ← UpdateView(e) ▷ Broadcast phase
5: let me

i = (txi, Vi) be the proposal of epoch e
6: invoke PB[⟨e, i⟩] with input me

i
7: upon receiving (hi, σi) from PB[⟨e, i⟩] do
8: broadcast (LOCK, e, hi, σi)
9: upon receiving me

j from PB[⟨e, j⟩] do
10: store me

j
11: upon receiving (LOCK, e, hj , σj) from Pj do
12: wait until me

j ̸= ⊥
13: if H(me

j) = hj and Verifyn−f (⟨e, j, hj⟩, σj) = 1 then
14: locke[j]← 1 ▷ Locked
15: ρi ← Signn−f (ski, ⟨e, j, locked⟩)
16: Li ← Li ∪ {j, hj , σj}
17: send (LOCKED, e, ρi) to Pj

18: upon receiving (LOCKED, e, ρj) from Pj do
19: if VerifySharen−f (⟨e, i, locked⟩, (j, ρj)) = 1 then
20: Si ← Si ∪ {j, ρj}
21: if |Si| = n− f then
22: σ′

i ← Combinen−f (⟨e, i, locked⟩, Si)
23: broadcast (FINISH, e, σ′

i)
24: upon receiving (FINISH, e, σ′

j) from Pj do
25: if Verifyn−f (⟨e, j, locked⟩, σ′

j) = 1 then
26: finishe[j]← 1 ▷ Finished
27: upon |Li| = n− f then ▷ Election phase
28: invoke MVBA[e] with input Li

29: upon receiving L = {(jk, hjk , σjk )}k∈[n−f ] from MVBA[e] do
30: for any (jk, hjk , σjk ) ∈ L do ▷ Recovery phase
31: if me

jk
̸= ⊥ and H(me

jk
) = hjk then

32: locke[jk]← 1 ▷ Locked
33: T1 ← T1 ∪ {(e, jk)}
34: M1 ← ObtainProposals(⟨e, 1⟩, T1) ▷ 1st AVDD
35: for any me

j ∈M1 do
36: decompose me

j into transactions txe
j and view Vj

37: CheckViews({Vj |me
j ∈M1}, T2)

38: M2 ← ObtainProposals(⟨e, 2⟩, T2) ▷ 2nd AVDD
39: for any me′

j′ ∈M2 do
40: extract transactions txe′

j′ from me′
j′

41: output {txe
j |me

j ∈M1} ∪ {txe′
j′ |m

e′
j′ ∈M2}

Finally, if Pi receives n−f signature shares from the LOCKED
messages, it combines the signature shares into a signature
σ′
i and then broadcasts a (FINISH, e, σ′

i) message (ln 9-26).
Each replica Pi keeps track of all the proposals and updates
the locke, finishe, and commite parameters according to the
description mentioned above.

Election. After the status of n−f proposals of epoch e become
locked, Pi invokes MVBA[e] providing the lock proofs as
input (ln 27-28).

As sMVBA is another communication bottleneck, we im-
plement a more efficient MVBA protocol called dMVBA as
shown in Fig. 5. Specifically, we apply the APDB protocol [12]
on sMVBA to reduce the communication from O(n2|v|+λn2)
to O(n|v| + λn2 log n) (where |v| is the length of the input
for MVBA), while maintaining O(1) time. At the beginning,
Pi encodes its input into fragments and disperses them with
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Merkle tree witnesses via ECHO messages. Then, upon a
receiving valid fragment, each replica returns a signature share
for the Merkle root rti via a READY message. After collect-
ing n−f signature shares, Pi combines them into a signature
σi and triggers sMVBA with rti and σi. Finally, sMVBA
will output a tuple (rts, σs) and replicas will reconstruct the
corresponding input as the output of dMVBA. The security of
dMVBA follows from [12].
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Fig. 5. The workflow of dMVBA.

