Encrypted Nonce Modes on Farfalle

Seth Hoffert

Abstract. Nonces are a fact of life for achieving semantic security. Gen-
erating a uniformly random nonce can be costly and may not always be
feasible. Using anything other than uniformly random bits can result
in information leakage; e.g., a timestamp can deanonymize a commu-
nication and a counter can leak the quantity of transmitted messages.
Ideally, we would like to be able to efficiently encrypt the nonce to 1)
avoid needing uniformly random bits and 2) avoid information leakage.
This paper presents two new authenticated encryption modes built on
top of Farfalle [2] that perfectly achieve these goals.

Keywords: farfalle, deck functions, authenticated encryption, wide block
cipher, modes of use, encrypted nonce

1 Introduction

A typical implementation of an AEAD mode tends to use some combination of
a timestamp, a counter and uniform randomness when deriving a nonce. Using
uniform randomness for nonce generation can be expensive on platforms that
have a limited entropy pool, and using anything other than uniform randomness
will inevitably leak information. For example, an observed timestamp can be
enough for an adversary to deanonymize a communication if the sender’s clock
is known to be inexact. Using a counter can also leak information, because it
allows an adversary to observe only two messages at different points in time and
yet still be able to estimate the number of messages that were sent in between
observations.

It would be nice if the nonce could somehow be contained within the plain-
text. At first, this seems like a chicken-and-egg problem: how does one encrypt
a nonce without using another nonce? The answer lies in the Feistel construc-
tion. Remarkably, it is possible to construct an efficient inverse-free mode that
is very similar to Deck-PLAIN [3] and yet encrypts the nonce and redundancy
with negligible additional overhead. Additionally, we can create a RUP-resistant
variant as well, suitable for use in onion encryption protocols.

1.1 Contributions

Our main contribution is constructing two efficient authenticated encryption
modes on top of Farfalle [2] that feature nonce and redundancy encryption. The
first mode can be viewed as the encrypted nonce analog of Deck-PLAIN [3], and
the second mode can be viewed as a constrained version of Deck-JAMBOREE |3]
that requires a nonce but still supports RUP, similar to GCM-RUP [1]. Because

both modes are built entirely on top of Farfalle [2], no block ciphers are involved
and the inverse direction of the underlying permutation remains unused. This
provides a hardware space advantage in ASIC and FPGA designs.

1.2 Conventions

The length in bits of the string X is denoted |X|. The concatenation of two
strings X,Y is denoted as X||Y and their bitwise addition as X @Y. Bit string
values are noted with a typewriter font, such as 01101. The repetition of a bit
is noted in exponent, e.g., 03 = 000. Finally, @ is the empty set and L denotes
an error code.

2 Nonce- and redundancy-encrypting AEAD mode

The algorithm listing for the nonce- and redundancy-encrypting AEAD mode
is now presented in its most general form. In practice, it is expected that an
implementation will fix Py, to a short constant length (e.g., a single block). This
allows early rejection to work, and it allows a bulk of the ciphertext bits to
be produced immediately after compressing the single-block nonce. The wvalid
function called by the decryption oracle is expected to validate the redundancy
that is present in Pgr so that the plaintext can be safely released.

a
a

> s bits
Diversifier

> 2s bits
Redundancy

o Fx

&b

o e

° Fr

© Seth Hoffert https://seth.rocks

a
&

Fig. 1: Nonce- and redundancy-encrypting AEAD mode

2.1 Features

— Encrypted nonce and redundancy: both the nonce and redundancy are
encrypted, allowing non-random nonces to be used

Algorithm 1.1: Nonce- and redundancy-encrypting AEAD mode

Definition : Farfalle instance F

1 function encrypt(key K, metadata A, plaintext (Pr,Pr)): ciphertext
2 assert |Pr| > 128 and Pr contains nonce

3 assert |Pr| > 256 and Pr contains verifiable redundancy

4 CR%PRGBFK(PLHOOA)

5 CrL < PL ® Fx(Crl|10 A)

6 return (Cr,Cr)

7 function decrypt(key K, metadata A, ciphertext (Cr,Cr)): plaintext or L
8 if |Cr| < 128 or |CRr| < 256 then return L

9 PL<—CL@]:K(CR||1OA)
10 PR<—CR€B.7‘—K(PLHOOA)
11 if not valid(Pgr) then return L
12 return (Pr, Pr)

— Performance: only a single amortized read- and write-pass is performed
over the plaintext

— Online encryption: the encryption oracle produces the majority of the
ciphertext bits immediately after compressing the nonce

— Early rejection: by placing the verifiable redundancy at the beginning of
Ppr, early rejection can be realized

— Timing-insensitive authentication: because the redundancy is non-malleable,
a timing-leaky equality function can be used in function wvalid

— Optional/static metadata: the metadata string compression can be skipped
if empty; additionally, static metadata can be factored out and reused across
invocations

2.2 Security proof

We defer the security proof to a future revision.