Recovery. After MVBA[e] outputs L, Pi starts the recovery
phase. There are two AVDD instances, one for recovering the
proposals created in the current epoch, and one for recovering
the proposals indexed in the view vectors. In particular, for
every (jk, hjk , σjk) in L, if Pi has stored me

j but the status is
not locked, Pi sets the status as locked. Then, Pi starts the first
AVDD instance by querying the ObtainProposals(⟨e, 1⟩, T1)
function. After a vector of proposals M1 is obtained from
AVDD, each replica obtains the transactions included in the
proposals (ln 29-36). Additionally, Pi further extracts the view
vectors and combines them into a common vector V , by
querying the CheckViews({Vj |me

j ∈M1}, T2) function. Then
Pi starts the second AVDD instance to reconstruct the pro-
posals indexed in V , also by querying the ObtainProposals()
function. A set of transactions are obtained (ln 36-40). Finally,
Pi takes a union of the transactions included in the output of
two AVDD instances, and delivers them according to a pre-
defined deterministic order (ln 41).

C. Analysis

Lemma 4 In epoch e, every correct replica will invoke the
MVBA instance and get some output L from it.

Proof: Due to the termination property of PB, all correct repli-
cas will complete a PB instance as the sender and broadcast the
corresponding lock proof. It means that each replica Pi will
store me

j and receive valid (hj , σj) from at least n−f correct
replicas. Thus, Pi will invoke the MVBA instance using a
valid Li as input. Due to the termination of MVBA, after all
correct replicas invoke the MVBA instance with valid inputs,
they will get an output L from it. ■

Lemma 5 In epoch e, every correct replica will get the same
L, such that Verifyn−f (⟨e, j, hj⟩, σj) = 1 for any tuple
(j, hj , σj) ∈ L.

Proof: Due to Lemma 4 and the agreement of MVBA, every
correct replica will get the same output L. Moreover, due to

the external validity of MVBA, every tuple (j, hj , σj) in L
satisfies Verifyn−f (⟨e, j, hj⟩, σj) = 1. ■

Lemma 6 For any PB instance PB[⟨e, k⟩], if any two correct
replicas Pi and Pj set the status of the corresponding proposal
as locked and have stored (me

k)
i and (me

k)
j respectively, then

(me
k)

i = (me
k)

j .

Proof: Suppose (me
k)

i ̸= (me
k)

j , then Pi and Pj must have
received different lock proofs, i.e., (h, σ) and (h′, σ′) where
h = H((me

k)
i) and h′ = H((me

k)
j). It violates the provability

property of PB. Thus, Pi and Pj must have stored the same
proposal from PB[⟨e, k⟩]. ■

By extending Lemma 6, we know that if a replica Pi sets
locke[j] as 1, then it must have stored the correct me

j .

Lemma 7 In each epoch, every correct replica will set T1

to the same value, and get the same corresponding proposals
included in M1.

Proof: T1 is determined by MVBA’s output L. Due to
Lemma 4 and Lemma 5, every correct replica will get the same
L and thus decide the same T1 by deterministic algorithms.
Each proposal indexed in T1 has been stored by at least f +1
correct replicas, and these replicas will set its status as locked
because they are all able to see the corresponding lock proof
due to the agreement of MVBA. Then due to Lemma 6, the
AVDD condition for the vector of these proposals is satisfied
and every correct replica will get the same M1 including
them. ■

Lemma 8 In each epoch, every correct replica will set T2

to the same value, and get the same corresponding proposals
included in M2.

Proof: T2 is determined by the view vectors included in M1.
Due to Lemma 7, every correct replica will get the same M1

and thus decide the same T2 by deterministic algorithms. In
the CheckViews() function (Algorithm 2), the common view
vector V is computed by taking the (f + 1)

th largest value
among n−f view vectors for each component in V . Therefore,
for any i ∈ [n], V [i] is no larger than at least one Vj [i] from
a correct replica. Namely, for each proposal indexed in T2,
at least one correct replica has set it as finished. Thus, at
least f + 1 correct replicas have set it as locked. Then due
to Lemma 6, the AVDD condition for the vector of these
proposals is satisfied and every correct replica will get the
same M2 including them. ■

Lemma 9 For any proposal me
i created by a correct replica

Pi in epoch e, if it is not delivered in epoch e, then it will
eventually be delivered in a later epoch e′.