2.3 Variations

The redundancy is non-malleable, which allows for the use of a timing-leaky
equality function while validating redundancy. If this timing-insensitive property
is not needed, then it is possible to forego compression of the redundancy on line
5 of algorithm 1.1. Notably, this brings the mode even closer in parity to Deck-
PLAIN [3]. The modified algorithm is deferred to a future paper.

3 Nonce- and redundancy-encrypting AEAD mode with
RUP resistance

To achieve RUP resistance, we simply need an additional round in order to
achieve non-malleability over the entirety of the decrypted plaintext. It enjoys the

same properties as its simpler counterpart, requiring only one additional single-
block compression and expansion. Similar to the simpler mode, it is expected
that implementations will keep |Pr| to one block maximum. This configuration
maximizes the performance in that it allows for an amortized single read- and
write-pass over the plaintext.

> 2s bits
Diversifier + redundancy

> 2s bits

© Seth Hoffert https://seth.rocks

Fig. 2: Nonce- and redundancy-encrypting AEAD mode with RUP resistance

3.1 Features

— Encrypted nonce and redundancy: both the nonce and redundancy are
encrypted, allowing non-random nonces to be used

— Performance: only a single amortized read- and write-pass is performed
over the plaintext

— Online encryption: the encryption oracle produces the majority of the
ciphertext bits immediately after compressing the nonce

— Early rejection: because the verifiable redundancy is in Py, early rejection
can be realized

— Timing-insensitive authentication: because the redundancy is non-malleable,

a timing-leaky equality function can be used in function wvalid

— Optional/static metadata: the metadata string compression can be skipped
if empty; additionally, static metadata can be factored out and reused across
invocations

— RUP resistance: this mode can be used in onion protocols thanks to its
RUP resistance

Algorithm 1.2: Nonce- and redundancy-encrypting AEAD mode with
RUP resistance
Definition : Farfalle instance F

1 function encrypt(key K, metadata A, plaintext (Pr,Pr)): ciphertext
2 assert |Pr| > 256 and Pr, contains nonce and verifiable redundancy
3 assert |Pr| > 256

4 Cr + Pr ® Fi(Pr]|000 A)

5 Cr < PrL ® Fx(Crl||010 A)

6 Cro + Cro ® Fr(CL|100 A)

7 return (Cr,Cr)

8 function decrypt(key K, metadata A, ciphertext (Cr,Cr)): plaintext or L
if |CL| < 256 or |Cr| < 256 then return L

10 Cro < Cro @ Fx(CL||100 A)

11 Pr «+ Cp, @.FK(CRHOlOA)

12 if not valid(Pr) then return L

13 Pr <~ Cr® Fx(Pr|[000 A)

14 return (Pr,Pr)

3.2 Security proof

We defer the security proof to a future revision.

4 Session support

In an effort to keep the algorithm listings minimal, neither of the presented
modes has native session support. One could implement session-based versions
of both of the presented algorithms simply by keeping an incremental history.
This feature is deferred to a future paper.

5 Conclusions

The presented modes are a testament to Farfalle’s flexibility and power. Algo-
rithm 1.1 can be viewed as an enhanced Deck-PLAIN [3], and algorithm 1.2
is ideal for situations when RUP is needed (e.g., onion routing). Both modes
achieve the encrypted nonce goal and are efficient, requiring only a single amor-
tized read- and write-pass over the plaintext.

References

1. Ashur, T\, Dunkelman, O., Luykx, A.: Boosting authenticated encryption robustness
with minimal modifications. Cryptology ePrint Archive, Paper 2017/239 (2017),
https://eprint.iacr.org/2017/239, https://eprint.iacr.org/2017/239

https://eprint.iacr.org/2017/239
https://eprint.iacr.org/2017/239

2. Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.:
Farfalle: parallel permutation-based cryptography. IACR ToSC (2017)

3. Bacuieti, N., Daemen, J., Hoffert, S., Assche, G.V., Keer, R.V.: Jammin’ on the
deck. Cryptology ePrint Archive, Paper 2022/531 (2022), https://eprint.iacr.
org/2022/531, https://eprint.iacr.org/2022/531

https://eprint.iacr.org/2022/531
https://eprint.iacr.org/2022/531
https://eprint.iacr.org/2022/531

	Encrypted Nonce Modes on Farfalle
	Introduction
	Contributions
	Conventions

	Nonce- and redundancy-encrypting AEAD mode
	Features
	Security proof
	Variations

	Nonce- and redundancy-encrypting AEAD mode with RUP resistance
	Features
	Security proof

	Session support
	Conclusions