Proof: At the beginning of epoch e, Pi inputs me
i to

PB[⟨e, k⟩]. Due to Termination of PB, Pi is able to get the
corresponding lock proof. Then, since Pi is correct, it will
broadcast the lock proof to all replicas, collect n−f signature
shares in LOCKED from correct replicas at least, and then
broadcast a finish proof. Therefore, every correct replica will

9



see the finish proof and set finishe[i] as 1. Later, at the
beginning of some epoch e′(e′ > e), every correct replica will
index me

j in the view vector associated with its proposal. In
the recovery phase of epoch e′, the first AVDD instance will
output a vector M1 containing n − f view vectors, at least
f + 1 of which are from correct replicas. As the common
view vector V is computed by taking the (f + 1)

th largest
value among these view vectors for each component of V , me

i

must be indexed in V and thus delivered through the second
AVDD instance. ■

Lemma 10 For asymptotic complexity, Dory achieves O(1)
expected time, O(n2) message complexity and O(n2|m| +
λn2 log n + n3 log n) communication, and costs n2|m| +
O(λn2 log n+ n3) communication in the optimistic case.

Proof: The time complexity clearly is O(1) as we follow
the classic MVBA-based paradigm: dMVBA achieves O(1)
expected time; the other protocols we use are deterministic
algorithms with a constant number of steps. The message
complexity is O(n2) as the Dory protocol only involves all-
to-all communication.

We now analyze the communication complexity. In the
broadcast phase, the input of each PB instance includes a
proposal and a n-dimensional view vector, where the size of
transactions is |m| and the size of the view vector is O(n)
considering epoch number is a constant. As the broadcast
phase involves n parallel PB instances, the communication
complexity is O(n2|m| + λn2 + n3). The election phase has
one dMVBA instance, and each replica’s input includes O(n)
hashes and O(n) signatures. The communication complexity
is thus O(λn2 log n). We now work on the recovery phase.
Recall that in every epoch, any replica will not invoke MVBA
until the status of n−f proposals is locked. Accordingly, none
of the correct replicas will request more than f proposals with
the same epoch number in any AVDD instance. Therefore, due
to Equation (1) in Lemma 3, the communication cost of the
recovery phase is no more than 2n |m|

f ·nf+O(n log n ·nf) ≤
2n2|m| + O(n3 log n), and thus the O(n2|m| + n3 log n)
communication complexity.

The optimistic case means there is no failure or network
asynchrony. In this case, all replicas will receive all proposals
in the broadcast phases, and none of them will trigger the
recovery phase. Therefore, the communication cost in the
optimistic case of Dory is only n2|m|+O(λn2 log n+n3).■

Theorem 2 Dory achieves agreement, total order, and censor-
ship resilience with O(n2) messages, O(n2|m|+ λn2 log n+
n3 log n) communication and O(1) time.

Proof: Agreement follows from Lemma 7 and Lemma 8.
Then, due to the agreement, every replica outputs the same
transactions in the same epoch. Since the transactions in a
single epoch are delivered according to a pre-defined deter-
ministic order and Dory is invoked sequentially according to
monotonically increasing epoch numbers, it is straightforward
that Dory achieves total order. Censorship resilience follows
from Lemma 9. Namely, if some transactions are not delivered

in the epoch that they are proposed, they are still able to deliver
through the supplemental consensus. Finally, combining the
above conclusions with Lemma 10, Theorem 2 follows. ■

VI. IMPLEMENTATION AND EVALUATION

We implement2 Dory, Dory-NG (integrating techniques in
Dumbo-NG with Dory), sDumbo, and Dumbo-NG in Golang
(both open-sourced), and evaluate them in WAN settings. Our
evaluation results show that 1) Dory concretely saves the
communication cost compared with sDumbo, 2) Dory achieves
low latency—less than 8s even for n = 151 replicas, 3) Dory
achieves high throughput (135k tx/s for 16 replicas and 57k
tx/s for 151 replicas) which is up to 5× that of sDumbo and
1.7× that of Dumbo-NG, and 4) even during failures, Dory
and Dory-NG exhibit higher performance than sDumbo and
Dumbo-NG.
Implementation. We implement Dory, Dory-NG, sDumbo
and Dumbo-NG in Golang using the same underlying modules,
libraries and security parameters for a fair comparison. For the
network connection, we use TCP sockets to realize reliable
point-to-point channels, while running n message sending
goroutines and one message receiving goroutine at each
replica. The security parameter λ captures the output length of
cryptographic primitives. Specifically, for threshold signature
and coin-tossing, we use Boldyreva’s pairing-based threshold
scheme [19] on BN256 curve implemented in kyber3, and
the length of signatures (or shares) is 64 bytes; for threshold
encryption, we implement Baek and Zheng’s scheme [26] on
the same curve, resulting in decryption shares of 130 bytes;
for hash function, we use SHA3-512. For Reed-Solomon error
correcting code, we use an open-source implementation in
infectious4 that can easily process transactions at a speed of
gigabits per second even for n = 100.
Experiment setup. We deploy Dory, Dory-NG, sDumbo and
Dumbo-NG on Amazon EC2 using 151 instances where the
instances are evenly distributed in up to 10 regions (Singapore,
Mumbai, Stockholm, Paris, Frankfurt, St. Paulo, California,
Virginia and Canada). Each replica runs on a t3.medium
instance with two virtual CPUs and 4GB memory. Following
the prior works [3], [14], we define the latency as the time
interval between the time the first replica starts a new epoch
and the time when the (n − f)th replica finishes this epoch.
We assume that each transaction is a random string of 250
bytes which matches the size of basic Bitcoin transactions
and replicas will input batches of transactions every time. We
define the batch size as the number of transactions input by all
replicas in a single epoch (or slot5 for Dumbo-NG and Dory-
NG), and varies from 102 to 106. Besides, we also evaluate

2https://github.com/xygdys/Consensus
3https://github.com/dedis/kyber
4https://github.com/vivint/infectious
5Due to the pipeline and parallel nature of Dumbo-NG and Dory-NG,

replicas may propose several times in an epoch, so we define slot as the
period of time replicas proposing transactions. Therefore, the batch size of
these two protocols represents the number of transactions input by all replicas
in a single slot.
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Fig. 6. Communication cost of Dory and sDumbo.

the basic latency which denotes the latency in contention-free
scenarios, by simply letting each replica input one transaction,
i.e., the batch size is n. In all experiments, we run all protocols
for ten epochs and report the average value as the result.

Communication cost. We first evaluate the communication
cost of Dory and compare it with sDumbo. We measure the
total communication bytes for all the messages sent by each
replica while running the protocols. We consider the ideal
cost as n|m|, as this is the minimum communication cost
(per replica) one could expect for atomic broadcast; note that
the ideal cost also equals the byte length of all transactions
in a single batch. We define redundant communication cost
is the communication cost except for transaction dissemina-
tion. As shown in Fig. 6a, though both Dory and sDumbo’s
communication cost increase as the number of replicas scales,
Dory keeps a tighter distance with the ideal cost. For example,
when n = 151 and the batch size reaches 10,000, Dory costs
about 2.75MB per replica, which is only 15% higher than the
ideal, while sDumbo costs about 9.91MB per replica which is
4× that of the ideal cost. Only when the batch size becomes
much larger (e.g. > 105), the communication cost of Dory and
sDumbo becomes closer to the ideal cost. This is because the
n2|m| term dominates the communication for large batches.

We also visualize the redundant communication cost of the
two BFT protocols in Fig. 6b, which helps understand the
performance difference between the two protocols. When the
number of replicas increases from 16 to 151, the redundant
communication cost of Dory increases from 35KB to just
375KB, which is in sharp contrast to that of sDumbo.

Performance. Fig. 7 shows batch size vs. throughput and
throughput vs. latency of Dory, sDumbo and Dumbo-NG for
different network sizes and batch sizes. For both throughput
and latency, Dory consistently outperforms sDumbo. In par-
ticular, when n = 151, the throughput of Dory is more than
5× that of sDumbo for all batch sizes. Dumbo-NG is able to
reach high throughput using smaller batch sizes, while its peak
throughput is limited. For example, when n = 121, the peak
throughput of Dumbo-NG is only half of Dumbo-NG’s. We
report the latency vs. throughput in Fig. 7b. For all settings,
Dory has shown consistently better performance than sDumbo
and Dumbo-NG.

We report the basic latency for Dory, sDumbo and Dumbo-
NG for different network sizes. As shown in Fig. 8, the basic
latency of Dory is much lower than that of sDumbo for all
the experiments we have conducted. When n = 151, the basic
latency of Dory is only 7.5s which is only 27% of that of
sDumbo. Compared with Dumbo-NG, Dory has almost the
same low basic latency while achieving higher throughput and
achieve stronger blockchain quality (as mentioned in Sec I).
Dory-NG. While the above experiments have demonstrated
that Dory outperforms sDumbo and Dumbo-NG, we still aim
at answering the following questions: (1) can we use Dumbo-
NG’s technology to further improve Dory, and (2) which
censorship resilience technology (supplemental consensus or
pipelined certificates) is better in performance? Thus, we
implement Dory-NG, by pipelining the broadcast phase and
separating it from agreement. As in Dory, Dory-NG uses
dMVBA as the randomized engine and uses AVDD to recover
proposals.

Fig. 9a shows the peak throughput of Dory, Dory-NG,
sDumbo and Dumbo-NG. We find that both Dory and Dory-
NG achieve higher peak throughput than sDumbo and Dumbo-
NG for all replicas scales. Therefore, we further compare Dory
and Dory-NG. Dory-NG outperforms Dory only when n = 16;
When the number of replicas grows, the peak throughput
of Dory-NG decreases significantly and is less efficient than
Dory. In contrast, Dory has a more stable peak throughput,
showing better scalability.
Performance under failures. We also evaluate the perfor-
mance of Dory, Dory-NG, sDumbo and Dumbo-NG under
failure scenarios. For all replicas scales, we force f replicas
to crash. As shown in Fig. 9b, all protocols suffer a signif-
icant reduction in throughput compared with the failure-free
scenario. However, they offer different failure resilience. Dory
is superior to sDumbo in all scales, and so is Dory-NG vs.
Dumbo-NG. Moreover, Dory-NG and Dumbo-NG outperform
Dory when n ≤ 82, but Dory outpaces Dumbo-NG when
n = 100 and becomes the fastest when n ≥ 121. This also
confirms the result that Dory is more scalable. In summary,
Dory-NG is more suitable for deployment in small-scale and
failure scenarios, while Dory can be used in other scenarios.

VII. ADDITIONAL RELATED WORK

Compared to our MVBA-based protocol, DAG-based pro-
tocols [10], [11], [27] have higher communication. In ad-
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Fig. 7. Throughput and latency of Dory, sDumbo and Dumbo-NG at different replica scales and batch sizes.
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dition, DAG-based protocols either achieve weak liveness
or suboptimal communication: DAG-Rider requires O(n3)
messages [27], Tusk also has O(n) communication blowup
(using de-duplication) [10], and Bullshark achieves weak
liveness [11].

Another line of work studies signature-free BFT protocols
that do not terminate in constant expected time and have higher
message complexity [2]–[5], but they perform well when n is
not too large. These protocols can be used to build various
other applications such as asynchronous MPC [28].

The MVBA primitive was introduced by Cachin, Kursawe,
Petzold, and Shoup [7]. Abraham, Malkhi, and Spiegelman
proposed a MVBA protocol [22] that attain O(n2|m|+ λn2)
communication (with optimal word complexity) and addition-
ally achieves a quality property. Lu et al. [12] reduced the
communication from O(n2|m| + λn2) to O(n|m| + λn2) by
using vector commitments. The recent work from Guo et
al. [9] and Gelashvili et al. [29] focused on how to reduce the
expected number of rounds while achieving O(n2|m|+λn2).
Our dMVBA protocol uses the framework of Dumbo-MVBA
by Lu et al. [12] but uses sMVBA to save steps. We did
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Fig. 9. Peak throughput of Dory, Dory-NG, sDumbo and Dumbo-NG under
failure-free and failure scenarios. For Dory and sDumbo, the batch size when
reaching their peak throughput is 106 in all settings; for Dory-NG, it is 105 in
all settings; for Dumbo-NG, it is 5×105 at 82 replicas under the failure-free
scenario, and 105 in other settings.

not use pairing-based constant-size vector commitments (e.g.,
KZG commitments [30]) but chose to use log-size Merkle trees
for efficiency; this is also the reason why our dMVBA has
O(n|m|+λn2 log n) communication (with an additional log n
factor).

VIII. CONCLUSION

This paper designs and implements Dory and Dory-NG with
reduced communication and improved efficiency compared
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to existing protocols. We designed a novel primitive called
asynchronous vector data dissemination, and we developed the
idea of supplemental consensus such that it can be compatible
with provable broadcast. We have implemented and deployed
Dory, Dory-NG, sDumbo, and Dumbo-NG using 151 Amazon
EC2 instances evenly distributed in 10 regions. We show
that Dory and Dory-NG consistently outperform sDumbo and
Dumbo-NG, respectively, during both failure and failrue-free
scenarios.
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